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Preface for an Ins t ruc tor  

This book is an experiment. To be precise, the book is not an experiment, but the approach 
of introducing and employing new concepts of chemical engineering analysis, concurrently 
with new concepts in computing, as is presented within this book, is experimental. Usually, 
the student of a first course in chemical engineering is presented with material that builds 
systematically upon engineering concepts and the student works within this linear space to 
"master" the material. In fact, however, the process is never so linear. For example, mathe- 
matics, in the form of geometry, algebra, calculus and differential equations, is either dredged 
back up from the student's past learning to be employed practically in the solution of material 
and energy balance problems or new math methods are taught along the way for this purpose. 
In fact a good deal of "engineering math" is taught to students by this means and not just at 
this introductory level A as it should be. 

Therefore the critic might suggest that teaching computing simultaneously with introduc- 
tory engineering concepts is not new, and instead simply adds, from the students' perspective, 
to the list of apparently "extra items" we already teach in a course and subject such as this 
one. That would be a fair criticism, if that were how this book had been designed. Fortunately, 
this book is intentionally not designed that way, but is instead designed with engineering 
and computing fully in tegrated-- that  is, they are introduced concurrently. I have purposely 
sought to avoid the simple addition of yet another set of apparently non-core learnings on top 
of the already long list of core learnings, by carefully staging the introduction of new com- 
puting methods with those of new types of engineering problems as they are needed. In this 
way the computing level rises with the engineering level in order to match the requirements 
of the problem at hand. Furthermore, the computing is not relegated to "gray boxes" or just to 
certain problems at the end of the chapter, but is integrated into the very text. By proceeding 
this way one actually leads the student and reader through a two-space of engineering and 
computing concepts and their application, both of which then reinforce one another and grow 

. c o  
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in sophistication with the complexity of the problem under  consideration. However, this does 
not escape the fact that I have woven into the fabric of purely engineering material the new 
fibers of this computing. Why would I do so? 

Simply p u t - - I  see many benefits to this approach, but  will enumerate only a few. One 
major goal of the first course is to enable students to begin to do analysis. Doing so requires 
a formidable integration of skills from reading comprehension to physical conceptualization 
on through to mathematics and computing, and the student must  do this and then run it all 
back out to us in a form that proves that he or she understood what  was required. No wonder  
then that this first course is for many the steepest intellectual terrain they will encounter in 
the curriculum. It is simply unlike anything they have been called upon to do before! The 
student needs to be able to conceive of the physical or chemical situation at hand, apply the 
conservation of mass principle to develop model equations, seek the best method to assemble 
a solution to the equations and then test their behavior, most  preferably against experiment, 
but short of that against logic in the limit cases of extremes of the independent  variables or 
parameters. The first steps in this process cannot be facilitated by c o m p u t i n g - - t h e  students 
must  learn to order their thinking in a fashion consistent with modeling, that is, they must  
learn to do analysis. However, computing in the form of a powerful program such as Math- 

ematica can facilitate many of the steps that are later done in service of the analysis. From 
solving sets of equations to graphically representing the solutions with systematic variations 
in initial conditions and parameters, Mathematica can do this better than a human computer  
can. So a major goal of the approach is to introduce computing and especially programming 
as a tool at an early stage of the student 's  education. (Early does not imply that the student be 
young. He or she could be a professional from another discipline, e.g., organic chemistry or 
materials science, who is quite experienced, but the material covered here may nonetheless be 
quite new to them and hence their learning is at an early stage.) The reason this is desirable is 
simple m programming promotes ordered thinking. Aside from the fact that computer  codes 
allow us to do more work faster, this is typically hardly relevant to the beginning student for 
whom virtually every problem looks new and different, even if a more experienced eye sees 
commonality with previous problems, and for whom the problem rarely is number crunching 
throughput.  Instead, the real incentive for learning to program is that in writing a few lines 
of code to solve a problem, one learns what  one really does or does not know about a prob- 
lem. When we seek to "teach" that to our CPU, we find our own deficiencies or elegancies, 
whichever the case may be, and that makes for good learning. Thus, ordering or disciplining 
one's thinking is the real advantage of programming in this way from an early stage m at 
least in my opinion. This need for ordered thinking is especially the case as the problems 
become more complex and the analyses tougher. By learning to program in the Mathematica 

environment, with its very low barriers to entry and true sophistication, one can carry over 
this ordered thinking and the methodologies it enables into other programming languages 
and approaches. In fact, it can be done nearly automatically for any piece of code written in 
Mathematica and which needs to be translated into C or Fortran code, etc. Comput ing and 
analysis begin to become more natural when done together in this way and the benefit is 
better thinking. Finally, I mentioned communication earlier as the last step in the process of 
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analysis: I think that the Mathematica notebook makes an excellent medium for collecting one's 
thoughts and then communicating them back for others to read, understand,  and even work 
with interactively. 

In describing the approach, I have alluded to the benefits of Mathematica from my vantage 
and it seems appropriate at this point both to enlarge on this and give my reasons for choosing 
this program over others for the work we will do here. Mathematica is an astounding advance 
in computing. Within one environment one can do high-level symbolic, numeric and graphical 
computations. At the lowest level of sophistication it makes the computer  accessible to anyone 
who can use a calculator and at its most sophisticated m it is a powerful  programing language 
within which one can write high-level code. The width of the middle it provides between these 
two ends of the spectrum m computer  as calculator and high-level production c o m p u t i n g - -  is 
remarkable and worth utilizing more effectively. Beyond traditional procedural  programming,  
one can use Mathematica to write compact, efficient, functional and rule-based code that is 
object oriented and this can be achieved with very little up-front training. It comes naturally 
as one uses the tool more completely. This functional and rule-based coding is a computational  
feature that truly makes the computer into the engineer 's  electronic work pad with Mathematica 
always present as the mathematical assistant. However, if one is to rely on an assistant then it 
better be a reliable assistant and one who can articulate reasons for failure when it cannot do 
something you have asked it to do. Mathematica is both. We have found that certain seemingly 
naive integrations that arise, for example, in the case of the gravity-driven flow from a draining 
tank can go awry in some programs when we at tempt to solve these analytically and over 
regions in which they have discontinuities. When this happens students are rightly angry m 
they expect the software to get it right and to protect them from dumb mistakes; unfortunately, 
this is a serious mistake to make. This is one of the many fallacies I seek to hammer  out of 
students early on because one has to test every solution the computer  gives us in just the 
same ways we test our own hand-derived solutions. Yet we also do not want  to find that we 
have to redo the computer ' s  w o r k - - w e  want  only to have to check it and hopefully go on. 
Both those graduate students who have worked with me as teaching assistants and I have 
found that Mathematica gave either inevitably reasonable results and comments as part  of a 
problematic output  or nothing at a l l - - m e a n i n g  the input was echoed back to us. The good 
news is that it is also relatively easy to check analytical solutions by the tried and true method 
of substituting back into the equation when using Mathematica. Otherwise daunting amounts  
of algebra are then a breeze and we never see it, unless we choose to, but the logical operations 
assure us that when the left-hand side equals the right-hand side we have arrived at a good 
solution. 

An important  outcome of this is that we can maintain continuity with the past within 
Mathematica, especially version 4.0 and beyond, in a way that is explicit and not achievable 
with packages that do only numerical computing. Mathematica does symbolic computing very 
well, better in fact than many (all?) of its human  users. Although Mathematica is not the first 
symbolic computing package, it is one of the easiest to use and it is certainly the most advanced. 
Problems in analysis that were too tough to tackle analytically in the past can in many  cases 
literally be solved now. However, the symbolic computing that made Mathematica so special 
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is also well integrated with very powerful new numerical methods,  which when combined 
with outstanding graphics capabilities create a complete computing environment. Hence a 
problem can be structured in such a way that by virtue of the constraints imposed it is readily 
soluble analytically, probably even by hand. But when the constraints are relaxed partially, the 
problem can still be solved analytically, but not readily by hand. Finally, the constraints can 
be nearly or fully removed and the problem admits no analytical solution, but is readily done 
numerically, which is almost as easy to convert to as is the procedure of changing from the 
statement DSolve to NDSolve. There are numerous examples of this kind in various contexts 
throughout  the chapters of this book. 

It is also worth mentioning what  this book is not. It is not a book on Mathematica per se. 
There are many fine examples of this genre that have titles such as Mathematicafor the Scientist, 
Mathematica for the Engineer, or Learning Mathematica from the Ground Up, all of which have 
already been published and are very well done. The most authoritative text on Mathematica 
is The Mathematica Book, by Steven Wolfram, so go to it when you need to do so. Remember 
that the Help menu will bring that book and other information directly to your monitor at 
any time. On the other hand, it is anticipated that many of the readers of this book will 
be tyros and will need some introduction to Mathematica. This is done in Chapter 1, which 
is in the form of a separate stand-alone primer at the beginning of the text. I have found 
that students and faculty who have read and used this chapter like it very much as a quick 
introduction. Through the next nine chapters new and more sophisticated Mathematica tools 
and programming techniques are introduced. Early on we are happy to have the student set 
up the models and run them interactively, employing a rudimentary toolset and the computer  
as a super-sophisticated calculator. By Chapter 8 the reader is encouraged to program at 
a more sophisticated level using, for example, Module, so that many calculations can be 
done, as well as rapidly and noninteractively through a wide range of parameter space. In 
the middle chapters tools are used that include solving differential equations analytically as 
well as numerically, solving sets of algebraic equations, also analytically and numerically, 
fitting models to data using linear and nonlinear regression routines, developing appropriate 
graphical displays of results, and doing procedural, functional and rule-based programming,  
and much, much more. Remember, however, that this is only the computing, and that we are 
also teaching engineering at the same t i m e - - s o  what  is that content? 

On the engineering content side, Chapter 2 begins with the word statement of the con- 
servation of mass and its equivalent mathematical statement in the form of a rate equation. 
In teaching this material, it has been my experience that the conservation of mass needs to be 
introduced as a rate equation with proper dimensional consistency and not as a statement of 
simple absolute mass conservancy. Moreover, this must  be done literally from day one of the 
course. The reasons are purely pedagogical. If mass conservation is introduced in terms that 
are time independent per the usual, then problems arise immediately. When rate equations are 
what  is actually needed, but the statement has been learned in non-rate terms, there is an im- 
mediate disconnect for many students. The problems that come of this are readily predictable 
and usually show up on the first quiz (and often, sadly, on subsequent o n e s ) -  rate terms are 
mixed with pure mass terms, products of rates and times are used in place of integrals etc. 
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Therefore I do not start with the classical steady-state approach, but instead with rates and 
proceed to the steady state when it makes sense to do so, as a natural outcome of long-time 
behavior in a system with fixed inputs and outputs. From very simple examples of single com- 
ponent systems one can move to more complex problems including time-dependent flows and 
unique control volume geometries. Aside from being good fun, easy to visualize and down- 
right interesting (Egyptian water clock design for instance), these problems accomplish two 
important goals: (1) they exercise the calculus while integrating in geometry and algebra; and 
(2) by design they focus on the left-hand side versus the right-hand side of mass balance rate 
equations. This works well too because it begins to build in the student's mind a sense of 
the real linkage between the physicality of the system and its mathematical description and 
where in the equations we account for issues of geometry versus those of mechanism of flow 
for e x a m p l e - - a  topic we cover explicitly in the subsequent chapter. The goal of this chapter 
and indeed the entire text is not just to assemble and solve these equations, but literally to 
"read" the mathematics the reader or someone else has written and in such a way that the 
equation or equations will tell you something specific about the system and that it will "say" 
what you want it to "say." 

We rarely take the time in engineering to develop topics from an historical perspect ive--  
which is too bad. Our history is every bit as rich and the characters involved as interesting as 
any of those our colleagues in the humanities discuss. Why not talk about Fourier in Egypt 
with Napoleon for a little while when dealing with heat transport, or Newton's interesting and 
albeit bizarre fascination with the occult and alchemy, when discussing catalytic kinetics and 
diffusion? Doing so humanizes engineering, which is appropriate because it is as human an 
endeavor as philosophizing, writing, painting, or sculpting. Thus, Chapter 3 is an indulgence 
of this kind. From what I know of the story of Torricelli, his was a fascinating life. He was 
something like a modern Post-Doctoral Fellow to Galileo. He did for falling fluids what Galileo 
did for falling bodies, and of course so much m o r e -  which is fun to talk about because all of 
this was accomplished before Newton came along. In this chapter I take license in the way I 
present the "results" of Torricelli's experiments and his "work-up" of the data, but in essence 
it could not have been too far from this sort of th ing- - jus t  a bit more grueling to do. I also 
find that this example works. It gets across the linkage between calculus and measurements in 
t i m e - - a  linkage that is real and entirely empirical, but lost in much of our formal teaching of 
calculus. More important, we talk for the first time about the right-hand side and the fact that 
the mechanism of the flow or mass movement appears on this side of the equations. It also is 
the time and place to discuss the idea that not everything we need to complete a model comes 
to us from theoretical application of the conservation principle and that we may have to resort 
to experiment to find these missing pieces we call the constitutive relationships. Finally, we 
link the fundamental physics that students already know about falling bodies in a gravita- 
tional field to this topic through the conservation of energy. This shows that by applying 
a second and perhaps higher-order conservation principle to the problem, we could have 
predicted much of what we learned about Torricelli's law empirically, but Torricelli did not 
have the vantage point of four hundred years of Newtonian physics from which to view the 
problem. 
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To this point the problems have been rich, but  lacking in the complexity that multiple 
components b r i n g ~  namely multiple equations and eventually multiple coupled equations. 
Thus Chapter 4 introduces component  material-balance rate equations. Much care is taken 
to present these equations as a subset which must  sum to the overall material balance rate 
equation. The discussion moves to density effects and the expression of density as a function 
of concentration. This always takes time to work through. Students do not really understand 
density much beyond that which they learned in an introduction to physical science in eighth 
grade or thereabouts. The concept of concentration as taught at that point is also not on steady 
ground and is based solely on molarity for the most part. Having to deal with mass con- 
centrations is one hurdle and then having to keep straight mass concentrations of individual 
components versus the total density is another and somewhat  higher hurdle. However, it is 
surmountable if one takes the time to develop the concepts and to work out the mathematics 
of the coupled material balance. Throughout  this chapter the assumption of perfect mixing 
within the control volume has been discussed and used both from the physical and mathemat-  
ical points of view. The mathematics of the simple time-only dependent  ordinary differential 
equations (ODEs) states that the system is well mixed with no spatial var ia t ion~so  this is 
either the case physically, meaning that it is the case to as well as we can measure, or that it is 
approximately the case, meaning we can measure differences in concentration with position, 
but the differences are small enough to ignore, or it is really a bad approximation to the real 
system. For those seeking to bring in a bit more advanced concepts, say for an Honors student 
group, a section on mixing has been included here to get at these points more quantitatively. 
This section also shows some of the powerful objects that preexist in the Mathematica and 
which can be used creatively to solve problems and illustrate concepts. 

At this point, the question that arises is whether to cover kinetics ~ batch, continuous 
stirred tank reactor (CSTR) and plug flow reactor ( P F R ) ~  next, and then to cover some prob- 
lems in mass transfer later, or to do mass transfer first and then kinetics. The dilemma, if I may 
call it that, comes down to this. If one teaches kinetics first, the problems are all easily handled 
within a single phase, but the kinetics for the rate of chemical reaction become complex fairly 
quickly when one goes beyond the most rudimentary cases, which one wants, inevitably, to do. 
The simplicity of one phase then is offset by the complexity of nonlinearities in the rates. On 
the other hand, if one chooses to do mass transfer next, then one has immediately to introduce 
at least two phases that are coupled via the mass transfer process. However, the good news 
is that the mass transfer rate expressions are inherently linear and keep the math somewhat  
simpler. In the end I found that in teaching this material, and having taught it both ways, it 
was better to do mass transfer first because A remained A and B remained B throughout  the 
problem even though they were moving between phases I and II. Linear transfer processes 
were easier for students to grasp than was A becoming B in the same phase, but by some highly 
nonlinear process. There is, I think, wisdom in "listening" to the ways in which the students 
tell us, albeit indirectly through their performances from year to year, how they learn better. 
Thus, this is why I present the material in this book in the way you see h e r e ~  I was guided 
by the empiricism of the classroom and my own intuition derived therefrom. However,  were 



Preface for  an Ins t ruc tor  xix 

the point to be pressed, I must  state that I do not have hard outcomes data in hand (as of yet) 
to satisfy the unconvinced. In addition, when using a tool such as Mathematica, the issues of 
solving nonlinear versus linear systems mostly disappear and so it really is a toss up as to 
which to do first based on fundamentals. Hence Chapters 5 and 6 deal with mass transfer and 
then adsorption and both come before chemical kinetics and reactors. Adsorption is interest- 
ing to cover separately because one can get to a more molecular level and bring in physical 
chemistry concepts, as well as more complex rate expressions without  chemical reaction. It 
is also very nice to distinguish mass action from mass transfer and to have the former in 
place before doing chemical kinetics, since one can then do interfacial kinetics with the proper 
physical foundation. 

Chapters 7, 8, and 9 deal with chemical kinetics and idealized reactors. It should be 
quite familiar territory. Here as in previous chapters the focus is upon the interplay between 
analysis and experiment. Classical topics such as reaction stoichiometry are covered, but 
nondimensionalization is also introduced and taken up carefully with an eye toward its utility 
in the later chapters and of course in upper-level work. I also have found that rather than 
introducing the CSTR as a steady-state device, it makes more sense to develop the transient 
equations first and then to find the steady state at long time. Once one explains the benefits 
of this mode of reactor operation, it is moderately easy to see why we always use the steady- 
state algebraic equations. I also never fail to mention Boudart 's point that it is easy to measure 
rates of chemical reaction with an experiment operated in a well-mixed stirred tank-type 
reactor. This another good time to teach the linkage between analysis and experiment with a 
system that is both quite easy to visualize and conceptualize. It is surprising to many of the 
better students that something as seemingly remote as that of the rate by which molecules are 
converted from one species to another at the nanoscale is so readily measured by quantities 
such as flowrate and conversion at the macroscale. That this should be the case is not obvious 
and when they realize that it is the case, well, it is just one of many such delightful epiphanies 
they will have during their studies of this discipline. 

In teaching PFR, I find that the classical "batch reactor on a conveyor belt in heated tube" 
picture does not work at all (even though it should and does if you already get it). In fact, 
it leads some students in entirely the wrong direction. I am not happy when I find that the 
batch reactor equation has been integrated from zero to the holding t i m e - - e v e n  though it 
gives a good answer. Instead I very much favor taking one CSTR and rearranging the equation 
so that on the right-hand side the lead term is delta concentration divided by the product of 
cross-sectional area and a thickness (Sz) and all this is multiplied by the volume flowrate. This 
becomes linear velocity multiplied by delta concentration over 8z. Now we merely keep the 
total reactor(s) volume the same and subdivide it into n reactors with thickness 8z/n. This 
goes over in the limit of 8z taken to zero at large n to the PFR equation. We actually do the 
calculations for intermediate values of n and show that as n gets large the concentrations 
reach an asymptote equal to that which we can derive from the PFR equation and that for 
simple kinetics the conversion is larger than it would be for the same volume relegated to 
one well-mixed CSTR. This approach turns out to be fun to teach, seemingly interesting and 
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actually useful, because the student begins to understand how a numerical algorithm works 
and that, for instance, the time-dependent PFR equation is a PDE that represents a set of 
spatially coupled time dependent ODEs. 

Chapter 10, the last chapter, gathers together assignments and solutions that I have given to 
groups of honors-level students. I include these as further examples of what types of problems 
can be solved creatively and that these might serve as a catalyst for new ideas and problems. I 
also have homework, quiz and exam problems that I may eventually provide via the Intemet. 

Henry C. Foley 
The Pennsylvania State University 



Preface for the Student 

In a place far away and long ago, people did calculations with paper, pencil, and slide rules. 
They wrote out papers, memoranda, and reports by hand and gave these to other people who 
would type them onto something called carbon paper in order to provide a copy of the work. 
In turn these could be duplicated on another machine called a mimeograph, the products of 
which were blurry, but had the sweet smell of ethanol when "fresh off the press." In about 
1985 personal computers landed on our desks and things started to shift very fast. But many, 
even most people from this earlier era would still write out reports, memoranda, and papers 
in longhand and then either give it to someone else to "type into the computer," or if younger 
and lower in some ranking system do it themselves. The PC plus printer (first dot matrix, then 
laser) was used as an electronic combination of typewriter and mimeograph machine. 

It took at least another few years before most of us had made the transition to using the 
computer as a computer and not as a typewriter. One of the greatest hurdles to this was being 
able to sit at the computer and enter your thoughts directly into a word processor program 
without "gathering your thoughts" first in a separate step. Even though this may seem absurd 
in hindsight, for those of us who grew up using pencil or pen and paper, we needed to adjust 
to the new technology and to retrain ourselves not to go blank when we sat in front of the 
computer. To my knowledge very few, if any, young people today whom I see ever do this or 
would consider doing i t - - t h e y  would consider it kind of absurd. They simply sit down and 
begin word processing. They make mistakes, correct them, then cut and paste, spell-check, 
grammar-check, and insert figures, tables, and pictures, etc. and paper is not involved until 
the last step, if at all. (The rendering of hardcopy step-by-step is becoming less necessary over 
time, which is a good t rend- -be t t e r  to leave the trees out there to make oxygen and to soak 
up carbon dioxide than to cut them down for paper p u l p - - b u t  it is still with us, despite the 
pundits '  overly optimistic predictions of paperless offices and businesses.) Of course we all 
do this n o w - - a s  I am currently doing. It is no big deal and it feels absolutely na tu ra l - -now.  

xxi 
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But it did not then. It felt strange and one wondered if it was even the right way to write. It 
was a very real paradigm shift. 

Here is the point then: This same processing shift has never really happened in math- 
ematics computing, at least not to the same extent, but it will. Most of us still work things 
out first on paper and then find a way to do number crunching on the computer, well after 
many other steps have been taken. This is why we see, for example, the use of spreadsheet 
programs having proliferated among engineering students over the last few years. They work 
out a model, derive the solution as analytical expressions, and plug them into the spreadsheet 
to make calculations for a given set of parameters. The analysis is done separately from the 
computing, in the same way we used to do writing separately from typing. It is the combined 
task that we now call word processing. The point of this book is to step away from that old, 
separated analysis and computing paradigm, to put down the pencil and paper (not com- 
pletely or literally), and to begin electronically scribbling our mathematically expressed ideas 
in code by using up-to-date computational software. If there is any reason why this transition 
happened so much faster in word processing than in mathematics processing, it is because 
word processing software is less complex and mathematics "scribbling" is generally harder 
to do than is drafting a written document (not creative writing of course). 

At this point I think we may have turned the corner on this shift. The mathematics pro- 
cessing software is so sophisticated that it is time to both embrace and use i t - -  in fact students 
in engineering and science have, but not always with good results. We need to fix this problem 
and to do so, it makes very little sense to teach analysis in one place (course) and computing in 
another place (another course), when we can do the two concurrently. To do this requires a fully 
integrated environment, with symbolic, numeric and graphical computing and, surprisingly, 
word processing too. Mathematica, especially version 4.0 and beyond, does this extremely well, 
so it makes sense to use it. One review of the software written in Science magazine in Decom- 
piler 1999, referred to Mathematica as the "Swiss army knife" of computing. In fact, I think it 
is much better than that analogy suggests, but the author meant that it is a high-quality and 
versatile tool. 

In this book then you will find the concepts of engineering analysis as you find them 
elsewhere, but they will be presented simultaneously with the concepts of computing. It 
makes little sense to separate the two intellectual processes any longer and lots of sense to 
teach them as an integrated whole. In fact, this approach relieves the overburden of algebraic 
manipulation which I and others like me used to love to fill chalkboards with and it puts 
the emphasis back on engineering. Not a bad outcome, but only if we do it right. Here is the 
d a n g e r - - t h a t  you will use the computer without thinking deeply, derive bad results, and go 
merrily on your way to disaster. This sounds absurd to you but it is not. For example, the public 
recently has had played out before its eyes just such an engineering snafu. A NASA space 
probe was sent crashing to its fiery demise because someone had failed to convert from feet to 
meters (i.e., English to metric system) in a trajectory calculation. A big mistake in dollar terms, 
but just a small mistake in human t e r m s - -  the kind students often argue are not real mistakes 
and should be the source of at least partial credit when committed on exams or homework. 
Similarly, a bridge under construction near to where I am writing this was begun from two 
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different ends and when it came time to close the gap with the final element of the structure, 
it could not be d o n e - - t h e  two sides were not properly aligned. This happened despite the 
engineers having tools like lasers and computers at their disposal, which is really shocking 
given the shortness of the span and given that mighty gorges were spanned correctly in the late 
nineteenth century with nothing more than transits, plumb lines, and human computation! So 
whenever something new such as this tool is introduced something is gained, but inevitably 
we find later that something is also lost. This gives thoughtful people pause, as well it should. 
Therefore, to use this tool correctly, that is to do this right, we have to do things very carefully 
and to learn to check quite thoroughly everything that the computer provides. This is especially 
the case for analytical solutions derived via symbolic computation. If you follow the methods 
and philosophy of this text I cannot guarantee you will be error free because I am sure the text 
is not error free despite my best efforts, but you will definitely compute more safely and will 
have more confidence in your results. 

The best way to use this book is in conjunction with Mathematica. Go through the first 
chapter and then try doing one of the things presented there for your own work or problems. 
Moving through the rest of the text will go faster if you take the time to do this up front. 
A nearly identical color version of this book has been provided on CD-ROM. I hope having 
this and being able to call it up on your computer screen while you have a fresh Mathematica 
notebook open will be useful to you and will aid your learning. Although it may be obvious, 
just reading this book will probably not do enough for y o u - - y o u  have to use the tool. If you 
own or have access to Mathematica, then you will be able to use the book as a progressive 
resource for learning how to program and how to solve real problems in real time. Good luck 
and happy concurrent computing and engineering analysis. 

Henry C. Foley 
The Pennsylvania State University 
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Along the way I have many people to acknowledge. If all of this bears more than a faint resem- 
blance to the philosophy espoused in the earlier book An Introduction to Chemical Engineering 
Analysis, by T.W.F. Russell and M.M. Denn, well it should. I taught the introductory course 
many times at the University of Delaware from 1986 to 2000 and I always did so in conformity 
with this marvelous text. In particular, Fraser Russell taught me how to teach this material and 
what  the original intent had been of the book and its approach. I was always very impressed 
by the stories he told of the time he and Mort spent on this topic thinking about their book 
and its philosophy through to the classroom. Fraser's enthusiasm for these matters was, as far 
as I could tell, limitless and his enthusiasm infectious. And as I arrived on the scene in 1986 
as a Ph.D. in Physical Chemistry and not Chemical Engineering, I can attest to the efficacy 
of learning this app roach - - a l t hough  I hope the reader is not learning the material literally 
the night before giving the lectures on it, as the present author did! In many ways I came 
to Delaware as a bit of blank slate in this regard (although I had read the original Notes on 
Transport Phenomena by Bird, Stewart, and Lightfoot while working at American Cyanamid 
between 1983 and 1984) and I had no preconceived notions about how this material should be 
taught. To say the least I enjoyed an excellent mentor and teacher in Fraser Russell and he did 
harbor a few notions and opinions on how this material should be taught. Fraser also gave 
me the push I needed to start this project. He realized that computation had come far and that 
one impediment  to wider adoption of his book had been the steep gradient of mathematics 
it presented to both the instructor of the first course and the students. Using a computational 
tool to overcome this barrier was something we both felt was possible. However, when this 
was first conceived of in the late 1980s (~1988), Mathematica 1.0 was barely out on the market 
and it, as well as the other tools available, were in my judgment  not up to the task. (Though I 
tried at that time.) The project was shelved until my first sabbatical leave in 1997. I must  thank 
Dr. Jan Lerou, then of the Dupont  Company 's  Central Research and Engineering Department 
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at the Experimental Station, who provided me with an office and the wherewithal to start this 
project in the spring and summer  of 1997. In fact, al though I did get this book project off the 
ground, I was not at all happy with it. As my familiarity with the new version of Mathematica 
(4.0) grew during late 1998 and 1999, I realized I had to rewrite that which I had already writ- 
ten. As well, the experience of working with Honors ChE students helped me immensely to 
reconceptualize the material and its presentation. Furthermore, I had the good fortune to co- 
teach the first course in chemical engineering with Andrew Zydney. Andrew is a great teacher 
and he was the first person I had met who would literally battle me for lecture time in front 
of the class. This not only gave me more time to work out more ideas, but he also provided 
invaluable criticism and feedback on what  I was trying to do. In the summer  of 1999, I had the 
privilege of being a Visiting Fellow at Wolfram Corporation, the makers of Mathematica. Aside 
from having the good fortune to meet Steve in his own think tank, I spent six weeks alone 
that summer  in Urbana-Champaign writing literally day and night with very few breaks. 
(I thank my spouse Karin for allowing such an absurd arrangement!) But I also had access 
to the brilliant young staff members who work every day on the new code and features of 
Mathematica. It was a broadening experience for me and one I thoroughly enjoyed. For making 
this possible, I want  to thank Steve Wolfram personally, but also Lars Hohmuth,  the jovial and 
ever helpful Director of Academic Affairs at Wolfram, who is also a great code writer and a 
power user! (He would spend his days doing his job and then get caught by me on his way 
out for the evening, only to spend hours answering what  was a seemingly naive ques t ion - -  
which usually began as "Lars, have you got a minute?") In the latter stages of the work, I 
ran into a few issues associated with notebook formatting and answers to those questions 
always came to me promptly as exceptionally well written e-mail messages from P. J. Hinton, 
one of the many younger chemical engineers who have found their way into careers in compu- 
tation. Finally, in the Spring of 2000, I had the opportunity to teach the whole of the book and 
its content as the first course in chemical engineering here at Pennsylvania State University. 
My partner in that was Dr. Stephanie Velegol. Stephanie is only the second person whom I 
have had to fight for lecture time in a course and whose suggestions and methods of using 
these things I had created were extraordinarily insightful. (I am pleased to note that the course 
was well received m largely due both to her efforts to smooth out the rough edges of both the 
materials and her co-instructor and to her pedagogical instincts, whose instincts told her when 
enough was enough.) Finally, throughout  my career I have had the best of fortune to have a 
life-partner, my spouse Karin, who knows and understands what  I am about and what I really 
need to do and get done. For her support  and that of my daughters, Erica and Laura, who 
often strolled into my home office to find me hunched over the computer  and to ask how my 
book was coming along, I offer my sincerest and deepest thanks. 

The book represents a way to teach a first course in chemical engineering analysis that I 
think maintains a continuity with the past and yet steps right into the future with concurrent 
use of computational methods. The book and its techniques are battle tested, but are far from 
battle hardened. I am sure that there remain mistakes and misconceptions that will need to 
be considered, despite my best efforts to eliminate them and for those I take full blame and 
apologize in advance. Yet, I think there are seeds in this book from which can grow a new 
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and fruitful approach to teaching engineering analysis. The simple fact is that our students 
like using and being at the computer, perhaps more so than they enjoy hearing us lecture. We 
are going to have to face this paradigm shift, embrace it, and somehow integrate it into our 
pedagogy. To that end this book is my at tempt to do so. I think the book may be used either as a 
textbook in its own right or as a supplementary  textbook. I recommend that students each have 
a personal copy of Mathematica 4.0 or higher, which is moderately priced (about the same price 
as a textbook) or that they have ready access to the program in a centralized computer  lab. In 
recent years I have gotten into the habit of sending homework  out to students as Mathematica 
notebooks attached to an e-mail and then I also post the problem set and solutions on the 
course web site as notebooks. I also frequently receive via e-mail attached notebooks from 
students who are stuck or need some guidance. I personally like this approach because it 
allows me the opportuni ty to interact with the more motivated students at a higher level and 
in essence to e-tutor them on my own schedule. If you do this be prepared to be answering 
e-mails by the dozens, frequently and at all times of the day and night and week. Personally, I 
find it rewarding, but I can unders tand that some might consider this to be an imposition. I do, 
however, think this is more like the direction in which teaching will move in the future ~ the 
use of these electronic media technologies in real time seems to me to be inexorable and overall 
a good development  ~ at least from the student 's  perspective. 

Finally, who else can use this book? I clearly have in mind chemical engineering under- 
graduates, but they are not alone in potentially benefiting from exposure to this material. It 
seems as though industrial chemists and materials scientists could also find it useful to read 
and study on their own with a personal or corporate copy of Mathematica. I consider this level 
of self-study to be a very doable proposition. The mathematics used is fairly minimal, although 
it does expect grounding in differential equations and some intuitive sense of programming,  
but that is about all it requires. Formality is kept to a min imum ~ no ~ more precisely there is 
no mathematical formalism present here. For this reason then, I would hope that a few people 
in that category who really want  to be able to discuss research and development  matters with 
corporate chemical engineers on their own terms will find this background to be very useful. 
Finally, I suspect from my frequent excursions in consulting that there may be more than a 
few practicing chemical engineers who might not want  to be seen actually reading this book 
in the open, but who might also benefit from having it on their shelves so that they might read 
i t ~  strictly in private of course! 
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We will use Mathematica throughout  the text. Most of what  is necessary to know will be 
introduced at the time it is needed. Nonetheless,  there is some motivat ion to begin with some 
very basic commands  and structures so that the process is smooth. Therefore, this is the goal 
of this sect ion--to make your  introduction to Mathematica go smoothly. For more information 
of this type there are many  texts that cover Mathematica in detail. 

1.2 Basics of the Language 
II I I I I I I  IHI  II IIII II II II Ifl l 

Commands  in Mathematica are given in natural  language form such as "Solve" or "S impl i fy"  
etc. The format of a command  is the word  starting with a capital letter and enclosing the 
argument  in square brackets: 

Command[  argument] 

Parentheses are used arithmetically and algebraically in the usual way: 

3a (x - 2) 2 
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On the other hand,  braces are distinct. They are used to designate lists or vectors as in: 

{1 ,2 ,3 ,4 . . . }  

{{1,1},{2,2},{3,3}.. .} 

The three mus t  not be interchanged. 

When you want  to clear the value of a given named  variable there are three options: 

variable name = .  

Clear[variable name] 

Remove[variable name] 

The first two simply clear the current value while the last removes the name entirely. You need 
to remember  this because if you start a session and assign a value to a variable, then that value 

will be retained in that variable until you either change or clear it. 

1.3 Simple Commands 
I _ II II LI[II I I I II L II II I II L 

The calculator level of Mathematica comes in the form of Palettes, which are very handy  tools. 

Palettes are found under  the File menu  and there are several of them. If one wants  to use 

a trigonometric function, for example, we can either type in its name or go to the Basic 
Calculat ions menu  and then to the Trigonometric and Exponential Functions. Should we 

want  to evaluate the sine of 2.3333rr, then we can do so as follows: 

In[l] := Sin[2.33333~7] 

Out[l]= 0.86602 

Should we need to know the sine of 120 degrees (120<~), then we include this in the a rgument  

of the function: 

In [2]:: Sin[120 Degree] 

Out [2] = 
2 

To rationalize this fraction we need to evaluate it numerically. We do so by surrounding the 
Sin function with N: 

In [3 ] : : N [ Sin [ :1.2 0 Degree ] ] 

Out [3]= 0.866025 



1.4 Table, Plot, Map, and Plot3D 

For logari thmic and all other functions, we do the same as we have done wi th  Sin. It is 
impor tan t  to know, however,  that  the function Log in Mathematica is the natural  logar i thm 
and not the log base ten. 

In[4].= N[Log[lO]] 
N[Log [i00] ] 
N[Log [I000] ] 

Out [4]= 2.30259 

Out [5]: 4. 60517 

Out [6]= 6. 90776 

Mathematica has a huge number  of built-in functions from the m u n d a n e  to the exotic, but  we 

can work wi th  them more or less in the same way. 

1.4 Table, Plot, Map, and Plot3D 
These four commands  are among  the most  useful because they do so much  with  so little. In 
contrast to a procedural  language in which we would  have to write a looping structure to 
evaluate a function at several different values or for a range of values, Table hides all this 
from us and gives us just the vector of output  values. Plot does the same thing, except that 
we see the graph of the function's  values rather than the values themselves.  The ou tput  of a 

function is a List, that is, a vector. We can combine a set of values, such as the set of dependen t  
values, with a set of independent  variable values into a matrix. ListPlot  allows us to display 
these results graphically. We will begin by working  through these four topics. We begin wi th  

the Table c o m m a n d  to evaluate x from zero to 20 at every integer: 

In[7] -= Table[x 2, {x, 0, 20}] 

Out[7]= {0, i, 4, 9, 16, 25, 36, 49, 64, 81, i00, 121, 144, 169, 
196, 225, 256, 289, 324, 361, 400} 

Perhaps we wan ted  the values of x 2 for every other whole n u m b e r  be tween 0 and 20. We can 

obtain these too: 

In[8]'= Table[x 2, {x, 0, 20, 2}] 

Out[8]-{0, 4, 16, 36, 64, i00, 144, 196, 256, 324, 400} 

Should we need all the values for every integer value and the midpoin t  be tween  them, we 

would  specify this: 

In[9] -: Table[x 2, {x, 0, 20, .5}] 

Out[9]= {0, 0.25, i., 2.25, 4., 6.25, 9., 12.25, 16., 20.25, 25., 
30.25, 36., 42.25, 49., 56.25, 64., 72.25, 81., 90.25, 
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i00., ii0.25, 121., 132.25, 144., 156.25, 169., 182.25, 
196., 210.25, 225., 240.25, 256., 272.25, 289., 306.25, 
324., 342.25, 361., 380.25, 400.} 

It is also likely that  we  migh t  need  to assign this list or vector  a name ,  call it "Is1." 

In[lO]:= isl-Table[x 2, {x, 0, 20, .5}] 

Out[lO]= {0, 0.25, i., 2.25, 4., 6.25, 9., 12.25, 16., 20.25, 25., 
30.25, 36., 42.25, 49., 56.25, 64., 72.25, 81., 90.25, 
i00., 110.25, 121., 132.25, 144., 156.25, 169., 182.25, 
196., 210.25, 225., 240.25, 256., 272.25, 289., 306.25, 
324., 342.25, 361., 380.25, 400.} 

This var iable  n a m e  is n o w  ass igned to this list until  we  ei ther  clear it or r emove  it: 

In[ll] := isl 

Out[ll]= {0, 0.25, I., 2.25, 4., 6.25, 9., 12.25, 16., 20.25, 25., 
30.25, 36., 42.25, 49., 56.25, 64., 72.25, 81., 90.25, 
i00., 110.25, 121., 132.25, 144., 156.25, 169., 182.25, 
196., 210.25, 225., 240.25, 256., 272.25, 289., 306.25, 
324., 342.25, 361., 380.25, 400.} 

In the next  line we  clear l s l  and  then show that  it is no longer  ass igned to the list of values:  

In [12]:= is1 =. 
isl 

Out [13]= isl 

We may also have occasion [o want [o generate the vector of values and s assign these values 
to a list name,  bu t  we  m a y  not  w a n t  to see all of them. For example ,  suppose  we  w a n t e d  all 

the values  for x x f rom be tween  I and  100. This can be done  and  the list can be named ,  bu t  we  

m a y  not  w a n t  this sent  to the screen. To suppress  it we  place a semicolon after the c o m m a n d :  

In[14] :: is2 = Table[x x, {x, 1, 100} ] ; 

To see what we have "missed" by not printing this out to the screen we can now do so by 
typing ls2 as input: 

In[15]:= is2 

Out[15]= {i, 4, 27, 256, 3125, 46656, 823543, 16777216, 387420489, 
i0000000000, 285311670611, 8916100448256, 302875106592253, 
11112006825558016, 437893890380859375, 18446744073709551616, 
827240261886336764177, 39346408075296537575424, 
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1978419655660313589123979, 104857600000000000000000000, 
5842587018385982521381124421, 
341427877364219557396646723584, 
20880467999847912034355032910567, 
1333735776850284124449081472843776, 
88817841970012523233890533447265625, 
6156119580207157310796674288400203776, 
443426488243037769948249630619149892803, 
33145523113253374862572728253364605812736, 
2567686153161211134561828214731016126483469, 
205891132094649000000000000000000000000000000, 
17069174130723235958610643029059314756044734431, 
1461501637330902918203684832716283019655932542976, 
129110040087761027839616029934664535539337183380513, 
11756638905368616011414050501310355554617941909569536, 
1102507499354148695951786433413508348166942596435546875, 
106387358923716524807713475752456393740167855629859291136, 
105551349557777834140783300859958329461273960833701994425"'. 
17, 

107591180197999398206042925285612377911548736883041606461"'. 
0304, 

112595147462071192539789448988889059930192105219196517009"'. 
951959, 

120892581961462917470617600000000000000000000000000000000"'. 
00000000, 

133087763063271199871339924096334625598588933016165099432"'. 
5137953641, 

150130937545296572356771972164254457814047970568738777235"'. 
893533016064, 

173437733670302675199037812888120321583080625390120919530"'. 
77767198995507, 

205077382356061005364520560917237603548617983652060754729"'. 
4916966189367296, 

248063644451341145494649182395412689744530581492654164321"'. 
720600128173828125, 

306803463007942742306604336476403978997881706450788532800"'. 
82659754365153181696, 

387792426346444862266664818615433075489834490134420591764"'. 
2325627886496385062863, 

500702078263459319174537025249570888246709955377400223021"'. 
257741084821677152403456, 



Chapter  I A Pr imer  of Mathemat ica  
. . . . . . . . . . . . .  i l l l l l l l l l l l l l l l l l l l l l l l l l l l  i l l l l l  , i  i l l l l l l l l l l l l  i i  I l l  I I . l l l . . i . . r . r . l l m l l . i  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . .  

660097246862195508437683218183717716501470040592780694068"'. 
14190436565131829325062449, 

888178419700125232338905334472656250000000000000000000000"'. 
0000000000000000000000000000, 

121921130509464847947319348187292783466757699259377071718"'. 
9298225284399541977208231315051, 

170676555274132171974277914691501574771358362295975962674"'. 
353045737940041855191232907575296, 

243568481650227121324776065201047255185334531286856408445"'. 
05130879576720609150223301256150373, 

354211804501063924032848133753332071263980863803681247321"-. 
1109743262552383710557968252383789056, 

524744532468751923546122657597368049278513737089035272057"'. 
324643668607677682302892208099365234375, 

791643248668629666078424060180632546719222453126466902233"'. 
62402918484170424104310169552592050323456, 

121581297366713640808862801923521362803054459089854018769"-. 
90335800107686586023081377754367704855688057, 

190030638094159447976388394485939490393342173391549735102"'. 
6033862324967197615194912638195921621021097984, 

302182066535432255614734701333399524449282910532282724655"'. 
138380663835618264136459996754463358299552427939, 

488736779806892574893227522737746038656608501760000000000"-. 
00000000000000000000000000000000000000000000000000, 

803748056254594377406396163843525813945369338299102331167"'. 
0379647429452389091570630196571368048020948560431661, 

134364564515225004658302677932296937303529095376341154029"'. 
0906502671301148502338015157014479136799509522304466944, 

228273036346967044979900512337165522400819024722490933829"'. 
954793073267717315004135590642802687246850771579138342847, 

394020061963944792122790401001436138050797392704654466679"'. 

48293404245721771497210611414266254884915640806627990306"'. 
816, 

690825216476092085140553869446828608223037872425945418628"'. 
91172977299871291049018773300360862776869907975196838378"-. 
90625, 

122998480353523742535746057982495245384860995389682130228"-. 
63190656692077122702132760228088402103069426923665295694"'. 
53244416, 

222337020242360576812569226538683753874082408437758291741"-. 

26211582389481165084834633450264237001097346549669078865"-. 
0052277723, 
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407949179542747833144743894229635944120105534129541880466" 

65939634971631296545460720786532465498226465248060567545"'. 

587093733376, 

759604031216329727422244257820804323611227904183944130804"'. 

55142035956380302831768235397935875913722302301039331108"'. 

10192201741429, 

143503601609868434285603076356671071740077383739246066639"'. 

24900000000000000000000000000000000000000000000000000000"'. 

00000000000000000, 

275006373483461607657434076627252658495183350017755660813"-. 

75398177450890599808191940514056884835339723379661819264"-. 

5698819765129996471, 

534490195473619995340253001400575385449406013931066115702"'. 

69540644280818850419033099696863861289188541180498511377"-. 

339362341642322313216, 

105334051468072867203736594605020607857593791122125981160"'. 

64998418834781689316645387966435364502141349866164216580"-. 

595609788325190062013833, 

210449190758543198861850228434282880911748656012122526352"-. 

86001514565478992866160785568445711391305050636166445827"-. 

73621942951905668236312576, 

426181657761258833198605424151960757395791315610122269092"'. 

30019917908804339283405158889618455726386574838882026483"'. 

5885609500110149383544921875, 

874647407767330977693561259365719780492040872417198817613"'. 

46374524717952404307119962211675102409649648957510056235"-. 

276523073007403698815894552576, 

181880373878061983792773399155569296478074032831870486314"-. 

78337739929618787870634227045716719924575689062274471430"'. 

368865388203540672666042530996797, 

383158981231346126213872650000641426814753403789311551232"'. 

59089391706871851454385790069500821953097058851346079904"'. 

18665607337632973770507236843454464, 

817598737071050959409276229318696698168591900537987468276"'. 

93207376890191209667334279321765760731642396831372649256"'. 

6673678273923566086786121551339775919, 

176684706477838432958329750074291851582748389687561895812"-. 

16062012926197760000000000000000000000000000000000000000"'. 

0000000000000000000000000000000000000000, 

386621969787156332734047587900743169602142130961783196218"'. 

56934259807530937321861485192508542873470637501160980081"'. 

794035970219670238407078788135931371782481, 
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856516819102789913383100884855887638607827867525141389174".. 
58617169692971014784447542255823577266886455881314507547"-. 
31704968996267139619369035601073162078388224, 

192079787778504229782687634239832998136662613890310670723"-. 
96386230620731601620304963544415541870751106508384494531".. 
08757445590084411555537438824653742747212640587, 

435973436827325522360279881406914796368935566412408014666"-. 
80104726695921400093636969731839732875229357313838872128".. 
9594366953995072735552848220101541587045199118336, 

100140253328453899494506997059845948876248360208192710258".. 
70334010718860779315506363581151510555924043061907775739".. 
0331456723193970237417715907213278114795684814453125, 

232737736870108098051032630552618777391020715805979404095".. 
85933109624493442480014587281684425109432546907773222375".. 
549181098538730989934437386098275807854764894176935936, 

547236400751580609289084096221336193364655786735995545755"-. 
43693463433762205742631692905663619249992774511988021569".. 
50364045812455566817070274944448633167362192918054601383, 

130159283494297205518264830741731536453872507596006782791".. 
53114847224523409663172158051068209591908333097049343465".. 
17741237438752456673499160125624414995891111204155079786".. 
496, 

313119843606264301926053344163576361349265045995115651405".. 
92969760191406230933171722203767186869842061905370495649".. 
99303230341738506627657379866724844088015857197961365923".. 
84409, 

761773480458663923392897277206155617504248014023951967240".. 
01565744957137343033038019601000000000000000000000000000".. 
00000000000000000000000000000000000000000000000000000000".. 
0000000, 

187398754970444035883430239799421909138706990995859221061".. 
52367184893220649019310617359174987694158429118066514085".. 
32784617787067474359792929997061205566219581733294857302"-. 
9136642691, 

466101087036369642390596621400310098213235393780243962934"-. 
25774112018587400879035854022570174490255580463084035551".. 
28684298484146339920553893653953988411898447534660818749".. 
990933364736, 

117196384926544421041758258775124882470814614810980971003".. 
33153423591117017616566024314352960493587163785179678960".. 
50409107202745103300944452206991034477139649315017364735".. 
008987336482893, 
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297864151605271565671522691888487433398201478214104374836"-. 

86344802018942169740653764805241893613019586796641682947"'. 

70215036703035475694094363170727692463342462659692676989"-. 

28260777661956096, 

765142811538184924971089105229239398896084485704278030436"'. 

46059567958108943618778356292728753731576478313833091931"'. 

62363541428604718717978398581939982608934869290351343806"'. 

8330287933349609375, 

198627040519827975805761256394776123747083228931514412339"-. 

85491658847582706097318376646920317555554524971459613579"'. 

56707789253279272215867715207123334756347457728787131439"'. 

8899332488478637162496, 

521024593971836146804821104841449602253438957603391316494"'. 

00299130165682155803982962610720192317232798510072418380"'. 

11659882766685337218633992220688288491655299087016195985"-. 

205218347711578485744737, 

138087834126148675065691180325230972687660410568672963807"'. 

27295432437014796705930332110080014435366263105359800775"'. 

44691196522513327846303307992442770355560270350429006522"'. 

588433404602387992091295744, 

369729637649726772657187905628805440595668764281741102430"'. 

25997242355257045527752342141065001012823272794097888954"-. 

83265401194299967694943594516215701936440144180710606676"'. 

59301384999779999159200499899, 

i00000000000000000000000000000000000000000000000000000000". 

00000000000000000000000000000000000000000000000000000000". 

00000000000000000000000000000000000000000000000000000000"-. 

00000000000000000000000000000000} 

This leads to several other points. First, we could also operate on all of the values in ls2 by 
operating on ls2 alone. This property of ls12, called "listability," is a very important attribute 
of such objects in Mathematica. For instance, then we could divide each value we just found 
by dividing ls2 by 10100: 

is2 
In [i 6]': N[1010 o] 

Out  [16]= { 1 .  x 1 0  -100  4 x 1 0  -100  2 7 x 10  -99  2 5 6  x 1 0  -98  3 1 2 5  x 1 0  -97 
, �9 I * l * I * i 

4. 6656 x 10 -96 8 23543 x 10 -95 1 67772 x 10 -93 3 8742 x 10 -92 
i �9 i �9 I �9 ! 

i. x 10 -90 2 85312 x 10 -89 8 9161x 10 -88 3 02875 x 10 -86 ! �9 , �9 ! - l 

1.1112 x 10 -84 4 37894 x 10 -83 1 84467 x 10 -81 8 2724 x 10 -80 , �9 l �9 , �9 I 

3. 93464 x 10 -78 1 97842 x 10 -76 1 04858 x 10 -74 5 84259 x 10 -73 i �9 , �9 ! �9 
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3. 41428 x 10 -71 2 08805 x 10 -69 1 33374 x 10 -67 8 88178 x 10 -66 , �9 , �9 ! �9 ! 

6. 15612 x 10 -64 4 43426 x 10 -62 3 31455 x 10 -60 2 56769 >< 10 -58 , �9 , �9 , �9 , 

2. 05891x 10 -56 1 70692 x 10 -54 1 4615 x 10 -52 1 2911x 10 -50 , �9 i �9 , �9 

i. 17566 x i0 -48 1 10251 x 10 -46 1 06387 x i0 -44 1 05551 x 10 -42 ! �9 , �9 , �9 , 

1.07591x i0 -40 1 12595 x 10 -38 1 20893 x 10 -36 1 33088 x 10 -34 , �9 , - , �9 , 

i. 50131 x 10 -32 1 73438 x 10 -30 2 05077 • 10 -28 2 48064 • 10 -26 
' " ' �9 , �9 i 

3. 06803 x 10 -24 3 87792 x 10 -22 5 00702 x 10 -20 6 60097 x 10 -18 , �9 , �9 , �9 ! 

8. 88178 x 10 -16 1 21921x 10 -13 1 70677 x i0 -II 2 43568 x 10 -9 i �9 , . , . , 

3.54212 • -7 0 0000524745 0 00791643 1 21581 190 031 , �9 , �9 , �9 , �9 , 

30218.2, 4.88737 x 106 8 03748 x 108 1 34365 x 1011 , �9 l �9 , 

2.28273 x 1013 

2.22337 x 1022 

2. 75006 • 1031 

4.26182 x 1040 

8.17599 x 1049 

1.9208 x 1059 

5. 47236 x 1068 

1.87399 x 1078 

7. 65143 • 1087 

3. 6973 x 1097 

, 3. 9402 x 1015 6 90825 x 1017 1 22998 x 1020 

, 4. 07949 x 1024 7 59604 x 1026 1 43504 x 1029 ' �9 , �9 ! 

, 5. 3449 x 1033 1 05334 x 1036 2 10449 x 1038 i �9 , �9 

, 8. 74647 x 1042 1.8188 x 1045 3 83159 • 1047 

, 1.76685 x 1052 3 86622 x 1054 8 56517 x 1056 

4.35973 x 1061 1 0014 • 1064 2 32738 x 1066 

, 1.30159 • 1071 3 1312 x 1073 7 61773 x 1075 i . , �9 

, 4. 66101 • 1080 1 17196 x I083 2 97864 x i085 i �9 , . 

, i. 98627 x 1090 5 21025 • 1092 1 38088 x 1095 
' �9 , �9 i 

1.  x 10100 } 

We also note that the output from this last computation is in scientific notation, whereas Is2 
was not; it was written in standard form. It is worth noting that we could have had ls2 in 
scientific notation simply by changing the command as follows: 

In[17]:= ls3 = Table[x x, {x, 1, 100, 1.}] 

Out[17]= {i, 4., 27., 256., 3125., 46656., 823543., 1.67772xi0 v , 3.8742xi0 :~ 1 xlO ~~ , . 

2.85312xi0 I, 8 9161xi0 I:~ 3 02875xi0 ~4 1 ll12xlO I~ 4 37894x10 Iv , �9 , . , . , . , 1.84467xi0 I'} , 

8.2724xi02~ 3.93464xi0 :~2, 1.97842xI0 ::4, 1.04858xi026, 5.84259xi0 :'v, 3.41428xi0:", 

2 . 08805 x i0 {I 

2 . 56769x I04:: 

1 . I0251 x i0 '~4 

1.20893xi0 ~4 

2 . 48064 x i0 v4 

, 1.33374xi0 {~ 8 88178xI0 {4 , . , 6. 15612 x i03~ , 4.43426xi0 ~" , 3.31455xi04~ 

, 2.05891xi0 a4, 1 70692xI046, 1.4615xI04~, 1.2911xi0 '~~ 1.17566xi0 ~::, 

, 1.06387xi0 ')~, 1 05551xi0 ')~, 1.07591xi0 ()~ 1.12595xi0 (''', 

, 1 . 3 3 0 8 8 x i 0  ~i~', i 50131xi06~ 1 73438xi0 v~ 2 05077xI0 v'~ , . , . , 

, 3 . 0 6 8 0 3 x i 0  I ~ ,  3 87792xi0 v~{ 5 00702xi0 ~~ 6 60097xi0 ~2 , . , . , 

8.88178xi0 ~4 , 1.21921xi0 ml , 1 70677xi0 ~9 , 2 .43568xi0 gl , 3.54212xi0 ~-{ , 

5.24745xi09~ , 7.91643xi09v , 1 21581xi0 I~176 , 1.90031xi0 I~ , 3.02182xi0 ~~ , 

4. 88737 x 10 I~ , 8. 03748xi0 I~ , 1.34365xi0111 , 2.28273xI0113, 3.9402xi0 II~ 

6. 90825x i0117 , 1.22998xI0 I'~~ , 2.22337xi0122 , 4. 07949xi0124 , 7 . 59604xi0126 , 

1.43504xi0129 , 2.75006xi0131 5 3449xi0 I~3 1 05334• 2 i0449xi0138 , �9 , �9 , . , 
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4.26182xi014~ , 8.74647xi0142 , 1.8188xi014S , 3.83159xi014v , 8.17599xi0149 , 

1.76685xi0 IS2 , 3.86622xi0 ISa , 8.56517xi0 IS6 , 1.9208xi0 IS9 , 4.35973xi0161 , 

l.O014xlO 164 , 2.32738• , 5.47236xi0168 , 1.30159xi0 IvI , 3.1312xi0 Iv3 , 

7.61773xi0 IvS , 1.87399xi0178 , 4.66101xi018~ , 1.17196xi0183 , 2.97864xi0185 , 

7.65143xi018v, 1.98627xi019~ 5.21025xi0192, 1.38088xi0195, 3.6973Xi019v, i. xlO 2~176 } 

By changing the increment from I (the default value) to 1., we have gone over from integers 
to rational numbers ,  and when  the latter are called for, then in this case Mathematica uses 
scientific notation. 

Another  very useful way  to approach such calculations is to take advantage of the lista- 
bility proper ty  by using the Map command.  This command  will evaluate a function at each 
of the list values. If we have an arbitrary function, f ,  and a vector of values {a,b,c,d,e,f}, then 
we can Map d o w n  this list: 

In[18]'= Map[f, {a, b, c, d, e, f}] 

Out{18]= {f[a], f[b], f[c], f[d], f[e], f[f]} 

A more specific example is to Map  the function square root, Sqrt[ ], onto the first 10 values of 
ls2. To obtain the first 10 values we can use the Take command  as follows: 

In[19]': Take[is2, 10] 

Out [19]: {i, 4, 27, 256, 3125, 46656, 823543, 16777216, 387420489, 
i0000000000} 

Now we can Map the square root function onto these values: 

In[20]'- Map[Sqrt, Take[is2, 10]] 

O u t [ 2 0 ] -  {1, 2, 3~/-3, 16,  25x/-5, 216 ,  343V'7-, 4096 ,  19683 ,  100000}  

We may use a built-in shorthand,  referred to as "infix" notation, to accomplish this as well: 

Sqrt/@ Take[is2, 10] 

{1, 2, 3V'-3, 16, 25~/-5, 216 ,  343~/~,  4096 ,  19683 ,  100000} 

We turn now from the Table and Map  command  to Plot. These have nearly identical syntax. 
Let us return to the example of x 2 and x x to see how this works: 



In [221.: Plot[x 2, {x, O, 20}]; 
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In[23].-Plot[x x, {x, i, I0}]; 
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By placing the semicolon after each we suppress  the ou tpu t  of the word  "Graphics ."  We can 
spruce these plots up with  axes labels and other attributes, but  to do so at this point  wou ld  
lead us off the track. Notice that in both cases we did not specify an increment  value. In fact 
with Plot we cannot. The reason is that  Mathematica adjusts the increment as it moves  th rough  
the function, making  it smaller when  the slope is large and larger when  it is small. Hence,  we 
do not have to set the increment; it is handled  internally by the routine. We can be sure that  
in the vicinity of 16, the increment  begins to become very small for x x. 

There are a host of different ways  to adjust the look of the two-dimensional  plots that 
we make in Mathematica. These adjustments  are referred to as Graphics  Opt ions .  To see wha t  
option we have in the Plot command  we can use the double  question mark  command.  

In [24]': ?? Plot 

Plot[f, {x, xmin, xmax}] generates a plot of f as a 

function of x from xmin to xmax. Plot[{fl, f2 .... }, 

{x, xmin, xmax}] plots several functions ~. 

Attributes[Plot} = {HoldAll, Protected} 

i , Axes ~Automatic, Options[Plot} : {AspectRatio ~ GoldenRatio 
AxesLabel ~None, AxesOrigin ~Automatic, 

AxesStyle ~Automatic, Background ~Automatic, 

ColorOutput~Automatic, Compiled~True, 

DefaultColor~Automatic, Epilogs{}, 

Frame--False, FrameLabel~None, FrameStyle~Automatic, 

FrameTicks~Automatic, GridLines~None, 

ImageSize~Automatic, MaxBend~10., 

PlotDivision~30., PlotLabel~None, PlotPoints~25, 

PlotRange~Automatic, PlotRegion~Automatic, 

PlotStyle~Automatic, Prolog~{}, RotateLabel~True, 

Ticks~Automatic, DefaultFont-~$DefaultFont, 

DisplayFunction-~ $DisplayFunction, 

FormatType :~ $FormatType, TextStyle :~ $TextStyle} 

This shows us that we can change virtually everything about  the appearance of these plots. 
The best way  to demonst ra te  the use of these options '  subroutines is to modify one of the 
s tandard plots that we have already made.  We begin again with a plot of x 2 in its default  
format. 
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In[25]': Plot[x 2, {x, 0, 10}] 

Out [25]- -Graphics- 

We notice that  the axes lines are not  da rk  enough ,  so we  can enhance  t h e m  by chang ing  their  

T h i c k n e s s  p a r a m e t e r  wi th in  the subrou t ine  AxesStyle :  

In[26].- Plot[x 2, {x, 0, 10}, AxesStyle ~ Thickness[0.01]] 
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Out [26]: -Graphics- 
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We can also enhance the plot of the function to make  it more visible: 

In[27].- Plot[x 2, {x, 0, 10), AxesStyle ~ Thickness[0.01], 
PlotStyle ~ {Thickness[0.006]}]; 
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Next we change the font and the font size using DefaultFont and then add a label of different 
font type and size: 

In[28]': Plot[x 2, {x, O, 10}, AxesStyle ~Thickness[O.Ol], 

PlotStyle ~ {Thickness [0. 0075] }, 

DefaultFont ~ {"Helvetica", 20}, 

PlotLabel ~FontForm["Level vs Time", {"Times-Roman", 14} ] ] ; 
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In the next instance we have changed from a simple graph to one with a frame around it: 

In [29 ] : = Plot [x 2, {x, 0, 10}, AxesStyle ~ Thickness[0.01], 

PlotStyle ~ Thickness[0.0075]}, 

DefaultFont ~ {"Helvetica" 20}, 

PlotLabel ~ FontForm["Level vs Time", {"Times-Roman", 16} ], 

Frame ~ True, 

]; 
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We can add a set of grid lines over the graph and to the frame as follows and thicken the latter: 

In[30]:= Plot[x 2, {x, 0, 10}, 

FrameStyle ~ Thickness [ 0.01], 

PlotStyle ~ {Thickness[0.0075]}, 

DefaultFont ~ ("Helvetica" 20} 

PlotLabel ~ FontForm["Level vs Time", {"Times-Roman", 16} ], 

Frame ~ True, GridLines ~ Automatic 

]; 
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Here we add  a gray background:  

In [31 ] : = Plot [x 2, {x, 0, 10}, 

FrameStyle ~ Thickness [0.01], 

PlotStyle ~ {Thickness[0.0075]}, 

DefaultFont ~ {"Helvetica" 20} 

PlotLabel ~ FontForm["Level vs Time"�9 {"Times-Roman", 16} ], 

Frame ~ True, 

GridLines ~Automatic, 

Background ~ GrayLevel [ 0.8 ] 

]; 
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In[32]:= Plot[x 2, {x, 0�9 10}, FrameStyle ~ Thickness[0.01], 

PlotStyle ~ {Thickness[0.0075]}, 

DefaultFont ~ {"Helvetica" 20} 

PlotLabel ~ FontForm["Level vs Time"�9 {"Times-Roman", 16} ], 

Frame ~ True, GridLines ~ Automatic, 

Background ~ GrayLevel [ 0.8 ], 

AxesLabel ~ {"t/min", "h [ t ] / ft"} 

]; 
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Finally, we add labels to the axes of the frame utilizing FrameLabel :  

In[33]:= Plot[x 2, {x, 0, 10), 
FrameStyle ~ Thickness [ 0.01], 

PlotStyle ~ {Thickness [ 0. 0075 ] }, 

DefaultFont ~ {"Helvetica" 20} 
PlotLabel ~ FontForm["Level vs Time", {"Times-Roman", 16} ], 

Frame ~ True, 

GridLines ~ Automatic, 

Background ~ GrayLevel [ 0.8 ], 

FrameLabel ~{"t/min", "h [t] / ft"}, RotateLabel ~ True 

]; 
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Another  very useful tool in formatt ing plots is the Se tOpt ions  command.  This c o m m a n d  
allows us to set automatically the manner  in which the graphs for a whole notebook will 
look. Let us see how this works. We begin with a simple default  plot of a line, which looks 
as follows: 
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In [34] �9 : Plot [x, {x, O, 100) ] ; 
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N o w  w e  can  u s e  S e t O p t i o n s  to c h a n g e  the  t h i c k n e s s e s  a n d  co lo r  of the  axes:  

In [35 ] �9 - SetOptions [ 

Plot, AxesStyle ~ {Thickness [0.01] }, 

DefaultFont ~ {"Helvetica", 20}] ; 

If w e  r e r u n  the  s a m e  c o m m a n d  as b e f o r e  w e  n o w  find: 

In [36]'= Plot[x, {x, 0, 100}]; 
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However, we can do more in fact to make our graphics look more like we may want  them to 
look. For example, we can set the options in such a way that the plots within the graphic are 
more visible than at the default settings: 

In [3 7] : = SetOptions [ 

{Plot, ListPlot}, 

AxesStyle ~ {Thickness [0.01] }, 

PlotStyle ~ {PointSize[0.02], 

Thickness [ 0.01] }, 

DefaultFont ~ {"Helvetica", 20} 
]; 

In[381:= Plot[x, {x, 0, 100}]; 
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In the example that follows we modify both the data that will be presented as points and that 
which will be presented continuously. If we want to combine two graphs into one graph, then 
there are several ways to do this, but one of the easiest ways is to load the graphics subroutine 
called DisplayTogether. This subroutine is found within the library of subroutines called 
"Graphics 'Graphics '"  and we load this using the << "Needs" command. You must  call with 
<<Graphics 'Graphics '  before you can use DisplayTogether.  (If by chance you try to use 
DisplayTogether before calling <<Graphics 'Graphics ' ,  then it will not work. You will need 
to clear the name, call the graphics commands and then use DisplayTogether.) 

In [39] �9 - <<Graphics "Graphics �9 

In[40]:-DisplayTogether[ListPlot[Table[{x, x2}, {x, 0, I0}]], 

Plot[x, {x, 0, i00}]]; 
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To reset the graphics options to their original present values we simply instruct the program 
to go back to Default  settings for the axes and plot styles with the same command structure: 

In[41]:: SetOptions[{Plot, ListPlot}, 

AxesStyle ~ Automatic, 

PlotStyle ~ Automatic, 

DefaultFont ~ Automatic] 

Out[41]= {{AspectRatio~ i Axes ~ Automatic AxesLabel ~ None 
GoldenRatio' ' ' 

AxesOrigin ~ Automatic, AxesStyle ~ Automatic, 

Background ~ Automatic, ColorOutput ~ Automatic, 

Compiled ~ True, DefaultColor ~ Automatic, Epilog ~ {}, 

Frame ~ False, FrameLabel ~ None, 

FrameStyle ~ Automatic, FrameTicks ~ Automatic, 

GridLines ~ None, ImageSize ~ Automatic, MaxBend ~ i0., 

PlotDivision ~ 30., PlotLabel ~ None, PlotPoints ~ 25, 

PlotRange ~ Automatic, PlotRegion ~ Automatic, 

PlotStyle ~ Automatic, Prolog ~ {}, RotateLabel ~ True, 

Ticks ~ Automatic, DefaultFont ~ Automatic, 

DisplayFunction-~ $DisplayFunction, 

FormatType :~ $FormatType, TextStyle :~ $TextStyle}, 

{AspectRatio ~ i Axes ~Automatic AxesLabel ~ None 
GoldenRatio' ' ' 

AxesOrigin ~ Automatic, AxesStyle ~ Automatic, 

Background ~ Automatic, ColorOutput ~ Automatic, 
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DefaultColor ~ Automatic, Epilog ~ {}, Frame ~ False, 

FrameLabel ~ None, FrameStyle ~ Automatic, 

FrameTicks ~ Automatic, GridLines ~ None, 

ImageSize ~ Automatic, PlotJoined ~ False, PlotLabel ~ None, 

PlotRange ~ Automatic, PlotRegion ~ Automatic, 

PlotStyle ~ Automatic, Prolog ~ {}, RotateLabel ~ True, 

Ticks ~ Automatic, DefaultFont ~ Automatic, 

DisplayFunction-~ $DisplayFunction, 

FormatType :~ $FormatType, TextStyle :~ $TextStyle}} 

We can also plot in three dimensions.  For example,  if we  have a function of two variables, 
then it is s imple to see how it looks. For example,  we  can utilize the product of functions of x 

and y to see how they will  appear in this space: 

In[42]'= ?? Plot3D 

Plot3D[f, {x, xmin, x max}, {y, ymin, ymax}] generates a 

three-dimensional plot of f as a function of x and y. 

Plot3D[{f, s}, {x, xmin, xmax}, {y, ymin, ymax}] 

generates a three-dimensional plot in which the 

height of the surface is speci~ed by f, and the 

shading is speci~ed by s. 

Attributes[Plot3D] = {HoldAll, Protected} 

Options [Plot3D] = 

{AmbientLight ~ GrayLevel[0] , AspectRatio ~ Automatic, 

Axes ~ True, AxesEdge ~ Automatic, AxesLabel ~ None, 

AxesStyle ~ Automatic, Background ~ Automatic, 

Boxed ~ True, BoxRatios ~ {i, i, 0.4}, 

BoxStyle ~ Automatic, ClipFill ~ Automatic, 

ColorFunction ~ Automatic, ColorFunctionScaling ~ True, 

ColorOutput ~ Automatic, Compiled ~ True, 

DefaultColor ~ Automatic, Epilog ~ {}, 

FaceGrids ~ None, HiddenSurface ~ True, 

ImageSize ~ Automatic, Lighting ~ True, 

LightSources ~ {{{i., 0., i.}, RGBColor[I, 0, 0] }, 

{{I., I., i.}, RGBColor[0, i, 0]}, {{0., i., i.}, 

RGBColor[0, 0, i] }}, Mesh ~ True, MeshStyle ~ Automatic, 

Plot3Matrix ~ Automatic, PlotLabel ~ None, PlotPoints ~ 15, 

PlotRange ~ Automatic, PlotRegion ~ Automatic, 

Prolog ~ {}, Shading ~ True, SphericalRegion ~ False, 

Ticks ~ Automatic, ViewCenter ~ Automatic, 
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ViewPoint -~ {1.3, -2.4, 2.}, ViewVertical ~ {0., 0., i.}, 
DefaultFont :-~ $DefaultFont, 
DisplayFunction--~ $DisplayFunction, 
FormatType :-~ $FormatType, TextStyle :-~ $TextStyle} 

In[43]': Plot3D[x2y 2, {x, -10, 10}, 

ColorOutput -~ GrayLevel] ; 
{y, -I0, I0}, 
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In[44]'= Plot3D[x3y 2, {x, -10, 10}, {y, -10, 10}, 
C o l o r l ~ t l ~ u t  ~ G r a y L e v e l ]  ; 
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In[45].= Plot3D[x3y 3 {x -10 10} {y,-10 10} �9 �9 �9 �9 �9 �9 

ColorOut~)ut ~ GrayLevel] ; 
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In[46] -= Plot3D[xSin[x] yCos[y], {x, -10, 10}, 

ColorOutput ~ GrayLevel, 

DefaultFont ~ {"Helvetica", 15} ] ; 

{y, -i0, 10}, 
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We can also see that the structure of this plot is such that the resolution is relatively poor. Thus, 
it is not an adequate representation of the function. To enhance the graphical representation of 
the function we can increase the resolution by raising the magnitude of the attribute PlotPoints 
as follows: 

In[47]:= Plot3D [x Sin [x] yCos[y], {x, -i0, i0), 

ColorOutput ~ GrayLevel, 

DefaultFont ~ {"Helvetica", 15}, 

PlotPoints ~ 75]; 

{y, -I0, 10}, 
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What we see is that Mathematica has plotted the functions, fitted them with surfaces, placed 
a grid on the fitted surfaces and enhanced them with gray-level shadowing.  All of this was 
done by routine operation in a default mode, that is, with a min imum of input  from us. Here 
too we could spend time further enhancing these graphs, but  instead we shall move on to the 

next subject. 
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Often we will have data rather than a function and we wish to plot it, so that we can find 
a function that describes the data by analysis. In such cases we can manipulate  the data by 
bringing it into a matrix form and then plotting it with ListPlot. We also can compare it to the 
behavior of functions that are meant  to represent the data. The following is a typical set of data 
obtained from an experiment,  appropriately named "data." (This could have been imported 
to Mathematica by any number  of different means.) The first column is time and the second is 
the value of the measured variable in the system: 

0 i0 

2 8.2 

4 6.7 

6 5.5 

8 4.5 

i0 3.7 

12 3. 

14 2.5 

16 2. 

20 1.4 
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24 0.9 

28 0.6 
32 0.4 

36 0.3 
40 0.2 
44 0.i 

50 0.i 

First, we write a vector of time values (tim1) at which measurements were made and do the 
same with the dependent  variable values (datl) and input both: 

tim1 = {0, 2, 4, 6, 8, 10, 12, 14, 16, 20, 24, 28, 

32, 36, 40, 4 4 ,  50}; 

datl = {I0, 8.2, 6.7, 5.5, 4.5, 3.7, 3.0, 2.5, 2.0, 
1.4, 0.9, 0.6, 0.4, 0.3, 0.2, 0.i, 0.I}; 

To plot these we must  join these into pairs of x,y values that can be plotted by ListPlot. We 
will use three commands Join, Partition, and Transpose to do this. Here is how it is done in 
stepwise fashion: 

In [49] "= Join[tirol, datl] 

Out [49]- {0, 2, 4, 6, 8, i0, 12, 14, 16, 20, 24, 28, 32, 36, 40, 
44, 50, i0, 8.2, 6.7, 5.5, 4.5, 3.7, 3., 2.5, 2., 1.4, 
0.9, 0.6, 0.4, 0.3, 0.2, 0.i, 0.i} 

The output  from this operation is a single vector composed of time values and then the 
dependent  variable values. We need them to be paired in order to plot them. Thus we first 
break this vector into two vectors within one. The first is for the time values and the second 
for the dependent  variable values. To get this right we need to partition time only with time 
values, and therefore we need to state how many elements from the list should be in each 
partition. We can do this if we know the length of the time list. We get this information by 
asking for the number of elements in tim1 with Length: 

In [ 50 ] . = Length [ t iml ] 

Out [50]= 17 

We use this as follows: 

In [51] "= pdata = Partition [Join [timl, datl], Length[datl]] 

Out[51]: {{0, 2, 4, 6, 8, i0, 12, 14, 16, 20, 24, 28, 32, 36, 40, 44, 50}, 

{i0, 8.2, 6.7, 5.5, 4.5, 3.7, 3., 2.5, 2., 1.4, 0.9, 0.6, 
0.4, 0.3, 0.2, 0.i, 0.i}} 
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Now we have two lists in one; in effect, we really have a matrix. We can see this by " / / M a t r i x  
Form" after the Part i t ion command:  

In [52] -: pdata//MatrixForm 

Out [52]//MatrixForm = 

{O 2 4 6 8 i0 12 14 16 20 24 28 32 36 40 44 50~ 
] 

As it is a matrix we can do a very simple and yet powerful  operat ion on i t - -we  can transpose 
it. When we transpose a matrix we exchange the rows for columns. Here is a simple example: 

In[53].: ml = {{a, b, c, d}, {I, 2, 3, 4}} 

Out[53]-{{a, b, c, d}, {i, 2, 3, 4}} 

In [54 ] " - ml//MatrixForm 

Out [ 54 ] //Ma t ri xForm = 

In [ 55 ] �9 - Transpose [ml] //MatrixForm 

Out [ 55 ] //Ma t ri xFo rm - 

a 1 

ii 
Retuming to our example, we can see that by transposing the part i t ioned set "pdata"  we will 
have the pairs of independent  and dependent  variables we seek to plot: 

In [56] �9 - dataset = Transpose [pdata] 

Out[56]: {{0, i0}, {2, 8.2}, {4, 6.7}, {6, 5.5}, {8, 4.5}, 
{i0, 3.7}, {12, 3.}, {14, 2.5}, {16, 2.}, {20, 1.4}, 

{24, 0.9}, {28, 0.6}, {32, 0.4}, {36, 0.3}, {40, 0.2}, 
{44, 0.i}, {50, 0.i}} 

In [5 7] �9 = dataset//MatrixForm 
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Out [57]//MatrixForm = 

(0 10 ~ 
2 8.2 

4 6.7 

6 5.5 

8 4.5 

i0 3.7 

12 3. 

14 2.5 

16 2. 

20 1.4 

24 0.9 

28 O.6 

32 0.4 

36 0.3 

40 0.2 

44 0.i 

50 0.i 
\ 

Although we did each step interactively, we can do it all at once as follows: 

In[58] ::Transpose[Partition[Join[tim1, datl], Length[datl]]] 

Out[58]: {{0, i0}, {2, 8.2}, {4, 6.7}, {6, 5.5}, {8, 4.5}, 

{i0, 3.7}, {12, 3.}, {14, 2.5}, {16, 2.}, {20, 1.4}, 

{24, 0.9}, {28, 0.6}, {32, 0.4], {36, 0.3}, {40, 0.2}, 

{44, 0.I}, {50, 0.i}} 

Another  way  in which we could have done this takes advantage  of Table and the listability of 
t im1 and datl, both  of which  are un id imens iona l  vectors. To do this we  make  use of the fact 

that  each e lement  of the list is associated wi th  a un ique  numer ica l  posi t ion that  we  express as 

timl[[nl] or datl[[m]] as follows: 

In [59] "= timl[[5]] 
datl [ [5] ] 

Out [59] - 8 

4.5 

N o w  we can put the two lists together by placing the first element timl[[n]] and the second 
element datl[[n]] inside a set of braces, {tirnl[[n]l ,datl[[n]]},  which we then place inside the 
Table command: 

In[60] .= dataset=Table[{timl[[n]], datl[[n]]}, {n, 1, Length[tirol]}] 
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Out[60]: {{0, i0}, {2, 8.2}, {4, 6.7}, {6, 5.5}, {8, 4.5}, {i0, 3.7}, 
{12, 3.}, {14, 2.5}, {16, 2.}, {20, 1.4}, {24, 0.9}, 
{28, 0.6}, {32, 0.4}, {36, 0.3}, {40, 0.2}, {44, 0.i}, 

{50, 0.I} } 

We can now use ListPlot to display this data: 

In [ 61] : = SetOptions [ 
{Plot, ListPlot}, 
AxesStyle ~ {Thickness [0.01] }, 
PlotStyle ~ {PointSize [0.02], 

Thickness [ 0.01 ] }, 
DefaultFont ~ {"Helvetica", 15} 

]; 

In[62]': ListPlot[dataset]; 
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Instead of a graph of a function we now have discrete points corresponding to the paired 
values of the independent  and dependent  variables. We can see that this data looks like an 
exponential decay of the y values with increasing x. A simple test of this would  be to take the 
natural  log of the y-values and plot them against x. Look once again at the paired values in 
the data set. We can see that if we take out one pair, then what  we want  is the first number  
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paired with the Log of the second value of the pair: 

In[63] "= dataset 

Out[63]: {{0, i0}, {2, 8.2}, {4, 6.7}, {6, 5.5}, {8, 4.5}, {i0, 3.7}, 
{12, 3.}, {14, 2.5}, {16, 2.}, {20, 1.4}, {24, 0.9}, 
{28, 0.6}, {32, 0.4}, {36, 0.3}, {40, 0.2}, {44, 0.i}, 
{50, 0.i} } 

There are several ways in which we can proceed. We could go back to the set of y-values,  
datl, take the log of these, and then redo all the steps we did in the preceding. That is an 
acceptable but inelegant approach. It is acceptable because it works; it is inelegant because we 
already have the dataset in the form in which we need only take the log of every second value. 
Therefore, a more elegant approach is to operate directly on the dataset using the power  of 
Mathematica's rule- and function-based programming language. In the process of doing this 
we will use more of the language and we will see why  listability is so important.  

When we want  to take an element from a set it is simply a matter of using the correct 
syntax. For example, as we discussed before, to take the fifth element from the dataset we 
simply type dataset with a five after it in double square brackets: 

In[64] ": dataset[[5]] 

Out[64]= {8, 4.5} 

Since the fifth element of dataset is a pair of numbers  corresponding to the fifth point the 
output  is this pair. If we wanted to take out of a data set the y-value of the 9th point, then we 
would type 9 and 2 separately in double square brackets after dataset: 

In[65] ": dataset[[9, 2]] 

Out [65]- 2. 

Similarly, if we wanted to take out the x-value from the first data point in the set: 

In[66] "- dataset[[l, I]] 

Out [66] : 0 

It is clear that we are close to what  we need in this function. We could extract all the y-values 
from dataset by incorporating this syntax into a Table function. For example: 

In[67] .= Table[dataset[[n, 2]], {n, I, Length[dataset]}] 

Out[67]= {i0, 8.2, 6.7, 5.5, 4.5, 3.7, 3., 2.5, 2., 1.4, 0.9, 
0.6, 0.4, 0.3, 0.2, 0.i, 0.i} 
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Taking the Log of this and using N to evaluate numerically,  we can have a vector of the Log 
of y-values from dataset  because it is listable: 

In[68] "= N[Log[Table[dataset [ [n, 2] ], {n, 1, Length[dataset] } ] ] ] 

Out[68]: {2.30259, 2.10413, 1.90211, 1.70475, 1.50408, 1.30833, 
1.09861, 0.916291, 0.693147, 0.336472, -0.105361, 
-0.510826, -0.916291, -1.20397, -1.60944, -2.30259, 
-2.30259} 

However ,  now we have violated our original goal, and we have taken dataset  apart.  We can 
be even more savvy than this and avoid having to Join, Partition, and Transpose again. We 
do this by wri t ing a function in Mathematica that  will do wha t  we wan t  from the start. The 
syntax for a function in Mathematica or a rule is f[x_] := fix]. This function will take only single 

values for x. We have a set of paired values as the a rgumen t  of our function, so we will follow 
the d u m m y  variable on the left-hand side by a double  underbar  instead of a single underbar:  
gIx_] := g[x]. The function or rule that we want  is wri t ten this way  in English: 

"Take an element from dataset, keep the x-value as it is, but take the Log of the 

y-value and automatically evaluate it, and keep the two values xn and yn paired 

as they originally were." 

Writing this in English first makes  it fairly obvious wha t  we need to do; this is our algori thm. 

In Mathematica we translate this a lgori thm directly into a rule or function. That rule will look 
like this for the nth element  of any set: 

In [69] .: lgf [x_ ] : = {x [ [n, 1] ], N[Log [x [ [n, 2] ] ] ] } 

We should not move  too fast on this because this rule is a p rogram and it is rules like this one 
that form the bricks from which we can build larger structures later. Note that the left-hand 
side has function syntax with the d u m m y  variable followed by a double underbar  and set off 
from the r ight-hand side by a colon and an equal sign. This is called the set delayed structure in 

Mathematica. It means  that until a specific a rgument  is given within the brackets, this function 
in unevaluated,  that is, its evaluat ion is delayed until we give it an argument .  The form of the 
function is stored and will work  with  most  any argument ,  p rovided  we also given it a value 
for n. On the r ight-hand side we find a set of braces around two commands  that now should 
look familiar. The first just takes the x-value of the nth e lement  and pairs it with the log of the 
y-value of the nth element. If we now put  this inside the table function, we can operate on 
dataset  from n equals one to the end, which occurs at the value of Length[dataset]. Here it is: 

In [70].: igdatset=Table[igf[dataset], 

Out [70]: {{0, 2.30259}, 
{8, 1.50408}, 

{2, 2.10413}, 
{i0, 1.30833}, 

{n, 1, Length[dataset] }] 

{4, 1.90211}, {6, 1.70475}, 
{12, 1.09861}, 
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{14, 0.916291}, {16, 0.693147}, {20, 0.336472}, 

{24, -0.105361}, {28, -0.5108256}, {32, -0.916291}, 

{36, -1.20397}, {40, -1.60944}, {44, -2.30259}, 

{50, -2.30259}} 

In [71] �9 = pllgdatset = ListPlot [igdatset] ; 
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As we can see this looks quite linear, thereby indicating that  the data follows an exponential  
decay. If we want  to be more precise about  this, we can use Mathematica to find a fit to the 
log data. That  is, we can find the equation for the best fit line to lgdatset. After we have this 

function, we can then plot it and graph it wi th  the data to once again visualize the goodness  
of fit. We introduce now the Fit command.  The syntax for Fit is as fo l lows-- the  a rgument  

consists of three elements,  the first of which is the name  of the matrix of data to be fit, the 
second of which is enclosed in braces and it states that  we wan t  to fit to a linear equat ion (we 
can use any polynomial  we like), and the last of which names  the independent  variable. The 
output  is a line (or polynomial)  in x. As we will wan t  to Plot this, we should give it a function 
name. We can call it ftlg for fit to the Log of the data and plot it from zero to 50 in x. (First we 
do it wi thout  the function name  to show the ou tput  and then again wi th  the function name.  

There is no reason to do the first, except to see the values of the slope and intercept.) We can 

give the plot a name,  plft lg,  plot of fit, to log: 

In[72]'= Fit[lgdatset, {i, x}, x] 

Out[72]: 2.27476 - 0.0975478x 

In[73].= ftlg[x_] := Fit[igdatset, {1, x}, x] 

plftlg = Plot[ftlg[x], {x, 0, 50}]; 
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Finally, we can put  the data points and this line on the same graph by calling for the Listplot, 
pllgdatset,  and the Plot, plftlg, within the Show command: 

In[74] .- Show[plftlg, pllgdatset]; 

2 

10 20 "~..30 40 50 

-1  

- 2  
O ~ �9 

This looks much better than it did, but we still should give the x- and y-axes labels. Why not 
call them t for time and LogY(t) for the log of position Y as a function of time. To do this we 
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need the command AxesLabel, which has the following attributes: 

In[75] := ?? AxesLabel 

AxesLabel is an option for graphics functions that 

speci~es labels for axes. 

Attributes[AxesLabel] : {Protected} 

We will put the label for each axis within a set of braces and then also within quotation marks 
so that they are not interpreted as a function to be evaluated but rather as simply strings. 

In[76] :=Show[pllgdatset, plftlg, AxesLabel ~ {"t", "Log[Y(t)]"}] ; 

Log[Y(t)] 

2 

-1 

10 20 "~ .30  40 50 

- 2  

1.6 Solve and NSolve 
The Solve and NSolve commands are for algebraic equation solving. The Solve provides a 
symbolic result and NSolve numerically evaluates for the variable that is sought. These are 
used either for single or sets of equations. They are best illustrated by example. We can begin 
with Solve. 

The syntax for Solve is quite simple. The argument consists of the equation or equations 
to be solved followed by the variable or list of variables we seek to define. An inquiry of 
Mathematica gives us the information more completely. Notice that there are Options we can 
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set that allow us to deal with special situations when  they arise. For the most  part  we can 

and will leave these at their default values, but  it is impor tant  to know that the user has a 
considerable degree of control over most  functions in Mathematica. The program is so powerful  

and the defaults work  so well that one often gets the impression that nothing can be changed 
or fine-tuned by the user. In fact, this is an incorrect impression. 

In[771:= ?? Solve 

Solve[eqns, vars] attempts to solve an equation or set 

of equations for the variables vars. Solve[eqns, vars, 

elims] attempts to solve the equations for vars, 

eliminating the variables elims. 

Attributes [Solve] = {Protected} 

Options[Solve] = {InverseFunctions -~ Automatic, 

MakeRules -~ False, Method -~ 3, Mode -~ Generic, 

Sort -~ True, VerifySolutions -~ Automatic, 

WorkingPrecision -~ oo} 

To solve for one equation for one u n k n o w n  we can examine how Solve works  on a quadratic 

equation because we know that solution so well: 

In[78]:= Clear[Al, BI, CI, x] 

Solve[0 == Alx 2 + Blx + Cl, x] 

-BI + ~BI 2 - 4AICI B1 + ~BI 2- 4AICI 
Out[78]: {{x-~ }, {x-~ - }} 

2 A1 2 A1 

We could also have two quadratic equations in xl and x2 with appropriate constant coefficients: 

In[79].: Clear[A1, B1, A2, B2, C1, C2] 

In[80].= Solve[{0 == Alxl 2 + Blx2 + Cl, 0 == A2xl 2 + B2x2 + C2}, 

{xl, x2} ] 

Out [80]- {{x2 
A2 C1 - A1 C2 ~B2 C1 - B1 C2 

, xl~- }, 
-A2 B1 + A1 B2 ~A2 B1 - A1 B2 

A2CI-AIC2 ~B2CI - BIC2 
{x2 ~ , xl ~ } } 

-A2BI +AIB2 ~A2BI - AIB2 

If we move to a third-order equation, we obtain three solutions, two of which are imaginary 

as shown in what  follows: 

In[81].- Clear[A1, B1, Cl, x] 

In[82]'= Solve[Alx 3 + Blx 2 + Clx + D == 0, x] 
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Out[82]= {{x -~-3--~i-(2i/3 (-BI 2 +3AICI))/(3AI 

(-2 B13 + 9AI BICI- 27AI 2D+/4(-BI 2 + 3 AlCl)3 + (-2 BI3+ 9AI BICI-27AI2D)2)i/3) 

( - 2  B13+ 9 A 1  B 1 C 1  - 2 7 A 1 2 D + g / 4 ( - B 1 2  + 3A1  C 1 ) 3 +  ( - 2  B13+ 9 A 1  B1 C 1 - 2 7 A 1 2 D ) 2 ) l / 3  + 
3 2i/3Ai 

{x-~ -- 3--~i+((i + iVY) (-BI2+ 3AI CI))/(3 22/3AI(-2 BI3+ 9AI BICI- 27AI2D 

+/4 (-BI2+ 3 A1 Ci)3 + (-2 BI3+ 9AI B1 Cl - 27AI2D)2)I/3) _ 1 
6 2 i/3Al 

((i - ~/3) (-2 BI3+ 9AI BICI - 27AI2D 

+/4 (-BI 2 + 3 A1 Ci)3+ (-2 B13 + 9AI BICI- 27AI2D)2)i/3) }, 

{x-~-3--~l+((l- i~/3) (-BI2+3AI Ci))/(3 22/3AI(-2BI3+ 9AIBI CI- 27AI2D 

+~4 (-BI2+ 3 A1 Ci)3+ (-2 BI3+ 9AI B1 Cl- 27AI2D)2)i/3) 

_ i  ((I+ ~) (-2 BI3+ 9AI B1 CI-27AI2D 
6 2i/3Ai 

+ ~4 (-BI 2 + 3AI Ci)3 + (-2 BI3+ 9AI BICI - 27AI2D)2)i/3) } 

We can find solutions to most equations even when transcendental functions (Log, Sin, 
Cosh. . .  ) are involved. 

In[81]'-Clear[A1, B1, C1, x] 

In[82] .- Solve[B1 Log[Alx 2 + Blx + C1] + Sin[C1] == D1, x] 

D1 - Sin[Cl] 
-BI - B12- 4 A1 CI+ 4 A1 e B1 

Out [84]: {{x-~ }, 
2AI 

D1 - Sin[Cl] 
-BI + B12- 4 A1 CI+ 4 A1 e B1 

{X~ }} 
2AI 

NSolve appears to work in very much the same way as Solve, but instead of working out a 
symbolic solution, it provides numerics. This syntax is essentially the same as that used for 
Solve. We put  the arguments inside the brackets as the equations and the solution variable, 
but now of course the constants must  be numerical. Here we take the first and last examples 
from the preceding Solve examples and put  them together in one cell with the assignments 

of the constants. 

In[85] := A1 = 1; 

B1 = 10; 

C1 = 9; 

D1 = 8; 

NSolve[0 == Alx 2 +Blx+Cl, x] 

NSolve[Alx 3 +BIx 2 +Clx+Dl==0, x] 

NSolve[BILog[Alx 2+Blx+Cl] +Sin[Cl] ==DI, x] 

Remove [AI, B 1, C 1 ] 

Out [89]: {{x-~-9.}, {x-~-l.}} 
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Out [90]: {{x--->-9.10832}, {x-~-0.445839 - 0.824346i}, 

{x-~-0.445839 + 0.8243461}} 

Out[91]: {{x-~-9.2586}, {x-~-0.741399}} 

In[93]:: Remove[A1, B1, C1, A2, B2, C2] 

A1 = 2; 

B1 = 5; 

C1 = 3; 

A2 = 3; 

B2 = 6; 

C2 = 2; 

Solve[{0==Alxl2+Blx2 +CI, 0 == A2xl 2 +B2x2 + C2}, 

(xl, x2) ] 

N[%] 

NSolve[{0==Alxl 2 +Blx2 +Cl, 0==A2xl 2 +B2x2 + C2}, 

{xl, x2}] 

Remove[Al, A2, BI, B2, Cl, C2] 

Out[lOO]-{{x2-,--, xl-~-2 }, {x2-~--, xl-~2 }} 
3 3 

Out[lOl]= {{x2--->-1.66667, xi--->-1.63299}, {x2--->-1.66667, xi-~1.63299}} 

Out[102]- {{x2-~-1.66667, xi-~1.63299}, {x2-~-1.66667, xi-~-1.63299}} 

In the last case we solved first symbolically, but  with values for the constants replaced into 
the solution. Then we evaluated these four solutions by using N[%]. This is a shortcut that 
is handy  to use occasionally. The "%" symbol means the "last result." We can do anything 
to the last result, but  in this case we evaluate it numerically with N[ ]. For completeness we 
solve the problem once again using NSolve in place of Solve and we see that we obtain 
the very same result as on the previous line. In both cells the last s tatement is the Remove  
command.  This is done to be sure that these symbols do not mistakenly appear  with the 
same values once again in some work  that we will do later in the session but  in a different 
problem. 

There is much more that can be done to manipulate  equations and their solutions. For 
example, there is a set of commands  for doing algebra that mimics what  we do by hand 
(Expand, Factor, Simplify, FullSimplify,  PowerExpand . . .  ). We observed here that we ob- 
tained imaginary roots to these equations. If our problems demand  only real roots, then we 
can have Mathematica filter out the imaginaries and return just the real roots (Miscel laneous 
'RealOnly ' ) .  But we should not get too far ahead of ourselves. It is better that we learn Mathe- 
matica in natural  stages that follow our level of need. In other words,  we will find and introduce 
more sophisticated commands ,  routines, and procedures as we need them, so that their func- 
tion is unders tood and retained, rather than trying to cover everything at once. With this in 
mind let us turn now to some Calculus functions. 
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Chemical engineering is a science of chemical change and extents. When we need to treat 
change we are necessarily interested in rates of change either in time or in space or both. 
The language of change is Calculus. Here we will show how Mathematica provides with the 
bed-rock of applied Calculus--differentiation and integration. Mathematica will differentiate 
and integrate, both symbolically and numerically. Furthermore, it has many different ways to 
do numerical integration, methods that can be chosen by the user for any given application. 
We can begin with symbolic differentiation and integration. 

Differentiation can be ordinary or partial. Here are two examples that illustrate how this 
is done. The syntax is simple we write D[f[x], x], which means take the ordinary derivative of 
the function of x with respect to x. We can also use the Basic Input  palette to do the same, but  
now we place the variable that we want  to take the derivative with respect to in the subscript 

box under Ox/[xl" 

In[104].: 69x(Alx 3 + Blx + Cl) 
D [Alx 3 + B1 x + C1, x] 

Out[104]- B1 + 3Alx 2 

Out[105]- B1 + 3Alx 2 

To take higher-order derivatives we specify the order n in the argument, that is, we state 
D[f[x l, {x, n}]: 

In[106] := D[Alx 3 + Blx+ CI, x] 
D[AIx 3 + BIx+ CI, {x, 2}] 
D[AIx 3 + BIx+Cl, {x, 3}] 
D[AIx 3 + BIx+ Cl, {x, 4}] 

Out[106]- B1 + 3Alx 2 

Out[107]: 6Alx 

Out[108]: 6AI 

Out [109]= 0 

To take a partial derivative, we follow the same syntax. From the command line we type in, 
for example, D[f[x, y], x] or D[f[x, y], y] if we want the partial derivative of fix, y] with respect 
to x or y. Using the input palettes we do as we did before: 

In[llO] := 0x(Alx2y + Blxy 2) 
0y(Alx2y + Blxy 2) 

D[Alx2y + Blxy 2, x] 
D[AIx2y + Blxy 2, y] 

Out[llO]= 2Alxy + Bly2 
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Out[lll]= AIx 2 + 2Blxy 

Out[ll2]= 2Alxy + Bly 2 

Out [113]= AIx 2 + 2Blxy 

Taking second-order ordinary or partial derivatives follows much  the same syntax: 

In[ll4]:= 0x, x(Ax2y + Bxy 2) 
0y, y(Ax2y + Bxy 2 ) 
0x, y(Ax2y + Bxy 2) 
~y,x(Ax2y + Bxy 2) 

Out [114]: 2Ay 

Out [115]= 2 B x 

Out [116]: 2Ax+2By 

Out[ll7]= 2Ax+2By 

For higher-order partial derivatives, we use the command  line syntax: 

In[ll8] .- D[Ax2y + Bxy 2, {x, 2}] 
D[Ax2y + Bxy 2, {y, 2}, {x, I}] 
D[Ax2y + Bxy 2, {y, 2}, {x, 2}] 

Out [118]= 2Ay 

Out [119]- 2 B 

Out [120]= 0 

Turning now to the antiderivative we can do symbolic integrations. Integration can be done 
either from the palette or from the command  line and we will illustrate both. Here are two 
forms of the indefinite integral over x of (A x + B): 

In [121] .= f (Ax + B) ~x 

Integrate [Ax + B, x] 

Ax 2 
Out [121]= B x + 

2 

Ax 2 
Out [122]= B x + 

2 

We can integrate from xl to x2, that is, also as a definite integral: 

x x2 In [123].= (Ax + B) ~x 
1 

Integrate[(Ax + B), {x, xl, x2}] 
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Out [123]= -Bxl - 

Out [124]= -Bxl - 

Axl 2 Ax2 2 
+ Bx2 + 

2 2 
AxI 2 Ax22 

+ Bx2 + 
2 2 

The algebraic output in this case can easily been seen to be simplifiable. To find more simplified 
forms we request that Mathematica do the simplification for us. We can combine this into one 
command line: 

In[125].= Simplify[Integrate[(Ax + B), {x, xl, x2}]] 

1 
Out [125]= - (xl-x2) (2B+A(xl +x2)) 

2 

Alternatively, we  may have wanted to collect the terms in A and B; we  would  do that this 
way: 

In[126]'-Collect[Integrate[(Ax + B), {x, xl, x2}], {A, B}] 

Out [126]- B(-xI + x2) + A(--- 
xl 2 x22 

+-- 
2 2 

The function we are integrating may be one with two variables: 

In[127] .= Simplify[Integrate[Ax2y + Bxy 2, {x, xl, x2}, {y, yl, y2} ] ] 

1 
Out [127] : -{ (A (xl 3 - x23 ) (yl 2 - y22 ) + B (xl 2 - x22 ) (yl 2 - y22 ) ) 

Integration and differentiation can be done both numerically and symbolically. This becomes  
very important to us, because in many cases we  need both approaches in engineering problems 
of the kind that we  will deal with in this text. As we  have seen previously, the syntax is kept 
very much the same when  we compare the numerical command  implementation to that of its 
symbolic analogue. This means that we will place an N in front of the command and we  will 
specify a numerical range for the variable or variables we  are integrating over in the argument. 
Also, as in the case of NSolve ,  we  must  be sure to have values for all the parameters. Examples 
are the best way to illustrate how this works: 

In[128]-= A -- 10; 

B = 0.5; 

C1 = i; 

NIntegrate[Ax 2 + Bx + CI, {x, 0, 10} ] 

Out [131]: 3368.33 

Numerical  differentiation is about as simple to implement.  We take the derivative and then 
evaluate it at a given point. The simplest  way  to do this is to add the evaluation c o m m a n d  
directly after the derivative, using "L x ---, a" so that the derivative is evaluated immediately  
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at x equal to a: 

In[132] := A = 10; 

B = 0.5; 
C1 = i; 
D[Ax 2 + Bx + Cl, x] /. x -~ i0 

Out [135]= 200.5 

From this vantage we are in a posit ion to move  to differential equat ion solving using DSolve  
and NDSolve.  

1.8 DSolve 
Most of the differential equations that we will be called upon to solve in this text are ordinary  
rather than partial. We will need to know the initial conditions in order to solve them for 
a function that describes the behavior  of the system we are analyzing. Both DSolve  and 
NDSolve  can be used seamlessly to accomplish this. They can be used for mult iple  coupled 

equations as well as they can be for single equations. Their syntax follows essentially that 
which we have seen for the c o m m a n d s  that we have used to this point. 

Early on we will find that m a n y  of the differential equations that we seek to solve belong 
to a general class that can be "separated."  This means  that all the independent  variables can 
be placed on one side of the equat ion and the dependen t  ones on the other. An example  of 
such an equation is: 

This can be rewri t ten as: 

df(x) 
dx 

= - c 1  f ( x )  

df(x) 
= - C 1  dx 

f(x) 

The solution can be found by integrat ing both s ides - -on  the left over fix) and on the right over 
x. Hence the first equations we will wan t  to solve may  be solved via separat ion and integration. 
We can solve this equation, even though fix) is left unspecified, over some interval from xl  to x2: 

/ frx2] 1 /x x2 
In [136] -= (If[x] =- -CI (Ix 

Jf [xl] f IX] 1 

Out[136]- -Log[f[xl] ] + Log[f [x2] ] == xl - x2 

This can be simplified as follows if we seek to find fix2] wi th  the initial condition that  fix1] is 
fo at xl  equal to zero: 

In[137].= Solve[-Log[fo] + Log[f[x2]] ==-CI (-xl + x2), f[x2]] /. 

{f[xl] -~ fo, xl-~0} 

Out [137] : { { f [x2 ] ~ e -x2+L~176 } } 
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We see that we have a solution, but  we find that there is a Log in the argument  of the expo- 
nential. We then can ask Mathematica to simplify the solution: 

In [138]'= Simplify[Z] 

Out [138]= {{f[x2] -~ e -x2fo}} 

Therefore, fix2] = fo e -C1 x2. We can test this solution by placing it back in the differential 
equation on the left-hand side to see if the derivative will equal the right-hand side of the 
equation. To do this verification, we define the function for f[x] and then take its derivative 
and finally test if the derivative of the solution is the same as the original r ight-hand side of 
the equation. We do this last operation by placing the derivative and the right-hand side of 
the equation astride the double equal sign and all of this is then placed within the Simplify  
command. If the two elements on either side of "==" are in fact the same then Mathematica 
returns a "True" statement. 

In[139]'= f[x_] := e-CiXfo 

Simplify[cgx f[x] == -CI f[x]] 

Remove [ f ] 

Out [139]: True 

We have learned several important  new concepts from this example. 

�9 Many differential equations are separable and are nothing more than the integration of 
the left-hand and right-hand sides. 

�9 We can use Integrate or the palette equivalent to carry out this operation on the separated 

form of the equation. 
�9 The solution we obtain can be made specific for the initial conditions by adding them at 

the end of an appropriate Solve statement. 
�9 Solutions can typically be simplified. 
�9 The solution must  be verified by testing its validity in the original differential equation. 

The last point may not seem important  at this point but it is, especially when  we derive 
analytical solutions that are far more complex. A slightly more complex form of a separable 
equation is one that involves a sum on the right-hand side, such as: 

dg(x) 
dx 

= C1 + C2 g(x) 

This is also separable, but we have to take the whole of the right-hand side to the left to show 

this: 

ag(x) 
C1 + C2 g(x) 

=dx  
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This is amenable to the techniques we have just used for the simpler equation, except that 
now that we know what  we are doing we will combine the steps including the verification: 

g[x2] 1 ~x x2 
In[140].- ~g[x] -- dx; 

Jg[xl] Cl + C2g[x] 1 

Flatten[Simplify[Solve[%, g[x2]] /. 

{g[xl] ~ go, xl ~0, x2 ~x}]] 

g[x_] := Evaluate [g [x] /. %] 

simplify[axg[x] == Cl + c2g[x]] 

g [ x ]  
Remove [ g, go ] 

-i + e c2 x (i + C2 go) 
Out [143]= {g[x] -, } 

C2 

Out[145]= True 

-i + e cBx(l + C2 go) 
Out [146] = 

C2 

In one set of statements we have solved the separated equation, rearranged for the function 
subject to the initial conditions, defined the function, verified it, and then restated the solution. 

Generally, we can use DSolve to find an analytical solution when  one is possible. This is 
more general because DSolve can find solutions to much more complex cases than we have 
examined to this po in t - - tha t  is, for those equations that are not separable. If no analytical 
solution exists, then we can solve the equation numerically with NDSolve.  We will see here 
how these two powerful  commands  work. 

We can redo the problem that we have just finished to see what  is similar and different 
about using DSolve. The syntax is such that we place the equation and the initial condition in 
braces, followed by the name of the function we seek and the name of the independent  variable: 

In[148]:: DSolve[{~xg[x] == Cl + C2g[x], g[0] == go}, g[x], x] 

Out[148]: {{g[x] -* 
-i + c2eC2X(c- ~ + go) 

c2 
}} 

Verification can be done as we did before: 

Cl -CI+C2e c2x(~ + go) 
In[149]:= g[x_] := 

C2 
Simplify[Oxg[x] == C1 + C2g[x]] 

Remove  [ g ,  go  ] 

Out [150]: True 
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Another type of equation that we are likely to encounter  is the linear first-order differential 

equation (LFODE). An example is given here: 

In [152] " = DSolve [ {Ox Y [x] + Cly [x] == g [x], y [0] == yo}, y [x], x] 

Jo x Out[152]= { {y[x] -~ e-X(yo + e DS~ g[DSolve't] dDSolve't) } } 

Notice that the solution is impl ic i t - -meaning that it is not fully evaluated. We can see that this 
is so from the fact that on the r ight-hand side we have an integral that is over the function g 
and is left in terms of the d u m m y  variable DSolve ' t .  Notice also that the exponential  involves 
this variable as well. Until g[x] is specified, we cannot find the full solution to this problem. 
We can see what  happens  when  g[x]= x 2 or Sin[x], that is, for specific functional forms: 

In[153] "- Clear[Cl, yo] 

DSolve[{~xy[x] + Cly[x] = x 2 = , y[0] == yo), y[x], x] 

2 e -clx(2 e clx- 2CleClXx + C12 e clxx2 + C13(-c-~ +y~ ) 

In[154]= {{y[x] -~ }} 
C13 

In[155] "- Clear[Cl, yo] 
DSolve[{Oxy[x] + Cly[x] == Sin[x], y[0] == yo}, y[x], x] 

Out [156]- {{y[x] -~ 
e -clx ( l+y~176 cl 2 (l+yo+Cl2yo) 

1 +Cl 2 + 1 +Cl 2 
e clxcos[x] + Cle clxsin[x] ) 

}} 
(-~ + C1)0  + C1) 

These solutions are involved and so it is critical that we verify them before applying them: 

In [ 15 7 ] . - Clear [ "Global �9 *" ] 
2 e -clx(2 e clx - 2CleClXx + C12eClXx 2 + Cl 3 (-~ +YO) ) 

yl Ix_ ] := 
C13 

Simplify[0xyl[x] + Clyl[x] == x 2] 

Out [159]= True 

In[160]-: Clear[C1, yo] 
1 + yo + C12yo C12 (i + yo + C12yo) 

y2[x__] := (e -clx( + 
1 + C12 1 + C12 

-eClXCos[x] +CI eClxsin[x]))/((-i + CI) (i + CI)) 

Simplify[~xy2[x] + Cly2[x] == Sin[x]] 

Out [162]: True 

Both are valid solutions and can then be simplified further before we utilize them: 

In [1 63 ] " - Simplify [yl [x] ] 
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Out [i 65] : 

In[166] ": y2[x_] := 

e-Cl x (-2 + @Cl x (2 - 2Ci x + Cl 2 X 2 ) + Cl3yo) 
Out [i 63 ] : 

Cl 3 

e-Clx(-2 + eClx(2 - 2Clx + C12x 2) + C13yo) 
In[164].= yl[x_] := 

C13 
Simplify [y2 [x] ] 

e -clx(l + yo + Cl 2yo - eClxcos[x] + Cle clxSin[x]) 

1 +CI 2 

e -clx(l +yo +Cl 2yo - e clxcos[x] +Cle clxsin[x]) 

1 + Cl 2 

Finally, given a set of parameter  values for C1 and yo, we can Plot the two solutions simul- 
taneously, with solid for y l  and dashed for y2 to see how they behave with increasing x in a 
specific range: 

In[167]:= Cl = 1; 

yo = 10; 

Plot [ {yl [x], y2 [x] }, {x, 0, 10}, 

PlotStyle ~ { {Thickness [. 01 ], GrayLevel [. 5 ], 

Dashing[{0}]}, {Thickness[0.01], Dashing[ {0.05, 0.05}]}}, 

PlotLabel ~ {solid "yl [x] =", dashed "y2 [x] =" }, 

AxesStyle ~ {Thickness [ 0.01 ] }, 

AxesLabel ~ {x, "yn Ix] "} ] ; 

yn[x] 
151 

{yl [x] -  solid, y2 [x ] -  dashed} 

12.5 

10 

7.5 

5 

2.5 

2 4 - - - 6  -- 8 10 
X 
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We can see that the two solutions are in fact quite different in their behavior. For these parameter 
values the first is dominated by the quadratic term and the second by the Sin function. If we 
want to obtain a sense of parametric sensitivity, we can drop the value of C1 by 10 3 and then 
raise it by 10 2 and replot the graphs for these two cases: 

In[170]:= C1 = .1; 

yo = i0; 

Plot[{yl[x], y2[x]), {x, 0, 10}, 

PlotStyle ~ { {Thickness [. 01], GrayLevel [ .5], 

Dashing[{0}]}, {Thickness[0.01], Dashing[ {0.05, 0.05}]}}, 

PlotLabel ~ {solid "yl [x] =", dashed "y2 [x] ="}, 

AxesStyle ~ {Thickness [ 0.01] }, 

AxesLabel ~ {x, "yn Ix] "} ] ; 

yn[x] 

16 
{yl [x]- solid, y2[x]- dashed} 

14 

12 

10 

8 N 

2 4 ~ . . ~ ~ . 4 ~ 0  
X 

In[173]:= C1 = 10; 

yo = 10; 

Plot[{yl[x], y2[x]}, {x, O, 10}, 

PlotStyle ~ { {Thickness[ .01], GrayLevel [ .5], 

Dashing[{0}]}, {Thickness[0.01], Dashing[ {0.05, 0.05}]}}, 
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PlotLabel ~ { solid "yl [x] =", dashed "y2 [x] =" }, 

AxesStyle ~ {Thickness [ 0.01] }, 

Axe sLabe i ~ { x, "yn [ x ] "} ] ; 

yn[x] {yl [x]- solid, y2[x]- dashed} 

2 

1.5 

0.5 

2 4"" ~ 6 8 
In[176]-= Remove[y1, y2, yo, Cl] 

10 
X 

1.9 NDSolve 
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We turn now to NDSolve for the solution of differential equations. A good starting point would 
be to begin to solve the equations that we have already solved symbolically with DSolve. 
Instead of simply solving the equation we are going to name the solution. We will call it soln" 

In[177] "= Clear[Cl, yo, soln, y] 

In[178] .= yo - i0; 

C1 = I; 

soln = NDSolve[ 

{0x Y[X] + C1 y[x] == Sin[x], y[0] == yo}, 

y[x], {x, 0, 10)]; 

What we find is that the numerical solution is presented in the form of a tidy Interpolation 
function, which is good over the entire range of integration. This is much cleaner than having 
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a table or list of values echoed to the monitor. But to use the interpolated function we mus t  
assign it a function name  and then we can apply  it and explore the numerical  solution's  
behavior. To do this we use a c o m m a n d  structure that  we have util ized before; it looks like 

this: 

In[181]:= nyb[x__] := Evaluate [y [x] /. soln] 

What  this says in s imple terms is to assign to nyb[x] to the interpolat ing function y[x] found 
in the solution called soln. This function can now be plotted: 

In[182] := Plot[nyb[x], {x, 0, 10}, AxesStyle ~{Thickness[0.01])]; 

2.5 

1.5 

0.5 

-0 .5  
2 4 '% 6 J 8 10 

This looks identical to the plot we had before based upon  the analytical solution. If we need 
to have a table of values for the function we can obtain this as follows: 

In [i 83] : : Table [ {x, nyb [x] }, {x, O, 10, 

Out [183]//TableForm : 

0 i0. 

0.5 6.16951 

i. 4.01333 

1.5 2.80625 

2. 2.08375 

2.5 1.5617 

.5}] // TableForm 



54 Chapter  I A Pr imer  of Mathemat ica  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . .  , , , , I , , U U I I I I I I I I I I  I I [ . . . . . . . . . . . . . . . . .  ' . . . . .  

3. 1.08832 

3.5 0.609911 

4. 0.140736 

4.5 --0.266721 

5. --0.550543 

5.5 --0.664192 

6. --0.593765 

6.5 --0.364947 

7. --0.0388831 

7.5 0.30149 

8. 0.570951 

8.5 0.702385 

9. 0.66292 

9.5 0.461796 

i0. 0.148002 

It is clear that for relatively simple linear equations such as these DSolve and NDSolve 
duplicate each other. When the equations become nonlinear, however, it may not be possible 
to find an analytical solution. At that point NDSolve no longer merely duplicates but, rather, 
it supplants DSolve. For example, if in the last differential equation y[x] appears quadratically 
rather than linearly, DSolve will not return a solution: 

In [i 84] .- Clear[C1, yo] 

DSolve[{~xy[x] +Cly[x]2==Sin[x], y[0] ==yo}, y[x], x] 

Out[185]= DSolve[{Cl y[x]2 +y'[x] :=Sin[x], y[0] =-yo}, y[x], x] 

In contrast,  NDSolve  will do so and  it will do it well: 

In [186] : = Clear [Cl, yo] 

yo = I0; 

C1 = 0.01; 

y3 = NDSolve [ 

{~x Y[X] + C1 y[x]2 == Sin[x], y[0] == yo}, y[x], 
{x, 0, 10}]; 

ny3[x_] := Evaluate [y [x] /. y3] 

plny3 = Plot[ny3[x], {x, 0, I0}, 

AxesStyle ~ Thickness [0.01], 

PlotStyle ~ Thickness[0.01]] ; 
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10 

9 

8 

7 

2 4 ~6 /8 10 

For the sake of learning we can now go back and compare the solution of this nonlinear 

equation to the linear version. To do so numerically, we must  resolve the equation with the 

new value of C1 set to 0.01" 

In[217] :- Clear[C1, yo] 

yo = i0; 

Cl = 0.01; 

y2 = NDSolve [ 

{ax Y[x] + Cl y[x] == Sin[x], y[0] == yo}, 

y[x], {x, 0, 10}]; 

ny2[x__] := Evaluate [y [x] /. y2] 

plny2 = Plot[ny2[x], {x, 0, I0}, 

PlotRange ~{{0, i0}, 40, 12}}, 

AxesStyle ~ Thickness [ 0.01 ], 

PlotStyle ~ {GrayLevel[.5], Thickness[0.01], 

Dashing[{0.05, 0.05}]}, 

DisplayFunction ~ Identity] ; 

Show [plny3, plny2, DisplayFunction ~ $DisplayFunction, 

PlotLabel ~ {dashed "ny2=", solid "ny3="}, 

AxesLabel ~ {"x", "nyi [x] "} ] ; 
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nyi[x] 

11 

{ny2= dashed, ny3- solid} 

/ N 
/ \ 

1 0 ~  _ 
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2 4 ~ 8 10 
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1.10 Units Interconversion 
Mathematica also provides a special package for the interconversion of units of measure. To 
access this functionality of the software we need to load the package named Miscel laneous  
'Units'. We load this and other specialized packages from the Mathematica library with the 
following command: 

In [199] -= <<Miscellaneous 'Units' 

This allows us to begin doing units interconversion immediately. The following are some 
examples of this utility: 

In [200] "= Convert [5 Kilo Meter, Mile] 

Out [200]= 3.10686 Mile 

In[201] -= Convert[80 Year, Day] 

Convert [80 Year, Second] 

Out [201]= 29200 Day 

Out [202]: 2522880000 Second 
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In [203] -: Convert [2500 Kilo Joule, Calorie] 

Out [203]= 597115. Calorie 

In [204] �9 - Convert [25 Furlong/Fortnight, Mile/Houri 

Convert/25 Furlong/Fortnight, Mile/Houri // N 

25 Mile 
Out [204] = 

2688 Hour 

0.0093006 Mile 
Out [205] = 

Hour 

In [206] : = ConvertTemperature [19, Fahrenheit, Centigrade] 

ConvertTemperature [ 19, Fahrenheit, Rankine] 
ConvertTemperature [19, Fahrenheit, Kelvin] 

Out [206]= -7.22222 

Out [207]= 478.67 

Out [208]- 265. 928 

In [209] �9 - Convert [1 Atmosphere, Bar] 

Out [209]= 1.01325 Bar 

In [210 ] �9 - Convert [ 1 TonForce, Dyne] 

Out/210]- 9.96402 x 108 Dyne 

In [211] �9 - Convert [1 Ton, Gram] 

Out/211]= 1.01605 x 106 Gram 

In[212] : : Convert [25 Angstrom, Micron] 

Convert/25 Angstrom, Micron] // N 

Micron 
Out [212] : 

40O 

Out [213]= 0.0025 Micron 

This same util i ty will also al low us to specify a m e a s u r e m e n t  in an arbi t rary  sys tem and then 
convert  this to a specified system,  such as CGS,  MKS,  or SI: 

In [214] " = SI [350 Atmosphere] 
MKS[300 Feet] 
CGS[I Inch] 

3.546375xi07 Pascal 
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Out [215]= 91.44 Meter 

Out [216]= 2.54 Centimeter 

For more examples  of this kind and to see wha t  units are available to use in these intercon- 
versions click on the Master  Index in the Help Browser and Go To Miscellaneous 'Units ' .  

I . I  I S u m m a r y  
Now we have the basic tool kit that we need in order to get started wi th  Mathematica. As we 
go through the next eight chapters and before we get to the Worked Problems in Chapter  10, 
we will build upon  this foundat ion and add  to these tools. 



Single- 
Elementary 

Component Systems 

Elementary single-component systems are those that have just one chemical species or material 
involved in the process. Filling of a vessel is an example of this kind. The component  can be 
a solid liquid or gas. Regardless of the phase of the component,  the time dependence of the 
process is captured by the same statement of the conservation of mass within a well-defined 
region of space that we will refer to as the control volume. 

In this chapter we will apply the conservation of mass principle to a number  of different 
kinds of systems. While the systems are different, by the process of analysis they will each be 
reduced to their most common features and we will find that they are more the same than 
they are different. When we have completed this chapter, you will unders tand the concept of 
a control volume and the conservation of mass, and you will be able to write and solve total 
material balances for single-component systems. 

2. I The Conservation of Mass Principle 
and the Concept of a Control  Volume 

The conserved quantities that are of utmost  importance to a chemical engineer are mass, energy, 
and momentum.  It is the objective of this text to teach you how to utilize the conservation of 
mass in the analysis of units and processes that involve mass flow and transfer and chemical 
reaction. For each conserved quantity the principle is the same---conserved quantities are 
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neither created nor destroyed. For mass this principle holds for all cases except those involving 
nuclear reactions. In all other situations, the principle is never violated. So we can use it to the 
u tmost  as you will see in developing both t ime-dependent  and t ime- independent  descriptions 
of chemical processes. 

The principle is so seemingly obvious that you  may  wonder  how it can be so useful to 
us. How does knowing  that mass is neither created nor destroyed relate to a chemical process 
unit 's  behavior  or to anything else for that matter? The key is that in order to use this principle 
we must  translate it into mathematics so that we can work  with it and derive the precise and 
accurate descriptions that we need. 

If mass is neither created nor destroyed, that means if we seem to detect its apparent  
depletion or accrual in one region of space, this can only be the case if in some other region of 
space the same mass was either accruing or depleting. In other words,  we always inspect some 
region of space and draw conclusions based on our measurements  within that region. If mass 
is increasing within this space, it must  be coming from somewhere  else. Similarly, if we detect 
that mass is decreasing, then it is because it is leaving the region of our measurement .  We have 
everyday experiences that correspond to these statements.The level of water  in a glass left on 
a table at room temperature  will slowly decrease as the water  leaves via evaporation. Pulling 
the drain plug on a bathtub causes the water to flow out due to the force of gravity. When a 
stalk of corn grows all the mass that is accumulated in such complex forms within the plant 
had to be delivered to it from the soil and the sur rounding  atmosphere.  Each of these, the 
glass of water, the tub, and the corn plant, can be considered a "system," and as such we can 
measure the rate of change that occurs within them whether  it is through evaporative losses, 
flow, or growth. This is because each involves the t ransport  and transfer of mass from outside 
of the system to inside of it or vice versa. 

Another  example is that of a living cell. Nutr ients  are t ransported across the cellular 
membrane  and are utilized in metabolism. The by-products  of metabolism are t ransported 
out of the cell and also back across the membrane  to the surroundings.  The young  cell grows 
and increases in size and mass because the rate of by-product  flow out is less than the rate of 
nutrient  flow in. We know this because of the conservation of mass principle, and so we need 
no other information than to know that the cell grows in order to reach this conclusion. As 
the mass of the cell increases, the size of the cell also increases. If the cell is nearly spherical 
as is the case for some simple, single-cell organisms, then we can expect that its diameter  or 
radius is also increasing. Hence, the simplest measurement  to make to detect cell growth in 
an experiment may be to measure the cellular radii. When the cell matures,  we find that the 
rate of nutrient flow in is balanced by the rate out, which is why  the cell no longer is growing. 
This of course says nothing about the complex metabolic control mechanisms that lead to this 
situation, but  it does define maturi ty  explicitly in dynamical  terms. In this condition, when  the 
input rate is balanced by the output  rate, there is no net accumulation of mass in the cell. The 
cell biologist refers to this as the homeostatic state; the chemical engineer calls it the steady state. 

In these word  statements we find that which we need to formalize at this point. The 
conservation of mass is applied to a system and more specifically to a control volume, which 
is defined by a control surface that separates the control volume from its surroundings,  either 
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in actuality or abstractly. By defining the control volume and its boundaries, we know where 
"inside" is. The inside of the cell is that space within the membrane just as the inside of the 
glass lies within its regular walls. The same is true for the corn plant, even though it has a 
more complex geometry defining its control surface. Now we can begin to bring mathematical 
descriptions to bear on the problem, but  not until we have accurately stated the conservation 
of mass in terms of the control volume and its boundaries: 

The net rate of mass  accumulat ion wi th in  a control v o l u m e  is equal  to the rate at 
wh ich  mass  enters the control v o l u m e  by any process  m i n u s  the rate at w h i c h  it 
leaves  the control v o l u m e  by any process.  

The mathematics that proceeds from this is at once simple and elegant. Since we are discussing 
rates we will write the mathematical statement in terms of rates also-- the rate of change in 
mass within the control volume: 

dm[t] 
= Fhin - -  r h o u t  

dt 

dm[t] 
- the net rate of change in mass within the control volume, rate of accumulation; 

dt 
mass/ t ime;  

rhi. = the total rate of mass flow into the control volume by any means; mass / t ime;  

rhout = the total rate of mass flow out of the control volume by any means; mass / t ime.  

This is the key unifying principle that we will use throughout  this book. It will be all we need 
in order to analyze and model a wide array of elementary single-component systems and it is 
the foundation upon which everything else we do with more complex systems will be built. 
The best way to illustrate how to use this mathematical statement of conservation of mass is 
through examples. 

Filling a Vessel with a Pelletized Solid: Conservation of Mass 
and the Constitutive Relationship 
Many products come in the form of a powdered solid. The solid once produced is stored in 
a container. It may be a barrel, a bag, or a can depending on the volume. Powdered milk is a 
good example; so is lawn fertilizer. Catalytic solids are another. Catalysts promote the rate of 
chemical reaction and are used throughout  the chemical and petroleum industries; they are 
usually small solid pellets of uniform size and shape. Catalysts are not consumed in the course 
of the reaction they promote. Nevertheless, catalysts do eventually need to be replaced. This 
is either because they were poisoned or their solid structures have become clogged with high 
molecular weight molecules that prevent access to the active sites. At the end of its lifetime, 
then, the catalyst must  be replaced. The spent catalyst is removed from the reactor vessel, 
the reactor is cleaned, and the space left open is ready for a charge of fresh solid catalyst. 
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The fresh catalyst will be delivered to the top of the reactor by a conveyor belt and dropped  in. 
The process will proceed until the volume of the reactor vessel has been filled to the requisite 
level as is shown in Figure 1. 

Reactors are often large in volume and cylindrical in shape. We will represent the reactor 
then as a simple cylindrical volume. The height of the vessel is h and its diameter  is d. The 
overall volume to be filled by the catalyst is given as: 

V = =  rrd2h 

Catalyst is being delivered by conveyor belt at a constant mass flow rate. The question we 
would  like to be able to answer is: How much catalyst mass is in the reactor vessel at any 
time? The reason we care is that we will be paying for the catalyst on a per pound  basis. If we 
look into the reactor at any time t, we may  be able to measure the level to which the reactor is 
filled, and from that level measurement  we could in principle compute  the mass of catalyst if 
we had a density for the material. Remember  though that this is solid and it packs irregularly 
into the reactor, as we can see from Figure 1. We can at best get an average value for the densi ty 
and only after we have done an experiment in which the catalyst was carefully packed into a 
known volume and massed in order to find its so-called compacted bulk density. 
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Therefore, if we know the compacted bulk density, then it is possible to compute  the mass 
in the bed using the mathematical  statement for the conservation of mass. In this case the 
reactor and its physical dimensions define the control volume. The rate of catalyst delivery 
is a constant that we will call ~hi,. The rate of mass flow out of the reactor is zero, that is, 
d%ut = 0. Therefore we have: 

dmIt] 

dt 
o 

- -  m i n  

This says that the rate of accumulation of catalyst in the reactor is just equal to the rate of 
delivery, which is exactly what  we would  have said based on common sense. An equat ion of 
this kind is the simplest type of differential equation. It is separable and we integrate from 
t - 0 to t and from m[0] - 0 to m[t]. The integrals that result from the separation of variables 
are shown in what  follows. On the r ight-hand side we use the infix form "1. m[0] -~ 0" to tell 
Mathematica to use a lower-bound value of zero for m[0]: 

In [I ] �9 = [ /m[t] 
Jm[O] 

o t ~m[t] == mindt/.m[O] ~ 0 

Out[l]: m[t] == trnin 

We find that the mass of catalyst in the reactor is a simple linear function of time so long as 
the mass flow rate of catalyst via the conveyor remains constant. The dimensions o n  thin are 
mass t ime -1, so we see that the resultant equation is dimensionally consistent. 

In [2]': mass == (time) mass time -1 

Out [2]: True 

We can put  some numbers  into this result. Suppose that the reactor is fairly large in volume: it 
is 60 ft high and 20 ft in diameter. The catalyst delivery rate is 100 lb per hr. The compacted bulk 
density of the catalyst is 10 kg m 3. First, we want  to know the mass of catalyst in ki lograms in 
the reactor at any time t. We would  also like to know to what  level the reactor will be filled at 
time t, if the catalyst is packing in at its full compacted bulk density (bd). (As stated earlier this 
value can be obtained easily in the laboratory by simply filling a know volume with catalyst, 
being careful to leave no voids in the packing and then weighing the sample.) If we compare 
the actual volume in the bed to that which we calculate, then any difference between the two 
values will arise from the catalyst not packing at its bd. 

To do this we will load a helpful package called <<Miscel laneous  'Uni ts '  fromMathematica. 
We also want  graphs of the predicted catalyst mass as function of time, the theoretical level 
of catalytst in the reactor as a function of time, and the actual level that has been measured 
in the reactor at a few times during the loading process. Finally, we can compute  the catalyst 
cost in $ flowing into the reactor volume per unit  time. Here we calculate the mass flow in per 
unit time in metric units as well as the volume and cross-sectional area of the reactor. 
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In [3] -= << Miscellaneous "Units' 

In [ 4 ] �9 = min == NumberForm [ Convert [ 1000 Pound / Hour, 

Kilogram/Minute], 2] 

7.6 Kilogram 
Out [4 ] - min :: 

Minute 

In[5] "= Hr.actor =- 

NumberForm[Convert[60 Feet, Meter], 3] 

Vreacto r == 
20 Feet 

NumberForm[Convert[~( )2 60 Feet, Meter 3] , 3] 
2 

20 Feet 2 
Areactor == NumberForm[Convert [~ ( - - )  , Meter 2 ], 3] 

2 

Out [5] = Hreactor 18.3 Meter 

Out[6]= Vreactor :: 534. Meter 3 

Out [7] : Areactor -- 29.2 Meter 2 

Next we should compute the time it would take to fill the reactor if the catalyst were to pack 
in at its r This time will be called tma• We find this time by setting the catalyst volume 
equal to the volume of the reactor in the mass balance and rearranging: 

In [8] : = Vreactor = 534.Meter 3 

7.6 Kilogram 
rain = 

Minute 

bd = I0 Kilogram/Meter3; 

mint 
Vcat[t--] := 

bd 

Solve [Vreacto r == Vca t [tmx] , tmx] 

Out [8]= 534. Meter 3 

Out [12]= { {tmx ~ 702. 632 Minute} } 

In [13] �9 = N[Convert [702.6 Minute, Hour] ] 

In[14] .= NumberForm [Convert [%, Day], 3] 

Out [13]- ii.71 Hour 

Out [ 14 ] //NumberForm: 

0. 488 Day 

The time required to fill the reactor, if the catalyst packs in at its bd, is about five days or 117 
hours. If the packing is at some bed density less than the bd, then the reactor volume will 
be apparently filled faster, but the catalyst load in mass will be below its design level due to 
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voids in the bed. We will see later that if this were to go unnoticed and unrepaired, then the 
production rate for the reactor will fall below its design level because it does not contain the 
design mass of catalyst. Making the catalyst bed reach bd is important.  The mass of catalyst 
that should be in the bed at tma• and bd, and the theoretical mass of catalyst in the bed at any 

time are found as follows: 

In[15] "= mcat [t_] := mint 

tmxx = 702.6 Minute; 

mcat [ tmx] 

Vcat [ tmx] 

7.6 Kilogram tmx 
Out [i 7] : 

Minute 

0.76Meter 3 tmx 
Out [18] = 

Minute 

At constant bd the catalyst will occupy the reactor fully and will have a total mass of 5340 kg. 
According to the model this mass will accumulate linearly in time: 

In[19] "= SetOptions[{Plot, ListPlot}, AxesStyle ~ {Thickness[0.01]}, 

PlotStyle ~ {PointSize[0.02], Thickness[0.006]}, 

DefaultFont ~ {"Helvetica", 17} ] ; 

In[20] := tf = 702.6; 
Minute 

plmcat = Plot[(mca t[t] ), {t, O, tf}, 
Kilogram 

AxesLabel ~ {"t/Min", "Design meat It]/Kg"}, 

PlotStyle ~ GrayLevel [. 5 ] ] ; 

Design mcat[t]/Kg 

5000 
4000 
3000 
2000 
1000 

/ / "  

j z 

I ~  I I I I I I I 

100 200 300 400 500 600 700 
t/Min 
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The volume and level of the catalyst bed will also vary linearly in time so long as the density 
remains constant: 

In [22]'= tf = 702.6; 
o 

mint 20 Feet 
levcat[t_] := (Convert[Ir(~)2, Meter2])-1 

bd 2 
plvolcat = Plot[(Vcat[t]MinuteMeter -3), {t, 0, 7026}, 

PlotStyle ~ {Thickness[0.006], Dashing[{0.05, 0.05}]}, 

AxesLabel ~ {"t/Min", "Design Vcat [t]/m 3'' } ] ; 

pllevelcat = Plot [ (levcat It] Minute Meter -1) , 

{t, 0, 3.5 tf}, PlotStyle ~ {Thickness[0.007], 
Dashing [ {0.15, 0.05}] }, 

AxesLabel ~ {"t/Min", "Design Levelcat It]/m 3'' }, 

Epilog ~ Line[{{0, 18.4}, {3.5tf, 18.4}}]]; 

D e s i g n  Vcat[t]/m 3 

5 0 0 0  

4 0 0 0  

3 0 0 0  

2 0 0 0  

1 0 0 0  / 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

. / .  , , , . , , , t / M i n  
1 0 0 0  2 0 0 0  3 0 0 0  4 0 0 0  5 0 0 0  6 0 0 0 7 0 0 0  
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Design Levelcat[t]/m 3 

60 
50 
40 
30 
20 
10 

/ 
/ 

/ 
/ 

/ 
/ 

. . . . .  t/Min 
500 1000 1500 2000 2500 

Now we will look at some actual data that accumula ted  as a function of t ime as the unit  was  
being filled. We can enter this as follows and we name the data set " levdata":  

In[26] := levdata = {{0, "0."}, {I00, "2.05"}, {200, "3.55"}, 
{300, "4.79"}, {400, "5.87"}, {500, "6.85"}, {600,"7.74"}, 
{700, "8.57"}, {800, "9.34"}, {900, "i0.I"}, 
{i000, "10.8"}, {ii00, "11.4"}, {1200, "12.1"}, 
{1300, "12.7"}, {1400, "13.3"}, {1500, "13.8"}, 
{1600, "14.4"}, {1700, "14.9"}, {1800, "15.4"}, 
{1900, "16."}, {2000, "16.4"}, {2100, "16.9"}, 
{2200, "17.4"}, {2300, "17.9"}, {2400, "18.3"}}; 

It makes sense to try fitting this data to a line since that is exactly wha t  our model  suggests,  
that is, that  we should have linear dependence  upon  time. We can do this by using the com- 
mand  Fit. We will fit the data to a line going through the point  {0, 0} and also to a line wi th  
a nonzero intercept. We will also plot both of these results. We shall suppress  the plots wi th  
Disp layFunc t ion  -~ Iden t i ty  until  we use the Show command ,  when  we will use Disp lay-  
Funct ion ~ $Disp layFunc t ion  to render the graphic. To plot the actual data we use ListPlot  
and we suppress  this also, and in the same way, until  we use the Show statement.  With Show 
we combine the two fitted function plots, the plot of level versus t ime from the analysis, and 
the data. The actual final level is the added  horizontal  line. We int roduced this wi th  the com- 
mand  Epilog -* Line[{{ 0,18.4}, {3tf, 18.4}} and we " turned  on" each of these for display 
with the c o m m a n d  Disp layFunc t ion  -~ $DisplayFunct ion:  
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In[27]:= tf = 720; 

Fit[levdata, {t), t] 

ftpllevdat = Plot[%, {t, 0, 3.5 tf}, 

PlotStyle ~ {GrayLevel [. 5], Thickness [0. 006], 

Dashing [ {0.05, 0.03}]}, 

DisplayFunction ~ Identity] ; 

Fit[levdata, {I, t}, t] 

ftpllevdat2 = Plot[%, {t, 0 , 3.5 tf}, 

PlotStyle ~ {GrayLevel [. 7], Thickness [0. 006], 

Dashing[{0.2, 0.1}]}, 

DisplayFunction ~ Identity] ; 

pllevdat = ListPlot [levdata, DisplayFunction ~Identity] ; 

Show[{ftpllevdat, ftpllevdat2, pllevdat, pllevelcat}, 

DisplayFunction ~ $DisplayFunction, 

Epilogs{Thickness[.01], Line[{{0, 18.4}, 

{3.5tf, 18.4}}]}, 

FrameLabel ~ {"t/min", "Level/m"}, 

PlotRange ~{{0, 3.5tf}, {0, 20}}, 

Frame ~ True, GridLines ~Automatic] ; 

Out [28]: 0.00871916t 

Out [30] : 2. 86214 + O. 00696683t 

20 / . . . . .  i .  L<,> ~ , 
17 .5  / , ~ o  �9 - 

15 I 
- oo> ,o ., ; 
~ 7 . 5  / 

5 / .... " 
2 . 5  . . . .  

5 0 0  1 0 0 0  1 5 0 0  2 0 0 0  2 5 0 0  
t /min 

J 
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The black dashed line is the result of the original model. We see that it crosses the fill line 
around 700 min. This is obviously a gross underpredict ion of the real time required to fill 
the unit, a time on the order  of 2400 min. Now we fitted the data with two other lines, one 
with an intercept forced through zero (dark gray dashed line) and one in which the intercept 
was allowed to float (light gray dashed lines). Both do a better job of predicting the actual 
time to filling. Returning to the model projected line (black dashed lines): since it crosses 
the maximum level line at a time (~700 min) that is much less than the time that it actually 
took to fill the reactor, we must  begin to question the physical premise that the catalyst bed 
remained at constant density, that is, bd, throughout  the filling process. Constant density 
predicts that the reactor would be full of catalyst much too soon. As we know that the mass 
flow rate in is a constant, then the mass of catalyst in the reactor would be only one-third of 
the design level, which if left undetected (unlikely) would have disastrous consequences for 
the operability and economics of the process. When we look at the dark gray dashed line, we 
find that the prediction is much better as is than made with the light gray dashed line, but  
neither of these results is based upon a physical premise, and in fact the latter is unphysical  
in that the initial level in the unit was zero and yet its intercept is nonzero. Furthermore,  both 
fitted functions under-predict and over-predict the level at different times, so neither would 
be useful for intermediate time predictions. Finally, neither the fitted model nor the physically 
based model captures the nonlinearity of the real data. Thus, we have a model based on 
physical reasoning that fits very poorly and two based on nonphysical reasoning that at best 
fit modestly. Clearly, we need to put  more effort into this analysis. 

What we need to realize is that as the catalyst level increases, more mass is present to 
bear down upon the underlying catalyst with more force. This causes the bed to compress. 
As the level rises the density at the bottom of the bed increases. With time and higher levels 
this occurs throughout  the whole of the bed. Even though the density begins at bd then, it 
actually rises to a value above bd, especially at the bottom of the bed. The higher value at the 
bottom of the bed gives rise to an average across the bed that is higher than bd measured in 

the laboratory. 
To handle this we can physically reason that the density of the bed must  be a function of 

the level of filling of the bed. We need to bring this idea into the analysis quantitatively so 
that we might better predict the level as a function of time in the reactor. We begin with the 

statement of conservation of mass in the reactor: 

dm[t] 

dt 
= l~ in  

We could integrate this expression and then convert it to the volume and level of catalyst by 
use of the bd but this assumes that the density in the bed always remained at bd, which we 
now realize to be incorrect. The next problem then is to find a way to bring this change in bed 
density into the original analysis. To do this we express the mass of catalyst as the product  of the 
volume at any time and the bulk density, which in turn could be related to the level at any time: 

m[t] - bd V[t] - bd areactor Lev[t] 
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However ,  as we now know, the bulk density bd  is not  a constant. In fact, the average bulk  
densi ty in the bed is a function of the mass of the bed and therefore time, giving at this point  
the following equat ion for the conservation of mass: 

dm[t] d[bd[t] Areactor lev[t]] 

dt dt 

d [ d b [ t ]  lev[t]]  rhin 

dt Areactor 

o 

"~ min 

The equation as wri t ten cannot be solved. To solve it we need a relationship be tween  the 
bulk density and the level of filling in the reactor. As we do not have a source for this we 
make an educated guess. It would  be intuitive to assume that the bulk density at any level is 
proport ional  to the level: 

bd[lev[t]] - k lev[t] 

However,  this would  be "unphysical"  in that it would  suggest  zero bulk density at zero level. 
We can improve matters  by letting the original bulk densi ty vary linearly with level as follows: 

bd[lev[t]] - bdo + k lev[t] 

This relationship has the benefit of providing a more physical result at zero level, but  it suffers 
from the fact that the density continues to grow in an u n b o u n d e d  fashion with increasing level. 
We can instead imagine that the bulk density will increase with level or crushing force but  that 
the compressive forces required in order for it to reach a m a x i m u m  value are not attainable, 
since the expression is not bounded  from above. We can substitute this relationship into the 
differential equation and then solve for the level as a new function of time: 

d[bd[t] lev[t]] rhin 

dt Areactor 

bd[lev[t]] = k lev[t] + bdo 

d[(klev[t] + bdo)lev[t]] 
o 

min 

d t areactor 
d[k lev [t] 2 + bdo lev[t]] rhin 

d t Areactor 
k d lev[t] 2 d lev[t] l'nin 

+ b d o ~  = 
dt dt Areactor 

In fact, for the sake of solving this equation, Mathematica is perfectly capable of utilizing the 
equat ion in the form just after substi tut ion of the linear equat ion for the bulk density. We see 



2.1 The Conservation of Mass Principle 
. . . . . . . . . . . . . . . . . . . . .  J _ _ L .  _ I I L _  _ J L _  . . . . . . .  ]!!1 " l l l l l l  ._ I I  

71 

that this is the case in the computa t ion  that follows: 

In [ 34 ] : = Remove [ "G1 oba i �9 *" ] 
o 
min 

DSolve[4@t((bdo + klev[t])lev[t])== 
Areactor 

levi0] == 0}, lev[t],t] // FullSimplify 

Out[35]= {{lev[t] ~- 

bdo + ~bd~ ....... ~- 4ktmin 
~Areactor 

! 
2k 

bdo + ~bd~ ....... ~- 4ktmin 

{lev[t] ~- JA ....... }} 
2k 

Two solutions result from this equation because the level appears quadratically in the time 
derivative. The first solution will provide only a negative value of the level, so we mus t  utilize 
the second solution. We can clean it up a bit algebraically: 

bdo 

2k 

bdo 

v/bdo 2Areactor q- 4 ktrhin 

2k~/Areactor 

v/bdo2Areactor q- 4 ktrhin 

2k v/4k2Areactor 

bdo / b d o  2 trhin 

- 2---k-+V 4k2 + kAreactor 

This expression is one that can be tested against the experimental  data. The rate of mass flow 
in, mi=, is constant as is the reactor cross-sectional area, Areactor. Therefore, the only u n k n o w n  
is the value of k, the proport ionali ty constant. We can try to fit this equation to the data" 

In[36]:= levdata = 4{0, "0."}, 4100, "2.05"}, 4200, "3.55"}, 
4300, "4.79"}, {400, "5.87"}, 4500, "6.85"}, 
{600, "7.74"}, {700, "8.57"}, 4800, "9.34"}, 
4900, "10.1"}, (1000, "10.8"}, (1100, "11.4"), 
{1200, "12.1"}, {1300, "12.7"}, 41400, "13.3"}, 
41500, "13.8"} , 41600, "14.4"} , {1700, "14.9"}, 
{1800, "15.4"}, {1900, "16."}, {2000, "16.4"}, 
{2100, "16.9"}, {2200, "17.4"}, {2300, "17.9"}, 

42400, "18.3"}}; 

To do so we will load the package Statistics'NonLinearFit ' .  Then we can fit this to the data 
by recognizing that there is only one parameter  which we do not know and that is the value 
of k. The command  Nonl inearFi t  will do this for us. (One can learn all about  this or any 
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other command by inputting for example ??NonlinearFit.) The syntax is straightforward: We 
provide the set of data by name, the expression or function to be fit to the data, the name of the 
independent  variable, and the name of the parameter. There are many different control values 
we can set, including the method of minimization; in this case we have moved the number  of 
iterations allowed from the default value of 30 upto 100. 

In[37].= << Statistics'NonlinearFit' 

In[38]'= bdo = 10; 

rreacto r = 10ft 
ft 

2 

Areacto r --" ~rreactor 

min ---- 7.6; 

min 
Areactor 

12 in 2.54 cm 

in 

NonlinearFit [ levdata, 

Im 1 

100 cm m 

MaxIterations ~ 100] 

bdo /bdo2 tmin 

2k +V 4k2 +kAreact~ 
�9 t, (k}, 

Out [40]- 29. 1864 

Out [42]: 0.260396 

Out[43]--3.79651 + ~14.4135 + 0.197719t 

According to the fitting routine, the fitted function should be - 3 . 7 9 6 5 1 +  
~/14. 4135+0 .  197719 t .  Clearly the value of k must  be computed from the best fit param- 
eters. We have magnitudes for ~ o  and for ~ and we can solve for k with each to be sure 
that the same value results. 

bdo  
In[44]-: NSolve[-- == 3.79, k] 

2k 

bdo 2 
NSolve[~ == 14.4, k] 

4k 2 

Out [44]- {{k ~ 1.31926}} 

Out[45]- {{k ~ 1.31762}, {k -~ -1.31762}} 

Now we test this expression for its appearance of fit against the data set. We do so by creating 
the function lev [t] with it, computing the level as a function of time, and then plotting this 
with the actual data in order to visualize the fit. 

In[46] :: bdo = 10; 
12 in 2.54 cm lm 1 

rreactor = i0 ft -- ; 
ft in I00 cm m 

2 
Areactor = 7rrreacto r 
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12 in 2.54cm lm 1 
Hreactor = 60 ft ~ ~ - ; 

ft in i00 cmm 

12 in 2.54cm Im 1 
Vreacto r = Areacto r 60 ft --; 

ft in i00 cm m 
min = 7.6; 

k = 1.32; 

tf = 820; 

bdo /bdo 2 tmin 
levcat NL [t ] := + 

�9 -- 2k V ~k2 + k Areacto r 

i eVcat, NL [ t ] 

datpl = ListPlot [levdata, Epilog ~ {Thickness [0.006], 

Line[{{0, 18.2}, {3tf, 18.2}}]}, 

PlotStyle ~ PointSize[0.02], DisplayFunction ~ Identity, 

AxesLabel ~ {"t/min", "h[t]/m"}] ; 

plfitnl = Piot[levcat,NL[t], {t, 0, 3 tf}, 

DisplayFunction ~ Identity] ; 

Show[ {datpl, plfitnl}, DisplayFunction ~ $DisplayFunction] ; 

Out [48]- 29. 1864 

Out[55]:-3.78788 + ~/i4.348 + 0.197269 t 

h[t]/m 
! 

17.5 
15 

12.5 
10 

7.5 
5 

2.5 
t/min 

500 1000 1500 2000 2500 

The model parameter has a value of 1.32 and the time that would be required to reach full 
capacity with this new model can be found by solving the following equation: 
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In[59]:= bdo = 10; 
12 in 2.54cm 

rreactor = 1 0 f t ~  
ft in 

2 
Areactor = ~Trreactor //N 

12 in 2.54cm 
Hreacto r = 60 ft 

ft in 

Vreactor = Areactor Hreactor 

min = 7.6 

k = 1.32 

im 1 

100cm m 

im 1 

100cm m 

In[59]'- t/. Flatten[NSolve[18.3 == 

%160 

%124 

bdo /bdo 2 tmin 
+ + , t]] 

2k V 4k2 kAreact~ 

We find that the value predicted is 2400 min or 40 hr, which is much  closer than our estimate 
of 78 hr based on the constant bed density. 

Filling a Cylindrical Tank 
Most often the mass flow that we are concerned with will involve a liquid. When a liquid is 
flowing we typically measure  its flow rate in dimensions of volume per unit  time. We consider 
next the flow of a liquid into a tank (another simple s ingle-component  problem), shown in 
Figure 2. 

The control volume is the tank itself. This is because the liquid flowing into the tank is 
homogeneous ,  meaning that wherever  we make a measurement  of composit ion,  density, or 
temperature  it is everywhere  the same in the liquid. The differential s ta tement  of the conser- 
vation of mass is the same as it was in the first case: 

din[t] 

dt 
o 

min 

Now, however,  the expression for the mass flow rate into the tank is given by the product  of 
the density of the liquid O and the volumetric flow rate q: 

dm(t) 

dt 
= pq 

The mass accumulated within the control volume is the product  of the densi ty of the liquid, 
the cross-sectional area of the tank Ac, and the height  of the liquid in the tank at any time t, h[t]. 
Replacing this in the time derivative and rearranging we find" 

dh(t) q 

dt Ac 
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Mass Flow In 

F i g u r e  2 

This equation states that the rate of change of liquid level in the tank is a constant. From this 
we know then that the change in level mus t  be a linear function of time: 

In [59] -: /0 h[t] 0 t q ~t dh[t] == Ac 

Out[59]= h[t] -- 
qt 

Ac 

Here too we can do the integration trivially because the flow rate into the tank is a constant.  
Notice also that the units are consistent in the final expression: 

Length 3 1 
In[60]-= Length == time 

time Length 2 

Out [60]= True 

If we take the cross-sectional area of the tank to be 10 m 2 and the flow rate to be 0.25 m 3 min -1, 
then a plot of the level of liquid versus t ime is as follows: 

In[61] ": <<Miscellaneous'Units" 
0.25 Meter 3 Minute -1 Minute 

Plot[( ) ~ t ,  {t, 0, 50}, 
10 Meter 2 Meter 

AxesLabel ~ {"t/rain", "h[t]/m"}] ; 
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h[tl/m 
1.2 

0.8 
0.6 
0.4 
0.2 

, , ,,,,, , , , t / m i n  
1 0  2 0  3 0  4 0  5 0  

If the aspect ratio of the tank is 4, that is, the ratio of the height to the diameter, then after how 
many  minutes will it overflow under  these conditions? We know the cross-sectional area so 
we can find the diameter  of the tank because we know it is one-fourth of its height. Given this 

height we can solve for tcritical: 

d 2 
In[63]'- Solve[10 == N[~-l,d] 

Out[63]= {{d ~-3.56825}, {d ~ 3.56825}} 

.25 Meter 3 Minute -1 
In [ 64 ] : = Solve [ 4" 3.57 Meter == tcritical �9 

10 Meter 2 

tcritical ] 

Out[64]: { {tcritical ~ 571.2 Minute} } 

Thus the tank will begin to overflow after 571 min. H o w  would  we write the differential mass 
balance for that situation? We would  do it just as we have before, except that now we would  
have the second term on the r ight-hand side" 

dm[t] 

dt 
= t h i n  - -  r h o u  t 

If we think about  this, the answer is immediately obv ious - - the  r ight-hand side is identically 
zero. This means that the net rate of change of level in the tank is also identically zero, meaning  
that it no longer can rise or fall, but  stays at a steady-state value. Thus the overall behavior  of 
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the unattended tank under  these conditions is simply this: 

0.25 Meter 3 Minute -1 Minute 
In [65] := a = Plot[( ) ~ t ,  

i0 Meter 2 Meter 
{t, 0, 571.2}, AxesLabel ~ {"t/min", "h[t]/m"}, 

PlotStyle ~ {Thickness[0.006], 

Dashing[{0.025, 0.025}]}, 

DisplayFunction ~ Identity] ; 

b = Graphics [ {Dashing [ {0 . 025, 0.025}], 

{Thickness[0.006], Line[{{571.2, 14.28}, 

{i000, 14.28}}]}}]; 

Show[a, b, DisplayFunction ~ $DisplayFunction, 

PlotLabel ~ " Onset of Steady State"] ; 

h[t]/m 

12 

10 
8 

I / 
6 / 
4 z / 
2 ~ / /  

/ 

/ 
/ 

/ 

Onset of Steady State 
m m m m m m m m m 

/ 
/ 

/ 
/ 

/ 

t/min 
200 400 600 800 1000 

We considered time-independent flow rates into the system, but what if we had to handle a 
situation in which the flow rates were time dependent? How would we handle the analysis 
of that situation? 

Pressurizing an Initially Evacuated Tank with an Ideal Gas 
Gas flows are common and offer another opportunity for us to apply this new tool we have 
found in the total mass balance. Gases can be simple or complex. By simple we mean that 
in some cases the atoms or molecules of which the gas is composed do not interact except at 
the point of collision. They behave as if they were nanoscopic ball bearings racing around, 
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colliding with one another and the walls of the vessel in which they are contained. Furthermore,  
even as we increase their pressure within the vessel by increasing their number  per  unit 
volume at constant temperature or by raising temperature at constant number  per unit volume, 
they continue to behave in the same way. We refer to gases of this kind as "ideal" and their 
characteristics are those of "hard-spheres." Most gases do not behave ideally. If their properties 
are nearly ideal at low pressure, we find that they deviate from ideality at higher pressure. The 
reason for this is that these molecules exhibit truly molecular behavior in all its rich detail and 
complexity. When they collide they do not do so as if they were merely billiard balls bouncing 
off one another. Instead they are sticky or they are repulsive. They have size and they have 
shape. Some are polar; others are nonpolar. It is these properties that give rise to much subtler 
and richer effects than are observed in "real" gases and which the hard sphere model  could 
never predict. Nonetheless, the ideal gas is a good model and one from which we can learn a 
great deal. We can also use it to advantage here, because going into the theory of real gases is 
a subject in and of itself. 

Recall that an ideal gas follows a very simple equation of state: 

P V -  nRT 

where P is the pressure, V the volume of the vessel, n the number  of moles of the gas, R the gas 
constant, and T the absolute temperature. With this we can calculate the pressure in a vessel 
of volume V as a function of pressure, the volume of a gas at fixed pressure and temperature,  
or the temperature at fixed pressure and volume by simple rearrangements: 

n R T  
P =  

V 

n R T  
V =  

P 

P V  
T -  

nR 

In addition, we can compute the concentration of the ideal gas in moles per unit volume or 
its density in mass per unit volume: 

n P 
C ~ ~ 

V RT 

n M W  
f i )  ~ - -  

V 

P M W  

RT 

where MW refers to the molecular weight of the gas. This provides the link we need between 
the gas phase material and the overall mass balance. Let's see how it can work. 
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Gases and liquids are both fluid phases, but they differ in density. For example, the density 
of water at ambient conditions is ~1 g per cm 3. The vapor pressure of water in equilibrium 
with the liquid is 0.43 psia at 75~ (Psia stands for pounds  per square inch absolute- -meaning 
above vacuum.) We can compute the concentration of water in the liquid phase and compare 
this to that of the equilibrium vapor phase, and then we can compute the density of the 
equilibrium vapor phase and compare that to the liquid density. This way we can have a 
better sense of the magnitudes of these quantities and by how much they differ. We might call 
this having a "physical feel" for the numbers. 

In [68] �9 : << Miscellaneous 'Units' 

In[69] .- CncH2OLiq == N[ 
GramMole ( 1000 Centimeter 3 ) 

Centimeter 3 (18Gram) Liter 

CncH2OEqVap == 

N[0.43 psia Atmosphere] 
14.7 psia 

.08205 (Liter Atmosphere) ConvertTemperature[73, Fahrenheit, Kelvin] 
Mole Kelvin 

DensH2OEqVap == 

N[0.43 psia14.7 Atmospherepsia ] 

.08205(LiterAtmosphere) ConvertTemperature[73, Fahrenheit, Kelvin] 
Mole Kelvin 

18 Gram 1 Liter 

Mole 1000 Centimeter 3 

Out[69]- CncH2OLiq :: 
55. 5556 Mole 

Liter 

Out [70]- CncH2OEqVap -- 
0. 00120472 Mole 

Liter 

Out[71]- DensH2OEqVap :: 
0. 000021685 Gram 

Centimeter 3 

The concentration of water in liquid water is on the order of 55 mol per L. The concentration 
of water in the vapor that is in equilibrium with the liquid is less than 1 x 10 -3 mol per L. 
From this we see that at ambient conditions the gas phase is on the order of three to four 
orders of magni tude less concentrated than the liquid. The density of the gas makes this even 
clearer. 

A common operation in a pilot plant or laboratory, as shown in Figure 3, is the pressuriza- 
tion of a batch reaction vessel with a gas such as hydrogen. A batch reactor is one that does not 
have flow into or out of it during reaction. It does have to be charged with reactants prior to 
operation. We can consider this process to be one that is amenable to the techniques we have 
at this point for analysis. We will assume that the gas remains ideal throughout  the pressuriza- 
tion, not too bad an approximation for a gas like hydrogen. We will see that once we account for 
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Volumetric Flow Meter 

Valve 

o 

min, ef, qf 

@ 

High-Pressure Batch 
Reactor Vessel 

P(t), m(t) 

Figure 3 

the gaseous nature of this fluid, this problem looks like that of filling a tank with liquid phase 
fluid. 

The source of the gas is a large-volume vessel at high pressure. We assume that the whole 
system remains i so thermal~ tha t  is, at constant temperature throughout  the procedure. This 
vessel must  be at a pressure higher than or equal to the pressure we need to attain in the reactor. 
The pressure upstream of the valve is a constant and just after the valve location and into the 
reactor the pressure is time dependent.  The reaction vessel is initially evacuated so that only 
the pure gas will be present in the gas phase. Opening the valve allows one to control the flow 
of gas into the vessel. By monitoring the pressure gauge the flow can be stopped when the 
proper pressure has been attained. The rise in pressure at the reactor gauge as a function of 
time is also a measure of the mass flow of gas into the reactor vessel. Alternatively, if we know 
the mass flow or the volumetric flow and the pressure upstream of the valve, then we can 
predict the time required to reach a set pressure in vessel give its volume and temperature. 
We can consider the latter situation first. 

The overall material balance for the process of pressurizing the reactor vessel is: 

dm[t] o 

- ~  m i n  
dt 
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The mass accumulation of gas in the reactor is given by: 

dm(t) d I P M W v I  V M W d P  

dt =d- t  R T  = RT dt 

The right-hand side is given as the product  of the feed gas density and the volumetric flow rate: 

PfMW o 

m ~ n - - P f q f -  RT qf 

The overall equation becomes: 

VMW dP PfMW 
= ~ q f  

RT dt RT 

dP Pf 
dt = v-qf 

The final equation tells us that the rate of pressure rise in the vessel will be a constant equal 
to the product of the ratio of the feed gas pressure to the vessel volume and the volumet- 
ric flowrate of the feed gas. (Assuming that the volume of the line leading from the valve 
to the vessel is negligible.) Therefore, we can see immediately that the pressure rise will be 
linear: 

P [ t ]=  ( ~ ) t  

The linear rise in pressure is nearly the same as the linear rise in liquid level in the filling tank. 
In the case of the liquid level rise in the tank we found that it would rise until it reached the 
ultimate level of the tank and then it would  spill over. Yet, the equation we had derived did 
not demonstrate this. We had to analyze it in a second regime to find this out. In this case we 
see a similar feature of the solution: namely, it states that the pressure will rise to an infinite 
value with infinite time. This is just the same as the problem of the finite tank height. Here 
there is a finite pressure beyond which the vessel pressure may not rise. Thus the equation is 
only good up to that point and we might be right to suspect that as the vessel pressure rises to 
come close to the feed gas pressure the predictions we make using this equation may become 
inaccurate. A deeper level of analysis would be required to address this problem. The other 
way that this procedure may be done is to make measurements of volumetric flow rates for 
different valve settings. By measuring the pressure as a function of time in a ballast vessel we 
could calibrate the valve. For example, suppose we have the following set of data of pressure 
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(psia) as a function of time for vessel that is 300 L, and an ups t ream pressure of 500 psia: 

t/min P/psia 
0 5.12 

10 84.4 
20 166. 
30 246. 
40 341. 
50 427. 
60 501. 

A plot of the data shows that within error it is linear and the slope can be evaluated to find 
that the flow rate qf was 5 L per min. 

Time-Dependent Flows 
To this point we have considered all the inlet flows to be constants. We should now consider 
what  happens  when they are functions of time. When we specify the flow rate as a function of 
time we have said nothing about  the mechanism that gives rise to the observed functionality. 
It is simply a statement based on observation. There are cases in which the consideration of 
the mechanism can make it plain that flows will be time dependent .  For example the pumping  
of our hearts is periodic and gives rise to periodic or pulsating flow of blood. As we open a 
valve or faucet the flow grows in relation to the rate at which we open it and the opposite 
happens when we are closing the valve. Therefore, there are ample numbers  of examples in 
which the flow may be periodic, pulsating, or otherwise time dependent .  

An interesting case to examine is the flow into a tank. We have already analyzed this for 
constant flow, but  what  would  be different about, for example, a periodic flow? How would  this 
affect the time dependence of the rate of mass accumulat ion in the tank? To begin we consider 
a continuous but  periodic flow rate. This could be nicely described by a sinusoidal dependence 
upon time. The flow can always be taken to be positive, but  with a super imposed  periodicity. 
The flow rate could be described as: 

qf(t) = qfo(1 + ~ Sin (fit)) 

To see what  this would  look like we can plot it for some specific values of qfo, c~, and fl: 

In[72]:= Remove[qf, ~, fl, t] 

qf[t_] := qfo(l + ~Sin[flt]) 

qfo = I0; 

= 0.5; 

- o . 2 s ;  
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Plot[{qf[t], qfo}, {t, 0, 100}, 
PlotStyle ~ {Thickness[0.006], 
Thickness[0.006], Dashing[{0, 0}], 
Dashing[{0.025, 0.025}]}, 

AxesLabel ~ {"t", "qf[t]"}]; 

qf[t] 

14 

12 

10 

8 
I 

4&Y 60 V 80 0 

The dimensions of the constants c~ and fl are of interest. The constant fl is an element of 
the argument  of the sine, which is a transcendental  function. As such its a rgument  must  be 
dimensionless, and therefore fl is an inverse time constant. On the other hand,  the product  of 
and qfo mus t  have dimensions of volumetric flow rate and so c~ must  be dimensionless. From 

1 is the peak-to-peak basic physics we also know that c~ is the ampli tude of the wave while 
time or the period of the wave. Now if this is the input  to our tank how will the level as a 
function of time behave? 

The starting point is the overall material balance: 

dm[t] 

dt 
o 

- - "  m i n  

The right-hand side is now a t ime-dependent  function: 

dh[tl 

dt 

dh[t] 

qf[t] 

Ac 

qfo(1 + ~ Sin [/~t]) 

dt Ac 
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We can either separate and integrate or use DSolve  directly: 

In[78]'= Remove[h, qfo, G, fl, t] 

qfo 
Sin%plify[DSolve[{@th[t] ==--(l+GSin[flt]), h[0] ==0}, 

Ac 
h[t], t] ] 

qfo(~ + tfl - ~Cos[tfl]) 
Out[79]= {{h[t] ~ Ac~ } } 

From this solution we can see that  if the ampl i tude  c~ is very small, then the result looks much  
like it did before: 

In [80] "= Limit[ 

Out [80] = 
qfot 
Ac 

qfo(~ + tfl - ~Cos[tfl]) 

acfl 
�9 c~ --, O ]  

However,  it is also clear that if the values of c~ and fl are within certain ranges, then this will 
give rise to periodicity in the change in level of the tank. We can model  this to see how this 
will look using the values that we had for c~ and fl earlier. 

In[81] "- h[t_] := 
qfo(~ + tfl - ~Cos[tfl]) 

Acfl 

qf[t_] := qfo(l + ~Sin[flt]) 

qfo = 10; 

c~ = .5; 

= o.25; 
AC = 10; 

Plot[{h[t], qf[t]}, {t, 0, 70}, 

PlotStyle ~ {{Thickness[0.006], Dashing[{0, 0}] }, 

{Thickness[0.006], Dashing[ 40.025, 0.025}]}}, 

AxesLabel ~ {"t", "h[t],qf[t]"}]; 
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This shows us that the level will of course rise, but it will do so with varying rates depending 
upon the flow rate. This would actually be easier to see if we were to plot the dimensionless 
level and flow rates. We can obtain these by dividing h[t] by the maximum level in the tank 
and q[t] by qfo. 

In[88]'= Plot[{h[t]/30, qf[t]/qfo}, {t, O, 70}, 

PlotStyle ~ {{Thickness[0.006], Dashing[{0, 0}] }, 
{Thickness[0.006], Dashing[ {0.025, 0.025}]}}, 

h[t] qf[t] 
AxesLabel ~ {"t", "~, ~"}]; 

hmax qfo 

h[t] qf[t] 
hmax' qfo 

2 

1.5 ,,'-\ z" 
L' , , " / " ,  ,' ", 

1 i ', I /  -, ,. , 
I ~ \ / "\ O LJ-- " "  -- 
I 

10 20 30 40 50 60 70 
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What would happen if we were to bring the ampli tude up, say, by a factor of five? 

I n [ 8 9 ] . =  cr = 2.5; 

Plot[{h[t]/30, qf[t]/qfo}, {t, 0, 70}, 

PlotStyle ~ {{Thickness[0.006], Dashing[{0, 0}]}, 

{Thickness[0.006], Dashing[{0.025, 0.025}]}}, 
h[t] qf [t] 

AxesLabel ~ {"t", "~, ~"}]; 
hmax qfo 

h[t] 
hmax 
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2 

-1 
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If we look closely, we see that in the time range between 15 and 20 the level is actually 
decreasing! But how can this happen when we have only flow into the tank according to our 
initial total material balance? Once again we need to be very careful with the model results 
that we derive. In this case, when we increased the ampli tude by a factor of five we went out 
of the region in which the solution gave physically meaningful results. If you look carefully, in 
the same region where the level is decreasing, the flow rate is actually below zero (negative) 
and in the reverse direction of the feed, namely, out of the tank. The change in sign of the 
input function has given rise to this negative rate of accumulation, that is, negative slope, 
in this time domain. This is not the situation that we had in mind when we began the problem. 
It could correspond to some actual situation, but it does not correspond to the situation we are 
analyzing. Therefore, one needs to be very mindful of the range of application of any model 
and should check the resulting behavior for its correspondence to the real system. 
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2.2 Geometry and the Left-Hand Side 
of the Mass Balance Equation 

I lll 

The Triangular Trough 
To this point all of the situations we have dealt with have involved quite simple g e o m e t r y ~  
the right cylinder. We may ask the question, How do we apply the new tool we have to other 
geometrical shapes? The issues that we will encounter in these kinds of analyses are handled 
within the differential accumulation term through V[t]. For this reason we can think of these 
as "Left-Hand Side" problems. The objective of this section is to demonstrate how to do that. 
We begin with an analysis of the tank that is shaped like a triangular trough as shown in 
Figure 4. 

The flow is into the tank at a constant rate given by the density of the fluid and its 
volumetric flow rate. The mass in the tank at any time is the product  of the density and the 
fluid volume. Notice that as the level of the fluid increases, so too does its width. Viewed from 
the top, the area of the liquid surface grows as a function of time. This is the main difference 
between this "tank" and that of a right cylinder standing on end. In that case the surface of 
the liquid viewed from above remains constant, so that the volume is only a function of the 
level. To summarize what  we have so far: 

dV[t] 

dt = q  

The differential change in volume with time dV[t] can be viewed as taking place by making a 
differential change in level dh[t]. Since the change in level is differential, the area of the fluid 

Mass flow In 

H 

L-- 
" I h(t) 

w(t) 

Figure 4 
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at the surface is virtually unchanged.  This gives us: 

dV[t] - A[t] dh[t] 

However,  the change in area with time is just the change in the l iquid's  wid th  with  t ime 
mult ipl ied by the length of the trough, which gives us: 

dV[t] dh[t] 
-- 2 L w [ t ] ~  - q 

dt dt 

Now we need a relationship between w[t] and h[t]. To find this we can consider the geometry  
of the t r iangular  face of the tank. From the law of similar triangles we find this: 

W w[t] 

H h[t] 

The differential equation can now be rewrit ten in terms of only h[t]: 

2WL 
dV[t] - 

H 

dh[tl Hq 
hit] 

dt 2WL 

h[t]dh[t] 

The equation is now readily soluble and we find that h[t] goes as the square root of time: 

v/ Hq h [ t ] -  W--it 

The level as function of time for a tank 10 ft high, 10 ft wide, and 40 ft long looks as follows, 
if the flow rate in is 5 ft 3 min -1" 

I~[91].-Clear[h, q, H, W, L] 

htritro[t_] 

W = 5; 

L = i0; 

q = 5; 

H = 40; 

pltritro = Plot[htritro[t], {t, 0, 200}, 

AxesLabel ~ {"t", "h[t]/ft"}]; 
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The Conical Tank 
Another geometry that can be useful to consider is that of the conical tank. The analysis is 
similar to that of the triangular trough, except that the cone is axially symmetric. This makes 
some difference in the outcome. The geometry for the tank is shown here in Figure 5. 

As in the case of the triangular trough, the area of the liquid surface changes with the level 
in the tank. We know that the mass balance will lead to the same equation for the differential 

(...I R 

r(t) 

h(t) 

Figure 5 
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change in volume with  time. Therefore, we mus t  find the relationship that  will render  the 
differential vo lume change as a function of the level alone. 

If we were to take a slice through the tank along the central axis, we wou ld  be left wi th  a 
t r iangular  face. From the similar triangles on that  face we find: 

R r[t] 
l 

H h[t] 

If the vo lume were to change differentially by some differential level change we wou ld  have: 

dV[t] = Adh[t] 

= rrr[t] 2 dh[t] 

JrR 2 
- H2 h[t] 2dh[t] 

The solution to the level change as a function of t ime is the solution to this differential equation: 

rrR 2 
H2 h[t] 2 dh[t] - q 

h[t]3 3q H2 
---"  ~ ' t  

rrR 2 

/3qH 
h [ t ] -  ~ rrR2 t 

For a tank of the same dimensions  as the previous one and with  the same flow rate the level 
as a function of t ime is shown here along with  a comparison: 

In[98]'= Clear[W, H] 

N [Solve [2000 == 2 W2H, H] /. W ~ 5] 

Out[99]= { {H -~ 40. } } 

In[lOO].=Clear[R, H] 

N[Solve [2000 == 

Out[lOl]= { {H ~ 76.3944} } 

~R2H 
~ ,  H] /. R ~5] 

In[102].: Clear[h, q, H, R, L] 

hcone [ t_ ] 

R = 5; 

q = 5; 

H = 76.4; 

:= ~/y/3qH 2t 

V ~R 2 
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plcone = Plot[hcone[t], {t, 0, 200}, 

AxesLabel ~ {"t", "h[t]/ft"}, PlotStyle 

{Thickness[.006], Dashing[{0.025, 0.025}]}, 

DisplayFunction ~ Identity] ; 

Show[pltritro, plcone, DisplayFunction 

$DisplayFunction] ; 
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The Semicylindrical Trough 
A variation of the left-hand side theme and the issues of geometry is that of the semicylindrical 
trough lying on its side. The physical situation is quite similar to that of the triangular trough, 
except that the walls follow a circular curve. The physical system is shown in Figure 6. 

In view of the last two analyses that we have done, geometry is the only question posed 
by this problem. We need the relationship between r[t] and h[t] once again. One line in the 
diagram holds the key to this. That line is the hypotenuse of the triangle which has r[t] for one 
leg and R -- h[t] for the other. The Pythagorean theorem links the three: 

R 2 = ( R -  h[t]) 2 4- r[tl 2 

Solving for r[t] in terms of h[t]: 

In[109] "= R =. 

Solve[R 2 == Expand[(R - h[t])2] + r[t]2, r[t]] 

Out[llO]: {{r[t] ~-~/2Rh[t] - h[t]2}, {r[t] ~/2Rh[t] - h[t] 2}} 
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Mass flow In 

L 

h(t) 

Figure 6 

The first solution is unphysical,  so we substitute the second into the expression for dV[t]" 

d V [ t ] -  Adh[t] 

= 2Lr[t] dh[t] 

- -  2Lv/2Rh[ t ] -  h[t] 2 dh[t] 

Replacing this in the material balance (assuming all densities are constant and equal every- 
where), we find: 

v/2Rh[t] _ h[tl 2 dh[tl = q 
dt 2L 

The solution of this equation is: 

h[t] /0 t q ~S] In[lll].:Simplify[ ~2xR - x 2 ~x == -- 

o 2L 

VZ[t] ] 5t 1 2R2ArcTan [ ,/~R - hi t] + h [ t ] ) -- 
Out[lll]=~/(2R-h[t])h[t] (-R+ ~/2R-h[t] ~/h[t] 2L 

The solution of this equation involves an integral on the left-hand side that results in an implicit 
solution for h[ t ]. We can try to solve directly for h[ t ], but  Mathematica cannot do it: 
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1 
In[ll2] .: Solve[~/2R- h[t] )h[t] (-R+ 

qt 
==--, h[t] ] 

2L 

Jh[t] 
2R 2 ArcTan [ J2R - h [t] 

~/2R- h[t] ~/h[t] 

] 
+ h[t] ) 

Solve- �9 tdep- 

The equations appear to involve the variables to be 

solved for in an essentially non-algebraic way. 

J~Etj ] 
_~i )h[t] (-R+ 2R 2ArcTan[J2m_hit] +h[t] ) 

Out[ll2]=S~ ~2R-h[t] ~h[t] 

5t 
=: ,h[t]] 

2L 

Therefore, the best bet for us it to use the analytical solution to solve for h[t] numerica l ly  or 
graphically. The graphical  method  is not used much  today but  it is wor th  il lustrating because it 
reinforces a good "feel" for the functions and the numbers  that  result. We will look at the graph-  
ical solution first. As you no doubt  recall, the method  used finds the solutions to this equat ion 
that make the left- and r ight-hand sides equal. We can view each side as a s ta tement  for two dif- 

ferent functions that intersect at certain points; these intersections are the solutions. If we graph  
the two functions we can find these points. This is very easy to do in Mathematica as follows. 

Let the radius of the tank be 3 m and the length 20 m. We should find the total vo lume of 
the tank first so that we can choose a numerical  value for the flow rate that does not require 
too long a t ime to make  a real change in the tank level. To find the m a x i m u m  volume we 

want  to integrate the following equation from 0 to Vmax on the left- and from 0 to hmax on the 
r ight-hand side: 

dV[t] = 2Lv /2Rh[ t ] -  h[t] 2 dh[t] 

In[ll3].: Clear[V, R, h, t] 

Simplify[ ~V[t] == Simplify[ 

o R 2L~2Rh[t] -h[t] 2~h[t]]] 

1 
Outfll5]:Vmax :: --LJrRV~ 

2 

In[ll6]':Vmax[R_, L_] := N[~LTrR 21 

Vmax [ 5, 20] 

Out [ii 7] : 785. 398 

At 785 m 3 we can choose a flow rate of 10 m 3 min  -1 as a reasonable value. The t ime to over- 
flow to m a x i m u m  capacity would  be ~78 min. To solve the problem graphically we wri te  the 
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left- and right-hand sides as two separate functions. Then we choose a value of h and graph 
this as a horizontal line versus the right-hand side as a function of time. The point of intersec- 
tion provides the time at which that level would be reached subject to the chosen parameter  
values. We would choose another value of h and find a new value of t with a new graph. 
Before we begin it is worth  noticing that the magni tude of h[t] can never exceed R because to 
do so would  be unphysical. Unphysical or not, it is very easy to begin plugging in values for h 
on the left-hand side that mistakenly range over the chosen value for R. If we were to do this, 
the mathematics will inform us of our error by providing an imaginary (complex) solution. 

We begin by doing the graphical solution for the halfway point at h = 2.5. We seek to find 
the time at which this will happen. The Mathematica method for doing one point is shown here: 

.... 
In[118]'-lhs[h_] := N[~(2R-h)h(-R+ 

rhs[t_] := 2-~L t 

L = 20; 

R = 5; 

q = i0; 

2 R2 ArcTan [ ~ ] 
~2R-- h 

+ h ) ]  
v '2R-  h 

Graphics[{Line[{{0, lhs[2.5]}, {40, lhs[2.5]}}]}]; 

Plot[{rhs[z]}, {z, 0, 40}, PlotStyle ~ {{Thickness[.01], 

Dashing[{0.025, 0.025}]}}, DisplayFunction ~ Identity]; 

Show[~o, ~, DisplayFunction ~ $DisplayFunction, 
AxesLabel ~ {"t/rain", "LHS==RHS"} ] ; 
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From this we can see that the halfway point  in terms of level will occur at just over 30 min. We 
could replot this in the vicinity of 30 min to obtain this more accurately, but  as we shall see 
there are better ways  to do it. To find a set of solutions beginning at a level of I m in increments 
of I m, we could use the following code to create the graphic we need: 

In [12 6] .=Graphics[Table[ {Line[ { {O, lhs[h]}, {80, lhs[h]}}]}, 
{h, 1, 5, 1}]]; 

Plot[{rhs[z]), {z, 0, 80}, PlotStyle ~ {{Thickness[.01], 
Dashing[ {0.025, 0.025}]}}, DisplayFunction ~ Identity]; 

Show[%, %%, DisplayFunction ~ $DisplayFunction, 
AxesLabel ~ {"t/min", "LHS==RHS"} ] ; 
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As interesting as this approach is, it is not all that useful in comparison to what  we can obtain 
by solving the problem numerically. To solve numerically, however,  we really do the very 
same calculation: We choose a value of the level, evaluate the left-hand side, and then back 
solve the resultant equation for the time. An example of this procedure is given for the halfway 
point  at h = 2.5 m: 

In[129]:=h = 2.5 

L = 20; 
R = 5; 
q = I0; 
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NSo ive [ 

I~(2R h)h(-R + 
2 

Out [129]= 2.5 

] 2R2ArcTan [ J2R - h qt 
, / 2 a - h J ~  + h) == ~--~,t] 

Out[133]- {{t ~ 30.70924246521891}} 

We solve this to find that the exact time is 30.7 min. (We could have Mathematica limit the 
figures by enclosing the command in NumberForm.)  Of course what  we really want  to see is 
a plot of the level versus time for this tank. To obtain this we need to repeat this procedure for 
many different levels and then plot the resultant time and level pairs. 

In [134]::L = 20; 

R = 5; 

q = i0; 

ntimes = Table [NSolve [ 

V~ ] 
1 ~/( 2R h) h ( -R + 2R2ArcTan [ V2R - h 

2 V2R- h V~ 

{h, .25, 5, .25}]; 

levels = Table [h, 

timeleveldat = 

{h, .25, 5, .25}]; 

qt 
+ h) == --,t], 

2L 

pllevdat = ListPlot [timeleveldat, 

AxesLabel ~ {"t/min", "h[t]/Meter"}, 

DisplayFunction ~ Identity] ; 

Show[pllevdat, Epilog ~ {Line[{{0, 5}, {80, 5}}]}, 

DisplayFunction ~ $DisplayFunction] ; 

Transpose [Partition [Join [Flatten [t /. ntimes], levels], 

Length [ levels ] ] ] ; 
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It was t roublesome to create these points. We might  want  to provide an operator  wi th  a graph 
of the level versus t ime that could be used at any t ime to find the level or vice versa. The 
logical thing to do at this point  is to fit these points to a function of time. We can easily do so 

using two parameters  in a simple power  law hit] = at": 

In [i 42] �9 = timeleveldat 

Out[142]= {{1.046151218379871, 0.25}, 
{5.35228742419150, 0.75}, 
{11.33279384944024, 1.25}, 
{18.46273275392473, 1.75}, 
{26.45457644963383, 2.25}, 
{35.10840690045179, 2.75}, 
{44.2681414116735, 3.25}, 
{53.8027306257427, 3.75}, 
{63.5962577259286, 4.25}, 
{73.5419004550265, 4.75}, 

{2.93629534388009, 0.5}, 
{8.17505543966421, i.}, 
{14.77494200930721, 1.5}, 
{22.36476090008060, 2.}, 
{30.70924246521891, 2.5}, 
{39.63367125654707, 3.}, 

{48.9960956177208, 3.5}, 
{58.6739613290956, 4.}, 
{68.5565080961337, 4.5}, 
{78.5398163397448, 5.}} 

In [i 43]:= Remove[NonlinearFit, a, n, t] 

In [144 ] . = <<Statistics "NonlinearFit �9 

In[145]:= NonlinearFit[timeleveldat, at n, t, {a, n}] 
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Plot[~o, {t, 0, 80}, PlotStyle ~ Thickness [0. 006] , 

DisplayFunction ~ Identity, 

AxesLabel ~ {"t/min", "h [t] /Meter" } ] ; 

Show[%, D11evdat, Epilog ~ {Line[{{0, 5}, 

DisplayFunction ~ $DisplayFunction] ; 

Out [145] = 0. 21373t ~176 

{80, 5} } ] } ,  
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With the value of a at 0.2137 and that of n at 0.72 we find a very nice fit to the data. It is 
interesting to note that this statistically fitted function fits so well and yet offers us no insight 
into what  is really taking place. H o w  often do we see experimental  data fitted statistically in 
this way  and then physical mechanisms posed to explain the form of the fitted function? Do 
you think that anything fundamenta l  ever comes from such an approach in the absence of an 
analysis? Beware! 

The Spherical Tank 
Figure 7 shows a simple case of filling a spherical tank. The liquid flow into the tank is again 
a constant and we wish to be able to predict  the level as a function of time. 

The total material  balance s tatement  is: 

dV[t] 

dt = q  
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The differential change in volume can be thought  of in terms of an area times a differential 

level change: 

dV[t] - A dh[t] 

---- rrr[t] 2 dh[t] 

r[t]2dh[t] q 

dt 7r 

The triangle in the left lower quadran t  of the circular face of the sphere has a hypotenuse  
of R, and two legs, one of which is r[t] and the other is R -  h[t]. Just as in the case of the 
semicylindrical trough, the Pythagorean theorem can be applied to this right triangle to give: 

R 2 - r[t] 2 + ( R -  h[t]) 2 

In[148].= Remove[R, r, h] 

Out [159] = 

Solve[R 2 =- r[t] 2 + Expand[(R - h[t])21, r[tll 

{ {r[t] ~-v/2Rh[t] -h[t]2}, {r[t] ~ v/2Rh[t] - h[t] 2}} 

Returning to the differential equation we substitute and need to find a solution for hit]: 

dh[t] q 
2 R h [ t ] -  h[t] 2 - - 

dt rr 
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This is similar to the equation that we encountered in the last problem for the semicylindrical 
trough: 

v/2Rh[t] _ h[t] 2 dh[t] = q 
dt 2L 

The solution method would be the same. The main difference is that the tank is now axially 
symmetric (as was the conical tank) and this gives rise to a rr on the right-hand side rather than 
2L. Recall that the sphere is made by rotating the semicircular face around the central axis by 
7;" radians. The semicylindrical tank is constructed by translating the same semicircular face 
by a distance L along a straight line. Symmetries of this kind are very interesting and will be 
useful to take advantage of in the solution of more sophisticated problems, but at this point 
we merely wish to point it out in passing. 

We can proceed with the solution as follows. First, we show that by integration over h of 
the 7rr2dh gives us the proper expression for the volume: 

In [150] "- R =. 

q =. 

/o v /o R ~V== 71" 

Out [152]- V 
2 7 [ R  3 

(2 Rh- h 2 ) ~h 

Next we integrate the left-hand side over h and the right-hand side over time. The left-hand 
side has two integrals over level: 

In[153] "- R =. 

q ----'o 

h --. 

/o h /o h /o t 2Rh c~h - h 2 c~h == --q (It 
71" 

h 3 qt 
Out [156] = + h2R 

3 

This last expression can now be solved for h as a function of time: 

In [157] .= R =. 

Q ~e 

h 3 qt 
h3o = Solve[--- + h2R 

3 
== 0, h] 
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Out [159]: {{h~R+ 
2 1 / 3 / r R  2 

(2jrBR 3 _ 3jr2qt + ~/~/_4jr5qRSt + 3jr4qmt2 ) i/3 

(2~T3R 3 _ 3yr2qt + V~/_4rr5qR3 t + 3rr4q2t 2 ) i/3 
+ }, 

21/37/" 

{h~R- 
(i + ~x/~)JrR 2 

22/3 (2jrSR 3 _ 3rrmqt + ~/~/_4jr5qR3 t + 3jr4q2t2 ) i/3 

(i - ~/3) (2Jr3R 3 - 3Jr2qt + V~/-4rrSqR3 t + 33r4q2t 2 ) i/3 

221137/" 
l 

{h~R- 
(i + ~V~) JrR 2 

22/3 (27rBR3 _ 3jr2qt + ~/~/_4~T5qR3 t + 3yr4q2t 2 ) i/3 

(i + ~/3) (2jrSR 3 - 3jr2qt + ~/3~/-4jrSqRZt + 3jr4qmt2)i/3 

2 2 i / 3 n  - 
}} 

We obtain from this three different functions for h[t] because the equation we solved was 
cubic in the level. In order to decide which of the three is correct, we assign them to 

three different functions and then evaluate them over time with a given set of parameter  

values: 

In[160].- h31 [t_ ] 

h32 [t_] 

h33 [t_] 

:= Evaluate[h/. h3o[[l, i]]] 

:= Evaluate[h/.h3o[[2, I]]] 

:= Evaluate[h/. h3o[[3, I]]] 

q = I00; 

R = i0; 

tf = 35; 

Plot[{h31[t], h32[t], h33[t]}, {t, 0, tf}, 

PlotStyle ~ { (Thickness [0.01], GrayLevel [0] }, 

{Thickness[0.01], GrayLevel[0.5], 

Dashing[{0.03, .03}] }, 

{Thickness [0.01], GrayLevel [0.8], 

Dashing[{0.03, .03}] }}, 

AxesLabel ~ {"t", "h3x[t]"}, 

Epilog ~Line[{{0, R}, {tf, R}}] 
]; 
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h3x[t] 
30 

20 

10 

-10 

I I 

-*_ o_ _ _ _3o _ _ 

The plot shows us that the first solution in black h31[t], is a decreasing function, when in fact 
we know we should have one that is increasing with time since we are filling a tank. The same 
problem and worse arises with h32[t], which is not only decreasing, but has negative values 
of the level. This leaves us with h33[t] in gray as the only physically realistic solution. Another  
way to attack this problem without  a graphical presentation of the data would be to solve the 
equation numerically as is shown in the cell that follows: 

In[160]-=q = i00; 
R -  1 0 ;  

h 3 q 
T a b l e [ N S o l v e [ ~  2 - -  = = - - t ,  h ] ,  

3 
{t, 0.1, 27, 3 } ] / / TableForm 

Out [162]//TableForm= 

h -~ -0.559006 

h -~ -2.9953 

h -~ -4.13119 

h -~ -4.98393 

h -~ -5.68991 

h -~ -6.30241 

h -~ -6.84878 

h -~ -7.34529 

h -~ -7.8025 

h -~ 0.569623 

h -~ 3.33172 

h -~ 4.80867 

h ~ 6.01977 

h -~ 7.10392 

h -~ 8.11758 

h -~ 9.09225 

h -* 10.0497 

h -~ 11.008 

h -~ 29.9894 

h -~ 29.6636 

h -~ 29.3225 

h -~ 28.9642 

h -~ 28.586 

h -~ 28.1848 

h -~ 27.7565 

h -~ 27.2956 

h -~ 26.7945 
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What we see is that for each value of t in the range from 0.1 to 27 we have three different 
values of hit] computed. In this case the middle column is the proper solution set. This is just 
a small example of the very many different ways in which one can solve a problem like this 
using Mathematica. 

Depositing a Polymer Coating on a Disk 
Polymers have come to play an ever more important role in our lives since the discovery 
of Nylon by Wallace Carruthers more than 60 years ago. From grocery bags and clothing to 
medical devices and implants, synthetic polymers have proven to be a boon to mankind. In 
Figure 8 we look at a simple schematic of a polymer coating process. Nonstick cookware, 
automobile finishes, and magnetic storage media all involve some polymeric coating on a 
substrate. We will consider a very rudimentary example from the perspective of our analyses 
based on a total material balance. 

In the particular process shown in Figure 9, a substrate is translated under a spray nozzle 
at some velocity Vz. At the same time small droplets containing a 5:1 mixture of monomer 
and activator (polymerization initiator) are sprayed. The droplets are created by sonication 
of the liquid mixture in the spray gun. The action of sonication not only provides very small 

Mass Flow Controllers 

.i~iii! 

Monomer Activator 

i :i?i:ili:ii! 

Spray Nozzle 

, . y ~  Axial Velocity: vz 
Monomer/Activator , ~ i  I, 

Atomized Mist ~ , :  
. , , ~  ~ ~ ~ ~ .~  Polymer Coating 

< 5 
Figure 8 Polymer coating process on a substrate. 
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Figure 9 

droplets (---0.5/~ diameter), the energy combined with exposure to oxygen in the air initiates 
the conversion of monomer  into polymer. As the substrate moves under  the spray gun, the 
polymerized droplets impinge and gel on the solid substrate, which creates a solid film on the 
surface that hardens with time. 

At the end of the spray nozzle there is an orifice with a circular area Ao. All of the mass of 
monomer  plus activator must  pass through this orifice area. The mass flowing per unit time 
per unit area through this area is referred to as flux. After leaving the orifice the spray area 
expands to form a cone-shaped region above the substrate. The spray area on a motionless 
substrate would be approximately circular. The radius of the circular impingement  area is 
related to the distance L between the nozzle and the substrate. Experiments have shown that 
the mass impinging on this area is homogeneous.  Because the substj-ate has a width equal to 
the diameter of the impingement  area, if it is moved under  the nozzle at constant velocity, it 
will be evenly coated (excluding end effects). 

From this description we should be able to predict the thickness of the polymer coating 
as a function of the delivery rate and substrate velocity. The monomer  and activator are taken 
to have equal densities. The total material balance around the spray nozzle is: 

dm[t] 

dt = l ~ i n  - -  l ~ o u  t 

There should be no net accumulation in the spray nozzle, meaning that it will nearly always 
operate at a steady state. (In fact a design criterion for a sprayer like this is that it have nearly 
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ins tantaneous rise and shut-off times.) From this then we can say that  the mass  flow rate in 

mus t  equal the mass  flow rate out: 

l~in - -  l'nout 

The rate of mass  flow into the spray gun  is given as the sum of the mass  flows of the m o n o m e r  
and the activator. The densities of the two liquids are nearly identical and the volumetr ic  flow 
rate of the m o n o m e r  is five times the flow rate of the activator. Therefore the mass out of the 

orifice is: 

l'nout = Pmonomer qmonomer q- Pactivator qactivator 

= Pmonomer (qmonomer if-qactivator) 

= 1.2 Pmonomer qmonomer 

The mass flux from the orifice is the mass flow rate out divided by the orifice area. Since the 
spray spreads in the form of a right cone, the mass flux at the substrate is smaller  than the flux 

from the orifice. To solve our problem we mus t  know this. It is obvious then that the product  of 
the flux and the area is the mass flow rate. By the conservation of mass the mass flow to the sub- 
strate must  be the same as the mass flow from the orifice. Therefore we can proceed as follows" 

Yt/impingement =- J~/out 

limp Aimp : lout aout 

Jout Aout 
Jimp =- Aimp 

o 

mout 
Jimp = Aimp 

We will review wha t  we know. We know the mass flow out of the spray nozzle and we can 
calculate the area of impingement  knowing  the area of the orifice Ao, the distance to the 
substrate L, and the angle, alpha, made  by the spray leaving the nozzle. Thus the next step 

mus t  be to find the area of impingement  in terms of alpha, L, and Ao. 
From the geometry  d iagram shown in Figure 10 we see that the radius of the orifice is r, 

which is related to 1 through the tangent  of alpha. Then the radius R of the imp ingemen t  area 
is related to (1 + L) through the tangent  of alpha (tanc~ = opp~ The distance 1 is not known,  adj j" 
but  it corresponds to the vertex of the triangle that is within the sprayer. We can solve for it in 
terms of alpha and r, both of which are known.  Then we can set the two ratios equal to one 

another and solve for R in terms of L. 

In [163 ] . = Clear [R, L, i, r, i, G] 

r r R 
Solve[{--==Tan[s], --== }, {i, R}] 

1 1 (L + i) 

Out[164]= {{R + r+LTan[c~] , 1 + r Cot[c~] }} 
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Figure 10 

The area of impingement  is 7rR 2, so the impingement  flux is: 

In[165] -- Aimp =r +LTan[(x] 
o 

~ u t  
Jimp == Aimp 

Out [165]- r+ LTan[~] 

General--spelll- Possible spelling error- new symbol name 

"out" is similar to existing symbol "Out". 
o 

mout 
Ou t [ 16 6 ] = Jimp = = 

r + L Tan[u] 

The next part of the analysis is to find the mass accumulation of polymer on the substrate 
given ]imp and that the substrate moves under  the nozzle at a velocity equal to vz. If the 
substrate did not move then the mass would accumulate on the circular impingement  area. 
Given a rigid solid polymer, we would begin to grow a deposit of circular cross section and 
increasing thickness. As the deposit grew off the substrate, it would decrease L, and so the 
circular deposition area would decrease. We could imagine that we would grow a deposit 
that would be roughly like the frustrum of a cone and eventually a cone. If we allowed the 
deposition to take place for some time r, such that the thickness grew to 6, and then moved 
the substrate by a distance 2R and deposited for a period r again, and then continued this 
stepwise process, we would have a series of circular deposits of nearly uniform thickness. We 
would also have areas between the circular deposits that were nearly uncovered. This would 
be a semicontinuous process. If ~" were to become very short, then the process would begin to 
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Continuous Coating 

Figure 11 

approach a continuous one, especially if we only moved the substrate by some fraction of 211 
every time. Figure 11 shows all three deposition types discussed here. 

In the continuous process we let r shrink to small values by moving at a continuous 
velocity. Now the time spent under  the nozzle is just r = 2R that is the "residence time" 

Vz  I 

under  the sprayer. By translating in this way the circular spray area becomes nearly rectangular, 
save for the edges. We can write a material balance for the problem in the usual w a y m t h a t  is, 
choosing the spray area and the growing polymer film as the control volume: 

dm[t] 

dt 
= l~in 

d[Ppolymer V[tldeposit ] 
dt 

=rh tn  

d[Ppolymer a[tldeposit 3 [tl] 
= rhin 

dt 

d[wz[tlS[t]] rhin 

dt Ppolymer 

At this point we can recognize that w is related to R and substitute it in: 

w - 2R 

d[z[tl~[tll 
dt 

rnin 
2 R Ppolymer 
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However ,  R is related to dis tance L, angle ~, and  d imens ion  of the orifice r: 

2R = 2(r + L Tan [~1) 

This br ings  us to this equation:  

d[z[t]a[t]] min  

dt 2(r + L Tan[c~])Ppolyme r 

Apply ing  the chain rule to the lef t -hand side, we  find: 

dz[t] da[t] IIlin 
a[t] dt + z[t] = dt 2(r + L Tan[~])Ppolyme r 

If the substra te  is t ransla ted at a fixed velocity then we can say that  z[t], the posi t ion of the 
substrate  at any  time, is mere ly  a l inear funct ion of time: 

z(t) - v:t + c 

This leaves us wi th  the fol lowing equat ion  to solve for the thickness as a funct ion of time. 
By rear ranging  it we  can see that  it is a nonl inear  differential equat ion  and  we  m u s t  treat it 
accordingly: 

aIt]v: + (v:t + C ) - -  
da[t] rh~n 

dt 2(r + L Wan[c~])Ppolymer 
da[t] rh~n 

(v:t + C ) ~  = - a[t]v: 
dt 2(r if- L Wan[oe])Ppolymer 

In[167] .: Clear[6] 

rain = �9 
o 

min - 6 [ t ] v z ] 
Together [ 2 (r + L Tan [ ~ ] ) Ppolymer 

(Unset--norep- Assignment on Subscript for min not found. 

Out[168]: $Failed 
o 

rain- 2rVzPpolymer~[t] - 2LvzppolymerTan[~]~[t] 
Out [169]- 2ppolyme r (r + LTan [~] ) 

In[170] "= ({~in- Collect [2rVzp~olymer6 [t] -2LVzppolymerTan[~] 6[t], 

{Vzppolymer~ [t] } ] ) / (2Ppolymer (r + LTan [~] ) ) 
o 

min-Vzi0polyme r ( 2r - 2L Tan [c~ ] ) ~ [ t ] 
Out [i 70] : 

2ppolymer (r + L Tan[u] ) 
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The last transformation shows us that the equation is separable into: 

d3[t] dt 

rhin - 2 V z P p o l y m e r ( r -  L Tan[c~l)8[t] 2ppolymer(r -}- L Tan [c~])(Vzt + C) 

These two sides can be integrated indefinitely to give: 

1 
In[171] .: Simplify[ o 

rain- 2Vz Ppolymer ( r - L Tan [ (~ ] ) 6 [ t ] 
~6[t] ) == 

I 1 

2ppolymer(r+LTan[G] ) (Vzt + C) 
~t 

o 

Cos [(~] Log[-Cos [~]min + 2 (rCos [~] - LSin[ff] ) VzPpolymer~ [t ] ] 
Out[171]= - 

2rCos [~] Vzppolyme r - 2L Sin [(~] VzPpolymer 

Log[C+tvz] 

2Vz~polymer ( r + L Tan [ ~ ] ) 

Or integrated definitely to give: 

In[172] "= SimplifY[/06[t] 
min- 2Vz ~olymer ( r - L Tan [ ~ ] ) y 

~y ]== 

Lt 1 

2p~olymer (r + L Tan[~] ) (vzX + C) 
dx 

Out [i 72] : 

o o 

COS [~](Log[-Cos [(~]min] - Log [--Cos [6~]min + 2 (rCos [6~] -- LSin [u] ) VzPpolymer ~ [t] ]) 

2(rCos[~] -- LSin[~])VzPpolymer 

-Log[C] +Log[C+ tVz] 

2VzPpolyme r ( r + L Tan [ ~ ] ) 

As in: 

In[173].: Clear[a, b, m, n, x, y, p, 6] 

L ~ 1 1 L t 1 ~ ~ y  == _ 
a+by p mx+n 

~ ~ x  

-Log[a] + Log[a+b~] 
Out [i 74 ] = b 

-Log[n] +Log[n+mt] 

mp 
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-Log[a] +Log[a+b6] -Log[n] +Log[n+mt] 
In [1 75].= b( ) == b( ) 

b mp 

Out[175]= -Log[a] +Log[a+b3]-- 

a + b6 n + mt b 
In[1761"= == (~)m~ 

a n 

b(-Log[n] +Log[n+mt] 

mp 

a + b6 n + mt b 
In[176].= == (~)m~ 

a n 

In[177].= Solve[~ 
a + b6 n + mt b 

==(~)~ ,6] 
a n 

b 
a(-I + (n+mt) mp ) 

Out [i 77]= { {8 -> n } } 
b 

We assume here that the nozzle is held 10 cm away from the substrate (L = 10) and that 
the cone angle made  by the spray is 20 ~. The polymer  may  have density of 2 g cm -3. The 

axial velocity should be small, so we choose 0.01 cm per min (Vz = 0.01). The flow of po lymer  

mass to the substrate may also be small at 10 mg min -1 (rhin - 0.01 mg min-1). The nozzle 

radius will be set at 0.003 cm. Before we use this result, we should check it for dimensional  

consistency. The units for each of the groups in the final formula are included on the r ight-hand 

side of what  follows. The left-hand side is just the units of 6 in cm. If the units are consistent 
then the logical operat ion should return a True. 

In[178].= Sin%plify[cm == 

=+ ~.in =(~=, ) 
q (-1+ ( )~ min can 

(cm q c~) 

General--spelll- Possible spelling error- new symbol name 

"min" is similar to existing symbol "Min". 

Out[178]- True 

The result is True, but  maybe you would  be more pleased to see the actual reduction to cm on 
the r ight-hand side. If so here is that result: 

In [i 79] �9 = 

cm 

cm + cm cm 

m l n  cm ) 

( ~-n~ --~~) 

Out [179]= cm 
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N o w  that  we  can have confidence that  the formula  we  have  der ived for &[t] is d imens ion-  

ally correct, we  can test it wi th  some "real" pa ramete r  values to see w h a t  it predicts: 

In[180] "= Ppolymer = 9.; 

L = i0; 
20 

= -- 27r; 
360 

rain -- ~ 001; 

v z = I; 

r = 0.003; 

c = 0.001; 

a -- min; 

b = 2v zPPolymer(r - LTan[~] ); 

P = 2ppolymer (r + L Tan[G]); 

m = Vz; 

n = c; 

6[t_] 

6[.1] 

:= 

b 
a (-1 + n+mt ) 

n 

Plot[104~[x], {x, 0, 10000),AxesLabel 
{"t", "~/microns"}] ; 

b 
a (--I + n+mt ) 

NUmberForm [ Limit [ n , t ~ oo ] i04 
b 

�9 2] 

Out [193]: 0.0000680578 

6/microns 

0.687435 
0.687432 

0.68743 
0.687428 
0.687425 
0.687422 

2000 4000 6000 8000 
- - - - t  
10000 
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Out [ 195 ] //NumberForm: 

0.69 

At this delivery rate of polymer, and with these substrate dimensions and velocity, the thick- 
ness of the layer will be 0.69/~. Notice that the transient in the graph of thickness versus time 
is more apparent than real, as it involves changes in 6 that are on the order of one part in 105. 
Taking the limit of the expression for S as the value of time approaches infinity gives us the 
same answer. Recall that we did not handle the startup of the substrate motion. We could do 
so if we replaced z[t] with a form that included quadratic time dependence and acceleration. 
Why don' t  you try it? 

2.3 Summary 
I . . . .  I I I I  

In this chapter we have covered quite a number  of apparently different problems that are 
readily attacked by use of the concepts of a control volume and the conservation of mass. For 
each case the same equation was used as the point of departure for the analysis--namely, the 
differential statement of the total mass balance. It is surprising at first to find that so many 
different situations can be analyzed by the correct application of this equation along with 
some calculus and geometry along the way. 

During the course of this chapter we also have learned how to use Mathematica interactively 
to do analysis. The methods we have used are general and we will use them throughout  the 
text. The objective is to think and analyze the problem with the assistance of the computer  in 
real time. 



The Draining Tank 
and Related Systems 

3.1 The Right-Hand Side of the Mass 
Balance Equation 

In Chapter 2 we developed models based on analyses of systems that had simple inputs. The 
right-hand side was either a constant or it was simple function of time. In those systems we 
did not consider the cause of the mass f l ow~ tha t  was literally external to both the control 
volume and the problem. The case of the flow was left implicit. The p u m p  or driving device was 
upstream from the control volume, and all we needed to know were the magni tude of the flow 
the device caused and its time dependence. Given that information we could replace the right- 
hand side of the balance equation and integrate to the functional description of the system. 

This level of simplicity is not the usual case in the systems that are of interest to chemical 
engineers. The complexity we will encounter will be much higher and will involve more de- 
tailed issues on the right-hand side of the equations we work with. Instead of a constant or 
some explicit function of time, the function will be an explicit function of one or more key char- 
acterizing variables of the system and implicit in time. The reason for this is that of cause. Time 
in and of itself is never a physical or chemical cause~ i t  is simply the independent  variable. 
When we need to deal with the analysis of more complex systems the mechanism that causes 
the change we are modeling becomes all important.  Therefore we look for descriptions that 
will be dependent  on the mechanism of change. In fact, we can learn about the mechanism of 

113 
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change by testing our ideas about physics or chemistry in the context of a model derived from 
an analysis based on some specific assumptions. Comparison of the model predictions with the 
actual behavior of the system provides a check on the analysis and its assumptions. Chemical 
engineers do this with almost every problem they encounter. Depending on the level of analysis 
and the nature of the problem, the results can be anything from a useful engineering descrip- 
tion of the systems to new science. Regardless of the goals and objectives of the project, the 
chemical engineer uses the same powerful analysis paradigm to make progress and to solve the 
problem. 

With this in mind we turn now to another problem that is seemingly naive at first glance, 
but which offers considerable insight into the next level of this process called analysis. The 
problem that we shall consider now is that of flow out of a vessel due to the force of gravity. 
We will apply the same principles as in Chapter 2, but  the cause of the flow will be an essential 
part of the analysis. We also have the chance to see how this problem fits into the history and 
foundations of our physics. This is a 300-year-old problem that is still full of fascination for us 
and from which we can learn much. 

3.2 Mechanism of W a t e r  Flow from Tank - -  
Torricelli's Law, A Constitutive Relationship 

In 1640 a young man educated at the Collegio di Sapienza in Rome published a treatise entitled 
"Trate del Moto," that is the Treatise on Motion. This brought the author to the attention 
of the preeminent natural philosopher of the day--Gali leo Galilei. Impressed by the work, 
Galileo invited the author, Evangelista Torricelli, to join him at the Florentine Academy in 
1641. Torricelli worked as Galileo's personal secretary for just one year before the great man 
died in 1642. The faculty at Florence immediately appointed Torricelli to succeed Galileo as 
professor of mathematics that same year. Torricelli is ensconced in physical science through 
the unit of pressure that bears his name, in honor of his experiments that led to the creation 
of the first partial vacuum and the barometer. But Torricelli did much more than this and it is 
to some of his other work that we will turn to now. 

Just as Galileo studied gravitational effects by dropping small and large solid masses from 
towers, Torricelli followed in his footsteps by analyzing liquids "falling" out of tanks. What 
he did was to measure the flow rate of liquids flowing out of tanks with holes in the bottom 
as a function of initial fluid level at a fixed orifice area. The physical system that corresponds 
to this is shown in Figure 1. The vessel is a right cylinder with cross-sectional area A. At the 
bottom of the vessel is a hole with area Ao that has a plug in it. The initial liquid level has 
been set to ho. 

When the plug is pulled out of the orifice, the liquid flows out. One can measure the flow 
rate or the level as a function of time to learn how the system behaves. If we did this, then 
we would notice from these experiments that the flow rate out is not constant, but seems to 
drop with time. As the level drops, so does the rate at which mass leaves the tank. Before we 
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A = Cross-sect ional  area of tank 

I IS  

T 
ho 

l 
Ao = Cross-sect ional  area of orifice 

Figure I 

consider the data that comes from an experiment like this one, we should apply the principle 
of the conservation of mass to the system to see what  it is that we know and do not know 
about it. We begin with the same overall equation as always" 

din[t] 
dt 

= --rhout 

The mass flow in is zero, so we are left with just one term on the r ight-hand side. The density 
is a constant inside and outside of the vessel and the cross section of the liquid is just that 
of the tank A, and it too remains constant as the level drops. This leads us to the following 
equation for the change in level as a function of time: 

dh[t] q[t] 
dt A 

On the r ight-hand side, we have noted that the flow rate changes with time by writing q as a 
function of time, but  that is all that we can do at this point. We have no way  of knowing how 
q varies with time or with the level in the tank. Therefore, we cannot go any further with this 
analysis until we have some way to express this dependence.  What  we are seeking for q is a 
constitutive relationship that will express it in terms of the level change h[t] so that the equation 
has only one dependent  variable in time and not two. In other words,  the analysis we have 
just done is incomplete, but  it has shown us exactly what  our experiments should be designed 
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to do. We m u s t  find a funct ional  re la t ionship b e t w e e n  the level in the tank  and  the f low rate 

out  of it. Or  in ma themat i ca l  te rms we  seek: 

q[t]--~ f[h[t]] 

dh[t] f[h[t]] 
dt A 

The first is the const i tut ive relat ionship and  the second is just  a r es ta tement  of the mater ia l  bal- 

ance. The next  section takes this into account  as we  trace w h a t  Torricelli is likely to have  done.  

3.3 Experiment and the Constitutive Equation 
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What  causes the fluid to flow or "fall" out  of the tank? Gravi ty  of course. That  is easy for 

us to answer  because  we  are educa ted  in f u n d a m e n t a l  physics  concepts.  But turn  the clock 

back to Torricelli 's day  and try to answer  the quest ion again  in the year  in which  Galileo died 

and Isaac N e w t o n  was  born. That  means  that  Torricelli was  work ing  on this p rob lem prior  

to calculus and  N e w t o n i a n  physics! Now, Galileo and  Torricelli both had  s t rong not ions and  

good ideas of w h a t  this force, w h a t  we  now call gravity, was  and  N e w t o n  was  indebted  to 

them w h e n  he did his work,  but  all of that  came later. So we will at tack this p rob lem from the 

"exper imenta l "  side and  try to piece together  the f indings that  led to Torricelli 's Law. 

In the Table are collected data f rom several  exper iments  wi th  different  s tar t ing levels, but  

all wi th  the same orifice area, and all done  in the same cylindrical  tank. Look at the data  for 

some clues as to the behavior  of this system. Note  that  it takes 60 sec to dra in  the tank from an 

initial level of 10 cm. W h e n  the initial level is set to 50 cm, it takes 130 sec for the tank to drain: 

t/sec Level/cm 

0 10 20 30 40 50 

10 6.8 15.4 24.2 33.3 42.5 

20 4.2 11.3 19.1 27.2 35.6 

30 2.3 7.9 14.6 21.8 29.3 

40 0.9 5.1 10.7 16.9 23.6 

50 0.2 2.9 7.3 12.7 18.5 

60 0 1.3 4.7 9. 14.1 

70 0 0.4 2.6 6. 10.2 

80 0 0 1.1 3.6 7. 

90 0 0 0.3 1.8 4.4 

100 0 0 0 0.7 2.4 

110 0 0 0 0 1 

120 0 0 0 0 0.2 

130 0 0 0 0 0 
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We raised by a factor of five both the initial level and the vo lume that mus t  be dra ined and 
yet it took only twice the total t ime to complete the process. Looking even more closely at the 
data, we note that  in the same exper iment  at which the initial level was  50 cm, w h e n  the level in 
that exper iment  had  fallen to 10 cm, it took another  60 sec to complete ly  drain the tank. In other 
words,  once the level gets to 10 cm it takes the same t ime to complet ion as if the exper iment  had  
begun  at 10 cm. Therefore, the first 40 cm fell out of the tank in 70 sec, but  the final 10 cm took 
another 60 sec to fall out. Looking across the data sets we see the same thing in each. The t ime 
required to go to complet ion beginning at 20 cm is the same as the t ime required to e m p t y  the 
tank after having reached 20 cm when  beginning at any higher level. But the t ime required to 

go from an initial level of 40 cm to 20 cm is just 30 sec, or less than half the t ime required 
to drain the second 20 cm wor th  of fluid! This behavior  had  to have been very int r iguing to 
Torricelli and the analysis mus t  not have been obvious, at least at the outset of the work.  

The relationships that  we have just described in words  are much  easier to see if we plot 
the data as level versus t ime and do so all on one graph. We can use a few functions to pull  

this all together. The data in the table has been entered as a matr ix of levels at each t ime called 
"totdat":  

In[1]:=totdat={{O, i0, 20, 30, 40, 50}, {10, 6.8, 15.4, 24.2, 33.3, 42.5}, 

{20, 4.2, 11.3, 19.1, 27.2, 35.6}, {30, 2.3, 7.9, 14.6, 21.8, 29.3}, 

(40, 0.9, 5.1, 10.7, 16.9, 23.6}, (50, 0.2, 2.9, 7.3, 12.7, 18.5}, 
{60, 0, 1.3, 4.7, 9.0, 14.1}, {70, 0, 0.4, 2.6, 6.0, i0.2}, 
{80, 0, 0, I.i, 3.6, 7.0}, {90, 0, 0, 0.3, 1.8, 4.4}, 
(ioo, o, o, o, o.7, 2.4}, (11o, o, o, o, o, i}, 

{12o, o, o, o, o, .2}, {13o, o, o, o, o, o}} 

Out[l]= {{0, i0, 20, 30, 40, 50}, {i0, 6.8, 15.4, 24.2, 33.3, 42.5}, 

{20, 4.2, 11.3, 19.1, 27.2, 35.6}, {30, 2.3, 7.9, 14.6, 21.8, 29.3}, 

{40, 0.9, 5.1, 10.7, 16.9, 23.6}, {50, 0.2, 2.9, 7.3, 12.7, 18.5}, 

{60, O, 1.3, 4.7, 9., 14.1}, {70, O, 0.4, 2.6, 6., 10.2}, 

{80, o, o, 1.1, 3.6, v.}, {90, o, o, o.3, 1.8, 4.4}, 

{i00, O, O, O, 0.7, 2.4}, {Ii0, O, O, O, O, i}, 

{120, O, O, O, O, 0.2}, {130, O, O, O, O, 0}} 

The matrix form of the data needs to be t ransformed into data sets having each t ime and each 
level in pairs. We can do this in one small p rogram as follows and the new data set will be 
called "sepda t"  for the separated data: 

In[2] :=SetOptions[{Plot, ListPlot}, AxesStyle ~ {Thickness[0.01]}, 

PlotStyle ~ {PointSize[0.015], Thickness[0.006]}, 

DefaultFont ~ {"Helvetica", 17} ] ; 

In [3] :=sepdat = Table[ 

Table[{totdat[[n]] [[i]], totdat[[n]] [[m]]}, 

(n, 1, Length [totdat] } ], {m, 2, 5} ] ; 
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ListPlot [Flatten [ sepdat, 1], 
Epilog ~ {Dashing[ {0.025, 0.015} ], Line[ { {0, 10}, {120, 10} } ] }, 
AxesLabel ~ {"t/s" "h[t]/cm"}]; 

h[t]/cm 
40 

30 

2 0  

1 0  ~ 

t " " " " t / S  

20 40 60 80 100 120 
For reference the dashed line across the data is set at the 10-cm level. With this we can see that 
once this level is reached, then independent  of the starting point, it takes 50 sec to finish the 
process. The fluid moving out of the vessel then has no "memory"  of the level at which the 
process was initiated. What  we seek now is the relationship between the rate of change in 
level and the level in the tank, since both the material  balance and the experimental  data drive 
in this direction. We can get to this by comput ing  the rate of change in level as a function of 
time for each exper iment  and then plotting this for comparison.  

The approximate  rate of change can be computed  from the data by taking the slope be tween 
successive data points and plott ing this versus the time at that second point. We can write a 
function to do this and then plot the data. The algori thm for implement ing  this procedure  on 
the set "sepdat"  is: 

Take the nth set of data, from this extract the (m + 1) data pair and from this take 
the second number, subtract from this the second number  from the mth data point 
of the same data set; divide this by the difference be tween  the first number  from 
the (m + 1) pair from the nth set and the first number  in the mth data pair of the nth 
set. Do this for all the n datasets and all the m pairs in each set. 

The function to do this is shown here: 

rttot[x_, m_, n_]: -- 
x [[n, m + 1, 2]] - x [[n, m, 2]] 

x [[n, m + 1, 1]] - x [[n, m, 1]] 
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It is worth understanding because it is such a useful tool when analyzing da ta- - the  relation- 
ship is written in a general way that can be implemented often in our analyses. To implement 
this we simply place it inside a pair of nested Table commands.  The inside command creates 
a loop around the m data pairs in each set and the outside command loops over the n data 
sets. As we want  the slopes associated with times we also include a command that takes each 
of the times and pairs it with a slope that looks like this: 

{sepdat[[1, m + 1, 1]], rttot[sepdat, m, n]} 

The following cell puts all of this together and makes a plot of the slopes versus time for each 
set of data. Each data set corresponds to a different initial level: 

In[5].=rttot[x__, m_, n_] := 
x[[n, m+l, 2]]-x[[n, m, 2]] 

x[[n, m+l, I]]-x[[n, m, i]] 

Table [Table [ {sepdat [ [1, m, I] ], rttot [sepdat, m, n] }, 
(m, 1, Length [sepdat [ [1] ] ] - 1) ], (n, 1, 4) ] ; 

ListPlot [Flatten[Abs [%], 1], 
~h[t] 

AxesLabel ~ {"t/s", "I 
~t 

I (cm sec -1) "}, 

PlotRange ~ {{0, 130}, {0, 0.7}}]; 

&h[t] 
At 

I(cm sec -1) 

0.6 
0.5 
0.4 
0.3 
0.2 
0.1 

20 40 60 80 100 120 
t/s 

Each data set falls on a line and the slopes of each of these lines are identical! The slopes are 
the approximate second derivative of the change in level with time. From the graph we can 
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see that all of the second derivatives are constant and each is equal to the same value, or stated 
more precisely: 

A ( A h [ t ] )  = constant 
At At  

We realize now that the constant is the gravitational acceleration g. Even without  knowing this 
it would be logical to replot the rate of change in level against the level rather than against the 
time. Out initial analysis of the system suggested this very approach, since level as a function 
of time is the key characterizing variable in this system. To do this we reuse the last cell but  
with a change in the table function to make the plot one of rate versus level rather than rate 
versus time. Hence the line "sepdat[[1, m, 1]]" becomes "sepdat[[n, m, 2]]." 

In[8] --rttot[x__, m_, n_] := 
x[[n, m+l, 2]]-x[[n, m, 2]] 

x[[n, m+l, I]]-x[[n, m, I]] 

Table[Table[{sepdat[[n, m, 2]], rttot[sepdat, m, n]}, 

{m, i, Length[sepdat[[l]]] - i}], {n, i, 4}] ; 

ListPlot [Flatten[Abs [%], i], 
z~h[t] 

AxesLabel ~ {"h/m", "I - - I  (cm sec -1)''}, 
At 

PlotRange ~ {{0, 45}, {0, 0.7}}]; 

z~h[t] 
At 

I (cm sec -1) 

0.6 
0.5 
0.4 
0.3 
0.2 
0.1 

# 

, t  
t 

m 

O0 

O O 

h/m 
10 20 30 40 

This is quite interesting--all the data from the different experiments now fall on one curve! 
We notice that the data have distinct functional dependence, which is neither linear nor 
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logarithmic, but  is, rather, square root. If Torricelli pursued this approach, and no doubt  
he did, then we can imagine that he felt quite a thrill when he made this graph and realized 
that he had uncovered a fundamental  physical law. To be sure that the rate of change data 
do follow a square root dependence on level, we can fit the data to this form and evaluate 
the constants. We will use Fit for doing this. The data set will be constructed from the nested 
"Table" code in the last cell. The function we seek to fit to will be k hvFh-~. The procedure to 
do this and the comparison to the data are done in the following routine: 

In[ll]:= isdat = Flatten[ 

Table [ 

Table[{sepdat[[n, m, 2]], rttot[sepdat, m, n]}, 

{m, 1, Length[sepdat [ [n] ] ] - i} ], {n, 1, 4} ] 

�9 I]; 

Fit[ 

Abs[isdat], ~/h, h] 

Plot [Abs [%], {h, 0, 50}, DisplayFunction ~ Identity] ; 

ListPlot [Abs [ isdat ], 
~h[t] 

AxesLabel ~ {"h/m", " I ~ I  (cm sec -1)''}, 
At 

PlotRange ~ {{0, 45}, {0, 0.7}}, DisplayFunction ~ Identity]; 

Show[%, %%, DisplayFunction ~ $DisplayFunction]; 

Out [12]- O . i02464~ 

z~h[t] 
At 

I(cm sec -1) 

0.6 . " 
0.5 
0.4 
0.3 
0.2 
0.1 

I 

10 20 30 40 
hlm 
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The fit to the experimental  data is quite good. (We can get a report  on the "goodness  of fit" if 

we need to, but  it is not necessary here.) At this point  we have found a function that  relates 
the flow rate out of the tank to the level in the tank. The paramete r  value that fitted the data 
includes within it the cross-sectional area of the tank, as you m a y  recall from the original 
statement:  

dh[t] f[h[t]] q [h[t]] 

dt A A 

m 
= - k  h ~ ~  - -7~/~[t] 

m 
k = -- - 0.10 

A 

At this point  we would  do well to analyze the dimensions  of all the parameters  on the right- 
hand  side. As the left-hand side has d imensions  of length of t ime -1, so too mus t  the r ight-hand 
side. Therefore, we can solve for the dimensions  on the parameter  m: 

Length m 
In [I 6] Solve [ ~ == ~Length m] 

time Length 2 " 

Length 5/2 
Out [i 6~ @m -~ } } 

time 

Now if we rerun the exper iment  we just described, but  vary  the orifice area, then we will find 
data that looks as follows: 

h[t]/m 

200q 

ee 

ee 
150 

i00 
ee 

50 �9 

25 50 

Ao - 0.5, i, 2, 3 

0 0 0 ~  ~ 

75 I00 

�9149149149149149149 
1 2 5  1 5 0  1 7 5  

t/sec 



3.3 Experiment and the Constitutive Equation 123 
I....k ..... [ I !  I I I I . . . . . . . .  I I /1111 I . . . . .  I I ] [  . . . . . . . . . . . . . . .  21..2 i . . . . . 2 . . i L C i ~  I C C - C ~ - - ~ . 2 / . C ~ ~ - ~ C C ~ ~ C Z ~ - - ~ 2 ~ - ~ C ~ . . - 2 ~ - Z ~ Z 7 - -  

I Ah[t] I (cm sec -I) 
At Ao = 0.5, 1, 2, 3 

0 �9 �9 
�9 0 0 0  

5O 

0 0 0 0 0 0 0 0  O O �9 �9 �9 �9 �9 �9 �9 �9 �9 

i00 150 200 
h/m 

An analysis of this data shows that the flow rate out of the vessel is directly proportional to the 
orifice area. From experiments like these, Torricelli finally deduced that the flow rate looked 

like this: 

qIh] = bl Ao v/hit] 

It turns out that b l  is the square root of 2 g, where g is the acceleration due to gravity. Thus in 
full form Torricelli's law is: 

q[h] = b Aov/2gh[t] 

The parameter b is found empirically. It is related to the resistance to flow through the orifice. 
If the orifice were perfectly smooth, then b would have a value of unity. It is essentially a 
coefficient of friction. We check for dimensional consistency one more time and find: 

In[17]'= Simplify[ 

Out[17]: True 

Length 3 

time 
~ Length Length] ] == (I) Length 2 PowerExpand [ time 2 

Today it is clear that the dependence should be of half order in t because we can do a simple 
energy balance to determine that this is the case. If due to the force of gravity the fluid is falling 
out of the vessel when it flows, then it truly is a falling body. The kinetic energy during the 
fall can never exceed the potential energy that the body has prior to the fall. We can then state 
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that: 

1 
mgh[t] - ~ mv[t] 2 

v[tl = v/2 gh[t] 

In the case of the fluid, this is its velocity through the orifice. The product  of this velocity and 
the area of the orifice is by definition the volumetric flow rate: 

q[hIt]] = Ao v[t] = Aov/2ghit] 

Although Torricelli did not know this, his work  helped to point  Newton  in the right direction. 
Therefore, Torricelli's Law is the constitutive relationship that we seek to complete our model.  
We return to that endeavor  now. 

3.4 Solving for Level as a Function of T i m e  
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The equation that will yield the level as a function of time is this one: 

dhIt] b Aov/2ghIt] 
dt A 

We can solve this for h[t]: 

In[18].:Clear[Ao, g, A, ho, h, b] 

Simplify [DSolve [ {h' [t ] == - 

h[t], t] ] 

b Ao%/2gh [ t ] 

A 

J AobJ J t 
Out [19]- {h[t] -~ ho- + 

A 2A 2 ' 

Aobv~~t Ao 2b 2 gt 2 
h[t] -~ ho + + } 

A 2A 2 

Ao 2 b 2 gt 2 

�9 h[0] ==ho}, 

The functional form is what  we should expect for the position of a body in motion and we find 
it to be a quadrat ic  in time. As we know the level is falling and not rising, the first solution is 
the appropria te  one for this situation. We can simplify it further as follows: 

In[20]':ho Expand[(ho - 
A 

~/2Aob~t AO 2b 2 gt 2 
Out [201= ho (] - + ) 

A V/~ 2A 2 ho 

A o b ~ ~ t  Ao 2b 2 gt2 
+ 

2 A  2 
) / h o ]  



This can be factored because the coefficient of t is two times the square root of the coefficient 
of t 2. Therefore, we find: 

A o b v ~ t ] 2  
h[t] : ho 1 - A~,,'2-h--o 

A comparison of the function to the data points gives an excellent fit: 

h[t]/m 

200 

150 

i00 

50 

25 50 75 i00 125 150 175 
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t/sec 

3.5 Mass Input, Output, and Control 
Mass Input and Output 
Constant Input 
The next logical problem to consider is that of a vessel with a specified mass flow in and gravity 
mass flow out. In a very real sense the accumulation term is the response to the interaction of 
these two flows. Remember also that the problem we are doing is not only a real one, but it 
is also easily extended and modified for other problems that are seemingly unrelated. We use 
this problem simply to illustrate the principles and that is its real value. The physical picture 
is shown in Figure 2. 

The material balance equation has two terms on the right-hand side. 

dm(t) 
= Y~/in - -  F r / o u t  dt 
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Mass flow in 

Ao 

F 
h[t] 

~'~ Mass flow out 

Figure 2 

The mass flow term in can be taken as the product of the density of the fluid and its volume 
flow rate. The mass flow out can be specified by Torricelli's Law multiplied by the fluid density 
and the mass in the control volume is the product of the fluid density, the tank's cross-sectional 
area, and the level at any time t. This gives us the following equation: 

d[pAh[tl] 
dt 

= p q -  pb Aov/2gh[t] 

Simplification provides us with: 

dh[t] q - b Aov/2gh[t ] 
dt A 

This can be solved and we can examine the behavior of the t ime-dependent solution. We will 
begin the analysis assuming that the tank is initially empty, that is, that h[0] = 0, the initial 
condition. We will assume for now that q is a constant. This is also a good problem because 
we can approach the solution of this equation in several ways using Mathematica. 

We can rearrange this by separation to find: 

dh[t] dt 
l 

q - b Aov/2gh[t] A 
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Solution by Direct Indefinite Integration after Separation 
This in turn can be simplified to this form: 

dy  dt 

a - b lv ' -  9 A 

a = q  and b l = b A o v ~  

Here we do the indefinite integration: 

In[21].=Clear[a, bl, y, yo, t] 

i I 11 . - b l v 9  ay - -  ; ,  a t  

2 VV 2 a T , o g [ a  - b l , / 7 ]  t 
Out [22] = bl bl 2 A 

The result does not explicitly include the constant of integration; we add this and then evaluate 

it at t - 0 and y -  yo = 0: 

In[23]'=yo = 0; 

- 2 V~O 2 a Log [ a - bl V~o ] 

bl bl 2 

2 a Log [ a ] 
Out [24 ] . . . .  C 

bl 2 

2vF9 2a Log [a - bl v~] 
In[25] "- 

bl bl 2 

==C 

2 a Log [ a ] t 
-(- )==- 

bl 2 A 

2~/~ 2a Log [ a ] 2a Log [ a - blv/y] t 
-- _}_ _ - - - -  _ 

Out [25] bl bl 2 bl 2 A 

In [26] "= 
2~ 2aLog[a-bl~] 2aLog[a] t 

-(- ) ==-- // Simplify 
bl bl 2 bl 2 A 

2 (bird- aLog [a] + a Log [a - bl~/y] ) t 
Out [2 6] . . . . .  

bl 2 A 

Now we can set this result up as function, apply  parameter  values, and plot it: 

I n [ 2 7 ]  .= s l [ y _ ]  := -A 
2(b1~ - aLog[al + aLog[a - bl~]) 

bl 2 

As we have an expression in y for t, we use this to compute  the values of t ime corresponding 
to a set y-value. Thus the Table function that follows gives the value of s I [t] first and then the 

set value of y. 
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In [2 8 ] �9 = Clear [y] 

In[29]:=a = 10; 

bl = 1; 

A- i0; 

tsl = Table[{sl[x] // N, x}, {x, 0, 200�9 5}] 

Out[32]={{O., 0}, {5.89788, 5}, {12.7805, I0}, {20.5158, 15}, 

{29.114, 20},{38.6294, 25}, {49.1474, 30}, {60.784, 35}, 

{73.6911, 40}, {88.0663, 45}, {104.168, 50}, {122.341, 55}, 

{143.053, 60}, {166.967, 65}, {195.052, 70}, {228.816, 75}, 

{270.785, 80}, {325.702, 85}, {404.211, 90}, {540.292, 95}, 

{00, i00}, {535.291-628.319~, i05}, {394.207-628.319~, ii0}, 

{310. 687 - 628.319~, 115}, 

{203.75 - 628.319~, 125}, 

{131.782 - 628.319~, 135}, 

{76.9389 - 628.319~, 145}, 

{32.3096 - 628.319~, 155}, 

{-5.5166 - 628.319~, 165}, 

{-38.4775 - 628.319~, 175}, 

{-67.7808 - 628.319~, 185}, 

{-94.2306 - 628.319~, 195}, 

{250.752 - 628.319~, 120}, 

{164.937 - 628.319~, 130}, 

{102.775 - 628.319~, 140}, 

{53.6089 - 628.319~, 150}, 

{12.69 - 628.319~, 160}, 

{-22.5176 - 628.319~, 170}, 

{-53.5291 - 628.319n, 180}, 

{-81.3229 - 628.319~, 190}, 

{-106.568 - 628.319n, 200}} 

It is very interesting to note that the numerical values of time are real until we reach a value 
of 100 and then they depart  for the complex plane. We can start to see why if we com- 
pute the steady-state value of y directly from the differential equation for these parameter  
values: 

In [ 3 3 ] . = Solve [ O == 
a - bl~ystst 

A 

Out [33] = { {ystst -~ i00 } } 

�9 ystst ] 

Therefore we see that the integration solution we have obtained works up to the point of 
steady state, but not beyond. We plot the real values of this solution to see how the solution 
behaves: 

In[34]:=p11 = ListPlot[Take[tsl, 20], 

PlotLabel ~ "Steady State", 

Epilog ~Line[{{0�9 i00}, {450, 100}}]�9 

PlotRange ~ {{0, 450}, {0�9 105}}]; 
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So this solution approaches the correct s teady state value but  we do not know if the time- 
dependence  is correct. We might  wonder  how and where  this solution was derived. 

Solution by Substitution 
We can try the old me thod  of substi tut ion to solve this problem. We know that the integral of 

1 ~+bx over x gives a simple logari thmic form. Therefore, we can try using the substi tut ion of 

U - -  ~/y~ 

In [35] . -u = %/y; 

D [u, y] 

1 
Out [36] = 2V? 

From this we know that dy = 2 ~ du = 2 u du. We can t ransform the integral as follows: 

a - blx/y a - blu du ---- X 
dt 

In [37] .=Clear[u, a, bl, A] 

2u / 1 
In [38] -- du == - 

a- blu A 
~t 

0ut[38]=2 (- ~ - 
u aLog[a - blu] 

bl bl 2 
_ _  
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To this we must  add the constant of integration and then we need to evaluate this at the initial 
condition, which can be after substitution of u: 

In [39 ] �9 = Clear [y] 

In[40] .=u = ~/y; 

-u aLog[a - blu] t 
In[41].=2(~- ) + C == - 

bl bl 2 A 

Out [41]= C + 2( "/Q'- aLog[a-bl~] t 

bl bl 2 ) -- A -- 

In[42].= t = 0; 

y = yo; 

Solve[C + 2(---- 
J9 aLog[a - bl~] 

bl bl 2 

t 

A 
c]  

2 a Log [ a ] 
Out [44]= { {C -~ }} 

bl 2 

In[45] := yo = 0; 

2 (blv~o + aLog[a - blv~o ] ) 

bl 2 

2aLog[a] 
Out [46] = 

bl 2 

Adding this to the previous general solution we obtain: 

2a Log [a] t v/y a L o g [ a -  b l v / y ] )  t 
bl  2 + 2  bl  bl  2 X 

We can bring this over just b12 to give: 

In[47] ::yo =. 

y =. 

2 a Log [ a ] V~ a Log [ a - bl V~ ] 
+2 ( )] // Simplify Together [ bl 2 bl bl 2 

2(bl~- aLog[a] + aLog[a - blv~]) 
Out [49] = - 

bl 2 

This is exactly the same solution that we had obtained earlier from the Mathematica direct 
indefinite integration. 

2 (b l , /y  - a Log [a] + a Log [a - bl~/-y]) t - a  
b l  2 A 
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Power Series Expansion 
At this point  we could ask the quest ion " W h y  not just do the integrat ion over definite limits, 
that is, from yo - 0 or even y = yo at t = 0 to y at t?" The answer  for both the unsubs t i tu ted  
and the subst i tuted cases is shown here: 

In[50].=Clear[a, bl, t, A] 

In[51] ": u =. 

t =. 

o y 1 /o t 1 

o u 2u /o t 1 ~u == -~t 
a - blu A 

Series--vcnt �9 Center point -y of power series expansion 

involves the variable y. 

Series--vcnt �9 Center point -y of power series expansion 

involves the variable y. 

Series--vcnt �9 Center point -y of power series expansion 

involves the variable y. 

General--stop �9 Further output of Series--vcnt will be 

suppressed during this calculation. 

~ Y 1 t 
Out[53]= A 

a - bl~ dy == - 

Series--vcnt �9 Center point -u of power series expansion 

involves the variable u. 

Series--vcnt �9 Center point -u of power series expansion 

involves the variable u. 

Series--vcnt �9 Center point -u of power series expansion 

involves the variable u. 

General--stop �9 "Further output of Series--vcnt will be 

suppressed during this calculation. 

o u u t Out [547= 2 du :: -- 
a - blu A 

In both cases we find that the error message is the same: "Center  point  - y  of power  series 
expansion involves the variable y." This tells us w h y  it failed, but  it also gives us a di rect  
clue as to how Mathematica is solving this in tegra l - - i t  is using a power  series expansion of 
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the integrand. Since the indefinite integration works,  it may  also be using this me thod  or the 
substi tution method.  We plot the integrand to remind  ourselves wha t  is happen ing  and w h y  
there is a problem: 

In[55] ": f[y_] := 

a = i0; 

bl = 1; 

A = 10; 

a-bl~ 

Plot[f[y], {y, 0, 200}]; 

f[100] 

15 

10 

5 

- 5  
- 1 0  

- 1 5  

50 1 150 200 

Power- -infy �9 Infanite expression 1 encountered. 

Out [60]- ComplexIng_nity 

Right - - the  integrand goes to complex infinity in the vicinity of y = 100, that is, when  the 
numerical  value of blx/-y is the same as a! This causes some difficulties in the integration. We 
can now turn to the power  series expansion of the integrand. We can do this as follows out to 
terms of any order n; in this case we choose to go out to order 3: 

In [61] ": Series [ 1 a---~'~xVy {y" o, 3)] 

1 v/y y y3 / 2 y2 y5 / 2 y3 
Out [61 ] = + + + + + + + 0 [y] 7/2 

i0 i00 i000 i0000 i00000 i000000 i0000000 
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N o w  we can use this series to do the integration: 

In[62] .:/Series[ 
1 
b ~/y--1 ~-' {y" 0, 3}] @y a mmn 

y y3 / 2 y2 y5 / 2 y3 y7 / 2 y4 
Out [62] = + + + + + + + 0 [y] 9/2 

i0 150 2000 25000 300000 3500000 40000000 

H o w  does this relate to the solution that  we obtained via the direct integrat ion of the original 
function? We know that solution, so we will test it against  this new solution: 

2 ( b l v l y -  a Log[a] + a Log [a - blv/y])  

b l  2 

To do so we can expand the log in a power  series about  zero and subtract  it from the - ~ -  term: 

2(bl~- aLog[a] + a Series [Log [a - blv~] , {y, 0, 4}]) 
In[63] .: - 

bl 2 

y y3 / 2 y2 y5 / 2 y3 
Out [63]- + + + + 

i0 150 2000 25000 300000 

y7 / 2 y4 
+ + + 0 [y] 9/2 

3500000 40000000 

Aha! It is clear that these are the same solution. Thus, Mathematica found the solution in terms 
of the power  series and then recognized that this could be wri t ten as a difference including 
the log function of the argument!  

We can now evaluate this power  series result and compare  it to the result we obtained 
from the closed form solution. That is to say, if we had not recognized, as Mathematica did, 
that the power  series solution could be recast as a log, then we might  have s imply used the 
solution we had. Let's compare this new solution wi th  the previous one by making  a function 
of it, evaluat ing t at each y and then plott ing it against  the previous results: 

In [64 ] . : s2 [y_]:= A( y-+2bly3/2+bI2y2 
a 3a 2 2a 3 

In[65].:a = 10; 

bl = I; 

A = i0; 

2 bl 3 y5/2 bl 4 y3 2 bl 5 y7/2 bl 6 y4 
+ + + + ) 

5a 4 3a 5 7a 6 4a 7 

In [68] "- tst2 = Table[{s2[x] // N, x}, {x, 0, 100, 10)] 

Out[68]:{{O., 0}, {12.7795, i0}, {29.0873, 20}, {48.9513, 30}, 

{72.843, 40}, {101.396, 50}, {135.358, 60}, {175.578, 70}, 

{222.991, 80}, {278.621, 90}, {343.571, i00}} 

In[69] . =pl2 = ListPlot [tst2, PlotStyle 

{PointSize[0.015], GrayLevel[0.4]}]; 
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In[70] . - S h o w [ { p l l ,  p12}, DisplayFunction ~ SDisplayFunction] ; 
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I I I I 
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The results indicate that the fourth-order approximation of the integral does follow the closed 
from solution rather well for about 60% of the steady-state value, and then it deviates and does 
so markedly. Notice also that it does not have an upper bound; its values go right through the 
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steady state. How can we account for this? Recall that we approximated the integrand with a 
power  series of order n = 3. In so doing we d ropped  the higher-order terms. This has to lead to 
numerical errors. Clearly, when  Mathematica numerically evaluates any log function, however  
it actually does it, it does so in a fashion that is far more accurate than of order 3 accuracy. We 
could go to higher order, reintegrate, and see if the agreement  is better. We do that now: 

In[71]'-Clear[a, bl, t, A] 

Series [ , {y, 
a - bl~ 

0, i0}] ~y 

y 2bly 3/2 bl2y 2 
Out [72]: - + + 

a 3a 2 2a 3 

bl8y 5 2b19y II/2 
+ 

5 a  9 l l a  10 

bll4y 8 2bl15y 17/2 
+ 

8 a  15 1 7 a  16 

bl20y II 

lla 21 
+0[y] 23/2 

In[73]'- s3[y_] := 

2b13y 5/2 

5a 4 

bllOy 6 
+ 

6a II 

bll6y 9 
+ 

9a 17 

y 2bly 3/2 
A( -+ 

a 3a 2 

b12y2 
+ 

2a 3 

bl 4y3 

2b17y 9/2 bl8y 5 
+ 

9a 8 5a 9 

3a 5 

2b15y 7/2 
+ 

7 a  6 

2bllly13/2 

bl6y 4 
+ 

4 a  7 

13a 12 

bll2y 7 
+ 

7 a  13 

2bl17y19/2 

19a 18 

2bl 7y9/2 
+ 

9 a  8 

2bl13y15/2 
+ 

15a 14 

b118y Io 
+ 

lOa 19 

2b13y 5/2 bl4y 3 
+ + + 

5a 4 3a 5 

2b19y 11/2 b110y 6 
+ ~  

l l a  l o  6 a  11 

2b119y21/2 
+ 

2 1 a  20 

2b113y 15/2 b114y 8 
+ ~  

15a 14 8a 15 

2615y 7/2 bl6y 4 
+ ~  

7a 6 4a 7 

2b1igy21/2 bl20y II 
+ - -  

2 1 a  2o l l a  21 

2bllly 13/2 bll2y 7 
+ + ~  

13a 12 7a 13 

2bl15y 17/2 bll6y 9 
+ ~  

17a 16 9a 17 

2b117y19/2 b118y10 
+ - -  

1 9 a  18 l O a  19 

In[74]-- a = 10; 

bl = 1; 

A = I0; 

tst3 = Table[ {s3 [x] // N, x}, {x, 0, 100, 10} ] 

Out[77]: {{0., 0}, {12.7805, i0}, {29.114, 20}, {49.1474, 30}, 

{73.6905, 40}, {104.159, 50}, {142.957, 60}, {194.309, 70}, 

{265.875, 80}, {371.793, 90}, {538.163, i00}} 

In [78] .- p13 = ListPlot[tst3, 

PlotStyle ~ {PointSize [0. 015], 

GrayLevel [ 0.8 ] }, DisplayFunction ~ Identity] ; 

Show[ {pll, p12, p13}, DisplayFunction ~ $DisplayFunction] ; 
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Clearly, by going out to more terms, that is, to terms on the order of n - 10, the accuracy is 
much better and comes closer than that which we had for the analytical solution. 

Solution with DSolve---the Differential Equation Solver 
Mathematica also provides us with the differential equation solver DSolve,  which can be em- 
ployed for this problem. When we do this we do not have to work  quite as much as we did 

using the integration methods.  The solution looks as follows: 

In [80] "- Remove [a, bl, A] 

soln = DSolve[{y' [t] == 

y[t], t] // Simplify 

a- bl~y[t] 
A �9 y[0] == 0}, 

s4[t__] := Evaluate[y[t] /. soln] 

InverseFunction--ifun �9 Inverse functions are being used. 

Values may be lost for multivalued inverses. 

Solve-'ifun �9 Inverse functions are being used by Solve, 

so some solutions may not be found. 

Solve--ifun �9 Inverse functions are being used by Solve, 

so some solutions may not be found. 

a 2 ( i + Pr odu c t Log [- ~e- i - ~laAt a ])2 

Out[81]- {y[t] -~ bl;~ } 
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Now we have a solution that is different from any of the others that we have derived so far. In 
fact, the solution depends  upon  a new function that is unfamiliar in n a m e - - t h e  ProductLog 
function. The Help Browser  tells us that the ProductLog[z] is the principal solution to the 
equation z = we "~. We should test this solution to be sure that it is one that satisfies the original 
equation. We can do so as follows. We have specified the solution as the function s4 [t]. Taking 
the derivative of this function, we should obtain the same result as we acquire when  we 
put  this function into the r ight-hand side of the equation and simplify. Therefore, we set the 
derivative with respect to time equal to the r ight-hand side after substitution. To be efficient 
we Simplify,  PowerExpand,  and Simpl i fy  again using the / / C o m m a n d  structure. If you  
need to see what  is happening  here, redo the derivative and the r ight-hand side wi thout  these 
additional commands ,  and then take the results and apply them sequentially to reach the same 
final forms. 

In[83].-Clear[a, A, bl] 

In[84] "-lhs =Or s4[t] // Simplify // PowerExpand // Simplify 

rhs = 
a - bl~s4 [t] 

// Simplify // PowerExpand // Simplify 

lhs == rhs 

Out [84] : - 

Out [85] : - 

I bl2t 
a ProductLog [- e 2ai ] 

aProductLog [- e 

Out [86] -True 

Therefore, we can be sure that this ProductLog function is a full-time solution to the 
equation. The next step in our analysis then should be to compare this solution's behavior  in 
time with the previous solutions using the same parameter  values. We do this as follows: 

In[87].-a = 10; 

bl = 1; 

A = I0; 

Plot [s4 [t], {t, 0, 1050}, 

Epilog ~ {Line [ { { 0, 100 }, { 1050, 100 } } ] }, 

PlotRange ~ {{0, 1050}, {0, 105}}, 

AxesLabel ~ {"t", "h[t]"}]; 

p14 = Plot[s4[t], {t, 0, 1050}, 

PlotStyle ~ {Thickness[0.006], Dashing[ {0.025, 0.015}], 

GrayLevel [ 0.2 ] }, DisplayFunction ~ Identity] ; 

Show[ {pll, p12, p13, p14}, DisplayFunction ~$DisplayFunction] ; 
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Here we can see that the solution provided by DSolve is in fact one that is a full t ime-dependent 
solution. This solution rises in time according to the same dependence of the log function we 
had obtained earlier, but it also approaches the limiting level asymptotically and, therefore, 
correctly. 

If we leave all else the same but begin the process with either a higher or a lower volume 
flow rate, what  will be the result? Will the steady-state position change? We can see the 
answer immediately by using the steady-state solution. Choosing a higher or lower flow rate 
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will markedly  affect the position of the steady state, as this level depends  on the square of the 

flow rate in. 

F|uxiona| Input 
We can now ask what  the effect of fluxional input  would  be. Suppose, for example, that the 
input were sinusoidal as we saw in Chapter  1: What  would  the output  look like given a 
gravity-driven flow response? The virtue of Mathematica is that we can solve this problem 
with very little effort beyond  what  we have already done and we can compare the results with 

those from constant input. Here is how we do it. 
First, solve the new differential equation taking q[t] for the input  as qo (1 + G Sin[fl t ])" 

dh[tl qo(1 4- c~ Sin[f/t]) - b Ao~/2ghIt] 

dt A 

This can be solved numerically for a specific value of the parameters.  We then evaluate 
this new definition of h[t] and call it hsin[t] to dist inguish it from the earlier work  we have 
done. We make similar changes to the plot names. The value for qo is taken as 20 in order to 
be the same as the constant flow case. The magni tudes  of G and fl are taken to be the same as 

they were in Chapter  1. 

In[93].- Clear[s, fl, g, q, qo, b, Ao, A, h] 

In[94] := r = 1.7; 

A = N[wr2]; 

Ao = 0.1A; 

b = .25; 

g = 9.80; 

qo = i0; 

G - i.; 

= .25; 

b Ao~g; 

tmax = 1050; 

In[104] " : solnO = NDSolve[ 
qo(l + G Sin[fit]) - b Ao~/2gh[t] 

{~t h[t] == 
A 

h[0] == 0}, h[t], {t, 0, tmax}]; 

hsin[t_] := Evaluate[h[t] /. soln0] 

qin[t] := qo (I + GSin[~t]) 

qexsin[t_] := b Ao~2g hsin[t] 

plqsinin = Plot[qin[t], {t, 0, tmax}, 

AxesLabel ~ {"t/sec", "qin[t]/m sec-l"}, 

PlotRange ~{{0, tmax}, {-I, 25}}]; 



plhsin = Plot[hsin[t], {t, 0, tmax}, 

AxesLabel ~ {"t/sec", "h[t]/m"}, 

PlotStyle ~ GrayLevel[0.4]]; 

plqexsin = Plot[qexsin[t], {t, 0, tmax}, 

PlotStyle ~ GrayLevel [ 0.4 ], 

AxesLabel ~ {"t/sec", "qex[t]/m sec-l"}]; 

qin[t]/m sec 
25, 
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The results show that the output flow is coupled to the input flow quite tightly after an initial 
transient period. We can compare these responses to the sinusoidal input with those from the 
constant input case by plotting qexIt] and hit] for both cases: 

In[ill] : = bl = i; 

a = I0; 

Plot[bl~s4[t], {t, 0, tmax}, PlotStyle ~ Thickness[0.01], 

DisplayFunction ~ Identity] ; 

Show[plqexsin, %] ; 

Show[plhsin, p14] ; 
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t/sec 

Since we chose all the parameters  to be the same, we note the fluxional values of h and qex 

for the sinusoidal input  case are larger earlier than they are for the fixed input. The reason is 

that the input  flow in the sinusoidal case rises to a value well over its average value. 

In[ll6] "- Show[plqsinin, Graphics[{Thickness[0.015], Line[{{0, qo}, 
{1100, qo}}]}]]; 
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It would  be very nice to be able to dampen  the input  fluctuations and to smooth  the output  from 
this vessel. To do this requires a control function. One form of control would  be to increase the 
flow rate out of the tank whenever  the level in the tank rises or falls above or below a designed 
set point  level hd. For example, the set point  level could be the steady-state level that we found 
from the earlier example with constant input  flow, which is the also the bold black horizontal  
line in level graph above. To increase the flow rate in the case of gravi ty-driven flow, we must  
increase the size of the orifice. We can increase it in proport ion to the difference between the 
actual level in the tank at any time and design level. The actual implementat ion would  involve 
having a level sensor tied to an actuator, which would  open the valve more or less depending  
on the level. The mathematical  description of this control function can be given as: 

A o [ h [ t l ] -  Aoo(1 - K(hd - h[tl)) 

In this expression Aoo is the nominal  aperture size to deliver at the design flow rate based on 
the constant set input  flow rate. The second term in the parenthetical expression is the product  
of a proport ionali ty constant K and the difference between the set point  level and the actual 
level as a function of time. We substitute this for Ao in Torricelli's Law and also in the equation 
describing a system with sinusoidally fluctuating input  flow: 

dh[t] qo (1 + ~ Sin[fltl) - b Aoo (1 - K (hd - h[t]))v/2gh[t] 
dt A 

Notice that if K were set to zero, the equation would  revert back to that which we have already 
solved for the uncontrolled system. We can operate on the r ight-hand side to put  it into a form 
that is more readily understood:  

In[ll7].:Clear[~, fl, g, q, qo, b, Ao, A, h, K, hd, Aoo] 

In [i 18 ] �9 :Collect [Simplify [ PowerExpand [ 

qo(l + ~Sin[flt]) - bAoo(l - K(hd - h[t]))~2gh [t] 
]], qo] 

Out [i18]-- 

In [119] ":- 

Out [119]-- 

A 

~Aoob~~h[t] (i - hdK + Kh[t]) qo(l + ~Sin[t~]) 
+ 

A A 

v/2Aoo bv~%/h[t] Collect[ (I - hdK + Kh[t] ), K] 
A 

v~Aoo b~~h[t] (i + K(-hd + h[t])) 
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From this form of the equat ion we can see that we have one function of t ime alone and another  
that is a function of level h[t]: 

dh[t] v/2 Aoo by/- ~ ~ - ~  (1 + K(h[t] - h d ) )  qo(1 + c~ Sin [t/J]) _ -_  _+. 
dt A A 

dh[t] v/2 Aoo bv / -g~ -~  (1 + K(h[t] - hd)) qo(1 + ~ Sin [tfl]) 
t = 

dt A A 

We will use all the same parameter  values that we have used in the previous problem, but  
we will have to pick a magn i tude  for K. This is best done by solving the problem and then 
resetting the value to get a sense of the solution's parametr ic  sensitivity to the magn i tude  of 
K. We start with a value of zero to be sure that the solution to this new equation reduces to 
that of the one we have solved already. See the following graphical illustrations. 

In[120].-Clear[G, fl, g, q, qo, b, Ao, A, h, K, hd, Aoo, t] 

In [121] := Ao =. 

r = 2; 

hd = 12; 

A = N[Trr2]; 

Aoo = 0.2 A; 

b = i; 

g = 9.80; 

qo = 20; 

~ = 1; 

= .25; 

K = 0; 

tmax = i00; 

solnl = NDSolve[ 

v/2Aoo bv~hx[t] (i + K(hx[t] - hd)) 
{ h x '  [ t )  = = -  

A 
qo(l+ ~Sin[tfl)) 

+ , hx[0) ==0}, hx[t), {t, 0, tmax}]; 
A 

hc[t_] := Evaluate [hx [t] /. solnl] 

qin[t] := qo(l + ~Sin[flt]) 

Ao[t_] := Aoo(l + K(hd - hc[t])) 

qexc[t_] := b Ao[t]~2ghc[t] 

plqcin = Plot[qin[t], {t, 0, tmax}, 

AxesLabel ~ {"t/sec", "qin[t]/m sec -1''}, 

PlotRange ~ {{0, tmax}, {0, 50}}]; 
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plhc0=Plot[{hc[t]}, {t, 0, tmax}, 

PlotStyle -, Thickness [0. 008], 

PlotRange -, { {0, tmax}, {0, i0} }, 

AxesLabel ~ {"t/sec", "h[t]/m"}]; 

plqexc0 = Plot[qexc[t], {t, 0, tmax}, 

AxesLabel ~ {"t/sec", "qex[t]/m sec-l"}]; 
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In [141 ] : = K = 1; 

solnl = NDSolve [ 

v~Aoo bv~hx[t] (I + K(hx[t] - hd)) {hx, [ t ]  = =  - 
A 

qo(l + ~Sin[t~]) 
+ , hx[0] == 0}, hx[t], {t, 0, tmax}]; 

A 

hc[t_] 

qin [ t ] 

Ao[t_] 

:= Evaluate[hx[t] /. solnl] 

:= qo(l + ~Sin[~t]) 

:= Aoo(l + K(hd - hc[t])) 

qexc[t_] := bAo[t]%/2ghc[t] 

plqcin = Plot[qin[t], {t, 0, tmax}, 

AxesLabel ~ {"t/sec", "qin[t]/m sec -1''}, 

PlotRange ~ {{0, tmax}, {0, 50}}] ; 

plhc = Plot[hc[t], {t, 0, tmax}, 

AxesLabel ~ {"t/sec", "h[t]/m sec -1''}, 

PlotStyle ~ {GrayLevel[0.5], Thickness[.01]}, 

DisplayFunction ~ Identity] ; 

plqexc = Plot[qexc[t], (t, 0, tmax}, 

AxesLabel ~ {"t/sec", "qex[t]/m sec -1''}, 

PlotStyle ~ {GrayLevel[0.5], Thickness[.01]}, 

DisplayFunction ~ Identity] ; 
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Show[plhc, plhc0, PlotRange ~ { {0, tmax}, {0, 20}}, 

DisplayFunction ~ $DisplayFunction, 

PlotLabel ~ "Upper = Controlled"] ; 

Show[plqexc, plqexc0, DisplayFunction ~ $DisplayFunction, 

PlotRange ~ {{0, tmax}, {0, i00}}, 

PlotLabel ~ "Upper = Controlled"] ; 
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Using a bit of code and ingenuity we can have Mathematica compute the responses to incre- 
mental changes in K ranging from 0 to 21/4 in increments of a quarter unit. The code to do 
this is shown along with the outputs in two graphical forms--a  stack plot and a graphics 
array: 

In[152]:=Clear[~, fl, g, q, qo, b, Ao, A, h, K, hd, Aoo, t] 

Ao =. 

r = 2; 

hd = 12; 

A = N[~r2]; 

Aoo = 0.1A; 

b = i; 

g = 9.80; 

qo = 20; 

c~ = .25; 

fl = .25; 

K = .I; 

tmax = 200;  

Clear[~, fl, g, q, qo, b, Ao, A, h, K, hd, Aoo, t] 

Ao =. 

r = 2; 

hd = 12; 

A = N[~r2]; 

Aoo = 0.2 A; 
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b = I; 

g = 9.80; 

qo = 20; 

G = I; 

= .25; 

K = 0; 

tmax = I00; 

solns=Table[NDSolve[{hx" It] == 

v/2Aoo b v~hx[t] (I + K(hx[t] - hd) ) qo(l + ~Sin[t~]) 
+ 

A 
hx[0] == 0}, hx[t], {t, 0, tmax}], {K, 0, 10, 

A 
.25}; 

fns = Table [Evaluate [hx [t] /. solns[[n]]] [[i]], 

{n, 1, Length[solns]}]; 

plots = Table [Plot[{fns[[n]]}, {t, 0, tmax}, 

PlotRange ~ {{0, tmax}, {0, 13}}, 

AxesLabel ~ {"t/sec", "h[t]/m sec -1''}, 

DisplayFunction ~ Identity], {n, i, Length[solns] } ] ; 

Show[plots, DisplayFunction ~ $DisplayFunction, 

Epilog ~{Dashing[{0.025, 0.015}], 

Line[{{0, 12.0}, {tmax, 12.0}}]}]; 

General--spelll �9 Possible spelling error- new symbol name 

"solns" is similar to existing symbol "soln". 
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By increasing the magnitude of K we meet the original goal of dampening out the ex- 
cursions that would take place had we not included the control function. There is nothing 
essential about the particular manner  in which we solved this problem. Other functions could 
have been chosen for the control function. The essential feature of this analysis is the logical, 
stepwise manner  in which we solved it. 

3.7 Summary 
In this chapter we have extended the analyses that we can do well beyond the simple systems 
of Chapter 1. We began with a fairly simple problem, the gravity-driven flow of fluid from a 
tank that led to Torricelli's Law. With this in the tool box we were able to step smartly through 
a series of systems with input and out fluid flows that were increasingly more complex, 
culminating in the proportional control of the level of a tank with sinusoidally driven input 
flow. As we moved through these examples, we have begun to use Mathematica in ever more 
sophisticated ways, providing us with new techniques to add to our arsenal of problem-solving 
weapons. 



M ultiple-Component 
Systems 

Single-component systems are not adequate for realistic chemical engineering problems. It is 
rare to have a single component  unless it is the product  of many different unit operations. If 
chemical engineering is the science of chemical and physical change, then it is also a science of 
complexity. A major source of complexity comes as a result of having to deal with real systems 
that are composed of many interacting components.  The objective of this chapter is to set up 
a strong foundation for the problem of mult icomponent  systems of all kinds. 

4.1 The Concept of the Component Balance 
The masses of components can be handled in much the same way that we have handled total 
mass. The total mass balance is simply the sum of each of the component  balances. Imagine we 
are playing a game tossing black and gray balls into a box on a scale (see Figure 1). Each ball 
has the same mass. The player tossing the gray balls is more skillful than the one tossing the 
black ones, and as a result she is able to throw more gray balls into the box every minute than 
the fellow who is tossing black balls. The scale tells us how fast the total mass of balls, both 
black and gray, is changing. If we want  to know how fast the mass of just black balls in the box 
is changing, then we need to know how many are being thrown per unit time over the period 
of the measurement  and similarly for the gray balls. The sum of the arrival rates of the black 
and gray balls together is the rate of mass change in total within the box. 

151 
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Figure I 

@ 

The total material balance for this system is" 

dmtot[t] 
dt 

"~ /~lblack -q- f i lgray 

The component  balances are: 

dmblack[t] 
dt 

dmgray[t] 

dt 

- -  f i /black 

o 

---- m g r a y  

Restating the total material balance, we have" 

dmtot[t] dmblack[t] dmgray[t] = + 
dt dt dt 

Therefore, the sum of the component balances is the total material balance while the net 
rate of change of any component 's  mass within the control volume is the sum of the rate of 
mass input of that component minus the rate of mass output; these can occur by any process, 
including chemical reaction. This last part of the dictum is important because, as we will see 
in Chapter 6, chemical reactions within a control volume do not create or destroy mass, they 
merely redistribute it among the components. In a real sense, chemical reactions can be viewed 
from this vantage as merely relabeling of the mass. 
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To this point  we have had to deal only wi th  the mass per unit  vo lume in the form of density, 

since we were concerned only wi th  s ingle-component  systems. Mult iple components  share 
the vo lume and because of this we mus t  use concentrat ion as well as density. The densi ty of 

a single component  i is the mass of that component  per unit  volume: 

Pi mass/ 

vol 

For a mul t i componen t  sys tem the total densi ty is the sum of the masses  of the components  

per unit  volume" 

Ptot --- 

m a s s ,  

vol 

The concentration of any component  i can be either a mass concentrat ion or a molar  concen- 

tration: 

mi mass 
C i =  

vol vol 

Ni 1 mi 

M i -- vol = Mwi vol 

Ci mole 

Mwi vol 

Al though these definitions are s traightforward,  they do seem to cause problems more often 
than they should, especially for those who are just beginning to work  wi th  them in earnest. 

The component  material  balance for a system with  input  and output ,  but  no chemical 

reaction, is wri t ten as follows: 

dmi 

dt  
- -  /hi ,  in - -  / 'hi ,out  

If the mass flows are those of liquids, then in terms of mass concentrations,  this becomes: 

V dmi V 
V dt  = (rhi, in - ~hi,out)~ 

IV  1 ( lylli'in 15fli,out)v d V - 
dt  V V 

d d--~[Ci V] - ( C i , i n  - C i , o u t )  v 

d 

dt  
--[Ci V] - (C i ,  in qin - C i ,  out  qout) 
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The last statement is the typical form of a liquid-phase component  mass balance. When this is 
divided through by the molecular weight  of species i, this becomes a differential mole balance 
since the concentrations are expressed in molarity units: 

1 d 1 
MWi --[Cidt V] = ( C i ,  in qin -- Ci, out qout) MWi 

d 1 
--[Midt V] - (Mi, in qin - -  Mi, out qou t )  MW-----~ 

Typically, this last statement is written with the symbol C for molar concentration just as it is 
for mass concentration. Given that this is the case and it is not likely to change, the particular 
meaning of C must  be understood from context. Fortunately, this is usually easy to do. 

4.3 The Well-Mixed System 
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Once we move away from single component  systems there is the real possibility that the 
components will partition themselves in different parts of the vessel due to different densities, 
solubilities, or miscibilities. Partitioned systems are also referred to as "distributed." That 
means that the properties are not everywhere the same over macroscopic length scales. To 
handle distributed systems we typically have to choose a differential control volume, that is, 
an infinitesimal volume within the macroscopic system. We will see this when we consider 
plug flow down a tube. 

Although partitioning is often encountered, and even though it may be advantageous 
in many cases, it is also true that many systems are either naturally homogeneous or are 
forced to be by the action of vigorous mixing. When a system is homogeneous,  it means 
that the density and concentration are everywhere the same throughout  the control volume. 
This is referred to as the condition of being "well-mixed." From the purely mathematical 
vantage, it refers to any system that can be described solely in terms of time as the independent  
variable. We turn now to problems of systems with multiple components and which are well 
mixed. 

4.4 Multicomponent Systems 
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Liquid and an Insoluble Solid 
Mixtures are combinations of two or more components that share the same volume but retain 
their ident i ty-- l iquid plus an insoluble solid, for example. Preparing such a mixture may be 
done in a mixing tank, such as that which is used to make cement. Often done in batch mode, 
it can be done continuously as well in a system such as this one shown in Figure 2. 
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Figure 2 

~'~ Mass flow of 
mixture out 

There is a mass flow of both liquid and solid into the tank; the two are mixed well and 
then flow out of the tank to their application. The total and component  mass balances for the 
system are: 

d p m i x  V 
Total: d t  = plql + rhs - Pmix qmix 

dCl,mixV 
Liquid: d t  = plql - Cl,mix qmix 

dCs,mixV 
�9 - -  iT/s - C~ mix qmix  Solid d t  ' 

We have said that the total material balance is the sum of the component  balances. Is that the 
case here? If so, what  can it teach us? We will check it here: 

dCl,mixV dCs,mixV 
+ 

d t  d t  

d[Cl,mix Jr- Cs, mix]V 

d t  

= Plql - Cl,mixqmix q- ths - Cs,mixqmix 

= plql + ths - (C1,mix + C s , m i x ) q m i x  

For this to be equal to the total material balance, it must  be true that the sum of the mass 
concentrations of solid and liquid are equal to the density of the mixture: 

d p m i x  V d [Cl ,  mix q-" Cs ,  mix ] W 

d t  d t  
; i f f  Pmix  - -  [ C l , m i x  q-  C s , m i x ]  
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This is of course the case. If we remember that density is the sum of the masses occupying the 
same unit of volume, then we can see that: 

ml -Jr- ms rrll ms 
Pmix -- = q- = Cl,mix -+- Cs,mix 

Vmix Vmix Vmix 

This also means that there are really only two independent  equations describing this system 
and that, given any two, the other can be derived. Now we can now proceed to solve these. 
But before we do, it is important  to inspect the component  balances and the total balance for 
their other details--namely,  the consequence of the system being "well-mixed." 

Notice that in the total material balance the argument  of the derivative involves this mix- 
ture density. This as we have seen is the sum of the two concentrations of the two components,  
not the density of the solid alone, nor that of the liquid alone. On the right-hand side of the 
same equation, we note that the two input terms do involve the densities of the solid and 
the liquid in their pure states. This is because they are being delivered to the system as pure 
"feeds." The outflow term, however, includes the mixture density, the same density that ap- 
pears in the argument  of the differential. This is critical to understand.  It says that everywhere 
in the control volume the density is the same at any time and that the material exiting the 
control volume also has the same density as the material in the tank. This is the consequence 
of assuming the system is well-mixed. The same analysis can be made for the two compo- 
nent balances. They show the well-mixed assumption because they include the corresponding 
mixture concentrations in the differential and the out-flow term. 

To solve these equations we need to have a set of initial conditions for the system. We must  
decide, or know, whether  the tank is initially empty and both the solid and the liquid are added 
simultaneously, if the tank is initially loaded with pure liquid (or pure solid), or if the tank 
contains a product  mix from some previous production run. For the sake of this example we 
will assume that we must  start up the tank and the process from scratch, that is, from an initially 
empty condition to production of the target mix. To do this we will follow three time intervals" 

1. Fill the tank with liquid to a predetermined level hmax. 

2. Feed only solid with good mixing until a target density for the mixture Pmix is reached. 

3. Feed liquid with solid to maintain this density while product  mix flows from the tank 
continuously. 

We will want  to know how long it will take to reach each stage for a given set of inputs 
such as the feed rates and the target mixture density. To obtain that information we need to 
solve the balance equations in each interval. We do that now. 

Interval 1" No solid flow and only liquid flow implies a single-component balance problem. 
The total material balance becomes: 

dpmix V 
d t  

dpt V 

d t  

V ( t )  = qt t  

= Plql + ~hs -- Pmixqmix 

= Plql 

ql 
and h ( t ) =  - x t  ~ to = z-I 

h liq, o A 

ql 
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Interval 2: Solid flow and no liquid flow to reach the critical density P ' ix  corresponding to 
C* and C* The density of the mixture will be changing with time as the solid is fed to /,mix s, mix" 
the system. We need to know how long it will take to reach the target density: 

V 

dpmix V 

dt 
= rhs 

dpmix d V _ rhs 
V dt + pmix d-~- - 

d[Cl,mix q- Cs,mix] 

dt 

dCl,mix 
V dt 

d V  
-}- [Cl,mix + Cs,mix] - ~  = Fhs 

E Csmix +Ct,mi• + V d , 
dt q'- Cs,mix d t  -- F~/s 

dCl,mixV dCs,mixW 
-t- = ~ 

dt dt 
dCl,mixV 

dt 
= 0  

dCs, mix V 
dt 

= rh~ 

If we expand the total material balance equation, we obtain the sum of these two back and 
so we are unable to solve the problem. This is because we have the u n k n o w n  and only two 
independent  equations. The unknowns  are the concentrations of each component  and the 
change in volume. Each is a function of time. We need another  independent  equation. To 
obtain this we need to think about what  is happening.  

When we add an insoluble solid to a liquid, the volume of the mixture must  increase. In fact 
the volume must  grow by the volume of solid that has been added according to Archimedes '  
Law. 

Vmix : Vsolid q- Vliquid -- 
maSSsolid massliquid + 

Psolid Pliquid 

During interval 2, the volume of the liquid is a constant but  the volume of the solid in the 
mixture changes with time: 

~st 
Vmix[t]- + Wliquid 

Psolid 

dVmi• ~h~ 

d t Psolid 

Returning to the overall material balance equation, we find: 

dpmix[tl dVmix[t] 
V m ~ •  + p m ~ •  

dt dt 
= rhs 

rhst 

Psolid 
dpmix[t] -t- P m i x [ t ] ~  -}- Wliquid d t 

J~S 
Psolid 

= rhs 
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Now this equa ti on is sol ub le beca use i t inv olv es just one ind epen den t v ariab le (functi on ) - - that  
of pmi• At the start of interval 2 the density of the "mixture" in the control volume is just that 
of the liquid. This provides the essential initial condition that we need for solving the problem: 

In[l].= Clear [ms, V] 

Simplify[DSolve[{( t + Vl) ' - -  p = ~ [ t ]  = =  ~s(1 - 
P -  

Pmix[0] == PZ}, Pmix[t], t]] 

(t~s + v1 pl ) ps 
Out [2 ] = { { Pmix [ t ] ~ tm~ + VI Ps } } 

Pmix [t] 

P 8  

- - ) ,  

We can also solve for the change in the concentration of the solid in the mixture as a function 
of time: 

dCs, mix[t]Vmix[t] 
dt = rh~ 

dCs, mixIt] dVmix[t] 
Wmix[t] dt + ms, mix[t] d ~  -- rhs 

( ~h~t ) dC, mix[t] + ms,mix[t] ms flit 
~ , 

" + Vliquid "d t Psolid Psolid 

i 
In[3]': Sin%plify[DSolve[{(--t + Vl)c.,m/x[t] == ms(l - 

P, 
c.,mix[0] ==0}, c.,mix[t],t]] 

Out[3]: {{ms,mix[t] 
tmSps }} 

tins + Vl Ps 

c,,~ [ t  ] 
P, 

�9 

and for the change in concentration of the liquid in the mixture" 

d s  
In[4] "= DSolve[{(--t + Vl)c' ~,~[t] + n4s c~,~[t] 

P, 
cz,~x[0] ==pz}, c~,~x[t], t] 

Out[4]= {{C1,mix[t] ~ Pl (V1Ps)P~(tms+V1Ps)-Ps}} 

== 01 

Our objective at this stage in the analysis was to solve for the time required to reach the target 

product mixture density of (P~ix)" 

( t  n{s + Vlpz) p, 
�9 - -  , t ] ]  In[5] = Simplify[Solve[pm/x,p -- tms+Vlp. 

VlPs (-Pl + Pmix, p) 
Out[5]: { { t -~ }} 

ms (Ps - Pmix, p) 
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Thus at a given delivery rate of solid, fixed initial volume of liquid and solid density, we find 
that the time is: 

t : r  ~ _  Vlps(Pmix -- Pl) 

rf iS(Ps-/)mix)  

We should also like to know the level in the tank of given volume and cross section A when 
this product density is reached. It is critical that we check this. In other words the initial level of 
water in the tank must  also be fixed by the maximum level of the target density of the mixture 
that can be held in the tank and mixed very well. We have an expression for the volume of the 
mixture in the tank as a function of time during this interval. We should divide it by A and 
then substitute in the time we just solved for to find the level that will be called for to achieve 
target density: 

rhst 
Wmix[t]-- q-- Vliquid 

Psolid 
rh~t 

_ 

hmix[t] - apsoli d f- hliquid,o 

I n [ 6 ]  : =  Clear[A] 
~st 

Solve[hmix == Ap.ozi~ + hziuuia, o, h~ix] 

tins 
Out [ 7] = { {hmix --~ + hliquid, o } } 

Apsolid 

The new level in the tank at the end of this second interval will then be: 

Vl(-Pl + Pmix)Ps 
hmix A ( - P * i x  + ps)ps + hliquid,o 

but we know that Vt is just A hlicm• o so the overall expression becomes: 

(-Pl + P~nix)Ps 
hmix = hliquid,o ( _ P . i x  q- Ps)Ps +1] 

Interval 3: This interval begins when the product  mixture reaches its target density; then the 
flow out of the tank is turned on. At the same time the flow of the liquid feed must  also be 
turned on in order to maintain the system in a steady state. We can solve for this: 

dpmix V 
- -  P l q l  n t- ? h s  - -  Pmixqmix 

dt  

0 = ptql + rhs - Pmixqmix 

Plql + rhs = Pmixqmix 

Pmixqmix - /~/s  
q l  = 

Pl 
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As the solid is insoluble in the liquid, we know that the volume flow rate of the mixture mus t  
be the sum of the volume flow rates of the two components.  The volume flow rate of the solid 
is just the mass flow of the solid divided by its density, assuming that the latter is nonporous .  
Therefore we can solve for ql as follows: 

In[8].: Clear[ql, p] 

Simplify[Solve[{ql == 
p.~x,p(ql + qs) - ds ds 

�9 qs := --}, ql]] 
D1 Ds 

qs (-Ps + ~mix, p) 
Out[9]: {{ql --~ }} 

Pl - Pmix, p 

Now, we will use these solutions. The mixing will be done in a pilot-scale unit. The tank that 
is available is 5 m high and has an aspect ratio of 3:l:h:d. Its diameter, area, and volume can 
be immediately computed:  

In[lO]-- hmax = 5; 

d = N[hmax/3] 
d 

A = N[?F(~) 2 ] 

Vtank = Ad 

Out [ll ]- 1.66667 

Out [12]: 2.18166 

Out [13]- 3. 6361 

This makes the volume 3.6 m 3, the cross-sectional area is 2.18 m 2, and the diameter  is 

1.67 m. The density of the solid is 2 kg L-~, the liquid is 1 kg L-1, and the targe[ density Pmix 
is 1.5 kg L -1. Experience indicates that the level of the mixture when  settled should never 
rise to more than half the max imum level of the tank, to ensure that no mass leaves the tank 
dur ing vigorous mixing. This means that we can base our calculations on a mixture level of 
hmax From this information and the parameters  we can solve for the initial level of water  in 

2 " 

the tank at the end of interval 1" 

In[14] := pmix = 1.5; 

psolid = 2; 

pliq = 1; 

hmixt = 2.5; 

hliqm~x = Solve[~mixt == hliqo 

(-pliq + pmix) psolid 
( 
(-pmix + psolid)psolid 

hli~[[l, I, 2]] A 

+ 1), hliqo] 
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Out[18]= {{hliqo ~ 1.25}} 

Out [19]: 2.72708 

The volume of water that must  be added during interval 1 is 2.727 m 3, which is the product  
of the area of the tank and the liquid level. The water can be fed at .25 m 3 min -1 so the time 
required to add the water is 10.9 min. The mixing of the solid with the water is best done slowly 
to ensure homogeneity. Therefore, 30 min is to be allowed for interval 2. Given this, we can 
compute  the mass flow of solid required from either of the following equations. We use both 
to verify the result. We note that the densities are in units of kg /L ,  whereas the volumes and 
levels are in units of meters. There are (as shown in what  follows) 1000 L per m 3. Therefore, 
each of the densities must  be multiplied by this factor to convert them to kg per m3: 

1 L 100cm) 3//N �9 = ( 
In [20] i000 cm 3 Im 

Out [20] = 
1000.L 

m 3 

In [21]:= t = 30; 

Vl = 2.727; 
(tins + Vl pliq i000) psolid i000 

Solve [i000 pmix == 
t mhs + Vl psolid i000 

Vl i000 psolid I000 (pmix- pliq) 
Solve[t == , ms] 

ms I000 (psolid- pmix) 

Out[23]- {{ms -~ 181.8}} 

Out[24]- {{ms -~ 181.8}} 

�9 d s ]  

The mass flow of solid must  be 181.8 kg min -1 dur ing interval 2. We can check our work  
to this point to be sure that at the end of the second interval we have a slurry with the target 

density of 1.5 kg/L:  

In [25] : = 
181.8 k.--E30 min 

man 

kg L 
2 -{ 1000 5 

Interval 2") 

(*Volume of the Solid Added During 

General- -spelll" Possible spelling error- new symbol name 

"min" is similar to existing symbol "Min". 

Out [25]= 2.727 m 3 

In[26]:= 2.727 m s (*Volume of the Liquid Added During Interval 1") 

Out [26]: 2. 727 m 3 
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In[27]'= 2(2.727 m 3) (*Total Volume of the Solid and Liquid at 

End of Interval 2*) 

Out [27]- 5. 454 m 3 

(181.8k--~30min + 2.727m 31~176176 3 min m 3 

In[28]-= 2 (2.727m 3) 1000L 

(*Mass Solid + Liquid/Total Volume*) 

Out [28]- 
1.5 kg 

This number  checks and confirms that we have the right quantities, flows, and times to this 
point. 

Our attention now turns to interval 3, which will be the steady-state production of slurry. 
At steady state we would like to be producing 1000 kg min -1 = Pmixqmix of slurry at the 
density of 1.5 kg/L.  This would correspond to a volume flow rate equal to 666.67 L/ ra in  or 
0.667 m 3/min  slurry. The steady-state material balance can be used to find the required solids 
mass flow rate needed to achieve this production rate: 

p/q/  + th, = Pmixq,,,ix 

Pmixqmix  - -  ths 
ql = 

Pl 

AS the max imum water flow rate is 0.25 m 3 min -1, we can compute the solids flow rate: 

In [29] �9 : pliq = 1; 

ql = 0.25; 

Solve[1000 pliq ql + ms == 1000, ~s] 

Out [31]: {{ms -~ 750.}} 

To make the production rate we seek the solids must  be flowed in at a rate of 0.75 kg 
min -1 . A good question to ask at this point would be how would we transition from the end 
of interval 2 into the steady state? How would we program the increase in mass flows that 
would have to take place in order to maintain the product  density and to maintain the steady 
level in that tank? We can check the steady-state quantities by recomputing the volume flow 
rate of slurry from the mass flow rate of solids, the volume flow rate of water, and the target 
density of the product: 

In [32] ": 

Out [32] = 

�9 m 3 1000 kg 
7 5 0 k---g-mln + .25 man" m 3 

kg 
1500 7 

0.666667m 3 

min 

(*Volume Flow of Slurry at St.St.*) 

This checks perfectly with the previously computed value. 
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A more complex problem is that of a soluble solid and a liquid. The physical situation is the 
same as in the previous problem. The initial equations are also the same except that now we 
are dealing with a solution rather than with a mixture: 

Total: 
d,Osoln V 

d t  
= Plqt + ths - Psolnqsoln 

dCl ,  V 
Liquid" d t  = Plqt - Ct,  qsoln 

Solid" dCs,solndt V = ths - Cs,solnqsoln 

Case I" Constant densities 

If the concentration of the soluble solid does not reach a high level, then it is reasonable to 
assume that the densities of the pure solvent and the solution are similar enough to treat as 
equal and constant. Doing this transforms the total material balance into: 

d V ths 

d t  = q l +  Psoln 
-- qsoln 

This can be integrated immediately if the exit flow rate is a constant: 

V [ t ] = V o +  q t + ~ - q s o l n  t 
,Osoln 

The component  balances can be integrated in the same way. The initial condition is that the 
volume in the tank is %1o of pure solvent and the concentration of the solid is zero. To find the 
analytical solutions to these equations, we specify V[t] and then we use DSolve to simulta- 
neously solve for the concentrations, calling the set of two solutions "a." Two functions are 
named and then extracted from the solution set and assigned to these names. Finally, the two 
new functions are placed back into the original differential equations and tested for validity. 

In[33]:= Remove[a, V, cs, cl, p, ql, qsoln, t, Vo, csl, cll, ms]; 

V[t_] := Vo + (ql+n%S-qsoln) t p 
a = Simplify[DSolve[{ 

@t(cs[t] V[t]) == pql- cs[t] qsoln, cs[O] == O, 

@t(cl[t] Viii) == pql - cl[t] qsoln, c1[0] == p 
), 

{cs[t], c1[t]) 

t]] 
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csl[t_] := Evaluate [cs [t] /. a] 

cll[t_] := Evaluate[cl[t] /. a] 

qlp + m"s qlp + m~s 
qlp 2 p (Vop) qlP-qs~ ms ( (qlt-qsoln t +Vo)p + t ms)- qlp-qsolnp+m's Out f35]= {cl[t] --~ ~ + 

qlp + ms qlp + ms 

qlp + m~s qlp + m's 
qlp 2 qlp 2 (Vop) q l p - q s o l n , o  + m ' s  ( (qlt - qsoln t +Vo)p + tms) - q l p -  qsol r~o + m ' s  

CS [t] --> 
qlp + m~s qlp + ms 

In[38] := Simplify[@ t(csl[t] V[t]) == pql - csl[t] qsoln] 

simplify [@t (cll [t] v[t]) == pql - cll[t] qsoln] 

Out [38]= True 

Out [39]= True 

Parameter values are applied and the functions are plotted in time: 

In[40].- SetOptions[{Plot, ListPlot}, AxesStyle ~ {Thickness[0.01]}, 

PlotStyle ~ {PointSize[0.015], Thickness[0.006]}, 

DefaultFont ~ ("Helvetica", 17}] ; 

In[41]:: Clear[p, ql, qsoln, t, Vo] 

ms = . 

p = i; 

vo = i00; 

~s = 5; 

ql = I0; 

tmax = I00; 

qsoln - 14.95; 

Plot[(cll[t], csl[t]}, {t, 0, tmax}, 

PlotStyle ~ {{GrayLevel[0], Dashing[{0.01, 0.015}]}, 

GrayLevel[0.2]}, FrameLabel ~ {"t/rain", "cl[t],cs[t]"}, 

PlotRange ~ ({0, tmax}, (.5, 1.0}}, 

Frame ~ True, PlotLabel ~ "cs[t] = Dashed"]; 

Plot[V[t], {t, 0, tmax}, PlotStyle ~ Dashing[{0.06, 0.06}], 

FrameLabel ~ {"t/min", "V[t]"}, Frame ~ True, 

PlotLabel ~ "Volume"] ; 

Unset--norep - Assignment on Overscript for ms not found. 
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Out [42]= $Failed 

General--spelll- Possible spelling error- new symbol 

name "tmax" is similar to existing symbol "hmax". 
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The solutions show two impor tan t  aspects of this mode l  as written: The concentrat ions come 
to a constant and equal  value and the vo lume continues to rise indefinitely. The reason for this 
is that  we took the outlet  concentrat ion to be a constant.  Al though this m a y  have m a d e  for a 
simple model  to solve, it is also one that is not very realistic. The tank wou ld  be overflowing. 

A more realisitc model  would  be one in which the exit flowrate was either set to match the 

inlet flow rate, which would  make dv -~- zero and the vo lume a constant at its initial level, or we 

could assume the flow rate out was gravity driven and wou ld  respond to the level in the tank, 

that is, Torricelli's Law. 
The first case in which an instantaneous achievement  of steady state is assumed follows" 

In[51]:= Remove[al, V, Vo, cs, csl, cl, c11, p, ql, qsoln]; 

In[52]:= al = Simplify[DSolve[{ 

~t (cs It] Vo) == pql - cs It] qsoln, cs [0] == 0, 

@t(cl[t] Vo) == pql - cl[t] qsoln, c1[0] == p 

}, {cs[t], cl[t]}, 

t]]; 
csl[t_] := Evaluate [cs [t] / . al] 

cll[t_] := Evaluate[cl[t] / . al] 

Sim~lify[@t(csl[t] Vo) == pql -csl[t] qsoln] 

Simplify [@t (cll [t] Vo) == pql -cll[t] qsoln] 

p = I; 

VO = i00; 

~s = 5; 

ql = I0; 

tmax = I00; 

qsoln = ql + --; 
P 

Plot[{cll[t], csl[t]}, {t, 0, tmax}, 

PlotStyle ~ {GrayLevel [0], GrayLevel [0.5] }, 

AxesLabel ~ {"t/min", "cl[t],cs[t]"}, 

PlotRange ~ { { 0, tmax}, {. 5, 1.0 } }, Frame ~ True] ; 

Plot[Vo, {t, 0, tmax}, PlotStyle ~ GrayLevel[0.6], 

AxesLabel ~ {"t/min", "V[t] "}, Frame ~ True] ; 

Out [55]= True 

Out [56]: True 
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The asymptot ic  concentrations that  we compute  are the same as those that we had in the 
previous case, but  the volume within the system is a constant. 

In the second case the outlet flow rate is given by Torricelli's Law, that is, qsoln= 
b A o v / 2 g h [ t ]  " 

d V  

d t  

dh[t] 

d t  

- qt + - -  - b A o v / 2 g h [ t ]  
P 

q~ ~h~ A O v / 2 g h [ t ]  
~ + ~-~ - b -  i - 
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In[65]:= Remove[a2, /9, ql, A, ms, /9, b, Ao, g, ho, tmax, Vo, V, t]; 

V =. 

ql = I0; 

A= I0; 

~s=5; 
/9=1; 

b = I; 

Ao = 0.i A; 

g = 9.8; 

ho = I0; 

tmax = I00; 

Vo = I00; 

a2 = NDSolve[{ 

@th[t] == --(ql + - bAo~2gh[t]), h[0] == ho, 
A /9 

~t(A cs[t] h[t]) == ---cs[t]bAo%/2gh[t], cs[0] == 0, 
/9 

at(A cl[t] h[t]) == pql-cl[t] bAo%/2gh[t], cl[0] == /9 

}, 

{h[t], cs[t], cl[t]}, 

{t, 0, tmax}]; 

hn[t_] := Evaluate[h[t] /. a2] 

Vn[t_] := A hn[t] 

pla2V = Plot[(hn[t]/ho, Vn[t]/Vo), 

{t, 0, tmax), AxesLabel ~ {"t/rain", "hn[t]/ho,Vn[t]/Vo"}, 

PlotRange ~ { {0, tmax}, {0, I. 5} }, Frame ~ True] ; 

csn[t_] := Evaluate [cs [t] /. a2] 

cln[t_] := Evaluate[cl[t] /. a2] 

pla2C = Plot[{cln[t], csn[t]}, {t, 0, tmax}, 

AxesLabel ~ {"t/min", "csn[t],cln[t]"}, 

PlotRange ~ {{0, tmax}, {0, 1.0}}, 

PlotStyle ~ {Dashing[{0.01, 0.01}], Thickness[0.01]}, 

PlotLabel ~ "Dashed = Csn[t]", Frame ~ True]; 

Remove- �9 remal �9 Symbol Removed [p] already removed. 

General--spelll �9 Possible spelling error- new symbol name 

"tmax" is similar to existing symbol "hmax". 
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Now we have solved the full problem with gravity-driven flow. We see that the concentrations 
transition smoothly once again to steady-state values, but now the level and volume of liquid 
in the tank do so also. The assumption that the density of solution does not change very much 
with concentration is quite restrictive. Therefore, we deal with this problem explicitly in the 
next section. 

Case 2: Variable Densities 
The "how and why" of variable density. Assuming that the densities were all similar in mag- 
nitude was a restriction on the solution we derived. We can rederive the solution without  
this assumption; but we do need a constitutive relationship to functionally couple the density 
and concentration. A suitable expression can be found by consulting either the CRC Handbook 
of Chemistry and Physics, or Perry's Handbook for data relating the concentration of various 
solutions of salts to their densities. From an analysis of these data we would find that the 
density of a solution is linearly related to the concentration of that salt over a wide range of 
concentrations. This relationship can be expressed as follows: 

p = a + y C  

With some salts the volume of the solution expands as their concentration increases; this leads 
to a value of the constant y. This tells us mathematically that as the salt dissolves into the 
solvent, it causes volume expansion and density diminution. In other words, if metal ions 
and their counterions are low in mass and if they tend to repel the water molecules, then the 
overall salt plus water structure occupies more space. For some salts (and neutral solutes) the 
opposite occurs and the density increases; thus the value of y is > 0. Here the masses of the 
ions are high and their charges may also be high. Thus they tend to draw the water molecules 
into a more densely packed configuration, so that more mass is packed into a smaller volume 
when compared to water (or the solvent). If ~, were 0, then that would indicate that the solute 
was close in mass to the solvent, occupied a similar volume when dissolved in a given volume 
of solvent, and left the solvent structure unchanged. If, for example, we were to add deuter- 
ated water D20 to normal untreated water/-/2 O, the changes in density would be small and 
y would be very small. 

These observations, and the linear relationship they lead to, can be rationalized by con- 
sidering the definition of the density of a solution. The density of a solution is the sum of the 
mass of the solute and the mass of the solvent divided by the total volume of the solution: 

P[msalt]  --  

p[O]  = 

msolvent q" resolute 

Vsolution 

insolvent 

Wsolvent 
~ ( m s a l t  ~ O; Vsolution ~ Vsolvent) --  Psolvent 
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If the mass of the solute in solution were 0, then the densi ty is just that of the solvent. What  if 
the solute were very special in its interactions with the so lven t - - suppose  it neatly occupied 
those spaces between the solvent molecules that were open (interstices) but  caused no net 
increase or decrease in the volume of the solvent? If the mass of dissolved solute causes no 
change in volume, then the solution volume would  be the same as the original solvent vo lume 
and the densi ty becomes: 

msolvent -+" msolute insolvent resolute resolute 
P -- - -  "~- - -  Psolvent -J- : Psolvent - ] -Csolu te ,  

Wsolution Wsolvent Wsolvent Wsolvent 

iff Wsolution - -  Vsolven t 

The implication is that the constant y has the value of uni ty (1). This can only be true if the salt 
s imply adds  to the solution and occupies no more or less space than the solvent molecules, 
as we can see from the equation. If we now reintroduce the linear relationship for density in 
terms of solute concentration, and substitute in for the terms, then we see that the case we 
have just considered is a special case of the general one in which y = 1. To take this analysis 
one step further, we can solve for y in terms of the measurables of the solution: 

In[84].: Clear [7] 
Simplify[ 

msalt 
Solve[ 

Vsolution 

msolvent msal t msolvent 
+ -= 7 + ,7]] 
Vsolution Vsolution Vsolvent 

msalt Vsolvent+msolvent(-Vsolution+Vsolvent) 
Out [85]: { { y -, }} 

msalt vsolvent 

We can rearrange this expression taking 6V = Vsolu t ion  - Vso lven t - - in  other words,  the 
extent to which the solute either expands or contracts the solvent volume by its presence, and 
we find" 

y 1 [mso'vent][ ,V ] 
msalt Vsolvent 

Then in the case where y = 1, by this expression we see that 6V - 0, which is a nice consistency 
check for what  we have done to this point. This expression for 9' is a dimensionless grouping 
that offers some insight into what  this constant really means physically. If the solute causes 
restructuring of the solvent by drawing  solvent molecules to itself in ensembles that have 
higher (or lower) numbers  of molecules per unit volume, then that implies a "nonideality," 
and 6V ~ 0, which implies that y # 1. 

We can now return to the problem of the feeding a salt and water  to a mixing vessel 
that initially contains water, and from which the flow is governed by gravity wi thout  the 
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assumption of ideality: 

dpsoln V 
Total: dt = plqt + ~hs - Psolnqsoln 

dC1, V 
Liquid: dt - Ptqt - Ct, qsoln 

Solid: dCs,soln V 
- -  l~ls - -  Cs,solnqsoln 

dt 

The total material balance now becomes: 

d[pl + yCs,soln]V V~ 
dt = plql + {ns - [pt + yCs,soln]bAo --~-v2g Total: 

Recall that pl is just the density of the pure liquid solvent, and that hit] = v~t__! can be replaced 
into Torricelli's Law. These equations have become complicated enough that we shall define 
the density upfront and let NDSolve handle the work of solving the simultaneous equations 
(see the In statement that follows)" 

In[86]'- Remove[a3, ql, A, ms, p, b, Ao, g, ho, tmax, Vo, V, 

t, cs, cl, ~]; 

V =. 

ql = I0; 

A = I0 ; 

m~ = 5; 

po = i; 

b = I; 

Ao = 0.i A; 

g = 9.8; 

ho = i0; 

tmax = I00; 

vo - A ho; 

= .9; 

p[t_] := po + 9' cs[t] 

a3 = NDSolve[{cs[0] == 0.001, 

c9 t (V[tlo[t]) == poql + m~s-p[tlbAo V[t], V[0] == vo, 

69 t ( c s [ t l v [ t l )  == n%s-cs[tlbAo ~- V[t], 

0tlcl[tlV[t]) == poql - cl[tlbAo V[t], c1[01 == po 

}, 
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(V[t], cs[t], cl[t]), 

(t, 0, tmax)]; 

Vn[t_] := Evaluate [V [t ] /. a3] 

pla3V = Plot[{Vn[t]/Vo}, {t, 0, tmax}, 

PlotLabel ~ {"Vn[t]/Vo versus t"}, 

PlotStyle ~ {(Dashing[{0.15, 0.05}]}}, 

PlotRange ~ {{0, tmax}, {0, 1.2}}, Frame ~ True]; 

csn[t_] := Evaluate [cs [t] /. a3] 

cln[t_] := Evaluate[cl[t] /. a3] 

pla3C = Plot[{cln[t], csn[t]}, {t, 0, tmax}, 

PlotStyle ~ Dashing[{0.15, 0.05}], 

PlotLabel ~ {7 "=~", "cl[t] = top, cs[t] = bottom"}, 

Frame ~ True]; 

Show[pla3C, pla2C, PlotLabel ~ {7"=q(dash)", 

"cl[t] = top, cs[t] = bottom"}]; 

General--spelll �9 Possible spelling error- new symbol name 

"tmax" is similar to existing symbol "hmax". 
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General--spelll �9 Possible spelling error- new symbol name 

"pla3C" is similar to existing symbol "pla3V". 
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The last graph compares the two solutions of the p r o b l e m ~ w i t h  and without  the inclu- 
sion of the variation in density (0' = 0.9) with concentration of the salt. We can see that the salt 
concentration rises to a higher steady-state level (dashed curve at bottom) when the variation 
in density is included. 
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In some respects, a simpler problem is the reverse of the one we have been solving. What  if 
at the end of the process of preparing, feeding, and using a solution we have to wash the unit 
with fresh water in order to prevent  it from corroding the vessel and to decontaminate  it? 
How long will it take? How much water  should we use? Will the flow rate matter? These are 
all very relevant chemical engineering questions that we can answer and do so fairly easily. 
Figure 3 shows that we have a feed of fresh water  into a tank containing the salt solution as 
the initial condition. 

The total and component  material balances for this systems are as follows: 

dpsoln V 
Total: d t  = Plql  - Psolnqsoln 

d C 1 ,  V 
Liquid: d t  = p lq l  - CI ,  qsoln 

d Cs, soln V 
- -  - C s  solnqsoln Solid: d t  

It is easy to see that if the wash out is done in such a way  that the volume in the tank does 
not change, the concentration of salt is low enough to ignore the density effect, and the total 
differential material balance is zero, then the volume flow rate in is equal to that out and so 
the only equation we need to solve is the last one for the salt concentration. 
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In[107]:= Remove[a4, qsoln, Vo, t, cs, cso, cl]; 

a4 = DSolve[ 
(Pz - cl[t]) qsoln 

{c1" It] == 
vo 

el[0] == clo, 
cs[t] qsoln 

CS" [t], == - 
VO 

cs[0] == cso), 

{cl[t], cs[t]), 

t]; 

c14 [t_ ] : = Evaluate [cl [t ] /. a4 [ [ 1] ] ] ; 

cs4 [t_ ] : = Evaluate [cs [t ] /. a4 [ [ 1] ] ] ; 

General--spell- Possible spelling error- new symbol name 

"pl" is similar to existing symbols {#,Do}. 

(pl - cl4[t]) qsoln 
In[ill]:= SimplifY[~t cl4[t] == ] 

Vo 

cs4[t] qsoln 
Simplify[~t cs4[t] == - ] 

Vo 
Out [lll ] = True 

Out [112]= True 

In [113] : = ql = i0; 

A = i0; 

qsoln = ql; 

ho = I0; 

tmax = I00; 

Vo = A ho; 

cso - 0.5; 

pl = I; 

clo = 1 + 0.9 cso - cso; 

pla4C- Plot[{cl4[t], cs4[t]}, {t, 0, tmax}, 

PlotStyle ~ {Dashing[{0, 0}], Dashing[{0.15, 0.05}]}, 

PlotLabel ~ "Cs[t] Washout vs Time/rain", 

Frame ~ True, PlotRange ~ {{0, tmax}, {0, cso + clo}}]; 
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However, we will not make any of these simplifying assumptions. Instead, we will take 
the flow out as given by Torricelli's Law and the density of the solution to be a linear function 
of the salt concentration. Then all we need to do is to modify the numerical routine we had 
for the previous problem by eliminating the term for the salt feed" 

In[123]:= Remove[a5, ql, A, p, b, Ao, g, ho, Vo, V, t, cs, cl, 7]; 

SetOptions [ {Plot, ListPlot }, AxesStyle ~ {Thickness [ 0.01] }, 

PlotStyle ~ {PointSize[0.015], Thickness[0.006]}, 

DefaultFont ~ {"Helvetica", 17}] ; 

V =. 

ql - I0; 

A= I0; 

~s = 5; 

po = I; 

b = I; 

AO - 0.i A; 

g = 9.8; 

ho = i0; 

tmax = I00; 
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Vo = A ho; 

7 = .9; 

cso = 0.5; 

p[t-] := po + y e s [ t ]  

a5 = NDSolve[{ 

0t(V[t]p[t]) == poql - p[t] bAo./2gv[t], V[0] == Vo, 

i 

V A 

0t(cs[t]V[t]) == -cs[t] bAo./2gv[t], cs[0] == cso, 
V A 

/ 2 g v  , 0t(cl[tlV[t]) == poql - cl[t] bAo -- [t] 
A 

cl[0] == p[0] - cs[0] 

}, 

{V[t], cs[t], cl[t]}, 

(t, 0, tmax}]; 
Vn[t_] := Evaluate[V[t] /. a5] 

pla5V = Plot[{Vn[t]/Vo}, {t, 0, tmax}, 

PlotLabel ~ "Vn[t]/Vo vs t", 

PlotStyle ~ {{Dashing[{0.15, 0.05}], Thickness[0.01]}}, 

PlotRange ~ { {0, tmax}, {0, 1.2}}, Frame ~ True] ; 

csn[t_] :- Evaluate [cs [t] /. a5] 

cln[t_] := Evaluate [cl [t] /. a5] 

pla5C = Plot[{cln[t], csn[t]}, {t, 0, tmax}, 

PlotStyle ~ {{Dashing[{0.01, 0.01}], GrayLevel[0.6], 

Thickness[0.01]}, (Dashing[{0.01, 0.01}], 

GrayLevel [ 0.6 ], Thickness [ 0.01 ] } }, 

AxesLabel ~ {"t/min", "c[t]"}, 

PlotLabel ~ {~"=7", "top dashed=cl [t], 

bottom dashed=cs It] "}, Frame ~ True] ; 

Show[pla5C, pla4C, PlotLabel ~ "With and without 

variable densities" ] ; 
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General--spell �9 Possible spelling error- new symbol name 

"plaSC" is similar to existing symbol "plaSV". 
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We can see from the last graph, which compares the solution accounting for the change of 
density with concentration versus the simple solution without  this taken into account, that 
for this value of y - 0.9, the error made in the approximation is in fact quite small. 

4.7 The Pulse Input Tracer Exper iment  
and Analysis 

The key assumption we have made throughout  this chapter is that the solutions within the 
control volume are indeed either homogeneous or well mixed. Questions of the degree to 
which mixing occurs in a system arise in sciences as seemingly diverse as medicine and 
environmental engineering. If a system is well mixed, then when we inject a pulse of tracer, 
we should see a characteristic decay of the concentration in the system as a function of time. 
Cardiologists use this method to measuring the pumping  speed of a heart by inserting a 
catheter and injecting a tracer of known volume into the heart. The rate of decay of the 
concentration within the chambers of the heart provides the flow rate away from this organ. 
Similarly, an environmental engineer may need to know the flow rate and mixing dynamics 
in a river or stream. By injecting a water-soluble and harmless dye into the flowing water, the 
diminution of the dye concentration at the point of "injection" can be used to visualize and 
then model the dynamics of the river's flow. 
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Chemical engineers also use this kind of experiment. It can be utilized to great advantage 
in chemical reactors to find the "residence time distribution" of the reactor, a crucial piece of 
information which links microscopic flow behavior, that is, fluid dynamics, to measurables 
of the system, such as chemical conversion and selectivity. For vessels that are not used for 
reaction processes, but are used for other operations that are also critically dependent upon 
mixing, this tracer experiment provides a great deal of insight into how the system behaves. 
We can analyze how a pulse of injected tracer would behave in the well-stirred vessel we have 
been analyzing here. 

Imagine that an injection is made as a pulse of tracer, the concentration of which can be 
measured in the tank and in the exit stream as a function of time. For a laboratory vessel, the 
injection may be done by hand with a syringe full of tracer such as a dye or a radioactively 
tagged molecule. For larger vessels at pilot and production scale ingenious methods have 
been invented for putting a "pulse" of tracer into the unit. Ideally, the pulse should be added 
instantaneously, which means in as short a time period as possible. In other words, the time 
to add the tracer must be much shorter than the time required to "wash" it out of the unit. 

For the case of the unit we have been considering, water would be flowing to the system 
continuously with stirring and the whole system would be at a steady state with respect to level 
and volume. The injection would be made at the top of the vessel with a very small volume 
of highly concentrated dye; nothing else would or should be done. The high concentration 
is critical to making the measurements accurate and precise. It also makes it possible to use 
only a small volume of the dye, which is important so that the steady state is maintained with 
respect to volume. Finally, small volume, high concentration injections can be done fast. 

How can we model such a problem? To do the analysis we need to introduce and become 
comfortable with two new functions: the Dirac-Delta function and the UnitStep (or Heaviside) 
function. The Dirac-Delta function is infinitely intense and infinitesimally narrow--l ike a pulse 
of laser light. We can imagine it arising in the following way. We begin by considering a pulse 
that is quite broad, such as the function that is plotted here: 

In[146].= @ = 2 
t 

Plot[Sqrt[I/(~Pi)]Exp[- (~)2] 

{t,-5, 5}, PlotRange ~ All, 
Plotstyle ~ GrayLevel[0.1]] ; 

Out[146]= 2 
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We can sharpen this function in time by decreasing the value of the "time constant" O, as 

follows" 

In[148]'= Clear[P, f, a] 
t 2 

f[@_, t_] := N[Sqrt[i/(~Pi)]E~p[- (~) ]] 
v 

f [x, y] 

= {I, .5, .i}; 

a = Table [ 

Plot[f[8, t] [[nil, {t, -2, 2}, 

PlotRange ~ All, 

DisplayFunction ~ Identity, 

PlotStyle ~ GrayLevel [. 1 n], 

AxesLabel ~ {"t", "I[t]"} 
], 

{n, I, Length[~]}]; 

Out [150]= 0.5641892.71828 -@ 

In [153] : = Show[a, DisplayFunction ~ $DisplayFunction] ; 



4.7 The Pulse Input Tracer Experiment and Analysis 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  I I I I I I I I  I1'111111'11111111111'111111 I II1"11 III I . . . . . . . . . . . . . . . . . . . . . . .  

183 

I[t] 
1.75 I 

1.5 
1.2 

t 
- 2  -1 1 2 

As we decrease the t ime constant the function becomes more intense in and around the 
t = 0. Doing this in the limit of 0 --+ 0 t ransforms this into the infinitely intense pulse of 
infinitely short  t ime duration.  We can use this Dirac-Delta function, once we know more 
about  its propert ies and how it is implemented  in Mathematica. 

If we begin with  a simple Table function, we see that if we ask for "t" in the interval from 
- 5  to 5, we get back a simple vector of those integers: 

In[154].= Clear[t, x] 
Table[t, {t, -2, 2}] 

Out [155]- {-2, -i, 0, i, 2} 

Taking the product  (xf[t]) over the same interval leads to a vector of elements,  each one of 
which is the product  of x and f[t] evaluated at the integer: 

In[156]'= Clear[t, x] 
Table[x f[t] t, {t, -2, 2}] 

Out[157]- {-2xf[-2], -xf[-l], 0, xf[l], 2xf[2] } 

However,  look at wha t  happens  when  we take the product  (x DiracDelta [t]) over the same 
range of t values: 

In[158]'= Table[N[x DiracDelta[t]], {t, -5, 5}] 

Out[158]: {0., 0., 0., 0., 0., x DiracDelta[0.], 0., 0., 0., 0., 0.} 
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The only element that is nonzero is that which falls at the point t = 0. This is because at every 
other point the Dirac-Delta function is identically zero by definition. This is the consequence 
of being infinitely intense and infinitely short in duration. We can display the position of this 
pulse by placing another integer in the argument  of the Dirac-Delta as follows: 

In[159]'= Table[N[x DiracDelta[t-5]], {t,-5, 5}] 

Out [159]: {0., 0., 0., 0., 0., 0., 0., 0., 0., 0., x DiracDelta[O.] } 

In this case the nonzero value of the function has been pushed to the positive ext remum of 
this interval on t. If we integrate the product  of the dye mass mdye and the Dirac-Delta, we 
obtain this: 

In[160].: Clear[t, m] 

In[161].= Integrate [DiracDelta [t] md~, {t, -5, 5}] 

Ou t [i 61 ] : mdy e 

The integration returns just n~ye integrated over time. 
Now we can use this technique to determine how the concentration of dye changes as 

a function of time in a well-stirred vessel. We need only write and integrate the component  
balance on the dye to have the answer because the volume of the tank is assumed not to change 
with time. We will use the following equation for the rate of change of the dye mass: 

dCdye[t] mdye DiracDelta[t] - Cdye[t]qex 

dt V 

Notice how we have used the Dirac-Delta in the balance. At time t : 0 all the mass of the dye 
is injected instantaneously. At all other times the term for dye input is identically zero. We can 
integrate this analytically: 

In[162]'-Clear[qex, t, to, V, cdye] 
General--spelll- Possible spelling error- new symbol name 

"cdye" is similar to existing symbol "dye". 

In[163]:= Simplify[ 
DSo ive [ 

n~ye DiracDelta[t] - cdye[t] qex 
{cdye' [t] == 

V 
cdye[to] == 0}, cdye[t], t] 

Out[163]- { {cdye[t] 
e mdye (Uni tStep[ t ] - Uni tStep[ to ] ) 

V 
}} 
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We find that the integration looks like an exponential  decay except that now a new function 

has appea red - - the  UnitStep function. To see how the UnitStep function behaves in time we 

can plot it as shown here: 

In[164].= Plot[UnitStep[t], {t, -5, 5}, 

AxesLabel ~ {"t", "UnitStep[t]"}, 

PlotStyle ~ {Thickness[0.01], Dashing[{0.05, 0.02}]}]; 

UnitStep[t] 
1 

0.8 
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0.2 

I I I I 
I I  

- 4  - 2  2 4 

The UnitStep function is everywhere  zero until it comes to t = 0 and then it goes to a value of 

unity, which maintains ad inyqnitum. We can rewrite the solution as a function of time: 

In[165]'- Clear[qex, t, to, V, cdye, m] 

In[166]:: cdye[t_] 

mdye = I0; 

qex = 1; 

V = I00; 

to = -5; 

: =  

- ~ex t 

e v maye ( U n i t S t e p [ t ]  - U n i t S t e p [ t o ]  ) 

pll = Plot[cdye[t], {t, -100, 500}, 

AxesLabel ~ {"t", "cdye[t]"}, 

PlotStyle ~ {{Thickness[0.01], Dashing[ {0.05, 0.i}]}}]; 
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Here we see that the pulse is injected at time "zero," the concentration instantaneously jumps 
discontinuously to a magni tude  of 0.1, and then begins to descend exponentially as a function 
of time. This is the characteristic curve we should see if the unit is well mixed. 

To make this result more general we can nondimensional ize both axes. The concentration 
of dye can be referenced to the max imum concentration at time zero Caye[0]. But what  of 
the time axis? How shall we nondimensional ize this? We will use the "holding time" as the 
reference time. The holding time is the time required for a volume of liquid equal to the volume 
of the unit  to pass entirely through the unit. This is the ratio of the volume to the flow rate, 

v We can remake the graph in nondimensional  form: that is, r = qe----x" 

In[1721"= m/y, = I0; 

qex = i; 

V = i00; 

tro = -i; 
V 

y = 
qex 

cdye [ 0 ] ; 

ndcdye [ t r_ ] 
e-tr~ye (UnitStep[tr] - UnitStep[tro] ) 

:= 

cdye [ 0 ] V 

Plot[ 

ndcdye [ t ], 

{t, -I, 5}, 
AxesLabel ~ {"tr", "n.d.cdye[tr]"}, 

PlotStyle ~ {Dashing[{0.01, 0.015}], Thickness[0.01]} 
]; 
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The time axis is the reduced time, which is the ratio of real time to the holding time tr = t and 
l-  

the y-axis is the nondimensionalized dye concentration. If we were to plot the experimental 
change in nondimensionalized concentration versus reduced time, it should fall very near to 
this curve. The extent to which the real system deviates is a measure of the degree to which 
the system veers from the ideally "well-mixed" limit. 

4.8 Mixing 
Consider the following case, illustrated in Figure 4. In this experiment everything is the same 
as in the last one, except that there are two well-mixed tanks rather than one. The same overall 
flow qex is diverted through the two units with a 50:50 split and the same mass of tracer or 
dye is added instantaneously to the inlet flow. The volumes of the lines to and from the tanks 
are considered to be negligible. Each tank has exactly 50% of the volume of the previous tank, 
and therefore their residence times are half that of the one large tank with the same overall 
volume. The lines from the two tanks come together prior to the analysis and are assumed 
to be perfectly mixed when they do. The question is: Will the time distribution of the tracer 
concentration look the same or different from that of one well-mixed tank? 

We do not need to redo the analysis. Instead we will take the solution for one well-mixed 
tank and apply it to the two tanks. We have to be careful about handling the splits at the input 
side where the stream divides into two and again when the two separate tank streams come 
back as one. The overall input is divided into the two flows ql and q2 by the fraction a and b. 
The mass of the dye trace also will be split in the same way. This is done because the mass of 
dye into the first splitter must  be the same as the total mass of dye out, which is just the sum 
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qin = qex 

mdye q l  = a q e x  

q2 = b qex 

J 

Cdye,a  [I] 

m 
Cdye,b  [I] 

�9 ~ Cdye, to t  [t] 

Figure 4 

of the masses in the two streams: 

mdye, in - -  Cdye, inqin ~t 

= Cdye, lqlSt  + Cdye,2q23t 

= a Cdye,]qex 3t + b Cdye,2qex ~t 

= ( a  C d y e , 1  -[- b Cdye,2) qex 3t 

where 8t is the instantaneous or infinitesimally short durat ion of the Dirac-Delta function 
pulse. This is also the time for the mass of the dye to hit each tank, that is, zero time. 

The concentration of dye in each tank is exactly the same solution we der ived already and 
it is now applied individually to each vessel: 

c dye 2a[t_] "= 

c dye 2b[t_] "= 

a q,ex t 

a e -  v, mdye(Unit Step[t] - Unit Step[to]) 

b e  

V1 
_ b qex t 

V2 mdye(Unit Step[t] - Unit Step[to]) 

V2 

Notice that we have rewrit ten ql  and q2 in the arguments  of the exponentials  as "a qex" and 
"b qex," where  "a" and "b" are the splits fractions that set the s tream flows. We can compute  
these two concentrations and plot them as functions of time, but  wha t  we really wan t  is the 
time dependence  of the dye concentration after the two streams are recombined.  Our  goal 
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is to compare  the overall effect of two tanks on the tracer wi th  that  of one tank given that  
the sum of the volumes  of the two are the same as the one. We also wan t  to be able to split 
the flows be tween  these two tanks in different ratios and wi th  different tank vo lumes  to see 
how this affects overall t ime dependence.  In other words ,  wha t  if we did not know there were 
two tanks? What  if all we knew were the inputs  and the outputs  at the dot ted box a round  the 

two tanks? Would we be able to detect a difference for this sys tem versus the one tank sys tem 
on the basis of the tracer experiment? To find out we continue our analysis. 

To find the concentrat ion at the point  where  the s treams come back together  we again 

apply  the conservat ion of mass. The mass of dye in the two lines coming into this mixing 
point  per unit  t ime mus t  be equal to the total mass  going out of it per unit  time. The rate of 
mass flow in is just the sum of the products  of the concentrat ions and flow rates of the two 
streams exiting the tanks, while the rate of mass  flow out is the concentrat ion of the dye times 
the total flow rate. The mathemat ica l  s ta tement  is much  more succinct: 

(a Cdye2a [t] + b Cdye2b [t])qex = Cdye2tot  [t] (a + b) qex 

(a Cdye2a[t] + b Cdye2b[t]) 
Cdye2tot  It] = 

(a + b) 

This last concentrat ion is wha t  we can measure  if the tanks inside the outer box are h idden  
from view, so this is the computa t ion  we wan t  to make  and to compare to the first case of one 
unit  in plain view. We should also do one more  calculation to be sure we are not mak ing  any 

errors. The mass  of dye into the units mus t  eventual ly  come back out. Therefore, we should 
integrate the product  of the exit concentrations and flows from each tank and sum these to be 
sure it is equal to the dye input  mass. Yet another  application of the conservation of mass. 

The code for doing all of this is shorter than the description of it. Once it is wri t ten we can 
use it over and over again. We could also put  it into nondimens iona l  form if we chose to, but  

instead we will make  our comparisons in real t ime and concentration. Recall that "a" and "b" 
are the spl i t s - - these  are entered as fractions, but  they mus t  sum to unity! 

To check ourselves, in the first case we set the splits to one-half each and the volumes  are 

equal. We compare  the concentration versus t ime curve for this case versus that for the one 
tank. We do all the calculations for the two-tank case and then end with  a graph  compar ing  it 
to the one-tank case (see the following graphs): 

In[180] .= Clear[a, b] 

In [ 181 ] �9 = Remove [ cdye2b ] 

In[182].: a = 1/2; 

b = 1/2; 

cdye2a[t_] := 

cdye2b [ t_ ] 

m~ye = i0; 

:= 

- a q e x  t 

a e vz mdye (UnitStep[t] - UnitStep[to] ) 

Vl 
b qex  t 

b e- ~ md~(UnitStep[t] - UnitStep[to]) 

V2 
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qex = i; 

Vl = 50; 

v2 = 50; 

to = -5; 

p12 = Plot[{cdye2a[t], cdye2b[t]}, {t, -I00, 500}, 

AxesLabel ~ {"t", "cdye[t] "}, 

PlotStyle ~ {{Thickness[0.01], GrayLevel[0.5]}, 

{Thickness[0.01], Dashing[{0.01, 0.025}]}}, 

PlotRange ~ All] ; 

a cdye2a[t] + b cdye2b[t] 
pl2b = Plot[{ },{t,-100,500}, 

a + b 

AxesLabel ~ ("t", "cdye[t] "}, 

PlotStyle ~ {{Thickness[0.01], GrayLevel[0.5], 

Dashing[{0.05, 0.05}]}}, PlotRange ~ All] 

NIntegrate[cdye2a[t] a qex, {t, -I00, 400}]; 

NIntegrate[cdye2b[t] b qex, {t, -I00, 400}]; 

%+%% 

NIntegrate[cdye[t] qex, {t, -100, 400}] 

Show[pl2b, pll] ; 

General--spelll- Possible spelling error- new symbol name 

"cdye2b" is similar to existing symbol "cdye2a". 

cdye[t] 
O.1L 
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4.8 Mixing 191 
II111111111111111 I I I . . . . . . .  I I  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  _ 

General.-spelll- Possible spelling error- new symbol name 

"pl2b" is similar to existing symbol "p12". 
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Out[192]= -Graphics- 

NIntegrate: :slwcon : 

Numerical integration converging too slowly;suspect one 

of the following-singularity, value of the integration 

being 0, oscillatory integrand, or insuf[cient 

WorkingPrecision. If your integrand is oscillatory try 

using the option Method ~Oscillatory in NIntegrate. 

NIntegrate::ncvb: 

NIntegrate failed to converge to prescribed accuracy 

after 7 recursive bisections in t near t = -0.390625. 

NIntegrate::slwcon: 

Numerical integration converging too slowly; suspect one 

of the following- singularity, value of the integration 

being 0, oscillatory integrand, or insuf~cient 

WorkingPrecision. If your integrand is oscillatory 

try using the option Method ~Oscillatory in NIntegrate. 

NIntegrate::ncvb: 

NIntegrate failed to converge to prescribed accuracy 

after 7 recursive bisections in t near t = -0.390625. 
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Out [195]: 9. 82826 

NIntegrate::slwcon : 

Numerical integration converging too slowly; suspect 

one of the following- singularity, value of the 

integration being 0, oscillatory integrand, or 

insuf~cient WorkingPrecision. If your integrand 

is oscillatory try using the option 

Method~Oscillatory in NIntegrate. 

NIntegrate- -ncvb �9 

NIntegrate failed to converge to prescribed accuracy 

after 7 recursive bisections in t near t = -0.390625. 

Out [196]- 9. 82826 
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We see that  the tracer curves  all over lap  perfect ly and  that  the integrals  are all approach-  

ing 0 after 400 t ime units. Therefore,  the code is w o r k i n g  and  our  der ivat ions  are verified. 

N o w  we  can tu rn  to a more  re levant  case. We will a s sume  that  the flows are not  evenly  split, 

but  a is 2 / 3  and  b is 1/3.  Take the vo lumes  to be different: We will set V1 to 20 and  V2 to 

80. (Recall that  V1 and  V2 have  to s u m  to the same value as that  of V in the one-vessel  case 
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if we are to make valid comparisons.) To demonstrate, follow the In and Out statements and 
the following graphs: 

In [198]:= Clear[a, b] 

In [ 199 ] : = Remove [ cdye2b ] 

In [200]:= a = 2/3; 

b ffi 1/3; 

cdye2a [t_ ] :ffi 

cdye2b[t_] := 

ae 

be 

-- a qex t 

vz m d y . ( U n i t S t e p [ t ]  - UnitStep[to]) 

Vl 
b qex t 

- ~ mdy,(UnitStep[t] -UnitStep[to]) 

V2 

mdye = i0; 
qex ffi 1; 

Vl = 20; 

V2 = 80; 

to = -5; 

p12 = Plot[{cdye2a[t], cdye2b[t]}, {t, -I00, 500}, 

AxesLabel ~ {"t", "cdye[t]"}, 

PlotStyle ~ {{Thickness[0.01], GrayLevel[0.5]}, 

{Thickness[0.01], Dashing[{0.01, 0.025}]}}, 

PlotRange ~ All] ; 

a cdye2a[t] + b cdye2b[t] 
pl2b = Plot[{ }, {t, -i00, 500}, 

a + b 

AxesLabel ~ {"t", "cdye[t]"}, 

PlotStyle ~ {{Thickness[0.01], GrayLevel[0.5], 

Dashing[{0.05, 0.05}]}}, PlotRange ~ All] 

NIntegrate[cdye2a[t] aqex, {t, -I00, 400}]; 

NIntegrate[cdye2b[t] bqex, {t, -i00, 400}] ; 

%+%% 

NIntegrate [cdye [t ] qex, 

Show[pl2b, pll] ; 

{ t ,  - 1 0 0 ,  400}]  

General--spelll �9 Possible spelling error- new symbol 

name "cdye2b" is similar to existing symbol "cdye2a". 
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Out[210]= -Graphics- 

NIntegrate::slwcon : 

Numerical integration converging too slowly; suspect one 

of the following- singularity, value of the integration 

being 0, oscillatory integrand, or insuf~cient 

WorkingPrecision. If your integrand is oscillatory try 

using the option Method ~Oscillatory in NIntegrate. 

NIntegrate::ncvb : 

NIntegrate failed to converge to prescribed accuracy 

after 7 recursive bisections in t near t = -0.390625. 

NIntegrate::slwcon : 

Numerical integration converging too slowly; suspect one 

of the following- singularity, value of the integration 

being 0, oscillatory integrand, or insuf~cient 

WorkingPrecision. If your integrand is oscillatory 

try using the option Method ~Oscillatory in NIntegrate. 

NIntegrate::ncvb : 

NIntegrate failed to converge to prescribed accuracy 

after 7 recursive bisections in t near t = -0.390625. 

Out[213]= 9.39734 

NIntegrate::slwcon : 

Numerical integration converging too slowly; suspect 

one of the following, singularity, value of the 

integration being 0, oscillatory integrand, or 

insuf~cient WorkingPrecision. If your integrand is 

oscillatory try using the option Method ~Oscillatory 

in NIntegrate. 

NIntegrate::ncvb : 

NIntegrate failed to converge to prescribed accuracy 

after 7 recursive bisections in t near t = -0.390625. 

Out[214]: 9. 82826 
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We see that the t ime dependence  of the tracer in this case is marked ly  different, sharper  and 
narrower  overall. Why? Because 2 /3  of the flow is shunted  through the small vessel wi th  a 
much  shorter holding time. Therefore, even though the total flows through the two systems 

with equal volumes  are the same, the behavior  is quite different. Therefore, even if we could 
not see the two tanks, we would  have to know that there was a very different flow mechan i sm 
in this second case versus the case of one wel l-mixed tank of equal volume.  Try other values 

of a and b as well as V1 and V2 to see wha t  happens.  
To extend this model  to three tanks would  be s traightforward,  but  so too would  it be to 

extend it to n tanks where  n was large. One of the points to note about  the equations is that 
the a rgument  of the exponential  term is a ratio of the actual t ime to the holding t ime in each 

v,, unit  because the holding time in the nth unit  0, is ,T,' that is, the ratio of the flow volume of 

the unit  to the flow rate through it; 

cdye n[t] - 

t qn  

an e v,, mdye(UnitStep[t] - UnitStep[tol)qtot 

Vn 

an e ,,~ mdye(UnitStep[t] - UnitStep[to]) 

On 

Now if we kept the total volume and total flow rate through these n different units the same 
(as shown in Figure 5) as for the one-unit  case, then we could have a very different tracer 
concentrat ion-t ime curve, depending  on the distr ibution of the flows and the volumes  within 
the green box. There would  be n different holding times in this overall unit, but  the average 
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V l / q l  

V2/q2 
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Vn/qn 
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I 
i 

,~ Cdye,tot [t], 
v 

[ql + q2 + q3 + ... + qn] 

Figure 5 

would be the same as the single vessel. If n were a discrete number  of units, then there would 
be a discrete distribution of holding times. But as n grew larger, say toward infinity, the volume 
in any one unit would be infinitely small and so too would be the holding time in each. At this 
point the discrete distribution could be described nicely by one that was continuous in the 
holding time. The key would be to know how those discrete volumes, and hence residence 
times, making up the total volume were distributed. 

The model we constructed in Figure 5 can be thought  of as a metaphor for one unit with 
incomplete mixing. Rather imagine that in this poorly mixed unit some of the fluid goes 
through faster than the average holding time and some slower. Thus depending on the path 
taken, the fluid may spend more or less time in the unit than we would predict from the 
calculation of the holding time. These times are the residence times of the fluid elements in the 
unit. Such residence times come about due to the coupling of the fluid's mechanical properties 
with the geometry of the vessel and the type and energy of mixing. It is not uncommon to find 
that even in an apparently well-mixed unit the fluid moves through some regions of longer 
residence time due to recirculation cells, and other regions of shorter times due to bypassing 

(see Figure 6). 
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Figure 6 

As we have said, the key to the analysis of a system like this one is to have a function 
that approximates to the actual residence time distribution. The tracer experiment is used 
to find that distribution function, but we will work from an assumed function to the tracer 
concentration-time curve to see what  the experimental outcome might look like. 

A good distribution function to examine in this context is the Normal or Gaussian dis- 
tribution. Using this function, we would take the residence times 0 to be normal distributed 
around some mean value 0m and with a standard deviation or spread of 80: 

NormalDistribution[0m, 80] = 

_ (~ ,~m,) 2 

e 2 ~j2 

Mathematica has this function and many others built into its set of "add-on" packages that are 
standard with the software. To use them we load the package "Statistics'NormalDistribution'. 
The syntax for these functions is straightforward: we specify the mean and the standard 
deviation in the normal distribution, and then we use this in the probability distribution 
function (PDF) along with the variable to be so distributed. The rest of the code is self- 
evident. 
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In [216] �9 = <<Statistics "NormalDistribution" 

In[217]'= Remove[@, @min, @max] 

Out [222 ] : 

In[218]:: @m = 100; 
6e = 20; 
ndist = NormalDistribution[@m, 68] ; 

pdl = PDF[ndist, 8]; 

pdl 
Plot[pdl, {8, 30, 165}, 

AxesLabel ~ {"@", "PDF[8] "}, 
PlotStyle ~ Thickness[0.01], 
Epilog ~ {GrayLevel[0.7], Thickness[0.01], 

Line[{{100, 0}, {i00, 0.022}}]}, 

PlotLabel ~ "@m" 
]; 

1 
e - ~-o-6 (-100+(9)2 

20w/2~ 

PDF[0] 
0.02 1 

Om 

0.015 

0.01 

0.005 

60 80 100 120 140 160 
0 

With the mean value 100 and the deviation 20 time units the distribution has a familiar look (see 
the preceding graph). The function tells us that most of the fluid elements (63%) go through 
the unit with residence times that are between 60 and 140 time units. There are, however, 
18.5% of the fluid elements that bypass with very short residence times and 18.5% that take 
very long times to emerge due to recirculation cells. Some of these never emerge! 
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Now that we have a model  for the residence-time distribution, how shall we use this in 
the analysis of the unit? We need weighting factors for each residence time. These come from 
the PDF itself. For example, if we integrate the PDF between any two residence times, we 
obtain the probability density for that range of times: 

In[224]:= Remove[0, ~min, ~nax] 

In [225] : = 8m = 100; 

60 = 20; 

ndist = NormalDistribution [0m, 60] ; 

pd2 = PDF[ndist, 0]; 
NIntegrate[pd2, {0, 50, 80}] 

Out [229]= 0.152446 

This result states that the fraction of residence times between 50 and 80 time units is just over 
0.15. That would  be the weight ing factor for the flows with that range of residence times. If 
there are n residence times, then as we have seen there are n weight ing factors. If the number  of 
residence times is large then n tends toward infinity and the distribution of residence times is 
continuous. We can obtain the weight ing factor for the whole of the distribution by integrating 
the probability density function over the range of residence times. In fact, we can see from the 
form of the equations, which will actually be the PDF over the residence time, that we mus t  
integrate since the form of the equation becomes: 

pdf  
at cndis[t] - --~(mdy~.DiracDelta[t] - cndis[t]) 

We will integrate over 0 and then over t to solve the problem. This is done in what  follows 
in two steps below for clarity and with specific values for the mean residence time and its 
deviation about the mean. 

In[230]:= Remove[cndis, t, 8, 8min, 8max] 

In[231]:= ndist = NormalDistribution[@m, 6@]; 

pd3 = PD~[ndist, 0]; 

pd3 
Integrate [-~-, {0, 0min, 0max} ] 

Om = i00; 

60 = 22; 
0min = 0; 

0max = 50m; 
ndist = NormalDistribution [0m, ~0] ; 

pd4 = PDF[ndist, 0]; 

_ (o - s i n )  2 

0 wf = N[ ]; 

pll = Plot [pd4, 

{0, .00010m, 20m), 
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AxesLabel ~ {"~", "PDF[@] "}, 

PlotStyle ~ Thickness [0.01], 
PlotRange ~ {{0, 2~m}, {0, Max[Table[N[pd4], 

{@, ~min, ~max}]]}}, 

Epilog ~ {GrayLevel[0.7], Thickness[0.01], 

Line[{{~m, 0}, {~m, Max [Table[N[pd4], 

{~, ~min, ~max}]]}}]}, 

PlotLabel ~ "~m", DisplayFunction ~ Identity] ; 

Show[pll, DisplayFunction ~ $DisplayFunction]; 

0max e-~ (-I00+~')2 
min ~ 0ut[233]= 

2o~~ 
e- ~ (-l~176 

Integrate--idiv �9 Integral of ~ does not 

converge on {0, 500}. 

NIntegrate--slwcon �9 

Numerical integration converging too slowly; suspect 

one of the following- singularity, value of the 

integration being 0, oscillatory integrand, or 

insuf~cient WorkingPrecision. If your integrand 

is oscillatory try using the option 

Method ~Oscillatory in NIntegrate. 

NIntegrate--ncvb- NIntegrate failed to converge to 

prescribed accuracy after 7 recursive bisections 

in @ near @ = 2.1849968739518537' �9 ̂ - 54. 

PDF[e] 
0.0175 

0.015 
0.0125 

0.01 
0.0075 

0.005 
0.0025 

0m 

A 

I I I I 

25 50 75 100 125 150 175 200 



202 
. . . . . . . . . .  

Chapter 4 Multiple-Component Systems 
I I I I I I I I I I  IIIIIII IIIIIIIIIII i i i i i i i  i i i i i i i i H l l l l  

In [243] := Simplify[ 

a = DSolve [ 

{cndis" [t] == (wf) (mdy, DiracDelta[t] - cndis[t]), 

cndis[to] == 0}, cndis[t], t] 
] 

cnd[t_, to_] := Evaluate [cndis [t] /. a] 

cnd [x, y] 

md~ = 10; 

to = -100; 

Out [243 ] : 

Out [245] : 

{ {cndis[t] -, 0.247489 @-0.0247489t UnitStep[t] } } 

{0.247489 e -~176 UnitStep[x]} 

In [248].- plndis 

= Plot [ 

cnd[t, to], {t, 0, 4~m}, 

PlotRange ~ All, 

PlotStyle ~ {{Thickness[0.01], GrayLevel[0.5], 

Dashing [ {0.05, 0.05}]}}, 

AxesLabel ~ {"t", "Cdye[t]"}, 

DisplayFunction ~ Identity] ; 

Show[plndis, pll, DisplayFunction ~ $DisplayFunction]; 

Show[pll, plndis, DisplayFunction ~ $DisplayFunction] ; 

Cdye[t] 
0.25 

0.2 I~ 

o.151 
0.1 

\ 

0.05 
\ 

\ 

100 200 300 400 
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The results are quite dramatic! We see that the normal distribution of residence times gives rise 
to a much sharper change in the dye concentration transient than does the single value. In fact, 
as we make the distribution broader by increasing only 30 while keeping the mean 0m constant, 
we find that the transient response becomes sharper and tends toward a Delta function close 
to zero. Therefore, as the distribution becomes broader, we have much less perfect mixing, but  
the response becomes sharper! To experiment with this effect simply change the value of 30; 
the most pleasing values are in the range of 20-25; below this range the curves are too similar 
and above it they are too different. 

4.9 Summary  
We have now fully integrated the concept of a component  and the rate of change of a compo- 
nent's mass into our analysis toolkit. Along the way we have taken some time to unders tand 
the concepts and meaning of density and how it relates to the concentration of the solute or 
salt and of the solvent. This included the notion of nonideality when we realized that for most 
solutes the volume either expands or contracts with their dissolution compared to that which 
it would have had if the solute added simply was more solvent, but of different mass per 
molecule. In going from a set of simplifying assumptions to a fuller analysis including these 
density changes with solute concentration, we had to introduce more computing methods,  
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but  we were able to move seamlessly from analytical solutions to numerical  ones in order 
to compare the results from increasingly complex cases. The last section of the chapter was 
devoted to some new ways  of looking at the idea of mixing. In this analysis we learned to 
use the Dirac-Delta function. We also defined the holding time and used this to construct a 
general nondimensional ized solution for the tracer injection problem. These are all tools that 
we will see again. 



_ . . .  . C H I : I P T E  

Multiple Phases---Mass 
Transfer 

A topic of utmost importance in chemical engineering is that of mass transfer. We are often 
faced with processes that require moving molecules between different phases in order for the 
outcome we desire to take place (see Figure 1). For example, a "simple" catalytic hydrogenation 
of a liquid-phase unsaturated molecule, such as benzene, is not really so simple in that it 
requires many mass transfer steps to occur prior to reaction. The hydrogen molecule must  
move from the gas phase to the liquid phase. Once there it must  diffuse through the liquid 
and to the catalyst particle's outer surface. From the surface it must  now move from outside 
to inside the particle. Next it needs to adsorb onto the internal surface and then diffuse to the 
active site and react with a benzene molecule, which also has undergone all the same liquid- 
phase steps of mass transfer and diffusion! All of this must  occur before the reaction can take 
place. Then the product  must  leave the active site and the catalyst in a reversal of these steps. 
We can imagine that the rate at which these molecular transfers between and within phases 
take place will affect the rates that we observe. If the molecules transfer quickly compared to 
the pace at which they are reacted, then the reaction rate, that is, the chemistry will control 
the rate of disappearance of benzene. If, however, the rates of benzene or hydrogen transport 
are slow, then one or both of these may limit the rate of conversion to that of the rate of arrival 
of the reactants at the active site. In other words, if the chemistry is "fast," which it should be 
with an effective catalyst, then it "waits" on the physical transport processes. 

This chapter sets out to provide a means of handling these types of interphase mass 
transfer problems taking into consideration their fundamental  characterizing variables, the 
conservation of mass, and appropriate constitutive relationships. 

205 
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Hydrogen from Gas to Liquid Phase Hydrogen to Catalyst Particle Surface 

II Catalyst Particle 

I I  Liquid Phase 

H2 

Hydrogen to Active Site 

Figure 1 

5.1 Mass Transfer versus Diffusion 
The concept of diffusion is one that is familiar to us. If a bottle of fragrance is opened in a room 
full of fresh but still air, that fragrance will slowly reach all comers of the room. Our sensation 
of the fragrance will be highest closest to the bottle and lowest in the comers of the room 
farthest away from it. Eventually, we may find that our sensation of the fragrance is about the 
same everywhere in the room. The process that takes the fragrance molecules from the vicinity 
of the uncapped bottle and throughout  the room, raising their concentration as a function of 
time, is diffusion. Random molecular motions are all that are necessary for the fragrance 
molecules to migrate from regions of higher concentration to those regions that are lower. 

Diffusion need not occur only in the gas phase. If a drop of dye is placed carefully into a 
solvent, then initially the color is very intense within the region of the droplet. With time the 
droplet of dye molecules becomes more "diffuse," by that we mean larger in volume and less 
intense in color. This process continues with time until, to the naked eye, the whole solution 
looks to be colored to the same intensity. Again the mechanism behind this process is diffusion, 
the random motion of molecules following a gradient in concentration from regions of higher 
to lower concentration. 

Diffusion is a process that also occurs in solids. The manufacture of solid-state transistors 
involves the diffusion of dopants, such as boron or phosphorus,  into silicon in order to create 
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n- and p-type semiconductors. Since solids are dense, there is a high resistance to diffusion 
and this makes for very low diffusivities versus those measured in gases, on the order of 10 
orders of magni tude lower! 

In each case we have spoken about the transfer of mass along a concentration gradient 
( that is the differential change in concentration over the differential change in position) within 
one phase. Yet, there are many situations when the mass is moving between phases. For 
example, the phosphorus  delivered to a semiconductor solid for doping typically is transferred 
to the solid from the gas phase. Thus, before diffusion within the solid can occur there must  
be gas-to-solid mass transfer of the phosphorus.  Here too we can wonder  which will be 
faster--the rate of phosphorus  transport to the solid or the rate of diffusion taking phosphorus  
away from the gas-solid interface and into the bulk solid? In this case, because the rate of 
diffusion is so low within the solid, it is a good bet that this will be the slower process. When 
mass transfer is from the gas phase into the liquid, then it may be that the rate processes 
are limited by the transfer between the phases, rather than the diffusion within the liquid. 
However, generalizations should not be made hastily because each case needs to be analyzed 
separately. 

We will not be concerned here with diffusion per se; instead we will concentrate on the 
issue of mass transfer between phases and how that is handled in the context of our analysis 
tools. The examples begin with an analysis of the dissolution of salt in water and move to more 
complex systems including the permeation of hydrogen through a palladium membrane. 

5.2 Salt Dissolution 
I I I I I I I  . . . .  I I I  III j l . . . . . . . . .  I I I I I  . I I I  

The dissolution of a solid particle of salt is a good place to begin because we already know quite 
a bit about this process. The solid, say sodium chloride, consists of cations and anions that 
make up the solid lattice in some fixed ratio. The Coulombic forces of at traction--the Madelung 
energy--keep the lattice together in the solid state. These forces are strong enough to make 
the crystalline lattice an energetically favorable configuration for the ions (see Figure 2). 

When the lattice of ions held together in this way is placed in liquid hydrocarbon such as 
hexane, nothing happens. The lattice might just as well be standing in air. It remains stable; 
the hexane does not affect it. We say that the hexane is not a solvent for the salt. Why? We 
know the hexane is a nonpolar hydrocarbon, whereas the salt is made up of charged ions that 
are at the limits of polar i ty--one is a cation and the other is an anion! If the lattice were to fall 
apart into ions in hexane, it would do so only if the ions were more stable in solution than 
they were in the lattice. This is not the case with hexane because it lacks polarity to interact 
with the ions in order to stabilize them. 

Experience shows, however, that water will dissolve the salt and will do so very well. The 
reason is that water is polar; the oxygen is electronegative and carries a more negative partial 
charge than the hydrogens, which are partially positively charged. These charges make all the 
difference in the process, because the hydrogens will coordinate with the anion of the salt to 
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Figure 2 

partially dissipate its charge, while the oxygen will coordinate to the cation to do the same. 
Nature finds bare charges to be unfavorable, so this coordination by water is highly favorable. 
For obvious reasons this interaction is called solvation. 

Quantitatively, we also know that the concentration of the ions in solution is given by 
their solubility product or  Ksp. This is nothing more than the equilibrium constant for the salt 
in water, rearranged to take up the activities of the pure water and the pure solid salt: 

Ksolvation 
a c a t i o n a a n i o n  

asaltaH2o 

Ksp -= K s o l v a t i o n a s a l t a H 2 0  ~ acationaanion 

Ksp = YcationCcationYanionCanion 

At low concentrations the activity coefficients are close to unity and we have: 

Ksp - - +  CcationCanion 
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This is just a review of what  we already know about cation salvation in water, based on general 
chemistry. The information is purely thermodynamic,  however, and does nothing to tell us 
how long a dissolution process may take. Even if a salt is soluble, we do not have a means to 
get at its rate of dissolution. Furthermore,  how do salts with smaller Ksp values compare with 
those with larger Ksp values? Will they dissolve faster, slower, or is the rate independent  of 
this factor? What  role does the form of the salt play in the rate of dissolution? Does it matter  
at all, only at the early stages of dissolution, or throughout  the process? How does the ratio 
of solvent mass to solute mass figure into th. is? These are the kinds of questions we want  to 
be able to handle quantitatively. 

5.3 Batch 
Background. The dissolution of a salt into a surrounding solution is easiest to think of as 
taking place in a closed vessel, that is, in a "batch" with no flows in or out of the vessel. But 
remember there are "flows" between the solid and the liquid phases. We take a particle of 
the solid as one control volume and the volume of solvent as the other. We can solve this one 
particle problem and then handle many particles. The process is taken to occur at constant 
temperature. The physical situation looks like that shown in Figure 3. 

The dissolution process will continue until either all the salt has dissolved, or the saturation 
limit of the solvent has been reached. Therefore, the ratio of the volume of the solvent to the 
mass of salt will be critical. If we were to do this experiment several times with the same volume 

Solvent Phase 1 

Figure 3 
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of solvent and with the same mass of salt, but  with different numbers of particles of the salt, 
we would find that the experiments done using more, smaller particles would require less 
time to fully dissolve the salt than would those that use fewer, larger particles. Our common 
experience of dissolving sugar in coffee or in tea is that stirring makes the dissolution process 
go fasten Therefore, if we were to do a series of salt dissolution experiments, keeping all else 
the same, but  varying the rate of mixing, we would find that faster and better mixing would 
lead to more rapid dissolution. This is obvious, but we will still write it mathematically before 
we go on: 

ratedissolutionC~ Ainterface 

ra tedissolut ion 1" a s  mixing 1" 

Rate of Dissolution. Experiments also would show that the rate of dissolution must  stop 
when the solution reaches the saturation limit and, furthermore, the rate will be fastest early 
in the process, when the concentration of salt in the solvent is low. All of this behavior can be 
apprehended in a simple rate for the dissolution process: 

{~sat 'd  -- c l  [t]) 
r a t e d i s s o l u t i o n  - "  K,l ainterface ~,"salt salt 

Km is the mass transfer coefficient, Length Ainterface is the area of the solid in contact with time ' 
the liquid (either for one particle or for n-particles), rsat'a is the concentration of the salt in " s a l t  
the solvent phase I at the saturation limit, and C1~,,[t] is the concentration of the salt in the 
solvent at any time t. This rate law includes all the phenomena we just said would be observed 
in experiment. The mass transfer coefficient will be larger if the mixing is larger, otherwise 
smaller. The interfacial area is linearly related to the rate---the more area the better. When the 
concentration of salt in solution hits the saturation limit, the dissolution stops. The term in 
brackets is the so-called "linear driving force": linear because the concentration dependence 
is first order, that is, power unity, and driving force because the rate is proportional to the 
difference between the maximum and the actual concentrations. Hence the rate is maximum 
at an instant after time zero when the difference is just rsat'a " s a l t  " 

Conservation of Mass across Phases. The next step is to apply the conservation of mass 
principle to this problem. We need to write a material balance on salt for both phases. Any 
mass that leaves one phase must  end up in the other phase. Then we can say the following 
regarding the rate of salt mass accumulation in the two phases: 

dm~al t  d C / a l t  W I 
= = q-Aird 

d t  d t  

dmlslalt d ~ I I  LrlI 
'~ " s a l t  - -  : - -  Ai rd 

d t  d t  
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where Ai -- Ainterface and ra : ratedissolution. We can substitute in the constitutive expression 
for the rate of mass transfer between the two phases to obtain: 

m ! I I d salt d C s a l t V  

dt dt 

dmII  II VII 
salt d Csalt  

dt dt 

/t-,sat '  d 
: + K m A i  ~,"salt 

- -  - -  Km Ai  /(-,sat' d \ '- 'salt 

- Cs/alt [ t ] )  

- -  Cslalt[t]) 

II The material balance for the solid phase includes in the differential term Csait. Because salt 
is a pure solid, this is the same as the density of the solid, which remains constant through-  
out the process. This means that the water  is assumed not to disrupt  the solid lattice by 
penetrat ing into it and slowly expanding it to result in dissolution. Instead, it is only the 
first few layers that are involved in the process and the interior of the particle is left un- 
per turbed until it becomes surface. The process is like one of layer-by-layer lift-off and 
dissolution. If the mass transferred between the phases is in total small, then we can ig- 
nore the change in solution volume that comes with the density change as the salt con- 
centration rises. If this is too restrictive, then we can relax it later, but  for now it makes  
good sense to ignore it and concentrate on the mass transfer problem. The equations can be 
rewritten as: 

dm' dCdalt[t] salt __ W I 
dt dt 

d ii dVii msalt  [ t]  
dt : Psalt d----~ 

d i 
... V I Csalt  

dt 

{6~ sat' d 
= + K,,, Ai ~," salt 

__ _ Km ai  ( c  sat' d 
- salt 

dV II 
= --Psal t  dt 

C I - sa l t [ t ] )  

- C / a l t [ t ] )  

I V"  u This can be integrated assuming that at t : 0, Csalt[t] = 0 and [t] : Vo and then rearranged 
to give: 

I 
P s a l t ( V f  -- V " [ t ] ) :  V'Csalt[t ] 

V"[t] = Vf V1Cdalt[t] 

Psalt 

< ' . I t ]  = 
Psalt (V(~' - V I I [ t ] )  

V ~ 

The last equation relates the concentration of the salt in the liquid phase at any time to the 
volume of the salt remaining in the solid at the same time. This solution and the one for 
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the concentration of salt in solvent are implicit. To use these equations we would  need to 
measure the actual volume of the solid salt as a function of t imemnot  an easy measurement  
to make in practice! What  we really need then is an explicit solution in time. To obtain this we 
must  return to the statements of the material balance between the phases. 

The salt leaving the solid follows this equation: 

dVH[ t] _Kmai(csat'd 
- "  salt -Cs/alt [t]) Psa l t  dt 

If we are concerned only with the case in which the total mass of salt transferred is small 
relative to the volume of solvent and the saturation limit, then the equation becomes: 

dVII[t] (_,sat, d 
/gsalt d-----7-- = - K ,,, Ai , - .salt  

This looks as though we should be able to integrate it immediately, but  look again! The area 
between the two phases is the area of the salt particle; it must  be changing with time, and 
quite considerably at that. Therefore we cannot integrate this as of yet. We need a relationship 
between the volume of the solid at any time and the surface area it projects. Thankfully we 
can find this easily. If each particle of solid is the same size then their interfacial areas are the 
same and we can write: 

.) 

Ai = NAi .N - N y  --~ 
1 Vi i2  = N~y 

Here N is the number  of identical particles of solid, and ?, is the surface area to volume 
ratio, or the shape factor which accounts for the geometry of the solid, assuming that it is 
a regular polytope; the subscript i refers to the number  of any individual particle. The total 
volume of the solid phase divided by N is the volume of any individual particle and when  we 
raise this to the 2 /3  power  we approach to within a constant y, the surface area of that same 
particle. This allows us to rewrite the rate of change in solid volume (dropping the notation 
for t-dependence) : 

1 V I I  2 ( . , sa t ,  d 
d V  II Km N~ y ~ "-'salt 

d t Psalt 
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We can separate, integrate, and rearrange to obtain: 

t ~ 0 I  I r d t 3 Vii[t] = _ KmN~ ]"'-'salt t 
Psalt 

We have already stated that the measurement  of the solid volume would  be a difficult exper- 
iment to conduct. The measurement  of salt concentration as a function of time is easy to do 
and so we want  an explicit equation for the concentration. To obtain this we use this equation 
for volume change with time to obtain the concentration change with time. 

Cslalt[t] = 

m ~ J " ~ ' s a l t  t Psalt I K N~- ,~sat 
- ~ G  

V I 

If we made a series of experiments in which we sought  the mass transfer coefficient, then we 
would  rearrange this so that we could plot a function of the salt concentration against the 
time: 

(1-- C~alt[t]Vl) ~ ( 
Psalt V~ I -- 1 - 

I (-~sat' d t KmN~ Y'-'salt 

P s a l t ~  t 

A plot of this left-hand side versus the time gives a graph whose slope is the coefficient of t. 
Everything in this group with inverse time as its dimensions should be known before the 
experiments are even conducted. If we knew the mass transfer coefficient, then the inverse 
of this group would  provide the time required to dissolve all N particles of the salt. We can 
see this because when  the time t is equal in magni tude  to the reciprocal of this group the 
right-hand side goes to zero identically. 

(l_Cslalt[t]vl)~ ( t ) 
P~ltV,~' = 1 - - ~  

m 

csat '  d K,,,N~ y salt 

Psalt~V~l I 

The left-hand side must  also be zero. Therefore, the concentration of the salt at that time will 
be the reciprocal of the product  of the density of the salt and its initial volume divided by the 
volume of the liquid. 
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5.4 Fit to the Batch Data  
Table 1 gives  da ta  for an  e x p e r i m e n t  in w h i c h  100 salt  cubes  (y = 6) w e r e  d i s s o l v e d  in 

100 cm 3 of water .  The total  v o l u m e  of the  salt w a s  1 cm 3, its dens i t y  was  2 g cm 3, a n d  the  

sa tu ra t ion  l imit  of the  salt was  0.05 g cm -3. Data  po in t s  w e r e  l o g g e d  e v e r y  50 sec for a total  of 

2500 sec. 

ffsec Csalt[t] ffsec Csalt[t] 

50 0.00171084 1300 0.0196429 

100 0.00279533 1350 0.0192367 

150 0.00424841 1400 0.0193228 

200 0.00494699 1450 0.0193325 

250 0.00635887 1500 0.0192889 

300 0.00763428 1550 ~ 0.0201392 

350 0.00835931 1600 0.0197141 

400 0.010246 1650 0.0197589 

450 0.0105354 1700 0.0203605 

500 0.0116536 1750 0.0202748 

550 0.0120036 1800 0.0200916 

600 0.0135537 1850 0.0201311 

650 0.0137191 1900 0.02012 

700 0.0142037 1950 0.0200507 

750 0.0150545 2000 0.0195248 

800 0.0153611 2050 0.0202914 

850 0.0165474 2100 0.0199335 

900 0.0169347 2150 0.0204394 

950 0.0167272 2200 0.0204604 

1000 0.0177943 2250 0.0203341 

1050 0.018098 2300 0.0200852 

1100 j 0.0184004 2350 0.0196325 
i 

1 1 5 0  0.0188067 2400 0.0205709 
L 

1200 0.0190497 2450 0.0198959 

1250 0.019132 2500 0.020606 

Table  I 
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Putting the data into vector notation for manipulat ion we have: 

In[l]:= csaltdata = 

{{"0", "0.00004044"}, {"50", "0.001815"}, {"I00", "0.002589"}, 

{"150", "0.004589"}, {"900", "0.005424"}, {"250", "0.006528"}, 

{"300", "0.00783"}, {"350", "0.008987"}, {"400", "0.009514"}, 

{"450", "0.01022"}, {"500", "0.01143"}, {"550", "0.01287"}, 

{"600", "0.01328"}, {"650", "0.01399"}, {"700", "0.01488"}, 

{"750", "0 .01535" } ,  { "800" ,  "0 .01536" } ,  { "850" ,  " 0 .0161 " } ,  
{"900", "0.01694"}, {"950", "0.01755"}, {"i000", "0.01704"}, 

{"i050", "0.0183"}, {"ii00", "0.01851"}, {"1150", "0.01894"}, 

{ "1200" ,  "0.01894,"} ,  { "1250" ,  "0 .01861" } ,  { "1300" ,  "0 .01951" } ,  
{"1350", "0.01946"}, {"1400", "0.01949"}, {"1450", "0.01958"}, 

{"1500", "0.01997"}, {"1550", "0.01968"}, {"1600", "0.02014"}, 

{"1650", "0.01973"}, ("1700", "0.02041"}, {"1750", "0.02017"}, 

("1800", "0.02026"}, {"1850", "0.02036"}, {"1900", "0.02042"}, 

{"1950", "0.02023"}, ("2000", "0.0204"}, ("2050", "0.01979"}, 

("2100", "0.02013"}, {"2150", "0.02013"}, ("2200", "0.02035"}, 

("2250", "0.0196"}, ("2300", "0.02043"}, ("2350", "0.02035"}, 

("2400", "0.02025"}, ("2450", "0.02061"}, {"2500", "0.02048"}}; 

As we plan to do considerable graphing we set the options for the style of the graphs to make 
them most visible and then ListPlot the data. 

In [2] : = SetOptions [ {Plot, ListPlot }, 
AxesStyle ~ {Thickness[0.01]}, 
PlotStyle ~ {PointSize[0.015], 

Thickness [0. 006] }, 
DefaultFont ~ ("Helvetica", 17}] ; 

In [3] : = datpl = ListPlot [csaltdata, 
AxesLabel ~ {"t", "Csalt[t]"}, 

PlotStyle ~ PointSize[.015]]; 
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We shall want  to fit this data "csal tdata"  as seen in the preceding graph to the expression that 
we have derived because, as we can see from the data, the final concentrat ion is less than 50% 
of that at saturation. To be safe we will fit just the early t ime data out to 1500 sec. One way  to 
do this is to do a one parameter ,  nonlinear  fit to the expression after we have simplified it by 
evaluat ing all the parameters .  The first step is to obtain the fitted expression, evaluate it, and 
then compare  it to the data. 

Here are the parameters  relevant to the problem and their values followed by the function 
definition: 

In[4] := psalt = 2; 

VoII - i; 

~ ffi 6; 

KIN =o 

Csaltsatd = .05; 

VI = I00; 

n = i00; 

tmax = 2500; 

csalt It_ ] := 
psalt(voII - (~/voII - 

VI 

z 
Km n 3 7 Csaltsatd 

psalt 
t:) 3 ) 

f[t__] := Simplify[csalt[t]] 
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Calling "Stat ist ics 'NonlinearFit '"  will allow us to fit the data wi th  the c o m m a n d  "Non-  
linearFit," which we can then call "g" with the c o m m a n d  g = % and, finally, we can Plot 

and  Show g versus  the data  set: 

In [i 4 ] - = << Statistics 'NonlinearFit �9 

In[15] .= NonlinearFit[csaltdata, f[t], t, Km]; 
g = %; 

plfit = Plot[g, 

{t, 0, 2100}, 

PlotRange ~ {{0, 2500}, {0.0.02}}, 

DisplayFunction ~ Identity] ; 

Show [datpl, plfit, 

DisplayFunction ~ $DisplayFunction] ; 

Csalt[t] 

oo21. 

0.015 

0.01 

0.005 

t 
500 1000 1500 2000 2500 

The coefficient of t is used to evaluate  Km and that  is: 

In[19]': Solve[0.696238 Km == 0.00051, Kin] 

Out [19]: {{Km --~ 0.000732508}} 

The fitted value is 7.3 x 10 -2 cm sec -1, which  is a reasonable,  a l though  small, value for this 

constant. 
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5.5 Semicontinuous: Pseudo Steady State 
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We can imagine a situation where our goal is to dissolve a sparingly soluble salt out of a unit in 
which it has precipitated. An example of such salts are the alkaline salts that deposit in boilers 
and heat exchangers as "scale." Nothing more than the accumulation of precipitate on the 
inner walls of the vessel over time, these salts can present a real hazard in that they reduce the 
heat conduction through the wall, because they are good insulators. As a result of this, boilers 
can develop hot spots and explode, and heat exchangers can become much less efficient over 
time with similarly deleterious results. At the same time these salts may be sparingly soluble 
except in acidic solution, which, if the pH is too low, will etch away the vessel wall along 
with the salts over time. Therefore, one may be forced to accept the low solubility in the less 
acidic pH range, and be willing to p u m p  large volumes of solvent through for longer periods 
of time. This is an optimal solution to the problem. 

The essence of this problem, and others like it, is that the transfer of mass from the solid 
to the liquid occurs slowly over time, but now there is a continuous flow of solvent over a 
slowly diminishing mass of solid. The flow of solvent does two things-- i t  provides a large 
volume of solvent when the flow is integrated over time and, if it is at relatively high rates, it 
provides much better mass transfer rates than if the same large volume were merely standing 
in contact with the solid without flow. Flow gives mixing and mixing gives higher mass 
transfer coefficients, which means it will take less time to dissolve than it would with less or 
zero mixing. The physical situation is as shown in Figure 4. 

Fresh Solvent Feed 

J 
,-.'-:.. '..-i.-.. ""' "--,:; -'":.-I:!-;,'-',." --.-:;-:< : -, ~'-".:; ~:~- J~ 
'-'~...,. :.~-'-~'..,... "-'=.i :-..'-:]:~,....:."-. �9 .S-:; : ; :': '" ".:~.. -.I 
' " . : "  : ' .  i ". - . ,  " ~ ,  . ; ' "  " .  " " .< "  . .  " " ~ . . . .  : " .  " " :  " . .  . . . .  . . . . . .  ,. ~ f .  . . . .  . , . . . . . .  . . . .  . , , . . . . . . . . . . . . ; , .  
I+:.".-:'-':,~..,'..,'.,.,:~.-: -I~ " ." ':-:;. . .. ,. ." .,. . ,-. .. :.,, , I 

-.  , -  . , . . . ,  , " : ~  % - ~ . : . . : , .  �9 . , "  : . . .  : . ~ ' .  . �9 , �9 . , ~ : :  

I~: :;.,:.v.~,--, �9 ..-" J .~ . - : . - - ' -  " .. ~ ~- ..-..- ,..,,.,~.., .;.'~ 
I -:'-':~.'.~, i .  Well-Mixed Salt + Solvent :=';" ":"l 
p:-....-~.:-..- ;,:..;...~.-..... ~~.:-'.. : : .,,.=.= .. ....~.~,.:j 

i..~ ,.,- .:..<.~ ... ,,. ~,::-...~. :.-:...- ~..: ....-,..:.-~-~ i.- I 
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Dissolved Salt Waste 

Figure 4 
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The equations look largely the same, except that the solution phase balance on the salt has a 
convective flow term for the mass of salt leaving the unit  by this process: 

d i i 
m s a l t  = W I dCsalt [t] 
dt  d t  

d II dVlI[t] msalt 
dt  = P s a l t  d----- -T-  

[ ( ' .  sat '  d I 
= q-KmAi \ ' - ' s a l t  - C s a l t [ t ] )  - C s / a l t [ t ] q  e x  

/ ( - , s a t '  d _ I 
= - K m a i  ~,'- 'salt  ~ s a l t t t j )  

t "  f l ~  

The interfacial area in this case will be taken to be a constant  well approximated  by the surface 
area of the unit. In the d iagram this would  be the cross-sectional area of the tank err 2. This 
means then that the salt is removed by a process that removes layers, making  the change in 
salt volume a one-dimensional  problem of comput ing  the salt thickness at any time. 

If the salt is sparingly soluble, then C'~saa~ a is small in magni tude ,  and if the product  K , , A i  

is relatively large due to gross mixing, then the salt concentrat ion is likely to be a constant  and 
rsat'~ depending  on the magni tudes  of the parameters .  Given that close to but  not as large as "-salt ' 

salt concentration is a constant, then its rate of change is zero, that is, the salt in solution is at 
steady state. This is the case even though the salt mass is changing steadily and constantly as a 
function of time. Because of this mixed condition the two-phase system as a whole is said to be 
in a pseudo-s teady state. This is the case because if we could measure  only the concentrat ion 
of salt exiting the reactor, we would  find it to be a constant at constant conditions. However ,  
we know the salt is coming from inside the control volume because we are not feeding it. 
That means  that according to the principle of conservation of mass, the salt is emerging from 
a dissolving source within the control volume, and this mass m u s t  be decreasing with time. 

The equat ions work  out as follows for the pseudo-s teady  state: 

0 = +K,,, Ai K"salt[("sat' d _ _  Csal t l  stst) - C/altStst qex 

�9 KmAi/(-.sat',/ _ _  C~altStst) = CstaltStst qex �9 " U " s a l t  �9 

and 

dVIl[t] = --C~altStst qex 
P s a l t  dt  

VII[t] - -  W(~ I - Cs/altStst qex t 

This very simple solution comes about as a result of the fact that at the s teady state the 
concentration of salt is a constant and the exit mass flow has to be equal to the rate of salt m a s s  

transfer into the solvent. 
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5.6 Full Solution 
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By solving the equation in the way we have just described, we make the mathematics much 
simpler, but we also place severe constraints on the solution. Instead of doing that, we now 
solve the equations without these assumptions, in this way they are then appropriate for 
the most general case---from short time to long, and for sparingly soluble to very soluble 
salts. 

dp'[t]V'[t] 

dt 
= (Psolvent --  /91 [ t ] )  qex 

p' It] - -  { ) s o l v e n t - } -  aCsIalt[t] 

d i dC I [t]V 1[t] msalt  salt 

dt dt 
- -  if- Km Ai/{-,sat' d 
-- ~,"salt -- Cslalt[ t])  -- Cs/alt[t] qex 

dm~Ialt d V " [ t ]  _K,,zail~sat, d ' [ t ] )  
d t  = Psalt d--7- "-- ~,'-'salt --  Csalt 

Here we have added one equation--the total mass balance--which includes the density of 
phase one as it flows out of the system. Recall also that for a double salt M,  Lb we have the 
following: 

a b __ [a{-~sat'd~a [hF-~sat'd b 
Ksp  - -  C M  I CL K ~-'salt ] K~' 'sal t  ) 

We can solve for the saturation concentration of the salt in terms of its Ksp and the stoichio- 
metric numbers: 

In[20] "= Solve[Ksp == PowerExpand[(a Csatd) a (b Csatd)b], Csatd] 

Solve--ifun �9 Inverse functions are being used by 

Solve, so some solutions may not be found. 

] 

Out [20]= {{Csatd ~ (a-ab-bKsp)~}} 

Turning once more to the equations, we will derive code that will solve these numerically and 
simultaneously by using this expression for the saturation concentration of the salt and the 
linear dependence of density upon concentration. The code that follows does just this. The 
tank parameters are specified along with the volumes of the solution and salt phases at time 
zero (VIo and VIIo), the salt parameters, the mass transfer and flow rates, the maximum time 
for the integration to be done, the function calls for the exit flow rate in terms of the inlet 
flow rate, density of the solution and the saturation concentration of the salt, the material 
balance equations, the implementation of the numerical solution of the equations and the 
assignment of the interpolation functions to function names, and finally the graphical output 
routines. 
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In [21] -- "The tank parameters are: "; 

r = 2; 

Ai = N[~r 2] ; 

VIo = i00 Air; 

VIIo = i0; 

VI =. 

"These are the salt parameters"; 

psolvent = i; 

psalt = 2; 

a = i; 

b = i; 

Ksp = 110 -2; 

= 0.9; 

cIo = I0 -i~ 

"The mass transfer coefficient and flow rates"; 

Km = 7.3 10 -3; 

qo = I0; 

f = .05; 

"This is the maximum time for the integration"; 

tmax = N[2.5 103]; 

"These specify the exit flow the density in solution 

and the saturation concentration or solubility"; 
ft 

qex[t_] -= qo (i+f~) 

pI[t__] := N[psolvent + 7cI[t]] 

1 

csatd [a__, b__, Ksp__ ] : = N [ (a -a b -b Ksp) .$b ] 

"Set of equations to be solved"; 

eqns = ( 
~t(pI[t] VI[t]) == psolventqo - pI[t] qex[t], 

vx[0] == vxo, 

~t(cI[t] VI[t]) == KmAi(csatd[a, b, Ksp] - cI[t] ) 

- cI[t] qex[t], cI[0] == cIo, 

-~nAi(csatd[a, b, Ksp] - cI[t]) 
~t (VII[t]) == psalt " 

vxx[0] == vxxo}; 

"N%unerical solutions and assignments" ; 

soln = NDSolve [ 

eqns, 

(vx[t], vxx[t], cT[t]}, 

(t, 0, tmax}]; 
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cOne [ t_ ] 

vOne [t_] 

vTwo [ t_ ] 

:= Evaluate [cI [t] /. soln[[l]]] 

:= Evaluate[VI[t] /. soln[[l]]] 

:= Evaluate [VII[t] /. soln[[l]]] 

General--spelll �9 Possible spelling error- new symbol 

name "VIIo"is similar to existing symbol "VIo". 

General-.spelll �9 Possible spelling error- new symbol 

name "csatd"is similar to existing symbol "Csatd". 

General--spelll �9 Possible spelling error- new symbol 

name "vOne"is similar to existing symbol "cOne". 

In [52] �9 = "The graphical routines" ; 
=. 

qo 
8 == ( )-z; 

vIo 
Plot[{qo, qex[t]}, {t, 0, tmax}, 

PlotRange ~ { {0, tmax}, {0, qo} }, 

AxesLabel -~ {"t", "qex[t]"} 
]; 

qex[t] 

8 

6 

4 

2 

500 1000 1500 2000 
- - - t  
2500 
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In[56]:= csatd == csatd[a, b, Ksp]; 

Plot[N[cOne[t]], {t, 0, tmax}, 

PlotRange ~ {{0, tmax}, 

{0, Max[Table[cOne[t], 

{t, 0, tmax}]]}}, 
AxesLabel ~ { "t ", ,,~I [ t ] " } , "salt 

PlotStyle ~ {Thickness[0.01], Dashing[{.03, .03}]}]; 

VIo/Ai; 

Plot[{VIo/Ai, ((vOne[t]/Ai) - (vOne[0]/Ai))}, {t, 0, tmax}, 

PlotRange ~ {{0, tmax}, 

{0, Max[Table[(l + .05) ((vOne[t]/Ai) - (vOne[0]/Ai)), 

{t, 0, tmax}]]}}, 

AxesLabel ~ {"t", "~h[t]"}, 

PlotLabel ~ "Rise in tank level" 

]; 

Plot[vTwo[t], {t, 0, tmax}, 

PlotRange ~ {{0, tmax}, 

{0, Max[Table[(l + .05) vTwo[t], {t, 0, tmax}]]}}, 

AxesLabel ~ { "t" , "V II [t ] " } , 

PlotStyle ~ {{Thickness[0.01], Dashing[{0.05, 0.05}]}}, 

P1 

PlotLabel ~ "Change in salt volume" 
]; 

C I salt[ t ] 

0.0008 

0.0006 

0.0004 

0.0002 
I 

I 
I 

# 
l 

I 
I 

# 
f 

S 

~ ~ ~ m m m m i / m 

I I I  I I I 

500 1000 1500 2000 
' t  

2500 



224 Chapter 5 Multiple Phase~Mass Transfer 
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This can now be used interactively to experiment with parameter values in order to learn how 
they affect the observed behavior of this system. There are several points that must  be noted 
about this code that bear explanation. First, the initial concentration of the salt in the solution 
cIo is not taken as zero; it is set to a very low value to simulate zero at time zero. If we set 
this identically to zero, the numerical routine will come back with a complex infinity error 
because it will have divided by zero at the start of the calculation. Second, the exit flow rate 
has been made a function of the inlet concentration. This is one way to handle the problem of 
the exit flow rate. By doing it this way, the exit flow rises to the inlet flow over some period 
of time, which is parametrically dependent  upon the magnitude of f. One could envision that 
a controller could be used at the exit to produce this effect. If one wishes to see what  the 
solutions would look like if this were not included and if the exit flow rate instantaneously 
equaled the inlet flow rate, this is easily accomplished by letting f be large in magnitude,  say 
10 3 . The solution is remarkably stable, but this is not to say that with the right (or wrong) 
choices of parameters, it will not become numerically unstable. It certainly will, especially if 
the parameters begin to imply nonphysical conditions. The simulation has been run to times 
that are two orders of magnitude larger than the current tmax value, with Ksp at 10 -1, and 
f = 1, and the only limit to going longer in time was patience. Some small instability is noted 
in the concentration of salt as a function of time when the integration is done for long times, 
at high initial volumes of solvent, and large Ksp values. The reader should experiment with 
the parameters to find cases where this type of behavior is displayed. 

5.7 Liquid-Liquid System 
Fully Continuous 
Steady State: Equilibrium Stage. Liquid-liquid extractions are used in many different 
applications from chemical production to environmental clean-up. It is possible to extract 
organics from water by contacting the water with a better solvent for the impurities, which 
is also immiscible with the water. When there are two liquid phases involved we have new 
equilibrium considerations to take into account, whereas in the case of the salt we had only 
one, the solubility, since the second phase was the pure salt. The phases will not change in 
volume within the unit that is used for contacting them. There are now two "solubilities" 
of the transferred component---one for each phase. These are better termed the equilibrium 
concentrations of the component dissolved separately in each phase. Many, if not most of 
us, have some experience with this sort of process done at the bench by organic chemists. 
The solution to be extracted is typically aqueous and contains the desired compound.  This is 
added to a separatory funnel first. Then a less dense, immiscible solvent with a higher affinity 
for the target compound is added as a layer on top. This solvent's "higher affinity" for the 
target, means that the target is more soluble in it than in water. Often, diethyl ether is used as 
this second solvent. After capping the funnel, inverting it, and opening the petcock to allow 



226 
m l l l l l , , l l  i lml l l l l  l l l l l  i 

Chapter  5 Multiple Phases--Mass Transfer 
iiiiii iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiii ii,iiiiii ii,i!iiii [~ ~.~ . . . . . .  P I ' 

Contaminated feed T Pure solvent feed 

Well-Mixed contactor 

Recycled 
solvent 
stream 

Decantor Unit 
,~ Light product 
r 

stream 

Heavy product stream 

Figure 5 

the ether vapor to escape, the mixture is shaken vigorously for some time. Then the funnel 
is returned to a stand and the two solvents are allowed to separate. The lighter solvent, now 
containing the target molecule, is decanted or siphoned off the top. The process is typically 
repeated three times. Then the second solvent is evaporated or reduced in volume. 

Interestingly, at the scale of a process all the same things are done, but typically con- 
tinuously for large scale production. Batch processes, however, can be scaled up to larger 
volumes, and this is done in processes that yield specialty chemicals or pharmaceuticals with 
high added value. We will consider the continuous process run at steady state. The physical 
situation is as shown in Figure 5. 

The denser contaminated feed is mixed with the less dense pure solvent in a contactor. 
The well-mixed stream emerges from this unit and flows into the decanter unit where the two 
phases are given enough time to fully separate. This is done continuously, so at the entrance 
of the unit the two liquids are well mixed, but by the end, they are well separated, as shown 
in the schematic. We will not worry about the internal configuration of this unit. The top 
layer is the solvent, which leaves the unit with the impurity within it. Some of this solvent is 
removed from the unit continuously, but the balance is sent back to the contactor for further 
use. The heavier stream emerges from the decanter unit with a much reduced concentration of 
impurity. The analysis of this unit calls for a detailed analysis of the subunits that make it up. 

We begin at the top of the unit with the pure solvent. The stream of solvent coming into the 
unit comes in with a density ps and a flow rate qs. This is mixed with the recycled stream that 
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has a densi ty ors, a flow rate qrs, and an impuri ty  concentration of Cirs. The two streams are 
mixed combined into one with a flow rate qsf, a densi ty of psf, and an impur i ty  concentration 
of Cisf. The steady-state mass balances at the mixing tee are: 

ps qs + prs qrs = psf qsf 

Cirs qrs = Cisf qsf 

At the contactor we have the impure  heavy stream and the solvent stream being fed, and at 
the outlet the two have been mixed. The material balances for this unit  are" 

phf qhf + psf qsf = phc qhc + psc qsc 

Cihf qhf + Cisf qsf = Cihc qhc + Cisc qsc 

The decanter unit has these equations associated with it. Remember  that we are not concerned 
with its internals but  only with the mass flows into and out of it. The mass flow in is that of the 
mixed feed from the contactor. The flows out are those of the impure  solvent and the purified 

heavy stream: 

phc qhc + psc qsc = pds qds + pdh  qdh 

Cihc qhc + Cisc qsc - Cisd qds + Cihd qdh 

Finally, the solvent stream is split with one flow back to the inlet solvent tee and the other 

flow out of the unit. The equations that describe this are: 

pds qds = prs qrs + psp qsp 

Cisd qds -- Cirs qrs + Cisp qsp 

The schematic of the flow sheet is shown once again (Figure 6) with all the streams labeled 
and with an imaginary box around the unit, which cuts all the streams that either enter or 

leave this unit. 
The box is an imaginary control surface for the unit as a whole. Despite all the details that 

we have just considered, there is one overall set of mass balances for the unit as a whole. This 
treats the unit  as a so-called "black-box," which means that even if the internal workings  were 
h idden from view, we would  be able to do an overall balance on the system, as shown in 

Figure 7. 
As this greatly simplifies the initial stages of this problem, it is a logical place to begin. 

From Figure 7 and the conservation of mass, we can write that: 

pihf qhf + ps qs - pdh  qdh + psp qsp 

Cihf qhf = Cihd qdh + Cisp qsp 
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In these two equations we have a total of 14 parameters and variables. We need to reduce this 
number. How can we do this? The most crucial assumption we can make is that the unit runs at 
equilibrium. This means that the concentrations of the impurity in both liquid phases emerging 
from the unit are at equilibrium. To understand this we will pretend that the separation was 
done stepwise rather than continuously. The volume of light solvent added would be qs At. 
The volume of the impure stream would be qihf zM. The initial concentration of the impurity 
in the heavy phase is Cihf. If the two phases are in contact, then the impurity will transfer 
spontaneously to the light phase where its affinity is higher. This transfer will occur until the 
concentrations of the impurity in the two phases are no longer changing--in other words, until 
the impurity comes to equilibrium between the two solvents. For this reason, a unit assumed 
to operate at the limit of equilibrium is referred to as an equilibrium stage, and this level of 
analysis is the equilibrium stage analysis. If the ratio of these two concentrations at equilibrium 
is a constant over a range of different concentrations, then the constant is referred to as the 
partition coefficient Kd: 

K d =  
Cih, e 

Cis, e 

If the system we are examining also comes to an equilibrium condition, then the concentra- 
tions of impurity in the two outlet streams are coupled: 

K d -  
Cihd 

Cisp 

It is also reasonable to expect that the densities of the contaminated streams are not too diff- 
erent from their pure densities, since the contaminant is usually at low concentrations: 

ph qhf + ps qs = ph qdh + ps qsp 

( 1 )  
Cihf qhf - Cihd qdh + ~-~qsp 

In[61].: Sin~plify[Solve[{phqhf + psqs == phqdh + psqsp, 
1 

Cihfqhf == Cihd(qdh + qsp) }, {qdh, Cihd}] ] 
Kd 

General--spelll �9 Possible spelling error- new symbol 

name "ps"is similar to existing symbol "ph". 

General--spelll �9 Possible spelling error- new symbol 

name "Cihd"is similar to existing symbol "Cihf". 

qhfph + qs ps - qspps 
Out[61]= {{qdh ~ 

ph 

Cihf Kdqhf ph 
Cihd -~ } } 

Kdqhfph + qspph + Kdqsps - Kdqspps 
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Thus we can show that the flow rate of heavy liquid from the unit is equal to its flow rate in 
plus a factor related to the ratios of the densities of the light and heavy liquids" 

qdh = qhf ph + (qs - qsp)ps 
ph 

p s  
= qhf + _-57_ (qs - qsp) 

pn 

If the flow rate of the solvent is the same going in as coming out, then the flow rate of 
the heavy is the same in and out. Therefore, the concentration of the impuri ty  in exit the 
flow is: 

Cihd - 
Cihf Kd qhf ph Cihf Kd qhf ph ( 1 )  

(Kd qhf + qsp)ph + Kd ps(qs qsp) = (Kd qhf + qsp)ph = Cihf - 1 q-- qsp 
Kd qhf 

One way to use this result would be to compute the flow rate of the solvent that we would 
need in order to achieve a certain exit impurity concentration Cihd in the heavy stream, given 
Kd, the flow rate of the impure heavy feed and its impurity level Cihd. 

In [62] �9 - Cihd = 10 -9; 

Cihf = 10-4 ; 

Kd = . 01; 

qhf = i00; 

NSolve [Cihd == Cihf ( 

Out [66]: {{qsp -~ 99999.}} 

1 + qsp 
qb.f 

),  qsp] 

We find that at these conditions, given that the impurity is 100x more soluble in the light 
solvent than in the heavy liquid, to reduce the concentration from 10 -4 to 10 -9 would require 
a solvent flow of 105 for a contaminated feed stream flow of 102. A calculation like this makes 
clear how costly cleanup can be. 

Mass Transfer Analysis: Nonequilibrium. The previous calculation was helpful from a 
global perspective, but it assumes that the two streams really do come to equilibrium with 
respect to their impurity concentrations. Will they? How can we know this? What  does it 
depend upon? The equilibrium stage analysis does not involve time but is simply based 
on thermodynamics.  Yet, we know that thermodynamics can, in some cases, be misleading 
because we can compute the equilibrium position correctly, but for a real process it may take 
literally eons to move to that state. In other words, for design we need to have the time and 
the rate process uppermost  in our minds. Equilibrium can tell us only how well we can do 
in the limit of everything going to its fullest extent of mass transfer. We must  return then to 
the analysis of the units and focus our attention on the contactor, for this is the unit where the 
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mixing and interphase mass transfer must  take place. To assess how well this unit  is doing, 
that is, how close the concentrations of the impur i ty  in the exiting solvents are to equilibrium, 
we need to analyze the mass transfer rate explicitly, and especially if we are to do even a 
first-order design of this unit. 

If we recall the material balances that we wrote around the contactor, then you may  well 
be wonder ing  where the rates of mass transfer come in: 

phf qhf + psf qsf = phc qhc + psc qsc 

Cihf qhf + Cisf qsf = Cihc qhc + Cisc qsc 

The way  we can answer this is to go back to our usual approach to this kind of problem and 
write the t ime-dependent  mass balances for component  i in each of the phases: 

Heavy phase: 

Solvent phase: 

d Cihc Vhc 

dt 

d Cisc Vsc 

dt 

- Cihf qhf - Cihc qhc - Km Ai(Cihc - Kd Cisc) 

= Cisf qsf - Cisc qsc + Km Ai(Cihc - Kd Cisc) 

Components 
i =~ impuri ty  

h =~ heavy phase 

s =~ lighter solvent phase 

f =~ feed 

c =~ contactor 

If the contactor is at steady state, the left-hand side of each equation is identically zero. Adding  
the two equations and placing the terms for the heavy phase and the light solvent phase on 
opposite sides of the equation lead to the "steady-state" material balance we had before! Now 
we can see where the rates of mass transfer come in. 

The rate of mass transfer that we introduced in this analysis requires some explanation. 
The constant Kd is the distribution coefficient for i between the two phases. Km and Ai are the 
mass transfer coefficient and the interfacial area. But what  about the driving force term? Why 
is it written as the difference between the actual concentration of i in the first phase minus the 
actual concentration of i in the second phase multiplied by Kd? 

Driving force term - (Cihc - Kd Cisc) 

This happens  because the driving force to transfer species i from the first phase to the second is 
dependent  upon  the concentration of i in the second phase. Remember  the reason an impuri ty  
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transfers at all is that it is more soluble in the second phase. Thus, the concentration of i in 
the heavy phase may be well below its solubility limit, but it will still transfer to the second 
solvent phase because it is even farther below its solubility limit in that phase. We will put 
into words the rate of transfer of impurity from the heavy phase to the light phase: 

The rate of mass  transfer of i from phase  h to s is proportional  to the di f ference 
b e t w e e n  the actual concentration of i in phase  h and the concentration of i that 
would be in equilibrium with  the actual concentration of i in phase  s. 

If we try to put this into a mathematical sentence, it would look something like this: 

ri, h-,s -- K1Tt Ai(Cihc - Cihc,e[Cisc]) 

where Cihc, e[Cisc] means the concentration of i that w o u l d  be in e q u i l i b r i u m  with the actual 
concentration of i in phase s, that is, the theoretical concentration of i is a function of the 
concentration of i in the light solvent phase. However, that concentration is calculable from 
the partition constant: 

Cihc,e[Cisc] - Kd Cisc 

. ' .  r i , h ~ s  - -  Km Ai (Cihc -  Kd Cisc) 

We could repeat the same arguments for the rate of transfer of i from the light solvent phase 
s to the heavy phase h and we would get the same expression, except that it would be the 
negative of the first: 

ri,s-,h = - K m  Ai(Cihc - Kd Cisc) 

This is because any mass that appears in the second phase had to leave the first phase and 
it must appear in the second phase at the same absolute rate that it disappears from the first 
phase. 

We can simplify these two equations by recognizing that the mass transferred between 
the two phases does not significantly affect the density of either phase nor its volume flow 
rate: 

qhc Km~A~ (Cihc _ Kd Cisc) h, Heavy phase: d CihCdt = (Cihf - Cihc) Vhc Vhc 

s, Solvent  phase: qsc Km Ai (Cihc - Kd Cisc) d CiSCdt = (C i s f -  Cisc)~cs c + Vsc 

These two equations are nicely soluble, but before we solve them we should discuss them 
further. Notice that the convective flow rates are divided by the volumes of each phase. 
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These two terms are the reciprocal holding times for the two phases in the contactor, Oh~ 
and 8~1. The coefficients of the two dr iving force terms are the ratios of the product  of the 
mass transfer coefficient and the interfacial area to the vo lume of the phase. Recalling that  K m  

has dimensions  of Length time ' we can see that  this group is also an inverse t ime constant,  but  now 
this is a reciprocal characteristic t ime for mass  transfer ~.-1. If we mul t ip ly  through on both 

sides by the holding t ime we obtain: 

h, Heavy phase: 0 h c ~  
d Cihc 

dt 

s, Solvent phase: 0 s c ~  

= ( C i h f -  Cihc) - 0hc ( C i h c -  Kd Cisc) 

d Cisc 0sc 
= (Cisf - Cisc) + (Cihc - Kd Cisc) 

dt rsc 

We could go one more step and refer all the concentrations to the inlet concentrat ion of the 
impur i ty  in the heavy feed Cihf, which is a constant. If we do this we would  be dividing both 
sides of both equations by this quant i ty  to give the nondimens iona l ized  concentrations X: 

h, Heavy phase" O h c -  
d Xihc 

dt 

s, Solvent phase" 0 ~ c ~  

- (1 - Xihc) 0he (Xihc - Kd Xisc) 

dXisc Gc 
= ( X i s f -  Xisc) + (Xihc - Kd Xisc) 

dt rsc 

Finally, we can see that the t ime constants can also be used in the same way;  we can mul t ip ly  
the second equat ion on both sides by 0~ and then reexpress both t ime derivatives in terms of Ohr 
the reduced time, that is, the ratio of real t ime to holding time" 

h, Heavy phase: 0 h c ~  
d Xihc 

dt 
= (1 - X i h c ) -  0he ( X i h c -  Kd Xisc) 

s, Solvent phase: 0sc 
0hc d Xisc 0sc 

= ( X i s f -  Xisc) + (Xihc - Kd Xisc) 
Ohc d t rsc 

h, Heavy phase: 
d Xihc 

dO 
-- (1 - Xihc) - r~c  (Xihc - Kd Xisc) 

s, Solvent phase" 0so d Xisc 
Ohc dO 

~sc 
= ( X i s f -  Xisc) + (Xihc - Kd Xisc) 

TSC 

d Xisc 0hc 
= ( X i s f -  Xisc) + (Xihc - Kd Xisc) 

dO rsc 

N o w  we can obtain a general solution for this prototypical  case, which can be used for specific 
cases s imply  by comput ing  the t ime constants from the parameters  or vice versa. The code for 

solving these analytically is shown here: 
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In[67]:: Remove[rhc, rsc, Xisf, Kd, @hc] 

sol = Flatten[ 
Simplify[ 
DSo ive [ 

{~sXihc[@] == (l-Xihc[@]) 

~8 Xisc [@] == (Xisf-Xisc [@] ) + 

Xihc[0] ==0, Xisc[0] ==0}, 
{Xihc[@], Xisc[@]}, 
8] 

] 
]; 

xihc[@__] := sol[[l, 2]] 

xisc[@__] := sol[[2, 2]] 

@hc 
~c (Xihc [@] - KdXisc [8] ), 

@hc 
(Xihc [@] -Kd Xisc [@] ), 

ysc 

xihc [@] // FullSin%plify 
xisc [@] // FullSir.plify 

General: :spelll : Possible spelling error: new symbol 

name "rsc"is similar to existing symbol "rhc". 

General--spelll �9 Possible spelling error- new symbol 

name "@hc is similar to existing symbol "rhc". 

General: :spelll : Possible spelling error: new symbol 

name "rhc"is similar to existing symbol "@hc". 

General.-spelll �9 Possible spelling error- new symbol 

name "Xisc"is similar to existing symbol "Xihc". 

General--spelll �9 Possible spelling error- new symbol 

name "Xisf"is similar to existing symbol "Xisc". 

General: :stop : Further output of General: :spelll 

will be suppressed during this calculation. 

General--spelll �9 Possible spelling error- new symbol 

name "xihc"is similar to existing symbol "Xihc". 

General--spell �9 Possible spelling error- new symbol 

name "xisc"is similar to existing symbols {xihc, Xisc}. 
1 Kd 

Out[71]- (e -8(l+~hc(Tf6+~-J6)) (-l+KdXisf)rhcrsc 2 

+ e -~(e ~rhcrsc 2 + (-i+ e ~)Kd 2@hcrhc (rhc+Xisfrsc) 
1 

+-(-i+ e ~) Kdrsc(2@hc(rhc+Xisfrsc) 
2 

+rhc(2rhc+ (i+ e ~) Xisfrsc))) -KdXisfrhcrsc 2cosh[@])/ 

((Kdrhc+rsc)(Kd@hcrhc+ (@hc+rhc)rsc)) 
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i Kd 

(-i + KdXisf) rhc 2 rsc Out [72]= (-e -~176 +--)) 

-e-~ + Xisfrsc)(Kd0hcrhc + (0hc + rhc)rsc) 

+(Kdrhc + rsc)(0hcrhc + Xisf (0hc + rhc)rsc))/ 

((Kdrhc + rsc) (Kd0hcrhc + (0hc + rhc) rsc)) 

We can get a feel for these solutions by making some guesses as to the parameters.  Let Tsc be 
unity and Thc be 10 -3 assuming based on the batch calculation we did earlier that we need 
about three orders of magni tude  more solvent than feed. The magni tude  of Xisf should be 
<1, and we can say that it may  be as small as 10 -2 or two orders of magni tude  below the 
concentration of the impuri ty  in the feed. It is also necessary to  include the magni tude  of Kd. 
The value we used earlier was 10-2; we can use this again. The really difficult parameter  to 
estimate is 8hc, the holding time in the unit. We can test different values for this parameter  to 
see its effect. The way  we do it is to vary it by orders of magni tude,  that is 10". 

If we do this directly, it gets kind of s loppy after a few cases and we get annoying error 
messages about  the choice of variable names that are somewhat  too similar for Mathematica's 
checker to be silent. A better way then to do this sort of calculation repetitively is to write 
a function call using "Module."  The only variable we care about  varying at this point  is n, 
the exponent on 10 that sets the order of magni tude  for the heavy liquid holding time in the 
unit. Therefore, we write one Module  for each of the dimensionless concentrations. The first, 
ifromh[n], is for xihc, the fraction of i left in h after contacting with s. The second, itos[n], is 
xisc, which is the ratio of the concentration of i in s to the original concentration of i in h: 

In[73] -- 77 NumberForm 

NumberForm[expr, n] prints with approximate real numbers 

in expr given to n-digit precision. 

Attributes[NumberForm] = {Protected} 

Options[NumberForm] = {DigitBlock ~ oo, 

ExponentFunction -+ Automatic, ExponentStep ~ i, 

NumberFormat ~ Automatic, NumberMultiplier -~ • 

NumberPadding -~ {, }, NumberPoint ~., 

NumberSeparator -~ , , NumberSigns -~ {-, }, 

SignPadding ~ False} 

In[74] .- NZunberForm[3.12256, 3] 

Out [ 74 ]//NumberForm= 

3.12 

In[75] "= ifromh[n__] := Module[ 

{rhc = 10 -3 Kd = 10 -2 �9 rsc = i0 ~ Xisf = 10 -2 , 

pll, p12}, 

0hc = N[10n]; 
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z+__~ 
xihc[8_] := (e-e(1+ehc(~ r.c~) (-1 + KdXisf) rhcrsc 2 

+ e -8 (eSrhc rsc 2 + (-I + e e) Kd 2 8hc rhc (rhc + Xisf rsc) 

1 
+ - (- 1 + e e) Kd rsc (2 8hc (rhc + Xisf rsc) 

9 

+ rhc (2 rhc + ( 1 + ee) Xisf rsc) ) ) 

- KdXisfrhcrsc 2Cosh[8])/ 

( (Kdrhc + rsc) (KdShcrhc + (Shc+ rhc) rsc) ) ; 

pll = Plot[{xihc[8]}, {8, 0, 10 8hc}, 

PlotStyle ~ Thickness [0.01], 

AxesLabel ~ 4"8", "xihc[8] "}, 

PlotLabel ~ StyleForm["@hc =", 

NUmberForm[Shc, 2], FontSize ~ I0], 

PlotRange ~ All] 

] 

In[76]:= itos[n__] := Module[ 

{rhc = 10 -3 Kd = 10 -2 �9 rsc = I0 ~ Xisf = 10 -2 , 

pll, p12}, 

8hc = N[10 n] ; 

1 Kd 

xisc[8__] := (-e -8(I+8hc(~+~)) (-I + KdXisf) rhc2rsc 

- e -8(rhc + Xisfrsc) (KdShcrhc + (Shc + rhc) rsc) 

+(Kdrhc + rsc)(Shcrhc + Xisf (Shc + rhc)rsc))/ 

((Kdrhc + rsc)(Kd 8hcrhc + (Shc + rhc)rsc)); 

p12 - Plot[{xisc[8]}, (8, 0, 108hc}, 

PlotStyle ~ {{Thickness[0.01], 

Dashing[{0.05, 0.05}]}}, 

AxesLabel ~ {"8", "xisc [8]"}, 

PlotLabel 

StyleForm [ "@hc --"NumberForm [ 8hc, 2 ], 

FontSize ~ i0], PlotRange ~ All] 

] 

We can see how the two Module  functions work by choosing a value of n, say, unity, and 
testing them: 

In[77]:= ifromh[.5]; 

itos [. 5 ] ; 
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Within the Module  functions we could have placed a semicolon ";" after the Plot commands.  
This would have allowed the graphs to be rendered, but  the output  "Graphics"  would  have 
been lost. We need the "Graphics"  in order to plot arrays of these two functions with varying 
values of n. Therefore, we have left the semicolon out of the Modules .  We can now use these 
in arrays and stacks. 

We can place the two new functions we have writ ten in a Table and let n vary from - 1  to 1 
in order to see how the two ratioed concentrations vary with decade increases in the holding 
time of the heavy stream: 

In[79] "- SetOptions[{Plot, ListPlot), AxesStyle ~ {Thickness[0.01]}, 

PlotStyle ~ {PointSize[0.015], Thickness[0.006]}, 

DefaultFont ~ {"Helvetica", i0}] ; 

In[80]'- Table[{ifromh[n], itos[n]}, {n, -1, .5, .5}]; 
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Now these can be assembled into a GraphicsArray within the Show command for a more 
pleasing presentation of the changes: 

E~ [ 81 ] �9 = Show [ Graphic sArray [ ~ ] ] ; 
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If after seeing this GraphicsArray, we realize that we prefer this type of presentation, then we 
might be tempted to place the Table command that generates the Graphics directly into the 
Show[GraphicsArray[ ]] statement, but this would not do what we want. It would give us 
the standard output of the individual Graphics and then the array. If we want only the array 
we need to go back and modify the Module functions so that the rendering of the graphs 
is delayed until we call for them. We do this with DisplayGraphics --, Identity in the Plot 
commands: 

In[821:= ifromh[n_] := Module[ 

{rhc = 10 -3, rsc = 10 ~ Xisf = 10 -2, Kd = 10 -2, 

pll, pl2 }, 

8hc = N[10 n]; 

8((I + 8)rhcrsc + Kd 88hc(rhc + Xisfrsc)) 
xihc [ 8__ ] : = 

( 1 + 8) ( Kd 8 8hc rhc + (rhc + 8 (Shc + rhc ) ) rsc ) 

pll = Plot[{xihc[@]}, {8, 0, 108hc}, 

PlotRange ~ All, 

PlotStyle ~ Thickness[0.01], 

AxesLabel ~ {"8", "xihc[@] "}, 

PlotLabel ~ StyleForm["Shc =" 

NumberForm[Shc, 2], FontSize ~ i0], 

DisplayFunction ~ Identity] 
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In[83]:= itos[n_] := Module[ 

{rhc = 10 -3 , rsc = 10 ~ Xisf = 10 -2 , Kd = 10 -2 , 

pll, p12}, 

0hc = N[10n]; 

( Xisf mhc rSc + 0 ( Xisf rhc rsc + 0hc (rhc + Xisf rsc ) ) ) 
xisc [ O_ ] : = 

( 1 + 0) ( Kd 0 0hc rhc + (rhc + 0 ( 8hc + rhc ) ) rsc ) 

p12 = Plot[(xisc[8]}, (0, 0, 100hc}, 

PlotRange ~ All, 

PlotStyle ~ {{Thickness[0.01], 

Dashing[{0.05, 0.05}]}}, 

AxesLabel ~ ("0", "xisc[0]"}, 

PlotLabel ~ StyleForm["0hc =" 

NumberForm[Shc, 2], FontSize ~ i0], 

DisplayFunction ~ Identity] 
] 

When we run the Module functions in this form, we obtain just the Graphics output without 
the rendering. This can now be placed directly inside the ShowIGraphicsArray[ ]] command: 

In[84]'= Table[{ifromh[n], itos[n]}, {n, -1, 1}] 

Out [84]: {{-Graphics-, 

{-Graphics-, 

-Graphics-}, 

-Graphics- } } 

{-Graphics-, -Graphics-}, 

In[85] "= SetOptions[{Plot, ListPlot}, AxesStyle ~ {Thickness[0.01]}, 

PlotStyle ~ {PointSize[0.015], Thickness[0.006]}, 

DefaultFont ~ {"Helvetica", i0}]; 

In [86] -= Show [GraphicsArray [Table [ {ifromh[n], itos [n] }, 

(n, -i, I}]]]; 

xihc[O] 8hc = O. 1 Ohc - O. 1 
0.01 

0.008 

0.006 

0.004 

0.002 

f 

0.2 0.4 0.6 0.8 
0 

1 

xisc[e] 

0.005 

0.004 

0.003 

0.002 

0.001 / 
# 

/ 
/ 

/ 
/ 

i i 

O.2 0.4 0.6 08 I 



5.7 Liquid-Liquid System 245 
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Using these ideas in tandem we can examine the effect of the holding time of the heavy feed 
in the contactor over a range of 10 6 a s  shown here" 

In[87].= Table[{ifromh[n], itos[n]}, {n, -2, 4}]; 

Show [ GraphicsArray [% ] ] ; 

NumberForm--sigz �9 In addition to the number of digits 

requested, one or more zeros will appear as placeholders. 

NumberForm--sigz - In addition to the number of digits 

requested, one or more zeros will appear as placeholders. 

NumberForm--sigz �9 In addition to the number of digits 

requested, one or more zeros will appear as placeholders. 

General- -stop �9 Further output of NumberForm- -sigz 

will be suppressed during this calculation. 
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Recall that the 0-axis in these graphs is the reduced time, that is, the real time ratioed to the 
holding time. (Note: In the last six graphs the time axis is too compressed and the time labels 
are too close together. This could be overcome by splitting the first set of outputs from the 
second with two function calls and appropriately different plotting options.) We notice in the 
first case with a short holding time of 0.01 that the unit has not yet reached a steady state even 
after 10 holding times have passed. In the cases that follow, 10 holding times are more than 
enough time to ensure that a steady state has been derived. When we look at the data, we can 
see that the impurity levels are much reduced in the heavy stream as it exits the reactor. Even 
in the first case, at 10 holding times, the concentration is ~-5% of that of the inlet stream. As we 
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increase the holding times by factors of 10, we see that the picture improves; in fact, we notice 
that the fractional concentration of the impuri ty at steady state decreases by a factor of 10 for 
every factor of 10 increase in the holding time. Remember that holding time is just the ratio 
of the volume of the impure stream to its volume flow rate through the unit. Increasing the 
holding time at a fixed flow rate is the same as increasing the volume of the impure feed in the 
unit, or in other words the same as making the unit bigger. This way a larger contactor unit 
gives a larger holding time and more effective transfer of the impuri ty to the extracting solvent 
phase. Depending upon how far below the inlet feed concentration the exit concentration of 
impuri ty needs to be, we would use this calculation to find the volume of the system required. 
Keeping everything else the same, reducing the concentration by a factor of 10 6 between exit 
and inlet would require a much larger unit than the unit that would reduce this by only a 
factor of 10. 

We will come back to this overall unit scheme later in our studies when we seek to write 
models for a group of units. For now we can use the knowledge we have gained here by 
applying it to some other seemingly different systems that are actually quite similar at the 
level of analysis. 

5.8 Summary 
Now that we have seen how mass moves between phases and those factors that control the 
rate of this process, we can bore in at the molecular level on mass action, especially adsorption. 
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Adsorption and Permeation 

6. I Adsorpt ion 
Net Rate of Adsorption 
Adsorption is a fundamental process of separation that is practiced for different purposes; 
removal of volatile organics contaminants (VOCs) from air is one, removal of water vapor 
from nitrogen is another. Hydrogen purification, that is, removing trace quantities of hydro- 
carbons, is important, especially for applications in electronics fabrication processes (such as 
metal organic chemical vapor deposition (MOCVD)), which require "ten nines" and better 
purity (that is less than one part impurity in 10 9 parts of the gas!). Although adsorption will 
not give this level of purification, it is one of the methods that can be used in the process of 
producing such high purity hydrogen. Diffusion of hydrogen through a palladium membrane 
gives the highest attainable purity, as hydrogen and only hydrogen can be transported through 
the metal. We will cover permeation after we examine adsorption. 

Although we include adsorption here following the chapter on mass transfer, we should 
be clear that it is a very specific process in its fullest fundamental meaning. Adsorption is 
the process by which molecules in the fluid phase in contact with a solid move to the solid 
surface and interact with it. Once at the solid surface these molecules may be reversible or 
irreversible adsorbed, that is, they may come back off the surface to the fluid phase with their 
full molecular integrity intact, or they may be so strongly bound that the rate of removal is for 
all purposes close enough to zero to be considered zero. 

249 



250 Chapter 6 Adsorption and Permeation 
IIII i Ill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  A~__~ [__  

When the discussion turns to removal  of some component  from a fluid s t ream by a high 
surface area porous  solid, such as silica gel, which is found in m a n y  consumer  products  (often 
in a small packet  and sometimes in the product  itself), then the term "adsorpt ion"  becomes 
more global and hence ambiguous.  The reason for this ironically is that mass transfer may  be 
convoluted with adsorption.  In other words  the component  to be adsorbed mus t  move  from 
the bulk gas phase to the near vicinity of the adsorbent  particle, and this is te rmed external 
mass transfer. From the near external surface region, the component  mus t  now be t ranspor ted  
through the pore space of the particles. This is called internal mass transfer because it is wi thin  
the particle. Finally, from the fluid phase within the pores, the component  mus t  be adsorbed 
by the surface in order to be removed  from the gas. Any  of these processes, external, internal, 
or adsorption,  can, in principle, be the slowest step and therefore the process that controls the 
observed rate. Most often it is not the adsorpt ion that is slow; in fact, this step usually comes 
to equil ibrium quickly (after all just think of how fast frost forms on a beer m u g  taken from 
the freezer on a humid  summer  afternoon). More typically it is the internal mass t ransport  
process that is rate limiting. This, however,  is lumped  with the true adsorpt ion process and 
the overall rate is called "adsorpt ion."  We will avoid this problem and focus on adsorpt ion 
alone as if it were the rate-controlling process so that we may  unders tand  this fundamentally.  

True adsorpt ion is a "mass action" process rather than a mass transfer process. What  this 
means  is that it will occur even in the absence of a concentration gradient  between the bulk 
gas and the surface. It comes about  due to the rapid and chaotic motion of the fluid phase 
molecules, and their impingement  on the surface. From the e lementary  kinetic theory of an 
ideal gas we can compute  the number  of molecules impinging upon  a surface per unit  time 
per unit  area at a given tempera ture  and pressure. It is: 

_ 1 / 8 R T  PL ~/ 1 P N u m b e r  Molecules 1 CL~ - - = PL = 
area time - 4 4 I/ s RT 2rr RTMW ~/2rr RTMW 

Hence the number  of molecules hitting the surface per unit time per unit  area is a flux. Also, 
it is proport ional  to the pressure of the gas and the mean speed of the gas molecules and to 
T-�89 At room temperature  and pressure the impingement  frequency of nitrogen is: 

I ~ 8RT PL 
In [i ] . - i 7r MW RT 

== NumberForm [ 

PowerExlpand [ 

6:o  lo -  oz. 1 
Out [i ] = 

~/RT 
PL ~ 2.3 x 10 23 

~-~RT cm2s 

~cm 2 
88.31410 v Joule ,2 300K mole K Joule 

~ ' 2 8  g mole 
] ] , 2 ]  
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Thus, nearly one-third of a mole of nitrogen molecules strikes every square centimeter every 

second. No wonder  the time to equilibration of adsorpt ion is so fast! 
Irving Langmuir,  the Nobel pr ize-winning industrial  physical chemist who  worked  at 

General Electric, built an elegant structure upon  this foundat ion in kinetic theory. He reasoned 
that not every molecule would  adsorb, but  only some would  do so. Furthermore,  one reason 
for this was that to be adsorbed there should be a site for adsorpt ion to occur. It s tands to 
reason then that on the basis of mass action, the rate of adsorpt ion should be proport ional  to 
the concentration of molecules in the gas phase and to the number  of sites available on the 
surface. Additionally, the rate should be related at any time to the number  of sites not covered 
at that time rather than to the total number  of sites present per unit  area. Conversely, and again 
by the principle of mass action, the rate of desorpt ion should be proport ional  to the number  
of sites currently occupied at that time. Using ka and kd  as the proport ionali ty constants (that 
we will call the rate constant for adsorpt ion and desorption,  respectively), we can write the 
net rate of adsorpt ion for gas phase species i as the difference between the rate of adsorpt ion 

and the rate of desorption: 

r a t e i ,  ads, net -- k a i C i ~ , , ( C i - s i t e ,  total - Ci-sites, occupied by i )  - -  k d , s C i - s i t e s ,  occupied  by i 
All the sites are assumed to be identical, and the adsorpt ion at one side does not affect that 
at another site, that is, they interact with the gas phase independently.  In addit ion to the two 
rate constants the term Ci-site, tota! is also a constant and is the number  of sites available on the 
solid per unit area. This raises another  point: if this and the concentration of occupied sites 
are written on a per unit area basis, and the gas phase concentration Ci~ is writ ten on a per 
unit volume basis, then what  are the dimensions of the rate constant? 

The net rate of adsorpt ion is the number  or moles of molecules adsorbed per unit area per 
unit time, where the area is the area made  available for adsorpt ion by a given mass or volume 
of the adsorbent  solid. Therefore, the two rates on the r ight-hand side must  also be moles per 
unit area-time. This means that the rate constants must  be dimensioned as follows: 

mole _ ~ length 3 

length 2 time L mole t ime l Ilem~ lth31 (Ilem~ lth21)--I tilme I (Ilem~ lth21) 

These dimensions (bold) are what  we expect from mass action kinetics for a second-order  and 

for a first-order rate constant. 
Consider now an adsorbent  that offers little or no resistance to mass transfer because it is 

"macroporous."  This means that the pores within the solid are large (macro), that is, greater 
than 20 nm in diameter  or width,  and that t ransport  of small molecules (0.2 nm) is unhindered  
and takes place as if they were in the bulk phase sur rounding  the solid. This means that the 
bulk gas phase concentration is the same in the pore spaces within the solid as it is outside 

the solid. 
If the gas around the adsorbent  solid occupies some fraction E of a volume V, and if this 

volume contains an adsorbing gas i, then the rate of adsorpt ion of the gas onto the adsorbent  
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and the rate of depletion of that species from the gas phase are coupled batch processes. The 
component  mass balances for the gas and solid phases are as follows: 

Gas phase: dCi,gEVd t -- - (1  - E)ratei, ads, ne tasPsV  

dCi,s(1 - E)Atot 
Solid phase: d t = (1 - E)ratei, ads, net As Ps V 

mole i 
Ci, g -  volume gas phase 

= void fraction in the bed of solid and gas 

mole i 
Ci, s = ~ surface phase 

area 
V = total volume occupied by solid and gas 

a t o t  - -  A s  ps W - Length 2 

ratei,ads, net -- net rate of adsorpt ion of i on solid 

cm 2 Length 2 
As --= ~ ,  

g mass 
g mass 

p~ - cm 3, Length 3 

When rearranged and written with the explicit rate of adsorpt ion these become: 

Gas phase: dCi,g = (1 - -  E )  (kaCi e,(Ci s tot - Ci s) - kd,sCi s)A~psV 
dt  E . . . . . . . .  

dCi,s 
S o l i d  phase: dt  -- (ka, Ci,g(Ci, s,tot - Ci,s) - kd,sCi,s) 

There are two types of experiments suggested by these equations and that actually are done to 
obtain the rate constants for adsorpt ion of a species i on a given adsorbent.  The first experiment 
is done gravimetrically. The adsorbent  is placed in small container suspended  from a balance 
and inside an evacuable enclosure. After heating under  dynamic vacuum to remove any 
water  or other adsorbates, the sample is cooled to the experimental  temperature,  and then 
the adsorbate is admit ted in such a way that its pressure remains constant th roughout  the 
course of the experiment. This is done either by constant delivery or by connection to a large 
ballast volume of the adsorbate gas. The mass uptake is measured as a function of time. The 
parameters  Cistot and wsAs are typically known from separate measurements .  Thus only ka 
and kd  need to be fitted to the data, either in differential or integral form. To fit to the integral 
form, we need the expression for mass adsorbed per time. Hence we need to integrate the 
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mass balance for the adsorbate over time: 

d C i ,  s 

dt  
= ( k a C i , g ( C i ,  s, t o t -  C i , s )  - k d , s C i ,  s )  

d 
d--~Ci,s(1 - E)VpsAs Mwi = ( k a C i , g ( C i ,  s , to t  - C i ,  s )  - kd,sCi,s)(1 - E)ps AsV Mwi  

dmi, s 

d t  
- -  ( k a C i , g ( C i ,  s , t o t ( 1  - e)psAs V Mwi - m i , s )  - k d , s m i ,  s )  

dmi, s 

d t  

where  

- -  k a C i , g ( m i , s , t o t  - m i , s )  - k c l , s m i ,  s 

m i ,  s , to t  --- C i ,  s , t o t ( 1  - 6) ,Os  As V M w i  

This concentrat ion of i in the gas phase is a constant,  which makes  this equat ion s imple to 
integrate: 

In [2] : = Simplify [DSolve [ 

{Otmis[t] ==kaCig(mistot-mis[t]) - kdmis[t], mis[O] == 0}, 

mis[t], t]] 

Cig(-i + e-(Cigka+kdlt)kamistot 
Out [2]= {{mis[t] -~ - }} 

Cigka + kd 

We can put  some realistic numbers  into this equat ion to see how it would  behave. We can 
take 6 to be 0.4, which is a reasonable number  for a packed bed of particles. The area per unit  
vo lume can be taken as 100 m 2 per g (~106 cm 2 per g), the densi ty of the solid is on the order 

of I g cm -3, and the number  of sites per unit  area Ni, s, tot is on the order of 1014 per cm 2, making  
Ci, s, tot ~" 10 -9 mole sites cm 2. (On a perfect surface there are ---1015 per a toms cm 2, so we have 

taken 10% of this value as the number  of sites, which corresponds to one site in every I n m  2. 
Finally, the mass concentration of the adsorbate  (if the latter is ideal) is ViMWi We use these R T  " 
numbers  and a value of ka, which is one order of magn i tude  larger than kd. If the sys tem 
were to come to equil ibrium, then the mass  uptake  would  go to zero. This would  be the same 
when  rate of adsorpt ion is balanced exactly by the rate of desorption. We can compute  the 
mass of i on the solid when  this occurs as follows: 

dmi,s 

d t  
- -  0 - -  k a C i , g ( m i , s , t o t  - m i ,  s )  - k d , s m i ,  s 

I~[3]:= Clear[mistot, miseq, ka, kd, Cg] 

Solve[kaCg (mistot - miseq) - kdmiseq == O, miseq] 

Cgkamistot 
Out [4]= {{miseq -~ }} 

Cgka + kd 
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The full time-dependent solution comes from the solution of the material balance equation. 
Both solutions are presented here: 

In[5].= SetOptions[(Plot, ListPlot}, AxesStyle ~ {Thickness[0.01]}, 

PlotStyle ~ {PointSize[0.015], Thickness[0.006]}, 

DefaultFont ~ {"Helvetica", 17}] ; 

In[6] .- "The expression on the right needs to be 

divided by grams to make it dimensionless for plotting"; 

Cg(-1 + e -ccgka +kd)t)kamistot/g 
mis[t__] := N[- ] 

Cgka + kd 
cm 3 

ka = 102~; 
mole 

kd = . 001; 

pi = 1 atm; 
g 

MWi = i00 
mole 

T = 300 K; 
cm 3 atm 

R = 82.05 
mole K 

Cg = --; 
RT 

= 0.4; 

V = icm3; 

ps = 2.5 gcm-3; 

As = 106cm2g -I; 

Vs = 10cm 3 ; 

Cistot = i014cm-2 
1 mole 

6.02 1023 ; 
tmax = i000; 

mistot = (1 - E) CistotVAsps MWi; 

"In the following two expressions 

the unit of mass needs to be eliminated for plotting"; 

Cg kamistot I000 
miseq = ~ ;  

(Cgka + kd)gpsV/g 

mis It] i000 
Plot[ , {t, 0, tmax}, 

p s  V / g  
mg 

AxesLabel ~ {"t/s","--"}, 
g 

Epilog ~ {Thickness[0.01], Dashing[{0.05, 0.05}], 

GrayLevel[0.6], Line[{{0, miseq}, {tmax, miseq}}]} 
]; 
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In this case, the equil ibrium is reached at a modest  level of 8 mg of adsorbate per gram of 
adsorbent,  which is a low level of adsorption.  Higher  values would  be on the order of 80 mg 
per gram. 

A different experiment that appears  to be simple is to expose the adsorbent  to a volume 
of gas and then measure the pressure change as a function of time. This has the same aim as 
the procedure we just analyzed but it is much more complex. A brief analysis will show us 
why. Let Vo be the volume that is occupied by the gas at a known  pressure and temperature.  
Once the two volumes are connected, the total volume of the system is Vtot = EV 4- Vo on 
the basis of a solid that was space occupying but  not adsorbing. The initial pressure P1, after 
opening a valve between the two, is given by: 

Po Vo = P1 (~V + Vo) ------> P1 - 
P,,Vo 

((V + Vo) 

Is this the correct initial pressure to use? Or should we account for the internal void of the 
adsorbent  as well when  we compute  the initial pressure. To do so would  lead to one more 
term in volume, namely, that of the void fraction within the solid. This is not the void between 
the solid particles, but  that which is within the solid particles. If the mass of the particles is ms 
and their density is ps, then the volume of the particles is Vp = ~-~, and if the fraction that is 
unoccupied by solid is ~, then this extra volume is ~ Vp = ~ ~-~. The corrected initial pressure 
would  be: 

Po Vo - PI(•V 4- V0 4- ~Vp) ----> P1 - 
PoVo 

(E V + 1]o + ~Vp) 
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Assuming that we can compute a reasonable initial pressure, then the pressure is measured as 
a function of time and the data would be fitted either to the differential or integral expressions 
from these equations: 

d C i , g  _ (1 - e )  

dt  e 
~ ( k a C i , g ( C i ,  s, tot - Ci ,  s)  - kd,sCi, s)Asps V 

dPi (1 - ~ )  

dt  r 
~ ( k a  P i ( C i ,  s,tot - Ci ,  s)  - kd,sRT Ci, s)AspsV 

RT dCi,s 
d t  

-- ka Pi (Ci, s, tot - -  C i ,  s ) - kd,s RT Ci, s 

These equations appear to be very similar to those we have just seen, and hence they seem to be 
simple. In fact they are not simple because the pressure of the gas is a function of time as is the 
concentration on the surface. The previous experiment has the advantage of being designed 
around an analysis that was simple to carry out and solve for an analytical expression. We can 
solve these two equations using Mathematica, but the closed-form solutions are anything but 
straightforward. To see this run the DSolve code: 

In[26]'= Clear[ka, kd, p, c, Cstot, As, ps, V] 

Simplify [DSolve [ 

{~tp[t] == -(kap[t] (Cstot - c[t]) - kdc[t])AspsV, 

@tc[t] == (kap[t] (Cstot - c[t]) - kdc[t]), 

p[0] -= P1, 

c [0] == 0}, 

{p[t], c[t]}, t]] 

General--spelll �9 Possible spelling error- new symbol name 

"Cstot" is similar to existing symbol "Cistot". 

Solve--ifun �9 Inverse functions are being used by Solve, 

so some solutions may not be found. 

1 
Out[27]= {c[t] 

(2As kaVps 

(kd + ka(Pl + AsCstotVps) 

+ ~-kd 2-ka 2(pl-AscstotVps)2-2kakd(Pl + AsCstotVps) 

...... 

Tan[~t~-kd 2-ka 2 (Pl-AsCstotVps)2-2kakd(Pl+AsCstotVps) 

~C s tot ~ ~ (kd + ka PIAs ~S ~ +~As Cstot ka Vps ) 2 " k - a  -~ ~-V-~ 

-ArcTan [ ] ] ) , ~ _ kd 2 + ka 2 ( Pl - As Cstot Vps ) 2 + 2ka kd ( Pl + As Cstot Vps ) As ka2 Vps 
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c[t] 
(2As kaVps 

(kd + ka(Pl + AsCstotVps) 

+v/-kd 2-ka 2 (Pi-AsCstotVps)2-2kakd(Pl+AsCstotVps) 

Tan [ 

1 
~tv/-kd 2 - ka 2 ( P1 - As Cstot Vps) 2 _ 2kakd ( P1 + As Cstot Vps) 

~/Cstot~/-~/%/(kd+ ka Pl + As Cstot kaVps)2 
As Cstot ka 2 PiVps 

+ArcTan[ ]]) , ~/ _ kd 2 + ka 2 ( P1 - As Cstot Vps ) 2 + 2ka kd ( Pl + As Cstot Vps ) 

As ka2Vps 

p[t] -, 
2ka 

(kd- kaPl + AsCstotKaVps 

+/-kd 2-ka 2 (PI- AsCstotVps)2-2kakd(Pl+AsCstotVps) 

Tan [ 

1 
tv/-kd 2 ka 2 (Pl AsCstotVps)2 2ka kd(Pl+AsCstotVps) 

2 

t~ (kd + ka Pl + As Cstot ka Vps ) 2 #Cs 
- ArcTan [ ]]), ~/ _ kd 2 + ka 2 ( Pl - As Cstot Vp s ) 2 + 2ka kd( P1 + As Cstot Vps ) 

As ka 2 Vps 

p[t] --* 
2ka 

(kd- kaPl + AsCstotVps) 

+v/-kd 2-ka 2 (Pi-AsCstotVps)2-2kakd(Pl+AsCstotVps) 

Tan [ 

1 
tV/-kd 2-ka 2 (Pi-AsCstotVps)2-2kakd(Pl+AsCstotVps) 

~/Cstot~-f/%/(kd+ ka P1 + As Cstot kaVps) 2 
As Cstot ka 2 PIVps 

+ ArcTan [ ] ] ) } ~/ _ kd 2 + ka 2 ( P1 - As Cstot Vps ) 2 + 2ka kd ( P1 + As Cstot Vps ) 

As ka 2 Vps 

As we can see from these solutions this is anything but a simple experiment. This is a 
good illustration of how the analysis can be used to define and indeed to design the ex- 

periment. 
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Semicontinuous Adsorption: Pseudo-Steady State 
From the experimental  point  of view there is one more exper iment  that  can be done to ob- 
tain adsorpt ion rate parameters  and this is the use of a semicont inuous  approach.  Here the 
adsorbate is fed at a mass flow rate that is equal  to the rate of adsorpt ion,  and a very sen- 
sitive pressure t ransducer  is slaved to a mass  flow controller for the adsorbate.  As this gas 
is adsorbed,  and were there no flow into the system, the pressure would  drop. This wou ld  
lead to the complexities we have just analyzed.  If, however,  the mass  flow controller is slaved 
in such a way  that it opens whenever  there is a slight 6P of pressure drop below the fixed 
experimental  pressure set point, then the pressure can be main ta ined  as a constant. The mass  
flow rate into the sys tem is the same as the mass  rate of adsorpt ion "out"  of the gas phase  and 

"onto" the adsorbent  phase II. 
The analysis of this exper iment  begins with a slightly modif ied version of the equat ions 

we have seen: 

Gas phase: 

Solid phase: 

dCi,,~, r V 
dt  

= Ci,,~q - (1 - r ads, netAspsV 

dCi,s(1 - r 

dt 
= (1 - r ads, netAs, psV 

The gas phase balance includes a convective flow term for the mass flow of species i into the 
system. The pressure would  rise were it not for the rate of adsorpt ion,  that is, the process that  

removes i from the gas phase and locates it in the second phase, the adsorbent.  Now we can 
make progress in the analysis even before we substi tute in the rate expression. The reason is 
this: in the exper iment  the rate of adsorpt ion mus t  be equal to the rate of delivery. Therefore 

we have a pseudo-steady state in that the gas phase concentrat ion remains constant all the while 
the surface concentrat ion is changing: 

Ci,,~,q = (1 - r ratei,ads, netAs-psV 

dCi,s(1 - ~:)Atot 
",  ' ,  �9 d t  = C i  ~,q 

dCi,~ Ci,~q 
dt  (1 - ~ ) & p ~ V  

Given that the gas phase concentrat ion is constant,  this is immedia te ly  integrated to a linear 
form in time: 

Ci,~ [t] - Ci,,~q t - CS t 
(1 - 6 ) ,~p~  V 
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This can be substituted back into the rate expression to give: 

d C i ,  s 

dt : ( k a C i , g ( C i , s , t o t  - Ci,  s)  - k d , s C i , s )  

Ci,~q t) - 
: ( k a C i , g ( C i ,  s , t ~  ( X _ E ) a s P s  v kd,~ 

/ 

: ( k a C i , g ( C i ,  s,tot - C S  t )  - k d , s C S  t )  

- -  k a C i , g C i ,  s,tot - kaCi,gCS t - kd,sCS t 

: k a C i , g C i ,  s,tot - ( kaCi ,  g -Jr- kd,s)CS t 

Ci,sq t) 
(1 -E)AsPsV 

In[28].= Clear[Cis, ka, kd, Cig, CS, Cistot, q, As, ps, s 

S imp i i fy [ DSo Ive [ 
{Cis'[t] == kaCigCistot-(kaCig + kd)CSt, Cis[0] == 0}, 

Cis[t], t]] 

1 
Out[29]- {{Cis[t] -~ --t(-2CigCistotka + CigCSkat + CSkdt) }} 

2 

1 
In[30]'- Simplify[Solve[-~t(-2CigCistotka + CigCSkat + CSkdt) 

== CSt, {ka, kd}]] 

Solve--svars �9 Equations may not give solutions for all 

"solve" variables. 

2CS + CSkdt 
Out [30]= {{ka-~ }} 

2CigCistot - CigCSt 

To solve for ka and kd explicitly, we  need one more equation. We can get this from the 
consideration of an equil ibrium condition. When the concentration on the surface of the 
adsorbent is no longer changing, then rates of adsorption and desorption are equal. From 

this we  find" 

0 - -  ( kaCi ,ge (C i , s , t o t  - Ci, se) -- kd , sC i ,  se) 

This can be rearranged to give the ratio of the rate constants on the left-hand side" 

ka Cise 
= = Kads 

kd Cige(Cistot - Cise) 
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Dividing through by the total number  of sites we get the fraction of sites occupied, which is 
8, and the wel l -known Langmuir  isotherm: 

Kads - 

Kads = 

(Cise/Cistot) 

Cige (Cistot - Cise)/Cistot 

0 

Cige (1 - 0) 

8 
In [31]:= Solve[Kads == , 8] 

Cige(1 - 8) 

General--spelll- Possible spelling error- new symbol name 

"Cige" is similar to existing symbol "Cig". 

Cige Kads 
Out [31]= {{0 ~ }} 

1 + Cige Kads 

Thus from this one measurement  we can find the ratio of the rate constants, Kads, and if we 

have some independent  measure of the total number  of sites, Cistot, then we can compute  the 
rate constants: 

2CS + CS kd t 2CS -+- CS ka K-q~s t ka = = 
2Cig Cistot - Cig CS t 2Cig Cistot - Cig CS t 

k a  2CS + CS ~-~dt 
In[32]:= Simplify [Solve [ka =- , ka]] 

2CigCistot - CigCSt 

2 CS Kads 
Out [32]= {{ka-+ - }} 

-2CigCistotKads + CSt + CigCSKadst 

We should note that the fraction of sites occupied at any equil ibrium gas phase concentration 
follows a graph that looks as follows: 

In[33].= K = 1; 
KC 

Pl~ + KC" {C, O, 100}]; 
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The expression reduces to a constant when  the concentration is large relative to K, at about  
20x, but at low concentration the expression is linear in C: 

In[35] := Show[ 

GraphicsArray [ 

KC 
Pl~ + KC" {C, 0, .6}, 

PlotRange ~ {40, .6}, {0, .4}}, 

AxesLabel ~ {"C", "0"}, 

PlotLabel ~ "Low C range"], 
KC 

Plot[ 1 + KC" (C, 20, I00), 

PlotRange ~ {{20, I00}, 40, i}}, 

AxesLabel ~ {"C", "0"}, 

PlotStyle ~ {Thickness[0.01], 

Dashing[ 40.025, 0.025}], GrayLevel[0.6]}, 

PlotLabel ~ "High C range"] 
] 

]; 
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In the low concentration limit the adsorption isotherm is a linear law as was the partition 
coefficient, and just as the isotherm deviates from linearity outside of the low concentration 
limit, so too does the partition relation between the two liquid phases. 

There is much more that we can say about adsorption and what  we can do with it, including 
the coupling together of mass transfer and adsorption. There is no better example of that kind 
of process than that which occurs with membranes,  and this is called permeation. 
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6.2 Permeation 
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Permeation is a process by which mass is transferred through a membrane from a region of 
higher concentration or pressure to one of lower concentration or pressure. The membrane 
can be polymeric, metallic or ceramic. Our bodies and all living organisms use membranes 
as critical structural components of cells. Separating the inside from the outside of the cell 
provides it with its integrity and specialization. Only certain molecules and ions are allowed 
to move across the membranes, thus rendering them highly selective. Synthetic membranes 
seek to emulate this but with much simpler structures and with mechanisms of operation 
for much less complex separations. Polymeric membranes can be obtained that will separate 
molecules on the basis of their relative affinities for the interior of the membrane. Those 
molecules with higher affinities partition themselves to a larger degree in the membrane 
versus the bulk phases than do their competitors. With higher concentrations within, they 
also transport across the membranes faster. A classic example of this is the membrane that is 
used for hemodialysis. Rendered incapable of clearing the blood of toxins, patients with renal 
dysfunction can be "dialyzed" by passing their blood continuously through the membrane 
unit. The polymers making up the membranes transport these toxins to a dialysate solution 
in which they are very soluble, and thereby return the blood in refreshed state to the patient. 

Ceramic and metallic membranes hold the promise of conducting small molecule separa- 
tions continuously and with much less energy than required by other processes. The ceramic 
membranes offer the opportunity to operate at elevated temperatures (even as part of a chem- 
ical reactor, which can offer enhanced conversions and yields of products) by transporting 
one product away from the reaction zone, selectively and continuously in order to bypass the 
equilibrium limitations. Metallic membranes of palladium and its alloys are special in that 
they transport hydrogen and only hydrogen. This makes them particularly interesting for 
hydrogen purification, recovery, and use. They may also play a role in fuel cells. Before we 
can begin to work with membranes we must know how to analyze their behavior, which is 
the goal of this section of the chapter. 

6.3 Permeation Adsorption and Diffusion 
Batch. Permeation involves the transport of molecules across a membrane phase. The trans- 
port process involves either dissolution or adsorption within the substance of the membrane 
and then transport from regions of higher to lower "potential" (that is, concentration) within 
the membrane phase. The global measurement of the rate of transport across the membrane, 
given in terms of the measurable changes in the concentrations in the bulk above and below 
the membrane, is permeation. Transport within the membrane, described quantitatively in 
terms of the concentration within it, is diffusion. The processes that take gas phase species 
from the bulk either to the surface of the membrane or that lead to their dissolution within 
the near surface region are adsorption and partitioning (dissolution), respectively. 
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The rate of transport across the membrane in units of mass (or moles) per unit time per 
unit area is termed a flux J and it is found to be proportional to the difference between the 
concentrations on either side of the membrane. The proportionality constant is called the 
permeability Pm with intrinsic dimensions of Length the same as the mass transfer coefficient 

t i m e  ' 

and the same as velocity. 

J = P m ( C I  - C H) 

Higher permeabilities make for higher fluxes as do higher concentrations and pressures. The 
high concentration side of the membrane from which mass typically flows is termed the 
retentate, while that side to which mass flows is the permeate. 

At relatively low pressures and concentrations, the permeability is the product  of two 
terms-- the  adsorption constant or partition coefficient and the diffusivity: 

P,,, = KD (K = Kd or Kads...) 

We will see how this factors into the analysis as we go through this material. 
Consider the following diagram, Figure 1, for a simple system for batch permeation. 
The concentrations of B and D are given as C~ and C~ on the retentate side and as C~ and 

C n on the permeate side of the membrane. The permeation process is considered to take place 
at fixed temperature. The membrane has an area Am through which the flux is measured. 

A m  

B I D I 

Reten ta te  

i m l  ~ _ .... 
. __  

i l l  a t om  - -  ~ . . . . . . . . .  - 

, ,  ~P'  
Permeate  

Bll Dll 

Figure I 
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The volumes of the two compartments are 1/"I and VII. Each molecule will have its own per- 
meability and we will assume that they permeate independently of one another. The material 
balance equations are: 

dC~V I 
dt 

dCID VI 
dt 

dC~V u 

dt 
d C I~ V II 

dt 

= --Pm, B Am(C~ - C~) 

= -Pm, DAm(C[~ -CI~)  

-- Pm, B Am(C~ - C~) 

=Pm, D Am(C/~ - C ~ )  

There are four equations that describe the system. We see that independent of which side of 
the membrane is the higher concentration side, these equations still work, as they must if they 
are to be valid. The concentrations could be in mass per volume or in moles per volume (we 
will assume the latter). If B and D were ideal gases, we could express these equations in terms 
of the pressure. In all four equations the right-hand side is just the flux of the component times 
the area of the membrane. The volumes of the compartments are constant; thus they can be 
brought to the right-hand sides: 

dC~ P,,,,~ Am (C~ - C ~ )  

dt V I 
dCID P,,;,DAm (CID - C~) 

dt V ~ 

dCg Pm, B Am(C~ - C~) 
dt V II 

dC~ P,,, D Am(C~ - C ~ )  
dt V II 

It is interesting that yet again this simple operation provides a useful time constant. This is 
the ratio of em~m, which has dimensions of reciprocal time. Therefore, the reciprocal of this 

1 is a time per length; thus their product v is a characteristic length, and F~ group is a time, X-~ 
is a time. 

We can solve these equations analytically for the case in which the permeate side is initially 
evacuated and the retentate side is charged with initial concentrations of B and D. Also, to 
simplify the result, we can take the volumes to be equal: 

In[36]'= Clear["Global'*"] 

In[37]'= VI - VII; 
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memsol = 

Flatten[ 

Simplify [ 

DSolve [ 

{0tciB[t] == - ~  

~tClD[t] = = - ~  

~t C2B [t ] == + =~'~""...T 

PmBAm 
VI (CiB[t] - C2B[t]), 

PmDAm 
VI (CiD[t] - C2D[t]), 

PmBAm 
VII (CIB[t] - C2B[t]), 

PmDAm 
~tC2D[t] == + VII (CID[t] - C2D[t]), 

CIB[0] == CIBo, CID[0] == CIDo, 

C2B[0] == 0, C2D[0] == 0}, 

{CIB[t], C2B[t], CID[t], C2D[t] }, 

t] 
] 

] 

CXB [ t_ ] 

CIIB [t__ ] 

CID[t__ ] 

CIID[t__ ] 

:= Evaluate [CIB [t] /. memsol[[l]]] 

:= Evaluate [C2B [t] /. memsol[[2]]] 

:= Evaluate[CID[t] /. memsol[[3]]] 

:= Evaluate [C2D [t] /. memsol[[4]]] 

General--spelll �9 Possible spelling error- new symbol 

name "ClBo" is similar to existing symbol "ClB". 

General--spell �9 Possible spelling error- new symbol 

name "ClDo" is similar to existing symbols {ClBo, ClD}. 

1 _ ~! ~ B t 1 -- ~ ~ ~ B t- 

Out[38]= {CIB[t] -~ --CiBo(l+e ~ii ) C2B[t] -~ [CiBo(l-e ~ ) 
2 ' ' 

1 2 ~,), 1 _ 2 - -  A m  }:'rn I )  t 

CID[t] -~ --CiDo(l+e ~ii ) C2D[t] -~ ~CiDo(l-e r~i )} 
2 

General--spelll �9 Possible spelling error- new symbol 

name "CIIB" is similar to existing symbol "CIB". 

General--spell �9 Possible spelling error- new symbol 

name "CIID" is similar to existing symbols {CID, CIIB}. 

In[43].= C IBo = i; 

CIDo = 1; 

PmB = 10-4; 
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PmD = 10-6; 

VII = I; 

Am= i0; 

SetOptions[Plot, DefaultFont ~ {"Hevetica", I0}, 

AxesStyle ~ Thickness [.02] ] ; 

VI 
piI = Plot[CIB[t], {t, 0, ~ } ,  

PmBAm 
DisplayFunction ~ Identity, 

AxesLabel ~ {"t", "CIB[t]"}, PlotRange ~ All, 

PlotStyle ~ (Thickness [0.02], 

Dashing[{0.025, 0.035}]}]; 

VI 
piII = Plot[CID[t], {t, 0, ~ } ,  

PmBAm 
DisplayFunction ~ Identity, 

AxesLabel ~ {"t", "CID[t]"}, PlotRange ~ All, 

PlotStyle ~ { (Thickness [0.02], 

Dashing[{0.025, 0.035}] }] ; 

VI 
piIII = Plot[CIIB[t], {t, 0, ~ } ,  

PmBAm 
DisplayFunction ~ Identity, 

AxesLabel ~ {"t", "C2B[t]"}, 

PlotRange ~ All, 

PlotStyle ~ {Thickness[0.02], GrayLevel[0.5], 

Dashing[{(0.15, 0.05}]}]; 

VI 
piIV = Plot[CIID[t], {t, 0, ~ ) ,  

PmBAm 
DisplayFunction ~ Identity, 

AxesLabel -~ {"t", "C2D[t]"}, 

PlotRange ~ All, 

PlotStyle ~ (Thickness[0.02], GrayLevel[0.5], 

Dashing [ { 0.15, 0.05 ) ] ) ] ; 

Show[GraphicsArray[{ {plI, plII}, {plIII, pIIV} }] ] ; 

General--spelll �9 Possible spelling error- new symbol name 

"plII" is similar to existing symbol "plI". 

General--spelll �9 Possible spelling error- new symbol name 

"plIII" is similar to existing symbol "plII". 

General--spell �9 Possible spelling error- new symbol name 

"plIV" is similar to existing symbols {plI, plII]. 
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ciB[t] 
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o-41 
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v[ the concentration of B We see from the preceding graph that over the period of time PmB Am 
has fallen sharply on the retentate side and has risen as sharply on the permeate side. The 
two sides are almost at equilibrium with respect to species B, with each cell going to 0.5 
concentration units. The other species D has barely begun to transfer across the membrane. It 
takes on the order of 102 times longer to get to equilibrium, which it nearly reaches in Vl 

PmD Am 

time units. Were this achievable, the selectivity would be nearly perfect as there is so little D 
on the permeate side compared to B. It would be very nice to try this continuously to see how 
well the systems would work. 

Continuous Permeation. The continuous process must  have feed and exit on the retentate 
side and at least exit flow on the permeate side. We could have an additional sweep (gas or 
liquid) feed on the permeate side, which adds very little to the analysis. The new physical 
situation is as shown in Figure 2: 

The material balance equations for components B and D on the retentate and permeate 
sides become: 

dC~V I 

dt 

d C ~ V  / 

dt 
d C ~ V II 

dt 
dC~V II 

dt 

-- (C~f -  C~)q ' -  Pm, B Am(C~ - C ~ )  

= (C~ f -  C~)q' - Pm, D Am(Cb - C~) 

= _C H qlI ._[_. Pm, B Am(C / -C]~) 

= -CI~qII+ Pm, D Am(C / - C  H) 
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Feed gases Retentate 

B I D I 

m 

Retentate 

~' ~ Permeate 

Bll DJl 

Permeate 

Figure 2 

When the system runs at s teady state, the derivatives are identically zero. We can divide both 
sides of both of the equations by the volumes to give: 

q' P,,,B Am ~) 
0 = ( c ~ , -  c~)  v ,  v ,  (c~ - c 

0 = (C1 f -  CID) q1 Pm, D Am (C / _ C~) 
V I V I 

qll PmB Am 
0 = - c "  (c~ - c~ )  

+ 'V~-------- V -  
qli Pm, D Am 

0 = - c " F ~  + v .  (cb- c") 

There are now two characteristic times in the equations" the first is the holding time (~)-1 and 
/'.Am)-I We have four equations,  two inlet concentrations, the second is a permeat ion  time ( v �9 

four outlet concentrations, two flow rates, two volumes,  two permeabilit ies,  and one area for a 
total of 13 variables and parameters .  If we know the two inlet concentrations of B and D, their 
two permeabilit ies,  the two volumes and the area of the membrane ,  and the retentate flow 
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rate, then  we  have  eight  of these in hand.  Hence,  there are four to be calculated if we  m e a s u r e  

one. Let us say we  measu re  the pe rmea te  f low rate. Then we  should  be able to c o m p u t e  the 
four exit concentrat ions:  

In[55] := Clear["Global'*"] 

VI = VII ; 

PmB = 10-4; 

PmD = 10-6; 

VII = i; 

r = 5; 

Am = 10r; 

CBIf = .1; 

CDIf = 0.i; 

qI = I0; 

qII = qI; 

General--spelll �9 Possible spelling error- new symbol name 

"CDIf" is similar to existing symbol "CBIf". 

In[66] := solmem = Flatten[ 

Simplify[ 

Solve [ 

{0 == (CBIf - CBI) 

0 == (CDIf - CDI) 

qI PmBAm 
- ~ ( C B I  - CBII), 

VI VI 

qI PmDAm 
(CDI - CDII), 

VI VI 

qII PmBAm 
0 == -CBII-- + 

VII VII 

qII PmDAm 
0 == -CDII-- + 

VII VII 
{CBI, CDI, CBII, CDII}] 

] 
]; 

CBlss = solmem[[1, 2]]; 

CDlss = solmem[[2, 2]]; 

CB2ss = solmem[[3, 2]]; 

CD2ss = solmem[[4, 2]]; 

CB2ss/CBlss 

CD2ss/CDlss 

CBlss 

CBIf 

(CBI - CBII), 

(CDI - CDII)}, 
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CDIss 

CDIf 

CB2ss qII 

CBI~ qI 

CB2ss qII 

General--spelll �9 Possible spelling error- new symbol name 

"CBII" is similar to existing symbol "CBI". 

General--spell �9 Possible spelling error- new symbol name 

"CDII" is similar to existing symbols {CBII, CDI}. 

General--spelll �9 Possible spelling error- new symbol name 

"CDlss" is similar to existing symbol "CBlss". 

General--spelll �9 Possible spelling error- new symbol name 

"CD2ss" is similar to existing symbol "CB2ss". 

Out[74]= 0.333333 

Out [75]= 0.333333 

We might justifiably question how long it would take such a system to reach a steady state. 
To determine this we can solve the same set of equations that we have just examined at the 
steady state only now in the full time domain. 

In[76] :: Solve[{O == -CBII[t] 
qIIb PmBAm 

+ 
VI VI 

qIId PmDAm 
0 == -CDII[t]~ + 

VI VI 

{qIIb, qIld}] 

(CBI[t] - CBII[t]), 

~(CDI[t] - CDII[t])}, 

General--spelll �9 Possible spelling error, new symbol name 

"qIIb" is similar to existing symbol "qII". 

General--spell �9 Possible spelling error- new symbol name 

"qIId" is similar to existing symbols {qII, qIIb}. 

Out[76]: {{qIIb 
i0 (CBI[t] - CBII[t] ) 

CBII[t] 

Next, we input the parameter values: 

qIId ~ _-CDI[t] + CDII[t] } } 
10CDII[t] 

In[77] := CIBo = 0.000001; 

CIDo = 0. 000001; 

VI = I; 
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PmB = 10-4; 

PmD = 10-6; 

VII = VI; 

r = 5; 

Am = 10r; 

CBIf = .1; 

CDIf = 0.I; 

qI = i0; 

n = I0; 

Chapter 6 Adsorption and Permeation 

General--spelll �9 Possible spelling error- new symbol name 

"CIBo" is similar to existing symbol "CIB". 

General--spell �9 Possible spelling error- new symbol name 

"CIDo" is similar to existing symbols {CIBo, CID}. 

Solve the equation and assign the functions: 

In[89]:= permflow = Flatten[ 

Solve[0 == -CBII[t] 
qIIb PmBAm 

+ 
VI VI 

] 

permflow[ [1, 2] ] 

10(CBI[t] - CBII[t]) 
Out [89]= {qIIb 

CBII[t] 

i0 (CBI[t] - CBII[t]) 
Out [90] = 

CBII[t] 

~(CBI[t]-CBII[t]), qIIb] 

Now we use this solution in the solution of the full set of equations and to make the required 
plots. The first taks is to set the equations using the new definition for qIIb[t]- 

In[91] := qIIb[t__] :- permflow[[l, 2]] 

In[92] .= eqns {@tCBI[t] (CBIf CBI[t] ) qI PmB/~n . . . . . . .  (CBI[t] - CBII[t]), 
VI VI 

@tCDI[t] == (CDIf- CDI[t])--- 
qI ProD/~n 

VI VI 

0tCBXX[t] -= (-CBXX[t]) 
qxZb[t] PmB~m 

VII VII 

@cCDII[t] == (-CDII[t]) 
qxZb[t] PmD~m 

VII VII 

(CDI[t] - CDII[t]), 

(CBX[t] - CBXX[t]), 

(CBX[t] - CBXX[t]), 

CBI[0] == CIBo, CDI[0] == CIDo, CBII[0] =-10-1~ =--0}; 

In [ 93 ] : = eqns 
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Out[93]= {CBI'[t] == i0(0.i - CBI[t]) - 10(CBI[t] - CBII[t]), 

1 
CDI'[t] == i0(0.i - CDI[t]) + ~(-CDI[t] + CDII[t]), CBII'[t] == 0, 

1 10(CBI[t] - CBII[t] )CDII[t] 
CDII'[t] (CBI[t] - CBII[t] ) - 

i0 CBII[t] 

1 
CBI[0] == i. x i0 -6, CDI[0] == 1.• -6 , CBII[0] 

i0000000000 
CDII[0] == 0} 

Next, we solve the equations numerically subject to the initial conditions and over the time 
range of interest: 

In[94].: numsol = Flatten[NDSolve[ 

eqns, {CBI[t], CDI[t], CBII[t], CDII[t]}, 
VI 

{t, 0, n ~ } ] ]  
PmB Am 

numsol 

Out [94]: {CBI[t] 

CDI [t] 

CBII [t] 

CDII [t] 

InterpolatingFunction[{{0., i. }}, <>] [t] , 

-~ InterpolatingFunction[{{0., i. }}, <>] [t] , 

-~ InterpolatingFunction[{{0. , i. }}, <>] [t] , 

-~ InterpolatingFunction[{{0., i. }}, <>] [t] } 

Out[95]= {CBI [t] 

CDI[t] 

CBII [ t ] 

CDII [t] 

-~ InterpolatingFunction[{{0., i. }}, <>] [t] , 

InterpolatingFunction[{{0., I. }}, <>] [t] , 

-~ InterpolatingFunction[{{0., i. }], <>] [t] , 

-~ InterpolatingFunction[{{0., i. }}, <>] [t] } 

The solutions are assigned to functions: 

In[96]:= CIB[t__] := Evaluate [CBI [t] /. numsol[[l]]] 

CID[t__] := Evaluate [CDI [t] !. numsol[[2]]] 

C2B[t__] := Evaluate [CBII [t] /. numsol[[3]]] 

C2D[t__] := Evaluate [CDII [t] /. numsol[[4]]] 

(CIB[t] - C2B[t]) 
q2[t_] := AmPmB 

C2B[t] 

Finally, we set the plotting options and then make the plots" 

In[101] .= SetOptions [Plot, DefaultFont ~ {"Helvetica", i0}] ; 

CIB[t] VI 
pll = P l o t [ ~ ,  {t, 0, n }, 

CBIf PmB~m 
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PlotStyle 

DisplayFunction ~ Identity, 

CiB[t] 
AxesLabel ~ {"t", " ~ " } ,  

CBIf 

VI 
PlotRange ~ {{0, n }, {0, I}}, 

PmB Am 

Epilog ~ {Thickness[0.02], 

CBlss VI CBlss 
Line[{{0, ~ } ,  { n ~ ,  

CBIf PmBAm CBIf 

]; 

{Thickness[0.02], GrayLevel[0.6]}, 

~}}]} 

CID[t] VI 
p12 = P l o t [ ~ ,  {t, 0, n ~ } ,  

CDIf PmBAm 

PlotStyle ~ {Thickness[0.02], GrayLevel[0.6]}, 

DisplayFunction ~ Identity�9 

CID[t] 
AxesLabel ~ {"t", " ~ " } ,  

CBIf 

PlotStyle ~ GrayLevel [.4], 

VI 
PlotRange ~ {{0, n ~ } ,  {0, I}}, 

PmBAm 

Epilog ~ {Thickness[0.02], 

CDlss VI CDlss 
Line[{{0, ~ } ,  {n , 

CBIf PmBAm CBIf } } ] } ] ; 

p13 = Plot[C2B[t], {t, 0, n 
VI 

}, 
PmBAm 

PlotStyle ~ {Dashing[{0.04, 0.04}], 

Thickness [ 0.02 ], GrayLevel [ 0.8 ] }, 

DisplayFunction ~ Identity�9 

AxesLabel 

PlotStyle 

{"t", "C2B[t]"}, 

{GrayLevel[0], Dashing[{0.05, 0.05}]}, 

VI 
PlotRange ~ {{0, n 

PmBAm 
}, {0, CBIf}}, 

Epilog ~ {{Thickness[0.02], 

VI 
Line[{{0, CB2ss}, {n 

PmB Am 
]; 

CB2ss}}]}} 
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VI 
p14 = Plot[C2D[t], {t, 0, n ~ } ,  

PmB Am 
PlotStyle ~ {Dashing[{0.03, 0.04}], 

Thickness [ 0.02 ], GrayLevel [ 0.8 ] }, 

DisplayFunction ~ Identity, 

AxesLabel ~ {"t", "C2D[t]"}, 
VI 

PlotRange ~ {{0, n ~ } ,  {0, CDIf}}, 
PmBAm 

AxesOrigin ~ {0, 0}]; 

Show[GraphicsArray[{{pll, p12}, {p13, p14}}]]; 

C1B[t]  

o i" 
0.20.40"6 ~/d~- . . . . . . . . . . . . . . . . . . .  

0.2 0.4 0.6 0.8 
t 

1 

C2B [t ] 
0.1 

0.08 
0.06 
0.04 
0.02] 

- -  w . . . . . . . . . . .  t 

0.2 0.4 0.6 0.8 1 

C1D[t ]  
 o,f 

0.8 
0.6 
0.4 
0 . 2  

C 2 D [ t ]  
0.1 

0.08 
0.06 
0.04 
0.02 

,,,, 

~ t  
0.2 0.4 0.6 0.8 1 

- t  
0.2 0.4 0.6 0.8 1 

The numbers all seem reasonable until we examine them a bit more carefully. We notice that 
the concentration of B at steady state on the retentate side divided by its feed concentration is 
well below the value of 0.66, which we had computed from the purely steady-state analysis. 
Furthermore, the concentration of 13 on the permeate side is nearly zero for all times! The 
product of the permeate concentration and flow rate is the molar flow of the impurity B out 
of the system below the membrane. The molar flow is reasonable in magnitude, but when we 
compute the volume flow we see that it is ludicrously large O (109)! Why? The reason is the 
seemingly reasonable assumption that the permeate side would always be at a steady state, 
that is, there would be no time lag for the flow to fully develop out of the unit here. But the 
concentrations at the lower side of the membrane are so low that in order for the mathematics 
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to satisfy the steady state that we have imposed the flow must  be compensatingly large. If we 
set the initial concentration of B on the permeate side to zero, the flow must  be infinite and 
so it goes from there with real number  values for this concentration. This is a case where the 
transient and steady state do not mix well! 

We have two options: either include an inlet flow on the permeate side of the membrane,  
or set the exit flow rate. From the mathematical perspective the two amount  to the same thing, 
thus they get us out of the bind. Physically, they are reasonable as well. We can certainly con- 
figure a mass flow controller and a pump  that would keep the flow out of the system constant, 
but the inlet flow is easier to do experimentally, and therefore we will include this. 

The inlet flow on the permeate side would be that of an inert gas, for instance, which 
continuously sweeps the lower side of the membrane and clears the permeate. If the flow is 
large compared to the volume, then we will have near zero concentrations of the permeate 
gas and maximal permeation rates. (In fact, this is what  the steady-state analysis we just did 
imposed automatically.) We still need to consider only the component  balances at this point. 
We will use all the same numbers and equations except that qII will be fixed at the inlet and 
outlet of the permeate side of the unit: 

In[107].- Clear[PmB, PmA, Am, VI, VII, CIBo, CIDo, piI, plII, plIII, 

plIV, t ] 

In [i 08] : = CIBo = 0. 000001; 

CIDo = 0. 000001; 

VI = i; 

PmB = 10-4; 

PmD - 10-6; 

VII = VI; 

r = 5; 

Am = 10r; 

CBIf = . i; 

CDIf = 0.I; 

qI = i0; 

qII = i0; 

n = I0; 

In [121 ] �9 = 

eqns = { @t CBI [ t ] == (CBIf - CBI [ t ] ) 
qI 

VI 

PmB~n 

VI 
~ ( C B I [ t ]  - CBII[t]), 

@tCDI[t] == (CDIf-CDI[t])-- - 
qI 

VI 

ProD Rm 

VI 
(CDI[t] - CDII[t]), 

0tCBXX[t] == (-CBXX[t]) 
qll 

VII 

PmBAm 
+ 

VII 
(CBX [t] - CBZX [t] ), 
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@tCDII[t] == (-CDII[t])-- 
qII PmDRm 

+ 

VII VII 
~(CBI[t] - CBII[t]), 

CBI [0] == CIBo, CDI [0] == CIDo, CBII [0] == 10 -I~ 

CDII[0] -= 0}; 

numsol = Flatten[ 

NDSo ive [ 

eqns, 

{CBI[t], CDI[t], CBII[t], CDII[t]}, 
VI 

{t, 0, n ~ }  
PmB Am 
] 

]; 

CIB[t__] := Evaluate [CBI [t] /. numsol[[l]]] 

CID[t_] := Evaluate [CDI [t] /. numsol[[2]]] 

C2B[t__] :: Evaluate [CBII [t] /. numsol[[3]]] 

C2D[t__] :: Evaluate [CDII [t] /. numsol[[4]]] 

SetOptions [Plot, DefaultFont 

AxesStyle ~ Thickness[0.02]]; 

CIB[t] VI 
pll = P l o t [ ~ ,  {t, 0, n ~  

CBIf PmBAm 

DisplayFunction ~ Identity, 

CIB [t] 
AxesLabel ~ {"t", " "}, 

CBIf 

PlotStyle 

{"Helvetica", 10}, 

, 

{Thickness[0.02], Dashing[{0.02, 0.03}]}, 

VI 

Line[{{0, ~ } ,  { n ~ ,  
CBIf PmB Am CBIf } } ] } ] ; 

CID[t] VI 
p12 = P l o t [ ~ ,  {t, 0, n }, 

CDIf PmB~n 

DisplayFunction ~ Identity, 

CID [t] 
AxesLabel ~ {"t", " "}, 

CDIf 

PlotStyle ~ {Thickness[.02], Dashing[ {0.03, 0.03}] }, 

PlotRange ~ {(0, n 
VI 

), (0, i))]; 
PmBAm 

CBlss VI CBlss 

{GrayLevel[0.5], Thickness[0.02], 

Epilog 

PlotRange ~ {{0, n ~ ,  {0, 1}}, 
PmB ~m 
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vI 
p13 = Plot[C2B[t], {t, 0, n ~ } ,  

PmB~m 

DisplayFunction ~ Identity, 

AxesLabel -~ {"t", "C2B[t]"}, 

PlotStyle ~ {Thickness[.02], Dashing[{0.15, 0.05}]}, 

VI 
PlotRange ~ {{0, n }, {0, CBIf}}, 

PmB~m 
Epilog 

{GrayLevel [. 6], Thickness [0.02], 
VI 

Line[{{0, CB2ss}, { n ~ ,  CB2ss}}]}]; 
PmB ~m 

VI 
p14 = Plot[C2D[t], {t, 0, n }, 

PmB~m 

DisplayFunction ~ Identity, 

AxesLabel ~ {"t", "C2D[t]"}, 

PlotStyle ~ {Thickness[.03], Dashing[{.03, .09}], 

GrayLevel [. 7 ] }, 
VI 

PlotRange ~ {{0, n ~ } ,  {0, CDIf}}, 
PmB Am 

AxesOrigin ~ {0, 0}]; 

Show[GraphicsArray[ { {pll, p12}, {p13, p14} } ] ] ; 

C 1 B [ t ]  
~BIf 

~ p o ~ l l . , .  . . . . . .  , 

ol / "  
0.2 I' 

0.2 0.4 0.6 0.8 

C 1 D [ t ]  
(?DIf . . . . . . . . . . . .  

o..I ..--- 
~ 
O. 

t t 
1 0.2 0.4 0.6 0.8 1 

C 2 B [ t ]  
0.1 

0.08 
0.06 
0.04 
0.02 

0.2 0.4 0.6 0.8 1 

C 2 D [ t ]  
0.1 

0.08 
0.06 
0.04 
0.02 

0.2 0.4 0.6 0.8 1 
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The following is a plot of the mass flow of B from the system that is the product  C2B[t]qII: 

In[133].- Plot [C2B [t] qII, {t, 0, n 
VI 

}, 
PmBAm 

AxesStyle ~ Thickness [. 01], 

AxesLabel ~ {"t", "CIIB[t]*qII"}, 

PlotStyle ~ {Thickness [.01], 

Dashing[{0.05, 0.05}], GrayLevel[ .6]}, 

v I  
PlotRange ~ {{0, n }, {0, .35}}]; 

PmBAm 

CIIB[t],qll 

0.3 
0.25 

0.2 / 
0.15 

o.~ / 
0.05 / 

t 

/ 
/ 

f 

t 
0.2 0.4 0.6 0.8 1 

Now the analyses make sense. The steady-state analysis agrees with the transient analysis. 
However,  let us consider all of this one more time. In what  manner  did the analysis show us we 
should move if we wish to get the ultimate removal of B from the feed stream with the areas, 
feed flow, and permeances all fixed? The answer is obvious. The pseudo-steady-state  analysis 
showed us that if we could somehow reduce the concentration of B on the permeate  side to 
near zero values, then we could remove nearly 50% of it versus only 33% with these condi- 
tions. How could we do this? How about raising the sweep flow rate on permeate side? This 
will have the effect of keeping the concentration of B very low and increasing the driving 
force for B across the membrane.  How much higher would  the sweep flow have to be to 
accomplish this? The answer is in what  follows; on the order of a factor of 10 increase will 
do it! 

In[134]'= Clear[PmB, PmA, Am, VI, VII, CIBo, CIDo, piI, pIII, piIII, 

piIV, t ] 

In [135] �9 = CIBo - 0. 000001; 

CIDo = 0.000001; 

VI = i; 
PmB ffi 10-4; 
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PmD = 10-6; 

VII = VI; 

r = 5; 

Am = 10r; 

CBIf = .i; 

CDIf = 0.1; 

qI = i0; 

qII = 103; 

n = I0; 

In[148] .= eqns = {~tCBI[t] == (CBIf-CBI[t])qI 
V I  

~tCDI[t] == (CDIf-CDI[t]) 
qI 

VI 

~tCBII[t] == (-CBII[t]) 
qII 

VII 

~tCDII[t] == (-CDII[t]) 
qll 

VII 

CBI[0] == CIBo, CDI[0] == 

PmBRm 

VI 
~(CBI[t] -CBII[t] ), 

ProD Am 

VI 
(CDI[t] -CDII[t]), 

PmBAm 

VII 
(CBI[t] -CBII[t]), 

PmDAm 

VII 
(CBI[t] -CBII[t]), 

CIDo, CBII [0] -- 10 -I~ ---- �9 

CDII [0] == 0} ; 

In[149]:= numsol = Flatten[ 

NDSo ive [ 

eqns, 

{CBI[t], CDI[t], CBII[t], CDII[t]}, 
V 

{t, 0�9 n ~ }  
PmB Am 

] 
]; 

CIB[t_] := Evaluate [CBI [t] /. numsol[[l]]] 

CID[t_] := Evaluate[CDI[t] /. numsol[[2]]] 

C2B[t__] := Evaluate [CBII [t] /. numsol[[3]]] 

C2D[t__] := Evaluate [CDII [t] /. numsol[[4]]] 

SetOptions[Plot, DefaultFont ~ {"Helvetica"�9 10}, 

AxesStyle ~ Thickness[0.02]]; 

CIB[t] VI 
pll = P l o t [ ~ ,  {t�9 0�9 n }, 

CBIf PmB~n 

DisplayFunction ~ Identity�9 
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CIB[t] 
AxesLabel ~ {"t", " ~ " } ,  

CBIf 

PlotStyle ~ {Thickness[0.02], Dashing[{0.02, 0.03}]}, 

VI 
PlotRange ~ {{0, n ~ } ,  {0, 1}}, 

PmB Am 
Epilog ~ {GrayLevel[0.5], Thickness[0.02], 

CBlss VI CBlss 
Line[{{0, ~ } ,  { n ~ ,  ~}}]}]; 

CBIf PmBAm CBIf 

CID[t] VI 
p12 = P l o t [ ~ ,  {t, 0, n }, 

CDIf PmBAm 
CID[t] 

DisplayFunction ~ Identity, AxesLabel ~ {"t", " ~ " } ,  
CDIf 

PlotStyle ~ {Thickness[ .02], Dashing[{0.03, 0.03}]}, 

VI 
PlotRange ~ { {0, n ~ } ,  {0, i} } ] ; 

PmBAm 

p13 = Plot[C2B[t], 
VI 

{t, 0, n ~ } ,  
PmBAm 

DisplayFunction ~ Identity, 

AxesLabel ~ {"t", "C2B[t]"}, 

PlotStyle ~ {Thickness[.02], Dashing[{0.15, 0.05}]}, 

PlotRange ~ {{0, n 
VI 

}, {0, CBIf}}, 
PmBAm 

Epilog ~ {GrayLevel[.6], Thickness[0.02], 
VI 

Line[{{0, CB2ss}, { n ~ ,  CB2ss}}]}]; 
PmBAm 

VI 
p14 = Plot[C2D[t], {t, 0, n }, 

PmB Am 
DisplayFunction ~ Identity, 

AxesLabel ~ {"t", "C2D [t] "}, 

PlotStyle ~ {Thickness [.03], 

Dashing[{.03, .09}], GrayLevel[.7]}, 
VI 

PlotRange ~ {{0, n }, {0, CDIf}}, 
PmB Am 

AxesOrigin ~ {0, 0}]; 

Show[GraphicsArray[ { {pll, p12}, {p13, p14} } ] ] ; 
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C1 B [ t ]  
CBIf 

0.20.40.60.81 

C1 D [t] 
CDIf 

o.11/,, ............. 

0.02 t 
0.20.40.60.81 

C 2 B [ t ]  
0.1 

0.08 
0.06 
0.04 
0.02 

0.20.40.60.8 1 

C 2 D [ t ]  
0.1 

0.08 
0.06 
0.04 
0.02 

0.20.40.60.8 1 

And once again the total flow of B from the system: 

v I  
In[160]:: Plot[C2B[t]qII, {t, 0, n ~ } ,  

PmB Am 
AxesStyle ~ Thickness [.01], 

AxesLabel ~ {"t", "CIIB[t] * qII"}, 

PlotStyle ~ {Thickness[.01], Dashing[ {0.05, 0.05}], 

GrayLevel [. 6 ] }, 

VI 
PlotRange ~ {{0, n ~ } ,  {0, .5}}]; 

PmB Am 

CII B [ t ] �9 qll 
0.5 

0.4 

0.3 

0.2 

0.1 

f 
/ 

/ 
I 

I 

t 
0.2 0.4 0.6 0.8 1 

6.4 Expanding Cell 
I I  IIEII I I 

Consider the following problem. A spherical cell consists of a thin membrane surrounding a 
salt solution. Outside of the cell membrane there is a solution that is isotonic with that within 
the membrane. The cell is removed instantaneously from its surroundings and placed into 
an environment of pure water. The action of osmosis immediately drives water through the 
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membrane to cause dilution of its contents. The transport  across the membrane  is a permeat ion 
process with a rate of: 

Pm[r O u t s i d e  _ c l n s i d e ~  
JH20 -~ ~-'H20 H20 ] 

The direction of the flow is from the region of lower salt concentration to higher salt concentra- 
tion, but from higher water concentration to lower water  concentration. The concentration of 

cOutside water on the outside of the cell is taken to be equal to the density of pure water H2o - PH2o. 
Inside the membrane  the concentration of water is increasing as the density of the solution is 
decreasing. The density of the cellular content follows the linear relationship: 

F'Cell[t ] Pcell[t] --- PH20 if- Y"'salt 

While water transports osmotically across the cell membrane to dilute the cellular contents, 
the cell grows. The membrane  stretches to accommodate the newly accumulated mass. The 
geometry of the cell remains constant, that is it grows in every direction through the whole of 
the solid angle by the same amount  in the same time period. The physical situation with this 
cell is sketched in Figure 3: 

We would like to know how the membrane grows as a function of time, how much the 
cellular contents are diluted in time, and related information about this process. We will find 
the answers to these questions by modeling the dynamic process. We begin by writing the 

H20 

H20 e ~  

H20 

time 

Figure 3 
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material  balance equat ions  wi th in  the cell in a general  form: 

dmtot[t] 
dt 

dmsalt[t] 
dt 

dmH2o[t] 
dt 

= Pm S A / c O u t s i d e  - C Inside~ 
~, H20 H20 ) 

= 0  

- -  Pm S A / C ~  --  C Inside~ 
~, H20 H20 ] 

The surface area and vo lume  of the cell are functions of the radius: 

V[t]-- ~7f4 r[t]3 SA[t] -- 4yrr[t] 2 

dV[t] dr[t] dSA[t] 
dt = 4rrr[t]2 dt dt = 8 7 r r [ t ] ~  

dr[t] 
dt 

We will need to relate the water  concentrat ion to the salt concentra t ion and  the change in den- 
sity to the water  rather than the salt concentrat ion,  as it is the latter that  is f lowing into the cell" 

r ] Pcell[t] = PH20 + }/"salt 

Cell Cell r ] 
Csalt [t] + CH20[t ] -- PH20 q'- ]"'-'salt 
cCe l l  H20[ t] - -  PH20 q" (Y --  1~r t]/'-'salt 

cCel•[t] = 
salt 

cCel l  H20[ t] - -  P H 2 0  

( y  - 1)  

Pcell[t]  = PH20 + }" 

Cell 
CH20[ t ] -  R H 2 0  

( •  - 1) 

Pcen[t] = 
Y cCelIH20 [t] - PH20 

( y  - 1)  

With these expressions and the componen t  balances we can now find the expression for rcell [t] *-'salt 
a n d / - , C e l l  ~..2o[t] as functions of r[t l :  

dmH2o[t] - -  Pm S A / C ~  - C lnside~ 
~ H20 H20 ] dt 

d(-.Cell dmsalt[t] = 0 = -'-'salt [t]V[t] ('-Cell dV[t] ~'-'saltdr 
dt dt = "-'salt [t] dt + V[t] ~ 

c C e l l [ 0 ]  V [ 0 ]  r  
salt " sa l t  Cell[t - -  

salt m V[t] r[t] 3 
c C e l l [ 0 ] r 3  

salt C Cell [t] RH20 + (Y 1) H20 ~- rIt] 3 
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Taking the derivat ive of this, we find the change in salt concentra t ion as a function of t ime to be: 

In[161].: r -. 

_Cell OtC.~o It] -= Ot(O~o + (7 - 1) 

Out[162]: (cCell) ' "H20 [t] == 0 

r01 

r[t] 3 

Returning to the total material  balance, we can use all of the definit ions for the variables in 
terms of r[t] to solve for the derivat ive of r[t] in terms of just the cell parameters .  Once we 
have  this, we can then solve for r[t] explicitly in time: 

dmtot[t] 

dt 
dPcell[t]V[t] 

dt 

--" Pm sa[c~ - cCell [t]) t, H20 H20 

- Pm S a/cOutside - C Cell It]) 
~, H20 H20 

The fol lowing cell solves and reexpresses, the left- and r ight -hand sides in terms of r[t] and  
then solves for r'[t]. Finally, we solve for r[t] and plot  the function: 

In[163] .= r -. 

C.~o[t__] := P.~o + (7 - 1) 

Cell 3 
alt, o ~o 

tit] 3 

C.2o [ t ] - P.~o 
P=elz [ t-- ] := PH~o + 7 

(7- 1) 

4 
V[t__] : = -- r[t] 3 

3 
lhs = Ot(Pcell[t]V[t]) 

General--spelll �9 Possible spelling error- new symbol name 

"cell" is similar to existing symbol "Cell". 

Out[167]= - 

3 Ce 1 / 
47roCsallt, o r [ t ] 

r[t] 
+ 4r[t]2(pH20 + 

In[168]': SA[t__] := 47rr[t] 2 

rhs = PmSA[t] (P.2o - C.~o[t]) 

Solve[lhs == rhs,r'[t]] 

__3.~Cell 
4JrPm(-i + Y)XoUsalt,o 

Out [169] = - 
r[t] 

7rPm ( 1 + ]/) __3,~Cell 
-- lok'salt o } } 

Out[170]: {{r'[t] ~- 
r [t] 3pH2o 

_ 3,~Cell 
Ys o ) r' [ t ] 

r[t] 3 
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In [i 71 ] �9 = Simplify [PowerExpand [DSolve [ 
3--Cell 7rPm(-i + 7)roC,alt,o 

(Otr[t] == - 
r [t] 3ps2o 

r[0] == ro}, 
r[t], t]]] 

Out[171]= {r[t] -~- 

r[t] -~- 

r[t] -~ 

r[t] 

( 1 + ~) ~rl/4pml/4 ( - 1 + ]/) 1/4r_o3/4Csalt,Cell/4o ( t + 

l/4 
H20 

1/4 3/4_Ce11/4 
(i - ~) Jrl/4pml/4 (-I + },) ro Csalt, o (t + 

l/4 
H20 

~-Cell 
roPH20~salt, o 1/4 

~-Cell 
roPH20~sMt, o 1/4 

----Cell 
( 1 - ~ ) ~i/4 pml/4 ( - 1 + }/) 1/4--3/4-ce11/412o ('~salt, o (t + 4-~- ~-~n~r~176 o ) 1/4 

-Cel ] 
roPH20~sa]t, o 1/4 
47r Pm - 4 ~-Pm~, ) 

1/4 
PH2 0 

3/4~ce11/4 
(i + i)jrl/4pml/4 (-i + Y)i/4ro ~salt,o(t + 

l/4 
H20 

~Pm( 1 + 7)r3-CeZZ 
-- ~ �9 o 

PH~o 
In[172] .- Solve[/r rIt] 

0 

~t�9 [t] ] 0 t r[t] 3 dr[t] == - 

Out[172]- {{r[t] ~ -v/2( - 

{r[t]-~ -nv/2( - 

{r[t] ~ -~vff(-- 

4 ro 

_ 3,~Cel i 
ro a _ rrPm t (-i + }' ) s ) 1/4 } , 

4 PH:~O 
1 ro a _ ;TPm t (-I + ]/) ]2ok'sa-B'~Ce~t, O ) 1/4 } , 

4 RH~O 
1 ro 4 _ rrPmt(-i + Z)• 

4 PH?O 

rrPmt( 1 + y)__3~Cell 
- ~o~s~it, o ) i/a} } 

PH2 0 
{r[t]-~ V~ ( -- 

There are four solutions to this equation, and two are real and two are complex. By calling 
the package Miscellaneous 'RealOnly ' ,  only the real solutions are displayed. Of the two real 
solutions, only the second is physical, as it is growing as a function of time (see what  follows 
here in the In statements and graph): 

[173].= SetOptions[{Plot, ListPlot}, AxesStyle ~ {Thickness[0.01]}, 
PlotStyle ~ {PointSize[0.015]�9 Thickness[0.01]}�9 
DefaultFont ~ {"Helvetica"�9 17}] ; 

In[174]': r -. 

r[t_] := V~( rO44 

ro = 10 -4 ; 

~Pmt (-1 +DH2~) ro3Csalt'~ 1 / 4 0  
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Pm = 10-3; 

= 0.9; 

C,azt,o = 0.01; 

PH2o = I; 
3Pm 

tmax = i000 
r[0] 

Plot [r [t]104 , {t, 0, tmax), 

AxesLabel ~ {"I000 8/sec", "r[t]Xl04/~"), 

PlotLabel ~ "Radial Cell Growth"]; 

r[t]xl04//~ Radial Cell Growth 
8 

6 

4 

2 

1000 0/sec 
5000100001500020000 25000 30000 

This solution to the problem shows that it grows very fast at a short time, but then it slows at 
longer times. There is, however, one noticeable issue that crops up with this solution, which is 
that the radius continues to grow with increasing time. To be physical the membrane surface 
would have to be infinitely elastic, which is impossible. Instead we expect the membrane to 
rupture and explode at some critical radius. Thus the solution should be indicative of this 
behavior. 

We can modify the solution to include this behavior. The critical radius can be expressed 
as a multiple of the initial radius at time zero. We want  the function to literally "blow-up" 
when we reach this radius. The critical condition can be expressed with the UnitStep function. 
It will be of unit value until the critical condition is reached, whereupon it will go to zero. 
Recall the behavior of the UnitStep given in terms of r[t] and the critical condition of 2r[0]: 

In[183]:= Plot[l - UnitStep[r[t] - 3r[O]], {t, -5, I050}, 

PlotStyle ~ {Thickness [. 01], GrayLevel [. 6] } ] ; 
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200 400 600 800 1000 

By dividing r[t] by the UnitStep function we obtain the correct behavior; the solution is 
meaningful up to the critical radius but not beyond and is shown in what follows in the In 
statement and two graphs: 

In[18~].- Clear[rbl, us] 

rbl [t_ ] := 

v~ 
1 - UnitStep [r [t] - 3r[0]] 
ro = 10 -4 ; 

Pm = 10-3; 

= 0.9; 

Csazt,o = 0.01; 

PH20 = i; 
3Pm 

tmax = 2 5 ~ ;  
r[0] 

ro 4 ~Pmt(-1 + ~)ro3Csazt 
O 1/4 _ _  .. �9 ) 

4 PH~o 

us = Plot [3UnitStep [r [t] - 3r[0]], {t, -5, tmax}, 

PlotStyle ~ {Thickness [.01], GrayLevel [. 6] }] ; 

Plot [ {3UnitStep [r [t] -3r[0]], rbl[t]104}, {t, 0, tmax}, 

AxesLabel ~ {"I000 ~/sec", "r[t] XI04/~''}, 

PlotLabel ~ "Radial Cell Growth", 

PlotStyle ~ { {Thickness [.01] }, {Thickness [.01], 

GrayLevel [. 6 ] } } ] ; 
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3 

2.5 

2 

1.5 

0.5 

100 200 300 400 500 600 700 

1 
Power- -infy �9 IruSnite expression - encountered. 

0 

1 
Power- -infy �9 Infinite expression - encountered. 

0 

1 
Power- -infy �9 Infinite expression - encountered. 

0 

General--stop �9 Further output of Power--infy will be 

suppressed during this calculation. 

Plot--plnr �9 rbl[t] 104 is not a machine-size real number 

at t - 658. 1365691561368'. 

Plot--plnr �9 rbl[t] 104 is not a machine-size real number 

at t : 641. 6663540073249' . 

Plot--plnr �9 rbl[t] 104 is not a machine-size real number 

at t : 638.1017437770654' . 

General-:stop - Further output of plot--plnr will be 

suppressed during this calculation. 
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r[t]xl04//~ Radial Cell Growth 
3 

2.5 

2 

1.5 

1 

0.5 
I I I I I I I 

100 200 300 400 500 600 700 
1000 e/sec 

We also might  wish to project the growth in the plane. When we do so we can use our expression 
for the radius as a function of time and then plot the circular surfaces at integer time steps 
separated by a constant increment: 

In[194].: Show[Graphics[Table[{Circle[{0, 0}, rbl[t]]}, 

{t, 0, .Stmax, 20}], AspectRatio ~ Automatic, 

Axes ~ Automatic] ] ; 

-o.oo 

O. 

001 

-0. 
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Another way to visualize the growth of the cell is to watch its contents expand and change 
structure as the membrane stretches. We can do this by "filling" the cell with smaller circu- 
lar entities that are fixed in number. Imagine that can form attachments to the cell wall at 
fixed angular separations all around the membrane.  As the membrane  grows these attach- 
ments will grow in length but  not width and thus their structure will emerge as the cell 
expands. 

Let us envision how this can work with simple examples first, one taken at initial time 
zero and one at some later time. We will set the outer radius equal to that of rbl[0]. Inside this 
membrane we will place 32 smaller bodies with radii that are 3.5% of that of the outer radius 
of the cell plus one at the center. To arrange these around the interior of the cell we compute 
their {x, y} locations in terms of the radius as follows: 

{m rbl[0] Cos [n Pi] / /N,  m rbl[0] Sin [n Pi]//N} 

By incrementing m we take fractional positions along the radius at some fixed angle, which is 
given by [nPi]. The increment n moves the angle around the cellular interior. By nesting two 
Table functions, one in n and the other in m, we cover the interior completely. The radius of 
0.035 rbl[0] was chosen so that the subcells eventually would overlap and fill the inside of the 
membrane. 

To implement this we use the Disk function for the subcells, because it is filled with an 
RGBColor. This command calls for the position of the center of the disk and then for the 
radius of the disk. We have implemented as follows: 

Disk[{m .98rbl[0] Cos [n Pi] / /N,  m .98rbl[0] Sin [n Pi]//N}, .035rbl[0]]} 

The factor of 0.98 is used to keep the cell contents inside the membrane rather than on it. At 
time t = 0 and then at t = 12 we can show the cell and its subcellular contents with this code 
(remember that rIt] and rbl[t] need to be active first). See In statements [195] and [197] and 
graphs that follow: 

In[195]:= circlsl = Flatten[ 

Table[ 
Table [ 
{Graphics 

[ 

( 

Disk [ 
{m . 98 rbl [0] Cos [n Pi] // N, 
m .98rbl[0]Sin[nPi] // N}, 

]), 

.035 rbl[0] ] } 
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(n, 0, 2, .25}], 

(m, 0, 1, .25} ], 

1]; 

Show[{%, Graphics[{Circle[{0, 0}, rbl[0]]}]}, 

AspectRatio ~ Automatic, 

PlotRange ~ {{-.0002, .0002}, {-.0002, .0002}}]; 

In[197]:= t = 120; 

circls2 = Flatten[ 

Table[ 

Table[ 

(Graphics 

[ 

Disk [ 

{m .98 rbl[t]Cos[nPi] // N, 

m .98 rbl [t] Sin [n Pi] // N}, .035rbl[0]] 

I}, 

(n, 0, 2, .25)], 

(m, 0, 1, .25}], 

1]; 

Show[(%, Graphics[(Circle[(0, 0}, rbl[t]]}]}, 

AspectRatio ~ Automatic, 

PlotRange ~ {{-.0002, .0002}, {-.0002, .0002}}]; 
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Between these two times we see that the cell has expanded and also that the subcells have 
moved along fixed radii to larger separation distances. Now, we can decrease the increments 
m and n by factors of ten in order to increase the number  of subcells in total by a factor of 100 
to 3200 + 1. This will fill the cell and make for a much richer visualization. Note: This may 
take a few minutes to render, depending upon the CPU speed of the computer you are using: 

Inf2OO]:=Clear[circls, t, m, n] 

circls = Flatten[ 

Table[ 

Table[ 

{Graphics [ 

Disk[{.5 m .98rbl[t] Cos[nPi] // N, 

.5m .98rbl[t] Sin[nPi] // N}, .035 rbl[0]] 
]}, 

{n, 0, 2, .025}], 
{m, 0, i, .025}], 

1]; 

cells = Table[ 
Show [ 
{circls, 
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Graphics [ 

Circle[{0, 0}, .5 rbl[t]] 

] 

}, AspectRatio ~ Automatic, 

PlotRange ~ {{-.0002, .0002}, {-.0002, .0002}}, 

PlotLabel ~ rbl[t] i04"~ = r[t]", 

DisplayFunction ~ Identity], 

{ t ,  0,.8tmax, 30} 

] 

General--spelll- Possible spelling error- new symbol 

name "cells" is similar to existing symbol "cell". 

Out[202]= f-Graphics-, -Graphics-, -Graphics-, -Graphics-, 

-Graphics-, -Graphics-, -Graphics-, -Graphics-, 
-Graphics-, -Graphics-, -Graphics-, -Graphics-, 

-Graphics-, -Graphics-, -Graphics-, -Graphics-, 

-Graphics-, -Graphics-, -Graphics-, -Graphics-, 

-Graphics-} 

Now we can choose to examine just three of the cell structures that result, for example, 1, 10, 
and 20: 

In[203] "- Show[GraphicsArray[ (cells [ [1] ], cells[ [10] ], cells[ [20] ] } ], 
DisplayFunction -~ $DisplayFunction] ; 

- r[t] 2.43107 ~ - r[t] 2.91928p : r[t] 

O 

Or we can look at all of the structures in groups of three at a time by utilizing the GraphicsArray 
command:  

In[204].= Show[GraphicsArray[Table[{cells[[n]], cells[[n + 1]], 

cells[In + 2]]}, (n, 1, 18, 3}}]]]; 
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/~- r[t] 1.47784 /~ - r[t] 1.70947/~ : r[t] 

1.87311/~ - r[t] 2.00248 /~ - r[t] 2.11075 ~ - r[t] 

[ m 

2.20454 ~ - r[t] 2. 28768 /~ - r[t] 2.36264 p - r[t] 

2.43107 /~- r[t] 2.49417/~- r[t] 2.55281/~- r[t] 
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2.60767 /~ : r[t] 2.65927/~ : r[t] 2. 70803 /~ : r [t] 

2. 75428/~ : r[t] 2. 79832 /~ - r[t] 2.84038 /~ = r[t] 

By keeping the number and area of the subcellular bodies constant we can consider these to be 
conserved during the simulation much as mass of salt would be in the real case. The outcome is 
that the "mass" is redistributed all along the interior of the cell as it expands. We have chosen to 
have the "mass" be redistributed along equiangular lines, which leads to an interesting pattern 
of distribution. In a well-mixed system the distribution would expand evenly everywhere. Yet, 
at the same time, natural systems do display remarkable patterns especially during growth 
that resemble the one we have constructed here. In fact the final outcome is reminiscent of 
the patterns that mollusks create during mineralization of their shells. One wonders  what  the 
underlying mechanisms of mass transfer must  be in such processes, which can to lead to such 
"un-mixed" results! 

6.5 Summary 
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We have covered a body of material in this chapter that deals with movement  of mass along 
gradients and between phases. We have examined the commonalities and differences between 
linear driving forces, net rates of adsorption, and permeation. Each has the common feature 
that reaction is not involved but does involve transport between apparently well-defined 
regions. We move now to chemically reactive systems in anticipation of eventually analyzing 
problems that involve mass transfer and reaction. 



Reacting Systems--Kinetics 
and Batch Reactors 

Chemical kinetics are at the heart of industrial chemistry and hence chemical engineering. In 
addition to being a fascinating subject worthy of scientific inquiry in its own right, chemical 
kinetics are the quantitative description of chemically reacting systems. The concept of rate in the 
context of a chemical reactor is the central issue in chemicals production. The mathematics 
of kinetics is crucial to such essential tasks as calculating the size and type of reactor that is 
needed to meet a defined target of production, but also for the prediction of which species, 
wanted or unwanted, will emerge from that reactor. Although the cost of the reactor is typically 
small as a percentage of the total cost of an overall production facility, the chemical events that 
occur within it dictate how much of the theoretical profit associated with a chemical reaction 
can be captured rather than being surrendered back as costs of manufacturing. 

The reason for this is simple. If the reaction chemistry is not "clean" (meaning selective), 
then the desired species must be separated from the matrix of products that are formed and 
that is costly. In fact the major cost in most chemical operations is the cost of separating the 
raw product mixture in a way that provides the desired product at requisite purity. The cost 
of this step scales with the complexity of the "un-mixing" process and the amount of energy 
that must be added to make this happen. For example, the heating and cooling costs that go 
with distillation are high and are to be minimized wherever possible. The complexity of the 
separation is a function of the number and type of species in the product stream, which is a 
direct result of what happened within the reactor. Thus the separations are costly and they 
depend upon the reaction chemistry and how it proceeds in the reactor. All of the complexity 
is summarized in the kinetics. 

297 
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Can we predict these costs beforehand? If a company is considering committing capital to 
a new project, then in order to determine if that capital investment would be a wise one, that 
is, one that would meet expected rates of return and would be superior to placing the capital 
in other investments or projects, modeling of the new process must be done to calculate the 
expected costs of production. This modeling must begin with kinetics. 

These are the chemical engineering motivations for studying kinetics. A physical chemist 
might look at these, then stand back and say there are many other reasons to study kinetics 
and molecular dynamics that are quite separate and distinct from the industrial production 
of chemical materials. In contrast to chemical engineers, chemical scientists examining kinet- 
ics or chemical dynamics are often investigating simple chemical systems that involve only 
one type of molecule. However, the processes that they are examining may be detailed and 
complex, and may, for example, take place entirely within the molecule rather than between 
molecules. Again the descriptions are made in the context of kinetics. Because of this there is 
a seamlessness in chemical kinetics from the very applied to the esoteric. 

Finally, how do thermodynamics fit in with kinetic descriptions of chemical reactions? 
Thermodynamics provides information at equilibrium. Yet many chemical reactions take 
place within chemical reactors and never reach equilibrium. Although some reactions do 
move to equilibrium quickly, many of industrial interest do not. Instead, these reactions must 
often be pushed and pushed hard with high temperature and pressure to the product side. 
Typically, a catalyst must be used to make the reaction go in economic yields, at acceptable 
costs, and within a reasonable time frame. (The catalyst is a device that is not consumed by 
the reaction but lowers the temperature required to make a reaction take place. The extent of 
reaction, however, is dictated by the equilibrium thermodynamics. The catalyst only accel- 
erates the rate to equilibrium.) As powerful as thermodynamics is, it does n o t  provide any 
information about how fast or how slow will be the rate of approach to equilibrium. The rela- 
tionship of thermodynamics to chemical process engineering is like that of having an itinerary 
for travel between two cities. This itinerary tells us how far apart each city is but provides no 
information on the terrain that lies between them. We have no way to estimate what kind of 
trip it would be, or what kind of vehicle would be best to use to make the trip. This is analogous 
to the situation we find ourselves in when we have chemical thermodynamics information 
but are completely lacking kinetics. To drive the analogy a bit further, imagine that you were 
asked if one could operate a profit-making business by moving clients between the two cities 
and all you knew was how far they were apart! 

7. I H o w  Chemica l  React ions Take Place 
We know from elementary chemistry that reactions take place when molecules collide with 
one another. We also know that reactions often take place faster at higher temperature and 
that a catalyst often improves the rate further. Enzymes are the prototypical natural catalysts 
and they work by orienting molecules along specific directions that are preferred for reaction. 
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We can say then that reactions have strong temperature and orientational dependence,  and 
that collisions alone are not enough for reaction to take place. 

We can get a quantitative sense for this by turning once again to the kinetic theory of gases 
to compute the number  of collisions that take place per unit volume and time at fixed temper- 
ature and pressure. The collision number  Zab between two molecules A and B is given as: 

Gab ~- 
(da + db) 2 /8RT Na Nb Nav 2 

4 V Jr# V 2 

---YT 
(da + db) 2 /8RT Pa Pb 

4 ~ Jr/~ (RT) 2 

= A~ OCa Cb 

where R = ideal gas constant, [ j /mol-K] 

T - absolute temperature,  [K] 
Ma Mb 

# -- - - ,  mean molecular weight 
(Ma + Mb) 

~8RT 
~ = ~ ,  mean molecular speed 

7r# 

M = molecular weight, [g/mol] 

Ac -- /r(da + db) 2, [cm2 ] 
4 

da, db = molecular diameters of A and B, [cm] 

Na, Nb = [number] 

V -  volume, [cm 3] 

N a v =  Avogadro's number, [number per tool] 

This is the product  of the molecular cross section at collision, the mean speed, and the product  
of the number  concentrations of A and B. We can compute this value for standard conditions: 

In[l].: da = 2.5 10 -8 

db = 3 10 -8 cm; 

R1 = 8.314 107 

T = 300 K; 
g 

~ = 30 
mol 

Pa = .8 atm; 

cm; 

g cm 2 

s2molK 

Pb = .2 atm; 
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cm 3 atm 
R2 = 82.05 ~ ;  

mol K 
1 

Nav= 6.02 1023 
mol 

Zab == PowerExpand [~ 

! 

(da + db)2/8RIT PaPbNav 2 

4 V ~ (R2T) 2 

~ S I ~ T  
meanspeed == 7r~ 

1.04617 x 1028 
Out [i0]- Zab 

cm 3 s 

~ cm 2 Out[ll]- meanspeed -- 46012.4 s2 

This shows that we have O (1028) collisions per cm 3 per second be tween  molecules such as 

oxygen and nitrogen in air at room temperature .  Yet we know that these do not react under  
these conditions even though oxidation of ni trogen can lead to formation of ni trogen oxides. 
Also, a rule of thumb for chemical reactions is that  every 10-degree rise in tempera ture  leads 
to a doubl ing of the rate of reaction. We can see by inspection that the rate of collisions does 
not rise in this way  with temperature .  Also, if we were to convert  Zab into moles of collisions 
per unit  vo lume per unit  time, it would  be on the order of 16,000 moles per cm 3 per second! 
Clearly, there is much  more to chemical reaction kinetics than s imply  collisions. 

From basic chemistry we know that for reaction to take place the energy of the collision 

must  be above a threshold value and the molecules mus t  be oriented properly. Reaction of 
real molecules is much  more complex than wha t  one would  expect from the collisions of hard  
spheres. Molecules have shape and reactive regions and bonds  that usual ly are broken in order 

for reaction to take place. At the beginning of the twent ieth century Arrhenius  art iculated this 
in a simple, yet elegant mathemat ica l  s ta tement  for the rate constant: 

k[T] - Ae i~ ' 

Here, A is a pre-exponential  fac tor- - the  A fac tor - - tha t  accounts for geometric  effects, while 
the tempera ture  dependence  is accounted for in the exponential.  The term Ea is the activation 
energy, the threshold that mus t  be su rmoun ted  for a collision to lead to reaction. We can rewrite 

this s ta tement  in terms of the reaction tempera ture  Trxn - F a 
- -  R " 

T r x n  
k[T] = Ae r 

2 cal then the If we take the threshold energy to be 40,000 ca l /mol ,  and given R = 1.98 ~ m-G~' 
threshold reaction tempera ture  is ~-20,000 K. At this threshold tempera ture  for reaction we can 
see that add ing  10 degrees to an initial t empera ture  will indeed double the rate constant and, 
if all else is the same, the rate of reaction. We also can see that if the threshold tempera ture  is 
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40,000 K, then a 10-degree temperature  rise will nearly quintuple the rate, whereas  at 10,000 K 

the rate is barely raised by 1.5 times its initial value: 

In[12].-T2 = T1 + I0; 

T1 = 500; 

Trxn = 20000; 
-Trxn 

kl e~-n- 
Solve[{-- == ~r= }, k2] // N 

k2 eT-n- 

We have not discussed the issue of the dimensions of the rate constant. The reason is that the 
dimensions change with the change in the rate dependence upon  concentration. Hence we 
have pos tponed consideration of dimensions until we reach that point. 

Reactions take place in a localized region of space, that is, a system defined by a control 
volume. The control volume can be real or abstract such as a cell or organelle, or a region of 
an organelle. They can be macrosized such as a reactor or abstractly macrosized as in the case 
of the reactions that take place within the nucleus of a star. We choose the control volume 
according to the dictates of the analysis that we are undertaking.  The control volume should 
be one phase or it may be abstract and treat more than one phase as if it would  behave as a 

single phase. 
We will begin with the case of the batch reactor. In this case the vessel defines the control 

volume. We will move to systems with flow in and both flow in and out. The former is the case 
of semibatch operation while the latter will be treated as the cont inuous stirred tank reactor 
(CSTR) and the plug flow reactor (PFR). All the chemical kinetics that we will need can be 

introduced within the context of these four different kinds of reactors. 

7.2 No-Flow/Batch System 
We know from the conservation of mass that when  we run a reaction in a batch reactor the 
mass of products  must  be equal to the mass of reactants so long as nothing has escaped 
from the reactor. This holds absolutely and is independent  of the chemical reaction type, 
mechanism, or stoichiometry. All that chemical reactions do is to rearrange the atoms and 
mass in the molecules. In essence the labels on the mass change but that is all. If the reaction in 
solution leads to a gas such as the reaction of baking soda with vinegar water  (that is, sodium 
bicarbonate with dilute acetic acid), then a mass change can take place because one of the 

products  is a gas and can escape the vessel: 

Na2CO3 + 2CH3COOH --~ 2Na(CH3COO) + CO2 1" q- H 2 0  

On the other hand,  if a provision is made  to trap the carbon dioxide, say, with a balloon placed 
over the mou th  of the vessel, then the mass of sodium acetate, water, and carbon dioxide will 
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be equal to that of the original sodium carbonate and acetic acid. This is the consequence of 
the conservation of mass and nothing more. 

What is the proper expression for a batch reactor? We know that the total mass balance will 
be equal to zero based on the conservation of mass and the assumption that nothing escapes 
the vessel. This means that the net accumulation will be zero: 

dpV 
= 0  

dt 

If the net accumulation is zero for the overall mass in the vessel, then what  can we say about 
the component  balances? We know that the reaction proceeds forward to completion and in so 
doing the concentrations of the species change with time. Therefore even though the overall 
mass does not change, the mass of any given species or component  does change and this is 
what  we measure. Consider the reaction: 

A+B---~ D + E  

This is simple stoichiometrically and we can assume that it is irreversible, which means that 
reaction proceeds to the right-hand side completely and that product D does not return to A 
and B. The component mass balances become: 

d C a V  d C b V  
= -- - raY = --rbV 

dt dt 

d Cd V d Ce V 
= = r d V  = r e V  

dt dt 
r a  ---= r b  = - - r d  - -  - - r e  - -  r 

The reactants are considered to be decreasing in concentration, and the products are increasing 
in concentration. Thus, the rates of the reactants are taken to be negative and the product  rate 
is positive. The important point is that the rates are oppositely signed as is shown by the last 
expression. If the reaction does not produce a change in volume, then the control volume does 
not change, and the volume term is a constant that can be cancelled across all the equations: 

dCa  d Cb 

dt dt 

d Cd d Ce 

- = - r  

dt dt 
~ r  

The next step is to find kinetics for the rate of reaction that can be used as a constitutive 
relationship to replace the rate r on the right-hand side. When we say that we look for a 
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constitutive relationship for the kinetics to replace the r ight-hand side, we are seeking to 

make the equation autonomous. This means that we are seeking a function for the RHS that is 

explicit in the concentration of one or more of the components .  

7.3 Simple Irreversible React ions--Zeroth 
to Nth Order  

First-Order Kinetics 
The simplest case to consider by far is that of first-order or linear kinetics in a constant volume 

batch reactor. If the rate of reaction is directly proport ional  to the rate of the reaction, then we 

call this the first order in the concentration of reactant, and the r ight-hand side becomes: 

r = k C a  

d Ca 

dt 
= - k C a  

Ca(t) = Cao e - k t  

This is an expression for the rate of decay of the concentration of species A. (It should remind 

us of the expression we derived for the change in level of the draining tank for which we 

used a linear constitutive relationship between level and rate of flow.) The dimensions of k 
in this case are reciprocal time, that is, sec -1 or min  -1 etc. The reason for this is that the rate 
of reaction is given in dimensions of mo~es Therefore to be dimensional ly consistent the 

v o l u m e  t ime" 

first-order rate constant must  be in dimensions of inverse time. 
As the stoichiometry for the rate of reaction of component  B is the same we can show that: 

d Ca d Cb 

dt dt 

Ca - Cao = Cb - Cbo 

Cb(t) = Ca(t) - (Cao + Cbo) 

From which we find: 

Cb(t) = C a o e  - k t  - Cao + Cbo 

= Cao[e - k t -  1] q-Cbo 
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In a similar fashion we find that the rate of appearance of component  D is: 

d Ca d Cd 

dt dt 

Ca - Cao - - ( C d  - Cdo) 

Cd(t) - (Cao + Cdo) - Ca(t) 

= (Cao + Cdo) - C a o e  -kt 

= Cao[1 - @ - k t ]  _}_ Cdo 

The change in concentration of component  E at any time would  follow the same form with  

the substi tution of Ceo for Cdo. 

We can now plot these concentration functions so that we can see how a reaction system 

of this kind would  behave in time. To do this we will assume that the concentrations of the 

products  are both zero at time zero and that the initial concentrations of the two reactants are 

both equal. Also, in order to make the behavior  general, we will plot the change in the ratio of 
the concentrations of the reactants to an initial concentration of one of the reactants Cao. We can 

go one step further and normalize the time coordinate with the "inverse reaction time." What  

is that in this case? Well, for a first-order reaction rate constant, its dimension is the reciprocal 
of time, that is, inverse time. Thus, in essence for the first-order case, the rate constant is the 

inverse of the characteristic time for the chemical reaction. Therefore if we mult iply the rate 

constant k by real time t the result is dimensionless time, which we shall refer to as v. In fact 

we already had this result in hand. Look back at the expression for the change in concentration 

of A with time. We notice that the RHS has an exponential  term, the a rgument  of which is the 
product  k t. Because the exponential  is a transcendental  function, such as sine, cosine, etc., the 

a rgument  must  be a pure number  that is dimensionless. Thus the solution of the differential 

equation that leads to this result naturally generates the dimensionless time 7" simply as an 

outcome of the solution procedure. 

Therefore, what  we plan to plot will be Ca(T)/Cao, Cb(r ) /Cao,  Cd(r ) /Cdo,  and Ce(T)/Ceo 
against the dimensionless time 7". We can use Mathematica to do this, the beauty of which 

is that we can let the product  kt = v vary as natural  numbers  wi thout  actually assigning a 

specific value to k, and for the same reason the concentrations will vary as natural  numbers  

between zero and unity. To emphasize the nondimensional  nature of the concentrations, we 

can introduce a new variable, namely, the Greek letter ,I, for dimensionless concentrations. 

When the initial concentration of B is divided by that of A, we will call this ,I, bo, and likewise 
for the other two species. The new expressions in dimensionless form will be" 

r  = e -r 

�9 b - [e -r - 11 4- ~bo  

�9 d = [ 1 - e  - ~ ] - ~ d o  

�9 e = [ I  - e - ~ ]  - ~ e o  
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As the initial concentrations of the products  D and E are taken to be zero, the corresponding 
dimensionless initial concentrations are also zero. Also, we can see that ~ d  = ~e.  Thus we 

will examine only @d, and if ~ b o  - 1, then ~ a  -- ~ b  and we need only consider ~a: 

In[12] : -  SetOptions[{Plot, ListPlot}, 

AxesStyle ~ {Thickness[0.01]}, 

PlotStyle ~ {PointSize[0.015], Thickness[0.006]}, 

DefaultFont ~ {"Helvetica", 17}] ; 

In[13]:= firstordpll = Plot[ 

{N[Exp[-r] ], N[(I - Exp[-r])] }, {r, 0, i0}, 

AxesLabel ~ {"r","~a,~d"}, 

PlotStyle ~ {{Thickness[.01], Dashing[{0, 0}] }, 

{Thickness[.01], GrayLevel[0.5] }}] ; 

11 

0.8 

0.6 

0.4 

0.2 

2 4 6 8 10 
T 

The plots show what  we would  expect, that is, the concentration of A diminishes exponential ly 

along with B while the concentrations of D and E grow exponentially to their final value, which 
is the same as that of the initial concentrations of A and B. 

What  wou ld  be the result if the concentration of B were initially twice that of A? We can 
find this result by setting ~ b o  = 2 and plotting the results as we did before: 

In[14] := firstordpl2 = Plot[{ 

N[Exp[-r]], N[Exp[-r] - 1 + 2], N[(I - Exp[-r])]}, 

{T, 0, 10}, 

AxesLabel ~ {"r", "~a,~b,~d"}, 
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PlotStyle ~ {{Thickness[0.01], Dashing[{0, 0}]}, 
{Thickness[0.01], Dashing[ {0.025, 0.025}]}, 
{Thickness[0.01], GrayLevel[0.6]}}]; 
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Now we note that the Y-axis for dimensionless concentration varies from 0 to 2, and the concen- 
tration of B drops from an initial value of 2 to a final value of 1. This indicates that only half of 
the original concentration of B would be used to produce C and D, even though all of A would 
have been consumed. In this case we see that component  A is the "limiting reagent." If we were 
to make the concentration of B initially 100 times that of A, we would find that the concentra- 
tion of B would move from 100 to 99, and would be virtually "unchanged" in the process. 

Under such conditions, unless our measurements  on the concentration of B were very 
accurate, that is, accurate enough to pick up a change this small, ~1% in concentration, we 
might find that the variation in B would be undetectable, which is smaller than our exper- 
imental error. If this were to happen,  then we would think that the rate of reaction did not 
depend upon the concentration of component  B, and in fact under  conditions such as these, 
that would be a good working conclusion. However, it must  strike us as odd that if B is not 
present, then the reaction to C and D from A will not take place, and yet we find little rate 
dependence on B. 

Perhaps this is what  happened when the data were analyzed for this reaction and that is 
why the kinetics we have used are first order in A and "zero order" in B, that is, independent  
of B. Maybe this reaction rate only appears to be first order in A at the conditions under  which 
the experiment was run, when in fact it is really first order in A and in B. If this should prove 
to be the case, then the first-order rate expression for the reaction of A and B to give D and 
E is actually pseudo-first order, rather than true first order. A pseudo-first-order reaction may 
really be second order when we analyze the data and plan the experiments more carefully. 
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In other words,  the second-order  rate expression, which  is first order in A and B, may  appear  

to be first order in A only if the experiments were done wi th  a large excess of B present  and its 
change in concentration went  undetected! Let us see how this works  out in the next section, 

by considering second-order  kinetics for the same reaction. 

Second-Order Kinetics Overall 
For the reaction of A and B to produce  C and D, it is more likely that the kinetics wou ld  be 

second order overall, wi th  first order in the concentration of both A and B rather than just 

first order in A. If this were the case, then the solution wou ld  be different than that which we 

found in the foregoing and wou ld  be derived as follows: 

r = k C a C b  
d Ca 

= - k C a  Cb 
dt 

This cannot be solved as written; we need an expression for Cb in terms of Ca in order  to 

substitute and do the integration. This can be obtained by going back to the stoichiometric 

statement: 

d Ca d Cb 

d t -  dt 

Ca - Cao = Cb - Cbo 

Cb = Ca - Cao + Cbo 

Cb = C a -  ( C a o -  Cbo) 

Now, we can substitute this expression for Cb in terms of Ca into the differential equation 

describing the change in Ca, make it au tonomous ,  and derive an expression for the time 

dependence of Ca: 

d C a  

dt 
= - k  Ca Cb 

= - k  Ca[Ca - (Cao - Cbo)] 

= - k  Ca 2 4- k Ca(Cao - Cbo) 

= - k  [Ca 2 - Ca(Cao - Cbo)] 

Using Mathematica we have two pr imary  choices on how to proceed with the solution to this 

equa t ion - -we  can rearrange it into its separable components  and then integrate both sides of 

the equation or we can solve it directly; we will do the latter. 

In[15].- DSolve[{Ca" [t] == -kCa[t] 2 + kCa[t] (Cao - Cbo), 

Ca[O] == Cao}, Ca[t], t] 
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Out [15]- {{Ca[t] -, 
Cao (Cao - Cbo) @Cao kt 

Cao @Caokt _ Cbo @Cbo kt 
}} 

This solution is one that we wou ld  like to explore as we did wi th  the previous solution for 

the first-order rate equation. We could at this point  convert  the solution for Ca into one that 

is "nondimensional ized,"  but  as it stands we might  make errors in doing so. In fact it wou ld  

be easier to have "nondimensional ized"  the equation to be solved in the first place. Therefore, 
instead of working  on the solution, we will rework  the differential equation and resolve it: 

d Ca 

dt 
= - k  Ca 2 q- k Ca(Cao - Cbo) 

First, we will let @a = C a / C a o  and ~ b  = C b / C a o  once again. In this case we can mult iply  

through on both sides of the equation by Cao /Cao .  In the case of the first term on the RHS, 

we will mult iply  by Cao2/Cao 2. This yields: 

Cao 
d ~ a  

dt 
= - k  Cao 2 ~a  2 + k Cao ~a(Cao - Cbo) 

If we divide each side by the residual Cao on the LHS, then we find: 

d ~ a  

dt 
= - k  Cao ~a  2 + k ~a(Cao - Cbo) 

What about  the rate constant that appears in both terms of the equation? Can we clear this 

as well? We can because we have already said that kt = ~-, for the first-order case and so this 

meant  that k d t - - d ( k t ) - - d r .  But what  about in this case, with second-order  kinetics? Can 

we still do this? To unders tand  what  is happening,  we need to be very mindful  of what  the 

dimensions are for each term. If we were to simply divide by k, and make the substi tution 

with tiT, we would  have: 

d ~ a  

d r  
= - C a o  ~a  2 + ~a(Cao - Cbo) 

Look carefully at this equation because it is misleading. Our  goal was to nondimensional ize  

it. Therefore we expect the accumulat ion term, that is, the LHS, to be dimensionless. But how 

can it be? The RHS clearly is not dimensionless,  and it has units of concentration! This is the 
key to seeing where we went  wrong; our error was in assuming that the rate constant k for 

this second-order rate expression had the same units as those used for the first-order system. 
It does not. The dimensions for this second-order rate are vol/mol/tim; in other words, inverse time and 
inverse concentration. Why? Because the accumulat ion term on the LHS must  have the same 

dimensions of m o l / v o l u m e / t i m e  regardless of the order or complexity of the rate expression 
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on the RHS. Therefore the units of the rate constant  will a lways  be dictated by the form of the 
rate expression and the need for proper  d imensions  on the LHS. 

Recalling the steps we took to nondimensional ize ,  we see that  the error we made  came 
about  when  we expressed the dimensionless  t ime variable. Instead of kt  = T, for the second- 
order case we have found that  kCao t = T. We can group the rate constant  and the initial 
concentration of A parenthetical ly to give: 

k Cao t = r 

(k Cao) t = r 

k ' t  = r 

The product  of k and Cao has units of inverse time, the same as the first-order rate constant. 
Thus, we can identify the product  (k Cao) as the new rate constant  k' and this is now a 
pseudo-first-order rate constant. Of course the choice of Cao was arbitrary; if we had chosen to 
nondimensional ize  in terms of Cbo, then k' wou ld  still be pseudo-first  order, but  it would  be 
the product  of Cbo and k. We can immedia te ly  see that if we had run a kinetics exper iment  
with B in such great excess over A, its concentrat ion change would  have been undetectable,  
and we would  observe first-order kinetics rather than second-order  overall kinetics. 

Let us return to the nondimensional iza t ion  of the equation. Before we replaced t ime t 
inconsistently with  the true dimension of the second-order  k, we had the following form of 
the equation: 

C a o  
d ~ a  

dt 
= - k  Cao 2 ~a  2 + k Cao ~a(Cao - Cbo) 

By dividing both sides of this equation by (k Ca02), we get the result that we were seeking, 
which is proper ly  dimensionless  on both sides: 

d@a ___ - - ~ a  2 if- ~a~Cao/ Cbo) i 

k Cao dt Cao 

The last step we take is to recognize that (k Cao dr) is the same as d r ,  render ing the equation 
a s "  

d ~ a  = - ~ a  2 + ~a~,Ca o t  Cbo) 

dr  Cao 

Following the procedure taken in the latter half of the last section, we can now exper iment  
with the behavior  of this equat ion by solving it and plott ing the dimensionless  results. To do 
so let M replace the ratio of initial concentrations: 
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In [i 6] : = DSolve [ { ~a " [Y] == -~a [Y] 2 

@a [T], r] 

e Mr M(1)a o 
Out [i 6] = { { (~)a [ T ] --> } } 

M- (1)aO q- e Mr (1)aO 

+ M~a [q'] �9 ~a [ 0 ] == ~aO } �9 

Thus, we  find that: 

4~a[r] --+ 
eMrM~a0 

M -  ~a0 + eMr (I)a0 

This can be plot ted to de te rmine  h o w  the d imensionless  concentra t ion of A changes wi th  time. 
We k n o w  that  the concentrat ion change for B will follow that  of A based on the stoichiometry. 

The change in concentrat ion of the p roduc t s  D and  E will also track each other; thus we  need 

only solve for one. To solve for the change in the dimensionless  concentra t ion of D, we  recall 

that: 

d Ca d Cd 

dt  dt 

Ca - Cao = Cdo - Cd 

.. Cd (t) - Cdo  - Ca (t) + Cao 

If we divide every term by Cao to render  this expression dimensionless ,  we  find: 

~d( r )  -- (1)d0 - -  ~a(r )  q- 1 

Taking the initial concentrat ion of D as zero and  replacing for ,I,a(T) we  have: 

( 1 ) d ( T )  - -  1 -  
eMrM~ao 

M - (I)a0 q- e Mr (1)a0 

These two equat ions can now be plot ted as shown  in the fol lowing graph  to de te rmine  their 
behavior  after we assign initial values to ,I, ao, Cao, Cbo and to M. The s implest  case is that  of 

,I, ao = 1, and  2Cao = Cbo making  M = - 1" 

In[17] "- ~a0 -- I; 

M = -I; 

secordpll = Plot[{N[ 
e Mr M~a0 

M- ~a0 + eMZ~a0 
�9 

N[I - 
e Mz M~a0 

M - ~aO + e Mr~aO 
] } ,  {T, O, i 0 } ,  

AxesLabel ~ ("r", "~}a, ~d"}, 
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PlotStyle -~ { {Thickness [. 01], Dashing [ { 0, 0 } ] }, 

{Thickness[.01], GrayLevel[0.5]}}] ; 
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What  happens  if Cbo is equal to Cao? Then we find that M = 0, and any of the second-order 

solutions that we have just derived become zero, or, in other words,  meaningless! Why? The 

reason is that when  we solved these equations either in regular or dimensionless form, we 

implicitly assumed that Cao # Cbo. If they are equal, then the equation changes and we obtain: 

d C a  

dt 
- - k  Ca Cb 

- - k  Ca 2 + k Ca(Cao - Cbo) 

- - k  Ca 2 

or in dimensionless form: 

d ~ a  _ - -~a  2 + ~a~CaoC Cbo) 
d r  Cao 

d ~ a  
= --(1)a 2 

dr  

Working with  the dimensionless form we have: 

In[20] "= q~o =. 

DSolve [ { CI'a' [ r ] == -CI'a [ 7" ] ̂  2, (I) a [ 0 ] -'-- (I)a0 } w (I)a [ "7" ] w q" ] 
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Out [21]- { {(1) a [%'] --> 
4>sO 

1 + r(1)aO 
}} 

By the same stoichiometric relationship be tween  D and A, but  using this new solution for 
dimensionless  A concentrat ion we find: 

(I)d(r) = (DdO -- (I)a(T) q- 1 

~aO 
" - -  q)dO - -  

1 + rq>a0 
+ 1  

Using the same procedure  as we used before we can solve for and plot the new solution subject 
to the condition that  C a o -  Cbo and we obtain: 

In [22].- ~a0 = I; 

~a0 = 0; 

secordpl2 = Plot[ 

~a0 ~a0 
{N[ ], N[~d0- 

1 + T~a0 i + T~a0 
+ 1 ] } ,  {"r,  O, 1 0 } ,  

AxesLabel ~ {"r", "~a, ~d"}, 

PlotStyle ~ {{Thickness[.01], Dashing[ {0.05, 0.025}] }, 

{Thickness[.01], Dashing[{0.05, 0.025}], 

GrayLevel [0.5] } } ] ; 
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This set of two solutions can be compared  to the set of two solutions that we obtained earlier 
with Cao # Cbo. 
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In[25].- Show[secordpll, secordpl2, 

PlotLabel ~ "Dashing for Cao=Cbo"] ; 

~a,~d 
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The results show that the solutions obtained w h e n  Cao :/: Cbo are sharper  and more  steeply 

rising and falling than the cor responding  solutions w h e n  Cao = Cbo. 
Given the form of the rate expression wi th  k Ca 2, it is na tura l  to w o n d e r  if it un ique ly  

applies to the si tuat ion we just analyzed.  The answer  is that  it does not. The solut ion we  

der ived for the case of A reacting wi th  B and wi th  equal  initial concentrat ions to p roduce  D 

and E is also a descr ipt ion of the similar case in which  A reacts wi th  itself to give D: 

A - - ~ D  

If this reaction happens  to follow second-order  kinetics and for every mole of A reacted we 

get one mole of D, then the resul tant  analysis will lead to the same result  we have just seen: 

d Ca d Cd 

dt dt 

Ca - Cao = Cdo - Cd 

Cd = Cdo + Cao - Ca 

d C a  

dt 
= - k C a  2 

Ca[t] = 
Cao 

1 4- C a o k t  
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and 
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t 1 ) Cd[t] = Cdo + Cao 1 - 1  + Cao k t 

These are just the same expressions we had already obtained for the second-order case in 
which two different species were involved, and they had the same initial concentrations. 

N th Order 
The order of a reaction may not be as simple as first or second order. We often find nonintegral  
order in what  is called "power- law" kinetics. This typically indicates that the "reaction" rate 
we have measured is not for a single reaction, which is one elementary step, but  for several 
elementary steps taking place simultaneously, the sum of which is the overall reaction that we 
observe. Normally, we refer to rate expressions such as these as global rates or kinetics (global 
in the sense of overall or measurable as opposed to intrinsic or fundamental rates and kinetics). 
Consider the reaction of A to B: 

A - - , B  

rA- -- kC~ 

dCA 
= -kC  

dt 

dCB 
= + k C ~  

dt 

When we nondimensionalize,  these become: 

d~A 

aT 

d~B 

dr  

= - ~  

= + ~  

Solving for the concentrations of A and B we find: 

In [26] .- Remove [Ca, ca, solnord] 

In[27]:= solnordA = Simplify[ 

DSo ive [ 

{Ca' [t] == -k Ca[t] n, Ca[0] == Cao}, 

{Ca[t]}, t] 
] 

ca[t_] := solnordA[[l, 2]] 
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solnordB = Simplify[ 

DSo ive [ 
{Cb' [t] == +kca[t] n, Cb[0] == Cbo}, 

{Cb[t]}, t] 

] 

cb[t__] := solnordB[[l, 2]] 

Solve--ifun �9 Inverse functions are being used by Solve, 

so some solutions may not be found. 

Solve: :ifun : Inverse functions are being used by Solve, 

so some solutions may not be found. 

1 
Out[27]= {Ca[t] -~ ((__)-1+n + k(-i + n)t) ~-n} 

Cao 

General: :spelll : Possible spelling error: new symbol 

name "solnordB" is similar to existing symbol 

"solnordA" . 

1 2 
Out[29]- {{Cb[t] -~ Cbo- k(-i + n)t(((--) -~+n + k(-i + n)t)TTr~) n 

Cao 

1 1 1 + (__)-1§ _ (((__)-1+n 
Cao Cao Cao 

1 

+ k(-i + n) t) Tq'~ ) n) }} 

In[31] := Clear["Global'*"] 

In[32] := nda = DSolve[ {~}a' [r] == -~a[y] n, ~a[0] == ~}ao}, 

�9 a[z], T] 

�9 A[T__] := nda[[l]] [[2]] 

@A[r] 

ndb = Simplify[ 

DSo ive [ 
{~b' [Y] == ~A[T] n, ~b[0] == 0}, ~b[y], T] 

] 

@B[r__] := ndb[ [1, 1, 2] ] 

�9 B [7"3 

General: :spelll : Possible spelling error: new symbol 

name "~a" is similar to existing symbol "~". 

General--spelll : Possible spelling error: new symbol 

name "~)ao" is similar to existing symbol "~)a". 

Solve--ifun �9 Inverse functions are being used by Solve, 

so some solutions may not be found. 
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Solve--ifun �9 Inverse functions are being used by Solve, 

so some solutions may not be found. 

Out [32]= {@a[r] -~ (-r + nr - 

( 1 -l+n 1 -l+n 
~T6ao ) n( ) 

Jr ) -n } 
-i + n -i + n 

General--spell �9 Possible spelling error- new symbol 

name "@A" is similar to existing symbols {@, @a}. 

Out[34]- (-r + nr- 

( i -l+n i -l+n 
%-s o ) n( ) 

+ ) n 
-i + n -i + n 

General--spell - Possible spelling error- new symbol 

name "@b" is similar to existing symbols {@, @a}. 

1 
Out [35]- {{@b[r] -~ -(-I + n)r ( ((-i + n)r + ( 

~)ao 

1 i 
+ (-(( (-I + n)r + ( )-]+n) ~7-~,,)r, 

@ao 

1 1 
+ ( ( ( @ a o ) - ~ + r ' ) ~ ) , ' )  ( @ a O ) - ] + " }  } 

)-l+n) i-~ ) n 

General--spell �9 Possible spelling error- new symbol 

name "~B" is similar to existing symbols {~, ~A, ~b}. 

1 
Out[37]- -(-i + n)r ( ( (-i + n)r + ( 

~ao 

) - l + n ) ~ ) ~ ,  

+ (-(((-i + n)~ + ( 
~ao 

) - l+n )  -~,, ) ~ 

+ ( ( ( r  T-~")n) ( (::[:)a -)-o l+n 

In[38] :: SetOptions[{Plot, ListPlot}, 

AxesStyle ~ {Thickness[0.01] }, 

PlotStyle ~ {PointSize[0.015], Thickness[0.006]}, 

DefaultFont ~ {"Helvetica", 17}] ; 

In[39]:= n = 3.3; 

�9 ao = I; 

Plot[{~A[r], ~B[T]}, {r, 0, i0}, 

AxesLabel ~ {"r", "~a, ~d"}, 

PlotStyle ~ { 

{Thickness[0.01], GrayLevel[0]}, 

{Thickness [0.01], GrayLevel[0.6] }}, 

PlotLabel ~ n "order"] ; 
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Chemical reactions do not move in the forward direction only but  in either direction and come 

to a "resting" point  of concentrations known  as the position of chemical equilibrium. Our  goal 

in this section is to unders tand  how we analyze such a common  situation and at the same 

time to discover the interrelationships between kinetics and thermodynamics  as they apply 

to chemical systems. 
Take as a starting point the simplest most, reversible reaction: 

A = B  

This is "simple" because the stoichiometry is one mole of reactant goes to one mole of product ,  

and because the conversion of A to B follows first-order kinetics, as does the conversion of B 

back to A. Thus, when  we assemble the two-component  mass balance equations in a constant 

volume batch reactor, we find: 

d Ca 

dt 

d Cb 

dt 

= --ra q- rb 

= ra -- rb 
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These expressions reflect the fact that the overall rate of "accumulation" of either species will 
be the difference between their rates of formation and depletion, that is, the net rate. If we  take 
both r, and rb as first order in Ca and Cb, respectively, then we have: 

d Ca 

dt 
dCb 

dt 

= -kaCa + kbCb 

--  k a C a -  k b C b  

These two equations can be solved simultaneously to give Ca[t] and Cb[t] for any arbitrary 
initial concentrations of A and B. 

The following set of commands shows us the variable names used to this point in the 
notebook and that they are indeed removed by the Remove command. 

In [42]'- Names ["Global'*"] 

Remove [ "Global ' *" ] 

Names [ "Global ' *" ] 

Out[42]= {a, a0, atm, ca, Ca, Cao, cb, Cb, Cbo, cm, dO, da, db, 

firstordpll, firstordpl2, g, k, M, meanspeed, sol, n, 

Nav, nda, ndb, Pa, Pb, RI, R2, s, secordpll, secordpl2, 

solnordA, solnordB, t, T, Zab, ~, r, ~, <~a, ~A, ~ao, 

�9 b, ~B, Sl, $2, $3, $4, $5} 

Out [44]: {} 

Now we set up the solution of the rate equations that express the reversible chemical 
process: 

In[45] := reversoll = Simplify[DSolve[ 

{Ca' [t] == -kaCa[t] + kbCb[t], 

Cb' [t] == +kaCa[t] - kbCb[t], 

Ca[0] == Cao, Cb[0] == Cbo}, 

{Ca[t], Cb[t]}, t]] ; 

~a[t_] 

�9 b [t__ ] 

: = reversoll [ [ I, i, 2 ] ]/Cao 

: = reversoll [ [ i, 2, 2 ] ]/Cao 

~a[t] 

~b[t] 

Out [48] = 

General--spelll �9 Possible spelling error- new symbol 

name "~)b" is similar to existing symbol "~a". 

Cbo ( 1 - e- (ks+kS) t ) kb + Cao (e- (ks+kS) tka + kb) 

Cao(ka + kS) 
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Cao(ka - e-(ka+kb)tka) + Cbo(ka + e-(ka+kb)tkb) 

Out[49]- Cao(ka + kb) 

We could have nondimens ional ized  these equat ions completely, as we have done for other 
cases, but  then we would  lose the individual  contributions of ka  and kb. Instead we have 

referenced to the initial concentrat ion of A, but  we have retained the real t ime t. 

In[50] := SetOptions[{Plot, ListPlot), 

AxesStyle ~ {Thickness [ 0.01] }, 

PlotStyle ~ {PointSize[0.015], Thickness[0.006] }, 

DefaultFont ~ {"Helvetica", 17}] ; 

In[51]'- ka = I.; 

kb = I.; 

Cao = 1. ; 

Cbo = 0. ; 

Plot[{N[~a[t]], N[~b[t]]}, {t, 0, 5}, 

PlotRange ~ All, 

AxesLabel ~ {"t", "~a, ~d"}, 

PlotStyle ~ {{Thickness[0.01], Dashing[{0, 0}] }, 

{Thickness[0.01], GrayLevel[0.5] }}, 

PlotLabel ~ {ka "= ka", kb "= kb", Cao "= Cao", 

Cbo "= Cbo"}]; 

,~a,~d {1 . -  ka, 
11, 

1 . -  kb, 1 . -  Cao, O. -  Cbo} 

0.8 

0.6 

0.4 

0.2 

1 2 3 4 5 
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What  we observe is that  the concentrations of A and B move  to a value of 0.5 by t = 3 and then 
they remain unchanged.  This is the equilibrium point for the parameters  that  we set. Could  we 
have calculated this before solving the differential equat ions explicitly? The answer  is yes. The 
reason is that  at equi l ibr ium the rates of the forward and reverse reaction are equal,  which is 
why  the sys tem appears  unchanging.  Given that  this is the case, we can reason that  the accu- 
mula t ion  terms (that is, the differentials on the LHS) are zero-valued because their a rguments  
are no longer t ime-dependent .  Thus, after fully nondimensional iz ing,  we can see that: 

d ~a  kb 
= - -~a  4- 

d r  (ka 4- kb) 

d ~ a  

d r  eq 

(1 + ~bo) 

- 0  

kb 
.'. ~a[eq -- (ka 4- kb) 

- -  (1 + ~bo) 

Because we chose ka = kb and ,I, bo = 0, we find that: 

~a]eq -- 0.5 

We can also note that the kinetics relate directly to the the rmodynamics  (equilibrium) in this 
manner:  

kb 
0 = - ~ a  + (1 + ~bo) 

(k,~ 4- kb) 

0 - - ~ a  (ka + kb) 4- kb(1 4- ~bo) 

0 - - ~ a  ka - 4)a kb + kb(1 4- ~bo) 

0 = - ~ a  ka + kb(1 4- ~bo  - ~a) 

But we have already shown that: 

�9 b -  1 + ~ b o -  ~ a  

.'. 0 = - - ~ a  ka + ~ b  kb 

�9 b ka 
-'- "- Keq 

~a  kb 

This wel l -known result provides the kinetics definition of chemical equi l ibr ium and relates 

the rate constant from thermodynamics  to the ratio of the forward and reverse rate constants. 
The case that we have analyzed is the s implest  and one more example of mixed order 

is wor th  s tudying in the same way. Let us take as an example  the case of one molecule 

dividing into two different molecules. Examples a b o u n d - - P C l s  reacts to give PC13 and C12, 

e thylbenzene (C6Hs CH2 CH3) reacts to give styrene (C6Hs CH --CH2) and d ihydrogen  (H2). 
We can generalize this type of reaction to: 

A - - B + D  
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For this case we  will  a s sume  that  in the direct ion f rom A to B and  D the rate is first order  in A 

and  in the opposi te  direction we  will  take it as second order  overall ,  first order  in B and  D each. 

rA -- kACA 

rB -- rD = kBCBCD 

These are const i tut ive kinetics that  we  need  to comple te  the mode l  for this type  of react ion 

taking place in a constant  v o l u m e  batch reactor. The c o m p o n e n t  equat ions  are: 

dCA 

dt 

dCB 

dt  

dCD 

dt  

= --kACA + kBCBCD 

= kACA -- kBCBCD 

-- kACA -- kBCBCD 

If we  try to solve the three s imul taneous  equat ions  in their  initial form, an error message  is 

the result  we  get back: 

In{56]'-Remove[Ca, Cb, Cd, ka, kb] 

In[57] := DSolve[ 

{Ca" [t] == -kaCa[t] + kbCb[t] Cd[t], 

Cb' [t] == +kaCa[t] - kbCb[t] Cd[t], 

Cd' [t] == +kaCa[t] - kbCb[t] Cd[t], 

Ca[0] == Cao, Cb[0] == Cbo, Cd[0] == Cdo}, 

{Ca[t], Cb[t], Cd[t]}, t] 

Solve--tdep �9 The equations appear to involve the 

variables to be solved for in an essentially 

non-algebraic way. 

DSolve--dsing �9 Unable to fit initial/boundary 

conditions {Ca[O] =- i, Cb[O] -- O, Cd[O] -- Cdo}. 

Out [57]- {} 

If, however ,  we  can say that  the initial concentra t ions  of B and  D are equal,  then we  can 

reexpress Cd in te rms of Cb as they are equal. Now, we  can solve analyt ical ly as follows: 

In [ 58 ] �9 - Names [ "Global �9 *" ] 

Remove [ "Global �9 *" ] 

Names [ "Global �9 *" ] 

Out[58]- {Ca, Cao, Cb, Cbo, Cd, Cdo, ka, kb, reversoll, t, ~a, (~b} 
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Out[60]- {} 

In[61]'- reversol2 = Simplify[DSolve[{Ca' [t] == -kaCa[t] 

+ kbCb[t] 2, Cb'[t] == +kaCa[t] - kbCb[t] 2, 

Ca[0] == Cao, Cb[0] == Cbo}, {Ca[t], Cb[t]}, t]] ; 

Out [63]: 

Out [65]- 

ca[t__] := reversol2[[2, 2]] 

ca[t] 

cb[t__] := reversol2[[4, 2] ] 

cb[t] 

Simplify [~t (ca [t] ) == -kaca[t] + kbcb[t] 2] 

Simplify[~t(cb[t]) == +ka ca[t] - kbcb[t] 2] 

Solve--ifun - Inverse functions are being used by 

Solve, so some solutions may not be found. 

1 
(ka + 2 (Cao + Cbo)kb + ~-ka(ka + 4(Cao + Cbo)kb) 

2kb 

1 ................... 
Tan[~ika(ka + 4(Cao + Cbo)kb)t 

( k a  + 2('bo k b )  ' 
~ / 4 C a o  k a  - 4 C b o  2 k b  k b ( - C o o  k ~ + C t ) o :  kb) 

+ ArcTan [ ]]) 
2 4 C a o  + 4 C b o  + k~ 

(ka + ~-ka(ka + 4(Cao + Cbo)kb) 
2kb 

Tan[~-ka(ka + 4(Cao + Cbo)kb)t 

~ (ka + 2Cbo kb):" 
~4Cao ka - 4Cbo 2 k kb(-Caok~+Cbo' kb) 

+ ArcTan [ ]]) 
4 ........... ka 2Vf~ Cao + 4Cbo + k~-q 

Out[66]- True 

Out [67]- True 

In[68].= Simplify[ca[t]] 

Simplify [cb [t] ] 

1 
Out[68]= ~(ka + 2 (Cao + Cbo)kb + ~-ka(ka + 4(Cao + Cbo)kb) 

1 
Tan[~-ka(ka + 4(Cao + Cbo)kb)t 

..... (ka + 2Cb0 kb) -~! 
~4Cao ka - 4Cbo 2 kb kbi--~ao ks +C~ kb) 

+ ArcTan [ ]]) 
~/~~ ks 

2 4 C a o  + 4 C b o  + k--g 
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Out [69] : 
1 

(ka + ~/-ka(ka + 4(Cao + Cbo)kb) 
2kb 

1 
Tan[[~/-ka(ka + 4(Cao + Cbo)kb)t 

( ka + 2Cbo kb) 2 
~4Cao ka - 4Cbo 2 kb kb(-Cao ka + Cbo 2 kb) 

+ ArcTan [ 
2 4 C a o  + 4 C b o  + k-g 

] ]  

These solutions are still somewhat  cumbersome and we have already constrained them to 
equal initial concentrations of A and B. Let us relax this constraint and solve in nondimensional  
form. We can express the concentrations of B and D in terms of the concentration of A through 
the stoichiometric relationships: 

d CA d C. d CD 
dt dt dt 

CA - - C A o  - -  CBo --  CB - -  CDo --  CD 

CB = CAo + CBo -- CA 

CD - -  CAo -}- CDo --  CA 

Rewriting we have" 

dCA 
dt 

d C .  

dt 

- -  - - k A C A  -}- kB(CAo -t- CBo --  C A ) ( C A o  -}- CDo -- C A )  

= k A C A  --  kB(CAo -}- CBo --  C A ) ( C A o  -+- CDo --  C A )  

We can collect the terms in the concentration of A on the right-hand side and then simplify to 
put the equations in a simpler looking form prior to solving them: 

In[70] "- Clear["Global'*'"] 

In[71] :: 
dCA 

== Simplify[ 
dt 
CoIIect[-kACA + kB(C~ + CBo -- CA)(C~ + CDo - CA), CA] ] 

dCB 
== Simplify[ 

dt 
CoIIect[kACA- kB(CAo + CBo - CA)(CAo + CDo -- CA), CA]] 

Out { 71 ] - 

Out [ 72 ] - 

dCA 
C~kB + (CAo + CBo)(CAo + CDo)k~ 

dt 
- CA(kA + (2CAo + CBo + CDo)kB) 

dCB 
-C2k~ - (CAo + C~o)(CAo + CDo)k~ 

dt 
+ CA(kA + (2CAo + C~o + CDo)kB) 
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These can be nondimensionalized with CAo as follows: 

d~A 
CA~ dt 

d~A 

dt 

= C~o@~kB + C~o((I)Ao -+- (IDBo)((I)Ao -}- (I)Do)kB -- CAo~A(kA -+- (2CAo -ff Cao 

s CDo)kB) 

: C a o ~ 2 k B  q- Cao((I)ao -}- (I)Bo)((I)ao -t- (I)Do)kB -- ~ a ( k a  -}- (2Cao q- CBo if- CDo)kB) 

Recognizing that CAo kB is in every term, we can divide through by the product  of this con- 
centration parameter and the rate constant for the reverse reaction. This product has units 
of inverse time as the rate constant is second order. Therefore on the left-hand side we have 

d@A where dT -- CAokBdt. This puts the equations in 1 d~A which is just the same as --dT-~, Ca-~k. dt ' 
complete dimensionless form: 

d~A (kA + (2CAo + CBo ~- CDo)kB) 
dr  = ~2 + (~Ao + (I)Bo)((I)Ao q- (:DDo) --  (DA CAokB 

d~B __ _ ~ 2  _ (~Ao -+- (DBo)((DAo if- (l)Do) if- (I)A (kA + (2CAo -+- CBo -}- CDo)kB) 
dr  CAokB 

The group of constants (kA+(2CAo+CBo+CDo)kB) which we shall call M, that make up the coefficient 
CAoka 

of the linear term in ~A are worth looking at in more detail. Recall that kB is a second-order rate 
constant with dimensions of vo l /mol / t ime .  When this is multiplied by the sum of the initial 
concentrations (2CAo + CBo + CDo), the resultant dimensions are 1/time, the same as that 
of kA (the other term in the numerator),  and as the product CAokB seen in the denominator. 
This makes sense and the overall group is dimensionless. We also see that if we provide the 
relative magnitudes of the rate constants and the initial concentrations, then this term can be 
evaluated. To solve these equations we stop just short of this and give initial dimensionless 
concentrations and the ratio of the rate constants: 

In[73] "= Names["Global'*"] 

Remove [ "Global ' *" ] 

Names [ "Global' *" ] 

Out[73]: {A, Ao, B, Bo, ca, Ca, Cao, cb, Cb, Cbo, d, dt, k, ka, 

kb, reversol2, t} 

Out [75]: {} 

In[76]:= ndreversol3 =. 

�9 ao = Cao = i; 

~}bo = ~}do = Cbo = Cdo = 0; 

kb = i0 ka; 

ndreversol3 = Simplify[DSolve[{~a' [r] == ~a[r] 2 

+ (~}ao + ~}bo) (~}ao + ~do) - ~}a [r] M, 
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�9 b" [r] == -~a[r] 2 

+ ~a [r] M, 

�9 a[0] == ~ao, ~b[0] == ~bo}, 

{~a[r], ~b[r]}, r]] 

@A[T__ ] 

@B[T_] 

- (~ao + ~bo) (~ao + ~do) 

: = ndreversol3 [ [I, 2] ] 

:= ndreversol3[[2, 2]] 

Simplify[0T(~A[r]) == ~A[T] 2 + (~ao + ~bo) 

- ~A[T] M] 

Simplify[OT(~B[T]) == -~A[T] 2 - (~ao + ~bo) 

+ ~A[T] M] 

(~ao + ~do) 

(~ao + ~do) 

General--spelll �9 Possible spelling error- new symbol 

name "~bo" is similar to existing symbol "(~ao". 

General--spell �9 Possible spelling error- new symbol 

name "(~do" is similar to existing symbols {~ao, ~bo}. 

General--spelll �9 Possible spelling error- new symbol 

name "~a" is similar to existing symbol "~ao". 

General--spell �9 Possible spelling error, new symbol 

name "~b" is similar to existing symbols {~a, ~bo}. 

Solve: :ifun : Inverse functions are being used by 

Solve, so some solutions may not be found. 

1 ~4 M ~ 1 ~4 M ~ 2 - M Out[SO]- {~)a[r]-~(M + - Tan[~ - r + ArcTan[~4 _ m2]]), 

i~4 M 2 2H ]]) (-2 + M) (-~4 - M 2+(2 +M) Tan[7 - r + ArcTan[~4 H' 

~ b [ r ] ~  
2 ~ 4  - M 2 

G e n e r a l :  : s p e l l l  : P o s s i b l e  s p e l l i n g  e r r o r :  new s y m b o l  
name "(~A" i s  s i m i l a r  t o  e x i s t i n g  s y m b o l  " (ha" .  

General--spell �9 Possible spelling error- new symbol 

name "~B" is similar to existing symbols {~A, ~b}. 

Out [83]- True 

Out [84]- True 

The solutions are more complex than we have seen before, but  the check we have put  them 

through indicates their validity. The complexity arises from the fact that this problem is one 

that is fully transient until the equil ibrium point  is reached. It is impor tant  to realize that 

there is a marked  difference between equil ibrium and steady state, as we will see when  

we examine flow reactors. We can have a steady state in a flow reactor, which is far from 
equilibrium. 
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We can test these solutions further after we have applied a specific value for the forward 
rate constant; we  take ka = 10 -3 min -1 . Taking the limit as ~- goes to zero should give us unity 
and zero for dimensionless  A and B. At long times they should go to the equilibrium values. 

In[85] := ~ao = Cao = i; 

�9 bo = ~do = Cbo = Cdo = 0; 

ka = .001; 

kb = I0 ka; 
(ka + (2Cao + Cbo + Cdo)kb) 

M = 
Cao kb 

ndreversol3 // N 

Limit[ndreversol3[[l, 2]], r ~ O] 

Limit[ndreversol3[ [2, 2]], r ~ O] 

ndreversol3[[l, 2]] /. r -~ 106 

ndreversol3[[2, 2]] /. r -~ 106 

Out{90]- {(1)a[r] ~ 0.5 (2.1 - 0.640312 Tanh[(0.157462 + 0.~) 

+ 0.320156 r]), 

(1)b[r] -~ (0.-0.0780869~) ((0.-0.640312i) 

+ (0. + 4.1~)Tanh[ (0.157462 + 0.~) + 0.320156r])} 

Out [91]- i. + O . 

Out[92]- O. + 0.~ 

Out [93]- 0.729844 + 0. 

Out[94]-0.270156 + 0.i 

We see that at zero time the values of dimensionless  A and B concentration are as they should 
be, and at long time they tend to 0.73 and 0.27, respectively. We can check this by computing 
the equilibrium extent of reaction ~ from the expression for the equilibrium constant. Recall 
that the magnitude of the equilibrium constant at any temperature is given by the ratio of the 
forward to the reverse rate constants; and the concentration of the products at equilibrium in 
this case is just ~ eAo and the reactant is (1 - c~) eAo. This gives the fol lowing expression to 
be solved: 

In[95].- Solve[ 
kA (][2 

== C ~ ~ ,  G] 
kB 1 - 

-kA - ~/k-KA~/kA + 4CAo kB -kA + %/~-~A%/kA + 4CAo kB} } 
Out [95]- { {c~-~ }, {c~ 

2CAo kB 2CAo kB 

Clearly, the extent of reaction must  be positive and the value of 0.27 agrees exactly with 
the value derived from the kinetics. Finally, we  can graph the concentrations of A and B in 
dimensionless  form as a function of dimensionless  time. But before we  can do so we  need to 
examine the solutions carefully. We know they are correct, but we  also notice that the term 0. 
appears in both. In order to plot these solutions we  must  have fully real forms; that is, even 
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if the coefficient of ~ is zero, we  cannot  g r aph  such an express ion in the real p lane  because  

Mathematica takes this as a complex  number .  Let us look at these solut ions before and  after we  

use Complex Expand on them: 

In[96] := ndreversol3[[l, 2]] 
ndreversol3[[2, 2]] 
Simplify [ComplexExpand [ndreversol3 [ [ i, 2 ] ] ] ] 
Simplify[ComplexExpand[ndreverso13 [ [2, 2] ] ] ] 

1 
Out[96]- ~ (2.1 - 0.640312 Tanh[(0.157462 + 0.~) + 0.320156r]) 

Out[97]= (0.- 0.0780869~) (-0.640312~ 

+ 4.1~ Tanh[ (0.157462 + 0.1) + 0.320156r]) 

0.~ 
Out [98]= 1.05 + 

i.+Cosh[0.314925 + 0.640312r] 

0.320156 Sinh[0.314925 + 0.640312r] 

i. + Cosh[0.314925 + 0.640312r] 

0. + 0.~ 
Out [99]= ( - 0 . 0 5  + 0.~) + 

1. + C o s h [ 0 . 3 1 4 9 2 5  + 0 . 6 4 0 3 1 2 r ]  

( 0 . 3 2 0 1 5 6  + 0 . ~ ) S i n h [ 0 . 3 1 4 9 2 5  + 0 . 6 4 0 3 1 2 r ]  
+ 

1. + C o s h [ 0 . 3 1 4 9 2 5  + 0 . 6 4 0 3 1 2 r ]  

It is easy to see that  the first expression is fully real, bu t  the second expression for 

d imens ionless  B is less clear until  we  expand  it. After  expans ion  we  can see that  a l though  

the solutions appea r  to involve complex  n u m b e r s  the coefficients of ~ are all identically zero 

(see w h a t  follows in the next graph):  

(0.320 Sinh[0.315 + 0.640r]) 
In[lO0] :: ~A[r_] := 1.05 - 

(i + Cosh[0.315 + 0.640T]) 

(0.320) Sinh[0.315 + 0.640T] 
~B[T--] := - .05 

(I + Cosh[0.315 + 0.640r]) 

Plot[ 

{~A[T], ~[Z]}, {Z, 0, I0}, 
PlotRange ~ All, 
AxesLabel-~ {"t", "~a, ~d"}, 

AxesStyle ~ {Thickness[0.01]}, 

PlotStyle ~ {{Thickness[0.01], GrayLevel[0] }, 

{Thickness[0.01], GrayLevel[0.6] }}, 

Epilog ~ { 
{GrayLevel[0.6], Dashing[{0.02, 0.02}], 
Thickness[.01], Line[{{0, 0.27}, {I0, 0.27}}]}, 
{GrayLevel[0], Dashing[ {0.02, 0.02}], Thickness[.01], 
Line[{{0, 0.73}, {i0, 0.73}}] } 

}, DefaultFont ~ {"Helvetica", 17} 

1; 
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Series 
Reactions rarely take place in isolation of other reactions. Reversibility is one example of the 
simultaneity of reaction chemistries. Another classical problem is the one that arises when a 
reaction is immediately preceded by another reaction. When reactions occur in series, they are 
referred to as being consecutive. An example would be: 

A ---~ B --~ D 

If each of these proceeds via a first-order rate process, then this can be analyzed readily. Higher- 
order reaction rates follow the same analysis, but  they require a bit more mathematical  effort. 
We can begin by writing the key material balance equations: 

dCA 
-- --kACA 

dt 

dCB 
= kACA - k B C B  

dt 

dCD 
-- kBCB 

dt 

We can see that the first of these equations can be integrated immediately to give: . 

Ca = Cao exp (--kAt) 

This can be substituted into the second equation and the integration can be done for the 
concentration of B. Subsequently, we substitute this into the equation for the rate of change of 
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D and integrate once more for the full solution. Alternatively, we  can let the D S o l v e  algorithm 
do for us all at once: 

In [103]'- Clear["Global'*"] 

In[f04]:: Simplify[ 

DSo ive [ 
{cA' [t] == -kacA[t], 

cB' [t] == ka cA[t] - kbcB[t], 

cD' [t] == kbcB[t], 

cA[0] == cAo, 

cB[0] == 0, 

cD[0] == 0}, 

{cA[t], cB[t], cD[t]}, 

t] 

] 

General--spelll �9 Possible spelling error- new symbol 

name "cAo" is similar to existing symbol "Cao". 

cAo(e -kC~ - e -kb~-)ka 
Out[104]-{{cA[t] --~ cioe -a~t-, cB[t] --~ 

-ka + kb 

cio(ka - e-kbtka + (-i + e -aa<)kb) 
cm[t] --~ } } 

ka- kb 

We could also have chosen to nondimensional ize  the differential equations before solving 
them in order to find a general solution in fewer absolute parameters. We can divide all by 
kACAo, which will give us: 

[ 1 ] d C i = - ~  A 
kACAo dt 

1 ] dCB kB 
kACAo dt - OA -- ~AAOB 

1 ]dCD _ kB 
kACAo dt - kA ~B 

However,  kAdt = d~- because kA is an inverse time constant associated with the rate of the 
first chemical reaction and r is "reduced" time. This gives us the fol lowing three equations: 

d~A 
dr 

-- --~A 

KB dOB = OA-  �9 
dr kA B 

d~D kB 
dr kA OB 
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Now the ratio of ~ is not an equil ibrium constant because both  reactions are considered to kA 
be irreversible. It is s imply the ratio of the rate constants and we will leave it as such. 

In [105].- Clear["Global'*"] 

In[106]'- ka =. 

kb =. 

�9 ao =. 

sersoll = Simplify[DSolve[ 

{@a'[r] == -@air], 

�9 b" [r] == +~a[r] - 

kb 
�9 d' [r] == +--~b[r], 

ka 
�9 a[0] == ~ao, 

kb 
- - ( I , b  [ r  ] ,  
k a  

�9 b[0] == 0, 

�9 d[0] == 0}, 

{~a[r], ~b[r], ~d[r]}, 

r] 

]; 

�9 A[r_] := sersoll[ [I, i, 2] ] 

�9 B[r_] := sersoll[ [I, 2, 2] ] 

�9 D[r_] := sersoll[[l, 3, 2]] 

�9 a[r] == ~A[r] 

@b[r] == @B[r] 

�9 d[r] == ~D[r] 

ka = 2.; 

kb = I.; 

�9 ao = I.; 

Plot[ 

{~A[r], ~B[r], ~D[r]), 

{r, 0, i0), 

PlotRange ~ All, 

AxesLabel ~ {"r", "~a,~b,~d"}, 

AxesStyle ~ {Thickness[0.01] }, 

PlotStyle 

{{Thickness[0.01], Dashing[ {0, 0}] }, 

{Thickness[0.01], Dashing[{0.05, 0.025}], 

GrayLevel [0.4] }, 

{Thickness[0.01], GrayLevel[0.7]}, 

DefaultFont ~ {"Helvetica", 20}}, 

PlotLabel ~ {ka "= ka", kb "= kb", ~ao "= ~ao"}]; 



7.5 Complex Reactions 331 

General--spell �9 Possible spelling error- new symbol 

name "<~d" is similar to existing symbols {r (~a, 

<~b, ~do} . 

General--spell �9 Possible spelling error- new symbol 

name "~D" is similar to existing symbols {~, ~A, 

~)B, ~d}. 

Out [ll3]: ~a[r] 

Out [ll4]: ~b[r] 

Out [115]- ~d[r] 

e - r ~ a o  

k b r  

(e -~ - e ~- )ka(Dao 

-ka + kb 
k b r  

( k a  - e ~ , k a  + ( - 1  + e - r ) k b ) ~ I ,  a o  

ka - kb 

~a,,~b,~d 
11 

0.8 

0.6 

{2 . -  ka, 1 . -  kb, 1 . - ~ a o }  

.,,4"~"::; ...... 
..... 

~ "  

,~#i#' 
~. 

0.41 A . / \  

o.21, 

2 4 6 8 10 
T 

The preceding graph shows the behavior expected for a set of reactions taking place in series. 
We see the reactant being depleted, and the intermediate concentration grows and then falls 
while the final product grows monotonically throughout the process. It would be handy to 
be able to look at this "A to B to D" process with different rate constants in order to gain a 
better understanding of how the concentration profiles for each species vary in character with 
changes in the magnitudes of the rate constants. However, this would be cumbersome if we 
were to use the code we have just written. Instead it makes much more sense to write a Module 
function based on this code, which can be invoked and utilized like any other command. Here 
is the means to do that: 

In [120].- Clear["Global'*"] 
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In[121].-sersol2[ka_, kb_, ~ao_, rmax_] := 

Module[{~a, ~b, ~d}, 

�9 a[~_] := e - "  ~ao; 

~J:)r 

(e -r - e ~ )ka ~ao 
@b [r_ ] := 

-ka + kb 
kb r 

(ka - e-k-Vka + (-I + e-r)kb)~ao 
�9 d[r_ ] := 

ka - kb 
SetOptions[Plot, DefaultFont ~ {"Helvetica", 8}] ; 

Plot[ 

{~a[r], ~b[r], ~d[r]}, 

{r, 0, rmax}, 

PlotRange ~ {{0, rmax}, {0, I}}, 

AxesLabel ~ {"r", "~i"}, 

AxesStyle ~ {Thickness[0.01] }, 

PlotStyle 

{{Thickness[0.01], Dashing[{0, 0}] }, 

{Thickness[0.01], Dashing[{0.05, 0.025}] }, 

{Thickness[0.01], GrayLevel[0.7] }}, 

DisplayFunction ~ Identity] 

N o w  if we  inpu t  the M o d u l e  and  then  run  it wi th  p a r a m e t e r  va lues  as shown ,  we  obta in  the 

same resul t  as that  which  we  had  in the preceding:  

In[122].- Show[sersol2[1., .5, 1., 10], 

DisplayFunction ~ $DisplayFunction] ; 

0.8 

0.6 

0.4 

0.2 

/ /  

6 8 10 
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Furthermore  one can now run as m a n y  cases as one should like in order to compare  the 
effects of different parameters .  We have left the semicolon out after the Plot routine in the 
Modu le  function, so that Graphics  are a bonafide output .  This allows us to use sersol as par t  
of GraphicsArray.  

In [123]:: Show[ 

GraphicsArray[{Table[sersol2[l., n, I., I0], 
{n, 0.01, 1.01, .5}], 

Table[sersol2[l., n, i., 10], {n, 1.51, 2.52, .5}], 

Table[sersol2[l., n, I., 10], {n, 3.01, 4.02, .5}], 

Table[sersol2[l., n, i., 10], {n, 4.51, 24.51, I0}] 
}, DisplayFunction ~ SDisplayFunction] ] ; 

1 1 .............................. 1 ................................................. 
0.8 0.8 0.8 
0.6 0.6 0.6 
0.4 0.4 " ~ x  0.4 
0.2 0.2 ~ "  0.2 

i "  1" 1" 
2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 

1 1 
0.8 0.8 
0.6 0.6 ! ~ , , ~  
0.4 0.4 
0.2 0.2 

r 
2 4 6 8 10 2 4 

0.8 
0.6 
0.4 
0.2 

2 4 

1 
0.8 
0.6 
0.4 
0.2 

1" / -  
6 8 10 2 4 6 8 10 

1 
0.8 
0.6 
0.4 
0.2 

2 4 

1 
0.8 
0.6 
0.4 
0.2 

T V 
6 8 10 2 4 6 8 10 

1 . . . . . . .  

0.8 
0.6 
0.4 
0.2 

2 4 6 8 10 r 

�9 i e i  
1 1 

0.8 0.8 
0.6 0.6 
0.4 0.4 
0.2 0.2 

6 8 10 r 2 4 6 8 10 r 2 4 6 8 10r 

This array shows the full gamut  of the effects that  the magn i tude  of kb at fixed ka has upon  
the chemistry. We see that when  kb is 102 smaller  than ka, the reaction appears  to be that 

of A ---, B. When  we begin to increase the magn i tude  of kb we see that the in termediacy of B 
grows as does the final amoun t  of D at 107-. With longer times, the amoun t  of B would  grow to 

be equal to the original amount  of A, but  we are concerned here wi th  a fixed batch holding t ime 
of 10r. As kb  increases and overtakes ka, the m a x i m u m  amoun t  of B cont inuously diminishes 
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and shifts to earlier T. Finally wi th  kb  at ~--25ka, the m a x i m u m  in B is shifted to very  short  r 
and to a value of less than 0.1. 

If we were to change the kinetics so that  the first reaction was  second order in A and the 
second reaction was first order in B, then we would  see largely the same picture emerging  in 
the graphs of dimensionless  concentrat ion versus time. There would  of course be differences, 
but  not large depar tures  in the trends from wha t  we have observed for this all first-order 
case. But wha t  if the reactions have rate expressions that  are not  so readily integrable? What  
if we have widely  differing, mixed-order  concentrat ion dependencies? In some cases one can 
develop fully analytical (closed-form) solutions like the ones we have der ived for the first- 
order case, but  in other cases this is not possible. We mus t  instead turn to numerica l  methods  
for efficient solution. 

Suppose that the following reaction is a series ne twork  wi th  square kinetics for the first 
reaction and half-order kinetics for the second: 

2A ---~ B --, D 

Then accounting for the stoichiometry of two going to one we have the following set of 
equations to solve: 

d C a  

dt 
= - k a C a  2 

d Cb ka Ca 2 
= 

dt 2 
kbv/-Cb 

d C d  

d t  
= + k b  ~/--Cb 

d Cb I d Ca d Cd 

dt 2 dt dt 

Nondimensional iz ing  mus t  be done carefully. We begin wi th  the first equation,  which gives 
the expected result: 

Cao d Ca Cao 2 

Cao dt 

d ~ a  
C a o ~  

dt 

d ~ a  

dt 

dq~a 

dr  

Cao 2 
- ~ k a  C a  2 

= - C a o  2 ka ~ a  2 

= - C a o  ka q~a 2 

- -  _ ~ a  2 
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As we are going to need the nondimensional ized form for the rate of change of D to obtain B 
we proceed with this equation next: 

d C d  

dt 

1 d C d  

ka Cao 2 dt 

d ~ d  

d r  

= + k b v ~ b  

1 
= q - - k b v / - C b  

ka Cao 2 

kb 
= +  v'%--6 

kav/Cao 3 

Finally, we take these two results and combine them to derive the nondimensional ized form for 
the rate of change of B. We first show that the overall nondimensional ized equation is parallel 
in form to the fully dimensional  equations and then make the appropriate  substitutions and 
so on: 

d Cb 

dt 

1 d Cb 

ka Cao 2 dt 

debb 

dr  

d ~ b  

dr  

1 d Ca d Cd 

2 dt dt 

1 /' 1 d C a  

kaCao  2 [ 2 dt 

1 d ~a  d 4)d 

2 dr  dr  

�9 a 2 kb 

2 kav/Cao 3 

dCd) 
dt 

If we try to solve this analytically, we find that we cannot do it, at least not directly with 

DSolve: 

In[124]'= Names["Global'*"] 

Remove [ "Global' *" ] 

Names [ "Global' *" ] 

Out [124]= {A, Ao, B, cA, cAo, Cao, cB, Cbo, cD, Cdo, k, ka, kb, 

M, n, ndreversol3, sersoll, sersol2, t, ~, r, rmax, r$, 

�9 , ~a, ~A, ~ao, ~a$, ~b, ~B, ~bo, ~b$, ~d, ~D, ~do, 

�9 d$, $i } 

Out [126]: {} 

In[127] "= DSolve[ 
{~a' [r] == -~a[r] 2 

~a[z] 2 
~}b'[r] == + - -  

2 

kb 

2ka~Cao 3 
~b [r], 
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�9 d" [z] == + kb ~/~b[T] 
2 k a v / C a o  3 " 

�9 a[0] == ~ao, 

�9 b[0] == 0, 

�9 d[O] == 0}, 

{~a[r], ~b[r], ~d[r]}, 

Z] 

General--spelll �9 Possible spelling error- new symbol 

name "Ob" is similar to existing symbol "~a". 

General--spell �9 Possible spelling error- new symbol 

name "Od" is similar to existing symbols {<~a, ~b}. 

General--spelll �9 Possible spelling error- new symbol 

name "~ao" is similar to existing symbol "~a". 

Out [127]- DSolve[{Oa' [r] -- -~a[r]2, 

O a  [ r ] ~ k b ~ / O b  [ r ] 
O b '  [ r ]  - , 

2 2~Cao~ka 

kb~Ob [ r ] 
O d '  [ r ]  , O a [ O ]  - -  O a o ,  O b [ O ]  - -  O, 

2 ~ / C a o ~ k a  

O d [ O ]  - -  0 } ,  {Oa[r], @b[r], @d[r]}, r] 

We t u r n  t h e n  to  n u m e r i c a l  m e t h o d s  in N D S o l v e  a n d  f ind  t h e  s o l u t i o n  r ead i l y ,  as  l o n g  as  w e  

s p e c i f y  p a r a m e t e r s .  

In [128] "- Remove ["Global'*"] 

In [129] .- ka = i0.; 

kb = .5; 

Cao = 1; 

rmax = 40 ; 

sersol3 = NDSolve[{~a' [r] == -~}a[r] 2, 

�9 b" [r] == + ~  

�9 d" IT] == + 

�9 a[0] == i, 

~}b[0] == 0, 

�9 a [r] 2 kb 

2 ka%/Cao 3 

kb ~}b [ r ] 
ka$Cao 3 

�9 d[0] == 0), 

{~}a[r], ~b[r], ~}d[r]}, 

{r, 0, rmax)] ; 

~b [r], 
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�9 A[T__ ] 

~B[T_] 

~D[T__ ] 

: = sersol3 [ [ I, I, 2 ] ] 

:= sersol3 [ [i, 2, 2] ] 

: = sersol3 [ [ I, 3, 2 ] ] 

Plot[{~A[T], ~B[T], ~D[T]}, 

{r, 0, rmax}, 

PlotRange -~ { {0, rmax}, {0, i} }, 

AxesLabel ~ {"r", "~i"}, 

PlotStyle 

{{Thickness[.01], Dashing[{0, 0}] }, 

{Thickness[0.01], Dashing[{0.05, 0. 025}] }, 

{Thickness[.01], GrayLevel[0.7]}}, 

PlotLabel ~ {ka "= ka", kb "= kb"}]; 

General--spelll �9 Possible spelling error- new symbol 

name "~b" is similar to existing symbol "~a". 

General--spell - Possible spelling error- new symbol 

name "~d" is similar to existing symbols {(ha, ~b}. 

General--spelll �9 Possible spelling error- new symbol 

name "(~A" is similar to existing symbol "~)a". 

General--spell �9 Possible spelling error- new symbol 

name "~)B" is similar to existing symbols {(~A, ~)b}. 

General--spell �9 Possible spelling error- new symbol 

name "~D" is similar to existing symbols {~A, ~B, ~)d} . 

{10. -  ka, 0 . 5 -  kb} 

0.8 

0.6 

0.4 

0.2 

T 
5 10 15 20 25 30 35 40 
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The beauty of an analytical solution (see preceding graph) is that it allows us to see the function 
and all of its parametric dependencies "all at once." The disadvantage of the numerical  solution 
is that it does not allow for this, at least not directly. On the other hand, we do obtain solutions 
where there may not have been any if we lacked the numerical tools. Mathematica allows us 
to approach this problem by creating a Module  function of the numerical routine. With this 
Module  we can use a Table loop to find how the solutions vary with different parameters.  We 
can do this as follows: 

In [138]'- Clear ["Global'*"] 

In[139]:= mixord[ka__, kb_, ~ao_, Cao_, rmax_] 

[{sersol, ~a, ~b, ~d, A, B, D, r}, 

sersol = NDSolve [ 
{~a' [r] == -~a[y] 2 , 

�9 a [r] 2 kb 
�9 b'[r] == + ~  - 

2 ka~Cao 3 
kb 

�9 d" [r] == + ~b[r], 
ka~Cao 3 

�9 a[0] == ~ao, 

�9 b[0] == 0, 

�9 d[O] == 0}, 

{~a[r], ~b[r], ~d[r]}, 

{r, 0, rmax}] ; 

A[T] = Evaluate [~a [r] /. sersol] ; 

B[T] = Evaluate [~b [r] /. sersol] ; 

D[T] = Evaluate[~d[r] /. sersol] ; 

:= Module 

~b [r], 

In[140].-Show[mixord[30, .5, I, i, I00], 

DisplayFunction ~ $DisplayFunction] ; 

SetOptions[Plot, DefaultFont ~ {"Hevetica", 8}] ; 

Plot [ {A [r] , B[T], D[r]}, 

{r, 0, rmax}, 

PlotRange ~ {{0, rmax}, {0, i}}, 

AxesLabel ~ {"r", "~i"}, 

PlotStyle 

{{Thickness[.01], Dashing[{0, 0}]}, 

{Thickness[0.01], Dashing[{0.05, 0.025}] }, 

{Thickness[.01], GrayLevel[0.7] }}, 

DisplayFunction ~ Identity] 
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ir 

0.8 

0.6 

0.2 

0.8 

0.4 

20 40 60 80 i00 

In[141]:- Show[ 

GraphicsArray [ 

{Table [mixord [n, .5, i., I., 20], 

Table[mixord[5., m, i., I., 20], 
]]; 

{n, 10, 50, 40} ], 

{m, i, 3, 2}]} 

@i @i 
1 1 

0.8 

0.6 

0.4 

0.2 

@i 
1 

0.8 

0.6 

0.4 

0.2 

1 

0.8 

0.6 

0.4 

0.2 

f ~ ,  0.6 

........................................ 0.4 

,- 
, l "  

"""2:5 5 7.5 10 12.5 15 17'.5 20 

T 

2.5 5 7.5' 10 12.5 15 17'.5 20 

~ ,  ,, , . . , - . . . , = . ,  ,=,=,=, ~ .=,==, 

. . . . . . . .  . . . . . . . . . . . . . .  

2.5 5 7.5 10 12.5 15 17.5 20 
L ,  

2.5 5 7.5 10 12.5 15 17.5 20 
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We notice that  at constant kb  as the value of ka increases so does the concentrat ion of A 
at shorter times. However ,  notice that the concentrat ions of A and B have much  different 
parametr ic  sensitivities than they did in the other cases. Even wi th  a small value of ka --0.1, 
we find that wi th  kb = 0.5 nearly all the A is converted to D in about  15r. In s impler  terms 
every t ime A is converted to B, then B is immedia te ly  converted to D. Thus we see very  little 
A. As kb  increases at constant ka, the trend is reversed. We also note that  these equat ions are 
numerical ly  "stiff" for some values of their parameters .  For example,  if we choose ka  = 0.1 
and kb = 0.5, the integration becomes unstable after about  6r. 

In[142].-Show[mixord[.l, .5, I, i, 15], 

DisplayFunction ~ $DisplayFunction] ; 

Plot--plnr �9 B$536[r$536] is not a machine-size real 

number at r$536- 11.846017793583648". 

Plot--plnr �9 B$536[r$536] is not a machine-size real 

number at r$536- 11.76600439063428". 

Plot--plnr - B$536[r$536] is not a machine-size real 

number at r$536- 11.75609901499778". 

General- -stop �9 Further output of Plot- -plnr will be 

suppressed during this calculation. 

0 . 8  

0 . 6  

0 . 4  

0 . 2  
2 

f 

.......... ~ , ~  ~ ~ ........... 

2 4 6 8 I0 12 14 

Series-Parallel Reactions 
Next, we shall consider the series-parallel reaction system. Here, we shall examine the case 
where  the reactions are all first order. This keeps the ma th  simple and allows us observe the 
general behavior  of such a group of reactions. If the order of the rates of reaction becomes 
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higher, or nonintegral ,  then numerical  methods  such as those used in the last section m a y  be 
employed.  

If instead of the one species reacting to one other species, we will look at the si tuation 
in which there can be two products  formed by compet ing  reactions. We can also let one of 
the two p r imary  products  react to produce  one other product .  Thus, this set of reactions, or 
reaction network will involve four components  and three rate constants as follows: 

kl k2 
A ---~ B ---~D 

"x k3 
E 

This is a rather simple ne twork  of reactions that  can be solved readily by employ ing  the same 
analysis methods  that we have used to this point: 

dCA 
-- - k l  CA -- k3 CA 

dt 

dCB 
= klCA -- k2CB 

dt 

dCD 
= k2 CB 

dt 

dCF 
= kBCA 

dt 

We note that in the first equation the rate constants are the proport ional i ty  factors that deter- 
mine how much  of A proceeds to B and E. Also, the rate of deplet ion of A follows an observed 
rate constant that  is the sum of the two rate constants for the parallel forward reactions. The 

other equations are much  as we would  expect. We can nondimensional ize  using the sum 
k l  + k3 and of course CAo: 

where  

d~A 
-- --~A 

dr  

d@B 
= K1 (I)A - -  K2 (I)B 

dr  

d@D 
= K2 ~B 

dr  

d@E 
--- K3tl) A 

dr  

kl k2 k3 
K1 = (kl -+-k3)' K 2 -  (kl q-k3)'  K3 = (kl -F k3) 

This is the DSolve  routine for this ne twork  of reactions. We have used @i to denote the 
dimensionless concentrat ion of component  i. One more routine is added  here. We have nested 
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the DSolve  routine in the Simpl i fy  function "Simplify[DSolve[<>]] ."  This ensures that the 
output  statement corresponds to an algebraically reduced form. 

In[143] .- Clear["Global'*"] 

Simplify[DSolve[{~}a'[r] ==-~}a[r], ~b'[r] == e~l~a[r] 

- ~2~b[r], (I'd" [r] == ~2{[~b[r], {~e' [r] == ~3~a[r], 

�9 a[O] == ~ao, ~b[O] == ~bo, ~d[O] == ~do, 

�9 e[O] == ~eo}, {~a[r], ~b[r], ~d[r], ~e[r]}, r]] 

General: :spell : Possible spelling error: new symbol 

name "~)e" is similar to existing symbols { ~a, ~b, (~d}. 

General: :spell : Possible spelling error: new symbol 

name "~)bo" is similar to existing symbols {~ao, <~b}. 

General--spell �9 Possible spelling error- new symbol 

name "Odo" is similar to existing symbols {Oao, Obo, ~d}. 

General- -stop �9 Further output of General" -spell 

will be suppressed during this calculation. 

Out[144]: {{Oa[r] -~ e-rOao, 

e -(1+K:~)r (eK~rKiOao - e r (KiOao + (~bo - K2(~bo)) 
O b [ r ]  ~ 

-I + K2 

O d [ r ]  
(e  <],~.~.)r ( e ~ : ! r K i K 2 O a o , e r  ( a ' l O a o , O b o  K 2 O b o ) , e  r'~':r ( ] , K 2 )  ( K ] ~ a o , ~ b o , O d o ) ) )  

1 ,~:2 

Oe[r] -~ K3 (Oao - e -rOao) + Oeo}} 

These are the output  statements. We note that the loss of A from the systems goes as a typical 
exponential  decay, but  recall that r is made  nondimensional  as the product  of real time and the 
sum of the rate constants for the two reactions that consume A. If there were three A-consuming 
reactions, then we would  use the sum of all three. If there were reactions consuming A and 
reactions producing A simultaneously, then we would  still take the sums of the rate constants, 
but  the signs would  be positive and negative. Thus we would  have a sum and difference in 
the argument  leading to ~-. 

It is also notewor thy  that the stoichiometry will be controlled by the rate constants kl 
and k3. This is clear and evident in the expression for ~ e  [T]. If ~ e o  is zero, then at large 

- -  ~ the ratio of k3 to the sum of kl and k3. This ratio ~3 is ~-, ~e[T] ---, ~3 ( I~ao ,  where ~3 - -  ( ~ 1 _ } _ ~ 3 ) /  

also a measure of the selectivity of the reaction network. 
In what  follows in In statement [145] and the graph, we have assigned values to the 

parameters  of the system. The rate constant kl has been set to unity for simplicity and all the 
others are set in relation to it. In this case, the rate constant of the third step, which leads to E, 
is set at twice the value of that of the step leading to B. The rate constant between B and D is 
taken as half the magni tude  of kl. The initial concentration of A is unity and zero for the other 
species. The solutions derived from DSolve are implemented as local functions ~ i [ T _  ]. 
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In[145]'= Clear["Global'*"] 

kl = I.; 

k2 = 0.5 kl; 

k3 = 2 kl; 

rmax = 10 ; 

kl 
~l-- 

(kl + k3) 

k2 
~2-- 

(kl + k3) 

k3 
~3-- 

(kl + k3) 

�9 ao = I; 

~bo = ~do = ~eo = 0; 

�9 a[r_] := E-T~ao 

1 
�9 b[r__ ] := 

-i + ~2 

+ E r(-I + ~2)~bo)) 

1 
@d[r__ ] := 

-I + ~2 

+ E -~2T(-I + ~2) ((-i + E~2T)~bo + E~2T~do)) 

�9 e[r__] := ~3(~ao - E -T ~ao) + ~eo 

(E-(Z+~2)T(_(E T _ E~2T)~I~ao 

(~I(-I + E -~2T + ~2 - E -T~2)~aO 

SetOptions[Plot, DefaultFont ~ {"Helvetica", 12}] ; 

Plot[{~a[r], ~b[r], ~d[r], ~e[r]}, {r, 0, rmax}, 

PlotRange ~ { {0, rmax}, {0, 1} }, 

AxesLabel ~ {"r", "~i"}, 

PlotStyle 

( 

{Thickness[.01], Dashing[{0, 0}]}, 

{Thickness[.01], Dashing[{0.06, 0.03}]}, 

{Thickness[.01], Dashing[{0.05, 0.025}], 

GrayLevel [0.6] }, 

{Thickness[.01], Dashing[{0.01, 0.015}], 

GrayLevel [ 0.7 ] } 

), 

PlotLabel ~ {" A = blk-sld", "B = blk-dsh", 

"D = Dk-Gry-Dsh", "E = Lt-Gry-Dsh"}] ; 
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Because A is consumed rapidly by the two pathways to B and E, its concentration profile drops 
sharply with time. The concentration of E rises very rapidly in response to the drop in A, but B 
lags behind. The reason is that B is not only formed more slowly, but as it is formed it is depleted 
by reaction to produce D, albeit at a comparably slower rate than the other reactions. The 
ultimate products E and D finally reach constant values over a long time and their magnitudes 
are 0.66 and 0.33, each corresponding to the rate constant ratios as we predicted. 

This is an illustration of the intricacies that can develop even in a very simple reaction 
network. Imagine the kind of complexity that arises in some petroleum processing steps that 
involve numerous reactant molecules and many potential pathways for reaction (thermal, 
acid-catalyzed, metal catalyzed. . .  ). This is what reaction selectivity is all about and why 
chemists and engineers spend so much time dwelling on the topic. Nature has spent eons 
"dwelling on the topic" as well, and the result is reactions that ultimately are as highly specific 
as is possible. The critical factor in making this possible in natural systems is the enzyme 
catalyst with its "lock and key" mechanism for rejecting unwanted substrates (reactants) and 
driving to specific products and all at ambient temperature, where the rates of most chemical 
reactions as we know from Arrhenius (k = A exp ( -Ea/RT))  are relatively low. A high degree of 
molecular specificity or molecular recognition combined with slow but steady rates gives natural 
systems the advantage over the best man-made catalysts. This quest for selectivity is what 
drives so much fundamental and applied chemical research in catalysis and bio-technology. 

Langmuir-Hinshelwood-Hougen-Watson Kinetics 
In heterogeneous catalysis, the kinetics we use must account for the fact that the reaction 
takes place not in the gas phase but on the surface of the solid. Hence heterogeneous catalysis 
is also referred to as contact catalysis in the older literature. In fact reaction takes place in 
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combination with adsorption. We have already seen how adsorption can be treated from 
the point of view of mass action. Now we need to couple the adsorption with the mass 
action kinetics for the surface reaction. To do this we will assume that the rates of adsorption 
and desorption are fast compared to the rates of surface chemical reaction. This is a good 
assumption for many cases, but not all. To go into the cases where adsorption or desorption 
rates limit the rate of chemical reaction would be to go beyond the bounds of the present 
discussion. 

We will consider first the case of a simple surface reaction that takes A into B, for example, 
an isomerization. The reactant A adsorbs onto a site where it reacts at that site to form B; 
then B desorbs to the gas phase, relinquishing the site for another round of reaction. This is 
pictured on two equivalent sites in the schematic shown in Figure 1. 

Given that adsorption and desorption of A and B are at the same site, they are in essence 
competing for the sites. We account for this is in the adsorption rate term, as shown for A in 
what follows: 

rA,ads --  kA, adsCA[Ctot  -- CA, surf -- CB, surf] -- kA, desCA, surf 

At adsorption-desorption equilibrium this rate goes to zero. Then we have: 

kA, adsCA[Ctot  - CA, surf -- CB, surf] = kA,desCA,surf 

kA, ads__  CA, surf 

CA kA,des --  (Ctot - CA, surf -- CB, surf) 

CA, surf Ctot 

CAKA -" (Ctot - CA, surf -- CB, surf) Ctot 

C A K A  --  
CA, surf Ctot 

Ctot (Ctot - CA, surf -- CB, surf) 

C A K A  --  0A 
(1 - 0A -- 0B) 
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where 8A stands for the fraction of the total sites occupied by A on the surface and the same 
meaning is attributed to ~ for species B. Repeating this analysis for species B we find: 

CBKB -- 
( 1  - 0 A  - 0 B )  

We can solve the two equations simultaneously for ~/,~ and for ~/B to get them both in terms of 
the gas-phase concentrations and the adsorption constants for each: 

In[161] .- Clear["Global'*"] 

=. 

K ~--'. 

Solve[{CAKA == @A 
(I - 8A- 8B) 

CBKB == ~B } {0A, OB} ] 
(I - OA- 0B) 

Out[164]- {{0;, - -> 
C AKA C ~KI~ 

, 0 ~  ~ } } 
1 + CAKA + CBK~ 1 + CAKA + CI~KI~ 

The surface reaction is reversible and is first order in the surface concentrations of A and 
of B: 

rA~ B.~urf = kA-~ B,~urfCA,~urf -- kB~ A, surfCB, surf 

Multiplying through by c_~ provides these expressions in terms of the fractional surface Ctot 
concentrations: 

r A ~  B, surf - -  kA--, B, surfCtot0A --  k B ~  A, surfCtot0B 

Replacing with the expressions for the fractional surface concentrations: 

rA- ,  B, surf - -  
kA-,B,  s u r f C t o t C A K a  --  kB- ,  A,surfCtotCBKB 

1 + C A K A  q- CBKB 

The reversible surface reaction has associated with it an equilibrium constant, which is just 
the ratio of the forward to the reverse surface rate constants: 

k A - ,  B, surf 
KA@B, surf - -  kB-,A,  surf 

kA--, B, surf 
�9 ". kB--, A, surf "-- 

KA~B,  surf 
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Making this substitution and factoring out the product  of the forward surface rate constant 
and the total surface concentration of sites" 

rA--. B, surf -- 

kA--. B, surfCtot (CAKA CBKB ) 
KAoB,surf 

1 + CAKA q- CBKB 

On the far right of the numerator  we have two parameters  that may be difficult to obtain 
independently. They are the adsorption equilibrium constant for B and the surface equilibrium 
constant for the reaction Asurf 4=~ Bsurf. Our  goal is to clear these by reexpressing them in 
terms of something that is unchanging. After all both of these may be strong functions of 
the catalyst structure and composition. The overall reaction A 4=~ B is, however, one which is 
fixed at any temperature and pressure by the overall equilibrium constant. This is independent 
of the catalyst. Therefore we want  to use this in the reaction rate expression. Here is how we 
do it: 

and 

CB CB CB, surf CA,surf 
Keq = CA = CB, surf CA,surf CA 

_ _ 1 KA~B, surfKA 
KB 

KB KA 

�9 " KA~B, surf Keq 

rA~ B, surf m 

rA-. B, surf -- 

rA--.B, surf -- 

k  B ur Ct  tIC K  C K )K 
1 + CAKA if- CBKB 

kA-.B, surfKACtot(CA- ~CB) 

1 + CAKA if- CBKB 

( CB) kf, AB C A -  

1 + CAKA -+- CBKB 

The product  kA~B, surfKACtot is usually taken as the "global" forward rate constant on the 
surface kf, AB. Now we can proceed to see how this equation behaves. 

Consider a batch reactor of volume V into which the catalyst that does the conversion 
of A to B has been placed. The catalyst occupies a fraction (1 - ~) of the reactor volume. 
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The c o m p o n e n t  balances for A and  B are: 

( CB) 
d[CAEV] kf, AB CA -- 

dt  = - ( 1  - E) 1 + CAKA if- CBKB 
V 

( c0) 
d[CBEV] = +(1 - E) kf, AB CA -- 

dt  1 + CAKA + CBKB 
V 

In the fol lowing cell we  c o m p u t e  the two concentra t ions  as funct ions of t ime, and  in the Epi log  

we compu te  the equi l ibr ium levels of A and  B and  g r aph  hor izonta l  lines co r re spond ing  to 

each. The equi l ibr ium level of reaction in this case is given by: 

Ol 

Keq -- 1 - oe 

In[165] "- Clear["Global'*"] 

In[166].- E = 0.4; 

kf = 10 -I- 

Ka = i; 

Kb = I0; 

Keq = .5; 

Cao = I; 

Cbo = 0 ; 

tmax = 100 ; 

LHHWI = NDSolve[ 

{ca'[t] == - 
(I - E) kf(Ca[t] _ chit]) 

Keq 

E 1 + KaCa[t] + KbCb[t] 

kf(Ca[t] _ Cb[t]) 
Keq (i - E) 

Cb'[t] == + 
E 

Ca[0] == Cao, 

Cb[0] == Cbo}, 

{Ca[t], Cb[t] }, 

{t, 0, tmax}] ; 

1 + KaCa[t] + KbCb[t] 

CA[t_] 

CB[t_] 

:= Evaluate[Ca[t] /. LHHWI] 

:= Evaluate [Cb [t] /. LHHWI] 

SetOptions[Plot, DefaultFont -~ {"Hevetica", 12}, 

AxesStyle ~ {Thickness[0.01] }] ; 
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Plot[ {CA[t], CB[t] }, 

{t, 0, tmax}, 

AxesLabel ~ {"t", "Ca [t] , Cb [t] "} , 

PlotStyle ~ {{Thickness[0.01], GrayLevel[0.5] }, 

{Dashing[ {0.03, 0.03}], Thickness[0.01], 

GrayLevel [0.2 ] } }, 

Epilog 

{ 

{Thickness[0.01], Dashing[{0.01, 0.01}], 

Line[{{0, Flatten[NSolve[Keq == ~ ,  G] ] 
1 - 

[ [I, 2] ] + .002}, 
6~ 

{tmax, Flatten[NSolve[Keq == ~ ,  ~] ] 
1 - 

CCl, 2]] + .002}} 

]}, 

{Thickness[0.01], GrayLevel[0.5], 

Dashing[{0.01, 0.01}], 
(x 

Line[{{0, (i - Flatten[NSolve[Keq == 
1 - 

[ [i, 2] ] + .002)}, 
(X 

{tmax, (I - Flatten[NSolve[Keq == 
1 - (~ 

[[1, 2]] + .002)}} 

]} 

} 

]; 

0.6 

0.8 

0.4 

0.2 

i 

# 

I 

Ca[t] ,Cb[t] 

I I I I I 

20 40 60 80 i00 

~ ,  ~]] 

~ ,  ~]] 
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The hydrogenation and dehydrogenation of alkenes and alkanes are reversible processes that 
favor the alkane and involve multiple sites. For this reason it is worth considering a prototyp- 
ical general case to see how we progress with the LHHW analysis. 

The reaction proceeding from alkene to alkane can be taken as the forward direction as it 
is the thermodynamically favored direction. The overall reaction is: 

A + H 2  ~ B 

The individual steps including the sites (@) are as follows: 

A+|  A |  

H2 + 2 @ ~ 2H @ 

A@ +2H@ ~ B@+2@ 

B@,,V---~, B + @  

Adsorption / Desorption 

Dissociative Adsorption/Desorption 

Surface Reaction 

Adsorption/Desorption 

In this mechanism the dihydrogen molecule must dissociatively adsorb prior to reacting with 
the alkene A. This requires two sites (see Figure 2). When the surface reaction takes place to 
convert the alkene and two hydrogen atoms into one alkane, the two sites are regenerated. 
Therefore, we need to examine how the dissociative adsorption step is handled and what 
ramification this has upon the rate expression, assuming all the adsorption-desorption steps 
are at equilibrium. 

The dissociative adsorption-desorption of hydrogen follows this rate expression: 

rH2,ads . . . . .  kH2,adsCH2(Ctot CH,surf CA,surf CB, surf) 2 kH,desCH,surf2 

Overall H2 + 
Reaction 

Figure 2 
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The adsorption includes the difference between the total concentration of sites and the sites 
occupied by hydrogen atoms A and B. Notice also that this term is squared because there are 
two sites involved in the adsorption process. On the desorption side of the expression we see 
that the rate depends upon the square of the concentration of surface hydrogen atoms. Once 
again we assume this step and the other adsorption-desorption steps to be at equilibrium: 

2 
kH2,adsCH2(Cto t  -- CH,  surf --  CA, surf --  CB, surf) 2 ---- kH, desCH, surf 

C 2 
kH2,ads CH2 --  H, surf 

kH, des (Ctot  - CH,  surf --  CA, surf --  CB, surf) 2 

KH2,adsCH2 -- 

C 2 C2ot H, surf 

(Ctot - CH,  surf -- CA, surf -- CB, surf) 2 C2ot 

( C2 ) I  ) H, surf C2ot 

KH2,adsCH2 --" C2ot (Ctot  - CH,  surf -- CA, surf -- CB, surf) 2 

KH2,adsCH2 - -  
8 2 

H,surf 

(1 - 0H, surf -- 0A, surf -- 0B, surf) 2 

/KH2,adsCH2 ~- 
OH,surf 

(1 - 0H, surf -- 0A, surf -- 0B, surf) 

From the same analyses of the adsorption-desorption processes for A and B we find: 

KA,adsCA -- 

KB, adsCB ---: 

OA, surf 

(1 -- 0H, surf --  0A, surf -- 0B, surf) 

0B, surf 

(1 - (~H, surf --  0A, surf -- 0B, surf) 

The term for B is written in the form that it would have if B were adsorbing in order to keep 
the meaning KB uniform with the other adsorption constants. We can solve for the fractional 
surface concentrations to get: 

In[179]:= Clear["Global'*"] 

In[180]:= 8 =. 

K =. 

Simplify[ 

Solve[ 

{CAKA == 
~A 

1 - ~.- ~A- eB" 
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~B 
CBKB == 

1 - 8H - 8A- 8B 

%/KH2CH2 = = 
1 - ~H - ~;A- 8B 

{0A, OB, 0H}] 
] 

�9 

Out[182]- { {@A -~ 

0B -* 

CA KA 

1 + CA KA + CsKs + ~/C~{2KH2' 

CB KB 

1 + cA KA + C BKB + %/CH2KH2 

C H2 KH2 
OH ~ }} 

C H2 KH2 + ( i + C A KA + C B KB ) %/C H2 KH2 

The surface reaction rate begins to take shape: 

2 rA+2Hc~B, surf -- kA+2H-~B, surfCA, surfC 2 surf -- kB~A+2H surfCB surfCem t . . . . . .  p y, sites 

{ Ct3ot ) 2 { C3ot) 
rA+2Hc>B, surf -- KA+2H-* B, surfCA, surfC2,surf ~k Ctot~ - kB-*A+2H'surfCB'surfCempty'sites ]k Ct3ot 

3 3 0 2 rA+2Hc>B, surf -- kA+2H~B, surfCtot0AOH2 kB--. -- A+2H, surfCtot~gB 

3 3 rA +2H r B, surf = kH + 2H ..... B, s u r f C t o  t 0H 0H 2 -- kB-~ A +2H, s u r f C t o  t tgB (1 - OH -- 0a -- 0B)2 

_. kA+2H__,B, surfCt3ot {0A(9 2 _ Q , ( I -  OH-  0 A -  0B)2~ rA+2Hc~B, surf 
KA+2Hc>B, surf / 

This begins to look a bit formidable  because of the algebra that wou ld  be involved in manip-  
ulat ing this expression. We will let Mathematica do most  of the algebraic manipu la t ions  by 
fol lowing these steps that use PowerExpand[  ] to expand the h igher-order  terms Together[  ], 
which br ings separate terms over the same denomina to r  and Fu l lS impl i fy [  ], which  does just 
that. Here is the result of this approach  to the parenthet ical  expression of the r ight -hand side 
of the rate expression: 

CA KA 
In [i 83 ] " ~A -- = 

I + CA KA + CB KB + V/Cx2 KH2 

6)B CB KB = 
1 + CA KA + CB KB + %/CH2 KH2 

~H -- 
C~ K~ 

CH2 KH2 + (I + CAKA + CBKB)%/CH2KH2 
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Out [i 86] : 

FullSimplify[ 

Together[ 

PowerExpand [ @A @~ - 

] 
] 

-C s Ks + CA CH2 KA KH2 mi+2 H~B, surf 

~B( I - ~H- ~A- ~B) 2 

KA+ 2Hr B, surf 

(i + CAKA + CsKs + C~T2V~- ~)3KA+gHc>s,surf 

We can manipulate this into the form that we  are interested in as follows: 

CBKB ) 
(CACH2KAKH2- KA+2H~B .... f 

rA+2Hr surf = kA+2H-,B, surfCt3t (1 if-CAKA -t-CBKB if- %/CH2KH2) 3 

2 
CB CB CB, surf CA,surf CH, surf 1 

- -  2 CH2 Keq -- CACH2 CB, surf CA, surf CA CH, surf 
2 

CB CB, surf CA,surf 1 CH,surf 

CB, surf CA,surf CA CH,surf2 CH2 

C 2 CB CB, surf CA,surf H, surf 
2 CA CH2 CB, surf CA, surfCH,surf 

KA+2H~B, surfKAKH2 

KB 
KB KAKH2 

�9 

"" KA+2H~B, surf Keq 

(CA CH2 -- c'--! ~ K e q  I 

rA+2H~B, surf -- kA+2H--,B, surfKAKH2Ct3ot (1 + CA KA if- CB KB -+- %/CH2 KH2) 3 

CB (CA CH2 -- k-~{.q) 

rA+2H~B, surf = kglobal (1 if- CA KA -+- CB KB -t- %/CH2 KH2) 3 

N o w  we can write some code that will  evaluate the kinetics and the equil ibrium and then 
graph the relevant gas and surface phase concentrations for us all at once. The equil ibrium 
extent of reaction can be computed  as fol lows for any given value of the equil ibrium constant: 

In[187]'- Keq = .5; 
(~ ----. 

Cao = I; 

NSolve [Keq == 
Cao(l - G)2" 

~] 

Out[190]- {{or -~ 3.73205}, {c~ -~ 0.267949}} 
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We see that the second of the two evaluations is the correct one. We imbed this into the Epilog 
as the y-coordinate of a line for the equilibrium concentration of the product  at time zero 
and tmax, and we take one minus this value to get the line corresponding to the equil ibrium 
concentration of reactant. By doing it this way we can set the magni tude of the equil ibrium 
constant and the code will automatically compute these concentrations for the graph. This 
allows us to visualize immediately where the concentrations are at any time relative to the 
equilibrium concentrations: 

In [191] "- Clear["Global'*"] 

In[192].- E = .4; 

kglo = . 01; 

Ka = .I; 

Kb = .01; 

KH2 = .5; 

Keq = .5; 

Cao = 1; 

CH2o = i; 

Cbo = 0 ; 

tmax = 5 0 0 ; 

LHHW2 = NDSolve[ 

(69tCa [t ] == 

(I - E) kglo (Ca [t] CH2 [t] _ Cb[t] ) 
-- Keq 

E (I + KaCa[t] + KbCb[t] + %/KH2CH2[t]) 3 

arCH2 [t] == 

(I - s kglo(Ca[t] CH2[t] _ Cb[t] ) 
Keq 

E (I + KaCa[t] + KbCb[t] + %/KH2CH2[t]) 3 

69t Cb [ t ] = = 

(I - E) kglo(Ca[t] CH2[t] _ Cb[t] ) 
+ Keq 

(I + KaCa[t] + KbCb[t] + %/KH2CH2[t]) 3 

Ca[0] == Cao, 

CH2[0] == CH2o, 

Cb[0] == Cbo}, 

{Ca[t], CH2[t], Cb[t]}, 

{t, 0, tmax}] ; 
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cA[t__] 

cH2 [ t__ ] 

cB [t__ ] 

cA[t] 

cH2 [ t ] 

cB[t] 

:= Evaluate[Ca[t] /. LHHW2[[I]]] 

:= Evaluate[CH2[t] /. LHHW2[[I]]] 

:= Evaluate [Cb [t] /. LHHW2[ [i] ] ] 

Out {206]- InterpolatingFunction[{{0., 

Out [207]- InterpolatingFunction[{{0., 

Out [208]- InterpolatingFunction[{{0., 

500.}}, <>] It] 

500.}}, <>] It] 

500.}}, <>] [t] 

In[209] ": 8A[t_] := 

8A[t] 
8M[t] 

General: :spell : Possible spelling error: new symbol 

name "SA" is similar to existing symbols {@, (~A}. 

General: :spell : Possible spelling error: new symbol 

name "@H" is similar to existing symbols {8, ~A}. 

CAKA 
Out [211] = [ t ] 

1 + C AKA + C~K~ + ~CH2KH2 

C H2 KH2 
Out [212] = [ t ] 

CH2KH2 + (I + CAKA + C~K>)~C}{2KF{2 

In[213] := SetOptions[Plot, DefaultFont -~ {"Helvetica", 12}, 

AxesStyle ~ {Thickness[0.01] }]; 

Plot[ {cA[t], cB[t] }, {t, 0, tmax}, 

AxesLabel ~ {"t", "Ca[t],Cb[t]"}, 

PlotStyle ~ {{Thickness[0.01], GrayLevel[0.5]}, 

{Dashing[{0.03, 0.03}], Thickness[0.01], 

GrayLevel[0.2] }}, 

PlotLabel ~ Keq "= Keq", 

Epilog ~ { 

{GrayLevel[0.6], Dashing[{0.05, 0.025}], 

KacA[t] 

1 + KacA[t] + KbcB[t] + ~KH2cH2[t] 

8H[t_] := 
KH2 cH2 [t] 

1 + KacA[t] + KbcB[t] + ~KH2cH2[t] 

General--spelll - Possible spelling error- new symbol 

name "cH2" is similar to existing symbol "CH2". 
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6~ 
Line[{{0, Flatten[NSolve[Keq == G] ] 

(I - ~)2" 
[[2, 2]] + .002}, 

{tmax, Flatten[NSolve[Keq == (i - G)2" G ] ] 

[[2, 2]] + .002)} 
]}, 

{GrayLevel[0.6], Dashing[ {0.05, 0.025}], 

Line[{{0, (I - Flatten[NSolve[Keq== 
(i - ~)2" 

[[2, 2]] + .002)}, 

{tmax, (I - Flatten[NSolve [Keq == 
(I - ~)2" 

[[2, 2]] + .002)}} 
]} 

} 
]; 

Plot[{SA[t], 8H[t]}, {t, 0, tmax}, 

AxesLabel ~ {"t", "@A[t],SH[t]"}, 

PlotStyle 

{Thickness[0.01], Dashing[{0, 0}] }, 

{Thickness[0.01], Dashing[{0.02, 0.02}]}}]; 

~]] 

Ca[t] ,Cb[t] 

iK 
0.5- Keq 

0.8 

0.6 

0.4 

0.2 
S 

S 

i00 200 300 400 500 
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eA[t] ,eH[t] 

0.25 
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The next step could be to make the preceding into a Module so that we can test parametric 
sensitivity readily. 

Microbial Population Dynamics 
At present there is an unprecedented research explosion in the biological sciences. The break- 
throughs in the basic sciences of genomics and related disciplines have brought us to the 
threshold of a new era in biological technology. Paramount to this new technology is the use 
of microbes (that is, cellular organisms) as reactors. Organisms have evolved mechanisms for 
dealing with environmental stress (such as the presence of a new substrate chemical in their 
surroundings) by rerouting their metabolic pathways. Metabolic engineers can take advan- 
tage of this through a procedure of accelerated adaptation in order to generate new microbes 
that consume a given substrate and produce a specific target chemical. 

Microbes use enzymes as catalysts to obtain the desired or beneficial reaction and typically 
under mild conditions. The brewing of beer and fermentation of fruit and vegetable mass high 
in starches to produce consumable ethanol are the oldest and most familiar examples of using 
microbial action to achieve a desired end. But now much more has been demonstrated, from 
the production of essential human hormones to the synthesis of specialty chemicals. 

In a reactor containing substrate a colony of microbes is innoculated and brought to 
maturity. As the colony grows the substrate is consumed to supply the microbes with their 
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building blocks. Some fraction of the substrate is necessarily diverted into the formation 
of biomass (that is, cells--their membranes and organelles) but some other fraction is used 
to produce the target molecule. In a batch process when the substrate has been consumed, 
the microbial colony either dies rapidly or if the process is to be stopped prior to complete 
substrate consumption, it is killed by a rapid change in conditions (for example, by raising 
the temperature as is done in the pasteurization of raw milk). From this point the problem of 
recovering the target molecule is one of separating it from the biomass and aqueous medium. 

The basis of life is molecular. Therefore we can describe the rates of substrate consumption, 
product  formation, and even microbe population growth in much the same way that we would 
describe the rates of molecular-level chemical processes. 

We will take the microbe, substrate, and product  concentrations to be a[t], bit], c[t], 
respectively. The ways in which these kinetics are written are somewhat  different. The equa- 
tions that describe the rates of change of each of these are shown in the following: 

bit] - k )  a[t], 
a'[t] = =  /~maXKs + b[t] 

b,[t] = =  _ (#ma____~x b[t] ) 
ys Ks + b [ t ]  a[t], 

( b [ t ] )  
c'[tl = =  ~ + r ~maXKs + b[t] a[tl, 

The kinetic expressions are highly nonlinear because they include the following rate term: 

b[t] 
/~max = a[t] 

Ks + b[t] 

where /~max is a maximum rate constant, Ks is a saturation concentration, and ys is a di- 
mensionless parameter that is similar to a stoichiometric coefficient. Likewise, c~ and fl are 
dimensionless numbers that are also similar to stoichiometric coefficients; they relate the rate 
of production of the desired molecule to the rate of growth of microbial cell mass. In the cell 
that follows we build a model for these kinetics to examine how they behave: 

In[216]:: Clear["Global'*"] 

In [217]:= ~ = .15; ";zmax"; 

K = .04; "Ks"; 

y = I; "ys"; 

= lo-n; 

n = 2; 
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= .I; 

tmax = 300 ; 

k = 0.I; 

"a[t] is the change in microbial concentration; 

decreasing" ; 

"b[t] is the change in the substrate concentration; 

increasing" ; 

"c[t] is the change in product concentration; 

increasing" ; 

bugsl = NDSolve [ { 

al[t_] 

bl[t_] 

cl [t__] 

b[t] 
a' [t] == ~( 

K + b[t] 
b[t] 

b'[t] .... 
y K + b[t] 

c'[t] == (~ + ~ 

a[O] == .01, 

b[O] == I0, 

c[O] == 0 

}, 

{a[t], b[t], c[t]}, 

{t, O, tmax}] ; 

:= Evaluate[a[t] /. bugsl] ; 

:= Evaluate[b[t] /. bugsl] ; 

:= Evaluate [c [t] /. bugsl] ; 

- k)a[t], 

a[t], 

b[t] 

K + b[t] 
)a[t], 

pal = Plot[al[t], {t, 0, tmax}, 

DisplayFunction -~ Identity, 

PlotStyle-~ {Thickness[0.01], Dashing[{0.02, 0.02}]}, 

PlotRange -~ {{0, tmax}, {0, bl[0] [[I]]}}] ; 

pbl = Plot[bl[t], {t, 0, tmax}, 

DisplayFunction -~ Identity, 

PlotStyle -~ {Thickness[0.01], GrayLevel[0.5]}]; 

pc1 = Plot[cl[t], {t, 0, tmax}, 

PlotStyle -~ {Thickness[0.01] }, 

DisplayFunction -~ Identity] ; 

Show[pal, pbl, pcl, DisplayFunction-~ $DisplayFunction, 

PlotLabel -~ tmax "= tmax, a[t] :gray, b[t] :dashed, 

c It] :blk"] ; 
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How do we interpret these results? The substrate concentration (gray) falls slowly at very 
short time after innoculation of the microbial colony. This is an induction period over which 
the colony grows slowly. After this induction time, the colony of microbes (dashed) suddenly 
grows "explosively" and reaches a maximum. At the same time that the explosive growth 
occurs the substrate is diminished at a precipitous rate. After the substrate is used up, the 
colony begins to diminish in number. This occurs in the present case at a much slower rate 
than their growth. During the period of explosive growth and shortly after the maximum is 
attained in microbial population, the product concentration (solid black) increases and then 
levels to a constant with time as the colony finally expires. 

7.6 Summary 
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In this chapter we have covered a wide spectrum of chemical kinetics from the simplest rate 
laws with relatively straightforward forms and interpretations to those involving catalysts and 
enzymes, which are more complex and necessarily more abstruse. As complex as the kinetics 
may have been, we have throughtout this chapter assumed the most simplistic of chemical 
reactorsmthat of the batch reactor. Ironically, although we speak of the batch reactor as being 
simple, in fact its description as we have seen can be not at all simple due to the fully transient 
nature of the processes occurring within it. Interestingly, if we introduce flows of reactant and 
product to and from the control volume, we will find that the system will have a condition that 
we refer to as the steady-state condition that is totally independent of time. At steady state the 
flow reactor is simple to describe even though the reactor seems to be more complex. Before 
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we analyze such systems we will first cover the semi- or fed-batch reactor, which involves 
flow of reactant into the system continuosly or intermittently. This type of reactor may attain 
a steady state in which case its mathematics are "simple," but  it may also operate transiently 
making the mathematics complex due to their time dependency. Whatever type of reactor we 
examine, in every case there will be some form of chemical reaction to consider and the rate 
of that reaction may be described using the rate laws and methods that we have developed in 
this chapter. 
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Semi-Continuous Flow 
Reactors 

8.1 Introduction to Flow Reactors 
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A batch reactor is useful for laboratory studies and the production of small quantities of ma- 
terials. Its disadvantage is that each time it is used it must be charged, operated, and then 
discharged in three separate stages. The time spent in charging and discharging is time lost 
to production. Nonetheless, if the value of the product is very high and the production quan- 
tities required are low, then the batch system is often an optimal reactor choice. As it is not 
a dedicated unit, many different kinds of products can be scheduled and processed in the 
same unit. This can be done effectively for many pharmaceuticals and for some 'specialty 
chemicals. However, as the production requirements rise and the value-added in the product 
falls, efficient production is a must and the reactor must be used as continuously as possi- 
ble. There should be relatively few shut-downs and the process should be operated continu- 
ously for as long as possible. With respect to reactor size and the need for process continuity, 
the petroleum refinery lies at one extreme of the spectrum with pharmaceutical production 
at the other. 

There are three idealized flow reactors: fed-batch or semibatch, continuously stirred tank, and 
the plug flow tubular. Each of these is pictured in Figure 1. The fed-batch and continuously 
stirred reactors are both taken as being well mixed. This means that there is no spatial de- 
pendence in the concentration variables for each of the components. At any point within the 
reactor, each component has the same concentration as it does anywhere else. The consequence 
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Figure I 

of this assumption is that as soon as the reactants cross the boundary  from outside to inside 
of the reactor, their concentrations go from their feed stream values to the exit stream concen- 
tration values. This is true even if the reactor is considered to be operating transiently rather 
than in a steady state. The conversion of reactants is the same everywhere and, as we will see, 
it is set by the holding time in the reactor. Of course the exit stream has product  and reactant 
concentrations that are exactly the same as those within the reactor. All this is a consequence 
of the mathematical assumption of perfect mixing. 

In contrast to the first two reactors, concentrations within the tubular flow reactor are 
characterized by position dependence. When we assume plug-flow, we take the concentrations 
to be independent  of their radial positions. (The axial direction z is along the horizontal 
axis in the diagram; the radial direction is taken from the central axis out to the wall and 
is perpendicular  to the axial direction.) The term plug means that there is no concentration 
profile in the radial direction; the gas moves through the cylindrical tube as if it were a "plug" 
of material translating through the volume. So in this case we must  account not only for time 
dependence, but also for position of the front of the plug of gas. Near the entrance of the 
tube the gas is nearly 100% reactant and at the exit it is a mix of reactant and product,  if the 
conversion is <100%. At axial positions between the two ends the gas is a mix of products 
and reactants. Our goal will be to predict how the mix changes as a function of position and 
flow parameters,  that is, the holding time. 
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Some very interesting consequences of complete mixing versus partial mixing can be 
defined in terms of reactor efficiencies. For positive-order kinetics the fully mixed reactor will 
require a larger volume than the partially mixed tubular system to achieve the same conversion 
and at the same holding time. This is a very important  result that requires using analysis to 
unders tand it. At the same time, al though conversion may be higher, so too may selectivity be 
lower, if multiple reactions are involved. There is much to learn about the systems in which 
chemical reactions are conducted, even if we assume these systems to be at the extremes of 
ideal behavior. 

8.2 Semicontinuous Systems 
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Fed-Batch Reactors 
The fed-batch reactor is a special system that can be used whenever  the need arises to carefully 
control the reaction rate in a batch system. For example, if a reaction is highly exothermic, then 
mixing the reactants at their full stoichiometric ratios can lead to uncontrollable temperature 
rises, which are referred to as thermal excursions. In simple terms the reaction produces heat 
at a rate that is faster than the rate at which heat can be transferred away from the vessel. As a 
result the temperature in the vessel rises. The higher temperature leads to faster reaction rates 
and even higher rates of heat production. And so it goes with the heat of reaction feeding 
back into the kinetics and the kinetics rising with the increased temperature. The outcome 
of a thermal excursion can be, at a minimum, reduced selectivity and, at its worst, total loss 
of control of the reacting system with dire consequences. This phenomenon is called reactor 
runaway and it can lead to detonation of the system. However,  by adding one of the reactants 
slowly or intermittently, we can control the system and maintain good heat transfer away 
from the vessel. As the amount  of reactant is limited, the rate of reaction proceeds at a much 

Fed-batch No position 
dependence 

Figure 2 
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reduced average rate, which allows the rate of heat transfer to keep pace with the rate of 
reactions. This approach is well known and much utilized by synthetic chemists at the bench 
and it is also used for all the same reasons that a production chemist or engineer would use it 
on a larger scale. The concentration changes within the reactor are periodically changing if the 
mass and volume of reactant are added intermittently, but they become continuously variant 
in time, that is, transient, if the flow to the system is continuous. For example, bioreactors are 
in a very real sense fed-batch systems in that oxygen may be fed continuously to the microbial 
colony for its sustenance, even if the substrate is fully charged at the beginning of the batch, 
since the volume of solution changes very little throughout  the course of the process. 

If the rate of the irreversible chemical reaction of A and B to form D is given by r A B ,  and 
the flow rates of reactants are given by q,~ and q B with corresponding feed concentrations of 
CAr and CBf, then the component  balance equations for the fed-batch reactor that produces D 
are: 

dCA[t]V[t] 

dt 

dC,[t]V[t] 

dt 

dCD[t]V[t] 

dt 

= Car q A - rAB V[t] 

= CBf q ;~ - r,xB V[t] 

- -  r A B  V[t] 

These are the three relevant equations we need to solve for this problem. The immediate ques- 
tion that arises is that of the form of the kinetics. We will assume that the reaction between 
A and B is first order in A and first order in B, that is, second order overall. The equations 
become: 

dCA[t]V[t] 

dt 

dC~[t]V[t] 

dt 

dCD[t]V[t] 

dt 

-- CAfqA - kABCA[t]C~[t]V[t] 

- -  C B f q B  - -  kABCA[t]CR[t]V[t] 

= k A B  CA[t]CR[tl V[t] 

8.3 Negligible Volume Change 
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In some cases the volume change may be negligible from the start to the finish of the batch. 
For example, one reagent may be added in a very concentrated form to a dilute solution of 
the second reactant in the reactor. This can lead to a situation in which the volume of added 
reactant is quite small compared to that of the initial volume of solution. The equations for 
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this become: 

d CA[t] CAfqA 
dt 

dCB[t] 

dt 

dCD[t] 

dt 

V 
kABCA[t]CB[t] 

-- --kABCA[t]CB[t] 

- kABCA[t]CB[t] 

We can attempt to find a complete solution for this system of equations: 

In [l ] . = DSolve[ 

{CA" [t] == CAf qA - kabCA[t] CB[t], 

CB' [t] == -kabCA[t] CB[t], 

CD" [t] == kabCA[t] CB[t], 

CA[0] == 0, 

CB[0] == CBo, 

CD[0] == 0}, 

{CA[t], CB[t], CD[t]}, 

t] 

Out[l]- DSolve[{CA'[t] -- CAf qA - kab CA[t] CB[t] , 

CB'[t] -= -kab CA[t] CB[t], CD'[t] -- kab CA[t] CB[t], 

CA[0] -- 0, CB[0] --CBo, CD[0] -- 0}, 

{CA[t], CS[t], cn[t]}, t] 

What we see is that this set of seemingly naive equations is not readily soluble analytically. 
The combination of the second-order kinetics plus the convective flow term is enough to 
require the use of numerical methods. To prove this to ourselves, we can redo the problem 
after removing the convective flow term. That is done in the cell that follows. 

In[2].= Clear ["Global ' *" ] 

In [3] := Simplify[ 

DSolve [ 

{CI' [t] == -kCl[t] C2[t], 

C2' [t] == -kCl[t] C2[t], 

C3' [t] == +kCl[t] C2[t], 

CI[0] == Clo, 

C2[0] == C2o, 

C3[0] == 0}, 

{Cl[t], C2[t], C3[t]}, 

t] 
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Solve--verif �9 Potential solution {C[2] -~ 0, C[3] -~ 0} 

(possibly discarded by verifier) should be checked 

by hand. May require use of limits. 

Solve-:ifun �9 Inverse functions are being used by 

Solve, so some solutions may not be found. 

1 
Power--infy �9 Infinite expression - encountered. 

0 

1 
mower--infy �9 Infinite expression -6%- encouns 

oo--indet �9 Indeterminate expression Ok ComplexInfinity 

encountered. 

1 
Power--infy �9 Infinite expression - encountered. 

0 

General::stop : Further output of Power::infy will be 

suppressed during this calculation. 

oo-.indet �9 Indeterminate expression Ok ComplexInfinity 

encountered. 

oo--indet �9 Indeterminate expression 0 ComplexInfinity 

encountered. 

General--stop - Further output of oo--indet will be 

suppressed during this calculation. 

Out[3]- {Cl[t] 
Clo(Clo - C2o) 

-~ Cl[t] 
CIo - C2oe( clo,C2o)kt' 

(Clo - C2o) C2oe c2~ 
c2[t] -, - , c2[t] 

-Cloe cl~ + C2oe c2~ 

-~ Indeterminate, 

-~ Indeterminate, 

CIoC2o(-I + e( clo,c2o)k< 
C3 [t] -~ Indeterminate, C3 [t] -~ } 

- Cio + C20 e (- Clo , c2o) k t 

Having removed the flow term, the analytical solution is found; however, we also see that 
along the way the solver found indeterminance in addition to the closed-form solutions. If we 
look back at Chapter 5, we find that we already solved this problem, but there we made a substi- 
tution for C2[t] in terms of Cl[t], which thereby made the solution process easier and avoided 
an encounter with the infinite expression. Nonetheless,  we see that including the constant 
flow term makes the analytical solution difficult to obtain. On the other hand, the numerical 
solution is trivial to implement, just as long as we have proper parameter values to apply. 

In[4].- SetOptions[{Plot, ListPlot}, AxesStyle -~ {Thickness[0.01]}, 

PlotStyle ~ {PointSize[0.015], Thickness[0.006]}, 

DefaultFont ~ {"Helvetica", 17} ] ; 
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In [5 ] : = Clear [ "Global ' *" ] 

CAf = i.; 

CAo = 0 ; 

CBo = . I; 

CDo = 0; 

kab = . 1; 

qAf = . 001; 

tmax = 20000; 

$D = 5; 

$B = 5; 

$A = 4; 

Mwd = 60; 

Mwb = 40 ; 

Mwa = 20; 

Vr = i00; 

fbsoll = NDSolve[ 

CAf qAf 
{CA' [t] == - kabCA[t] CB[t], 

Vr 
CB' [t] == -kabCA[t] CB[t], 

CD' [t] == kabCA[t] CB[t], 

CA[0] == CAo, 

CB[0] == CBo, 

CD[0] == CDo), 

{CA[t], CB[t], CD[t]}, 

{t, 0, tmax}] ; 

ca[t_] := Evaluate[CA[t] /. fbsoll] 

cb[t_] := Evaluate[CB[t] /. fbsoll] 

cd[t_] := Evaluate[CD[t] /. fbsoll] 

ep[t_] := $D cd[t] Vr Mwd - $B cb[t] Vr Mwb 

- $A CAf qAf Mwa t 

Plot[ {ca[t], cb[t], cd[t] }, 

{t, 0, tmax}, 

PlotRange ~ All, 

PlotStyle ~ { 

{Dashing[ {0.0, 0.0}], Thickness[0.01] }, 

{GrayLevel[0.5], Thickness[0.01]}, 

{Dashing[{0.02, 0.02}], Thickness[0.01]}}, 

AxesLabel ~ {"t", "Ci[t]"}, 

PlotLabel ~ "solid blk = Ca, gray = Cb, 

dashed = Cd"] ; 
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The preceding graph shows the t ime-dependent concentrations of each component.  The 
profile for B drops nearly linearly with time and that of product rises the same way. The 
concentration of A is very small until most of B is used up and then it rises sharply with 
time. 

The following graph is most important. Here we have computed the total mass of A added 
at tmax plus the total mass of B present initially and compared this with the masses of B and 
D at any time: 

Total Mass of A + B - (CAr qAf Mwa tmax) + CB[0]VF Mwb 

In[26]:= Plot[{(CAf qAf Mwa tmax) + cb[0] Vr Mwb, cb[t] Vr Mwb, 

cd[t] Vr Mwd}, {t, 0, tmax}, 

PlotStyle ~ {{Dashing[{0.0, 0.0}], Thickness[0.01]}, 

{GrayLevel[0.5], Thickness[0.01] }, 

{Dashing[ {0.02, 0.02}], Thickness[0.01] }}, 

AxesLabel ~ {"t", "mi[t]"}, 

PlotLabel ~ "gry=mb, blk=mtot [A+B], dsh=md"] ; 
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The mass  of D cannot  exceed the mass  of A + B, and  it does not. This provides  the necessary  

check on the model .  We have  inc luded the mass  of B as a funct ion of t ime and  it goes to zero 

as we  w o u l d  expect. 

Next  we  can in t roduce and  compu te  the economic potent ia l  of the mixture  as a funct ion 

of time: 

ep[t_ ] :-- SD CD[t]Vr M w d  - SB Cs[t]Vr M w b  - SA CAf qAf M w a  t 

The m a x i m u m  economic potent ia l  is the difference be tween  the values  of the p roduc t s  and  the 

reactants. The terms $D, $B, and  $A are the values  per  uni t  mass  of each component .  Because 

this is a semiba tch  process,  the economic potent ial  goes t h rough  a m a x i m u m .  We can plot  this 

below and show this behavior  for the case we  are considering:  

In[27] := $D = 5; 

$B = 5; 

$A = 4; 

Plot [ep [t], 

PlotStyle 

PlotRange 

AxesLabel 

PlotLabel 

{t, 0, tmax}, 

{{Thickness[0.01], GrayLevel[0.5]}}, 

-~ All, 

{"t", "$[t]"}, 
-~ "Economic Potential"] ; 
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In this case the maximum value of the mixture is reached after 10,000 time units. Before this 
time we have not converted all of the reactant to product, but after this time we begin to merely 
dilute the product in reactant A. The next calculation and plot we shall make is the change in 
total volume calculated on the basis of the flow rate of reactant: 

In[31] := Plot[{(qAf t + Vr)}, {t, 0, tmax}, 

PlotRange ~ All, 

AxesLabel ~ {"t", "V[t]"}, 

PlotStyle ~ {{Thickness[0.01], GrayLevel[0.8]}} 
]; 

V[t] 
1201 

115 

110 

105 

::11 :�84184 

%: 

t 
5000 10000 15000 20000 
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The volume change in this case is on the order of 20%, which is really too large to be acceptable 
within the context of an analysis in which it was assumed that negligible volume change would 
occur. Hence we are motivated to do the analysis again without  this simplifying assumption. 

8.4 Large Vol u m e C h ange 
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The equations for variable volume are: 

dCa[t]V[t] 
dt 

dCb[t]V[t] 
dt 

dCd[t]VIt] 
dt 

-- Caf qaf - kab Ca[t]Cb[t] V[t] 

= - k a b  Ca[t]Cb[t] V[t] 

= +kab Ca[t]Cb[t] V[t] 

As there are four t ime-dependent  variables and only three equations, we need another equa- 
tion, which is obtained in the total material balance. The mass in the control volume increases 
only by the additional mass admitted through the feed stream: 

d p V[t] 

dt 
= p qaf 

If the density is essentially unchanging and if the flow rate in is a constant, then the volume 
change is linear in time: 

V[t] = Vo + qaf t 

In[32] .- Clear["Global'*"] 

In[33]:= CAf = I.; 

CAo = 0 ; 

CBo = . I; 

CDo = 0; 

kab = . I; 

qAf = . 001; 

tmax = 20000; 

$D = 5; 

$B = 5; 

$A = 4; 

Mwd = 60; 

Mwb = 40 ; 

Mwa = 20; 

Vr = 100; 
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fbsol2 = NDSolve[ 

{~tV[t] == qAf, 

~t(CA[t] V[t]) == CAf qAf - kahCA[t] CB[t] V[t], 

@t(CB[t] V[t]) == -kab CA[t] CB[t] V[t], 

@t(CD[t] V[t]) == kabCA[t] CB[t] V[t], 

V[0] == Vr, 

CA[0] == CAo, 

CB[0] == CBo, 

CD[0] == CDo}, 

{V[t], CA[t], CB[t], CD[t]}, 

{t, 0, tmax}]; 

v[t_] 

ca[t_] 

cb[t_] 

cd[t_] 

:= Evaluate[V[t] /. fbsol2] 

:= Evaluate[CA[t] /. fbsol2] 

:= Evaluate [CB [t] /. fbsol2] 

:= Evaluate[CD[t] /. fbsol2] 

ep[t_] := $Dcd[t] v[t] Mwd- $Bcb[t] v[t] Mwb 

- $A CAf qAf Mwa t 

Plot [ {ca [t] , cb[t], cd[t]}, 

{t, 0, tmax}, 

PlotRange ~ All, 

PlotStyle ~ {{Dashing[{0.0, 0.0}], Thickness[0.01] }, 

{GrayLevel[0.5], Thickness[0.01]}, 

{Dashing[{0.02, 0.02}], Thickness[0.01] }}, 

AxesLabel ~ {"t", "Ci[t]"}, 

PlotLabel ~ "blk=Ca,gr=Cb,dhsd=Cd"] ; 

Plot[{(CAf qAf Mwa tmax) + cb[0] Vr Mwb, cb[t] v[t] Mwb, 

cd[t] v[t] Mwd}, {t, 0, tmax}, 

PlotStyle ~ {{Dashing[{0.0, 0.0}], Thickness[0.01] }, 

{GrayLevel[0.5], Thickness[0.01]}, 

{Dashing[ {0.02, 0.02}], Thickness[0.01] }}, 

AxesLabel ~ {"t", "mi[t]"}, 

PlotLabel -~ "gry=mb, blk=mtot [A+B] , dsh=md"] ; 

Plot [ep [t], 

PlotStyle 

PlotRange 

AxesLabel 

PlotLabel 

{t, 0, tmax}, 

{{Thickness[0.01], GrayLevel[0.5] }}, 

All, 

{"t", "$ It] "}, 

"Economic Potential" ] ; 
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Plot[{(v[t])}, {t, 0, tmax}, 

PlotRange ~ All, 

AxesLabel ~ {"t", "V[t]"}, 

PlotStyle ~ {{Thickness[0.01], 
]; 

GrayLevel [ 0.8 ] } } 
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The next step we take is to create a Modu le  function semi2 from this code so that we may  run 

many  different cases of this semibatch reactor. The groups of similar variables and parameters  

are grouped  within curly brackets: 

In[57] :- semi2[{CAf_, CAo_, CBo_, CDo_}, kab_, qAf_, 

{$D__, $B_, $A_}, {Mwd_, Mwb_, Mwa_}, Vr__, tmax_] := 

Modu i e [ 

{V, CA, CB, CD, v, ca, cb, cd, fbsol2, ep, t}, 

fbsol2 = NDSolve [ 

{~t V[t] == qAf, 

~t(CA[t] V[t]) == CAf qAf - kab CA[t] CB[t] V[t], 
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~t(CB[t] V[t]) == - kab CA[t] CB[t] V[t], 

at(CD[t] V[t]) == kab CA[t] CB[t] V[t], 

v[0] == vr, 

CA[0] == CAo, 

CB[0] == CBo, 

CD[0] == CDo}, 

{V[t], CA[t], CB[t], CD[t]}, 

{t, 0, tmax}] ; 

v[t] = Evaluate[V[t] /. fbsol2] ; 

ca[t] = Evaluate[CA[t] /. fbsol2]; 

cb[t] = Evaluate [CB [t] /. fbsol2]; 

cd[t] = Evaluate[CD[t] /. fbsol2] ; 

ep[t] = ($D cd[t] v[t] Mwd- $B cb[t] v[t] Mwb- 

$A CAf qAf Mwa t); 

SetOptions[Plot, DefaultFont ~ {"Helvetica", I0}] ; 

Plot[ {ca[t], cb[t], cd[t]}, 

{t, 0, tmax}, 

PlotRange ~ All, 

PlotStyle ~ {{Dashing[{0.0, 0.0}], Thickness[0.02] }, 

{GrayLevel[0.5], Thickness[0.02] }, 

{Dashing[{0.04, 0.04}], Thickness[0.02] }}, 

AxesLabel ~ {"t ", "Ci[t]"}, 

PlotLabel ~ "blk=Ca, gr=Cb, dhsd=Cd", 

DisplayFunction ~ Identity] ; 

{ {Graphics [Plot [ 

{(CAf qAf Mwa tmax) + CBo Vr Mwb, cb[t] v[t] Mwb, 

cd[t] v[t] Mwd}, {t, 0, tmax}, 

AxesLabel ~ {"t", ""}, 

PlotStyle ~ {{Dashing[{0.0, 0.0}], Thickness[0.02] }, 

{GrayLevel[0.5], Thickness[0.02]}, 

{Dashing[{0.04, 0.04}], Thickness[0.02] }}, 

AxesLabel ~ {"t", "mi[t]"}, 

PlotLabel ~ "gry=mb, blk=mtot[A+B], dsh=md", 

DisplayFunction ~ Identity] ] }, 

{Graphics [Plot [ep [t] , {t, 0, tmax}, 

PlotStyle ~ {{Thickness[0.02], GrayLevel[0.5] }}, 

PlotRange ~ All, 

AxesLabel ~ {"t", "$[t]"}, 

PlotLabel ~ "Value", 

DisplayFunction ~ Identity] ] }, 
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{Graphics[Plot[{(v[t])}, {t, 0, tmax}, 

PlotRange ~ All, 

AxesLabel ~ {"t", "V[t]"}, 

PlotStyle ~ {{Thickness[0.02], GrayLevel[0.8] }}, 

DisplayFunction -, Identity] ] } } 

This function can now be used to examine how the behavior of the fed-batch reactor system 
behaves with variation in its parameters. In the example that follows, the parameters are 
held constant, except for the values of the product  which are varied from 5 to 15 in three 
increments of 5 each. We have done this by making a table of the Module  "semi2." The output  
from semi2 is three graphics, one for each relevant graph. Our goal is to show these as an 
array of plots. We do this by flattening the output  "solgrp," to remove all the internal curly 
brackets. Then these are partitioned into groups of three and finally we "Show" the results as 
a set of GraphicsArray as follows: 

In [58]:: solgrp = Table[ 

semi2[{l, 0, .I, 0}, .I, .001, 

I00, 20000], {n, 5, 15, 5} 
]; 

Partition[Flatten[solgrp], 3] ; 

Show [GraphicsArray [%] ] ; 

{ n ,  5 ,  4 } ,  { 6 0 ,  4 0 ,  2 0 } ,  
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The overall value in $ of the economic potential increases significantly with the increased 
value of the product,  but  each case shows the same m a x i m u m  and at the same point  in time. 
The changes in mass of B and D are apparent ly  linear in time over most  of the run up to 
~10,000 time units. Why should this be? Linear time dependence  indicates a constancy of 
slope. However,  this is a fully transient, that is, t ime-dependent ,  system. H o w  can we have 
a constant slope, that is, a constant rate of change, in the concentrations for a fully transient 
system? To unders tand  this we mus t  reintroduce the concept of the pseudo-steady state. 

8.5 Pseudo-Steady State 
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A situation that can arise in the well-stirred fed-batch reactor is one in which the rate of 
consumpt ion  of the added component  is balanced exactly by its rate of addition. In this case 
the rate of change of the mass of A in the reactor is effectively zero as long as there is sufficient 
B present for reaction to take place. This leads to a period of operat ion that can be considered 
to be a steady state, but  we refer to it is a pseudo-steady state because at the same time the rate 
of change of B is real and constant. We will go back to the equations of change to unders tand  

what  this means: 

dCa[t]V[t] 
dt 

dCb[t]V[t] 
dt 

dCd[t]V[t] 
dt 

-- Caf qaf - kab Ca[t]Cb[t] V[t] 

= - k a b  Ca[tlCb[t]V[t] 

= +kab  Ca[t]Cb[t]V[t] 

If the rate of change of the concentration of A is zero, then the following simplifications apply: 

0 = Caf qaf - kab Ca[t]Cb[t]V[t] 

dCb[t]V[t] 
dt 

= - C a f  qaf 

d Cd[t]V[t] 

dt 
= +Caf  qaf 

If the feed flow rate and concentration of A are constant, then we would  find that the con- 
centrations of B and D are linear in time and with oppositely signed slopes. We use "stst" to 
designate the steady-state t ime-dependent  concentrations of B and D. 

In[61] "- Clear["Global'*"] 

Simplify [DSolve [ 
{Ot(V[t]) == qaf, 
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@t (Cbstst [t] V[t]) == -Caf qaf, 

~t(Cdstst[t] V[t]) == +Cafqaf, 

v[0] == vo, 

Cbstst[0] == Cbo, 

Cdstst[0] == Cdo}, 

{V[t], Cbstst[t], Cdstst[t]}, 

t]] 

General--spelll �9 Possible spelling error- new symbol 

name "qaf" is similar to existing symbol "qAf". 

General--spelll �9 Possible spelling error- new symbol 

name "Caf" is similar to existing symbol "CAf". 

General--spelll �9 Possible spelling error- new symbol 

name "Cdstst" is similar to existing symbol "Cbstst". 

General--stop �9 Further output of General--spelll will 

be suppressed during this calculation. 

-Cafqaft + CboVo 
Out [62]- {Cbstst [t] -~ 

qaft + Vo 

Cafqaft + CdoVo 
Cdstst [t] -~ , V[t] -~ qaf t + Vo} 

qaft + Vo 

We can go back to the full t ime-dependent solution and define a flow condition for A that would 
lead to these steady-state results. The key to the pseudo-steady state is that the mass flow of 
A into the system be balanced by the rate of chemical reaction. We can write a new Module  
function that takes the solutions that we just derived for the steady state and compares them 
to those that we had already obtained for the fully t ime-dependent case. This is constructed in 
what follows by copying those pieces of "semi2" that we need and adding in the steady-state 
solutions. 

In[63] := semi3[{CAf_, CAo_, CBo_, CDo_}, kab_, qAf_, Vr_, 

tmax_ ] : = 

Modu i e [ 

{V, CA, CB, CD, v, ca, cb, cd, castst, cbstst, cdstst, 
fbsol3, t}, 

fbsol3 = NDSolve [ 

{~tV[t] == qAf, 

~t(CA[t] V[t]) == CAf qAf - kabCA[t] CB[t] V[t], 

@t(CB[t] V[t]) == -kabCA[t] CB[t] V[t], 

@t(CD[t] V[t]) == kabCA[t] CB[t] V[t], 
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V[0] == Vr, 

CA[0] == CAo, 

CB[0] == CBo, 

CD[0] == CDo}, 

{V[t], CA[t], CB[t], CD[t]}, 

{t, 0, tmax}] ; 

v[t] = Evaluate[V[t] /. fbsol3]; 

ca[t] = Evaluate[CA[t] /. fbsol3]; 

cb[t] = Evaluate[CB[t] /. fbsol3]; 

cd[t] = Evaluate [CD [t] /. fbsol3]; 

CBoVr - CAfqAft 
cbstst[t] = 

qAft + Vr 

CAfqAft + CDoVr 
cdstst[t] = 

qAft + Vr 

Plot [ {ca [t] , cb[t], cd[t], cbstst[t], cdstst[t]}, 

{t, 0, tmax}, 

PlotRange ~ All, 

PlotStyle ~ {{Thickness[0.01], GrayLevel[0.8], 

Dashing[{0.01, 0.02}] }, 

{Thickness[0.01], GrayLevel[0] }, 

{Thickness[0.01], GrayLevel[0.5] }, 

{Thickness[0.01], Dashing[{0.15, 0.05}], 

GrayLevel [ 0 ] }, 

{Thickness[0.01], Dashing[{0.15, 0.05}], 

GrayLevel [ 0.5 ] } }, 

AxesLabel ~ {"t", "Ci[t]"}, 

PlotLabel ~ "it-gry-dsh = Ca, blk = Cb, 

dk-gry = Cd, blk-dsh = Cb stst, 

dk-gry-dhs = Cd stst", 

DisplayFunction ~ Identity] 

General--spell �9 Possible spelling error- new symbol name 

"cbstst" is similar to existing symbols {castst, Cbstst}. 

General--spell �9 Possible spelling error- new symbol name 

"cdstst" is similar to existing symbols {castst, cbstst, 

Cdstst}. 

In[64].-semi3[{l, 0, .I, 0}, .I, 

Show [Z, DisplayFunct ion 

.001, 100, 20000]; 

$DisplayFunct ion] ; 
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The results show in the preceding graph that the steady-state solutions (dashed) map well 
onto the transient solutions for the concentrations of B and D at early time. Beyond ~-8000 
time units, the steady-state concentrations begin to deviate noticeably from the full solutions. 
This is also the time at which the concentration of A begins to rise above near-zero values. The 
steady-state solutions are useful because they allow us to compute the flow rate of reagent A 
and the time dependence of the systems with very simple equations, but we cannot push such 
an analysis too far beyond its region of applicability. From the perspective of analysis, the 
pseudo-steady state is important  to us because it explains the behavior of the more complex 
and complete model in a very straightforward way. 

8.6 Summary 
In this chapter we have found that a reactor type that is familiar to us and that has intu- 
itively obvious usefulness, namely, the well-mixed semibatch reactor, is also very complex to 
t reat--at  least analyt ical ly--due to its transient behavior. It is also evident that we would 
never use this kind of reactor to evaluate even the most basic chemical kinetics. Thus we need 
a simpler type of reactor that is mathematically more tractable and experimentally more feasi- 
ble to operate. We will see instances of these in the next chapter. Along the way we have now 
added the final element that we needed in our Mathematica toolbox, the writing of Modules. 
We will build on this to produce even more useful Packages in what  follows. 



Continuous Stirred Tank 
and the Plug Flow Reactors 

The two most useful idealizations of chemical reactors are the continuously stirred tank reactor 
(CSTR) and the plug flow reactor (PFR). Both are idealizations in that they are two different 
and quite distinct extremes of mixing. Real reactors are more complex, but often they can 
be analyzed approximately in terms of these idealizations. Furthermore, when starting from 
scratch to consider the design of a new reactor system, these simplified models are used to 
estimate the size of the system that will be required and, in some cases, which mixing regime 
will lead to better results. Finally, the ideal reactors allow us to do analyses that will give us 
insight into how real reactors operate, which factors are most important, and how to control 
them for better performance. Therefore, although the CSTR and PFR are idealizations, they 
are quite powerful models for chemically reacting systems and we have much to gain from a 
study of them. We begin first with the perfectly mixed system. 

9.1 Continuous Flow-Stirred Tank Reactor 
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The name continuous flow-stirred tank reactor is nicely descriptive of a type of reactor that 
frequently for both production and fundamental kinetic studies. Unfortunately, this name, 
abbreviated as CSTR, misses the essence of the idealization completely. The ideality arises 
from the assumption in the analysis that the reactor is perfectly mixed, and that it is homo- 
geneous. A better name for this model might be continuous perfectly mixed reactor (CPMR). 

383 
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A - ~ ~ D  

p,- CA, CD, q 

Nonetheless,  as long as we realize this and its mathemat ica l  consequences,  and that the ter- 
minology refers as much  to the mathemat ics  as it does to any specific configuration, then the 
more prevalent  name CSTR is serviceable. 

Because of the well-mixed assumption,  it is natural  to think of the CSTR as a liquid phase 
reactor wi th  a mixer as shown in Figure 1: 

The chemistry in this case is the irreversible conversion of A to B, which follows sim- 
ple, linear kinetics. When we write the t ime-dependent  mass balances for this sys tem we 

have: 

dCa[t]V[t] 
dt 

dCd[tlV[t] 
dt 

d p[t]V[t] 
dt 

= Caf qaf - Ca[t]q - k a d  Ca[t] V[t] 

= - C d [ t ] q  + k a d  Ca[t] V[t] 

= paf qaf - p[t]q 

If the system is at s teady state, then the total mass  in mus t  be balanced by the total mass 
out. Furthermore,  if the densities of the feed and product  are nearly the same, then we can 
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take the flow rate in as equal  to the flow rate out. The equat ions at s teady state become: 

0 = (Car - Ca)q - kad Ca V 

0 = - C d  q + kad Ca V 

0 = q a f -  q 

We can divide both of the componen t  balances by the produc t  Caf V to find: 

(1 - cI>a) 
0 = - kad ~a  

~ d  
0 = + kad ~a  

0 

where v = 8 is the holding t ime for the CSTR. If we now solve for the dimensionless  exit q 
concentration, we find: 

In[19]'= Solve[O == 
(1 - ~a) 

- kad~a, ~a] 

Out [19]: { { 4~a -+ }} 
1 +kad O 

Solving both equations s imul taneously  to find ~ d :  

In[20] :: Clear["Global'*"] 

(l-~a) ~}d 
Solve[ {0 == ~ - kad~a, 0 == 8 " kad~a}, {~}a, ~}d} ] 

General--spelll- Possible spelling error- new symbol name 

"~d" is similar to existing symbol "~a". 

Out[21]: {{~d 
kadO 1 

(1)a -, }} 
1 + kadO' 1 + kad(9 

The concentrat ion of A leaving the reactor is the reciprocal of the sum of one plus the 
product  of the first-order rate constant and the holding time. The first-order rate constant, we 

recall, has dimensions  of reciprocal time, and the holding time is just time, so their product  is 
dimensionless.  In fact this product  is actually the ratio of the holding t ime to the characteristic 
time required for the chemistry to occur. If the rate constant is taken to be of order unity, then 

we will see how the concentrations of A and D change wi th  holding time. 

In [22] : = SetOptions [ (Plot, ListPlot}, 

AxesStyle ~ (Thickness [0.01] }, 

PlotStyle ~ {PointSize[0.015], Thickness[0.006]}, 

DefaultFont ~ ("Helvetica", 17}] ; 
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In[23]'= tI, a[O_] := 

@dEe_] := 

kad = 1; 

1 + kad 

kad e 

1 + kad 

Plot[{~a[8], ~d[8]}, {8, 0, 50}, 

PlotStyle ~ { {Thickness [0.01], GrayLevel [0] }, 

{Thickness[0.01], GrayLevel[0.5]}}, 

AxesLabel ~ {"8", "~i[t]"}, 

Epilog ~ {Thickness[0.01],Dashing[{0.02, 0.02}], 

Line[{{0, i},{50, i}}]}, 

PlotLabel ~ "St.St.CSTR Ist Ord. Irrev. Rate"]; 

�9 i[t] St .St .CSTR 1 st Ord. I rrev. Rate 
, , _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
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When the holding time has become a factor of ten larger than the characteristic time for the 
reaction chemistry, then we find that the concentration of A has d ropped  by ~90% of its feed 
value. Hence, the concentration of product  D is said to tend toward unity asymptotically. 

There is another important  way  to view these equations. If we go back to the dimensional  
form it will be more evident. Typically, the CSTR is considered to be operated at s teady state, 
which greatly simplifies the problem as we will see. 

0 = (Caf - Ca)q - kad Ca V 

0 = - C d  q + kad Ca V 
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We can rearrange these as follows: 

(Caf - Ca) q = kad Ca 

( C a f -  Ca) 

0 

( C a f -  Ca) 

= kad Ca 

~ -  r a d  

This last equation shows why the CSTR at steady state is such a valuable tool to the experi- 
mentalist seeking kinetic parameters. The rate of reaction, independent of the form of the kinetics, 
is simply the change in concentration of A between the feed and exit streams divided by the 

holding time. We will see this repeatedly. 
There is something to learn from rearranging the second equation also: 

0 - - C d  q + kad Ca V 

Cdq 
- -  t ' a d  

V 

Given the rate of a chemical reaction, and the target production rate Cd q we can compute the 
volume necessary for a well-mixed reactor to achieve this output. Thus in a very real sense this 
becomes a useful design equation to be employed in the earliest stages of a study of economic 

feasibility. 

9.2 Steady-State CSTR with Higher-Order, 
Reversible Kinetics 

The first-order, irreversible chemical rate case is useful in terms of providing us with insight 
into what are the consequences of perfect mixing and with a sense of how the characteristic 
times for reaction and flow are related. On the other hand, it is limited in usefulness because it 
represents highly simplified chemistries and correspondingly simple kinetics. Often the actual 
kinetics are far more complex. Let us consider the same chemistry as that we examined in the 
fed-batch reactor, namely, that of A and B reacting to give D (see Figure 2). The rate law will 
be second order overall and first order in each component. However, this time we will assume 
that it is reversible and that the rate law for the reverse reaction will be second order in D: 

r,~+B~D = kab Ca Cb - kd Cd 2 

kd 
Keq = kab 
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Figure 2 

v CA, CB, CD, q 

The transient  balance equat ions  for this sys tem will be: 

dCa[tlV[t] 
dt 

dCb[t]V[t] 
dt 

dCd[t]V[t] 
dt 

d p[t]V[t] 
dt 

- Caf qf - Ca[t]q - kab Ca[t] Cb[t] V[t] 4- kd Cd[t] 2 V[t] 

= Cbf qf - Cb[t]q - kab Ca[t] Cb[t] V[t] 4- kd Cd[t] 2 V[t] 

= - C d [ t ] q  4- kab Ca[t] Cb[t] V[t] - kd Cd[t] 2 

- pf qbf - p[t][t]q 

At the steady-state condi t ion the mass input  mus t  be the same as the mass output .  Fur thermore ,  

the net rate of change in concentrat ion of each of the componen t s  is zero. This makes  the 
differentials each zero in all four equations.  The inlet densit ies of the l iquid reactant  s t reams 

are typically not  too different from each other or from the densi ty  of the outlet  s t ream including 

products .  The inlet flow rates and  concentrat ions are also equal. Thus the equat ions  reduce to: 

O - Caf qf - Ca q - kab Ca Cb V + kd Cd 2 V 

0 = Cbf q f -  Cb q -  kab Ca Cb V + kd Cd2V 

O - - C d  q + kab Ca Cb V - kd Cd 2 V 

O - q f - q  

These are four equat ions  that include a total of 10 variables and  parameters ,  and only three of 

the four equat ions  are independent ,  as three can be solved to find the fourth. The solut ions to 
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these equations are "easy" to find, in the sense that they are a set of simultaneous algebraic 
equations rather than differential equations. We can solve the three component  balances for 
the concentrations at the exit of the reactor using Solve. 

In [27]:= Clear["Global'*"] 

cstrl = Sin%plify[ 

Solve[ 

{0 == (Caf - Ca)q- kabCaCbV + kdCd2V, 

0 == (Cbf - Cb) q - kabCaCbV + kdCd2V, 

0 == -Cdq + kabCaCbV- kdCd2V}, {Ca, Cb, Cd}] 

] 

Out[28]: { {Ca -'~ 

q + Cbf kabV- Caf (kab- 2kd) V+ ~/4Caf Cbf kab (-kab + kd) V 2 + (q + (Caf + Cbf) kabV) 2 
_ 

Cb --> - 
2(kab-kd)V 

2 (kab- kd) V 

(q + Caf kabV- Cbf kabV+ 2Cbf kdV+ 

~/4Caf Cbf kab (-kab + kd) V 2 + (q + (Caf + Cbf) kabV) 2 ) , 

q + Caf kabV+ Cbf kabV + v/4Caf Cbf kab (-kab + kd) V 2 + (q + (Caf + Cbf) kabV) 2 
Cd -+ 

{Ca -~ 

2(kab-kd)V 

-q-CbfkabV+Caf(kab-2kd)V+ ~4CafCbfkab(-kab+kd)V2+(q+(Caf+Cbf)kabV) 2, 

2(kab-kd)V 

Cb -+ 
2(kab-kd)V 

(q - Caf kabV+ Cbf kabV- 2Cbf kdVkern3pt+ 

v/4Caf Cbf kab (-kab + kd) V 2 + (q + (Caf + Cbf) kabV) 2 ) , 

q + Caf kabV + Cbf kabV- ~/4Caf Cbf kab (-kab + kd) V 2 + (q + (Caf + Cbf) kabV) 2 
Cd ~ } }  

2 ( k a b -  kd)  V 

The result is that we get two sets of symbolic solutions for the concentrations. The first set 
appears to be the appropriate one as the leading coefficient is positive, whereas for the second 
set the same term is negative, suggesting that for real positive values of the parameters it 
would return negative concentrations, which are unphysical. Thus we can extract the first set 
of solutions with the bracketed number 1: 

Zn[29] :: cstrl[[1]] 

Out[29]= {Ca --> 

q + Cbf kab V - Caf ( kab - 2 kd) V + ~/4Caf Cbf kab ( -kab + kd) V 2 + ( q + ( Caf + Cbf ) kab V) 2 

Cb --~ 

2 ( kab - kd) V 

q + Caf kabV - Cbf kabV + 2Cbf kd, V + ~/4 Caf Cbf kab ( -kab + kd) V 2 + q + (Caf + Cbf ) kabV) 2 

2 ( kab - kd ) V 

Cd --> 

q + Caf kabV+ Cbf kabV+ ~/4Caf Cbf kab ( -kab + kd) V 2 + (q+ (Caf + Cbf kabV) 2 

2 (kab- kd)V } 
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We note that in order to solve for these concentrations, we would  have to know the values of 
the two rate constants, the two inlet concentrations, the three flow rates, two in and one out, 
a n d  the one reactor volume for a total of eight known  quantities out  of 11. This makes perfect 
sense as we have only three independent  equations and 11 possible unknowns .  To extract the 
r ight-hand sides of the three solutions and to apply  them as functions we use the sequence of 
bracketed numbers  as follows for the concentration of A: 

In [30] : = cstrl [ [1, 1, 2] ] 

Out [ 3 0 ] = - q + Cbf kab V- Caf (kab - 2kd) V + v/4 Caf Cbf kab ( -kab + kd) V 2 + ( q + (Caf + Cbf ) kab V) 2 

2 (kab- kd) V 

Now we can really see why  the CSTR operated at s teady state is so different from the 
transient batch reactor. If the inlet feed flow rates and concentrations are fixed and set to be 
equal in sum to the outlet flow rate, then, because the volume of the reactor is constant, the 
concentrations at the exit are completely defined for fixed kinetic parameters.  Or, in other 
words,  if we need to evaluate kab and kd, we simply need to vary the flow rates and to collect 
the corresponding concentrations in order to fit the data to these equations to obtain their 
magnitudes.  We do not need to do any integration in order to obtain the result. Significantly, 
we do not need to have fast analysis of the exit concentrations, even if the kinetics are very 
fast. We set up the reactor flows, let the system come to steady state, and then take as many  
measurements  as we need of the steady-state concentration. Then we set up a new set of 
flows and repeat the process. We do this for as many  points as necessary in order to obtain a 
statistically valid set of rate parameters.  This is why  the steady-state flow reactor is considered 
to be the best experimental reactor type to be used for gathering chemical kinetics. 

Why is it that the flow rate should change the concentrations at the exit of the reactor? To 
see this we should nondimensional ize our equations. We will divide each component  balance 
by V and by Caf: 

_ . _  

(Caf - Ca)q - kab Ca Cb V + kd Cd 2 W 

Caf V 

q - kab ~a  Cb + kd ~ d  Cd 2 = ( 1 -  ~ a ) ~  

We can mult iply the last two terms by Caf in order to express each concentration in non- 
dimensional  terms: 

1 _ k a b  ~ a  Caf Caf 
0 = (1 - cI, a)~ ~aafCb + kd ~ d ~ a ~ C d  
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For  each  of the  c o m p o n e n t s  w e  ob ta in  b y  this  p r o c e d u r e :  

1 _ kab  Caf  Oa Ob + k d  Caf  (I)d 2 0 = (1 - O a ) ~  

( C b f  ) 1 _ kab  Oa Ob + k d  Od2 
0 =  ~ a f - O b  ~ 

0 = - O d  1 - + kab  Oa Ob - k d  Od  2 
0 

The  f low rate  t h r o u g h  the  reac tor  is q, a n d  t hus  the  h o l d i n g  t ime  is ~, w h i c h  is 8. Because  the  

s t o i c h i o m e t r y  is 1"1 w e  can  take  C b f  - C a r :  

0 -- (1 - Oa) - kab  Caf  0 0 a  Ob + kd  Caf  0 (I)d 2 

0 = (1 - Ob) - kab  Caf  0 0 a  Ob + kd  Caf  0 (l)d 2 

0 - - Od + kab  Caf  0 0 a  Ob - k d  Caf  0 ~ d  2 

In[31] ": Clear["Global'*"] 

In [32] .- ndcstrl = Simplify[ 

Solve[ 

{0 == (1 - ~a) - kabCaf 8 ~a ~b + kdCaf @ ~d 2, 

0 == (i - ~b) - kab Caf 6) ~a ~b + kdCaf 6) (~d 2, 

0 == -~d + kabCaf@~a~b - kdCaf6)~d 2}, 

{~a, ~b, ~d)]] 

Out [32]: { { 4~a -~ 

General--spell- Possible spelling error- new symbol name 

"~)b" is similar to existing symbols {Oa,Od}. 

1 + 2Caf kd@ - ~i + 4Caf kab@ + 4Caf 2 kabkd8 2 

-2Caf kab@ + 2Caf kd@ 

1 + 2Caf kd0 - ~i + 4Caf kab0 + 4Caf 2 kabkd8 2 
Ob -~ 

-2Caf kab0 + 2Caf kd0 

1 + 2Caf kad0 - ~i + 4Caf kab0 + 4Caf 2 kabkd0 2 
Od ~ }, 

2Caf kab0 - 2Caf kd0 

1 + 2Caf kd0 + ~i + 4Caf kab@ + 4Caf 2 kabkd@ 2 
{Ca -~ 

-2Caf kab0 + 2Caf kd0 

1 + 2Caf kd@ + ~i + 4Caf kab@ + 4Caf 2 kabkd@ 2 
Ob -~ 

-2Caf kab0 + 2Caf kd@ 

1 + 2Caf kad@ + ~i + 4Caf kab@ + 4Caf 2 kabkd0 2 
�9 d -~ } } 

2Caf kab0 - 2Caf kd0 
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These are the same solutions as before, but in nondimensionalized form they are more compact 
and more easily understood. 

In[33].- ~a[8_] := ndcstrl[[l, i, 2]] 

~b[O_] := ndcstrl[[l, 2, 211 

~d[O_] := ndcstrl[[l, 3, 2]] 

Caf = .25; 

kd = 1.5; 

kab = 1.1; 

tmin = 0.001; 

tmax = 100; 

kab ~2 
eq = NSolve [ kd ( 1 - ~) 2 �9 ~ ] 

Plot [ {~a [8], ~d [81 }, 

{~, tmin, tmax}, 

PlotStyle ~ {{Dashing[{0.15, 0.05}], Thickness[0.01], 

GrayLevel[0]}, {Dashing[{0.15, 0.05}], 

Thickness[.01], GrayLevel[.5]}}, 

PlotLabel ~ "rd = ~a; bl = ~d; lines = eq", 

AxesLabel ~ {"8", "~i [8] "}, 

Epilog ~ { 

{Dashing[{0.01, 0.01}], GrayLevel[.5], 

Line[{{tmin, ~eq[ [2, I, 2]] }, {tmax, ~eq[[2, i, 2]]}}] }, 

{Dashing[{0.01, 0.01}], Line[{{tmin, l-~eq[[2, i, 2]]}, 
{tmax, 1- ~eq[[2, i, 2]]}}]}} 

]; 

9.3 Time Dependence--The Transient 
Approach to Steady-State 
and Saturat ion Kinetics 

l i I IIII IIII II I I I I I  II I I IIIIIIIIIII II 

Although the steady-state CSTR is simple to operate and analyze and even though it offers 
real advantages to the kineticist, it is also true that these systems must go through a start-up. 
They do not start up and necessarily achieve steady state instantaneously. The time period in 
which the system moves toward a steady-state condition is called the transient, meaning that 
the system is in transition from one that is time-dependent to one that is time-independent. 
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Figure 3 

We have no way of knowing how long it will take a given reaction or set of reactions to achieve 
a steady state in the CSTR before we either do an experiment or solve the t ime-dependent  
model equations. If we choose to do experiments as a means to assessing this, then we need to 
be prepared to do many of them. But if we already know the kinetics, then we do the analysis 
and the math instead. If we do it correctly, then it is fast and it provides us with insights 
that complement the experiments and in many cases provides interpretations that a purely 
experimental approach cannot yield. Therefore, in this problem we will consider just such a 
case with a more complex set of kinetics. 

Consider the reaction of a molecule that takes place on a solid catalyst surface. This 
reaction simply involves converting one form of the molecule into another: in other words, 
it is an isomerization reaction. But the reaction in question only takes place on the catalyst 
surface and not without the catalyst. (See Figure 3.) 

As we saw in Chapter 6, when we analyze a reaction of this kind we find that at least two 
steps are involved--adsorpt ion and surface reaction. The adsorption equilibrium steps take 
place by the interaction of the molecule in the bulk phase with a so-called adsorption site on 
the solid surface. The adsorption site is the locus of points on the surface that interact directly 

with the molecule: 

Abulk if-site Z Asurface 

Asurface ~ Bsurface 

Bsurface ~ Bbulk if-site 

Once B is formed, it too undergoes adsorption and desorption. The desorption carries B from 
the surface and into the bulk fluid phase. In this case we will assume that the reaction is 
irreversible and that the rate of this reaction is first order in the surface concentration of A. It 
also is first order in the concentration of surface sites. Thus the kinetics follow a simple surface 
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rate law: 
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! 

rA_ -~- ksurfaceCA, surfaceCsites 

The surface concentrat ion is difficult to measure;  thus we need to reexpress it in terms of 
the bulk phase concentrat ion of species A. To do this we take advantage  of the fact that  the 
molecules often adsorb and desorb so quickly that  they come to equi l ibr ium rapidly  wi th  the 
surface sites. Therefore, subject to this assumpt ion,  we can express the surface concentrat ion 
in terms of the equil ibrium. The equi l ibr ium gives rise to the following relationship for the 
surface concentration of A in terms of the bulk concentrat ion of A: 

KACA 
CA, surface ~ ] q- K AC A 

We can substi tute this expression into the rate expression for the reaction. This leads to this 
rate in terms of the bulk phase concentrations: 

KACA ! 

rn_ -- ksurfac eCsites 1 -ff KACA 

The concentration of sites can be incorporated into the rate constant by rewri t ing the product  
of the surface site concentration and the surface rate constant s imply as a rate constant: 

k = k~urfaceCsite s 

We can do this because the surface site concentrat ion is also a constant. Thus the overall rate 

for this catalytic reaction is" 

r A  - - - -  

kKACA 

1 + KACA 

The t ime-dependent  component  balance equations for A and B in the CSTR are as follows: 

dCAEV 

dt 

dCB(:V 
dt 

= (CAr -- Ca)q - (1 - ~)ra_V 

= --CBq + (1 -- E)rA_V 

Recall that the solid catalyst occupies a fraction I - E of the reactor vo lume leaving a fraction 
E for the fluid phase volume.  We write the balances in terms of the fluid phase. The kinetics 

have been wri t ten also in terms of the fluid phase concentration, but  they are wri t ten for a 
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process that occurs within the second phase, which is the catalyst. This is called the pseudo- 
homogeneous approximation.  In this case we take that phase as homogeneous  and continuous,  
and occupying the (1 - E) of the reactor volume. We can substitute into these equations the 
kinetics we just derived: 

dCAeV kKACA 
dt = ( C A f  - -  CA)q - (1 - E) 1 + KA CA 

dCBEV kKACA 
= - C B q +  (1 - E ) I +  KACA V dt 

V 

The integration of these two equations in time will show us how long it will take the reactor 
to achieve a steady-state conversion of A and product ion of B. 

The first step is to set up a solution to these equations and a graphical display of the results. 
Using NDSolve ,  we can solve these t ime-dependent  equations to find the concentrations as 
functions of time. We make a new Modu le  function "cstr4" to handle  this. 

In[33].-cstr4[k_, KI_, q_, tmax_], := 

Module [ 

{Caf = I, V = i000, Cao = 0, Cbo = 0, s = .4, so ins, 

Ca, Cb, CA, CB, t}, 

solns = NDSolve[ { 
kKICa [t] 

ECa' [t] == (Caf- Ca[t])-- q - (i - s , 
v 1 + K1 Ca [t] 

kKICa[t] 
ECb' [t] == -Cb[t] ~ + (I - E) 1+ KiCa[t] " 

Ca[0] == Cao, Cb[0] =-Cbo}, 

{Ca[t], Cb[t]}, {t, 0, tmax}] ; 

CA[t] = Evaluate[Ca[t] /. solns]; 

CB[t] = Evaluate[Cb[t] /. solns] ; 

SetOptions[{Plot}, AxesStyle ~ {Thickness[0.01]}, 

PlotStyle ~ {Thickness[0.006]}, 

DefaultFont ~ {"Helvetica", I0} ] ; 

Plot[{CA[t], CB[t]}, {t, 0, tmax}, 

PlotStyle ~ {{Thickness[0.02], Dashing[{0.04, 0.04}], 

GrayLevel[0]}, {Thickness[0.02], GrayLevel[ .6]}}, 

PlotRange ~ {{0, tmax}, {0, Caf}}, 

PlotLabel ~ {k "-k"- , K1 "=KI", q "=q"}, 

DisplayFunction ~ Identity] 

] 

We can examine the solution at a few extremes to try and unders tand  how the parameter  
values affect its behavior. We can take k = 0 first to see how the system responds to the flow 
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of A. This gives us a sense of how long it takes the flow and mixing to come to s teady state 
in the absence of reaction. Experimentally, we could do this with a noncatalytic solid present. 
Keeping all else the same, we vary the rate constant k from 0 to 100 in multiples of 10. 

In[34].= Show[GraphicsArray[{{cstr4[0., .01, 10, 1000], 
cstr4[l., .01, i0, i000]}, {cstr4[10., .01, i0, i000], 
cstr4[100., .01, i0, I000]}}]]; 

1 
0.8 
0.6 
0.4 
0.2 

{0. =k, 0.01 =K1, 10=q} 
t 

I 
I 
I 
I 
I 
I ......... 

200 400 ...... 600 800  'boo 

{1. =k, 0.01 =K1, 10=q} 

0.8 

0.6 I "  . . . . . . . . . . .  
0 . 4 ~  
0.2 

200 400 600 800 1000 

{10. =k, 0.01 =K1, 10=q} {100. =k, 0.01 =K1, 10=q} 
1 1 

0.8 0.8 
0.6 0.6 
0.4 0.4 
0.2 0.2 

200 400 600 800 1000 200 400 600 800 1000 

In the first plot, with k = 0, we note that it takes the system about  200 time units at this flow 
rate to reach a steady state. As we raise the rate constant from unity to 10 and then to 100, the 
steady-state concentrations of A (dashed) drop from 0.6 to less than 0.2 to nearly zero. We also 
see that the time to reach steady state for the product  B (solid) is about  200 time units in each 
case, whereas for A it is always less than that time, and the time to steady state shortens as 
the rate of chemical reaction increases. This is because the concentration of A at s teady state 
decreases as k increases; thus the time required to reach the plateau is less. 

Looking back at the rate expression we see: 

T a _ 

kKACA 
1 + K,4C,4 

If KACA is large compared to unity, then the rate reduces to just k, that is, a constant or "zeroth- 
order" rate. Alternatively, when  KA CA is small compared  to unity, the rate becomes kKA CA 
or first order with respect to CA. Letting k be unity, for example, we can vary KA from 10 -2 to 
103 over a range of CA from zero to unity and then plot the results as an array to see the effect 
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of the adsorption constant: 

In[35] := k = 1; 
SetOptions [ {Plot ), 

AxesStyle ~ {Thickness [0.01] }, 

DefaultFont ~ {"Helvetica", I0}] ; 

Show [ 

Graphic sArray [ 
k 10nca 

{Table [Plot[ , {Ca, 0, I}, 
1 + I0 n Ca 

DisplayFunction ~ Identity, 

PlotStyle ~ { {Thickness [0.03], 

Dashing[{0.04, 0.04}], GrayLevel[0]}}, 

AxesLabel ~ {"Ca", "rA-"}, 

PlotLabe i ~ 10n ,, =Ka,, ], 

{n,  - 2 . ,  0 } ] ,  
kl0nca 

Table[Plot[ , {Ca,0,1}, 
1 + 10 n Ca 

DisplayFunction ~ Identity, 

PlotStyle ~ { {Thickness [0.03], 

Dashing[{0.04, 0.04}], GrayLevel[0]}}, 

AxesLabel ~ { "Ca", "rA_" } �9 

PlotLabel ~ i0 n "=Ka"], 

{n, I., 3}]} 
] 

]; 

rA- 0.01 =Ka rA- 0.1 =Ka rA- 1. =Ka 

l l " 'L, " 
o . - ' "  0 0 8  . .  . .  0.008 ,," 0.06 ,," ,,, 0.006 ,,,, ,,,, 0.3 ,,,, 

0.004 ,,,, 0.04 ,,,, 0.2 / 
�9 ," 0.02 ,," 0.1 0.002 ,, Ca -" Ca 

0.20.40.60.81 0.20.40.60.81 0.20.40.60.81 
Ca 

rA- 10. =Ka rA- 100. =Ka - 1 ,, . . . . . . . . . .  rA- 1000. =Ka 
0-81 " "  . . . . .  0.8 f e "I" - 0.6J / "  0.6 0.95 0.20.40.60.8 1 
0.41/ 0.4 0.9 0.2 0.2 0.85 

0.20.40.60.81 Ca 0.20.40.60.81 Ca 0.8 

Ca 

In the first two plots, KA CA is small compared to unity and we see that the rate is first order 
in concentration CA over the whole range. The last two plots are cases in which KA CA is large 
compared to unity at most values of CA, except for the very smallest ones. Hence the rate 
becomes constant at larger values of CA and this is called saturation. It means that the rate 
cannot increase in magni tude even though the concentration of reactant has been increased 
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and the rate is an apparently strong function of CA. In fact, when  Ka CA is large, we see that the 
rate is a very weak function of CA. Hence Langmuir-Hinshelwood (and Michaelis-Menton) 
kinetics are often referred to as "saturation kinetics." The intermediate values of Ka lead to 
intermediate results and rate behavior. 

How will the effect of saturation kinetics show up in the evolution to the steady state in a 
CSTR? We can find this out by letting K1 vary over this range of magni tudes from 10 -2 to 103 
within the Module  function "cstr4." We also have taken the rate constant down from 1.0 to 0.05 
to make the differences more evident for the same values of q and V, that is, the holding time. 
This does not change the effect of K1 because we are comparing its product  with Ca to unity: 

I n  [38]  : = Show[ 
GraphicsArray [ 

Partition[ 
Table[cstr4[.05, I0 n, i0., I000], {n, -2., 3}], 

2] 
] 

]; 
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The results are not dramatically different than what  we had seen before. The saturation kinetics 
at these flow rates, that is, holding times, give rise to complete conversion as we see in the last 
two plots in which K1 has values of 102 and 103. 

Finally, the last calculation prompts the question of holding time effect. If we vary the flow 
rate q at fixed V, keeping k and K1 constant we should see the conversion rise with longer 
holding times, that is, lower flow rates: 

In [39] : = Show[ 
GraphicsArray [ 

Partition[ 
Table[cstr4[.05, 103, 10 n, 1000], {n, -2., 3}], 

2] 
] 

]; 

{0.05 =k, 1000=K1, 0.01 =q} 
1 
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i i i i 
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. _ . . _ = ~  
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The effect is dramatic. We have taken K1 -- 1000, which puts the kinetics in the zeroth-order 
regime. We see in the upper-left plot that the conversion appears to be complete, but  even after 
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1000 time units the system is still far from the steady state. At the lower right, the conversion is 
essentially zero, and the system comes to steady state nearly instantaneously. The other plots 
show self-consistent behaviors. Notice that with q = 10, the approach to steady state is fast 
and the conversion is essentially complete. 

But what would happen if we took the adsorption constant K1 to be quite small, say, on 
the order of 10-27 We will find out in the following: 

In [ ~ 0 ] : - Show [ 

GraphicsArray [ 
Partition[ 

Table[cstr4 [. 05, 1.10 -2, i0 n, 1000], {n, -2., 3}] , 

2] 
] 

]; 
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Aha! This is very interesting and instructive. Here we see that K1 is so small that at any of 
the holding times (even the highest ones) the rate is so small that the conversion is effec- 
tively zero throughout  the range. This means that the catalyst just lacks the adsorption forces 
necessary to make the reaction run fast. In other words, for the reaction to take place effi- 
ciently, the reactant A must  be adsorbed. If it is not adsorbed to an appreciable extent, then 
the rate is always going to be small unless the rate constant for the surface reaction is very 
high. 

Before we go on to the next section we should do some "housekeeping." The command 
N a m e s  is shown below with its Mathematica explanation: 

In[41] .= ?Names 

Names["string"] gives a list of the names of symbols 

which match the string. Names["string", 

SpellingCorrection ~ True] includes names which match 

after spelling correction. 

As we have worked through this session, or any other session, we have generated many new 
N a m e s  for functions. These show up in the Global  context. If we ask for them we will get a 
list of those that we have created and used so far. (We show this in the following, but we have 
suppressed the output.) 

In [42] " -  Names ["Global'*"] ; 

To clean up the Global  context, we can R e m o v e  everything we have created in the Global  
context as follows. Asking for Names in this context once again returns an empty set: 

In [ 43 ] �9 = Remove [ "Global �9 *" ] 

Names [ "Global �9 *" ] 

Out f44]- {} 

9.4 The Design of an Optimal CSTR 
I IIIIll II ill I I I I I  I [ . . . . . . .  I I 

Several questions arise with respect to the design of an optimal CSTR for a given chemistry. 
Chief among these are several equations that relate conversion, cost and profitability to each 
other. As we can plainly see, the volume of the CSTR controls the extent of conversion. Thus 
the magni tude of the volume goes up with the requirement of conversion. It would seem, then, 
that we might simply want  the largest volume reactor that we can build as this will provide the 
highest conversion of reactant to product. However, it is self-evident that such logic is highly 
flawed because the cost of the reactor must  scale with its size. Therefore, how do we decide 
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what  level of conversion and reactor size is appropriate? The value of the produc t  relative to 

that of the reactant mus t  be a critical factor. We can do an analysis of the following reaction to 
see how this works: 

A - - , B  

r A -  = r B +  - -  k C A  

The steady-state CSTR equations for components  A and B are as follows: 

(CAf -- CA)q -- kCAV = 0 

--CBq q- kCAV = 0 

The inlet concentration CAr is a good reference point  for reaction. We can normal ize  the equa- 
tions by dividing through by CAf: 

( cA) 
1 - - ~ A f  q - k C A V - 0  

Ci~ CA 
+ k _-=--V - 0 

CAf q OAf 

The conversion of A can be wri t ten as (1 - cA VZ) and CA = CAf ( 1 -  XA). Hence the equation 
for A can be rewrit ten in terms of XA" 

X A q -  kV(1 - XA) = 0 

XA -- k--V (1 - XA) = 0 
q 

XA -- kr(1 - XA) = 0 

where r is the holding time in the CSTR. We can see that we can solve for it in terms of the 
conversion and the first-order rate constant. The inverse of this rate constant  has dimensions  
of time. 

T m 

V 

XA 

k ( 1 -  XA) 

XA 

k(1 - XA) q 
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We can immediately see the direct relationship between the volume of the reactor and the 
conversion of A. To make this absolutely clear we can rearrange one more time to give: 

1 + 9  = X A  

When we consider the extremes we acquire a feeling for the behavior  of this relationship: 

1 
V --~ O; q --~ oo; ~ 0--~ XA k V 1+oc~ 

V--~ cx~; q --~0; 1 ~ 1--~ XA 
kV 1 + 0  

On this basis we can see that all we really have learned is what  we already knew in tu i t ive lym 
making the reactor as large as possible will provide the highest possible conversion. Thus we 
really need a better measure of our objective than simply the conversion. 

When a chemical engineer balances an equation it must  be done first from the perspective 
of stoichiometry, and second taking value and profit into consideration. Thus for a given 
reaction: 

aA + b B  ~ dD + eE 

As in Chapter  7 we showed that the max imum  profit potential is: 

max. profit potential = [ ( d  $ 
mole D + e mole-----E - a mole A + b ~ m o l e  B 

The conversion dictates how much product  will be made  and how much of the starting ma- 
terial will be left and this thus dictates the value of the mixture. For the simpler case we are 
considering we can write" 

max profit potont al E(D mo,eD) tamo, eA)] 
$ t - Caq t 

= Cbqmole B mole A 

- - [ (Cbqmol$e  Bt)  - (C~qmo~e At)]  
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= I(CafXAqmolSeBt) - (Cafq(1-XA)mo 
$ 
,leAttl 

_  a qtE(X  J -- m o l e  B ) - (1 - XA)moie 

I $ $ $ 1 = C a f  q t XAmole B - mole A + XAmole A 

$ $ $ ] 
= Car q t XAmole------- ~ + XAmole-------- ~ - mole-------A 

- -  C a f  q t XA mole B 4- 
mole A mole A 

The max imum profit potential for a chemical reaction is only a crude, zeroth-order measure  of 
value. To gain a better measure of the economics, we mus t  have a fuller analysis of the process. 
The max imum profit potential can never be achieved because it costs money  both to invest 
in the process hardware  and to operate the process. If we simply were to try to maximize the 
potential profit by maximizing the conversion XA, then we would  need a reactor of infinite 
volume: 

XA --,1 

~ q  --,0 
kV 

==~ V --, oo 

However,  as V ---, oc~ the cost of the reactor also goes to infinity and the net profit mus t  go to 
zero. Hence the net profit must  be a better measure of value generation and this mus t  consist 
of at least the cost of the reactor and its operation in addit ion to the cost of the reactant and 
the value of the product.  

$ N e t  Profit  = {$  Va lue  o f  P r o d u c t  - $ C os t  o f  R e a c t a n t  -- $ I n v e s t m e n t  in  R eac tor  

-- $ Cos t  of  O p e r a t i o n }  

This is of course just another accounting statement of the kind that we have used all along to 
this point. Generally, it says that the net rate of accumulat ion of a measurable is s imply the 
difference between the rate input  minus the rate output:  

Rate  o f  A c c u m u l a t i o n  - { R a t e  o f  I n p u t  --  Rate  of  O u t p u t }  

The individual  components  of this equation for profit can be writ ten in terms of a preset 
time over which we will evaluate the project tp and the relevant parameters  and variables of 
the problems. We will assume we are still considering the same simple reaction as before and 
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the reactor is a s teady-s ta te  CSTR and  we  have  the fo l lowing terms: 

$ 
$ Value of Produc t  = CBq tool B tp 

$ 
$ Cost  of Reac tan ts  = CAf q tool A tp 

$ I n v e s t m e n t  in Reactor  = VreactorC~ 

$ Cost  of Reactor  O p e r a t i o n  = tpfl 

$ $ 
$ Ne t  Profit : CBq mol  B tp -- CAfq mol  A tp 

q X A  
CB = CAfXA Vreactor = k(1 - -  XA) 

- -  V r e a c t o r C ~ -  tpfl 

$ $ qXa 
$ Ne t  Profit = CAfXA q mol  B tp -- CAfq mol  A tp -- k(1 -- XA) c~ -- tpfl 

fl ~ _  c~qXa 
C A f  q J k(1 - XA) 

$ $ 
$ Net  Profit = CAfqtp XA mol------B mol  A 

This equat ion  n o w  al lows us to compu te  an opt imal  profit  as a funct ion of the convers ion  or, 

in other  words ,  as a funct ion of the reactor size or ho ld ing  time. 

In[45]:= netprofit[Caf_, q_, t_, $a_, $b_, k_, $v_, St_, xa_]:- 
xa 1 q(xa) t 

cafqt ((~) -~) - k(Z-xa)$v- $-~ 

In [46] : = Caf = i; 

q = i0; 

t = i00; 

$a = I; 

$b - .I; 

k = 0.01; 

Sv = 10; 

St = 50; 

In[54]:= netprofit[Caf, q, t, $a, $b, k, $v, St, x] 

setoptions[{Plot}, AxesStyle ~ {Thickness[0.01]}, 

PlotStyle ~ {Thickness[0.006]}, 

DefaultFont ~ {"Helvetica", 17}] ; 

Plot[netprofit[Caf, q, t, $a, $b, k, $v, St, xa], 

{xa, 0.01, .99}, AxesOrigin ~ {0, 0}, 

PlotStyle ~ {GrayLevel[0.5], Thickness[0.01]}, 

AxesLabel ~ {"t", "$[t]"}]; 

lO0.x 
Out [54]= -2 +lO00(-l+lO.x) 

l-x 



406 Chapter 9 Continuous Stirred Tank and the Plug Flow Reactors 

$[t] 

6000 

4000 

2000 

0.2 0.4 0.6 0.8 

In [57]:= Caf = i; 
q -. 

t = I00; 

Sa = I; 

$b = .I; 

k =. 

Sv = 10; 

St = 50; 

xa =. 

b = Table[netprofit[Caf, 106 , t, $a, $b, 10 -n, $v, St, xa], 

{n, O, 6, i}]; 
%; 

Plot[{b[[l]], b[[2]], b[[3]], b[[4]]}, {xa, O, .999}, 

PlotStyle ~ {{GrayLevel[0.5], Thickness[0.01]}}, 

AxesLabel ~ {"t", "$[t]"}] ; 
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The curves from the preceding graph show a clear opt imum with respect to the holding time 
and parametric in the rate constant. 

9.5 Plug Flow Reactor  
IlUll I 

We turn now to the plug flow reactor. Here, as we have said, there is absolutely no mixing in 
the direction of flow but perfect mixing perpendicular to it, that is, between the centerline and 
the walls. This special case of a tubular reactor can be operated transiently or in the steady 
state, but it is the latter mode that is most often considered for kinetics and design. Consider 
the reactor shown in Figure 4 in which A is converted to B irreversibly and with linear kinetics. 

For the first time we must as a consequence of the plug flow take into account spatial 
variation as well as time dependence. This means that the concentrations of A and B will have 
z- and t-dependence and the equations describing them will be made up of partial rather 
than ordinary differentials. We can derive the equation that describes the plug flow system by 
first visualizing a zone of reaction (Figure 5) that corresponds to a differential control volume 
Acr dz. 

The total differential of the concentration is equal to the rate of chemical reaction in this 
zone over some differential time dt. In Mathematica the total differential of f[x, y] is given as 
Dt[f[x, y]]: 

In[69].: Dr[f [x, y]] 

Out[69]: Dt[y] f(o,i) [x,y] +Dt[x] f(1,ol [x,y] 
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z 

Reactants Products 

I I  ' - /  
Caf, q Ca, Cb, q 

Tubular Plug-Flow 

rA- = ka Ca 

Figure 4 

V Z  = - -  Acr 

Acr II 
i A Z  i 
I i 
I 

Figure 5 

This output statement means: 

3:~fIx, Yl dy + G f[x, y] 

o r  

O/Ix, y] Of[x, y] dy + dx 
3y Ox 

Taking the total differential of the concentration and the rate, we obtain: 

In[70]'- z -. 

t =. 

Dt[Ca[z, t]] ==-ra Dt[t] 

Out[72]=Dt[t]Ca (~ [z,t] +Dt[z]Ca (I'~ [z,t] =- -raDt[t] 

We can use the shortcut of dividing through by Dt[t], that is, the derivative of the time dt to 
obtain the following: 

In [ 73 ] �9 : Simpl ify [ 
Dt[t]Ca (~ [z,t] +Dt[z]Ca (I'~ [z,t] -ra Dt [t] 

Dt[t] ] == Dt[t] 

Out[73]: Ca (~ [z,t] + 
Dt[z]Ca (I'~ [z,t] 

Dt[t] 
- - - -  - r e  
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D t [ z ]  dz  ~)- In the second term on the left-hand side, we have the ratio of D--~, ( This is the velocity of 
the plug of gas through the differential volume in the axial direction. We will use the symbol 
vz for the axial velocity. Making this substitution we have: 

In[74].= Ca (~ [z,t] +vzCa (I"~ [z,t] == -ra 

Out[74]= Ca I~ [z,t] +vzCa 11'~ [z,t] == -ra 

Written in traditional form this states: 

8Ca[z, t] aCa[z, t] 
- -  - - 1 ) z  - -  - -  ~ ' A -  

3t 3z 

In words, this mathematical "sentence" states that the partial derivative of the concentration 
of A with respect to time is equal to the negative of the sum of the product of the axial velocity 
and the partial derivative of the concentration of A with respect to position and the rate of 
reaction of A. 

For the product B we would have the following equation: 

3Cb[z, t] 8Cb[z, t] 
= - - V z - -  q - r A -  

3t 3z 

A more intuitive way to arrive at these equations begins at the well-mixed approximation. 
Imagine that within the region Az the fluid phase is "well mixed." The volume of this region 
is AV = AcrAz. The flow rate across the volume is taken to be q, and the concentrations in the 
volume element are Ci,1 while those exiting are Ci, z. Writing the mass balance for A we have: 

dCaAV 
dt 

dCa AcrAz 
dt 

dCa 
dt 

dCa 
dt 

: ( C a , 1  - Ca,2)q - rA_A V 

- "  ( C a , l  - C a , 2 ) q  - r a _ A c r A z  

( C a , 1  - C a , 2 ) q  
--- _ l e A  - 

AcrAz 

- A C ~  
= V z - -  r A -  

A z  

We can write the corresponding differential difference equation for component B. When we 
take the limit as Az ---, 0, these two differential equations become partial differential equations: 

Limit [dCa ACa 1 OCa OCa 
az-,0 dt A z  3t 3z 

Limit, xz__,0 L [ dCbdt - ACb~ ] 3Cbot ozOCt -Vz  + rA_ =~ = --Vz--:--- + rA- 



410 Chapter 9 Continuous Stirred Tank and the Plug Flow Reactors 
Z-7-2L2--7..-LC2 22C22-22--.2ZL222--L22--22- 2 22 C 2LCLL-----L2~CTYCC2---2222...2...CLL22 22 22222222 ~2 222 C .L ~T~"II 2 L .LT,  I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  I1 ................ IIIII I . . . . . . . . . . . . . . . . . . . .  

Thinking physically, it is as if we have taken a slice out of a poorly mixed reactor that is of 
infinitesimal thickness, but across which the mixing is perfect. This is a "CSTR" of vanishing 
or differential thickness z~z and cross-sectional area Acr. 

We are usually interested in solving these equations for the concentrations at steady state. 
In this condition the time differentials are as usual identically zero. Recall that vz divided into 
a distance z would be the time r required to translate across that distance. If we divide vz into 
the differential distance dz then we have the differential time dl" required to translate across 
the infinitesimal distance. Thus ~vz is just ~ ,  and the equations transform at the steady state 
as follows: 

q dC, dCa dCa 
= - - r A -  ==~ V z - -  - -  - - r A -  :::# 

Acr dz dz dr  

q dCb dCb dCb 
= +rA- =~ V z - -  = +rA- =~ 

Acr dz dz dr  

~__ - - r  A _  

-- ~-rA_ 

Remarkably, the form of the steady-state PFR equations is identical to the form of the fully 
transient well-mixed batch reactor with no volume change. The only difference is that instead 
of the derivative with respect to real time, the PFR equations involve the derivative with respect 
to reduced time. This is a very significant result. It shows us why  the steady-state PFR is also 
such a useful reactor for kinetic s tudies-- i ts  model equations are quite simple! Whichever form 
of the equations used is simply a matter of preference; they all mean the very same thing. 

9.6 Solution of the Steady-State PFR 
I I  II H I I  III II I I  I II I I I I  III II 

First, we begin by solving for the concentrations with linear kinetics, and we do this in 
complete form. We will do this with DSolve as an exercise, even though the equations are 
trivial to solve: 

In [ 75] : = Clear [ "Global �9 *" ] 

Simplify [ 

DSolve [ 

{VZ~zCa[z] == -kabCa[z], 

VZ@zCb[z] =- +kabCa[z], 

Ca[O] == Caf, 

Cb[O] == 0), 

(Ca[z], Cb[z]), 

z] 
] 

__ kab z 

Out[76]= {{Ca[z] --~ Cafe -V;-z ,Cb[z] 
__ kab z 

--~ Caf - Cafe ~}} 
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Recall that kab  is just --1-, that  is, the reciprocal of the characteristic t ime for reaction and -~ is 
Y r x n  V z 

v the same as ~- or the holding t ime ~r for the PFR. Therefore, these solutions become: 

k a b  z r 

Ca[z] - Caf e vz =~ Ca[r]  - Caf e - k a b  r ==~ Ca[r] = Caf e r r x n  

k a b  z r 

Cb[z] - Caf(1 - e vz ) =~ Cb[r]  = Caf(1 - e - k a b r )  ==~ Cb[r]  - Caf(1 - e .... ) 

When  we solved the transient, wel l -mixed batch reactor wi th  linear kinetics, we obtained 
the same solution functionally, but  instead of kab r ,  we had kab  t as the a rgumen t  of the 
differential, that is, in terms of real t ime instead of holding time. 

We return now to the Langmui r -Hinshe lwood  kinetics from the CSTR section to see how 
the PFR will behave and to compare  the CSTR and the PFR. As in the case of the s teady-state  
CSTR, we will write a steady-state PFR M o d u l e  function. Recall that  the rate law was: 

Y ' A -  - - -  

kKACA 

1 + KACA 

Therefore, once again invoking the pseudo-homogeneous  approximat ion,  the equations we 
mus t  solve are" 

dC~ 
U z - -  

dz 

dCb 
Vz dz 

( l - E )  kKACA 

1 + KACA 

( l - E )  kKACA 

1 + K,4C3 

The Module  function for this PFR will be called "p f r l . "  The basic backbone of the code was  
borrowed from cstr4 with appropr ia te  changes to the latter having been made.  The a rguments  

in "p f r l "  are the rate constant k, the adsorpt ion equi l ibr ium constant  K1, the vo lume flowrate 
q, and the radius of the reactor cross section r. So that we can make  comparisons  to the CSTR, 
we have kept the total volume the same at 1000. Once we specify the radius,  that  fixes the 
circular cross section. This divided into the volume gives the length of the reactor zmax. 

Therefore, instead of specifying the reactor length, we s imply specify the reactor radius and at 
constant vo lume this fixes zmax. Everything else will be kept  the same for compar ison sake, 
especially e and the holding t ime v. q 

In[77]:= pfrl[k_, KI_, q_, r_] := 

Module [ 

{Caf = I, V = 1000, vz, Acr, Cao = 1, Cbo = 0, E = . 4, 

pfrsolns, Ca, Cb, CA, CB, zmax} 

Act = N[+rr 2]; 
q 

vz = --; 
Acr 

V 
zmax = 

Acr 
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pfrsolns = NDSolve [ { 

vzCa'[z] -= _~(1--e) kKlCa[z] 
E 1 + K1 Ca [z] 

(I- E) kKICa[z] , 
vzCbP [z] ____--- 

E 1 + K1 Ca [z] 

Ca[0] -= Cao, Cb[0] =- Cbo), 

{Ca[z], Cb[z]}, {z, 0, zmax}]; 

SetOptions[{Plot}, DefaultFont ~ {"Hevetica", i0}]; 

CA[z] = Evaluate[Ca[z] /. pfrsolns]; 

CB[z] = Evaluate[Cb[z] /. pfrsolns]; 

Plot[{CA[z], CB[z]}, {z, 0, zmax}, 

PlotStyle ~ {{Dashing[{0.15, 0.05}], GrayLevel[0.6], 

Thickness [. 02 ] }, 

{Dashing[{0.15, 0.05}], GrayLevel[0], Thickness[.02] }}, 

PlotRange ~ {{0, zmax}, {0, Caf}}, 

PlotLabel ~ {k "=k", K1 "=KI", q "=q", r "=r"}, 

DisplayFunction ~ Identity] 
] 

To see h o w  the p r o g r a m  runs  we  will try it out  for a rad ius  of 100 units.  This m a k e s  zmax  

only 10 units.  Such a reactor  w o u l d  be o d d  to find because  it w o u l d  have  an aspect  ratio of 

L:D-I:200. Run  at very  h igh  v o l u m e  flow rates, that  is, h igh  vz, uni ts  of this k ind  are called 

short contact time reactors because  the gases are wi th in  the reactor  v o l u m e  for so little time. In 

the presen t  case that  t ime is not  sho r t - - i t  is on the o rde r  of 100 - ~000 10 �9 

In[78]:= Show[pfrl[0.05, .01, I0, I00], 

0.8 

0.6 

0.4 

0.2 

DisplayFunction ~ $DisplayFunction] ; 

{0.05 -k, 0.01 :KI, i0 -q, i00 :r} 

0. 005 0.01 0. 015 0.02 0. 025 0.03 
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We can see that wi th  this particular flow rate the concentrations exiting at the end of the PFR 

correspond to approximately  10% conversion. Would this have changed if the radius were 

smaller, say, only 1? The answer  is no. The reason is that the holding time will be the same 

because the volume and flow rate are the same. 

In[79].= Show[pfrl[0.05, .01, 10, 1.], 

DisplayFunction ~ $DisplayFunction] ; 

0 . 8  

0 . 6  

0 . 4  

0 .2  

{0.05-k, 0.01 :KI, i0 :q, i. :r} 

50 i00 150 200 250 300 

Now for comparison to the CSTR, we can build a new Modu le  function that allows us to 
create a plot of the exit concentration from a CSTR under  the same conditions and also as a 

"function" of z. Of course, there is no functional z-dependence for the CSTR as we shall see; 

the plots will be simply horizontal  lines, but  graphed over the same range as the axial distance 

through the PFR. In this way  we can put  the two on one graph for comparison. Here is the 
steady-state CSTR Module: 

In[80]:= cstrstst[k_, KI_, q_, r_] := 

Module [ 

{Caf = 1, Act, V = i000, s = .4, ststsolns, 

Ca, Cb, CA, CB, t}, 

Aur = N[~r 2]; 

V 
zmax = -; 

Acr 
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ststsolns - Solve[ 

kKiCa 
(0 == (caf - ca)- - (i - E) 

v 1 + KICa 
0 == -Cb q kKiCa -- + (1- E) ), 

V i+ KICa 
(Ca, Cb) ] ; 

SetOptions[ {Plot}, DefaultFont ~ {"Hevetica", 8} ] ; 

Ca = ststsolns[[l, I, 2]]; 

Cb = ststsolns [ [I, 2, 2] ] ; 

Plot[{Ca, Cb}, {t, 0, zmax}, 

PlotStyle ~ {{Dashing[{0.15, 0.05}], GrayLevel[0.6], 

Thickness[.02]}, {Dashing[{0.15, 0.05}], 

GrayLevel [ 0 ], Thickness [. 02 ] } }, 

PlotRange ~ {{0, zmax}, {0, Caf}}, 

PlotLabel ~ {k "=k", K1 "=KI", q "=q"}, 

DisplayFunction ~ Identity] 
] 

In[81]:= Show[cstrstst [0. 05, .01, I0, i00], 

DisplayFunction ~ $DisplayFunction] ; 

{0.05 =k, 0.01 --KI, i0 -q} 
1 L________ 

0.8 

0.6 

0.4 

0.2 

0. 005 0.01 0. 015 0.02 0. 025 0.03 

When we put  the PFR and CSTR results on the same graph  we find: 

In[82]:= Show[ {pfrl [0 . 05, .01, 10, 100], 

cstrstst[0.05, .01, 10, 100]}, 

DisplayFunction ~ $DisplayFunction] ; 
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{0.05 =k, 0.01 =K1, 10 =q, 100 =r} 

0 

0.8 

0.6 

0.4 

0.2 

0.005 0.01 0.015 0.02 0.025 0.03 

Although the conversions are relatively small, we see that conversion at the exit of the PFR is 
larger than that of the CSTR at the same condition by nearly a factor of two! 

We can vary the flow rate over five orders of magnitude for both the PRF and the CSTR 
to see what will happen. This is done by combining the two functions into one Table and then 
plotting the results as a GraphicsArray. 

In[83]:: Table[{pfrl[0.05, .01, 1. 10 n, 100], 
cstrstst[0.05, .01, I. i0 n, I00]}, {n, -3, I, I}] 

Show [ 
Graphic sArray [ % ] 

]; 

Out [83J : {{-Graphics-, -Graphics-}, 
{-Graphics-, -Graphics-}, 
{-Graphics-, -Graphics-}} 

{-Graphics-, -Graphics-}, 
{-Graphics-, -Graphics-}, 

0.8 

0.6 

0.4 

0.2 

{0.05 =k, 0.01 =K1,0.001 =q, 100 =r} 

0.005 0.01 0.015 0.02 0.025 0.03 

0.8 

0.6 

0.4 

0.2 

{0.05 =k, 0.01 =K1,0.001 =q} 
[ll[ll IIII ~ i i  i IL_II[II[ ~ ...... �9 

0.005 0.01 0.015 0."02 0.025 0.03 
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{0.05 =k, 0.01 =K1, 10. =q, 100 =r} 
1 

0.8 

i m n , ~ n m , , ~ ~ - - ~  ~ ~ ~ 

0.005 0.01 0.015 0.02 0.025 0.03 
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0.2 

0.8 

0.6 

0.4 

0.2 

{0.05 =k, 0.01 =K1,0.01 =q} 
I m u m n u l m  ~ m m m n l n l l m  i i i m n u u n l m  ~ e 

, , i , , 

0.005 0.01 0.015 0.02 0.025 0.03 

{0.05 =k, 0.01 =K1,0.1 =q} 

0.005 0.61 0.615 0.62 0.625 0.03 

{0.05 =k, 0.01 =K1, 1. =q} 

0.00s 06~ 0.&s 062 002S 0.03 
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0.005 0.01 0.015 0.02 0.025 0.03 

The left-most column of the graphs  is for the PFR. Starting at the bot tom and work ing  vertically 
to the top of the column, we notice that the conversion rises from the low level we saw at q - 10 
to nearly complete conversion at q = 0.1 and beyond.  For the CSTI{ the trend is the same: 
as q drops the conversion rises, but  notice that  at q - 0.1 the conversion is ~,75%, whereas  
at the same condition in the PFI{ it is complete,  that is, 99.99%. In fact, even at q = 0.01, the 
CSTI{ has still not achieved full conversion of the feedstock. Remember:  The only difference 
between the two cases is that the CSTR is well mixed th roughout  its volume,  but  the PFI{ is 
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well mixed only radially, and not at all axially. This leads then to the oft-quoted rule-of- thumb 
that  the PFR is more efficient than the CSTR. At the same vo lume of reactor one achieves 
higher conversion, or to achieve equivalent  conversion the PFR vo lume can be smaller  than 
the CSTR volume.  

In the previous calculations, we assumed  that  K1 was small. This forces the rate toward  
first-order dependence.  Therefore, how does the compar ison be tween  PFR and CSTR work  
out if we vary  K1 over several orders of magn i tude  to make  the kinetics range from first order 
to zeroth order? To do this we will fix the flow rate at q = 1 and vary  K1 from 10 -3 to 10 3 as 

follows: 

In[85]:= comps2 = 
Table[{pfrl[0.05, 1. 10 n, I., 100], 
cstrstst[0.05, i. I0 n, i., i00]}, {n, -3, -0, i}]; 

Show [ GraphicsArray [ comps2 ] ] ; 
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{0.05 =k, 1. =K1, 1. =q, 100 =r} 
1 - - - . . , ,  , , ~ , , , ~ m , ,  ~ , , , m ,  1 

0.8 0.8 

0.6 0.6 

0.4 0.4 

0.2 0.2 

0.005 0.01 0.015 0.02 0.025 0.03 

{0.05 =k, 1. =K1, 1. =q} 
i n l lm l lm lmm imu l lm l lMm uu l lm l l l l u lm~  im lmmmmm im~ lu lm l l lmm m lMm 

m ,  ,,, , , , 

0.005 0.01 0.015 0.02 0.025 0.03 

The results indicate that even if the adsorpt ion equil ibrium constant is large, the PFR shows 
better results than the CSTR. The only time this is violated for an isothermal reaction system 
is if the kinetics are of negative order overall, because then the CSTR will actually be more 
efficient than the I'FR; otherwise the PFR wins. 

9.7 Mixing Effects on Selectivit ies--Series 
and Series-Parallel with CSTR and PFR 

In the previous chapter, we examined series and series-parallel kinetics. The extent of mixing 
can have an effect on the selectivity to the various products in such reaction networks. The 
selectivity is the percentage of the products that are any one of the products. To compute the 
yield we take the product of the conversion and the selectivity. Thus the yield is a fraction of 
a fraction. 

We can begin by computing the selectivities and yields for the series network in the CSTR 
versus the PFR first. Consider the simplest series reaction network: 

A --+ B--+ D 

rab -~ klCA; rbd -- k2CB 

The M o d u l e  functions for the CSTR and PFR with these species and kinetics are writ ten in 
what  follows as "cstrABD" and "pfrABD." 

In[87]:= Clear["Global'*"] 

In[88]:= cstrABD[kl_, k2_, q_, r_] := 

Module [ 

{Caf = I, Acr, V = I000, ststsolns, Ca, Cb, Cd}, 

Acr = N[~r 2]; 
V 

zmax = 
Acr 

ststsolns = Solve[ 

{0 == (Caf - Ca)-- q - klCa, 
V 

0 == -Cb q - + klCa- k2Cb, 
V 
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0 == -Cd q - + k2Cb}, 
V 

{Ca, Cb, Cd}]; 

CA = ststsolns[[1, 1, 2]]; 

CB = ststsolns [ [I, 2, 2] ] ; 

CD = ststsolns [ [i, 3, 2] ] ; 

SetOptions[Plot, DefaultFont ~ {"Helvetica", i0}] ; 

Plot[{CA, CB, CD}, {t, 0, zmax}, 

PlotStyle ~ {{GrayLevel[0.6], Thickness[0.02]}, 

{GrayLevel[.0], Thickness[0.02]}, {GrayLevel[0.8], 

Thickness [ 0.02 ] } }, 

AxesLabel ~ {z, Cstr}, 

PlotRange ~ {{0, zmax}, {0, Caf}}, 

PlotLabel ~ {kl "=kl", k2 "=k2", q "=q"}, 

DisplayFunction ~ Identity] ] 

In[89]:= pfrABD[kl_, k2_, q_, r_] := 

Module [ 

{Caf = I, V= i000, vz, Acr, Cao = i, Cbo = 0, Cdo = 0, 

E = .4, pfrsolns, Ca, Cb, Cd, CA, CB, CD, zmax}, 

Acr = N[~r2]; 
q 

vz -- 
Acr 

V 
zmax -- 

Acr 
pfrsolns = NDSolve[{ 

vzCa' [z] == -klCa[z], 

vzCb'[z] == +klCa[z] - k2Cb[z], 

vzCd' [z] == +k2Cb[z], 

Ca[0] == Cao, Cb[0] == Cbo, Cd[0] == Cdo), 

{Ca[z], Cb[z], Cd[z]}, {z, 0, zmax}] ; 

CA[z] = Evaluate[Ca[z] /. pfrsolns]; 

CB[z] = Evaluate[Cb[z] /. pfrsolns]; 

CD[z] = Evaluate[Cd[z] /. pfrsolns]; 

SetOptions[Plot, DefaultFont ~ {"Helvetica", i0}] ; 

Plot[{CA[z], CB[z], CD[z]}, {z, 0, zmax}, 

PlotStyle ~ {{Dashing[{0.15, 0.05}], GrayLevel[0.6], 

Thickness [ 0.02 ] }, 

{Dashing[{0.15, 0.05}], 

GrayLevel [ 0 ], Thickness [ 0.02 ] }, 

{Dashing[{0.15, 0.05}], GrayLevel[.8], 

Thickness [ 0.02 ] } }, 

AxesLabel ~ {z, Pfr}, 

PlotRange ~ {{0, zmax}, {0, Caf}}, 

PlotLabel ~ {kl"=kl", k2"=k2", q"=q", r"=r"}, 

DisplayFunction ~ Identity] ] 
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In [90] :- Show[ 
GraphicsArray [ 
{{pfrABD[.4, .03, i0, i0]}, 

{cstrABD[.4, .03, i0, i0]}}], 

DisplayFunction ~ $DisplayFunction] ; 

Pfr 
l o  

0.8 

0.6 

0.4 

{0.4 =kl, 0.03 =k2, 10 =q, 10 =r} 

0.2 

0.5 1 1.5 2 2.5 3 

Cstr 
I I  

0.8 

0.6 

0.4 

0.2 

{0.4 =kl, 0.03 =k2, 10 =q} 

0.5 1 1.5 2 2.5 3 
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For both reactors the volumes  are identical, and that is critical to this comparison.  If B (black 
dashed lines, upper  part  of the graph,  and black solid, lower) were  the species that  we wished  
to produce,  then for the same volume the CSTR with  its perfect mixing produces  a higher  

yield than does the PFR at the same volume and flow conditions. This is a consequence of the 
higher efficiency of the PFR. Notice, however,  that if we made  the PFR smaller  by cutt ing it 
off at z = 0.3 for vo lume of 1000 _ 100, then it would  be better for the product ion  of B than -T6- 

the CSTR wi th  a vo lume of 1000 for the product ion  of B. 

Next, we rewrite the two codes to handle  another  l imiting case, that of parallel reactions 
of A to form either B or D: 

A --~ B ~ D rab = k l C A ;  rad = k2CB 

E r~e - k3C,4 

We will take the magn i tudes  of the two rate constants to be the same as in the previous example,  
which makes  the rate of formation of B a factor of two greater than the rate of formation of D. 
The codes are called "r  and "pf rABAD."  

In[91] := Clear["Global'*"] 

In[92]:= cstrABAD[kl_, k2_, k3_, q_, r_]:= 

Module [ 

{Caf = i, Acr, V = I000, ststsolns, Ca, Cb, Cd, Ce, 

CA, CB, CD, CE}, 

Acr = N[wr 2]; 
V 

zmax = 
Acr 

ststsolns = Solve[ 

{0 == (Caf - Ca)-- q - klCa - k3Ca, 
V 

0 == -Cb -~ + klCa - k2Cb, 
V 

0 == Cd -q + k2Cb,0 == -Ce q - - + k3Ca}, {Ca, Cb, Cd, Ce}]; 
V V 

Ca = ststsolns [ [I, i, 2] ] ; 

Cb = ststsolns [ [i, 2, 2] ] ; 

Cd = ststsolns [ [1, 3, 2] ] ; 

Ce = ststsolns[[l, 4, 2]]; 

SetOptions [Plot, DefaultFont ~ {"Helvetica", I0}] ; 

Plot[{Ca, Cb, Cd, Ce}, {t, 0, zmax}, 

PlotStyle ~ { 

{Thickness[0.02], Dashing[{0, 0}], GrayLevel[0.1]}, 

{Thickness[0.02], Dashing[ {0.02, 0.03}], GrayLevel[0.3]}, 

{Thickness[0.02], Dashing[ {0.05, 0.05}], GrayLevel[.5]}, 

{Thickness[0.02], Dashing[{0.1, 0.I}], GrayLevel[.7]} 
}, 
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PlotRange ~ {{0, zmax}, {0, Caf}}, 

PlotLabel ~ {CSTR, kl "=kl", k2 "=k2", k3 "=k3"}, 

DisplayFunction ~ Identity] 
] 

General--spelll- Possible spelling error- new symbol 

name "cstrABAD" is similar to existing symbol "cstrABD". 

In[93]:= pfrABAD[kl_, k2_, k3_, q_, r_]:= 

Module [ 

{Caf = I, V = i000, vz, Acr, Cao = I, Cbo = 0, 

Cdo = 0, Ceo = 0, ~ = .4, pfrsolns, Ca, Cb, Cd, CA, 

CB, CD, zmax}, 

Acr = N[~r 2]; 
q 

vz = 
Acr 

V 
zmax - 

Acr 
pfrsolns = NDSolve [ { 

vzCa' [z] == -klCa[z] - k3Ca[z], 

vzCb'[z] == +klCa[z] - k2Cb[z], 

vzCd'[z] == + k2Cb[z], 

vzCe'[z] == + k3Ca[z], 

Ca[0] == Cao, Cb[0] == Cbo, Cd[0] == Cdo, 

Ce[0] == Ceo}, 

{Ca[z], Cb[z], Cd[z], Ce[z]}, {z, 0, zmax}]; 

CA[z] = Evaluate[Ca[z] /. pfrsolns]; 

CB[z] = Evaluate[Cb[z] /. pfrsolns]; 

CD[z] = Evaluate[Cd[z] /. pfrsolns]; 

CE[z] = Evaluate[Ce[z] /. pfrsolns]; 

SetOptions [Plot, DefaultFont ~ {"Helvetica", i0}] ; 

Plot[{CA[z], CB[z], CD[z], CE[z]}, {z, 0, zmax}, 

PlotStyle ~ { 

(Thickness [ 0.02 ], Dashing [ { 0, 0 } ], GrayLevel [ 0.1] }, 

{Thickness[0.02], Dashing[ (0.02, 0.03}], GrayLevel[0.3]}, 

{Thickness[0.02], Dashing[ (0.05, 0.05}], GrayLevel[.5]}, 

{Thickness[0.02], Dashing[{0.1, 0.i}], GrayLevel[.7]} 

}, 

PlotRange ~ {{0, zmax}, {0, Caf}}, 

PlotLabel ~ {Pfr, kl "=kl", k2 "=k2", k3 "=k3"}, 

DisplayFunction ~ Identity] 
] 

General--spelll- Possible spelling error- new symbol 

name "pfrABAD" is similar to existing symbol "pfrABD". 
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In[9~] := Show[ 
Graphic sArray [ 

{{pfrABAD[.05, .1, .025, 10, 10]}, 
{cstrABAD[.05, .i, .025, I0, I0]}} 

], 
DisplayFunction ~ $DisplayFunction] ; 
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0.4 

0.2 
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S 
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A - B l k  S l d ;  B-BlkDSh; D--LtGryDsh; E-DkGryDsh. 
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We see once again that the overall conversion is higher in the PFR than in the CSTR and that 
the fractions of D and E in the products are therefore larger than in the CSTR. The efficiency 
of the PFR with positive order kinetics versus the perfectly mixed CSTR raises an interesting 
quest ion--if  one were to divide the volume of one CSTR into two CSTRs in series of equal 
volume, would there be any change in efficiency? What  if there were three or even more 
CSTRs in series with equal volumes that all summed up to that of the original one - -wou ld  
there be a significant difference? We address this in the next section. 

9.8 PFR as a Series of C S T R s  
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The main difference between the PFR and CSTR idealizations is the mathematical one of a 
spatially distributed versus homogeneous system, which leads to quite different equations. If 
one were to take the globally homogeneous CSTR and break it up into smaller homogeneous 
regions, then in the limit of an infinite number  of these taken in series they would become 
equivalent to one PFR of equal total volume. We can see this by comparing one, two, three, 
and more CSTRs in series with one PFR. As the number  of CSTRs increases the results will 
approach the PFR (see Figure 6). The simplest way to do this is to write bit of code that allows 
us to specify the total volume and then to vary the number  of contiguous homogeneous cells 
that are present. We can begin by taking a look at the case of A --~ B with linear, irreversible 
kinetics, because this is simple. We also unders tand it well because we can solve it exactly. 

The steady-state solutions for one CSTR are shown here: 

In [95] .- ststsolns = Solve[ 

{0 == (Caf - Ca) q klCa 
V 

0 ==-Cb -~ + klCa}, 
V 

{Ca, Cb} ] 

Caf kl V Caf q 
Out[95]- {{Cb -~ , Ca -~ ~ } }  

q + kl V q + kl V 

We can generalize this for any nth CSTR in a series as follows: 

In[96].- Clear[ca, cb, q, Caf, ntot, Vtot, k, n] 

Solve[ 

{0 == (Ca[n - i] - Ca[n])-- - kCa[n], 
V 

0 (Cb In 1] Cb In] ) q == - - - + k Ca[n]}, 
V 

{Ca[n], Cb[n]} 

Out [97]: {{Cb[n] --> 
kVCa [-i +n] 

+Cb[-l+n] ,Ca[n] 
qCa [-I + n] 

}} 
q+kV q+kV 
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// 
// // 

PFR Vo 

Figure 6 

This is a recursion formula for the exact case. We would  like to be able to app ly  this to 
any number  n of CSTRs in series and find an analytical and then quanti tat ive result for 
comparison to the exact PFR result. To do this we need recursive p rogramming .  There are 
three p rog ramming  styles in Mathematica: Rule-Based,  Funct ional ,  and Procedural .  We will 
attack this problem in recursion wi th  Rule-Based,  Funct ional ,  and Procedural  p rogramming .  
We can begin by looking at the rule-based recursion codes for Ca and Cb in any n CSTRs. 

The "seeds" for these rules are the solutions for the first CSTR, and then these exit con- 
centrations become the inlet concentrations to the second CSTR, whose  exit concentrat ions 
become the inlet concentrations for the third CSTR, and so it goes on through to n CSTRs. 
We can have Mathematica assemble the equations and the variables that  we will need for the 
Solve routine. This is i l lustrated wi th  n = 3: 

In [98]'= n = 3 

Clear[q, V, Vo, k, Caf, Cbf, Cdf, Ca] 

Table[{(Ca[i - I] - Ca[i]) q- - kCa[i] == O, 
V 

(Cb[i I] -Cb[i]) q - - + kCa[i] == 0}, 
V 

{i, 1, n} ] 

vars = Table[ {Ca[i], Cb[i]}, {i, i, n}] 
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Out [98]: 3 

General--spelll �9 Possible spelling error- new symbol 

name "Cdf" is similar to existing symbol "CDF". 

q(Cb[0] -Cb[l]) Out [i00]: { { q(Ca[0] -Ca[l]) -kCa[l] :: 0,kCa[l] + :: 0}, 
V V 

q(Cb[l] -Cb[2]) {q(Ca[l] -Ca[2]) -kCa[2] =: 0,kCa[2] + == 0}, 
V V 

q(Cb[2] -Cb[3]) {q(Ca[2] -Ca[3]) -kCa[3] == 0,kCa[3] + == 0} } 
V V 

Out [i Ol ] : {{Ca[l], Cb[l] }, {Ca[2], Cb[2] }, {Ca[3], Cb[3] }} 

N o w  we place these into Solve as follows: 

In[102].: Clear[q, V, Vo, k, Caf, Cbf, Cdf, n, Ca] 

n = 4; 
Vo 

V ~ - -  �9 

n 

Timing[eqns = Table[{ (Ca[i-l] -Ca[i])--q-kCa[i] == 0, 
V 

(Cb[i i] Cb[i]) q - - -+kCa[i] == 0}, 
V 

{i, 1, n) ] ; 

vars = Table [ {Ca [i] , Cb[i]}, {i, I, n}]; 

Ca[0] = Caf; 

Cb[0] = 0; 

solns = 

Flatten [Solve [Flatten [eqns] , Flatten[vars]]]] 

Out [i 05] : {0.22 Second, {Cb[4] 

-256 Caf kq3 Vo - 96 Caf k2q 2 Vo 2 - 16 Caf k3qVo 3 -Caf k 4 Vo 4 

Cb[2 ] ~ - 

Cb[3 ] ~ - 

(4q+kVo) 4 

-8 Caf kqVo - Caf k 2 Vo z 

(4q+kVo) 2 

-48 Caf kq2Vo - 12 Caf k2qVo 2 - Caf k3Vo 3 

(4q+kVo) 3 

Caf k Vo 256 Caf q4 
Cb[l] ~ , Ca[4] 

4q+kVo (4q+kVo)4 ' 

64 Caf q3 
Ca[3] -~ Ca[2] -~ 

(4q+kVo)3 ' 

4 Caf q 
Ca[l] -~ } } 

4q+kVo 

16 C af q2 

(4q+kVo)2 ' 

We see that in this p rogram the equations are first wri t ten explicitly from n - 1 to n, their 

ou tpu t  is suppressed,  but  then they are solved symbolically. We have enclosed the overall 
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functions in "Timing" in order to obtain a report of the CPU time required to conduct this. 
By supplying the necessary parameters and changing Solve to NSolve, we can find a solution 
for the outlet of n-CSTRs. We make this into a Module  function of n, the number  of CSTRs: 

In[106]'= << Miscellaneous'RealOnly' 

In[107]:= Clear[Cstr, cstr, q, V, Vo, k, Caf, Cbf, Cdf, n] 

Clear [ "Global �9 *" ] 

General--spelll �9 Possible spelling error- new symbol 

name "cstr" is similar to existing symbol "Cstr". 

In[109] := cstr[n_] := 

Module [ 

{q = 10, Vo = 100, k = 0.I, eqns, vars, solns, i}, 
Vo 

V = ~; 
n 

eqns = Table [ { (Ca [i - I] - Ca[i]) -~ - kCa[i] == 0, 
V 

(Cb[i - I] - Cb[i]) q - + kCa[i] == 0}, 
V 

{i, I, n}]; 

vars = Table[ {Ca[i], Cb[i]}, {i, i, n}]; 

Ca[0] = 1; 

Cb[0] = 0; 

solns = NSolve[Flatten[eqns], Flatten[vars]] [[i]]; 

{solns[[2 n - i]], 

solns[[2 n]]}] 

Now we can try out this module program with 1000 CSTRs in series and check its timing: 

In[llO] :=cstr[1000] // Timing 

Out[llO]= {14.22 Second, {Ca[1000] -~ 0.368063, Cb[1000] ~ 0.631937}} 

We have called the package "Misce l laneous 'RealOnly"  to avoid the complex solutions that 
might otherwise be returned. We have also taken just the solutions from the last CSTR by using 
{ s o l n s [ [ 2 n -  1]], solns[[2nl]}. Now we can use the "listability" of this function cstr[n] and 
Map it down a vector of values for n. T h e  inf~'x form for Map is /@ and so we use it as follows: 

In[111]:= n = {1, 2, 3, i0, 20, i00, I000}; 

cstr /@n // Timing 

Out[112]= {16.26 Second, {{Call] -~ 0.5, Cb[l] -~ 0.5}, 

{Ca[2] -~ 0.444444, Cb[2] -~ 0.555556}, 

{Ca[3] -~ 0.421875, Cb[3] ~ 0.578125}, 

{Ca[10] -+ 0.385543, Cb[10] ~ 0.614457}, 

{Ca[20] ~ 0.376889, Cb[20] ~ 0.623111}, 
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{Ca[100] 

{Ca[1000] 

-~ 0.369711, Cb[lO0] -~ 0.630289}, 

--~ 0.368063, Cb[lO00] -~ 0.631937}}} 

This computation took --47.75 sec of CPU time on an old Pentium I processor but  just 2.1 sec 
on a newer 1-GHz Pentium chip. We added / / T i m i n g  after the command line also in infix 
form, in order to obtain this information. The time will vary with different machines and 
processors. More important, what  we notice is that there is a large change in Ca and Cb when 
we go from one CSTR to 2 or 3 or even to 10, but  when we get beyond 10 to 20, 100, and even 
1000, the increase in the number  of CSTRs gives diminishing returns. 

In the following code we solve the equations for the PFR at the same conditions and with 
the same parameter values, especially that of the volume Vo. 

In[ll3] .= Clear["Global'*"] 

In[ll4].= Caf = 1; 

Vo = i00; 

q = i0; 

kl = .I; 

zmax = 10; 
Vo 

A= ~ ;  
zmax 
q 

VZ -- - - ~  

A 

pfr = NDSolve[ 

{vzCa" [z] == -klCa[z], 

vzCb" [z] == +klCa[z], 

Ca[0] == Caf, Cb[0] == 0}, 

{ca[z], Cb[z]}, 
(z, 0, zmax)]; 

CA[z_] := Evaluate[Ca[z] /. pfr]; 

CB[z_] :- Evaluate[Cb[z] /. pfr]; 

{CA[zmax], CB [zmax] }// Timing 

General--spelll- Possible spelling error- new symbol 

name "pfr" is similar to existing symbol "Pfr". 

Out[124]= {0. Second, {{0.367879}, {0.632121}}} 

Here we see that the limiting values of Ca and Cb are 0.37 and 0.63, respectively, exit con- 
centrations which were nearly identical to those obtained with the large number  of CSTRs 
(> 100) and closely approached by even 10 CSTRs. The important point we learn from this is 
that even with two or three CSTRs we begin to move toward the PFR limit. 

Now we will return to the recursive programming part of this problem because it is a 
prototypical type problem we can expect to encounter often in chemical engineering analysis 
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a n d  c o m p u t a t i o n s .  We can n o w  t ry  functional p r o g r a m m i n g  to de r ive  the  so lu t ions  tha t  w e  

seek. We know the solution for Ca at the exit of the first CSTR and we have a recursive 

relationship for the exit concentrations emerging from the next n-CSTI{s. Therefore, we  can 

put  these two together into a functional p rogram as follows: 

In[125]:: Clear[ca, V, q, Caf, Vo] 
qCaf 

call] = 
q + kV 

qca[n- I] 
ca[n_] : = ca[n] = 

q + kV 

We can see how this works.  We defined the seed for r first and then we created the function 
for any cain] as follows: 

ca[n_] " -  ca[n] - q ca in  - 1] 
q + k V  

Taking n - 4 we find: 

In[128].- ca[4] 

Out [128]- 
Caf q4 

(q q- kV) a 

Recall that in this recursion relation the symbol V - v ~  therefore, we can redo the computa-  -~-, 

tion to derive: 

Vo 
In [129] .: V = --; 

4 
ca[4] 

Together [%] 

Out [130]- 

Out [131 ] - 

Caf q4 
k Vo (q+ _q_) 4 

256 Caf q4 

(4q+kVo) 4 

Referring back to the earlier solution that we derived for n - 4, we see that the two agree 

perfectly. The function for ca[n] may be used in the Table function to derive the first four 
solutions symbolically: 

In[132].= n = 4; 

Table[ca[x], {x, I, n}] 

Together [%] 
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Caf q Caf q2 Caf q3 Caf q4 
Out [133]= { ~ ,  , , } 

k Vo k Vo k Vo k Vo q+_]_ (q+~)2 (q+ _]_) 3 (q+ _q_) 4 

4 Caf q 16 Caf q2 64 Caf q3 256 Caf q4 

Out[134]= {4q+kVo' (4q+kVo) 2' (4q+kVo) 3' (4q+kVo) 4} 

This is a s imple and yet very powerful  use of Mathematica's set-delay utility" =.  The r ight -hand 
side is the whole  recursive equat ion wi th  an equal  sign, but  by placing this after the set-delay 
: = it becomes a pat tern that  will not be evaluated until  n is specified. When  n is specified, 
then it begins with  the seed and evaluates the function until it gets to the value of n. Thus, 

when  we set n - 4, we obtain the concentrat ion expression for the exit of the fourth CSTR. If 
we place the function in a Table, and set n - 4 we obtain the exit concentrat ions for all four 
of the CSTRs. We follow the same procedure  for cb[nI as shown here: 

In[135]:= Clear[cb] 
Vo 

V- --; 
s 

CafkV 
cb[l] = 

q + k V  

cb[n_] := cb[n] = 

In[139] "- s = 4 

cb[s] 

Together [% ] 

kVca [n- 1] 

q + k V  
+ cb[n- 1] 

Out [139]= 4 

C af k q3 Vo C af k q2 Vo Caf k q Vo C af k Vo 
Out [i 40] = + + + 

k Vo k Vo k Vo k Vo 4(q + -q-) 4 4(q + -q--) 3 4(q + -q--) 2 4(q + -q--) 

256 Caf kq 3 Vo + 96 Caf k2q 2 Vo 2 + 16 Caf k3qVo 3 +Caf k 4 Vo 4 
Out [i 41 ] = 

(4q+kVo) 4 

Again, the solution for Cb at the exit of CSTR n u m b e r  4 matches  that previously  derived. 
Note also that this solution for B was explicit in n because we had already defined ca[n]. If we 
had not done this, then wha t  follows is wha t  we would  have seen: 

In [142]:: Clear["Global'*"] 

Vo 
In[143]:= V = --; 

8 

CafkV 
cb[1] = ~ ;  

q + k V  

cb[n_] := cb[n] = 

s = 4 

cb[s] 

Together [~] 

kVca[n- 1] 

q + k V  
+ c b  [n-- 1] 
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Out[146]= 4 

Caf kVo kVo ca [ 1 ] kVo ca [2 ] kVo ca [3 ] 
k Vo + k Vo + k Vo + k Vo Out[147]= 4(q+-]--) 4(q+-q-) 4(q+-q-) 4(q+-]--) 

Out [i 48] = 
CafkVo+kVoca[l] +kVoca[2] +kVoca[3] 

4q+kVo 

To avoid any  such p rob lems  we  s imply  place the two sets of funct ions together  into one 

work ing  cell as follows: 

In [ 149 ] �9 = Clear [ "Global �9 *" ] 

Vo 
In [150] " =  V = --; 

s 
qCaf 

call] = 
q+kV" 

ca[n_] := ca[n] = 

CafkV 
cb[1] = ~ ;  

q + k V  

cb[n_] := cb[n] = 

Testing the result  we  obtain: 

qca[n- i] 

q + k V  

kVca [n- 1] 

q + k V  
+cb[n- 1] 

In[155]-= s = 4; 

{ Together [ ca [ s ] ], Together [ cb [ s ] ] } 

256Cafq 4 256Cafkq3Vo+96Cafk2q2Vo 2 +16Cafk3qVo 3 +Cafk4Vo 4 
Out[156]= { (4q+kVo)4, (4q+kVo) 4 } 

We can app ly  values  to the pa rame te r s  and  the values  n. We use s to define the n u m b e r  

of CSTRs ra ther  than n per  se in order  to avoid  a n a m e  clash that  leads to an infinite loop. 

Before we  try this, however ,  we  shall set the $Recu r s ionL imi t  to 1000. The defaul t  va lue  of 

256 is not sufficient for us to go out  to n u m b e r s  as large as n = 1000 CSTRs.  

In [ 15 7 ] �9 = Clear [ "Global ' *" ] 

In[158]': $RecursionLimit = 2000; 

Vo 
V = --; 

s 
qCaf 

ca[l] = 
q+kV 

ca[n_] := ca[n] = 

Cafkv 
cb[l] = ~ ;  

q + k V  

c b [ n _ ]  := c b [ n ]  = 

qca[n- i] 

q + k V  

kVca [n- 1] 

q + k V  
+ cb[n- I] 



432 Chapter 9 Continuous Stirred Tank and the Plug Flow Reactors 
II . . . . . . . . . . . . . . . . . . . . . . . . . . . .  [[1[ . . . . . . . . . . . . . . . . . . . . . . . . . . .  I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  II1'111 '11111 I 

Caf = i; 

k = .i; 

q = i0; 

Vo = i00; 

s = 1000 

{ca[s], cb[s]} // Timing 

Out [168] = i000 

Out[169]= {1.49 Second, {0.368063, 0.631937}} 

We can see that this is a huge speed-up from the original code that we wrote in which we first 

rewrote all the equations and then did the computations. This new program required only 

2.91 sec on a Pentium I to do the same and just 0.17 sec with the 1-GHz Pentium III processor. 

We can also solve this recursion problem more traditionally using a procedural approach. 
The recursion in this case is buried within a "Do" loop, which is the classic structure in the 
procedural programming paradigm. The "Do" loop is placed within a Module function to 
keep all the variable names localized: 

In[170].- cal[n_] := 

Module [ {m, ca}, 

Vo 
V- ~; 

n 

Do[ca[l] = 

ca[n] 
] 

q Caf q ca [m - 1] 
�9 ca[m] = ,(m, 0,n}]; 

q+kV q+kV 

In[171].= cal[4] 

Together [%] 

Out [171] = 0.4096 

Out[172]- 0.4096 

Within the Do loop we have the same recursion that we had implemented by rules--we specify 
the seed as call] and then the recursion relation as ca[m]. The set-delayed function argument of 
ca l [n_  ] supplies n, as the limit of the iterative sequence. The last statement just outside the Do 
loop writes the value of cain] and then it stops. We implement the same approach for species B: 

In[173].: Clear[ca1] 

In[174]:= cbl[n_] :- 

Module [ {m, cb}, 
Vo 

V ----- - -  �9 n " 
CafkV 

Do [cb [i] = 
q+kV 
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cb [m] = 

cb[n] 

ca1 [m - 1] k V 

q+kV 
+cb[m-l],{m, 0, n}]; 

In [i 75] -= cbl [4] 
Together [%] 

Out[175]= 0.2+0.2cal[l]+0.2cal[2]+0.2cal[3] 

Out[176]: 0.2+0.2cal[l]+0.2cal[2]+0.2cal[3] 

In order to evaluate the expression fully in term of just the parameters ,  we need the expression 
for r to have been evaluated. We do the two in one cell to make this happen:  

In[177]'= cacb[n_] := 

Module[{m, ca, cb}, 

Vo 
V ----- - -  �9 n �9 

Do[{ca[0] = Caf, ca[l] = 

CafkV 
cb[l] = } ; 

q + kV 

qCaf 

q + kV" 
cb[0] = 0, 

qca[m- I] ca[m- l]kV 
{ca[m]= , cb[m] = 

q + kV q+kV 

{m, i, n)]; 

{Together[ca[n]], Together[cb[n]]} 

+ cb[m- I]}, 

In[178]': cacb[4] 

Out[178]: {0.4096, 0.5904} 

This works very nicely indeed. We can apply numerical  values to these solutions, solve, and 
even obtain the timing for a comparison to the rule-based and functional p rogramming  cases: 

In [1 79] : = Caf = 1; 

k = .1; 

q = 10; 

ntot = i0; 

Vo = i00; 

cacb[1000] // Timing 

Out[184]= {1.43 Second, {0.368063, 0.631937}} 

We see here that the procedural  solution is identical to the asymptotic  solutions obtained 
earlier and the time to do n = 1000 is only 1.98 sec of CPU on a Pent ium I and 0.22 on the 
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Pentium III (I GHz), which is much  faster than the first, rule-based program and a little slower 
than the functional implementation.  Once again we apply  the function cacb that we have 
created in listable so we can Map  it d o w n  the vector of n values that we had used before in the 
rule-based computat ions and we can compare timings: 

In[185]:: n = {1, 2, 3, 10, 20, 100, 1000}; 
cacb /@n // Timing 

Out [186]= {1.59 Second, 
{{0.5, 0.5}, {0.444444,0.555556}, {0.421875,0.578125}, 
{0.385543, 0.614457}, {0.376889, 0.623111}, 
{0.369711, 0.630289}, {0.368063, 0.631937}}} 

When we did this via brute force using all the equations and no recursion, we utilized 17.54 
sec of CPU time while the procedural  p rogram required just 1.26 sec. 

Now we can compare how the conversions grow to the PFR limit as the number  of CSTRs 
increases. First we compute  the concentrations of species A and B for 1-150 CSTRs. 

In[187]:= n = {i, 2, 3, 5, 10, 20, 30, 50, 60, 90, 100, 150}; 
cstrconcs = cacb /@n 

Out[188]= {{0.5, 0.5}, {0.444444, 0.555556}, {0.421875, 0.578125}, 
{0.401878, 0.598122}, 
{0.376889, 0.623111}, 
{0.371528, 0.628472}, 
{0.369914, 0.630086}, 
{0.369102, 0.630898}} 

{0.385543, 0.614457}, 
{0.373927, 0.626073}, 
{0.370924, 0.629076}, 
{0.369711, 0.630289}, 

Out[198]= {{0.5, 0.5}, {0.444444, 0.555556}, {0.421875, 0.578125}, 
{0.401878, 0.598122}, 
{0.376889, 0.623111}, 
{0.371528, 0.628472], 
{0.369914, 0.630086}, 
{0.369102, 0.630898}} 

{0.385543, 0.614457}, 
{0.373927, 0.626073}, 
{0.370924, 0.629076}, 
{0.369711, 0.630289}, 

Next we plot these versus the PFR limiting concentrations: 

In [189] �9 - << Graphics "MultipleListPlot ' 

In[190]:= calist=Table[{n[[x]], cstrconcs[[x, i]]}, {x, I, Length[n])]; 
cblist =Table[{n[[x]], cstrconcs[[x, 2]]}, {x, i, Length[n]}]; 

MultipleListPlot [ 
calist, cblist, DefaultFont ~ {"Helvetica", 15}, 
SymbolShape ~ {PlotSymbol [Triangle, 5 ], PlotSymbol [Box, 5 ] }, 
SymbolStyle ~ {GrayLevel [0], GrayLevel [0.5] }, 
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Epilog ~ { 

{GrayLevel[0.5], Line[{{0, .63}, {150, 0.63}}1}, 

{Line[{{0, 1- .63}, (150, 1- 0.63}}]} 
), 

AxesLabel ~ {"n-CSTRs", "Ca,Cb" }, 

PlotLabel ~ "nCSTRs (pts.) ~ PFR (lines)" 
]; 

General- -spelll - Possible spelling error- new symbol name 

"cblist" is similar to existing symbol "calist". 

C a , C b  n C S T R s  (pts.) -~ P F R  (lines) 
o,6 I.ffmm ............ m m  ................................... m m  .................................................................. m 

0 .55  

0.5  

0.45 

n - C S T R s  
t::30,1QO 120 1 4 0 ,  

n m - - ~  

After approximately 30 CSTRs in series the result is the same as one PFR of equal volume. This 
makes sense mathematically in terms of our analysis and it also makes good sense intuitively 
because we are using the same total volume more efficiently. 

9.9 Residence T i m e  Distribution 
- - I I I l l  I I I I  m l  

We first encountered in Chapter 3 on mixing in mult icomponent  systems the problem of 
bypassing and less than perfect mixing. If we have two or more reactants that must  mix in 
order for reaction to occur, then any deviations from a single-valued residence time distribu- 
tion will show up as an apparent  deviation from the predictions based upon perfect mixing. 
The spread in the residence time distribution leads to different extents of reaction for the fluid 
elements with these different times. 

The lack of perfect mixing leads to this distribution. Recirculation zones may lead to 
longer than average residence times in some regions of the tank and bypassing to shorter than 
average time (see Figure 7). Longer or shorter times can translate into regions of higher or 
lower conversion. It is this type of problem we want  to examine now. 
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Figure 7 

We h a v e  d e v e l o p e d  the  e q u a t i o n s  for a s t e a d y - s t a t e  CSTR in w h i c h  the  r eve r s ib l e  r eac t ion  of 

A a n d  B p r o d u c e s  D a n d  one  m o l e  of D reacts  back  to p r o d u c e  A a n d  B b u t  the  k inet ics  are 

s econd  order :  

A + B  Z D  

q - kab  Ca Cb + kd  C d  2 0 - (Caf - C a ) v  

q - kab  Ca Cb + kd  Cd  2 0 = (Cbf - C b ) v  

q 
0 - - C d  ~ + kab  Ca  Cb - kd  C d  2 

0 = qbf  - q 

0 - ( C a f -  Ca) _ kab  Ca Cb + kd  C d  2 
0 

0 - (Cbf - Cb) _ kab  Ca Cb + kd  Cd  2 
0 

Cb 
+ kab  Ca Cb - kd  C d  2 



9.9 Residence T ime  Distribution 437 

1 the holding time for the fluid in the reactor. When we  derived these equations Of course ~ = ~, 
we  did so under the assumption of perfect mixing, or complete back-mixing, which is another 
term for this idealization. If there were perfect mixing,  then there wou ld  be just one residence 
time and that would  be the same as the holding time 8. When the residence time distribution 
is a DiracDelta  function at one time, then we  have one holding time. But what  if this is not 
the case? What if, instead, the t imes spent by fluid e lements  are distributed about some mean  
va lue - - then  what? Well, then we  wou ld  have to average these equations over the distribution 
to get the average concentration emerging from the less than perfectly mixed reactor. We begin 
by solving the equation in terms of 8: 

In [193] ": Clear["Global'*"] 

In [194] .= cstr = Simplify[ 

Solve [ 

{0 == 
(Caf - Ca) 

- kabCaCb + kdCd 2, 

{0 == 

(Cbf - Cb) 
- kabCaCb + kdCd 2, 

_ _ _ _ _ _ _ _ _ _  

Cd 

8 
+ kabCaCb--kdCd 2}, 

{Ca, Cb, Cd}]] ; 

TableForm[cstr, TableDirections ~ {Column, Column}] 

Out [195] //TableForm : 
1 + Cbf kab# - Caf (kab - 2kd) ~ + ~/- 4Caf Cbf kab ( kab - kd) #~ + ( 1 + Car kab# + Cbf kab# ) 2 

Ca --> - 

Cb --> - 

2 ( kab - kd) # 

1 + Caf kab# - Cbf (kab - 2kd) # + ~/- 4Caf Cbf kab (kab - kd) #9. + ( 1 + Caf kab# + Cbf kab# ) ~ 

Cd -4 

Ca --> 

Cb --~ 

2 ( kab - kd ) # 

i + Cbf kab(9 + Caf kab# + ~/- 4Oaf Cbf kab (kab - kd) (~2 + ( i + Caf kab$ + Cbf kab~ ) 2 

2 ( k a b  - k d  ) 0 

--I - Cbl kab~ + car (kab - 2kd)# + %/- 4Cat Cb! kab(kab - kd)~; 2 + ( 1 + Car kab# + Cbi kab#) 2 
2 (kab  - kd)~; 

- 1 - C a f  k a b #  + C b f  ( k a b  - 2 k d )  # + ~ / -  4 C a f  C b f  k a b  ( k a b  - k d ) # 2  + ( 1 + C a f  k a b #  + C b f  k a b # )  2 

Cd --~ 

2(kab-kd)# 

l+Cbfkab#+Cafkab#- ~-4CafCbfkab(kab-kd)#2+ (l+Cafkab#+CbfkabO) 2 

2(kab-kd)# 

The next step is to express these as functions of 8. By examination,  we  can find that the second 
set of solutions is the one that leads to physically realistic values  of the concentrations; thus 
we  use these: 

In[196]:= Clear[Ca, Cb, Cd] 

Ca[8_] = cstr[[2, I, 2]]; 

Cb[8_] = cstr[[2, 2, 2]]; 

Cd[8_] = cstr[[2, 3, 2]]; 
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Testing the solutions requires putt ing them back into the equations to see if they are valid: 

In [200] .: {Sin%plify[0 == 
(Caf - Ca [8] ) 

-kabCa[8] Cb[8] +kdCd[8] 2], 

Simplify[0 == 
(c~- cb [8] ) 

-kabCa[8] Cb[8] +kdCd[8] 2], 

Simplify[0 == - 
Cd[8] 

+ kabCa [8] Cb[8] - kdCd [8] 2] } 

Out[200]= {True, True, True} 

This shows that the functions we are using do indeed satisfy the equations for the steady-state 
CSTR. 

We will use the NormalDistribution to make the representations of the residence time 
distribution. The Probabil i ty  Densi ty  Function (PDF) is made up of the Normal  Distribution 
and the variable 0. This can be integrated in closed form: 

In [201 ] . - << Statistics "NormalDistribution" 

In[202]:: Clear[ndist, pdf, 8, 68, ~nin, @max] 

ndist = NormalDistribution [~m, 68] ; 
pdf = PDF[ndist, 8] ; 

Integrate [pdf, {8, @min, ~nax} ] 

General--spelll- Possible spelling error- new symbol 

name "pdf" is similar to existing symbol "PDF". 

General--spelll- Possible spelling error- new symbol 

name "Sm" is similar to existing symbol "0". 

~30 Erf [ --Sm+Smax ] _ ~3~ Erf [ --~m+Smin ] 

out [2057: V~9 ~8 

Because the Normal  dis t r ibut ion PDF requires a mean value and a variance, we supply these 
and then Plot the result in order to visualize the distribution. We have purposefully chosen 
a very narrow distribution for the first case. Next the parameter  values are assigned and we 
Integrate the products of the concentration functions and the PDF in 8 over the range of 8 
values. As shown in the following graph, these are the residence-time-averaged values of the 
concentrations and the conversion of A and B: 

In[206] := ~m = 10; 

68 = .2; 
~min = 0.001 8m; 

8max = 5 8m; 

ndist = NormalDistribution [@m, 68] ; 
pdf = PDF[ndist, 8]; 
NIntegrate [pdf, {8, ~min, ~max} ] 
NIntegrate[8 pdf, {8, 8rain, 8max}] / 
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NIntegrate [pdf, {8, ~min, ~nax} ] 

Plot [pdf, 

48, .0001 8m, 28m), 
AxesLabel ~ 4"8", "PDF[8] "}, 
PlotStyle ~ {GrayLevel[0.4], Thickness[0.01], 

Dashing[{0.02, 0.03}]}, 
PlotRange ~ {40, 2@m}, {0, Max [Table [N [pdf ] + .I, 

{8, 8min, ~max}]]}}, 
Epilog ~ {Line[{{@m- .01, 0}, {Sin- .01, 

Max [Table [N [pdf] + .I, 48, ~min, 8max}]]}}]}, 

PlotLabel ~ "@m"]; 

Caf = i; 

Cbf = i; 
kd = I.i; 

kab = 2.2; 

cavQ = 

cdave = 

cdave = 

NIntegrate [Ca [8] pdf, 48, 8min, 8max} ] 

NIntegrate [ pdf, { 8, ~min, ~max} ] 

NIntegrate [Cb [8] pdf, 48, @min, ~nax} ] 

NIntegrate [ pdf, { 8, ~min, ~nax) ] 

NIntegrate [Cd [8] pdf, 48, ~min, ~max} ] 

NIntegrate [ pdf, { 8, ~min, ~max) ] 
100(1 - cave) 

Out [212]- i. 

Out [213]= i0. 

~m PDF[e] 

1.5 

0.5 

I 

II 
II 
II 
II 
II 
II 
II 
I I 
! I 

I I I 

2.5 5 7.5 10 12.5 15 17.5 20 
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Out [219]= 0.432349 

General--spelll- Possible spelling error- new symbol 

name "cbave" is similar to existing symbol "cave". 

Out [220]= 0.432349 

General.-spell- Possible spelling error- new symbol 

name "cdave" is similar to existing symbols {cave, 

cbave} . 

Out[221]= 0.567651 

Out [222]= 56. 7651 

In[223]:= Clear["Global'*"] 

Rather than copy this code cell multiple times and run it successively, it would  be much  
better to create a Modu le  function, but  even better than a Modu le  function would  be a Package. 
A Package is a program that we can call at any time simply by loading it and then running  it. 
This will allow us to run without  name collisions and to use what  we have developed outside 
of this notebook context. Normally, when we are running Mathematica we are operat ing in the 
Global  context, which is why  we have often started our codes cells with Clear["Global '* ' ] .  
This means clear all the variable names that we have made  or used within the Global  context. 
To find out which context we are in we input: 

In [224] : : $Context 

Out [224]: Global' 

Contexts are very much  like directories and you can find much writ ten about this topic else- 
where. We will create a package called cstrresdist,  which we will store in a folder called 
A d d O n s  within the Appl icat ions  folder. The inputs will be the forward and reverse rate con- 
stants kab and kd, the mean residence time 8m, and the variance in the residence time 68. 
The general form for a Package is: 

Begin Package[ "Context 'PackageName ' ]  

PackageName: :Usage="Narra t ive  explanation of Package..." 

Begin[" 'Private'  "] 

function name[ variables_]: . . . .  

End[]  

EndPackage [] 

We will use this format and the functions we have defined will be implemented as a M o d u l e  
Function. For the case at hand,  instead of making the Context = AddOns ' ,  it has been placed 
directly into the Global '  context. 
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In E225 ] "= BeginPackage [ "Global �9 cstrrtd' ", 

{ "Statistics �9 Cont inuousDistribut ions �9 ", 

"Statistics �9 NormalDistribut ion �9 ", 

"Statistics �9 Common ' Di st ribut ionsCommon �9 ", 

"Statistics �9 DescriptiveStatistics �9 " 
)] 

cstrrtd: :Usage = "cstrrtd [kab, kd, ~m, 68] creates the 

r.t.d, plots it and then computes the average exit 

concentrations of A and B and the conversion of A" 

Begin [" �9 Private �9 "] 

cstrrtd[kab_, kd_, ~m_, 68_] := 

Modu i e [ 

{Caf = 1, Cbf = 1, caave, cbave, cdave, a, b, 8, 

conversion, x, y, z}, 

8min = 0.001~m; 

8max = 5~m; 
1 

ca[8_] = (-i - Cbfkab8 + Caf(ka - 2kd)8 
2(kab - kd)8 

+ ~ ( -4 Caf Cbf kab (kab - kd) 82 + ( 1 + Caf kab8 + Cbf kab 8 ) 2 ) ) ; 
1 

cd[8_] = (i + Cafkab8 + ChfkabS- 
2(kab - kd)8 

( -4 Caf Cbf kab (kab - kd) 82 + ( 1 + Caf kab8 + Cbf kabS) 2 ) ) ; 

distfunc Ix_, y_, z_ ] = PDF [NormalDistribution Ix, y], z ] ; 

Plot [distfunc [~m, ~8, 8], 

{8, .0001~m, 2em}, 
AxesLabel ~ {"8", "PDF[8]"}, 

PlotStyle ~ {GrayLevel[0.4], Thickness[0.01], 

Dashing[ {0.02, 0.037]}, 

PlotRange 

{{0, 2~m}, (0, Max [Table [N [distfunc [~m, 68, 8]], 

{8, ~min, ~max}]]}}, 

Epilog ~ {Line[{{~m, 0}, 

{em, Max [Table [N [distfunc [~m, ~8, 8]], 

{8, ~min, 9max}]]}}]}, 

PlotLabel ~ "~m"] ; 

a = NIntegrate[distfunc[~m, 68, 8], {8, ~min, ~uax}]; 

b = NIntegrate[8 distfunc[Sm, 68, 8], {8, ~min, ~max}]! 

NIntegrate[distfunc[~m, ~8, 8], {8, ~min, ~max}]; 

caave = NIntegrate[ca[8] distfunc[~m, ~8, 8], {8, ~min, 8max}]/ 

NIntegrate[distfunc[~m, 68, 8], {8, ~min, ~max}]; 
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c d a v e  = NIntegrate[cd[@] distfunc[@m, 68, 8], {8, 8rain, ~max}]/ 
NIntegrate[distfunc[~m, ~, 8], {8, @min, ~nax}]; 

conversion = i00(i - caave); 
{a, b, caave, cdave, conversion} 

] 

End [ ] 
EndPackage [ ] 

Out [225]= Global'cstrrtd' 

0ut[226]= cstrrtd[kab, kd,Om,30] creates the r.t.d, plots it and 

then computes the average exit concentrations of A 
and B and the conversion of A 

Out [227]= Global'cstrrtd'Private' 

Out [229]= Global'cstrrtd'Private' 

To see how this works we can run a case as follows: 

In[231].- cstrrtd[2, 1, 10, .19] 

PDF[O] 

1.5 

0.5 

8m 

I I 
I I 
I I 
I I 
I I 
I I 
I I 
! I 

2.5 5 7.5 10 12.5 15 17.5 20 

Out [231]: {I., i0., 0.434089, 0.565911, 56.5911} 

The graph is the distribution of residence times about the mean. The bot tom line of ou tpu t  

gives us the integral of the PDF, the mean  normal ized residence time, the concentration of A 
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and B, and, finally, the conversion of A. We see from this graph that with the mean  residence 
time of 100 and variance of just 2, this is a very sharp distribution. What  would  happen  if the 

r.t.d, were broader- -say,  30? 

In[232].= cstrrtd[2, 1, 10, 3] 

PDF[O] 
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0ut[232]: {0.999566, 10.0047, 0.436484, 0.563516, 56.3516} 

We see from the preceding that even though the distribution has been broadened considerably, 
there is no evidence of an effect on the overall conversion. This makes sense because there 
are just as many  fluid elements below the average as there are above and so we get average 
behavior- - jus t  as we intuitively know we should. What, however,  happens  when  the flow is 
so maldistr ibuted that the residence time is actually bimodal? 

In the following package, Global  'r tdcstr ' ,  two normal  distributions are weighted (wfl  
and wf2) and added together to give the overall residence time distribution. The second 
Gaussian distribution is taken to be centered at half the mean value of the first, but  with the 
same variance. The function p is their sum (see the following): 

In [233 ] : = BeginPackage ["Global "rtdcstr" ", 

{ "Statistics �9 Cont inuousDistribut ions �9 ", 

"Statistics �9 NormalDi st ribut ion �9 ", 

"Statistics �9 Common �9 Distribut ionsCommon �9 ", 

"Statistics �9 DescriptiveStatistics �9 " 

)] 
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rtdcstr::usage = "testing 1,2,3..." 

Begin [" �9 Private �9 "] 

rtdcstr[kab_, kd_, ~m_, ~8_, wfl_, wf2_]:= Module[ 

{Caf = i, Cbf = I, x, xmin, xmax}, 

xmin = 0.001~m; 

xmax = 58m; 

ndistl = NormalDistribution[~m, ~] ; 

ndist2 = NormalDistribution [. 5~m, ~] ; 

pdfunctionl = PDF[ndistl, x]; 

pdfunction2 = PDF[ndist2, x] ; 

wfl pdfunctionl + wf2 pdfunction2 
p = 

wfl + wf2 

1 
ca[y_] = (-l-Cbfkaby+Caf(kab-2kd)y+ 

2(kab - kd)y 

~ (-4Caf Cbf kab (kab- kd) y2 + ( 1 +Caf kaby+Cbf kaby) 2 ) ) ; 

Plot[p, {x, 0, xmax}, 

AxesLabel ~ {"~", "PDF[8]"}, 

PlotStyle ~ {GrayLevel [ 0.4 ], Thickness [ 0.01], 

Dashing [ {0.02, 0.03}]}, 

PlotRange ~ { {xmin, 2~m}, 

{0, .01 + Max [Table [N [p] , {x, xmin, xmax}]]}}, 

Epilog ~ {Line[{{~m, 0}, {~m, Max [Table [N [p] , 

{x, ~nin, xmax}]]}}]}, 

PlotLabel ~ "~m,o"] ; 

totp = NIntegrate[p, {x, 0, xmax}] ; 

NIntegrate [ xp, { x, 0, xmax} ] 
thetam = 

totp 

NIntegrate [ca [x] p, {x, 0~ ~nax} ] 
caave = 

totp 
conversion = i00 (l-caave); 

{totp, thetam, caave, conversion} 
] 

End [ ] 

EndPackage [ ] 

Out [233]= Global'rtdcstr' 

Out [234]= testing 1,2,3... 

Out [235]= Global'rtdcstr'Private' 

Out [23 7]= Global'rtdcstr'Private' 

In[239]:= rtdcstr[2, i, i0, 1.5, 4, 2] 
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PDF[O] 
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Out [239]- {0.999857, 8.33458, 0.441837, 55.8163} 

We see that  this ex t reme case has some  effect on the convers ion,  but  not  to any signif icant  

extent. 

Let us turn  now to the case of series reaction: 

A - - .  B-- .  D 

We can once again  solve the equa t ions  for the concent ra t ions  as a funct ion of the res idence  time: 

In [ 24 0 ] " - Clear [ "Global �9 *" ] 

cstrabd2=Simplify [ 

Solve [ 

(Caf - Ca) 
{0 == - kabCa, 

8 

~__. 
-Cb 

+ kabCa- kbdCb, 

Cb 
0 == --- + kabCb} 

8 

{Ca, Cb, Cd}]]; 

TableForm[cstrabd2, TableDirections ~ {Column, Column}] 

Out [242]//TableForm= 

Caf kab kbd02 
Cd -~ 

(i + kab0)(i + kbd0) 
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Cb 

Ca --~ 

Caf kabO 

(i + kab8)(I + kbd@) 

Caf 

(i + kabO) 

The package that we have just written for the bimodally distributed residence times can 
be adapted to give a new package we shall call rtdcstrabd2. The output of this Package will be 
the r.t.d, of the integrated PDF value, the average residence time, then the conversion followed 
by the selectivities to A and to B: 

In [243 ] �9 = BeginPackage [ "Global �9 rtdcstrabd2 �9 ", 

{ "Statistics �9 Cont inuousDi st ribut ions �9 ", 

"Statistics ' NormalDistribut ion �9 ", 

"Statistics �9 Common �9 Di st ribut ionsCommon �9 ", 

"Statistics �9 DescriptiveStatistics �9 " 

)] 

rtdcstrabd2 : :usage = "testing I, 2,3... " 

Begin [" ' Private ' "] 

rtdcstrabd2 [kab_, kbd_, 8m_, ~8_, wfl_, wf2_] := Module [ 

{Caf = I, Cbf = I, x, xmin, xmax}, 

xmin - 0.001~m; 

xmax = 5~m; 

ndistl = NormalDistribution[~m, ~@] ; 

ndist2 = NormalDistribution [. 5~m, ~8] ; 

pdfunctionl = PDF[ndistl, x] ; 

pdfunction2 = PDF[ndist2, x] ; 

wfl pdfunctionl + wf2 pdfunction2 
p = 

wfl + wf2 

Caf 
ca[y_] = 

1 + kab y 

Caf kab y 
cb [y_ ] = 

( 1 + kab y) ( 1 + kbd y) 

C af kab kbd 
cd [y_ ] = 

(i + kab y) (I + kbd y) 

Plot[p, {x, 0, xmax}, 

AxesLabel ~ {"8", "PDF[8]"}, 

PlotStyle ~ {GrayLevel[0.4], Thickness[0.01], 

Dashing[ {0.02, 0.03}]}, 

PlotRange ~ { {xmin, 28m}, 

{0, . 01+ Max [Table [N [p] , {x, xmin, ~nax}]]}}, 

Epilog ~ (Line[{{~m, 0}, {~m, Max[Table[N[p], 

{x, xmin, ~nax}]]}}]}, 

PlotLabel ~ "~m,o"]; 
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totp = NIntegrate[p, {x, 0, xmax}] ; 
NIntegrate [xp, {x, 0, xmax} ] 

thetam = 
totp 

NIntegrate [ca [x] p, {x, 0, xmax} ] 
caave = 

totp 

NIntegrate [cb [x] p, {x, 0, xmax} ] 
cbave = 

totp 

NIntegrate [ cd [ x] p, { x, 0, xmax} ] 
cdave = 

totp 

conversion = I00 (l-caave); 

cbave 
selB = 

caave + cbave + cdave 

cdave 
selD = 

caave + cbave + cdave 
{totp, thetam, conversion, selB, selD} 
] 

End [ ] 

EndPackage [ ] 

Out [243]- Global'rtdcstrabd2' 

Out [244]- testing 1,2,3... 

Out [245]= Global'rtdcstrabd2'Private' 

Out [24 7]- Global'rtdcstrabd2'Private' 

In[249]'= rtdcstrabd2[2, 1, 10, 1.5, 1, .25] 
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Out [249]= {0.999914, 9.00081, 94. 1074, 0.102341, 0.838733} 

In[250]:= {rtdcstrabd2[.2, .i, 10, 1.5, 1, 0], 
rtdcstrabd2[.2, .i, i0, 1.5, O, i], 
rtdcstrabd2[.2, .i, I0, 1.5, i, I], 
rtdcstrabd2[.2, .i, i0, 1.5, i, .25]} 
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Out[250]: {{i., i0., 66.3228, 0.332179, 0.331049}, 
{0.999571, 5.00231, 48.8138, 0.323047, 0.165091}, 
{0.999785, 7.50169, 57.5702, 0.327614, 0.248088}, 
{0.999914, 9.00081, 62.8222, 0.330353, 0.297869}} 

Here  we  can see a m u c h  s t ronger  effect of the r.t.d, on the convers ions  a n d  the selectivities. 

The cases we  have  chosen  to examine  are p u r p o s e f u l l y  extreme.  With the r.t.d, cen te red  at 
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e m =  10, the conversion of A is 66% and the selectivities to A and to B are virtually I : 1. When 
we push  the r.t.d, to a shorter residence time and 8m - 5 the whole picture changes to one of 
lower conversion and higher selectivity to B by almost 2 : I over D - - a s  we would  expect. Note, 
however, that the yield to B is now under  16%, whereas in the first case it was closer to 22%. 
With a bimodal  distribution having nearly equal probabilities at 8m - 5 and 10, the picture 
changes once again: The conversion is lower than the nar rowly  distr ibuted case centered at 
8m = 10, and so too is the selectivity to D rather than B. Finally, if the maldistr ibution is less 
severe, then too is the departure from the unimodal  result. 

For comparison,  we show in the following and compute  the case of a very nar row distri- 
bution and the actual values for the base case of a single holding time, that is for Dirac-Delta 
Function of residence times: 

In [251 ] �9 = rtdcstrabd2 [. 2, 
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Out[251]= {I., i0., 66.6607, 0.333315, 0.333293} 

In[252].= kab - .2; 

kbd = .I; 

Caf = i; 

~ : 10; 
Caf kab kbd 8 2 

Cd -, N[ ] 
(1 + kab@) (1 + kbdS) 

Caf kabe 
Cb -, N[ ] 

(1 + kabS) (1 + kbde) 

Caf 
Ca -, N[ ] 

1 + kab 8 

Out [256]: {{{{Cd -~ 0.333333}, {Cb -~ 0.333333}, {Ca -~ 0.333333}}}} 
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9.10 Time-Dependent PFR Complete 
and Numerical Solutions 

The PFR equation that we derived had two partial der ivat ives--one in time and one in space. 
Recall that this is the equation for component  A being fed to the PFR: 

aCa - q  OCa 

at Acr 3z 
Y A -  

The t ime-dependent  derivative of concentration is the accumulation term for the differential 
volume Acr dz. This is essentially the same for all the reactor types we have studied. What 
makes the PFR different and perhaps more interesting is the spatial derivative. 

Since it was not within our ability to solve the t ime-dependent  equation, we naturally 
solved the steady-state problem so that the accumulation term went to zero, which left only 

the spatial derivative: 

0 - q  aCa 
- -  Y A -  

A 3z 

q aCa 

A 3z 
- -  - - F A -  

This problem is more soluble because it involves only this one derivative. In fact, if we 
recall that ~ is the velocity vz in the PFR, then we simplify the equation further: 

q aCa 
_ _  ~ = ~ r  A _  

A az 

aCa 

However, v~ is the ratio of a constant velocity to a differential distance. This has units of re- 
Oz 

1 ciprocal time. Formally, we can take the constant into the derivative and this gives us a s ,  
l ,z 

1 The equation which can be defined as the reciprocal of the differential holding time ~--~. 

becomes: 

aCa 

Or 
- -  - - Y A -  

This result is very nice because it shows us that at the steady state the PFR has the same govern- 
ing equation as the transient batch reactor, except that instead of the real time the differential 
is given in terms of the differential holding time. 
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9.1 I Transient PFR 
The question arises as to how long it will take a reactor operating in the plug flow regime to 
reach a steady state for a specific set of reaction kinetics, volume, and flow rate. To solve this 
problem we need to solve both in time and in space. If the kinetics are simple, then we can 
solve the problem analytically, that is, we can derive expressions for the concentrations that 
are functions of time and position. However, often the kinetics are not straightforward and 
analytical solutions must  be surrendered in favor of numerical solutions. 

The numerical solution will produce values of the concentration at specific times and 
positions. What happens then is that the equations are solved for a grid of times and positions. 
Starting with initial conditions, each new solution is based on the solution at the previous grid 
point. The differentials are approximated by differences and the problem reduces to one of 
solving the simultaneous difference equations. Many very elegant numerical recipes are used 
to do this, but none that need concern us here. Instead, we accept the work from decades of 
research and development in computing and applied math and simply use its powerful results. 

9.12 Equations, Initial Conditions, 
and Boundary Conditions 

Consider the following reaction and its occurrence in a transient PFR: 

A + B - - *  D--* E 

The first reaction takes place via second-order kinetics k l  Ca Cb and the second is first order 
in D, k2 Cd. The concentrations of every species will be a function of both space and time: 

Ci[z, t] 

The differential equations for the concentrations of each species are of the form shown for 
species A" 

0Ca - q  0Ca 

Ot A Oz 
t'A- 

We can write these as a set of equations for A, B, D, and E, each of which is coupled through 
their concentrations. We also need four initial conditions for these concentrations. We can set 
the concentrations of A and B to their inlet values as if the tube were uniformly filled with 
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them initially. For the two products  we can set each of them to zero at time zero at all z positions 

in the reactor. We do this as follows: 

Creactant[z, 0] - =  Creactant, o 

Cproduct[z,  0] = =  0 

For a partial  differential equation we also need to have a set of boundary conditions. The ini- 
tial conditions are for the time differential and the bounda ry  conditions arise for the spatial 
differential. The bounda ry  conditions are analogous to initial conditions. The bounda ry  con- 
ditions mus t  be satisfied at some position or positions for all times. The ass ignment  of proper  
boundary  conditions to physical problems usual ly becomes the most  challenging part  of the 
analysis, but  it is also the most  interesting! Boundary  conditions for our problem can be fairly 
straightforward:  We will let the concentrations of the reactants A and B be equal to a constant 
at the inlet for all times. The other concentrations will be zero. Here is how we express that: 

Ca[0, t] - -  Cao 

Cb[0, t] - -=  Cbo 

Cd[0, tl = =  0... 

The first par t  of this problem is to write the set of component  equations, the initial conditions, 
and the bounda ry  conditions, including the kinetics. Call this set eqns. Next write out the set 
of variables that will be solved for calling it vars. 

eqns - { component  equations, initial conditions, bounda ry  conditions} 

vars = {Ci[z,t] .... } 

We make a vertical list of parameter  names  and values and then we use NDSolve  with the set 
of equations and variables as follows: 

solns - NDSolve[eqns, vars, {t, 0, tmax}, {z, 0, zmax}] 

When NDSolve  does the numerical  integration it automatically fits a set of polynomials  to 
the numerical  values of each variable at each grid point  in time and position. Therefore, the 
output  will be an interpolation function. We assign these interpolation functions to function 
names and patterns.  We will solve numerical ly  and then plot the concentrations for A, D, 
and E in z- and t-space. As this is unlike the other problems we have done to this point, we 
will present  it in a highly interactive step-by-step fashion. Putt ing these pieces together into 
a Modu le  or package only makes sense after the computa t ion  and the implemented  code 
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are understood.  Here is the code we have just described. We will let the results for each step 
flow to ou tput  so that  we can see how this works  in detail: 

In[257].= Clear[ca, cb, cd, ce, q, A, kl, k2, cao, cbo, cdo, ceo, 

tmax, zmax, cA, cB, cD, cE] 

General--spelll. Possible spelling error- new symbol name 

"cao" is similar to existing symbol "Cao". 

General--spelll- Possible spelling error- new symbol name 

"cbo" is similar to existing symbol "Cbo". 

General--spelll- Possible spelling error- new symbol name 

"cdo" is similar to existing symbol "Cdo". 

General--stop- Further output of General -- spelll will be 

suppressed during this calculation. 

Here are the equations,  the initial and boundary  conditions, and the variable names: 

In [258] "- eqns - { 
q 

D[ca[z, t], t] =----D[ca[z, t], z]-kl ca[z, t] cb[z, t], 
A 

q 
D[cb[z, t], t] ==---D[cb[z, t], z]-klcb[z, t] cb[z, t], 

A 
q 

D[cd[z, t], t] ==---D[cd[z, t], z] + klca[z, t] cb[z, t] 
A 

-k2cd[z, t], 
q 

D[ce[z, t], t] == --- D[ce [z, t], z] + k2cd[z, t], 
A 

ca[0, t] == cao, 

cb[0, t] == cbo, 

cd[0, t] ---cdo, 

ce[0, t] == ceo, 

ca[z, 0] == cao, 

cb[z, 0] == cbo, 

cd[z, 0] == 0.0, 

ce[z, 0] -= 0.0) 

vars = {ca[z, t], cb[z, t], cd[z, t], ce[z, t]}; 

qca (I'~ [z,t] 
0ut[258]= {ca (~ [z,t] =: -klca[z,t]cb[z,t] - 

A 
qcb (I'~ [z,t] 

ca (~ [z,t] :: -klcb[z,t] 2 - 
I 

A 
ca (~ [z, t] :: klca[z, t] cb[z, t] - k2ca[z, t] 

qcd (I'~ [z,t] 
i 

A 
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qce (I'~ [z,t] 
ca (~ [z,t] :: k2ca[z,t] - ,ce[0,t] :: cao, 

A 
cb[O,t] :: cbo, cd[0,t] := cdo, ce[0,t] :: ceo, 

ca[z,0] -= cao, cb[z,0] == cbo, cd[z,0] == 0., 

ce[z,0] :: 0.} 

To solve this numerically we need the following parameter values: 

In[260]:= q = 7.5; 

A = 10; 

kl = 0.15; 

k2 = 0.04; 

cao = I; 

cbo = i; 

cdo = 0; 

ceo = 0; 

tmax = I00; 

zmax = i00; 

Next the equations and variables are placed within NDSolve and solved over a range of 
positions (z-values) and times. Then we assign the resultant interpolation functions to the 
appropriate function names: 

In[280]:= solns = NDSolve[eqns, vars, {z, 0, zmax}, {t, 0, tmax}]; 

In[281] := cA[z_, t_] := Evaluate[ca[z, t] /. solns[[l]]] 

cB[z_, t_] := Evaluate[cb[z, t] /. solns[[l]]] 

cD[z_, t_] := Evaluate[cd[z, t] /. solns[[l]]] 

cE[z_, t_] := Evaluate[ce[z, t] /. solns[[l]]] 

Finally, we use the newly defined functions in graphical routines as shown in the following, 
which are now three dimensional in order to provide us with surfaces of points that make up 
the solutions to this problem for each species: 

In[286]:: a = Plot3D[cA[z, t], {z, 0, zmax}, {t, 0, tmax}, 

ColorOutput ~ GrayLevel, 

AxesLabel ~ {"z "," t", "cA "}, ViewPoint ~ {I, -2, 2}, 

PlotPoints ~ 20, 

Ticks ~ {Automatic, Automatic, {0, 0.5, i}}, 

DisplayFunction ~ Identity] ; 

b = Plot3D[cB[z, t], {z, 0, zmax}, {t, 0, tmax}, 

ColorOutput -~ GrayLevel, 

AxesLabel ~ {"z "," t", "cB "}, 

ViewPoint ~ {I, -2, 2}, PlotPoints ~ 20, 
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Ticks ~ (Automatic, Automatic, {0, 0.5, 1}}, 

DisplayFunction ~ Identity] ; 

d = Plot3D[cD[z, t], {z, 0, zmax}, {t, 0, tmax}, 

ColorOutput ~ GrayLevel, 

AxesLabel ~ {"z "," t", "cD "}, 

PlotPoints ~ 20, 

Ticks ~ {Automatic, Automatic, {0, 0.15, .30, 

DisplayFunction ~ Identity] ; 
. 4 5 ) } ,  

e = Plot3D[cE[z, t], {z, 0, zmax}, {t, 0, tmax}, 

ColorOutput ~ GrayLevel, 

AxesLabel ~ {"z "," t", "cE "}, 

PlotPoints ~ 20, 

Ticks ~ {Automatic, Automatic, {0, 0.25, .5, .75}}, 

DisplayFunction ~ Identity] ; 

Show[GraphicsArray[{{a, b}, {d, e}}], 

DisplayFunction -~ $DisplayFunction] ; 

0.5 ~" ~ .... ~- ~000 O ~_~D~~.O0\ ~ -  -~ 80 
-. �9 . 60 

t 0 L  ....... ~ 

............... _T2  ~ ~0 ~0 ~o ........ ~- ~0~O.8o. ....... . ~ . 0  
I000 I00 0 

07s  ~  ~00 ~ .  ~ 0~.~\ ~00 cD 0. lS t ~  0 

z i000 z 0 

The graphs of each of the species concentrations are plotted as a function of posit ion along 
the tube z and time t. At the edges of the graphs for the concentrations of A and B we see the 
boundary  and initial conditions. All values are unit or zero concentration as we had specified. 
As we move through time, we see the concentrations of both species drop monotonical ly at 
any position. Furthermore,  if we take any time slice, we see that the concentrations of reactants 
drop exponentially with pos i t ion--as  we know they should. At the longer times the profiles of 
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A and B through the reactor have reached their steady-state values. Species D is intermediate 
in the network. Its concentration rises sharply as a function of time and of position, maximizing 
across the reactor at short time and then falling to its steady-state value. The only region of 
the reactor in which the concentration of D persists at relatively high levels is at a position 
approximately 10 units from the entrance. As time goes on the initially high D concentration 
beyond position z ~, 10 falls. Species E is the ultimate product  of this network. At the lower left 
comer of the CE concentration graph, the concentration is zero. Through time and position this 
rises to a steady-state level of nearly 0.8 in the upper  right corner of the plot (which represents 
the reactor outlet after much time has passed). 

All in all, the series network in a transient PFR appears to follow the trends that we would 
expect in evolving to the steady-state condition. The time to reach the steady state is a function 
of the rate constants, the inlet concentrations, and the holding time, that is, of the volume flow 
rate and reactor volume. 

9.1 3 Summary 
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This chapter has been devoted to continuous reactors and their analyses. We have examined 
the powerful idealizations of the CSTR and PFR. Pseudo-steady states and steady states 
have been covered as well as chemical equilibrium. We must  remember that the steady-state 
condition can be far from the equilibrium condition, and the two t ime-independent  situations 
must  not be confused. The t ime-dependent  CSTR and PFR are interesting problems, but they 
are less often used than the steady-state solutions. 

We have seen how the kinetics fit into a reactor equation as a constitutive relationship. 
Flow and reaction come together in these systems to affect the rate of accumulation. Hence 
when we refer to the "rate" we must  be careful to be specific about the reactor--if  it is a 
constant volume batch reactor, then rate means the chemical rate. If the reactor is a transient 
CSTR or PFR, then the rate of change of the concentration at the exit of the reactor is not the 
chemical rate alone. Mixing effects are important  and we have seen how to begin to account 
for the fluid mechanics in a reactor through the empirical measure of the r.t.d. The r.t.d, does 
affect the outcome from the reactor, but the sensitivity to the r.t.d, depends upon the kinetics 
and their functional form. 

Finally, we have taken our Mathematica skills up another level by writing not just Module  
functions, but  actual Packages. By writing Packages in the Global  context we implement  them 
immediately. We can, however, write and save packages to another context and then call them 
from our own library as we need them, either as stand-alone computations or as embedded 
functions in another package. 
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Worked  Problems 

The following are exercises that have been used with honors students and that seem to be 
both interesting and challenging. In many cases only the rudimentary coded solution is 
given. From this one can build much more sophisticated code and in many cases create Mod- 
ule functions that can be used repeatedly with different parameter  values. Note that all of 
these separate problems were run as if the Kernel had to be restarted with each computa- 
tion. Running sequentially without adding statements to clear variables will result in absurd 
output. 

I0.1 The Level-Controlled Tank 
I I I I I I  III I II I I I I  II II I II I I I I I I I I  I I  I _ I I I  I I I I IL _._ I _ _ _  

Introduction 
The filling or draining of a tank is a relatively simple situation to model. If the tank has 
both input and output  then it is a combination of the two previous cases and the differential 
equation for the rate of change of the level in the tank is as follows: 

dh[t] (qf - q) 

dt A 

459 
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When the input flow rate is equal to the output  flow rate, the system is at steady state and the 
dh[t] level remains constant because ~ - 0. 

A tank could be operated in such a way that the inlet was always equal to the outlet when 
the two were at their designed magnitudes.  Thus if q" was the designed flow rate in a CSTR, 
for example, then the system could be maintained at some specific design level h ~ and design 
volume V *. As long as the inlet or outlet rates did not change, the system would remain at this 
condition. From our s tudy of kinetics, we know that maintaining V * as a constant would be 
desirable in order to keep the holding time r - v__2 constant and to remain at the design level q 
of production. 

Perturbation of the Inlet Flow Rate and Control 
Suppose that the inlet flow rate was mostly a constant but from time to time it suffered an 
upset. The upset would either increase the inlet flow or decrease it. If this were to occur, then 
the level in the tank would either increase or decrease, unless there was some at tempt made 
to change the outlet flow rate. A simple control algorithm would be one in which the exit flow 
rate is adjusted automatically when there is an upset, either above or below the design flow 
rate. To do this analysis we need to specify the upset and the system's response to it. 

Let the upset be some additional flow rate over or below the design value. Stated in simple 
mathematical terms: 

q f = q ~  + q p  

where q" is the design magni tude and qp is either positive or negative. We will say more about 
the upset flow rate momentarily, but first we will describe the controlled outlet flow rate. The 
outlet flow rate is typically at the setpoint q~ until the upset qp takes place. At that point the 
flow rate must  be adjusted to compensate the change in the inlet flow rate. We describe this by 
setting the adjusted flow rate equal to the set point plus a new flow rate that is proportional 
to the difference between the set point level and the actual level at that time: 

q = q~ - K(h" - h(t)) 

For this to be dimensionally consistent, it is clear that the proportionality constant must  have 
dimensions of area per time so that its product  with h ~ - h(t) is in dimensions of volume per 
time. During the upset we are discussing here, the system responds transiently, that is, it goes 
away from steady state. The governing equation is: 

dh(t) q~ 4- q p  - (q~  - K ( h  ~ - h ( t ) ) )  

dt A 

dh(t) q p  4- K (h ~ - h ( t ) )  

dt A 
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This equation is the one that mus t  be integrated and to do so we mus t  know how the upset  
behaves in time. Before the upset  from t - 0 until some t ime just below t l ,  qp is zero and h* = 

h(t): 

dh(t) 
0 < t < t l  = 0 => h ( t ) -  h* 

dt 

The upset  begins at t ime tl ,  and it ins tantaneously  rises to a value of qp. The upset  stays 
at the level qp from t l  until a t ime just less than t2. At t ime t2 it falls ins tantaneously  
back to zero. This kind of function is called a UnitStep. For the sake of making  a graph  
of this type of disturbance,  we plot the UnitStep function and 1 - UnitStep function us- 
ing the parameters  1 and 6 in order to have a pulse of unit  height  that  is five t ime-uni ts  

wide: 

In[2064] .- << Calculus'DiracDelta" 

a = Plot [UnitStep [x - I], {x, -3, 6}, 

DisplayFunction -~ Identity] ; 

b = Plot[l - UnitStep[x - 6], {x, i0, i}, 

DisplayFunction -~ Identity] ; 

Show[a, b, DisplayFunction-~ $DisplayFunction]; 

DiracDelta: :obs]t : 

All DiracDelta and UnitStep functionality is now 

autoloaded. The package Calculus'DiracDelta" is 

obsolete. 
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In general the height  of the dis turbance is qp and its wid th  is t2 - t l .  The quest ion now 
becomes one of how to do the integrations dur ing  and after the disturbance.  
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Integration Through and Beyond the Disturbance 
We must  now integrate this equation from tl  to t: 

dh2(t) qp 4- K (h* - h2(t)) 

dt  A 

The initial condition is h2(tl)  = h* and we should integrate to any t less than t2, so we integrate 
to t. 

When  this is done we have an expression for h(t) dur ing  the course of the disturbance.  
We mus t  next integrate after the disturbance is complete,  that is, from t2 out  to any addit ional  
time t. Here we have the following equat ion to work  with because qp is zero: 

dh3(t) K(h* - h3(t) 

dt A 

The initial condition for this period is h3[t2] = h2[t2]! Therefore, we must  evaluate the constant 
of integration very carefully. 

Finally, we know that if the disturbance is positive, then the inlet flow increases and the 
tank level should rise. If there were no control it would  rise and stay at a new higher  level. 
With control it should rise and then fall back to the control or design level. Tracking the change 
in level versus time we should see a sawtooth that looks like this: 

h[t] 
52 

51.5 

51 

50.5 

5O 

49.5 

49 

48.5 

" 2 1 5 5  7 1 5 ~ 1 ~ 0 i 9 . ' " 5 i ' 5 i 7 ' . 6 } ' 0  t 

Problem Statements 
A) Find the expression for h2[t] by using DSolve. Evaluate the constant of integration using 
the initial condition that h2[0] - >  h2[tl] - h d :  

DSolve[h2'[t]  qp 4- K(hd - h2[t]) h2[t], t] 
L A ] 
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B) Find the expression for h3[t] using DSolve. Evaluate the constant of integration using the 
initial condition that h3[0] = >  h3[t2] = h2[t2]. 

DSolve [h3'[t] K(hd -A h3[t]), h3[t], t] 

C) Create functions for h2[t] and h3[t], and given the following parameter  values, Plot, hl ,  h2, 
and h3 consecutively in time. 

hd = 50; 

K : 5; 

A = 10; 

qp = 10; 

tl  = 5 ;  

t2 = 10; 

tmax = 30; 

Solution to Part A 
Find a general solution to the differential equation: 

In[7] .-Clear[h2, qp, hd, K, A, tl, t2] 

DSolve[{h2' [t] == 
qp + K(hd - h2[t]) 

}, h2[t], t] 

Out[2]- {{h2[t] -~ 
hdK + qp KI 

+ e -C[l] } } 

Evaluate the constant of integration at the initial condition h2[tl] = hd using Solve: 

In [3] "- Solve[hd == 

Out[3]- {{C[l] -~ - ~  

hdK + qp 

e '!-.. i qp 
}} 

K 

Ktl 

+ e ~C[l], C[ll] 

Define the constant C1 and then replace it and simplify: 

Kt% 

e ~qp 
In[4] "- C1 = - ~ ;  

Collect [ Simplify [ 
hdK + qp K t  

+ e-TCl], qp] 
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Out [5]- hd + 

K(-t+tl) 
(i - e A )qp 

Now define a function for h2[t] to use in parts B and C: 

K(-t+tl) 
1 e A 

In [6] "- h2[t_] := hd + (- - ~ ) q p  
K K 

Solution to Part B 
Find the general solution to the differential equation defining the rate of change in the level 
of the tank after t2: 

In[7] .- Clear[hd, h3] 

DSolve [ {h3' [t] == 
K(hd - h3[t]) 

~':_L 

Out[8]- {{h3[t] -~ hd + e .,, C[I]}} 

}, h3[t], t] 

The initial condition in this case is given as h3[0] - h3[t2] - h2[t2]. We find this by substituting 
h2[t] into the initial condition equation and evaluating C again: 

In[9].: h2 [t2] 

K ( t  1~t , : )  

1 e , 
Out [9]- hd + (-- - )qp 

K K 

Kt2 
In[lO].= Solve[h2[t2] == hd + e x C[I], C[I]] 

Out[lO]: {{C[l] -~ - 

Kt ;~ K(t l~t 2) 
e,, (-i + e )qp 

}} 

Replacing the expression for C into that derived for h3[t], we find the expression for h3[t]: 

Kt 
In[ll]'= Simplify[hd + e-W (- 

Kt2 K(tl-t2) 
e x (-I + e A )qp 

Out[ll]- hd - 

K(-t}t2) K(t Ift2) 
e ~- (-i + e )qp 

)] 
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Anticipating the need for this function, we define it: 

In f12]'- h3[t_] := 

K(-t+tl) K(-t+t2) 

hdK + (-e ~ + e ^ )qp 

Solution to Part C--Graphs of h I[t],h2[t],h3[t] 
The code that follows works with the three functions we have derived for the three intervals of 
t ime-dependent behavior. After specifying the three functions, we list the parameter values. 
Each has a semicolon at the end in order to prevent its value from being echoed back to the 
monitor. Note that tl  and t2 are constants that must  be specified. 

The first plot is made with the following command: 

Plot[{hl[t], h2It], h3[t]}, {t,0,50}]; 

The syntax involves specifying the functions to be plotted first and the time interval over 
which they should be plotted next. The details show that the functions are implemented as a 
set included within the curly brackets {} as is the time range. The disadvantage of this approach 
is that all functions are plotted over the whole time range, even though they only apply to 
separate intervals of time. To overcome this problem we use the three code lines that follow. 
These have the following format: 

p l l  = Plot[ hl[t], {t,0,tl}, DisplayFunction--+Identity,  PlotStyle---,Hue[.4]]; 

The command structure is nearly the same as that used before with some notable differences. 
We include only one function in each command- - in  this case hl[t]. Then we specify the interval 
we want to plot this function over; for h l  it is from t = 0 to t - tl. For h2[t] we set the interval 
to be from tl to t2 and for h3[t] from tl to t. Next, we set the DisplayFunction to Identity. 
This surprises the output  of the graphics but saves them in the plot called "pll ."  In order to 
distinguish between these three plots we change their color. This is done by setting PlotStyle to 
Hue[0.4] (Hue can have a value between 0 and 1). We use different value for the three different 
plots. Finally we call each of the plots in the show command pll ,  p12, and p13, and we set 
DisplayFunction to $DisplayFunction. This makes one plot from the three separate plots and 
we have no overlapping of the functions. 

In[13]'- SetOptions[{Plot}, DefaultFont -~ {"Helvetica", 12}]; 

hl[t_] := hd 
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K(-t+tl) 
1 e A 

h2[t_] := hd + (- - ~ ) q p  
K K 

h3 [t_] := 

K(-t+tl) K(-t+t2) 

hdK + (-e ~ + e ~ )qp 

hd = 50; 

K = 5; 

A = i0; 

qp = I0; 

tl =5; 

t2 = I0; 
tmax = 30 ; 

Plot[{hl[t], h2[t], h3[t]}, {t, 0, 50}]; 

pll = Plot[hl[t], {t, 0, tl}, DisplayFunction ~ Identity, 

PlotStyle ~ {{Thickness[.01], GrayLevel[0.0] }}] ; 

p12 = Plot[h2[t], {t, tl, t2}, DisplayFunction ~ Identity, 

PlotStyle ~ {{Thickness[.01], GrayLevel[0.2], 

Dashing[{0.03, 0.03}] }}] ; 

p13 = Plot[h3[t], {t, t2, tmax}, DisplayFunction -~ Identity, 

PlotStyle ~ {{Thickness[.01], GrayLevel[0.6], 

Dashing[{0.03, 0.03}] }}] ; 

Show[pl3, p12, pll, DisplayFunction ~ $DisplayFunction, 

PlotRange ~ {{0, 20}, {48, 52}}, 

AxesLabel ~ {"t", "h[t]"}] ; 
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10.2 Batch Competi t ive Adsorption 

Introduction 
Adsorption of an impurity onto a porous solid such as activated carbon, alumina, or silica 
is often used to purify gases and liquids. Adsorption usually is reversible, but if the heat of 
adsorption is high then the tendency to desorb may be low. Typically adsorption is done in 
a continuous process. It also may be done in a batch process for small-scale separations or 
to determine the parameters that control the adsorption process for a given adsorbate (the 
adsorbing molecule) and a given adsorbent (the porous solid). 

In this problem we will simulate a batch adsorption process that takes place with two 
adsorbate components. The simulation will allow us to do computational experiments with 
the aim of learning how the adsorption and desorption parameters affect the behavior of 
this process. Building the simulation will provide new experience in developing the model 
equations, utilizing more complex constitutive relationships, finding numerical solutions to 
these equations, and displaying the results graphically. 

Adsorption/Desorption 
Adsorption Sites 
Adsorption and desorption can be considered to be analogous to a reversible chemical reaction. 
By way of this analogy there must be a forward rate corresponding to adsorption and a reverse 
rate for desorption. The net rate of adsorption is the difference between these two rates. 
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When a molecule descends to a solid surface and comes to "rest" we consider this an 
adsorption event. The time a molecule spends in this state may be very short (10 -13 sec) or 
it may be long (>hours). Because molecules have real bulk, volume, and dimensions, when 
they rest at the surface they occupy some area. Thinking of a flat plane as the surface, then the 
cross-sectional area (shadow area) of the molecule is the area of the surface that is occupied. 
The locus of points beneath this molecule can be termed the "adsorption site." The area of 
the surface divided by the area of the site gives the theoretical number of sites present at the 
surface: 

Xsite s - -  
asurface 

Asite 

Dividing this number by Avogadro's number L and the volume occupied by the surface, 
that is, by the volume of the high surface area solid G gives the concentration of adsorption 
sites: 

Csite s ~- 
Xsites 

~L 

Rates of Adsorption and Desorption 
The rate of adsorption is proportional to the concentration of the adsorbate in the bulk phase 
(gas or solid) surrounding the solid and the difference between the total concentration of 
sites in the adsorbent phase (porous solid) and the number of sites already occupied by the 
adsorbate molecules: 

radsorption OlcBulk (Csites - C Surface) 

radsorption - -  kA,,adsCBUlk(Csites -- C Surface) 

The proportionality constant is the adsorption rate constant for the species A on this particular 
solid. 

The rate of desorption of a given molecule is proportional to that molecule's concentration 
on the surface: 

rdesorption O/C SUA rface 

Surface 
~'desorption - -  kA,,des.--A 

The surface concentrations are given in a way that is analogous to the adsorption site concen- 
tration, that is, as the number of moles of the adsorbed species per volume of the adsorbent 
solid. 
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Competitive Adsorption 
If two adsorbate molecules A and B compete for the same sites then the adsorption and 
desorption rate expressions are: 

/ 'adsorption,  A kA,,ads CBulk[r  C Surface = A ~,~--Sites - -  - -  C Surface)  

/ 'adsorption,  B - -  kB,,adsCBUlk(Csites -- C Surface - C Surface)  

? 'desorption m kA,,desCSUrface 
/ 'desorpt ion m kB,,des~.. Br'Surface 

Note that the competition for the sites is accounted for only in the adsorption rate term. This 
term recognizes that the surface is occupied by two species and to the extent that this happens 
simultaneously, the rate of adsorption of either species is diminished by the presence of the 
other at the surface, just as it is diminished by its own occupancy of the surface. 

Problem Statement 
1. Set up the material balance equations for the competitive adsorption of A and B on an 
adsorbent phase. Since there are two phases and two components there must  be four compo- 
nent equations. 

2. Using the constitutive kinetics given, show explicitly that the equations are dimensionally 
consistent. To be consistent what  must  the dimensions of the adsorption and desorption rate 
constants be? 

3. Develop a simulation for this system utilizing NDSolve to integrate the equations and Plot 
to display the t ime-dependent behavior of the four concentrations in one plot. Set up the 
simulation with the equations and initial conditions given first as a set. The variables also are 
given as a set. These are followed by the parameters in a vertical list so that they can be easily 
changed to test behavior. Next use NDSolve to find the numerical solutions to the equations. 
Assignment of the interpolation functions to a series of four functions is done next. Finally a 
Plot routine is implemented. The skeleton of the simulation then should be: 

Eqns - {eqn I, eqn 2, eqn 3, eqn 4, initial conditions (1,2,3,4) } 

Parameters �9 

Vats - {Ci[t]...Cl[t] } 

solns - NDSolve[Eqns, Vats, {t,0,tmax}] 

Cin[t_] "- Evaluate[Ci[t]/.solns]...Cln[t] -- Evaluate[Cl[t] /.solns] 

Plot[{Cin[t]...Cln[t] }, {t,0,tmax} .... ] 

4. Use this simulation to examine the behavior of this seemingly simple set of equations by 
varying the parameters according to the following matrix. After each simulation save the 
graphical output  by copying the graph and pasting it to a new bracket in your notebook, to a 
new notebook, or to a Word document. 
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Sim. No.  C Bulk C Surface C Bulk C Surface Csites k~d s k~e s k~d s k~e s t m a x  A,o A,o B,o B,o 
1 1 0 1 0 1 1 1 1 1 10 
2 1 0 1 0 1 10 10 1 1 10 
3 1 0 1 0 1 100 100 1 1 5 

4.a 1 0 1 0 1 1 10 .1 .001 10 

4.b . . . . . . . . . . . . . . . . . .  100 
5 1 0 1 0 10 .01 .001 .1 .00001 50 

5. H o w  could you write  a piece of code using Module  to accomplish all of this and require 

only the s imulat ion parameters  and number?  

Solution 
Here is an example of how this can be handled  for the case of the fifth set of parameters:  

In[l]'- SetOptions[{Plot}, DefaultFont ~ {"Helvetica", 10}]; 

eqnsa = {Cab' [t] == -kaa Cab[t] (Cs - Cas[t] - Cbs[t]) 

+ kad Cas[t], 

Cas' [t] == +kaa Cab[t] (Cs - Cas[t] - Cbs[t]) 

- kad Cas[t], 

Cbb' [t] == -kba Cbb[t] (Cs - Cas[t] - Cbs[t]) 

+ kbd Cbs[t], 

Cbs'[t] == +kba Cbb[t] (Cs - Cas[t] - Cbs[t]) 

- kbd Cbs[t], 

Cab[0] == Cabo, Cas[0] == Caso, Cbb[0] == Cbbo, 

Cbs[0] == Cbso}; 

vars = {Cab[t], Cas[t], Cbb[t], Cbs[t] }; 

tmax = 50 ; 

n = 5; 

Cabo = i; 

Cbbo = 1; 

Caso = 0; 

Cbso = 0; 

kaa = .01; 

kad = . 001; 

kba = . 1; 

kbd = .00001; 

Cs = i0; 

solns = NDSolve[eqnsa, vats, {t, 0, tmax}] ; 
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Cabn [ t_ ] 

Casn[t_ ] 

Cbbn [ t_ ] 

Cbsn [ t_ ] 

:= Evaluate[Cab[t] /. solns] 

:= Evaluate [Cas [t] /. solns] 

:= Evaluate [Cbb [t] /. solns] 

:= Evaluate [Cbs [t] /. solns] ; 

n "= Simul. No." 

tmax "= tmax" 

kaa "= kaa" 

kad "= kad" 

kba "= kba" 

kbd "= kbd" 

Plot[{Cabn[t], Casn[t], Cbbn[t], Cbsn[t] }, {t, 0, tmax}, 

PlotStyle ~ {{GrayLevel[0.6], Thickness[.01]}, 

{Dashing[ {0.15, 0.05}], GrayLevel[0.6], 

Thickness [. 01] }, 

{GrayLevel[0], Thickness[.01] }, 

{Dashing[{0.15, 0.05}], GrayLevel[0], 

Thickness[.01]}}, AxesLabel ~ {"t", "Ci[t]"}, 

PlotLabel ~ "n"= SimNo, Gry = A, Blk = B, 

Sld = Blk, Dashed = Surface"]; 

General: :spelll : Possible spelling error: new symbol 

name "Cabo" is similar to existing symbol "Cab". 

General: :spell : Possible spelling error: new symbol name 

"Caso" is similar to existing symbols {Cabo, Cas}. 

General: :spell : Possible spelling error: new symbol name 

"Cbbo" is similar to existing symbols {Cabo, Cbb}. 

General: :spell : Possible spelling error: new symbol name 

"Cbso" is similar to existing symbols {Caso, Cbbo, Cbs}. 

General: :stop : Further output of General: :spell will be 

suppressed during this calculation. 

General: :spell : Possible spelling error: new symbol name 

"Cabn" is similar to existing symbols {Cab, Cabo}. 

General: :spell : Possible spelling error: new symbol name 

"Casn" is similar to existing symbols {Cabn, Cas, Caso}. 

General: :spell : Possible spelling error: new symbol name 

"Cbbn" is similar to existing symbols {Cabn, Cbb, Cbbo}. 

General: :spell : Possible spelling error: new symbol name 

"Cbsn" is similar to existing symbols {Casn, Cbbn, Cbs, 

Cbso}. 
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Out [20]- 5 - Simul. No. 

Out[21]- 50 : tmax 

Out [22]- 0.01 : kaa 

Out [23]= 0.001 : kad 

Out~24]- 0.i - kba 

Out [25]- 0.00001 - kbd 

Ci[t] 

0.8 

0.6 

0.4 

0.2 

5 = SimNo, Gry = A, BIk = B, SId = BIk, Dashed = Surface 

f 
I I I I  

/ 

10 20 30 40 50 

The following creates a Module function from the code provided in the preceding text. 

In[27] .= adsdes[Cabo_, Cbbo_, Caso_, Cbso_, kaa_, kad_, kba_, 

kbd_, tmax_, n_] := 

Module[{eqnsa, vars, solns, Cabn, Cash, Cbbn, Cbsn, 

Cab, Cas, Cbb, Cbs, t}, 

SetOptions[{Plot}, DefaultFont ~ {"Helvetica", 12}] ; 

eqnsa = {Cab' [t] == -kaa Cab[t] (Cs - Cas[t] - Cbs[t]) 

+ kad Cas[t], 

Cas' [t] == +kaa Cab[t] (Cs - Cas[t] - Cbs[t]) 

- kad Cas[t], 

Cbb' [t] == -kba Cbb[t] (Cs - Cas[t] - Cbs[t]) 

+ kbd Cbs[t], 

Cbs' [t] == +kba Cbb[t] (Cs - Cas[t] - Cbs[t]) 

- kbd Cbs[t], 
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Cab[0] == Cabo, Cas[0] == Caso, Cbb[0] == Cbbo, 

Cbs[0] == Cbso}; 

vars = {Cab[t], Cas[t], Cbb[t], Cbs[t] }; 

solns = NDSolve[eqnsa, vars, {t, 0, tmax}] ; 

Cabn[t] = Evaluate[Cab[t] /. solns]; 

Casn[t] = Evaluate [Cas [t] /. solns]; 

Cbbn[t] = Evaluate [Cbb [t] /. solns]; 

Cbsn[t] = Evaluate [Cbs [t] /. solns]; 

Print ["Simulation Number ="n] ; 

Plot[{Cabn[t], Casn[t], Cbbn[t], Cbsn[t]}, {t, 0, tmax}, 

PlotStyle ~ {{GrayLevel[0.6], Thickness[.01] }, 

{Dashing[{0.15, 0.05}], GrayLevel[0.6], 

Thickness[.01] }, {GrayLevel[0], Thickness[.01] }, 

{Dashing[{0.15, 0.05}], GrayLevel[0], 

Thickness [. 01] } }, 

AxesLabel ~ {"t", "Ci[t]"}, 

PlotLabel ~ "Gry = A, Blk = B, Sld = Blk, 

Dashed = Srf"] 
] 

In[28].-adsdes[l, I, 0, 0, .01, 

Simulation Number - x 

Ci[t] 

.001, .I, .001, 50, x] 

G r y -  A , B I k -  B ,SId - BIk ,  Dashed - Srf 

o.81  
0.6 

0.4 

0.2 

10 20 30 40 
Out[28]: -Graphics- 

50 
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10.3 A Problem in Complex Kinetics 
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Introduction 
Most reactions occur while other reactions are also taking place simultaneously.  Very often the 

products  of one reaction are the reactants for the next. Similarly, a reactant m a y  be involved 
in more than one reaction. When  reactions occur in a sequence, this is referred to as a series 
network.  An example would  be: 

A Z B Z D Z E  

Alternatively, reactions may  take place in parallel: 

A ~ B  

A ~ D  

Addit ions of these two simple cases can lead to series parallel ne tworks  of chemical reaction. 
When we encounter  a problem like this one, we have to handle  the kinetics carefully. This is 
just what  we will do in the case of this problem. 

Parallel and Series Reversible Reactions 
Consider  the case of a reversible reaction whose products  lead to another  product:  

A + B Z D + E  

rnet, 1 --- kl  Ca Cb - k2 Cd Ce 

D + E - - ,  F 

met,2 = k3 Cd Ce 

A + A ~ G  

rnet,3 -- k4 Ca 2 - k5 Cg 

The net rate of the first reversible reaction can be given as/'net,1 = kl  Ca Cb - k2 Cd Ce. The 
second reaction is in series wi th  the first and we find it has kinetics that are given by r = 
k3 Cd Ce. It is irreversible. The third reaction, A to G, is parallel to that of the first reaction 
and it too is reversible. This reaction is second order in the forward direction and first order 
in the reverse direction. 

Problem Statements 
A) Using NDSolve, set up the model  equations for each componen t  assuming that the reactions 
take place in a batch reactor. The following parameters  are those that you will need to solve 
the equations numerically. Show, using Plot, the change in each concentrat ion as a function of 
time. 
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k l  - - .1 ;  

k2 = .05; 

k3 = .1; 

k4 = .065; 

k5 = .02; 

Cao  = 1; 

Cbo = 1; 

C d o  = 0; 

Ceo = 0; 

Cfo = 0; 

Cgo  = 0; 

tmax  -- 250; 

B) H a v i n g  so lved  the batch  case, n o w  set up  the same  kinetics for the case of a CSTR o p e r a t e d  at 

s t eady  state. Use NSolve  to find the op t imal  flow rate and  ho ld ing  t ime for the p r o d u c t i o n  of D 

(and E) a s s u m i n g  that  the inlet concent ra t ions  of A and  B are each I and  that  the v o l u m e  is 100. 

Solution 

In[l]'- SetOptions[{Plot}, DefaultFont ~ {"Helvetica", 12}]; 

kl = .I; 

k2 = .05; 

k3 = .i; 

k4 = . 065 ; 

k5 = .02; 

Cao = I; 

Cbo = I; 

Cdo = 0; 

Ceo = 0; 

Cfo = 0; 

Cgo = 0; 

tmax = 250 ; 

solns = NDSolve[{ Ca' [t] == -kl Ca[t] Cb[t] + k2 Cd[t] Ce[t] 

- k4 Ca[t]2 + k5 Cg[t], 

Cb' [t] == -kl Ca[t] Cb[t] + k2 Cd[t] Ce[t], 

Cd'[t] == kl Ca[t] Cb[t] - k2 Cd[t] Ce[t] 

- k3 Cd[t] Ce[t], 

Ce' [t] == kl Ca[t] Cb[t] - k2 Cd[t] Ce[t] 

- k3 Cd[t] Ce[t], 
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Cf' [t] == k3 Cd[t] Ce[t], 

Cg' [t] == k4 Ca[t] 2 - k5 Cg[t], 

Ca[0] == Cao, 

Cb[0] == Cbo, 

Cd[0] == Cdo, 

Ce[0] == Ceo, 

Cf[0] == Cfo, 

c g [ 0 ]  == c g o } ,  

(Ca[t], Cb[t], Cd[t], Ce[t], Cf[t], Cg[t]}, 

{t, 0, tmax}]; 

Can[t_] := Evaluate[Ca[t] /. solns] 

Cbn[t_] := Evaluate[Cb[t] /. solns] 

Cdn[t_] := Evaluate[Cd[t] /. solns] 

Cen[t_] := Evaluate[Celt] /. solns] 

Cfn[t_] := Evaluate [Cf [t] /. solns] 

Cgn[t_] := Evaluate [Cg [t] /. solns] 

Plot [ {Can [t] , Cdn[t], Cfn[t], Cgn[t] }, {t, 0, tmax}, 

PlotStyle -. {GrayLevel[0], {Thickness[.01], 

Dashing[{0.03, 0.02}], GrayLevel[0] }, 

{Thickness[.01], Dashing[ {0.03, 0.02}], GrayLevel[0.5] }, 

{Thickness[.01], GrayLevel[0.5] }}, 

PlotLabel ~ "A-BIk, D-BlkDsh, F-GryDsh, G-Gry", 

AxesLabel ~ {"t", "Ci[t]"}]; 

Ci[t] 
1 

0.8 

06  

0.4 

A-BIk, D-BIkDsh, F-GryDsh, G-Gry 

f 
P 

S 
S 

s 

0.2 

/ 

50 100 150 200 250 
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Now we will put  together a set of CSTR equations at steady state, fix the volume, and vary 
the flow rate in order to maximize the formation of D (and E). 

In[22]:: Clear[Ca, Cb, Cd, Ce, Cf, Cg, t, solns, Can, Cbn, 

Cdn, Cen, Cfn, Cgn, q] 

kl = .I; 

k2 = .05; 

k3 = .I; 

k4 = . 065; 

k5 = .02; 

Cao = I; 

Cbo = 1; 

Cdo = O; 

Ceo = O; 

Cfo = O; 

Cgo = O; 

tmax = 250 ; 

eqns = { (Caf - Ca) -q - kl Ca Cb + k2 Cd Ce - k4 Ca 2 
v 

+ k5 Cg == O, 

(Cbf - Cb)- q - kl Ca Cb + k2 Cd Ce == O, 
V 

C d  q - - + k l  C a  C b  - k 2  C d  C e  - k 3  C d  C e  = =  0 ,  
v 

C e  q - - + k l  C a  C b  - k 2  C d  C e  - k 3  C d  C e  = =  0 ,  
V 

C f  q - - + k 3  C d  C e  = =  0 ,  
V 

q 
- C g -  + k 4  C a  2 - k 5  C g  = =  0 } ;  

V 

vars = {Ca, Cb, Cd, Ce, Cf, Cg}; 

Caf = 1 

Cbf = 1 

V = I00 

q = 5.75 

V/q 

Needs [ "Miscellaneous ' RealOnly ' "] 

NSolve [eqns, vars ] 

Out [3 7] = 1 

Out [38] = 1 

Out [39]= i00 

Out [40]: 5.75 
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Out[41]: 17.3913 

Nonreal::warning : Nonreal number encountered. 

Out[43]= {{Cf ~ Nonreal, Cg ~ Nonreal, Cb ~ Nonreal, 

Cd ~ Nonreal, Ce ~ Nonreal, Ca ~ Nonreal}, 

{Cf ~ Nonreal, Cg ~ Nonreal, Cb ~ Nonreal, 

Cd ~ Nonreal, Ce ~ Nonreal, Ca ~ Nonreal}, 

{Cf ~ Nonreal, Cg ~ Nonreal, Cb ~ Nonreal, 

Cd ~ Nonreal, Ce ~ Nonreal, Ca ~ Nonreal}, 

{Cf ~ Nonreal, Cg ~ Nonreal, Cb ~ Nonreal, 

Cd ~ Nonreal, Ce ~ Nonreal, Ca ~ Nonreal}, 

{Cf ~ 0.977466, Cg ~ 0.238722, Cb ~ 0.772229, 

Cd ~ -0.749695, Ce ~ -0.749695, Ca ~ 0.533507}, 

{Cf ~ 0.12714, Cg ~ 0.162419, Cb ~ 0.602479, 

Cd ~ 0.270381, Ce ~ 0.270381, Ca ~ 0.44006}} 

10.4 Transient CSTR 
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Time Independence 
A very real advantage of a CSTR or PFR is that it can be operated at steady state. This makes 
it very easy to analyze kinetics of a chemical reaction because the experiments are so easy 
to conduct. We can see this by looking at the CSTR equation once again. Assuming steady 
state then, the equation for species A undergoing reaction to B is: 

( C a f -  Ca)q 

V 
- -  - - / ' A -  

And for species B the equation is: 

--CBq 
V 

= + r A _  

The quantity K v is fixed once the flow rate is fixed because the reactor volume is a constant. 
V 1 S o  We refer to ~- as the holding time 0. Thus K v is the reciprocal of the holding time, or ~. 

the difference between the inlet concentration of A and its outlet concentration, divided by 
the holding time, is the rate of chemical reaction! It is startling to realize that something as 
nanoscopic, or molecular, as the rate of chemical reaction can be found from measurements  
that are so macroscopic. By varying the flow rate we can vary the holding time and find the 
rate of the chemical reaction. By varying the inlet concentration of A keeping all else constant 
we can find the dependence of the rate on the concentration of A by plotting the rate versus 
Ca. In this way kinetic rate expressions can be readily determined using a CSTR. 
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It is also interesting to note that the second equation is actually the design equation for a 
CSTR. If we are told the rate at which B must  be produced and given that we have kinetics 
available for the rate of reaction, then we can substitute in the kinetics for the rate and solve 
for the volume. All of this assumes a steady state. 

Time Dependence--The Transient Approach to Steady State 
Although steady-state CSTRs are simple to operate and to analyze and even though they 
offer real advantages to the kineticist (scientist who studies kinetics), it is also true that these 
systems must  start up. They do not start up and achieve steady state instantaneously. The 
time period in which the system moves toward a steady-state condition is called the transient, 
meaning that the system is in transition from one which is time dependent  to one that is time 
independent  and at steady state. We have no way of knowing how long it will take a given 
set of reactions to achieve a steady state in the CSTR before we either do an experiment or 
solve the t ime-dependent  model equations. If we choose experiment as a way to assess this 
we need to be prepared to do many experiments and to make a sizeable expenditure of time 
a n d / o r  money. This is impractical, so we do the math instead. If we do it correctly, then it is 
cheap, fast, and provides us with insights that experiments cannot yield. We will consider just 
such a case in this problem. 

Complex Catalytic Kinetics 
Consider the reaction of a molecule that takes place on a solid catalyst surface. This reaction 
simply involves converting one form of the molecule into another; in other words, it is an 
isomerization reaction. However, the reaction in question takes place only on the catalyst 
surface and not without the catalyst. 

When we analyze a reaction of this kind we find that at least two steps are involved. The 
first is called adsorption and is reversible. Adsorption is the transfer of a molecule from the bulk 
phase, either the gas or liquid, to the solid surface. The adsorption process is reversible and 
takes place without  any change in the molecule. Like any reversible process, adsorption comes 
to equilibrium. Because no change occurs in the molecule, the rate of approach to equilibrium 
is very rapid and occurs essentially instantaneously. Once this occurs then the molecule on the 
surface can react to product. We can break the problem down into the adsorption equilibrium 
and the reaction rate of the adsorbed molecule. Take the isomerization to be first order on a 
surface concentration of species A and consider the reaction to be irreversible. The adsorption 
equilibrium steps take place by the interaction of the molecule in the bulk phase with a 
so-called adsorption site on the solid surface. The adsorption site is the locus of points on the 
surface that interact directly with the molecule. 

Abulk if-site ~ Asurface 

Asurface ~ Bsurface 

Bsurface ~ Bbulk -}-site 
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Once B is formed, it too undergoes adsorption and desorption. The desorption carries B from 
the surface and into the bulk fluid phase. The rate of this reaction is first order in the surface 
concentration of A and first order in the concentration of surface sites. It follows a simple 
kinetic rate law: 

rA_ = ksurfaceCA, surfaceCsites 

The surface concentration is difficult to measure, so we need to reexpress it in terms of the bulk 
phase concentration of species A. To do this we take advantage of the fact that the molecules 
adsorb and desorb so quickly that they come to equilibrium rapidly with the surface sites. 
Therefore we can express the surface concentration in terms of the equilibrium. The equilib- 
r ium gives rise to the following relationship for the surface concentration of A in terms of the 
bulk concentration of A: 

CA, surface 
KACA 

1 + KACA 

We can substitute this expression into the rate expression for the reaction. This leads to this 
rate in terms of the bulk phase concentrations: 

KACA 
r A- = ksurface I + KACA Csites 

The concentration of sites can be incorporated into a rate constant by rewriting the product  of 
the surface site concentration and the surface rate constant simply as a rate constant: 

k = ksurfaceCsites 

We can do this because the surface site concentration is also a constant. Thus the overall rate 
for this catalytic reaction is" 

FA - m 
kKACA 

1 + KACA 

Transient Response of a CSTR with Catalytic Kinetics 
The t ime-dependent  component  balance equations for A and B in the CSTR are as follows: 

d C A V  d C s V  
dt = (CAr -- CA)q -- rA -V  d t  = - C s q  + rA_V 

We can substitute into these equations the kinetics we have just derived: 

kKACA V dCB V 
d C A V  = ( C A f -  CA)q- -  1 + KACA d t  d t  =-- - C  Bq -F 

kKACA V 

1 + KACA 
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The integration of these two equations in time will show us how long it will take the reactor 
to achieve steady-state conversion of A and production of B. 

Problem Statements 
A) The first step in this problem is to set up a solution to these equations and a graphical 
display of the results. Using NDSolve, solve these t ime-dependent equations and by using 
Plot graph the concentrations as functions of time for the following set of parameters: 

Caf = 1; 
V = I ;  
q = 10; 
Cao = 0; 
Cbo = 0; 
k = 2; 
K1 = .01; 
tmax = 1000; 

What is the level of conversion with this system volume and flow rate? 

B) Increase the volume of the reactor in decade intervals and examine the steady-state con- 
version at each new volume. What is happening? As this happens, what  happens to the time 
required to achieve a steady state? Show all plots. 

C) Set the reactor volume to 1000 and the flow rate q to 1. Plot and record the conversion. 
Now repeat the calculation increasing q in decade intervals to 10,000. What happens to the 
conversion and why does it happen? 

D) How could you use this reactor to evaluate the kinetics? 

Solution 
Here is code to get the work started. 

In[l] := SetOptions[{Plot}, DefaultFont ~ {"Helvetica", 12}]; 

Caf = i; 

V = i000; 

q = I0; 

Cao = 0; 

Cbo = 0; 

k = 2; 

K1 = . 01; 

tmax = I000; 
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so ins = NDSolve[{ 

Ca' [t] == (Caf - Ca[t]) -q - k K1 Ca[t] 
V 1 + K1 Ca[t] 

Cb' [t] == -Cb[t] q k K1 Ca[t] -- + �9 

V 1 + K1 Ca[t] 

Ca[0] = =  Cao, Cb[0] = =  Cbo}, 

{Ca[t], Cb[t] }, {t, 0, tmax}]; 

CA[t_] 

CB[t_] 

:= Evaluate[Ca[t] /. solns] 

:= Evaluate [Cb [t] /. solns] 

Plot[ {CA[t], CB[t]}, {t, 0, tmax}, 

PlotStyle -. {{Thickness[.01], GrayLevel[0.0] }, 

{Thickness[.01], GrayLevel[0.5] }}, 

PlotRange -, {{0, tmax}, {0, Caf}}, 

AxesLabel -, {"t", "Ci[t]"}]; 

Ci[t] 
1 
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0.6 

0.4 

0.2 

200 400 600 800 1000 

1 0.5 C S T R - P F R - - A  Problem in 
Comparison and Synthesis 

I I II I I ]III I II I IIII II I IIIII 

Introduction 
Reactions are often complex. By that we mean that rather than having one reaction take 
place the reactants and products are involved in many different chemical transformations 
simultaneously. For example, at the temperature required to produce B from A, we may find 
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that A will also react to produce D. These are two parallel reactions: 

A ---~ B 

A - - , D  

In addition, whether more D or more B is produced depends on the values of the two rate 
constants for the two steps. 

Another case that is often encountered is one in which the product  of the reaction of A to 
B may itself be reactive and at the same conditions will produce D. These reactions occur in 
series: 

A- - ,  B--,  D 

We will concern ourselves with this problem using the series network of reactions. We will 
explore the differences between the complete back-mixed CSTR and the axially distributed 
but radially well-mixed PFR. 

A --~ B -~  D N e t w o r k  
Consider this reaction network in more detail. Let us assume that D is in fact the product  
that we seek to produce, but that it must  go through B. It is quite realistic to suppose that 
this is the only viable route to D, but that B is very undesired. For example, D may be a 
pharmaceutical or nutraceutical with special properties, whereas B is harmful when present 
in quantities above a given level. Impurity problems of this kind also show up in other chem- 
ical products, including specialties and materials. The presence of B above a certain thresh- 
old may deleteriously affect the performance of the product. Thus the impurity problem is 
one that is very real and that crops up across the industries in which chemical engineers 
participate. 

When faced with a problem such as this there are many options that may be pursued to 
solve it. The crudest, but often practiced approach is to tolerate the impuri ty insofar as it is a 
component  of the product mix emerging from the reactor, but to separate it downstream of 
the reactor in a dedicated unit. In some cases this may be the only cost-effective or efficient 
option. There is another approach and that is to employ reaction engineering. 

If B is to be minimized we can see intuitively that at higher overall conversion of A and 
production of D, B will also be converted to a higher level. If the reactor is made larger, 
then this can be achieved. But how much larger should it be? If the reactor is to be larger, 
does it matter if it is back mixed or not? What if there is an existing reactor of specific 
size and type? Can we improve its behavior and reduce separation costs through reaction 
engineering? 

To answer these questions we must  have the relevant kinetics and a target level for this 
species. 
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Kinetics and the Objective 
The kinetics for each step are given in what  follows. We use relative values for the parameters 
and variables to keep the details simple and to maximize our learning: 

rl -- kl  C2(A ~ B); kl  - 1 units 

r2 -- k2 C2(B --~ A); k2 = .09 units 

Let us also assume that the concentration of B in the exit stream should be 0.01 or less to ensure 
the performance of the specialty chemical D in its application. The inlet or feed concentration 
of A, CAf, is taken as unity and those of B and D are zero. The relative volume flow rate is 
also taken as unity. 

Problem Statements 
A) Using NSolve, develop a steady-state model for a CSTR with a volume of 50. What would 
the relative concentrations of A, B, and D be as they emerged from this reactor? 

B) Using NDSolve, develop a steady-state model for a PFR with the same volume and a cross- 
sectional area of 10 units. At which position in the PFR does the concentration of B maximize? 
What is the value of the concentration at this point? What would the relative concentrations 
of A, B, and D be as they emerged from this reactor? How do they compare to the CSTR with 
equal volume? 

C) Using the two preceding simulations, link them to form a new reactor consisting of a CSTR 
and PFR in series. To integrate the PFR equation initial conditions are needed at the inlet. Let 
each initial condition needed for the PFR concentrations be given as the exit concentrations 
from the CSTR. 

i) If the volume of the CSTR is 50, then what additional PFR volume must  be used in order to 
bring down the concentration of B to a level of 0.01? 

ii) Instead of adding a PFR to the exit of the CSTR, suppose your colleague had chosen to add 
simply another back-mixed reactor, that is, another CSTR to the first. (This is just the same as 
increasing the volume of the original CSTR.) What volume would the CSTR-CSTR require to 
match the performance of the CSTR-PFR, that is, to bring the concentration of B to 0.01? 

CSTR Alone 

In[l]:: q = I; 

kl = I; 

k2 = .9; 

Caf = i; 

Vcstr - 200; 
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cstrsolns = NSolve[{ 

(Caf - CAcstr) q kl CAcstr 2 == 0, 
Vcstr 

q 
-CBcstr + kl CAcstr 2 - k2 CBcstr 2 == 0, 

Vcstr 

q 
-CDcstr + k2 CBcstr 2 == 0}, 

Vcstr 

{CAcstr, CBcstr, CDcstr}] 

CApfro = Evaluate[CAcstr /. cstrsolns[[4]]] 

CBpfro = Evaluate[CBcstr /. cstrsolns[ [4] ] ] 

CDpfro = Evaluate[CDcstr /. cstrsolns[ [4] ]] 

General--spelll �9 Possible spelling error- new symbol 

name "CBcstr" is similar to existing symbol "CAcstr". 

General--spell �9 Possible spelling error- new symbol name 

"CDcstr" is similar to existing symbols {CAcstr, CBcstr}. 

Out[6]= {{CDcstr ~ 1.1533, CAcstr ~ -0.0732549, 

CBcstr ~ -0.0800451}, 

{CDcstr ~ 1.00652, CAcstr ~ 0.0682549, 

CBcstr ~ -0.0747783}, 

{CDcstr ~ 0.998765, CAcstr ~ -0.0732549, 

CBcstr ~ 0.0744896}, 

{CDcstr ~ 0.862522, CAcstr ~ 0.0682549, 

CBcstr ~ 0.0692228}} 

Out[7]- 0.0682549 

General--spelll �9 Possible spelling error- new symbol 

name "CBpfro" is similar to existing symbol "CApfro". 

Out[8]- 0.0692228 

General'-spell �9 Possible spelling error- new symbol name 

"CDpfro" is similar to existing symbols {CApfro, CBpfro}. 

Out [9]- 0.862522 

PFR Alone 

In[10]'-Acs = i0; 

CApfro = I; 

CBpfro = 0 ; 

CDpfro = 0 ; 

Vcstr ---- 50 
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~ s  
pfrsolns = NDSolve[{CApfr' [z] == kl CApfr[z]2, 

q 
~s 

CBpfr' [z] == +-- (kl CApfr[z] 2 - k2 CBpfr[z]2), 
q 

CDpfr'[z] == +-- k2 CBpfr[z] 2, 
q 

CApfr[0] == CApfro, 

CBpfr[0] == CBpfro, 

CDpfr[0] == CDpfro}, 

{CApfr[z], CBpfr[z], CDpfr[z]}, 
Vcstr 

{z, 0, ~}) 
~s 

Caexit[z_] := Evaluate[CApfr[z] /. pfrsolns] 
Cbexit[z_] := Evaluate[CBpfr[z] /. pfrsolns] 

Cdexit[z_] := Evaluate[CDpfr[z] /. pfrsolns] 

Plot[{Caexit[z], Cbexit[z], Cdexit[z]}, {z, 0, 

zf = 
Acs 

{Caexit[zf], Cbexit[zf], Cdexit[zf] } 
Vcstr 

Table[Cbexit[z], {z, 0, ~ } ]  

V c s t r  ~ } ,  
~s 

PlotStyle -~ 

{GrayLevel[0], {Thickness[.01], Dashing[ {0.03, 0.02}], 

GrayLevel [ 0 ] }, 

{Thickness[.01], Dashing[{0.03, 0.02}], 

GrayLevel [0.5] }, 

{Thickness[.01], GrayLevel[0.5] }}] ; 
Vcstr 

Out [14]- 50 

General--spelll - Possible spelling error- new symbol 

name "CApfr" is similar to existing symbol "CApfro". 

General--spell �9 Possible spelling error- new symbol 

name "CBpfr" is similar to existing symbols 

{CApfr, CBpfro}. 

General--spell �9 Possible spelling error- new symbol 

name "CDpfr" is similar to existing symbols 

{CApfr, CBpfr, CDpfro}. 

Out [15]- {{CApfr[z] -~ InterpolatingFunction[{{0., 

CBpfr[z] -~ InterpolatingFunction[{{0., 

CDpfr[z] -~ InterpolatingFunction[{{0., 

5.}}, <>] [z], 
5.}}, <>] [z], 
5.}}, <>] [z]}} 

General--spelll �9 Possible spelling error- new symbol 

name "Cbexit" is similar to existing symbol "Caexit". 
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General--spell �9 Possible spelling error, new symbol 

name "Cdexit" is similar to existing symbols 

{Caexit, Cbexit}. 

0.8 

4mammj ~ ammp ,ramrod qjmmo aml Immm ammm am am ~mm ~m m win' atom 

s 
/ 

0.6 / 
/ 

0 4 i | t<  

1 2 3 4 5 

Out {20]: 5 

Out{21]: {{0.0196083}, {0.0342294}, {0.946]_62}} 

Out [22]: {{0. }, {0.155406}, 

{0.0342294}} 

{0.0827424}, {0.056225}, {0.0425573}, 

In [23].- Acs = I0; 

Vcstr = 150 
Acs 

pfrsolns = NDSolve[{CApfr' [z] == kl CApfr[z] 2, 
q 

Acs 
CBpfr'[z] == +--(kl CApfr[z] 2 - k2 CBpfr[z]2), 

q 
Ac. 

CDpfr'[z] == +-- k2 CBpfr[z] 2 
q 

CApfr[0] == CApfro, 

CBpfr[0] == CBpfro, 

CDpfr[0] == CDpfro}, 

{CApfr[z], CBpfr[z], CDpfr[z]}, 

Vcstr 
{z, 0, ~}] 

:= Evaluate[CApfr[z] /. pfrsolns] 

:= Evaluate[CBpfr[z] /. pfrsolns] 

:= Evaluate[CDpfr[z] /. pfrsolns] 

Plot[{Caexit[z], Cbexit[z], Cdexit[z]}, {z, 0, 

PlotStyle 

{{GrayLevel[0]}, {Thickness[.01], 

Dashing[ {0.03, 0.02}], GrayLevel[0]}, 

Caexit [ z_ ] 

Cbexit [ z_ ] 

Cdexit [ z_ ] 

Vcstr 

Acs 
~}, 
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{Thickness[.01], Dashing[{0.03, 0.02}], 

GrayLevel [0.5] } } ] ; 

zf = 
V~str 

~ S  

{Caexit[zf], Cbexit[zf], Cdexit[zf]} 

Tabl e [ Cbexi t [ z ], 
Vcstr 

{z, o, ~}] 
Acs 

Out [24]- 150 

Out[25]= {{CApfr[z] -~ InterpolatingFunction[{{0., 15. }}, <>] [z] , 

CBpfr[z] -~ InterpolatingFunction[{{0., 15. }}, <>] [z] , 

CDpfr[z] -~ InterpolatingFunction[{{0., 15. }}, <>] [z] }} 

m - - - m m l m m  

0.8 I 

o~[ 
0 4 

o. %.__ 

2 4 6 8 i0 12 14 

Out [30]- 15 

Out[31]- {{0.00662276}, {0.0115696}, {0.981808}} 

Out[32]: {{0.}, {0.155406}, {0.0827424}, {0.056225}, {0.0425573}, 

{0.0342294}, {0.0286256}, {0.0245975}, {0.0215631}, 

{0.0191948}, {0.0172951}, {0.0157377}, {0.0144375}, 
{0.0133356}, {0.01239}, {0.0115696} 

1 0.6 Membrane Reactor - -  Overcoming 
Equilibrium with Simultaneous 
Separation 

................................................................................................................................ 
HIIIIIIIIIIIIIIIIIIIII I I ............ 

Introduction 
Reversible chemical reactions given enough time will come to equilibrium. In the batch reactor 
equilibrium is diagnosed when the conversion of the reactant no longer changes even when 
the reaction time, that is, the batch holding time, is increased. When the reactor is a flow 
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reactor, either CSTR or PFR, we find equilibrium when the conversion no longer changes with 
increased holding time (q/V). 

Often the equilibrium position of a reversible process is such that the conversion to product  
is low at reasonable holding times (i.e., flow rates and reactor volumes). For example, the 
dehydrogenation of saturated alkanes and alkyl aromatics to produce alkenes and aryl-alkenes 
and hydrogen is a very important  case in point: 

CH3CH2CH2CH3 ~ CH3CH2CH = CH2 q- H2 

This is economically disadvantageous because it means either that rates of production will 
be low or that the investment in the reactor will be very high because it needs to be so large. 
There is a clever way around this that always has been employed on a small scale and that is 
now gaining currency for selected larger-scale processes. 

Reaction with Separation 
Chemical equilibrium responds to a "stress" by moving to the side that relieves the effect of 
"stress" and returns the system to equilibrium, according to Le Chatlier 's Principle. If we add 
heat to an exothermic reaction it will shift toward the reactants on the left. If we add mass, 
concentration, or pressure on the reactant side of the equilibrium, the system responds by 
shifting toward the products. If we can remove products from the reaction zone (the system 
or control volume), then we also shift the reaction equilibrium to the right. In fact, even if we 
remove just one of the products from a set of products, the system will shift to the right. 

In the case of the reaction class we are considering, that is, the dehydrogenation of alkanes 
to alkenes and hydrogen, continuous removal of either the alkene or hydrogen from the system 
will shift the conversion of the reactant alkane further to the products. This is the phenomenon 
we wish to examine. 

Hydrogen-Selective Membranes 
Palladium and its alloys as well as some new ceramic membrane materials will separate 
hydrogen selectively from hydrocarbons and they will do so at temperatures that are high 
enough for reaction to take place. Thus, one can operate a membrane separation of hydrogen 
in conjunction with the production of hydrogen by a dehydrogenation of alkane. The extent to 
which the hydrogen is removed from the reaction zone will be the extent to which the reaction 
proceeds to olefin at a conversion level beyond that achieved at equilibrium. In the case of 
palladium the hydrogen must  first dissociate into atoms at the surface prior to entering the 
lattice to diffuse through the membrane. One of the advantages of the ceramic membranes 
is that they are nanoporous and so dihydrogen in molecular form will diffuse through them 
intact. This process requires less energy and is relatively faster. It also leads to a simple linear 
dependence upon the dihydrogen rather than to a square root dependence. For these reasons 
we will consider this type of membrane. 
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Consider the following reaction as representative of this type and the rates of the forward 
and reverse reactions: 

A~-~B+H2 

r f = kl  C A  2 

rrev -- k2 CB CH2 

The rate of transport of hydrogen across the membrane of area As in units of mo l / t ime  is 
given by: 

r t r anspor t  - -  As Pm(CH2I - CH2II) 

The reaction can be considered to take place in the volume above the membrane.  Only 
hydrogen is transported through the membrane,  whereupon it leaves the lower volume via 
convective flow. Unconverted alkane A, the product  alkene B, and hydrogen are also con- 
vected out of the volume above the membrane.  Consider both the volumes above and below 
the membrane to be well mixed. 

Problem Statements 
A) Construct the t ime-independent  model equations for the change in concentration of A,B 
and H2 on the top side of the membrane and for H2 on the lower side of the membrane.  

B) The first step is to establish whether or not the reactions have adequate holding time to reach 
equilibrium in the absence of permeation. Therefore, letting Pm = 0 and using the following 
list of parameter  values, show what  happens as the flow rate on the top side of the membrane  
drops in decade increments from 1000 au to .001 au. What happens and in which decade 
interval of flow rate (i.e., holding time) does the reaction attain equilibrium. What  are the 
equilibrium levels of A,B and H2? 

CAf = 1; 

qI = 100; 

qII = 1000; 

VI = 10; 

VII = 10; 

Am = 1; 

kl  -- .01; 

k 2 = l ;  

Pm = 0.0; 
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C) Using the same model and the same parameter values, set Pm - 0.01. Now increase the 
value of Am in decades and note the values of A,B,CH2I (top) and CH2 (bottom). What 
happens and why does it happen? 

D) Starting at the final parameter values in part C begin to increase qII in decade increments. 
What effect if any does this have on the conversion of A and the production of B? Why? 

Utilize NSolve to numerically solve the equations. The recommended format for doing this is 
as follows: 

eqns : {set of four model equations including convection, 

reaction, and permeation} 

vars = {set of four variables to be solved for in time: CA... } 

Vertical list of parameters; 

solns = NSolve[eqns, vats}] 

E) In fact, the expression for hydrogenation permeation across a palladium membrane is not 
simply linear in the concentrations, but instead follows the square root of each hydrogen 
concentration" 

~ ' t r anspor t  = Pm Am ~ (v/CH2IItl - v/CH2II[tl) 

Rewrite the model equations for the time-dependent case to handle this complication and 
solve using the same parameter values as before. 

Solution 
For parts A through D the following code will be useful: 

Steady-State Membrane Reaction with Separation 

In[l] "- eqns {(CAf CAI) qI = - -- - kl CAI + k2 CBI CH2I == 0, 
VI 
qI 

(-CBI)-- + kl CAI - k2 CBI CH2I == 0, 
VI 

qI 
(-CH2I)-- + kl CAI - k2 CBI CH2I 

VI 

- Pm Am(CH2I - CH2II) == 0, 

(-CH2II) 
qII 

Vll 
+ Pm Am(CH2I - CH2II) == 0} 

vars = {CAI, CBI, CH2I, CH2II} 

CAf = I; 
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qI = I00; 

qII = I000; 

VI = i0; 

VII = 10; 

Am=l; 

kl = . 01; 

k2 = i; 

Pm = 0.0; 

NSolve [eqns, vars ] 

General--spelll �9 Possible spelling error- new symbol 

name "CH2II" is similar to existing symbol "CH2I". 

(CAf - CAl)ql 
Out[l]= {-CAI kl + CBI CH2I k2 + 0, 

VI 
CBI qI 

CAI kl - CBI CH2I k2 - 0, 
VI 

CAI kl - CBI CH2I k2 - Am(CH2I - CH2II)Pm - 

CH2 II qII 
Am(CH2I - CH2II)Pm - 0} 

VII 

Out[2]- {CAI, CBI, CH2I, CH2II} 

CH2I qI 

VI 

Out[12]- {{CH211 -~ 0., CAI -~ ii.011, CBI ~ -i0.011, 

CH2I -~ -i0.911}, 

{CH2II -~ 0., CAI ~ 0.999001, CBI -~ 0.000998901, 

CH2I -~ 0.000998901}} 

For parts D and E this code will be necessary (note that permeabilities are set to zero). 

, 

Transient Membrane Reaction with Separation 

In[71] .- SetOptions[{Plot}, DefaultFont ~ {"Helvetica", I0}] ; 

eqns {CAI [t] (CAf CAI[t]) qI = ' . . . . .  kl CAI [t] 
VI 

+ k2 CBI[t] CH2I[t], 

CBI [t] (-CBI[t]) qI ' == -- + kl CAI[t] 
VI 

- k2 CBI[t] CH2I[t], 

CH2I [t] = (CH2I[t]) qI ' = - -- + kl CAI[t] 
VI 

- k2 CBI[t] CH2I[t] - Pm Am(CH2I[t] - CH2II[t]), 
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qII 
CH2II' [t] == (-CH2II[t]) 

VII 
+ Pm Am (CH2I[t] - CH2II[t]), 

CAI[0] == CAIo, 

CBI[0] == CBIo, 

CH2I[0] == CH2Io, 

CH2II[0] == CH2IIo}; 

vars = {CAI[t], CBI[t], CH2I[t], CH2II[t] }; 

Clear[CAf, qI, qII, VI, VII, Am, kl, k2, Pro, Ks, CAIo, 

CBIo, CH2Io, CH2IIo] 

CAf = I; 

ql = . 01; 

qll = I000; 

Vl = I0; 

VII = i0; 

Am=l; 

kl = .01; 

k2 = 1.0; 

Pm = 0.0; 

CAIo = 0; 

CBIo = 0 ; 

CH2Io = 0 ; 

CH2IIo = 0 ; 

Clear [solns] 

tmax = 6000 

solns = NDSolve [eqns, vats, 

MaxSteps ~ 2000] 

{t, 0, tmax}, 

Cal[t_] := Evaluate[CAI[t] /. solns] 

a = Plot[Cal[t], {t, 0, tmax}, 

PlotStyle ~ {Thickness[0.01], GrayLevel[0], 

Dashing[{.03, .03}] }, 

PlotRange -, {{0, tmax}, {0, CAf}}, 

DisplayFunction ~ Identity] ; 

Cbl[t_] := Evaluate[CBI[t] /. solns] 

b = Plot[Cbl[t], {t, 0, tmax}, 

PlotStyle -~ {Thickness[0.01], GrayLevel[0.3], 

Dashing[{.03, .03}] }, 

PlotRange -. {{0, tmax}, {0, CAf}}, 

DisplayFunction ~ Identity] ; 
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CH21[t_] := Evaluate [CH2I [t] /. solns] 

h21 = Plot[CH21[t], {t, 0, tmax}, 

PlotStyle ~ {Thickness[0.01], GrayLevel[0.5], 

Dashing[{.03, .03}] }, 

PlotRange ~ {{0, tmax}, {0, CAf}}, 

DisplayFunction ~ Identity] ; 

CH22[t_] := Evaluate [CH2II [t] /. solns] 

h22 = Plot[CH22[t], {t, 0, tmax}, 

PlotStyle ~ {Thickness[0.01], GrayLevel[0.7], 

Dashing[{.03, .03}]}, 

PlotRange ~ {{0, tmax}, {0, CAf}}, 

DisplayFunction ~ Identity] ; 

Show[{a, b, h21, h22}, AxesLabel ~ {"t", "Ci[t]"}, 

DisplayFunction ~ $DisplayFunction] 

Out [89]= 6000 

Out[90]= {{CAI[t] -~ InterpolatingFunction[{ {0., 6000. } }, <>] [t], 

CBI[t] -~ InterpolatingFunction[{ {0., 6000. } }, <>] [t] , 

CH2I[t] -~ InterpolatingFunction[{ {0., 6000. }}, <>] [t], 

CH2II[t] -~ InterpolatingFunction[{ {0., 6000. } }, <>] [t] }} 

Ci[t] 
1 
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Out [99]- -Graphics - 
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In [126] := Clear[vars, eqns] ; 

SetOptions[{Plot}, DefaultFont ~ {"Helvetica", i0}] ; 
qI 

eqns = {CAI' [t] == (CAf - CAI[t]) - kl CAI[t] 
VI 

+ k2 CBI[t] CH2I[t], 
qI 

CBI' [t] == (-CBI[t]) + kl CAI[t] 
VI 

- k2 CBI[t] CH2I[t], 
qI 

CH2I' [t] == (-CH2I[t]) + kl CAI[t] 
VI 

- k2 CBI[t] CH2I[t] 

- Pm Am v/~ (~CH2I[t] - %/CH2II[t]), 
qII 

CH2II' [t] == (-CH2II[t]) 
VII 

+ Pm Am v~s (~CH2I[t] - ~CH2II[t]), 

CAI[0] == CAIo, 

CBI[0] == CBIo, 

CH2I[0] == CH2Io, 

CH2II[0] == CH2IIo}; 

vars = {CAI[t], CBI[t], CH2I[t], CH2II[t]}; 

CAf = I; 

qI = I; 

qII = i; 

VI = i0; 

VII = i0; 

Am= i0; 

kl = .i; 

k2 = I; 

Pm = 0; 

Ks = .I; 

CAIo = 0 ; 

CBIo = 0 ; 

CH2Io = 0 ; 

CH2IIo = 0; 

Clear [ solns ] 

tmax = 100 

solns = NDSolve [eqns, vars, {t, 0, tmax}] ; 

Cal [t_] 

Cbl [t_] 

:= Evaluate[CAI[t] /. solns] 

:= Evaluate [CBI [t] /. solns] 
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CH21[t_] := Evaluate [CH2I [t] /. solns] 

CH22[t_] := Evaluate [CH2II [t] /. solns] 

Plot[{Cal[t], CH21[t], Cbl[t], CH22[t]}, {t, 0, tmax}, 
PlotStyle ~ {{Thickness[0.01], GrayLevel[0], 

Dashing[{.03, .03}] }, 
{Thickness[0.01], GrayLevel[0.3], Dashing[ {.03, 
{Thickness[0.01], GrayLevel[0.5], Dashing[{.03, 
{Thickness[0.01], GrayLevel[0.7], Dashing[{.03, 

.03}]} ,  

.03}]} ,  
.03} ] } } ]  

Out [145]- i00 
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Out [151]- -Graphics- 

10.7 Microbial Population Dynamics 
Introduction 
The current explosion in biological sciences research is unprecedented. The breakthroughs in 
the basic sciences of genomics and related disciplines have brought us to the threshold of a 
new era in biological technology. Naturally, the chemical industry is involved and chemical 
engineers are participating in increasing numbers. Some technology pundits are predicting 
that this green revolution will supplant the processes and products related to the chemical 
industry that we have come to know in the twentieth century with new ones that are environ- 
mentally benign and biodegradable. It is a stunning and in some ways captivating vision for 
the future that will have obvious benefits, but unknown and unforeseeable consequences as 
well. 
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Microbes as Reactors 
Paramount to this new technology is the use of microbes, that is, cellular organisms as re- 
actors. Organisms have evolved mechanisms for dealing with environmental stress, such as 
the presence of a new substrate chemical in their surroundings, by rerouting their metabolic 
pathways. Metabolic engineers can take advantage of this through a procedure of accelerated 
adaptation in order to generate new microbes that consume a given substrate and produce a 
specific target chemical. 

Microbes use enzymes as catalysts to make the desired or beneficial reaction take place, 
and typically under mild conditions. Brewing of beer and fermentation of fruit and veg- 
etable mass high in starches to produce consumable ethanol are the oldest and most familiar 
instances of using microbial action to fulfill a desired end. But now much more has been 
demonstrated, ranging from the production of essential human hormones to the synthesis of 
specialty chemicals. 

In a reactor containing a substrate a colony of microbes is inoculated and brought to 
maturity. As the colony grows the substrate is consumed to supply the microbes with their 
building blocks. Some fraction of the substrate is necessarily diverted into the formation of 
biomass, that is, cells--their membranes and organelles, but some other fraction is used to 
produce the target molecule. In a batch process, when the substrate has been consumed, 
the microbial colony either dies rapidly or if the process is to be stopped prior to complete 
substrate consumption, it is killed by a rapid change in conditions (for example, by raising 
the temperature as is done in the pasteurization of raw milk). From this point the prob- 
lem of recovering the target molecule is one of separating it from the biomass and aqueous 
medium. 

Kinetics 
The basis of life is molecular and therefore we can describe the rates of substrate consumption, 
product formation, and even microbe population growth in much the same way that we would 
describe the rates of molecular-level chemical processes. 

We will take the microbe, substrate, and product concentrations to be a[t], b[t], and c[t], 
respectively. Tl~.e equations that describe the rates of change of each of these are shown 
here: 

t bit] - k )  a[t], a'[tl = #maXKs 4-b[t] 

b'[t] -- - t  #max 
ys 

b[t] ) 
Ks + b[t] a[t], 

b[t] )a[t] 
c'[t] = ~ +/~/~maXKs q_ b[t] 
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The kinetic expressions are highly nonlinear because they include a Michaelis-Menton rate 
term: 

b[t] 
#max a[t] 

Ks + b[t] 

where #max is a maximum rate constant, Ks is a saturation concentration, and ys is a 
dimensionless parameter that is similar to a stoichiometric coefficient. Similarly, c~ and /J 
are dimensionless numbers that are also similar to stoichiometric coefficients--they relate the 
rate of production of the desired molecule to the rate of growth of microbial cell mass. 

Problem Statements 
A) Using NDSolve, build a simulation of the dynamics of microbial growth described by these 
equations. 

i) Parameter values should be: 

/~ = .15; "/~max"; 

K = .04; "Ks"; 

y = i; "ys"; 

= I0 -n �9 

n = 2 

fl = .i; 

tmax = 500 

k = 0.I 

ii) Plot the change in A, B, and C on one graph against time. 

iii) What do the plots indicate about how the process occurs? 

B) If there are two microbial species present show the dynamics of microbe growth and product  
formation from each and in toto. Find A1,B1,C1 and A2,B2,C2 for each microbe. 

i) Parameter values for each should be: 

/~I = I.I; "/zmax"; 

K1 = .04; "Ks"; 

yl = I; "ys"; 

~I = 0.02; 

flz = .5 ;  
/~2 = .9; "/~max"; 

K2 = .025; "Ks"; 

y2 = i; "ys"; 

~2 = 0.004; 

f12 = . 5 ;  
tmax = 100 
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kl = .3 

k2 = .i 

ii) Plot the change in A, B, and C on one graph against time for each microbe and then plot 
all six on one. Also plot the total substrate and total product concentration on a separate plot. 

iii) What is happening to these microbes according to this kinetic simulation? 

Solutions 
For Part A: 

In[l]:= ~ = .15; "~max"; 

K = .04; "Ks"; 

y = i; "ys"; 

= 10-n; 

n = 2 

= .I; 

tmax = 500 

k = 0.i 

"a[t] is the change in microbial concentration; 

decreasing" ; 

"b[t] is the change in the substrate concentration; 

increasing" ; 

"c[t] is the change in product concentration; increasing"; 

bugs1 = NDSolve [ { 

a' [t] == ~( 
b[t] 

K + b[t] 
- k)a[t], 

b[t] 
b' [t] == --- a[t], 

y K + b[t] 

c'[t] == (~ + fl~ 

a[0] == .01, 

b[t] 

K + b[t] 
)a[t], 

b[0] == I0, 

c[0] == 0 

�9 

{a[t], b[t], c[t]}, 

{t, 0, tmax}] ; 

at[t_] 

bl[t_] 

cl[t_] 

:= Evaluate[a[t] /. bugs1]; 

:= Evaluate[b[t] /. bugs1]; 

:= Evaluate[c[t] /. bugs1]; 
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pal = Plot[al[t], {t, 0, tmax}, DisplayFunction ~ Identity, 

PlotStyle ~ {{Dashing[{0.03, 0.03}], Thickness[.01], 
GrayLevel [0.4] } }, 

PlotRange ~ {{0, tmax}, {0, 20}}]; 

pbl = Plot[bl[t], {t, 0, tmax}, DisplayFunction ~ Identity, 
PlotStyle ~ {Thickness[.01], GrayLevel[0]}]; 

pcl = Plot[cl[t], {t, 0, tmax}, 

PlotStyle ~ {{Thickness[.01], GrayLevel[0.0], 
Dashing[{0.03, 0.03}] }}, 

DisplayFunction ~ Identity] ; 

Show[pal, pbl, pcl, DisplayFunction-~ $DisplayFunction, 

PlotLabel ~ tmax "= tmax, a[t] :Gry Dsh, b[t] :Blk Sld, 
c[t] :Blk Dsh"] ; 

Out [5]- 2 

Out[7]- 500 

Out[8]- 0.i 

500- tmax,a[t]-Gry Dsh, b[t]-Blk Sld, c[t]-Blk Dsh 
2O 

17.5 

15 

12.5 

10 

7 . 5  

2 . 5  

i00 200 300 400 500 

For Part B: 

In[20].-Clear[al, bl, cl, ~I, ill, KI, kl, yl, ~2, f12, K2, k2, 

y2, n, t, tmax, bugs2, AI, BI, CI, A2, B2, C2, pl, p2]; 

SetOptions[{Plot}, DefaultFont ~ {"Hevetica", I0}] ; 
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1 = 1.1; "~max"; 

K1 = .04; "Ks"; 

yl = I; "ys"; 

~i = 0.02; 

~I = .5; 

2 = .9; "~max"; 

K2 = .025; "Ks"; 

y2 = I; "ys"; 

c~2 = 0.004; 

/32 = . 5 ;  

tmax = i00 

kl = .3 

k2 = .I 

"a It] is the change in microbial concentration; 

decreasing" ; 

"b[t] is the change in the substrate concentration; 

increasing"; 

"c[t] is the change in product concentration; 

increasing" ; 

bugs2 = NDSolve [ { 
bl[t] 

al' [t] == ~I( 
K1 + bl[t] 

~I bl[t] 
bl" [t] == 

yl K1 + bl[t] 

~2 bl[t] 
a2[t], 

y2 K2 + bl[t] 

cl" [t] == ~I al[t] + ~I /~i 

a2' [t] == /~2 ( 
bl[t] 

K2 + bl[t] 

c2' [t] == ~2 a2[t] + /32 /~2 

al[0] == 0.01, 

bl[0] == I0, 

cl [0] == 0, 

a2[0] == 0.01, 

c2 [0] == 0 

), 

- kl)al[t], 

bl[t] 

K1 + bl It] 

al[t] 

- k2)a2[t], 

bl[t] 

K2 + bl[t] 

{al[t], bl[t], cl[t], a2[t], c2[t]}, 

al[t], 

a2[t], 

{t, 0, tmax}] ; 
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Al[t_] 
Bl[t_] 
C1[t_] 

A2 [t_] 
C2 [t_] 

:= Evaluate [al [t] /. bugs2]; 

:= Evaluate[bl[t] /. bugs2]; 

:= Evaluate[cl[t] /. bugs2] ; 

:= Evaluate[a2[t] /. bugs2] ; 

:= Evaluate [c2 [t] /. bugs2] ; 

pl = Plot[{Al[t], Bl[t], Cl[t]}, {t, 0, tmax}, 

PlotStyle -~ {{Dashing[{0.03, 0.03}], Thickness[.01], 

GrayLevel [0.4] }, 

{Thickness[ .01], GrayLevel[0] }, 

{Dashing[{0.03, 0.03}], 

Thickness[.01], GrayLevel[0.7] }}, 

PlotRange -~ {{0, tmax}, {0, 12}}] ; 

p2 = Plot[{A2[t], Bl[t], C2[t]}, {t, 0, tmax}, 

PlotStyle ~ {{Thickness[.01], GrayLevel[0.4] }, 

{Thickness[.01], GrayLevel[0] }, 

{Thickness[.01], GrayLevel[0.7] }}, 

PlotRange -~ {{0, tmax}, {0, 12}}, 

PlotRange ~ {{0, tmax}, {0, 4}}] ; 

p3 = Plot[{Cl[t] + C2[t]}, {t, 0, tmax}, 

PlotStyle -~ {{Thickness[.01], GrayLevel[0.0], 

Dashing[{0.03, 0.03}] }}, 

PlotRange -~ {{0, tmax}, {0, 12}}, 

PlotRange -~ {{0, tmax}, {0, 4}}] ; 

Print [tmax "= tmax" ] 

Show [ 
pl, p2, p3, PlotLabel -~ "Sbstrt= Blk. Sld.; 

Tot.Prdt. = Blk. Dshd.;Bugs = Gry", 

AxesLabel ~ {"t", "Ci[t]"}] ; 

General: :spelll : Possible spelling error: new symbol 

name "~i" is similar to existing symbol "~i". 

General: :spelll : Possible spelling error: new symbol 

name "~2" is similar to existing symbol "~2". 

General: -spell : Possible spelling error: new symbol 

name "HI" is similar to existing symbols {~i, ~i}. 

General: :spell : Possible spelling error: new symbol 

name "H2" is similar to existing symbols {~2, ~2}. 

Out [32]: i00 

Out[33]= 0.3 

Out [34]= 0.i 
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12 

i0 
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i0 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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~ i i ~ ~ ~ ~ I I i ~ ~ ~ ~ I 

20 40 60 80 i00 

i00 - tmax 
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Index 

A 
Adsorption 

applications, 249 
constant, 264 
defined, 249 
diffusion and, 263-282 
Langmuir-Hinshelwood- 

Hougen-Watson 
kinetics, 345-357 

net rate of, 249-257 
semicontinuous 

(pseudo-steady state), 
258-262 

transient time dependence, 
392-401 

Algebraic equation solving, 
39-42 

Archimedes' Law, 157 
Arrhenius, 300 
AxesLabel, 39 
Axes lines 

changing fonts, 16 
making darker, 14 
making more visible, 15 

AxesStyle, 14 

B 
Backgrounds, adding gray, 

19-20 
Basic calculations menu, 2 
Basic Input, 43 
Batch 

background, 209-210 
conservation of mass across 

phases, 210-213 
fit to batch data, 214-217 
mass transfer coefficient, 

210 
permeation, 263-268 
rate of dissolution, 210 

Batch competitive adsorption 
example, 467-473 

Batch reactors 
disadvantages of, 363 
irreversible reactions, 

303-317 
no-flow, 301-303 
reversible reactions, 317-328 

Boundary conditions, 453 
Braces, use of, 2 
Bulk density, 62-66, 69-70 

C 
Calculus, 43-46 
Catalysts in reactors, 

conservation of mass and, 
61 

calculating mass flow, 63-64 
computing time to fill 

reactor, 64-65 
determining amounts, 62-74 
plotting, 65-68 
volume and level, 

determining, 66 
Cell membrane expansion, 

282-296 
Chemical equilibrium point, 

317,320 
Chemical kinetics 

collisions, determining 
number of, 299 

complex reactions, 328-360 
control volume, 301 
example in complex, 474-478 
first-order, 303-307 
irreversible reactions, 

303-317 

$05 



506 Index 
- . . . . . . . . . . . . . . . . . . . . . . . . . . .  Z ;  . . . . . . . . . . . . . . . . . . . . . . . . . . .  I T - ' -  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  l i t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . .  /111111]]1 r 

Chemical kinetics (continued) 
Langmuir-Hinshelwood- 

Hougen-Watson, 
345-357 

microbial population 
dynamics, 357-360 

no-flow batch reactors, 
301-303 

n th order, 314-317 
rate constant and threshold 

values of molecules, 
300--301 

reversible reactions, 317-328 
role of, 297-298 
second-order, 307-314 
series-parallel reactions, 

341-345 
series reactions, 328-341 

Chemical reactions, how they 
take place, 298-301 

Commands 
See also under type of 
format, 1-2 
simple, 2-3 

Compacted bulk density, 62-66, 
69-70 

Complete back-mixing, 437 
Complex Expand, 327 
Component balance, 151-152 

no-flow batch reactors, 302 
Component mass balances, for 

gas and solid phases, 352, 
358 

Component mass balances, for 
no-flow batch reactors, 
302 

Concentration versus density, 
153-154 

Conical tank, 89-91 
Consecutive reactions, 328 
Conservation of mass principle, 

59-86 
See also Mass balance 

equation, left-hand side; 
Mass balance equation, 
right-hand side 

across phases, 210-213 
basics of, 59-61 
filling a cylindrical tank, 

74-77 
filling a vessel with 

pelletized solid, 61-74 
pressurizing empty tank 

with ideal gas, 77-82 

time-dependent flows, 82-86 
water flow, 115 

Constant density, 69, 163-170 
Constant volume batch reactor, 

317-328 
Constitutive equation, 116-124 
Constitutive relationship, 61-74, 

115 
Contact catalysis, 345 
Continuous flow reactors 

See also under type of 
continuously stirred tank, 

363-364 
fed-batch or semibatch, 

363-364, 365-366 
plug flow, 363, 364 
pseudo-steady state, 379-382 
volume change, large, 

373-379 
volume change, negligible, 

366-373 
Continuously stirred tank 

reactors (CSTR), 363-364, 
383-387 

example in comparison and 
synthesis of PFR and, 
482-488 

example in transient, 
478--482 

mixing effects on selectivities 
with series and 
series-parallel reactions 
with, 418-424 

optimal design, 401-407 
plug flow reactors as a series 

of, 424--435 
residence time distribution, 

435-450 
steady state, 387, 387-392 
transient time dependence, 

392-401,478-482 
Continuous permeation, 

268-282 
Control, draining tank, 143-150 
Control volume 

defined, 60-61 
filling a cylindrical tank, 

74-77 
filling a vessel with 

pelletized solid, 61-74 
no-flow batch reactors, 

302 , 
pressurizing empty tank 

with ideal gas, 77-82 

rate of change in mass 
within, 61 

time-dependent flows, 
82-86 

Coulombic forces of attraction, 
207 

CRC Handbook of Chemistry and 
Physics, 170 

Cylindrical tank, filling a, 74-77 

D 
data, 30 
dataset, 35 
DefaultFont, 16 
Definite integral, 44--45 
Density 

concentration versus, 
153-154 

constant, 163-170 
variable, 170-175 

Derivatives, 43-44 
Desorption 

Langmuir-Hinshelwood- 
Hougen-Watson 
kinetics, 345-357 

transient time dependence, 
392-401 

Differential change in time and 
volume with time, 87-88 

conical tank, 89-91 
draining tank, 115 
polymers, 103-112 
semicylindrical trough, 

91-98 
spherical tank, 98-103 
triangular trough, 87-89 

Differential equations 
DSolve, 46-52, 84, 136-139 
NDSolve, 52-55 

Differentiate (differentiation) 
numerical, 45-46 
symbolical, 43-45 

Diffusion 
adsorption and, 263-282 
mass transfer versus, 

206-207 
Diffusivity, 264 
Dimensionless concentrations 

first-order kinetics, 304-306 
reversible reactions and, 

324-328 
second-order kinetics, 

308-313 
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Dirac-Delta function, 181-184, 
188, 437 

Direct indefinite integration 
after separation solution, 
127-129 

DisplayFunction --, 
$DisplayFunction, 67 

DisplayFunction --, Identity, 
67 

DisplayGraphics, 243 
DisplayTogether, 23 
Dissolution 

rate of, 210 
salt, 207-209 

Distributed systems, 154 
Dividing, 9-10 
Do loop, 432 
Draining tank 

constant input, 125-126 
constitutive equation, 

116-124 
control, 143-150 
direct indefinite integration 

after separation 
solution, 127-129 

DSolve, 136-139 
fluxional input, 139-142 
mass balance equation, 

right-hand side, 
113-114 

mass input and output, 
125-143 

mechanism of water flow 
(Torricelli's law), 
114-116 

power series expansion, 
131-136 

solving for level as a function 
of time, 124-125 

substitution solution, 
129-130 

DSolve, 46-52, 84, 136-139, 
256-257, 329, 336, 342, 343, 
410 

E 
Elements, taking from sets, 35 
Epilog, 354 
Epilog --~ Line{ {0, 18.4} }, 

{3tf, 18.4}}, 67 
Equilibrium stage, 225-230 
Expand, 42 
External mass transport, 250 

F 
Factor, 42 
Fed-batch reactors, 363-364, 

365-366 
File menu, 2 
First-order kinetics, 303-307 
Fit, 37-38, 67 
Fit to batch data, 214-217 
Flows 

time-dependent, 82-86 
water, 114-116 

Flux, 104 
Fluxional input, 139-142 
Fonts, changing, 16 
FrameLabel, 21 
Frames, inserting, 17 
FullSimplify, 42, 353 
Functional, 425, 429-432 
Functions, syntax for, 36 
Fundamental rates / kinetics, 314 
f[x.,]:=f[x], 36 

6 
Gas, pressurizing empty tank 

with ideal, 77-82 
Gaussian distribution, 198 
Geometry problems 

conical tank, 89-91 
cylindrical tank, 74-77 
polymers, 103-112 
semicylindrical trough, 

91-98 
spherical tank, 98-103 
triangular trough, 87-89 

Global context, 440-450 
Global names, 401 
Global rates/kinetics, 314, 348 
Graphical method, 93-95 
GraphicsArray, 242-243, 294, 

333-334, 378, 398-400, 
415-418 

<<Graphics 'Graphics', 23 
Graphics Option, 13 
Graphs. See Plots, changing 

appearance of 
Gravity, experiment, 116-124 
Grid lines, adding, 18 

H 
Heterogeneous catalysis, 345 

I 
Impingement frequency, 250 

Indefinite integral, 44 
Infix notation, 11 
Insoluble solid, liquid and an, 

154-162 
Integrate (integration), 47 

direct indefinite integration 
after separation 
solution, 127-129 

numerical, 45 
symbolic, 44--45 

Internal mass transport, 250 
Interpolation, 52-53 
Intrinsic rates/kinetics, 314 
Irreversible reactions, 303-317 

J 
Join, 31 

K 
Kinetic theory, 250-251 

L 
Labels 

adding, 21 
for x and y axes, 38-39 

Langmuir, Irving, 251 
Langmuir-Hinshelwood- 

Hougen-Watson kinetics, 
344-357 

Langmuir isotherm, 260 
Level as a function of time, 

124-125 
Level-controlled tank, 459-467 
lgdatset, 36-37 
Linear driving force, 210 
Linear first-order differential 

equations (LFODE), 49 
Liquid and an insoluble solid, 

154-162 
Liquid and a soluble solid 

constant densities, 163-170 
variable densities, 170-175 

Liquid-liquid state 
mass transfer analysis, 

nonequilibrium stage, 
230-248 

steady state, equilibrium 
stage, 225-230 

List, 3 
Listability, 9, 33, 35 
ListPlot, 3, 30-37, 67 
Lists, combining, 31-34 
Log, 3, 35 
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M 
Madelung energy, 207 
Map, 11 
Mass balance equation, 

left-hand side 
conical tank, 89-91 
polymers, 103-112 
semicylindrical trough, 

91-98 
spherical tank, 98-103 
triangular trough, 87-89 

Mass balance equation, 
right-hand side, 113-114 

Mass flow rate, polymers, 
103-112 

Mass input and output, 125-143 
Mass transfer 

applications, 205 
batch, 209-213 
coefficient, 210 
external, 250 
fit to batch data, 214-217 
full solution, 220-225 
internal, 250 
liquid-liquid state, 225-248 
pseudo steady state, 218-219 
salt dissolution, 207-209 
versus diffusion, 206-207 

Material balance equations, 254, 
265, 268, 284 

MatrixForm, 32 
Membrane reactor example, 

488-496 
Microbial population dynamics, 

357-360 
example of, 496-504 

Miscellaneous 'Units', 56 
Module function, 331-333, 338, 

376-378, 380-382, 395-398, 
411,413-415, 418-421,427, 
440 

Molecular specificity/ 
recognition, 345 

Molecules, case of one dividing 
into two, 320-328 

Multiple-component systems 
component balance, 151-152 
concentration versus density, 

153-154 
liquid and an insoluble solid, 

154-162 
liquid and a soluble solid, 

163-175 
mixing, 187-203 

pulse input tracer 
experiment, 180-187 

washing salt solution from a 
vessel, 175-180 

well-mixed system, 154 

N 
Names, 401 
NDSolve, 52-55, 172, 336-338, 

395, 453 
< <"Needs", 23 
Net rate of adsorption, 249-257 
Nondimensionalize 

second-order kinetics, 
308-309 

series-parallel reactions, 342 
series reactions, 329, 325 

Nonequilibrium stage, 230-248 
NonlinearFit, 71-72 
n th order, 314-317 
Normal distribution, 198 

probability density function, 
438-440 

N[%], 42 
NSolve, 41-42, 427 
NumberForm, 96 

P 
Package, 440-450 
Palettes, 2 
Parentheses, use of, 1 
Partition, 31 

coefficient, 264 
Partitioned systems, 154 
%, 42 
Perfect mixing, 437 
Permeation 

batch, 263-268 
cell membrane expansion, 

282-296 
continuous, 268-282 
defined, 263 

Perry's Handbook, 170 
Jr, 100, 106--107, 343 
Plot, 3, 11 

SetOptions, 21-22 
setting increment values, 13 

PlotPoints, 29-30 
Plots, changing appearance 

of, 13 
adding backgrounds (gray), 

19-20 
adding grid lines, 18 

adding labels, 21 
axes lines, 14-16 
combining graphs, 23 
inserting frames, 17 
return to original values, 

24-25 
Plot3D, 25-30 
Plug flow reactors (PFR), 363, 

364, 407-410 
equations, initial conditions, 

and boundary 
conditions, 452-457 

example in comparison and 
synthesis of CSTR and, 
482-488 

mixing effects on selectivities 
with series and series- 
parallel reactions with, 
418-424 

residence time distribution, 
435-450 

as a series of CSTRs, 424--435 
steady state, 410-418 
time-dependent, 451 
transient, 452 

Polymers, coating process, 
103-112 

Position of chemical 
equilibrium, 317, 320 

PowerExpand, 42, 353 
Power-law kinetics, 314 
Power series expansion, 

131-136 
Pressurizing empty tank with 

ideal gas, 77-82 
Probability distribution 

function (PDF), 198, 200 
normal distribution, 438-440 

Procedural, 425, 432-435 
ProductLog function, 137 
Pseudo-first order, 306-307 

rate constant, 309 
Pseudo-homogeneous 

approximation, 395 
Pseudo-steady state 

in continuous flow reactors, 
379-382 

semicontinuous adsorption, 
258-262 

semicontinuous mass 
transfer, 218-219 

Pulse input tracer experiment, 
180-187 

Pythagorean theorem, 91, 99 
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Q 
Quadratic equations, 40 

R 
Rate constant of adsorption/ 

desorption, 251-257, 
259-260 

Rate of dissolution, 210 
Reactor runaway, 365 
Real roots, 42 
Recursive programming, 425, 

428-435 
Remove, 42, 318, 401 
Residence time distribution, 

181,435-450 
Resolution, increasing, 29-30 
Retentate, 264 
Reversible reactions, 317-328 
RGBColor, 291 
Rule-Based, 425 
Rules, syntax for, 36 

S 
Salt 

dissolution, 207-209 
solution from a vessel, 

washing, 175-180 
Scientific notation, 10-11 
Second-order kinetics, 307-314 
Selectivity of reaction network, 

343 
mixing effects on, 418-424 

Semibatch reactors, 363-364, 
365-366 

Semicontinuous adsorption 
(pseudo-steady state), 
258-262 

Semicontinuous mass transfer 
(pseudo-steady state), 
218-219 

Semicylindrical trough, 91-98 
Series-parallel reactions, 

341-345 
mixing effects on selectivities 

with CSTR and PFR 
and, 418--424 

nondimensionalize, 342 
Series reactions, 328-341 

mixing effects on selectivities 
with CSTR and PFR 
and, 418-424 

nondimensionalize, 329, 325 
square kinetics, 334 

Set delayed, 36, 430 
SetOptions, 21-22 
Show, 38, 67 
Simplify function, 42, 47, 342 
Soluble solid, liquid and a 

constant densities, 163-170 
variable densities, 170-175 

Solvation, 208 
Solve, 39-40, 47, 425, 426 
Spherical tank, 98-103 
Square roots, 11 
Statistics NonLinearFit, 71 
Steady state, 60 

continuously stirred tank 
reactors, 387-392 

plug flow reactors, 410-418 
Substitution solution, 129-130 
Surface reactions, 345-357 

T 
Table, 3-11, 33 

dividing, 9-10 
naming, 4 
scientific notation, 10-11 
suspressing values, 4 

Take, 11 
Third-order equations, 40-41 
Time, solving for level as a 

function of, 124-125 
Time-dependent flows, 82-86 

plug flow reactors, 451 
Together, 353 
Torricelli's law, 114-116, 123, 

166, 167, 172, 177 
Transient continuously stirred 

tank reactors, example for, 
478-482 

Transient plug flow reactors, 
452 

Transient time dependence, 
392-401 

Transpose, 32-33 
Triangular trough, 87-89 

U 
Units of measurement, 

interconversion, 56-57 
UnitStep function, 181, 185-187, 

287-289 

V 
Variable densities, 170-175 
Variable name, changing, 2 
Volume change, in continuous 

flow reactors 
large, 373-379 
negligible, 366-373 

W 
Washing salt solution from a 

vessel, 175-180 
Water flow, 114-116 
Well-mixed system, 154 

X 
x-values 

labels for, 38-39 
of nth element, 36 
taking out, from data points, 

35 

Y 
y-values 

labels for, 38-39 
natural log, 34-35 
of nth element, 36 
taking out, from data points, 

34-35 

Z 
Zab collision number, 299 
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