INTRODUCTION TO (H[Ml(AL
ENGINEERING ANALYSIS
USING MATHEMATICA




Introduction to Chemical
Engineering Analysis Using
Mathematica®



This Page Intentionally Left Blank


Administrator
Note
Uploaded by:

TrUe LiAr



For More Books, softwares & tutorials Related to Chemical Engineering



Join Us



@google+: http://gplus.to/ChemicalEngineering



@facebook: https://www.facebook.com/AllAboutChemcalEngineering

@facebook: https://www.facebook.com/groups/10436265147/






Introduction to Chemical
Engineering Analysis Using
Mathematica®

Henry C. Foley

The Pennsylvania State University
University Park, PA

ACADEMIC
PRESS

An imprint of Elsevier Science

Amsterdam Boston London New York Oxford Paris
San Diego San Francisco Singapore Sydney Tokyo



This book is printed on acid-free paper. ©
Copyright 2002, Elsevier Science (USA)

All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopy, recording, or any information storage and retrieval system,
without permission in writing from the publisher.

Requests for permission to make copies of any part of the work should be mailed to: Permissions
Department, Harcourt, Inc., 6277 Sea Harbor Drive, Orlando, Florida 32887-6777.

Academic Press

An imprint of Elsevier Science

525 B Street, Suit 1900, San Diego, California 92101-4495, USA
http: //www.academicpress.com

Academic Press

An imprint of Elsevier Science

84 Theobolds Road, London WC1X 8RR, UK

http: //www.academicpress.com

Library of Congress Catalog Card Number: 2001096535
International Standard Book Number: 0-12-261912-9

PRINTED IN THE UNITED STATES OF AMERICA
02 03 04 05 06 MB 9 8 7 6 5 4 3 2 1



For Karin, Erica, and Laura



This Page Intentionally Left Blank


Administrator
Note
Uploaded by:

TrUe LiAr



For More Books, softwares & tutorials Related to Chemical Engineering



Join Us



@google+: http://gplus.to/ChemicalEngineering



@facebook: https://www.facebook.com/AllAboutChemcalEngineering

@facebook: https://www.facebook.com/groups/10436265147/






Contents

Preface for an Instructor........ ... ... ... ... ... xiii
Preface forthe Student......................... .. ... xxi
Acknowledgment........... ... XXV
I. APrimerof Mathematica..................................................... 1
1.1  Getting Started in Mathematica........................... 1
12 BasicsoftheLanguage.............................. 1
1.3 Simple Commands ... 2
1.4 Table, Plot, Map,and Plot3D ... 3
1.5 Lists and ListPlot, Fit, and Show............ ... ... . . . i .. 30
1.6 Solveand NSolve............ ... 39
1.7 Differentiate and Integrate ... 43
1.8  DSOIVe. ... 46
1.9 NDSOIVe ... 52
1.10 Units Interconversion ................ .. .o i 56
LI1 Summary..... ..o 58

vii



viii Contents
2. Elementary-Single-Component Systems................................... 59
2.1 The Conservation of Mass Principle and the Concept
ofaControl Volume..................... 59
Filling a Vessel with a Pelletized Solid: Conservation of
Mass and the Constitutive Relationship . .......... ... .. ... ... ... oo, 61
Filling a Cylindrical Tank ........ ... .. . . i, 74
Pressurizing an Initially Evacuated Tank withan Ideal Gas . ......................... 77
Time-Dependent Flows . ........ ... ... ... i, 82
2.2 Geometry and the Left-Hand Side of the Mass Balance Equation....87
The Triangular Trough . ......... ... . .. . . i 87
The Conical TANK ... ... o e e 89
The Semicylindrical Trough . ... ... ... ... i i 91
The Spherical Tank. .. ... ... . . 98
Depositing a Polymer Coatingona Disk........................ccoiiiiiiiiii ... 103
23 SUMMATY. ... 112
3. The Draining Tank and Related Systems.................................. 113
3.1 The Right-Hand Side of the Mass Balance Equation.................. 113
3.2 Mechanism of Water Flow from Tank—Torricelli’s Law,
A Constitutive Relationship................................................ 114
3.3 Experiment and the Constitutive Equation......................... .. 116
3.4 Solving for Level as a Functionof Time ................................ 124
3.5 Mass Input, Output, and Control........................................ 125
Mass Input and Output ... .. .. . 125
3.6 Control..... ... 143
3.7 SUMmary ... 150
4. Multiple-Component Systems.............................................. 151
41 The Concept of the Component Balance................................ 151
4.2 Concentration versus Density........................... 153
43 The Well-Mixed System...........................ooi 154
44 Multicomponent Systems ..................ooooiiii 154
Liquid and an Insoluble Solid .. ....... ... ... ... . .. . . i i, 154
45 Liquid and Soluble Solid ..................................... 163
4.6 Washing a Salt Solution froma Vessel .................................. 175



Contents ix

4.7 The Pulse Input Tracer Experiment and Analysis..................... 180
48 MIXING. ... ... 187
49 SUMMAIY ... 203
5. Multiple Phases—Mass Transfer............................................ 205
5.1 Mass Transfer versus Diffusion....................... 206
52 Salt Dissolution ..o 207
53 Batch........oo 209
54  FittotheBatchData......................... 214
5.5 Semicontinuous: Pseudo Steady State......................... 218
5.6 Full Solution...... e 220
5.7 Liquid-Liquid System......................... 225
Fully Continuous. ..........o e 225

58 Summary ... 248
6. Adsorptionand Permeation.................................... 249
6.1  Adsorption.......... ... 249
Net Rate of Adsorption . ....... .. . i 249
Semicontinuous Adsorption: Pseudo-Steady State. .................. ... ... .. ... 258

6.2 Permeation ........... 263
6.3 Permeation—Adsorption and Diffusion................................ 263
6.4 Expanding Cell........ ... 282
6.5 Summary ..... ... 296
1. Reacting Systems—Kinetics and Batch Reactors........................ 297
71 How Chemical Reactions Take Place.................................... 298
72 No-Flow/Batch System......................, 301
7.3 Simple Irreversible Reactions—Zeroth to Nth Order................. 303
First-Order Kinetics ... ... ... e 303
Second-Order Kinetics Overall .......... . . . i, 307

NI OTAer. ..o 314

74 Reversible Reactions—Chemical Equilibrium......................... 317
75 Complex Reactions..................o i 328

s T2 ST 328



Contents

x
Series-Parallel Reactions .......... .. ... et 340
Langmuir-Hinshelwood-Hougen-Watson Kinetics ................................. 341
Microbial Population Dynamics. ............ . . . . i, 357

7.6 SUMIMATY ... 360
8. Semi-Continuous Flow Reactors............................................ 363
8.1 Introduction to Flow Reactors.....................ooooiiiiiiiii ., 363
8.2 Semicontinuous Systems ... 365
Fed-Batch Reactors . ........ ... i e 365
8.3 Negligible Volume Change............................oo 366
84 LargeVolumeChange............................ 373
8.5 Pseudo-Steady State.............. ... 379
8.6 Summary..... ... 382
9. Continuous Stirred Tank and the Plug Flow Reactors.................. 383
9.1 Continuous Flow-Stirred Tank Reactor................................. 383
9.2 Steady-State CSTR with Higher-Order, Reversible Kinetics ......... 387
9.3 Time Dependence—The Transient Approach to
Steady-State and Saturation Kinetics ............................ L 392
9.4 The Design of an Optimal CSTR........................................ 401
95 PlugFlow Reactor....................... 407
9.6  Solution of the Steady-State PFR ....................................... 410
9.7 Mixing Effects on Selectivities—Series and
Series-Parallel with CSTRand RFR ..................................... 418
9.8 PFRasaSeriesoOf CSTRS..........oooiiiii 424
9.9 Residence Time Distribution................................... 435
9.10 Time-Dependent PFR—Complete and Numerical Solutions ........ 451
911 Transient PFR ... .. . . 452
9.12 Equations, Initial Conditions, and Boundary Conditions............. 452
9.13 SUMMATY ... e 457
10. Worked Problems.............................. 459
10.1 The Level-Controlled Tank................... 459
Introduction .. ... ... e 459



Contents xi

10.2

10.3

10.4

10.5

10.6

Integration Through and Beyond the Disturbance.................................. 462
Problem Statements. ... ... ... . . 462
Solutionto Part A ... . 463
Solutionto Part B . ... . 464
Solution to Part C—Graphs of K1[tLR2[tLh3[t] . ... ... ... ... i 465
Batch Competitive Adsorption...............................o. 467
Inbroduction .. ... .. . . 467
Adsorption/Desorption . ......... ... 467
Problem Statement ... . ... ... 469
SOIULION ... o e 470
A Problem in Complex Kinetics ... 474
Introduction ... ... 474
Parallel and Series Reversible Reactions........... ... ... . ... . ..o ciiiiia... 474
Problem Statements. . ... .. ... . 474
SOIULION ... 475
Transient CSTR. ..., 478
Time Independence. ... ... .. o e 478
Time Dependence—The Transient Approach to Steady State ........................ 479
Complex Catalytic Kinetics . ......... ..o i 479
Transient Response of a CSTR with Catalytic Kinetics.............................. 480
Problem Statements. . ... ... ... . . 481
SOIUHON ..o 481
CSTR-PFR—A Problem in Comparison and Synthesis............... 482
Inbroduction ... ... 482
A— B— DNetwork ... 483
Kinetics and the Objective . .......... ... ... . i 484
Problem Statements. ... .. ... . 484
CSTR AIone .. ... e e 484
PFRAIONE . ..o e e e 485
Membrane Reactor—Overcoming Equilibrium

with Simultaneous Separation......................... 488
Introduction .. ... .. 488
Reaction with Separation . ..... ... ... . i 489
Hydrogen-Selective Membranes . ............ ... it 489
Problem Statements....... ... .. .. 490

SOIUEION . .. e e e 491



Xii

10.7

Contents

Microbial Population Dynamics........................coo L 496
INEroduction ... ... . 496
Microbes as Reactors . ...... ... ... . . 497
Kinetics. . ..o 497
Problem Statements. . ......... ... o 498
SOIUEIONS . . . o o et e e e 499



Preface for an Instructor

This book is an experiment. To be precise, the book is not an experiment, but the approach
of introducing and employing new concepts of chemical engineering analysis, concurrently
with new concepts in computing, as is presented within this book, is experimental. Usually,
the student of a first course in chemical engineering is presented with material that builds
systematically upon engineering concepts and the student works within this linear space to
“master” the material. In fact, however, the process is never so linear. For example, mathe-
matics, in the form of geometry, algebra, calculus and differential equations, is either dredged
back up from the student’s past learning to be employed practically in the solution of material
and energy balance problems or new math methods are taught along the way for this purpose.
In fact a good deal of “engineering math” is taught to students by this means and not just at
this introductory level —as it should be.

Therefore the critic might suggest that teaching computing simultaneously with introduc-
tory engineering concepts is not new, and instead simply adds, from the students’ perspective,
to the list of apparently “extra items” we already teach in a course and subject such as this
one. That would be a fair criticism, if that were how this book had been designed. Fortunately,
this book is intentionally not designed that way, but is instead designed with engineering
and computing fully integrated —that is, they are introduced concurrently. I have purposely
sought to avoid the simple addition of yet another set of apparently non-core learnings on top
of the already long list of core learnings, by carefully staging the introduction of new com-
puting methods with those of new types of engineering problems as they are needed. In this
way the computing level rises with the engineering level in order to match the requirements
of the problem at hand. Furthermore, the computing is not relegated to “gray boxes” or just to
certain problems at the end of the chapter, but is integrated into the very text. By proceeding
this way one actually leads the student and reader through a two-space of engineering and
computing concepts and their application, both of which then reinforce one another and grow

xiii



xiv Preface for an Instructor

in sophistication with the complexity of the problem under consideration. However, this does
not escape the fact that I have woven into the fabric of purely engineering material the new
fibers of this computing. Why would I do so?

Simply put—1I see many benefits to this approach, but will enumerate only a few. One
major goal of the first course is to enable students to begin to do analysis. Doing so requires
a formidable integration of skills from reading comprehension to physical conceptualization
on through to mathematics and computing, and the student must do this and then run it all
back out to us in a form that proves that he or she understood what was required. No wonder
then that this first course is for many the steepest intellectual terrain they will encounter in
the curriculum. It is simply unlike anything they have been called upon to do before! The
student needs to be able to conceive of the physical or chemical situation at hand, apply the
conservation of mass principle to develop model equations, seek the best method to assemble
a solution to the equations and then test their behavior, most preferably against experiment,
but short of that against logic in the limit cases of extremes of the independent variables or
parameters. The first steps in this process cannot be facilitated by computing — the students
must learn to order their thinking in a fashion consistent with modeling, that is, they must
learn to do analysis. However, computing in the form of a powerful program such as Math-
ematica can facilitate many of the steps that are later done in service of the analysis. From
solving sets of equations to graphically representing the solutions with systematic variations
in initial conditions and parameters, Mathematica can do this better than a human computer
can. So a major goal of the approach is to introduce computing and especially programming
as a tool at an early stage of the student’s education. (Early does not imply that the student be
young. He or she could be a professional from another discipline, e.g., organic chemistry or
materials science, who is quite experienced, but the material covered here may nonetheless be
quite new to them and hence their learning is at an early stage.) The reason this is desirable is
simple — programming promotes ordered thinking. Aside from the fact that computer codes
allow us to do more work faster, this is typically hardly relevant to the beginning student for
whom virtually every problem looks new and different, even if a more experienced eye sees
commonality with previous problems, and for whom the problem rarely is number crunching
throughput. Instead, the real incentive for learning to program is that in writing a few lines
of code to solve a problem, one learns what one really does or does not know about a prob-
lem. When we seek to “teach” that to our CPU, we find our own deficiencies or elegancies,
whichever the case may be, and that makes for good learning. Thus, ordering or disciplining
one’s thinking is the real advantage of programming in this way from an early stage —at
least in my opinion. This need for ordered thinking is especially the case as the problems
become more complex and the analyses tougher. By learning to program in the Mathematica
environment, with its very low barriers to entry and true sophistication, one can carry over
this ordered thinking and the methodologies it enables into other programming languages
and approaches. In fact, it can be done nearly automatically for any piece of code written in
Mathematica and which needs to be translated into C or Fortran code, etc. Computing and
analysis begin to become more natural when done together in this way and the benefit is
better thinking. Finally, I mentioned communication earlier as the last step in the process of



Preface for an Instructor XV

analysis: I think that the Mathematica notebook makes an excellent medium for collecting one’s
thoughts and then communicating them back for others to read, understand, and even work
with interactively.

In describing the approach, I have alluded to the benefits of Mathematica from my vantage
and it seems appropriate at this point both to enlarge on this and give my reasons for choosing
this program over others for the work we will do here. Mathematica is an astounding advance
in computing. Within one environment one can do high-level symbolic, numeric and graphical
computations. At the lowest level of sophistication it makes the computer accessible to anyone
who can use a calculator and at its most sophisticated — it is a powerful programing language
within which one can write high-level code. The width of the middle it provides between these
two ends of the spectrum — computer as calculator and high-level production computing — s
remarkable and worth utilizing more effectively. Beyond traditional procedural programming,
one can use Mathematica to write compact, efficient, functional and rule-based code that is
object oriented and this can be achieved with very little up-front training. It comes naturally
as one uses the tool more completely. This functional and rule-based coding is a computational
feature that truly makes the computer into the engineer’s electronic work pad with Mathematica
always present as the mathematical assistant. However, if one is to rely on an assistant then it
better be a reliable assistant and one who can articulate reasons for failure when it cannot do
something you have asked it to do. Mathematica is both. We have found that certain seemingly
naive integrations that arise, for example, in the case of the gravity-driven flow from a draining
tank can go awry in some programs when we attempt to solve these analytically and over
regions in which they have discontinuities. When this happens students are rightly angry —
they expect the software to get it right and to protect them from dumb mistakes; unfortunately,
this is a serious mistake to make. This is one of the many fallacies I seek to hammer out of
students early on because one has to test every solution the computer gives us in just the
same ways we test our own hand-derived solutions. Yet we also do not want to find that we
have to redo the computer’s work —we want only to have to check it and hopefully go on.
Both those graduate students who have worked with me as teaching assistants and I have
found that Mathematica gave either inevitably reasonable results and comments as part of a
problematic output or nothing at all —meaning the input was echoed back to us. The good
news is that it is also relatively easy to check analytical solutions by the tried and true method
of substituting back into the equation when using Mathematica. Otherwise daunting amounts
of algebra are then a breeze and we never see it, unless we choose to, but the logical operations
assure us that when the left-hand side equals the right-hand side we have arrived at a good
solution.

An important outcome of this is that we can maintain continuity with the past within
Mathematica, especially version 4.0 and beyond, in a way that is explicit and not achievable
with packages that do only numerical computing. Mathematica does symbolic computing very
well, better in fact than many (all?) of its human users. Although Mathematica is not the first
symbolic computing package, it is one of the easiest to use and it is certainly the most advanced.
Problems in analysis that were too tough to tackle analytically in the past can in many cases
literally be solved now. However, the symbolic computing that made Mathematica so special



xvi Preface for an Instructor

is also well integrated with very powerful new numerical methods, which when combined
with outstanding graphics capabilities create a complete computing environment. Hence a
problem can be structured in such a way that by virtue of the constraints imposed it is readily
soluble analytically, probably even by hand. But when the constraints are relaxed partially, the
problem can still be solved analytically, but not readily by hand. Finally, the constraints can
be nearly or fully removed and the problem admits no analytical solution, but is readily done
numerically, which is almost as easy to convert to as is the procedure of changing from the
statement DSolve to NDSolve. There are numerous examples of this kind in various contexts
throughout the chapters of this book.

It is also worth mentioning what this book is not. It is not a book on Mathematica per se.
There are many fine examples of this genre that have titles such as Mathematica for the Scientist,
Mathematica for the Engineer, or Learning Mathematica from the Ground Up, all of which have
already been published and are very well done. The most authoritative text on Mathematica
is The Mathematica Book, by Steven Wolfram, so go to it when you need to do so. Remember
that the Help menu will bring that book and other information directly to your monitor at
any time. On the other hand, it is anticipated that many of the readers of this book will
be tyros and will need some introduction to Mathematica. This is done in Chapter 1, which
is in the form of a separate stand-alone primer at the beginning of the text. I have found
that students and faculty who have read and used this chapter like it very much as a quick
introduction. Through the next nine chapters new and more sophisticated Mathematica tools
and programming techniques are introduced. Early on we are happy to have the student set
up the models and run them interactively, employing a rudimentary toolset and the computer
as a super-sophisticated calculator. By Chapter 8 the reader is encouraged to program at
a more sophisticated level using, for example, Module, so that many calculations can be
done, as well as rapidly and noninteractively through a wide range of parameter space. In
the middle chapters tools are used that include solving differential equations analytically as
well as numerically, solving sets of algebraic equations, also analytically and numerically,
fitting models to data using linear and nonlinear regression routines, developing appropriate
graphical displays of results, and doing procedural, functional and rule-based programming,
and much, much more. Remember, however, that this is only the computing, and that we are
also teaching engineering at the same time — so what is that content?

On the engineering content side, Chapter 2 begins with the word statement of the con-
servation of mass and its equivalent mathematical statement in the form of a rate equation.
In teaching this material, it has been my experience that the conservation of mass needs to be
introduced as a rate equation with proper dimensional consistency and not as a statement of
simple absolute mass conservancy. Moreover, this must be done literally from day one of the
course. The reasons are purely pedagogical. If mass conservation is introduced in terms that
are time independent per the usual, then problems arise immediately. When rate equations are
what is actually needed, but the statement has been learned in non-rate terms, there is an im-
mediate disconnect for many students. The problems that come of this are readily predictable
and usually show up on the first quiz (and often, sadly, on subsequent ones) — rate terms are
mixed with pure mass terms, products of rates and times are used in place of integrals etc.



Preface for an Instructor xvii

Therefore I do not start with the classical steady-state approach, but instead with rates and
proceed to the steady state when it makes sense to do so, as a natural outcome of long-time
behavior in a system with fixed inputs and outputs. From very simple examples of single com-
ponent systems one can move to more complex problems including time-dependent flows and
unique control volume geometries. Aside from being good fun, easy to visualize and down-
right interesting (Egyptian water clock design for instance), these problems accomplish two
important goals: (1) they exercise the calculus while integrating in geometry and algebra; and
(2) by design they focus on the left-hand side versus the right-hand side of mass balance rate
equations. This works well too because it begins to build in the student’s mind a sense of
the real linkage between the physicality of the system and its mathematical description and
where in the equations we account for issues of geometry versus those of mechanism of flow
for example —a topic we cover explicitly in the subsequent chapter. The goal of this chapter
and indeed the entire text is not just to assemble and solve these equations, but literally to
“read” the mathematics the reader or someone else has written and in such a way that the
equation or equations will tell you something specific about the system and that it will “say”
what you want it to “say.”

We rarely take the time in engineering to develop topics from an historical perspective —
which is too bad. Our history is every bit as rich and the characters involved as interesting as
any of those our colleagues in the humanities discuss. Why not talk about Fourier in Egypt
with Napoleon for a little while when dealing with heat transport, or Newton’s interesting and
albeit bizarre fascination with the occult and alchemy, when discussing catalytic kinetics and
diffusion? Doing so humanizes engineering, which is appropriate because it is as human an
endeavor as philosophizing, writing, painting, or sculpting. Thus, Chapter 3 is an indulgence
of this kind. From what I know of the story of Torricelli, his was a fascinating life. He was
something like a modern Post-Doctoral Fellow to Galileo. He did for falling fluids what Galileo
did for falling bodies, and of course so much more —which is fun to talk about because all of
this was accomplished before Newton came along. In this chapter I take license in the way I
present the “results” of Torricelli’s experiments and his “work-up” of the data, but in essence
it could not have been too far from this sort of thing —just a bit more grueling to do. I also
find that this example works. It gets across the linkage between calculus and measurements in
time —a linkage that is real and entirely empirical, but lost in much of our formal teaching of
calculus. More important, we talk for the first time about the right-hand side and the fact that
the mechanism of the flow or mass movement appears on this side of the equations. It also is
the time and place to discuss the idea that not everything we need to complete a model comes
to us from theoretical application of the conservation principle and that we may have to resort
to experiment to find these missing pieces we call the constitutive relationships. Finally, we
link the fundamental physics that students already know about falling bodies in a gravita-
tional field to this topic through the conservation of energy. This shows that by applying
a second and perhaps higher-order conservation principle to the problem, we could have
predicted much of what we learned about Torricelli’s law empirically, but Torricelli did not
have the vantage point of four hundred years of Newtonian physics from which to view the
problem.



xviii Preface for an Instructor

To this point the problems have been rich, but lacking in the complexity that multiple
components bring —namely multiple equations and eventually multiple coupled equations.
Thus Chapter 4 introduces component material-balance rate equations. Much care is taken
to present these equations as a subset which must sum to the overall material balance rate
equation. The discussion moves to density effects and the expression of density as a function
of concentration. This always takes time to work through. Students do not really understand
density much beyond that which they learned in an introduction to physical science in eighth
grade or thereabouts. The concept of concentration as taught at that point is also not on steady
ground and is based solely on molarity for the most part. Having to deal with mass con-
centrations is one hurdle and then having to keep straight mass concentrations of individual
components versus the total density is another and somewhat higher hurdle. However, it is
surmountable if one takes the time to develop the concepts and to work out the mathematics
of the coupled material balance. Throughout this chapter the assumption of perfect mixing
within the control volume has been discussed and used both from the physical and mathemat-
ical points of view. The mathematics of the simple time-only dependent ordinary differential
equations (ODEs) states that the system is well mixed with no spatial variation—so this is
either the case physically, meaning that it is the case to as well as we can measure, or that it is
approximately the case, meaning we can measure differences in concentration with position,
but the differences are small enough to ignore, or it is really a bad approximation to the real
system. For those seeking to bring in a bit more advanced concepts, say for an Honors student
group, a section on mixing has been included here to get at these points more quantitatively.
This section also shows some of the powerful objects that preexist in the Mathematica and
which can be used creatively to solve problems and illustrate concepts.

At this point, the question that arises is whether to cover kinetics —batch, continuous
stirred tank reactor (CSTR) and plug flow reactor (PFR)— next, and then to cover some prob-
lems in mass transfer later, or to do mass transfer first and then kinetics. The dilemma, if I may
call it that, comes down to this. If one teaches kinetics first, the problems are all easily handled
within a single phase, but the kinetics for the rate of chemical reaction become complex fairly
quickly when one goes beyond the most rudimentary cases, which one wants, inevitably, to do.
The simplicity of one phase then is offset by the complexity of nonlinearities in the rates. On
the other hand, if one chooses to do mass transfer next, then one has immediately to introduce
at least two phases that are coupled via the mass transfer process. However, the good news
is that the mass transfer rate expressions are inherently linear and keep the math somewhat
simpler. In the end I found that in teaching this material, and having taught it both ways, it
was better to do mass transfer first because A remained A and B remained B throughout the
problem even though they were moving between phases I and II. Linear transfer processes
were easier for students to grasp than was A becoming B in the same phase, but by some highly
nonlinear process. There is, I think, wisdom in “listening” to the ways in which the students
tell us, albeit indirectly through their performances from year to year, how they learn better.
Thus, this is why I present the material in this book in the way you see here —I was guided
by the empiricism of the classroom and my own intuition derived therefrom. However, were



Preface for an Instructor xix

the point to be pressed, I must state that I do not have hard outcomes data in hand (as of yet)
to satisfy the unconvinced. In addition, when using a tool such as Mathematica, the issues of
solving nonlinear versus linear systems mostly disappear and so it really is a toss up as to
which to do first based on fundamentals. Hence Chapters 5 and 6 deal with mass transfer and
then adsorption and both come before chemical kinetics and reactors. Adsorption is interest-
ing to cover separately because one can get to a more molecular level and bring in physical
chemistry concepts, as well as more complex rate expressions without chemical reaction. It
is also very nice to distinguish mass action from mass transfer and to have the former in
place before doing chemical kinetics, since one can then do interfacial kinetics with the proper
physical foundation.

Chapters 7, 8, and 9 deal with chemical kinetics and idealized reactors. It should be
quite familiar territory. Here as in previous chapters the focus is upon the interplay between
analysis and experiment. Classical topics such as reaction stoichiometry are covered, but
nondimensionalization is also introduced and taken up carefully with an eye toward its utility
in the later chapters and of course in upper-level work. I also have found that rather than
introducing the CSTR as a steady-state device, it makes more sense to develop the transient
equations first and then fo find the steady state at long time. Once one explains the benefits
of this mode of reactor operation, it is moderately easy to see why we always use the steady-
state algebraic equations. [ also never fail to mention Boudart’s point that it is easy to measure
rates of chemical reaction with an experiment operated in a well-mixed stirred tank-type
reactor. This another good time to teach the linkage between analysis and experiment with a
system that is both quite easy to visualize and conceptualize. It is surprising to many of the
better students that something as seemingly remote as that of the rate by which molecules are
converted from one species to another at the nanoscale is so readily measured by quantities
such as flowrate and conversion at the macroscale. That this should be the case is not obvious
and when they realize that it is the case, well, it is just one of many such delightful epiphanies
they will have during their studies of this discipline.

In teaching PFR, I find that the classical “batch reactor on a conveyor belt in heated tube”
picture does not work at all (even though it should and does if you already get it). In fact,
it leads some students in entirely the wrong direction. I am not happy when I find that the
batch reactor equation has been integrated from zero to the holding time —even though it
gives a good answer. Instead I very much favor taking one CSTR and rearranging the equation
so that on the right-hand side the lead term is delta concentration divided by the product of
cross-sectional area and a thickness (6z) and all this is multiplied by the volume flowrate. This
becomes linear velocity multiplied by delta concentration over 6z. Now we merely keep the
total reactor(s) volume the same and subdivide it into #n reactors with thickness §z/n. This
goes over in the limit of §z taken to zero at large n to the PFR equation. We actually do the
calculations for intermediate values of n and show that as n gets large the concentrations
reach an asymptote equal to that which we can derive from the PFR equation and that for
simple kinetics the conversion is larger than it would be for the same volume relegated to
one well-mixed CSTR. This approach turns out to be fun to teach, seemingly interesting and



XX Preface for an Instructor

actually useful, because the student begins to understand how a numerical algorithm works
and that, for instance, the time-dependent PFR equation is a PDE that represents a set of
spatially coupled time dependent ODEs.

Chapter 10, the last chapter, gathers together assignments and solutions that Thave given to
groups of honors-level students. I include these as further examples of what types of problems
can be solved creatively and that these might serve as a catalyst for new ideas and problems. 1
also have homework, quiz and exam problems that I may eventually provide via the Internet.

Henry C. Foley
The Pennsylvania State University



Preface for the Student

In a place far away and long ago, people did calculations with paper, pencil, and slide rules.
They wrote out papers, memoranda, and reports by hand and gave these to other people who
would type them onto something called carbon paper in order to provide a copy of the work.
In turn these could be duplicated on another machine called a mimeograph, the products of
which were blurry, but had the sweet smell of ethanol when “fresh off the press.” In about
1985 personal computers landed on our desks and things started to shift very fast. But many,
even most people from this earlier era would still write out reports, memoranda, and papers
in longhand and then either give it to someone else to “type into the computer,” or if younger
and lower in some ranking system do it themselves. The PC plus printer (first dot matrix, then
laser) was used as an electronic combination of typewriter and mimeograph machine.

It took at least another few years before most of us had made the transition to using the
computer as a computer and not as a typewriter. One of the greatest hurdles to this was being
able to sit at the computer and enter your thoughts directly into a word processor program
without “gathering your thoughts” first in a separate step. Even though this may seem absurd
in hindsight, for those of us who grew up using pencil or pen and paper, we needed to adjust
to the new technology and to retrain ourselves not to go blank when we sat in front of the
computer. To my knowledge very few, if any, young people today whom I see ever do this or
would consider doing it — they would consider it kind of absurd. They simply sit down and
begin word processing. They make mistakes, correct them, then cut and paste, spell-check,
grammar-check, and insert figures, tables, and pictures, etc. and paper is not involved until
the last step, if at all. (The rendering of hardcopy step-by-step is becoming less necessary over
time, which is a good trend —better to leave the trees out there to make oxygen and to soak
up carbon dioxide than to cut them down for paper pulp —but it is still with us, despite the
pundits’ overly optimistic predictions of paperless offices and businesses.) Of course we all
do this now —as I am currently doing. It is no big deal and it feels absolutely natural — now.

xXxi



xxii Preface for the Student

But it did not then. It felt strange and one wondered if it was even the right way to write. It
was a very real paradigm shift.

Here is the point then: This same processing shift has never really happened in math-
ematics computing, at least not to the same extent, but it will. Most of us still work things
out first on paper and then find a way to do number crunching on the computer, well after
many other steps have been taken. This is why we see, for example, the use of spreadsheet
programs having proliferated among engineering students over the last few years. They work
out a model, derive the solution as analytical expressions, and plug them into the spreadsheet
to make calculations for a given set of parameters. The analysis is done separately from the
computing, in the same way we used to do writing separately from typing. It is the combined
task that we now call word processing. The point of this book is to step away from that old,
separated analysis and computing paradigm, to put down the pencil and paper (not com-
pletely or literally), and to begin electronically scribbling our mathematically expressed ideas
in code by using up-to-date computational software. If there is any reason why this transition
happened so much faster in word processing than in mathematics processing, it is because
word processing software is less complex and mathematics “scribbling” is generally harder
to do than is drafting a written document (not creative writing of course).

At this point I think we may have turned the corner on this shift. The mathematics pro-
cessing software is so sophisticated that it is time to both embrace and use it—in fact students
in engineering and science have, but not always with good results. We need to fix this problem
and to do so, it makes very little sense to teach analysis in one place (course) and computing in
another place (another course), when we can do the two concurrently. To do this requires a fully
integrated environment, with symbolic, numeric and graphical computing and, surprisingly,
word processing too. Mathematica, especially version 4.0 and beyond, does this extremely well,
so it makes sense to use it. One review of the software written in Science magazine in Decom-
piler 1999, referred to Mathematica as the “Swiss army knife” of computing. In fact, I think it
is much better than that analogy suggests, but the author meant that it is a high-quality and
versatile tool.

In this book then you will find the concepts of engineering analysis as you find them
elsewhere, but they will be presented simultaneously with the concepts of computing. It
makes little sense to separate the two intellectual processes any longer and lots of sense to
teach them as an integrated whole. In fact, this approach relieves the overburden of algebraic
manipulation which I and others like me used to love to fill chalkboards with and it puts
the emphasis back on engineering. Not a bad outcome, but only if we do it right. Here is the
danger — that you will use the computer without thinking deeply, derive bad results, and go
merrily on your way to disaster. This sounds absurd to you but it is not. For example, the public
recently has had played out before its eyes just such an engineering snafu. A NASA space
probe was sent crashing to its fiery demise because someone had failed to convert from feet to
meters (i.e., English to metric system) in a trajectory calculation. A big mistake in dollar terms,
but just a small mistake in human terms — the kind students often argue are not real mistakes
and should be the source of at least partial credit when committed on exams or homework.
Similarly, a bridge under construction near to where I am writing this was begun from two



Preface for the Student xxiii

different ends and when it came time to close the gap with the final element of the structure,
it could not be done — the two sides were not properly aligned. This happened despite the
engineers having tools like lasers and computers at their disposal, which is really shocking
given the shortness of the span and given that mighty gorges were spanned correctly in the late
nineteenth century with nothing more than transits, plumb lines, and human computation! So
whenever something new such as this tool is introduced something is gained, but inevitably
we find later that something is also lost. This gives thoughtful people pause, as well it should.
Therefore, to use this tool correctly, that is to do this right, we have to do things very carefully
and to learn to check quite thoroughly everything that the computer provides. This is especially
the case for analytical solutions derived via symbolic computation. If you follow the methods
and philosophy of this text I cannot guarantee you will be error free because I am sure the text
is not error free despite my best efforts, but you will definitely compute more safely and will
have more confidence in your results.

The best way to use this book is in conjunction with Mathematica. Go through the first
chapter and then try doing one of the things presented there for your own work or problems.
Moving through the rest of the text will go faster if you take the time to do this up front.
A nearly identical color version of this book has been provided on CD-ROM. I hope having
this and being able to call it up on your computer screen while you have a fresh Mathematica
notebook open will be useful to you and will aid your learning. Although it may be obvious,
just reading this book will probably not do enough for you—you have to use the tool. If you
own or have access to Mathematica, then you will be able to use the book as a progressive
resource for learning how to program and how to solve real problems in real time. Good luck
and happy concurrent computing and engineering analysis.

Henry C. Foley
The Pennsylvania State University



This Page Intentionally Left Blank



Acknowledgments

Along the way I have many people to acknowledge. If all of this bears more than a faint resem-
blance to the philosophy espoused in the earlier book An Introduction to Chemical Engineering
Analysis, by TW.F. Russell and M.M. Denn, well it should. I taught the introductory course
many times at the University of Delaware from 1986 to 2000 and I always did so in conformity
with this marvelous text. In particular, Fraser Russell taught me how to teach this material and
what the original intent had been of the book and its approach. I was always very impressed
by the stories he told of the time he and Mort spent on this topic thinking about their book
and its philosophy through to the classroom. Fraser’s enthusiasm for these matters was, as far
as I could tell, limitless and his enthusiasm infectious. And as I arrived on the scene in 1986
as a Ph.D. in Physical Chemistry and not Chemical Engineering, I can attest to the efficacy
of learning this approach —although I hope the reader is not learning the material literally
the night before giving the lectures on it, as the present author did! In many ways I came
to Delaware as a bit of blank slate in this regard (although I had read the original Notes on
Transport Phenomena by Bird, Stewart, and Lightfoot while working at American Cyanamid
between 1983 and 1984) and I had no preconceived notions about how this material should be
taught. To say the least | enjoyed an excellent mentor and teacher in Fraser Russell and he did
harbor a few notions and opinions on how this material should be taught. Fraser also gave
me the push I needed to start this project. He realized that computation had come far and that
one impediment to wider adoption of his book had been the steep gradient of mathematics
it presented to both the instructor of the first course and the students. Using a computational
tool to overcome this barrier was something we both felt was possible. However, when this
was first conceived of in the late 1980s (~1988), Mathematica 1.0 was barely out on the market
and it, as well as the other tools available, were in my judgment not up to the task. (Though I
tried at that time.) The project was shelved until my first sabbatical leave in 1997. I must thank
Dr. Jan Lerou, then of the Dupont Company’s Central Research and Engineering Department

xxv



xxvi Acknowledgments

at the Experimental Station, who provided me with an office and the wherewithal to start this
project in the spring and summer of 1997. In fact, although I did get this book project off the
ground, I was not at all happy with it. As my familiarity with the new version of Mathematica
(4.0) grew during late 1998 and 1999, I realized I had to rewrite that which I had already writ-
ten. As well, the experience of working with Honors ChE students helped me immensely to
reconceptualize the material and its presentation. Furthermore, I had the good fortune to co-
teach the first course in chemical engineering with Andrew Zydney. Andrew is a great teacher
and he was the first person I had met who would literally battle me for lecture time in front
of the class. This not only gave me more time to work out more ideas, but he also provided
invaluable criticism and feedback on what I was trying to do. In the summer of 1999,  had the
privilege of being a Visiting Fellow at Wolfram Corporation, the makers of Mathematica. Aside
from having the good fortune to meet Steve in his own think tank, I spent six weeks alone
that summer in Urbana-Champaign writing literally day and night with very few breaks.
(I thank my spouse Karin for allowing such an absurd arrangement!) But I also had access
to the brilliant young staff members who work every day on the new code and features of
Mathematica. It was a broadening experience for me and one I thoroughly enjoyed. For making
this possible, I want to thank Steve Wolfram personally, but also Lars Hohmuth, the jovial and
ever helpful Director of Academic Affairs at Wolfram, who is also a great code writer and a
power user! (He would spend his days doing his job and then get caught by me on his way
out for the evening, only to spend hours answering what was a seemingly naive question —
which usually began as “Lars, have you got a minute?”) In the latter stages of the work, I
ran into a few issues associated with notebook formatting and answers to those questions
always came to me promptly as exceptionally well written e-mail messages from P. J. Hinton,
one of the many younger chemical engineers who have found their way into careers in compu-
tation. Finally, in the Spring of 2000, I had the opportunity to teach the whole of the book and
its content as the first course in chemical engineering here at Pennsylvania State University.
My partner in that was Dr. Stephanie Velegol. Stephanie is only the second person whom I
have had to fight for lecture time in a course and whose suggestions and methods of using
these things I had created were extraordinarily insightful. (I am pleased to note that the course
was well received — largely due both to her efforts to smooth out the rough edges of both the
materials and her co-instructor and to her pedagogical instincts, whose instincts told her when
enough was enough.) Finally, throughout my career I have had the best of fortune to have a
life-partner, my spouse Karin, who knows and understands what I am about and what I really
need to do and get done. For her support and that of my daughters, Erica and Laura, who
often strolled into my home office to find me hunched over the computer and to ask how my
book was coming along, I offer my sincerest and deepest thanks.

The book represents a way to teach a first course in chemical engineering analysis that I
think maintains a continuity with the past and yet steps right into the future with concurrent
use of computational methods. The book and its techniques are battle tested, but are far from
battle hardened. I am sure that there remain mistakes and misconceptions that will need to
be considered, despite my best efforts to eliminate them and for those I take full blame and
apologize in advance. Yet, I think there are seeds in this book from which can grow a new



Acknowledgments xxvii

and fruitful approach to teaching engineering analysis. The simple fact is that our students
like using and being at the computer, perhaps more so than they enjoy hearing us lecture. We
are going to have to face this paradigm shift, embrace it, and somehow integrate it into our
pedagogy. To that end this book is my attempt to do so. I think the book may be used either as a
textbook in its own right or as a supplementary textbook. Irecommend that students each have
a personal copy of Mathematica 4.0 or higher, which is moderately priced (about the same price
as a textbook) or that they have ready access to the program in a centralized computer lab. In
recent years [ have gotten into the habit of sending homework out to students as Mathematica
notebooks attached to an e-mail and then I also post the problem set and solutions on the
course web site as notebooks. I also frequently receive via e-mail attached notebooks from
students who are stuck or need some guidance. I personally like this approach because it
allows me the opportunity to interact with the more motivated students at a higher level and
in essence to e-tutor them on my own schedule. If you do this be prepared to be answering
e-mails by the dozens, frequently and at all times of the day and night and week. Personally, I
find it rewarding, but I can understand that some might consider this to be an imposition. I do,
however, think this is more like the direction in which teaching will move in the future — the
use of these electronic media technologies in real time seems to me to be inexorable and overall
a good development —at least from the student’s perspective.

Finally, who else can use this book? I clearly have in mind chemical engineering under-
graduates, but they are not alone in potentially benefiting from exposure to this material. It
seems as though industrial chemists and materials scientists could also find it useful to read
and study on their own with a personal or corporate copy of Mathematica. I consider this level
of self-study to be a very doable proposition. The mathematics used is fairly minimal, although
it does expect grounding in differential equations and some intuitive sense of programming,
but that is about all it requires. Formality is kept to a minimum — no— more precisely there is
no mathematical formalism present here. For this reason then, I would hope that a few people
in that category who really want to be able to discuss research and development matters with
corporate chemical engineers on their own terms will find this background to be very useful.
Finally, I suspect from my frequent excursions in consulting that there may be more than a
few practicing chemical engineers who might not want to be seen actually reading this book
in the open, but who might also benefit from having it on their shelves so that they might read
it—strictly in private of course!



This Page Intentionally Left Blank



CHAPTER

A Primer of Mathematica

1.1 Getting Started in Mathematica

We will use Mathematica throughout the text. Most of what is necessary to know will be
introduced at the time it is needed. Nonetheless, there is some motivation to begin with some
very basic commands and structures so that the process is smooth. Therefore, this is the goal
of this section—to make your introduction to Mathematica go smoothly. For more information
of this type there are many texts that cover Mathematica in detail.

1.2 Basics of the Language

Commands in Mathematica are given in natural language form such as “Solve” or “Simplify”
etc. The format of a command is the word starting with a capital letter and enclosing the
argument in square brackets:

Command[argument]
Parentheses are used arithmetically and algebraically in the usual way:

3a(x —2)°

I



2 Chapter | A Primer of Mathematica

On the other hand, braces are distinct. They are used to designate lists or vectors as in:

{1,2,3,4..}
1,1}, (2,2}, {3,3}.. .}

The three must not be interchanged.
When you want to clear the value of a given named variable there are three options:

variable name =,
Clear[variable name]

Remove[variable name]

The first two simply clear the current value while the last removes the name entirely. You need
to remember this because if you start a session and assign a value to a variable, then that value
will be retained in that variable until you either change or clear it.

1.3 Simple Commands

The calculator level of Mathematica comes in the form of Palettes, which are very handy tools.
Palettes are found under the File menu and there are several of them. If one wants to use
a trigonometric function, for example, we can either type in its name or go to the Basic
Calculations menu and then to the Trigonometric and Exponential Functions. Should we
want to evaluate the sine of 2.3333x, then we can do so as follows:

In{l]:= 8in[2.333337]

Out1]= 0.86602

Should we need to know the sine of 120 degrees (120"), then we include this in the argument
of the function:

Inf[2]:=8in[120 Degree]

V3

2]= —
Out[2] >

To rationalize this fraction we need to evaluate it numerically. We do so by surrounding the
Sin function with N:

In[3]:= N[Sin[120 Degree]l

Out[3]= 0.866025



1.4 Table, Plot, Map, and Plot3D 3

For logarithmic and all other functions, we do the same as we have done with Sin. It is
important to know, however, that the function Log in Mathematica is the natural logarithm
and not the log base ten.

In[4]:= NI[Log[10]]
N[Log[100]]
N[Log[1000]]

Out[4]= 2.30259
Out[5]= 4.60517
Ooutf6]= 6.90776

Mathematica has a huge number of built-in functions from the mundane to the exotic, but we
can work with them more or less in the same way.

1.4 Table, Plot, Map, and Plot3D

These four commands are among the most useful because they do so much with so little. In
contrast to a procedural language in which we would have to write a looping structure to
evaluate a function at several different values or for a range of values, Table hides all this
from us and gives us just the vector of output values. Plot does the same thing, except that
we see the graph of the function’s values rather than the values themselves. The output of a
function is a List, that is, a vector. We can combine a set of values, such as the set of dependent
values, with a set of independent variable values into a matrix. ListPlot allows us to display
these results graphically. We will begin by working through these four topics. We begin with
the Table command to evaluate x from zero to 20 at every integer:

In[7]:= Table[x2?, {x, 0, 20}]

coutf[7]= {0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169,
196, 225, 256, 289, 324, 361, 400}

Perhaps we wanted the values of x? for every other whole number between 0 and 20. We can
obtain these too:

In[8]:= Table[x?, {x, 0, 20, 2}]

Out[8]= {0, 4, 16, 36, 64, 100, 144, 196, 256, 324, 400}

Should we need all the values for every integer value and the midpoint between them, we
would specify this:

In[9]:= Table[x®*, {x, 0, 20, .5}]

out(9]= {0, 0.25, 1., 2.25, 4., 6.25, 9., 12.25, 16., 20.25, 25.,
30.25, 36., 42.25, 49., 56.25, 64., 72.25, 81., 90.25,



4 Chapter | A Primer of Mathematica

100., 110.25, 121., 132.25, 144., 156.25, 169., 182.25,
1%6., 210.25, 225., 240.25, 256., 272.25, 289., 306.25,
324., 342.25, 361., 380.25, 400.}

It is also likely that we might need to assign this list or vector a name, call it “1s1.”

In[10]:= 1sl=Table[x?, {x, 0, 20, .5}]

Out[10]= {0, 0.25, 1., 2.25, 4., 6.25, 9., 12.25,16., 20.25, 25.,
30.25, 36., 42.25, 49., 56.25, 64., 72.25, 81., 90.25,
100., 110.25, 121., 132.25, 144., 156.25, 169., 182.25,
196., 210.25, 225., 240.25, 256., 272.25, 289., 306.25,

324., 342.25, 361., 380.25, 400.}
This variable name is now assigned to this list until we either clear it or remove it:

Inf{11]:

1s1l

Outf11]= {0, 0.25, 1., 2.25, 4., 6.25, 9., 12.25, 16., 20.25, 25.,
30.25, 36., 42.25, 49., 56.25, 64., 72.25, 81., 90.25,
100., 110.25, 121., 132.25, 144., 156.25, 169., 182.25,
196., 210.25, 225., 240.25, 256., 272.25, 289., 306.25,
324., 342.25, 361., 380.25, 400.}

In the next line we clear Is1 and then show that it is no longer assigned to the list of values:

Inf{12]:= 181 =.
1s1

Qut(l3]= 1sl

We may also have occasion to want to generate the vector of values and to assign these values
to a list name, but we may not want to see all of them. For example, suppose we wanted all
the values for x* from between 1 and 100. This can be done and the list can be named, but we
may not want this sent to the screen. To suppress it we place a semicolon after the command:

In[14]:= 182 = Table[x*, {(x, 1, 100}};

To see what we have “missed” by not printing this out to the screen we can now do so by
typing 1s2 as input:

In[15]:= 182

Out[i5]= {1, 4, 27, 256, 3125, 46656, 823543, 16777216, 387420489,
10000000000, 285311670611, 8916100448256, 302875106592253,
11112006825558016, 437893890380859375, 18446744073709551616,
827240261886336764177, 39346408075296537575424,



i.4 Table, Plot, Map, and Plot3D

1978419655660313589123979, 104857600000000000000000000,
5842587018385982521381124421,
341427877364219557396646723584,
20880467999847912034355032910567,
1333735776850284124449081472843776,
88817841970012523233890533447265625,
6156119580207157310796674288400203776,
443426488243037769948249630619149892803,
33145523113253374862572728253364605812736,
2567686153161211134561828214731016126483469,
205891132094649000000000000000000000000000000,
17069174130723235958610643029059314756044734431,
1461501637330902918203684832716283019655932542976,
129110040087761027839616029934664535539337183380513,
11756638905368616011414050501310355554617941909569536,
1102507499354148695951786433413508348166942596435546875,
106387358923716524807713475752456393740167855629859291136,
105551349557777834140783300859958329461273960833701994425"
17,
107591180197999398206042925285612377911548736883041606461".
0304,
112595147462071192539789448988889059930192105219196517009™.
951959,
120892581961462917470617600000000000000000000000000000000™
00000000,
133087763063271199871339924096334625598588933016165099432".
5137953641,
150130937545296572356771972164254457814047970568738777235™
893533016064,
173437733670302675199037812888120321583080625390120919530™
77767198995507,
205077382356061005364520560917237603548617983652060754729™.
4916966189367296,
248063644451341145494649182395412689744530581492654164321"
720600128173828125,
306803463007942742306604336476403978997881706450788532800"
82659754365153181696,
387792426346444862266664818615433075489834490134420591764"
2325627886496385062863,
500702078263459319174537025249570888246709955377400223021"
257741084821677152403456,



Chapter | A Primer of Mathematica

660097246862195508437683218183717716501470040592780694068"
14190436565131829325062449,
888178419700125232338905334472656250000000000000000000000"
0000000000000000000000000000,
121921130509464847947319348187292783466757699259377071718".
9298225284399541977208231315051,
170676555274132171974277914691501574771358362295975962674"
353045737940041855191232907575296,
243568481650227121324776065201047255185334531286856408445".
05130879576720609150223301256150373,
354211804501063924032848133753332071263980863803681247321".
1109743262552383710557968252383789056,
524744532468751923546122657597368049278513737089035272057".
324643668607677682302892208099365234375,
791643248668629666078424060180632546719222453126466902233".
62402918484170424104310169552592050323456,
121581297366713640808862801923521362803054459089854018769".
90335800107686586023081377754367704855688057,
190030638094159447976388394485939490393342173391549735102".
6033862324967197615194912638195921621021097984,
302182066535432255614734701333399524449282910532282724655".
138380663835618264136459996754463358299552427939,
488736779806892574893227522737746038656608501760000000000".
00000000000000000000000000000000000000000000000000,
803748056254594377406396163843525813945369338299102331167".
0379647429452389091570630196571368048020948560431661,
134364564515225004658302677932296937303529095376341154029".
0906502671301148502338015157014479136799509522304466944,
228273036346967044979900512337165522400819024722490933829".
954793073267717315004135590642802687246850771579138342847,
394020061963944792122790401001436138050797392704654466679"-.
482934042457217714972106114142662548849515640806627990306"-.
816,
690825216476092085140553869446828608223037872425945418628".
91172977289871291049018773300360862776869907975196838378".
90625,
122998480353523742535746057982495245384860995389682130228".
63190656692077122702132760228088402103069426923665295694".
53244416,
222337020242360576812569226538683753874082408437758291741"
26211582389481165084834633450264237001097346549669078865™
0052277723,



1.4

Table, Plot, Map, and Plot3D

407949179542747833144743894229635944120105534129541880466™
65939634971631296545460720786532465498226465248060567545™
587093733376,
759604031216329727422244257820804323611227904183944130804".
55142035956380302831768235397935875913722302301039331108"
10192201741429,
143503601609868434285603076356671071740077383739246066639".
24500000000000000000000000000000000000000000000000000000™
00000000000000000,
275006373483461607657434076627252658495183350017755660813"
75398177450890599808191940514056884835339723379661819264"-.
5698819765129996471,
534490195473619995340253001400575385449406013931066115702".
69540644280818850419033099696863861289188541180498511377".
339362341642322313216,
105334051468072867203736594605020607857593791122125981160"
64998418834781689316645387966435364502141349866164216580".
595609788325190062013833,
210449190758543198861850228434282880911748656012122526352"
86001514565478992866160785568445711391305050636166445827".
73621942951905668236312576,
426181657761258833198605424151960757395791315610122269092".
30019917908804339283405158889618455726386574838882026483".
5885609500110149383544921875,
874647407767330977693561259365719780492040872417198817613"
46374524717952404307119962211675102409649648957510056235"
276523073007403698815894552576,
181880373878061983792773399155569296478074032831870486314"
78337739929618787870634227045716719924575689062274471430".
368865388203540672666042530996797,
383158981231346126213872650000641426814753403789311551232"
59089391706871851454385790069500821953097058851346079904".
18665607337632973770507236843454464,
817598737071050959409276229318696698168591900537987468276™
93207376890191209667334279321765760731642396831372649256".
6673678273923566086786121551339775919,
176684706477838432958329750074291851582748389687561895812"
16062012926197760000000000000000000000000000000000000000™
0000000000000000000000000000000000000000,
386621969787156332734047587900743169602142130961783196218"
56934259807530937321861485192508542873470637501160980081"
794035970219670238407078788135931371782481,



Chapter | A Primer of Mathematica

856516819102789913383100884855887638607827867525141389174"-.
58617169692971014784447542255823577266886455881314507547"
31704968996267139619369035601073162078388224,

192079787778504229782687634239832998136662613890310670723".
96386230620731601620304963544415541870751106508384494531".
08757445590084411555537438824653742747212640587,

435973436827325522360279881406914796368935566412408014666"-.
80104726695921400093636969731839732875229357313838872128".
9594366953995072735552848220101541587045199118336,

100140253328453899494506997059845948876248360208192710258"
70334010718860779315506363581151510555924043061907775739"
0331456723193970237417715907213278114795684814453125,

232737736870108098051032630552618777391020715805979404095".
85933109624493442480014587281684425109432546907773222375".
549181098538730989934437386098275807854764894176935936,

547236400751580609289084096221336193364655786735995545755".
43693463433762205742631692905663619249992774511988021569"
50364045812455566817070274944448633167362192918054601383,

130155283494297205518264830741731536453872507596006782791".
53114847224523409663172158051068209591908333097049343465".
17741237438752456673499160125624414995891111204155079786"-
496,

313119843606264301926053344163576361349265045995115651405".
92969760191406230933171722203767186869842061905370495649".
99303230341738506627657379866724844088015857197961365923".
84409,

761773480458663923392897277206155617504248014023951967240"
01565744957137343033038019601000000000000000000000000000".
00000000000000000000000000000000000000000000000000000000™.
0000000,

187398754970444035883430239799421909138706990995859221061".
52367184893220649019310617359174987694158429118066514085".
32784617787067474359792929997061205566219581733294857302".
9136642691,

466101087036369642390596621400310098213235393780243962934",
25774112018587400879035854022570174490255580463084035551".
28684298484146339920553893653953988411898447534660818749™
990933364736,

117196384926544421041758258775124882470814614810980971003"
33153423591117017616566024314352960493587163785179678960™.
50409107202745103300944452206991034477139649315017364735"™.
008987336482893,



I.4 Table, Plot, Map, and Plot3D 9

297864151605271565671522691888487433398201478214104374836™
86344802018942169740653764805241893613019586796641682947".
70215036703035475694094363170727692463342462659692676989™.
28260777661956096,
765142811538184924971089105229239398896084485704278030436".
46059567958108943618778356292728753731576478313833091931".
62363541428604718717978398581939982608934869290351343806"™.
8330287933349609375,
198627040519827975805761256394776123747083228931514412339"™.
85491658847582706097318376646920317555554524971459613579".
56707789253279272215867715207123334756347457728787131439".
8899332488478637162496,
521024593971836146804821104841449602253438957603391316494".
00299130165682155803982962610720192317232798510072418380"™.
11659882766685337218633992220688288491655299087016195985"™
205218347711578485744737,
138087834126148675065691180325230972687660410568672963807".
27295432437014796705930332110080014435366263105359800775™
44691196522513327846303307992442770355560270350429006522".
588433404602387992091295744,
369729637649726772657187905628805440595668764281741102430"
25997242355257045527752342141065001012823272794097888954"..
83265401194299967694943594516215701936440144180710606676".
59301384999779999159200499899,
100000000000000000000000000000000000000000000000000000000™
00000000000000000000000000000000000000000000000000000000™-.
00000000000000000000000000000000000000000000000000000000™.
00000000000000000000000000000000}

This leads to several other points. First, we could also operate on all of the values in 1s2 by
operating on Is2 alone. This property of 1s12, called “listability,” is a very important attribute
of such objects in Mathematica. For instance, then we could divide each value we just found
by dividing 1s2 by 10'%:

182

Infl6]:= N[W]

Outf16]= {1.x107100 4. x107190, 2. 7x1079?, 2.56x10728, 3.125x10777,
4.6656x107%%, 8.23543 x1079%, 1.67772x10793, 3.8742x10792,
1.%x107%9, 2.85312x1078%, 8.9161x 10788, 3.02875x 10786,
1.1112x1078%, 4.37894 x 10783, 1.84467 x 10781, 8.2724 x 10789,
3.93464x10778, 1.97842 x1077%, 1.04858 x 10774, 5.84259 x 10773,



10 Chapter | A Primer of Mathematica

.08805x107%%, 1.33374x10757, 8.88178 x 10766,
.43426 x107%2, 3.31455x107°%%, 2.56769 x 1058,
.05891 x107°%, 1.70692x107%4, 1.4615x10752, 1.2911 x 10759,

.17566 x 10748, 1.10251 x 1074, 1.06387 x 10744, 1.05551 x 10742,

.41428 x 10771, 2
4
1
1

.07591 x 10740, 1.12595x 10738, 1.20893 x 10736, 1.33088 x 10734,
1
3
1.

.15612 x 10754,

.50131x10732%, 1.73438x1073%, 2.05077 x 10728, 2.48064 x 1026,
.06803 x 10724, 3.87792 x 10722, 5.00702 x 10729, 6.60097 x 1018,
.88178 x1071%, 1.21921 x10°13, 1.70677 x 10711, 2.43568 x 1079,
.54212x 1077, 0.0000524745, 0.00791643, 1.21581, 190.031,
0218.2, 4.88737 x10°%, 8.03748 %108, 1.34365 x 1011,

.28273 x 1013, 3.9402x10%%, 6.90825x 1017, 1.22998 x 1020,
22337 x10%2, 4.07949 x 1024, 7.59604 x 1025, 1.43504 x 1029,
.75006 x 1031, 5.3449x 1033, 1.05334 x 1036, 2.10449 x 1038,
.26182 x10%0, 8.74647 x10%?, 1.8188 x 1045, 3.83159 x 1047,
.17599 % 10%%, 1.76685x10°?%, 3.86622 x 1054, 8.56517 x 10°°,
.9208 x10°2, 4.35973x10°%%, 1.0014 x 10%4, 2.32738 x 1066,
.47236 x 10%®%, 1.30159x107%, 3.1312x1073, 7.61773 x 1075,
.87399 %1078, 4.66101x108%, 1.17196x 1083, 2.97864 x 108,
.65143 x 1087, 1.98627 x10%%, 5.21025x 10%2, 1.38088 x 10°%,
.6973x10°%7, 1. x10190y

U N BRP R ew

=

W J 2 Ul 0 NDNNDNWWOWWERERRERENDNOGO W

We also note that the output from this last computation is in scientific notation, whereas 1s2
was not; it was written in standard form. It is worth noting that we could have had 1s2 in
scientific notation simply by changing the command as follows:

In{17]:= 183 = Table[x*, {x, 1, 100, 1.}}

Out{17])= {1,4.,27.,256.,3125., 46656., 823543., 1.67772x10', 3.8742x10%, 1.x10'",
.85312x10'", 8.9161x10'", 3.02875x10'", 1.1112x10'", 4.37894x10'", 1.84467x10'",

2
8.2724x107", 3.93464x107", 1.97842x10°", 1.04858x107°, 5.84259x10"7, 3.41428x10"",
2.08805x10*, 1.33374x10%", 8.88178x10'", 6.15612x10%", 4.43426x10*, 3.31455x10"",

2

.56769x10%, 2.05891x10™, 1.70692x10%, 1.4615x10", 1.2911x10"%, 1.17566x10°",
1.10251x10"*, 1.06387x10°", 1.05551x10"", 1.07591x10°", 1.12595x10°",
.20893x10%,

2

1

1 .50131x10%", 1.73438x107%, 2.05077x10°",
.48064x10'*, 3.06803x10"",

1

7

.33088x10",

—

3.87792x10"", 5.00702x10", 6.60097x10%,
.88178x10%, 1.21921x10%, 1.70677x10"", 2.43568x10°, 3.54212x10"",
.24745x10%, 7.91643x10%, 1.21581x10'", 1.90031x10'%, 3.02182x10'%,
.88737x10'%%, 8.03748x10'"", 1.34365x10'"", 2.28273x10''?, 3.9402x10'!",

.90825x10%7, 1.22998x10'°%, 2.22337x10'*?, 4.07949x10'*, 7.59604x10'%¢,
.43504x10'%7, 2.75006x10'"", 5.3449%10'**, 1.05334x10, 2.10449x10!3%,

= oo s U o N



1.4 Table, Plot, Map, and Plot3D 1

.26182x10%%, 8.74647x10%?, 1.8188x10'°, 3.83159x10'7, 8.17599x10'%°,
.76685x10'%%, 3.86622x10'%", 8.56517x10'%, 1.9208x10**°, 4.35973x10%%,
.0014x10%*, 2.32738x10%%%, 5.47236x10'%%, 1.30159x10'7!, 3.1312x10'73,
.61773x10'7%, 1.87399x10'"®, 4.66101x10', 1.17196x10'%*, 2.97864x10'%,
.65143x10'7, 1.98627x10'%%, 5.21025x10'%?, 1.38088x10'%>, 3.6973x10"7, 1.x102°}

~N R R

By changing the increment from 1 (the default value) to 1., we have gone over from integers
to rational numbers, and when the latter are called for, then in this case Mathematica uses
scientific notation.

Another very useful way to approach such calculations is to take advantage of the lista-
bility property by using the Map command. This command will evaluate a function at each
of the list values. If we have an arbitrary function, f, and a vector of values {a,b,c,d,e f}, then
we can Map down this list:

In[l18]:= Map[f, {a, b, c, 4, e, £f}1]

out[18]= {fla], £[b], flc]l, £[d}, fle], f[f]}

A more specific example is to Map the function square root, Sqrt[ ], onto the first 10 values of
1s2. To obtain the first 10 values we can use the Take command as follows:

In[19]:= Take[ls2, 10]

Outf19]= {1, 4, 27, 256, 3125, 46656, 823543, 16777216, 387420489,
10000000000}

Now we can Map the square root function onto these values:

In[20]:= Map[Sqrt, Take[ls2, 10]]
outf20]= {1, 2, 33, 16, 254/5, 216, 34347, 4096, 19683, 100000}

We may use a built-in shorthand, referred to as “infix” notation, to accomplish this as well:

Sqrt/@ Take[ls2, 10]
{1, 2, 343, 16, 2545, 216, 3437, 4096, 19683, 100000}

We turn now from the Table and Map command to Plot. These have nearly identical syntax.
Let us return to the example of x? and x* to see how this works:



12 Chapter | A Primer of Mathematica

In[22]:= Plot[x3, {x, 0, 20}];

400 ¢

[
3{]0l
200+

100 r
[

5 10 15 20
In[23]:= Plot[x*, {x, 1, 10}1;

3x10° |

2.5%x10°

2x10°%

[
1
}_
1
!
[
!
|
_[
1.5x10% |

1x10° |

5x10’




1.4 Table, Plot, Map, and Plot3D 13

By placing the semicolon after each we suppress the output of the word “Graphics.” We can
spruce these plots up with axes labels and other attributes, but to do so at this point would
lead us off the track. Notice that in both cases we did not specify an increment value. In fact
with Plot we cannot. The reason is that Mathematica adjusts the increment as it moves through
the function, making it smaller when the slope is large and larger when it is small. Hence, we
do not have to set the increment; it is handled internally by the routine. We can be sure that
in the vicinity of 16, the increment begins to become very small for x*.

There are a host of different ways to adjust the look of the two-dimensional plots that
we make in Mathematica. These adjustments are referred to as Graphics Options. To see what
option we have in the Plot command we can use the double question mark command.

In[24]:= ?? Plot

Plot[f, {x, xmin, xmax}] generates a plot of f as a
function of x from xmin to xmax. Plot[{fl, f2, ...},
{x, xmin, xmax}] plots several functions fi.

Attributes[Plot] = {Holdall, Protected}

. _ 3 —l
Options[Plot] = {AspectRatio - syarr—rs

AxesLabel »None, AxesOrigin -—»Automatic,

AxesStyle »Automatic, Background —»Automatic,
ColorOutput »Automatic, Compiled-True,
DefaultColor »Automatic, Epilog-{},

Frame »False, FrameLabel »None, FrameStyle —»Automatic,
FrameTicks »Automatic, GridLines —»None,

ImageSize »Automatic, MaxBend->10.,
PlotDivision—»>30., PlotLabel »None, PlotPoints -25,
PlotRange »Automatic, PlotRegion —»Automatic,
PlotStyle »Automatic, Prolog—>{}, RotateLabel -»True,
Ticks »Automatic, DefaultFont:—»$DefaultFont,
DisplayFunction :—» $DisplayFunction,

FormatType :—» S$FormatType, TextStyle :» $TextStyle}

Axes —»Automatic,

This shows us that we can change virtually everything about the appearance of these plots.
The best way to demonstrate the use of these options’ subroutines is to modify one of the
standard plots that we have already made. We begin again with a plot of x? in its default
format.



14 Chapter | A Primer of Mathematica

In[25]:= Plot[x?, {x, 0, 10}]

100t

80 f

60 -

40+

20

2 4 6 ' g 10
Out [25]= -Graphics -

We notice that the axes lines are not dark enough, so we can enhance them by changing their
Thickness parameter within the subroutine AxesStyle:

In[26] := Plot[xz, {x, 0, 10}, AxesStyle - Thickness[0.01]]

|
|
!
80 |

}
)

60
40

20

Out[26]= -Graphics -



1.4 Table, Plot, Map, and Plot3D 15

We can also enhance the plot of the function to make it more visible:

In[27]:= Plot[x%, {x, 0, 10}, AxesStyle - Thickness[0.01],
PlotStyle - {Thickness[0.006]1}];

100

80

60

40

20



16 ’ Chapter | A Primer of Mathematica

Next we change the font and the font size using DefaultFont and then add a label of different
font type and size:

In[28]:= Plot[x%, {x, 0, 10}, AxesStyle - Thickness[0.01],
PlotStyle - {Thickness[0.0075]},
DefaultFont - {"Helvetica", 20},
PlotLabel -»FontForm["Level vs Time", {"Times-Roman", 14}11];

Level vs Time

100
80
60
40
20




1.4 Table, Plot, Map, and Plot3D 17

In the next instance we have changed from a simple graph to one with a frame around it:

In[29]:=Plot[x2, {x, 0, 10}, AxesStyle - Thickness[0.01],
PlotStyle - Thickness{[0.0075]1},
DefaultFont - {"Helvetica", 20},
PlotLabel - FontForm["Level vs Time", {"Times-Roman", 16}],
Frame - True,
1;

[Level vs Time

100
80
60
40
20

0



18 Chapter | A Primer of Mathematica

e

E——— Dy

We can add a set of grid lines over the graph and to the frame as follows and thicken the latter:

In[30]:= Plot[x%, {x, 0, 10},
FrameStyle - Thickness[0.01],
PlotStyle -» {Thickness[0.0075]},
DefaultFont - {"Helvetica", 20},
PlotLabel -» FontForm|["Level vs Time", {"Times-Roman", 16}],
Frame -» True, GridLines - Automatic

1;

Level vs Time

100
80
60
40
20

0




1.4 Table, Plot, Map, and Plot3D 19

Here we add a gray background:

In[31]:= Plot[x?, {x, 0, 10},
FrameStyle - Thickness[0.01],
PlotStyle - {Thickness[0.0075]},
DefaultFont - {"Helvetica", 20},
PlotLabel - FontForm["Level vs Time", {"Times-Roman", 16}],
Frame - True,
GridLines - Automatic,
Background - GrayLevel[0.8]
1;

Level vs Time

100




20 Chapter | A Primer of Mathematica

In[32]:= Plot[x®, {x, 0, 10}, FrameStyle -» Thickness[0.01],
PlotStyle -» {Thickness[0.0075]},
DefaultFont - {"Helvetica", 20},
PlotLabel - FontForm|["Levelvs Time", {"Times-Roman", 16}],
Frame - True, GridLines - Automatic,
Background - GrayLevel[0.8],
AxesLabel - {"t/min", "h[ t ]/ £t"}
1;

Level vs Time

100 | | |
80— ————

60 ) ,
SOl e epl
0




1.4 Table, Plot, Map, and Plot3D 21

Finally, we add labels to the axes of the frame utilizing FrameLabel:

In[33]:= Plot[x?, {x, 0, 10},
FrameStyle - Thickness[0.01],
PlotStyle - {Thickness[0.0075]},
DefaultFont - {"Helvetica", 20},
PlotLabel -» FontForm["Level vs Time", {"Times-Roman", 16}],
Frame -» True,
GridLines - Automatic,
Background -» GrayLevel[0.8],
FrameLabel - {"t/min", "h [t] / £t"}, RotateLabel -+ True
1;

Level vs Time

100
80|
60
40|
20

0

h[t] /ft

t/min

Another very useful tool in formatting plots is the SetOptions command. This command
allows us to set automatically the manner in which the graphs for a whole notebook will
look. Let us see how this works. We begin with a simple default plot of a line, which looks
as follows:



22 Chapter | A Primer of Mathematica

In[34]:= Plot[x, {x, 0, 100}]1;
100+

80t
60 |
40

20

20 40 60 80 100

Now we can use SetOptions to change the thicknesses and color of the axes:

In[35]:= SetOptions|
Plot, AxesStyle - {Thickness[0.01]},
DefaultFont - {"Helvetica", 20}];

If we rerun the same command as before we now find:

ID{BS,I-': Plot([x, {x, 0, 100}];

100
80
60
40
20

20 40 60 80 100



1.4 Table, Plot, Map, and Plot3D 23

However, we can do more in fact to make our graphics look more like we may want them to
look. For example, we can set the options in such a way that the plots within the graphic are
more visible than at the default settings:

In[37]:= SetOptions|
{Plot, ListPlot},
AxesStyle » {Thickness[0.01]},
PlotsStyle - {PointsSize[0.02],
Thickness[0.01]1},
DefaultFont - {"Helvetica", 20}
1;

In[38] := Plot(x, {x, 0, 100}];

100
80
60
40
20

20 40 60 80 100

In the example that follows we modify both the data that will be presented as points and that
which will be presented continuously. If we want to combine two graphs into one graph, then
there are several ways to do this, but one of the easiest ways is to load the graphics subroutine
called DisplayTogether. This subroutine is found within the library of subroutines called
“Graphics ‘Graphics’” and we load this using the << “Needs” command. You must call with
<<Graphics ‘Graphics’ before you can use DisplayTogether. (If by chance you try to use
DisplayTogether before calling <<Graphics ‘Graphics’, then it will not work. You will need
to clear the name, call the graphics commands and then use DisplayTogether.)

Inf39]:

<<G@Graphics‘Graphics®

DisplayTogether [ListPlot [Table[{x, x2}, {x, 0, 10}11,
Plot[x, {x, 0, 100}11:

Inf40]:



24 Chapter | A Primer of Mathematica

20 40 60 80 100

To reset the graphics options to their original present values we simply instruct the program
to go back to Default settings for the axes and plot styles with the same command structure:

Inf41]:= SetOptions[{Plot, ListPlot},
AxesStyle — Automatic,
PlotStyle - Automatic,
DefaultFont - Automatic]

. 1 .
{{AspectRatio > ==, Axes - Automatic, AxesLabel - None,

AxesOrigin - Automatic, AxesStyle - Automatic,
Background — Automatic, ColorOutput - Automatic,
Compiled - True, DefaultColor — Automatic, Epilog - {},
Frame - False, FrameLabel — None,

Out [41]

FrameStyle — Automatic, FrameTicks - Automatic,
GridLines — None, ImageSize — Automatic, MaxBend - 10.,
PlotDivision — 30., PlotLabel - None, PlotPoints — 25,
PlotRange — Automatic, PlotRegion - Automatic,
PlotStyle — Automatic, Prolog - {}, RotateLabel - True,
Ticks — Automatic, DefaultFont - Automatic,
DisplayFunction :—» $DisplayFunction,

FormatType :—» S$SFormatType, TextStyle :—» $TextStyle},
{AspectRatio - m, Axes - Automatic, AxesLabel — None,
AxesOrigin - Automatic, AxesStyle - Automatic,
Background - Automatic, ColorOutput - Automatic,



1.4 Table, Plot, Map, and Plot3D 25

DefaultColor - Automatic, Epilog - {}, Frame — False,
Framelabel — None, FrameStyle - Automatic,

FrameTicks — Automatic, GridLines - None,

ImageSize —» Automatic, PlotJoined —» False, PlotLabel - None,
PlotRange - Automatic, PlotRegion - Automatic,

PlotStyle - Automatic, Prolog - {}, Rotatelabel - True,
Ticks — Automatic, DefaultFont - Automatic,
DisplayFunction :—» $DisplayFunction,

FormatType :—> $FormatType, TextStyle :—» $TextStyle}}

We can also plot in three dimensions. For example, if we have a function of two variables,
then it is simple to see how it looks. For example, we can utilize the product of functions of x
and y to see how they will appear in this space:

Inf42]:= ?? Plot3D

Plot3DI[f, {x, xmin, xmax}, {y, ymin, ymax}] generates a
three-dimensional plot of f as a function of x and y.
Plot3D[{f, s}, {x, xmin, xmax}, {y, ymin, ymax}]
generates a three-dimensional plot in which the
height of the surface is specified by f, and the
shading is specified by s.

Attributes{Plot3D] = {HoldAll, Protected}

Options[Plot3D] =

{AmbientLight - GrayLevel{0], AspectRatio — Automatic,
Axes — True, AxesEdge - Automatic, AxesLabel — None,
AxesStyle - Automatic, Background - Automatic,

Boxed - True, BoxRatios - {1, 1, 0.4},

BoxStyle - Automatic, ClipFill - Automatic,
ColorFunction — Automatic, ColorFunctionScaling - True,
ColorOutput - Automatic, Compiled — True,

DefaultColor - Automatic, Epilog — {},

FaceGrids - None, HiddenSurface — True,

ImageSize —» Automatic, Lighting - True,

LightSources -» {{{1., 0., 1.}, RGBColor[1l, O, 0]},

{{1., 1., 1.}, RGBColor(0, 1, 01}, {{0., 1., 1.3},
RGBColor[0, 0, 11}}, Mesh - True, MeshStyle — Automatic,
Plot3Matrix - Automatic, PlotLabel - None, PlotPoints - 15,
PlotRange - Automatic, PlotRegion — Automatic,

Prolog - {}, Shading - True, SphericalRegion — False,
Ticks - Automatic, ViewCenter - Automatic,



26

Chapter | A Primer of Mathematica

ViewPoint -» (1.3, -2.4, 2.}, ViewVertical - {0., 0., 1.},
DefaultFont :—» $DefaultFont,

DisplayFunction :- $DisplayFunction,

FormatType :—» $FormatType, TextStyle :—» $TextStyle}

In[43]:= Plot3D[x*y?, (x, -10, 10}, {y, -10, 10},
ColorOutput - GrayLevell];




1.4 Table, Plot, Map, and Plot3D

27

In[44]:= Plot3D[x’y?, {x, -10, 10}, {y.
ColorOutput - GrayLevell];

-10,

10},



28 Chapter | A Primer of Mathematica

In[45]:= Plot3D[x’y?, {x, -10, 10}, {y, -10, 10},
ColorOutput - GrayLevell;

0 s’
P

-100000';(
-10

10 ~10



1.4 Table, Plot, Map, and Plot3D 29

In[46] := Plot3D[xSin[x] yCos[y], {x, -10, 10}, {y, -10, 10},
ColorOutput - GrayLevel,
DefaultFont - {"Helvetica", 15}];

We can also see that the structure of this plot is such that the resolution is relatively poor. Thus,
itis not an adequate representation of the function. To enhance the graphical representation of
the function we can increase the resolution by raising the magnitude of the attribute PlotPoints
as follows:

In[47]:= Plot3D[xSin[x] yCoslyl, {(x, -10, 10}, {y, -10, 10},
ColorOutput - Graylevel,
DefaultFont - {"Helvetica", 15},
PlotPoints - 75];



30 Chapter | A Primer of Mathematica

-10

10

What we see is that Mathematica has plotted the functions, fitted them with surfaces, placed
a grid on the fitted surfaces and enhanced them with gray-level shadowing. All of this was
done by routine operation in a default mode, that is, with a minimum of input from us. Here
too we could spend time further enhancing these graphs, but instead we shall move on to the
next subject.

|.5 Lists and ListPlot, Fit, and Show

Often we will have data rather than a function and we wish to plot it, so that we can find
a function that describes the data by analysis. In such cases we can manipulate the data by
bringing it into a matrix form and then plotting it with ListPlot. We also can compare it to the
behavior of functions that are meant to represent the data. The following is a typical set of data
obtained from an experiment, appropriately named “data.” (This could have been imported
to Mathematica by any number of different means.) The first column is time and the second is
the value of the measured variable in the system:

0 10
2 8.2
4 6.7
6 5.5
8 4.5
10 3.7
12 3.
14 2.5
16 2.
20 1.4



1.5 Lists and ListPlot, Fit, and Show 31

24 0.9
28 0.6
32 0.4
36 0.3
40 0.2
44 0.1
50 0.1

First, we write a vector of time values (tim1) at which measurements were made and do the
same with the dependent variable values (datl) and input both:

timl ={0, 2, 4, 6, 8, 10, 12, 14, 16, 20, 24, 28,
32, 36, 40, 44, 50};

datl = {10, 8.2, 6.7, 5.5, 4.5, 3.7, 3.0, 2.5, 2.0,
1.4, 0.9, 0.6, 0.4, 0.3, 0.2, 0.1, 0.1};

To plot these we must join these into pairs of x,y values that can be plotted by ListPlot. We
will use three commands Join, Partition, and Transpose to do this. Here is how it is done in
stepwise fashion:

In[49]:= Join{timl, datl]

out[49]= {0, 2, 4, 6, 8, 10, 12, 14, 16, 20, 24, 28, 32, 36, 40,
44, 50, 10, 8.2, 6.7, 5.5, 4.5, 3.7, 3., 2.5, 2., 1.4,
0.9, 0.6, 0.4, 0.3, 0.2, 0.1, 0.1}

The output from this operation is a single vector composed of time values and then the
dependent variable values. We need them to be paired in order to plot them. Thus we first
break this vector into two vectors within one. The first is for the time values and the second
for the dependent variable values. To get this right we need to partition time only with time
values, and therefore we need to state how many elements from the list should be in each
partition. We can do this if we know the length of the time list. We get this information by
asking for the number of elements in tim1 with Length:

In[50] := Length[timl]
out[50]= 17

We use this as follows:

In[51]:= pdata = Partition[Join[timl, datl], Length[datil]]

Out[51]= {{0, 2, 4, 6, 8, 10, 12, 14, 16, 20, 24, 28, 32, 36, 40, 44, 50},
{10, 8.2, 6.7,5.5,4.5,3.7,3., 2.5, 2., 1.4, 0.9, 0.6,
0.4, 0.3, 0.2, 0.1, 0.1}}



32 Chapter | A Primer of Mathematica

Now we have two lists in one; in effect, we really have a matrix. We can see this by “//Matrix
Form” after the Partition command:

In[52] := pdata//MatrixForm

Oout[52]//MatrixForm =

0 2 4 6 8 10 12 14 16 20 24 28 32 36 40 44 50
108.26.75.54.53.73.2.52.1.40.90.60.40.30.20.10.1

As it is a matrix we can do a very simple and yet powerful operation on it—we can transpose
it. When we transpose a matrix we exchange the rows for columns. Here is a simple example:

In[53]:= ml1 = {{a, b, ¢, d}, {1, 2, 3, 4}}

out[53]= {{a, b, ¢, 4}, {1, 2, 3, 4}}
In{54]:= ml // MatrixForm
Qut(54]//MatrixForm =

a b ¢ d

1 2 3 4
In[55] := Transpose[ml] //MatrixForm

Qut[55]//MatrixForm =
a 1

b 2
c 3
d 4

Returning to our example, we can see that by transposing the partitioned set “pdata” we will
have the pairs of independent and dependent variables we seek to plot:

In[56] := dataset = Transpose[pdatal]

out(56]= {{0, 10}, {2, 8.2}, {4, 6.7}, {6, 5.5}, {8, 4.5},
{10, 3.7}, {12, 3.}, {14, 2.5}, {16, 2.}, {20, 1.4},
{24, 0.9}, {28, 0.6}, {32, 0.4}, {36, 0.3}, {40, 0.2},
{44, 0.1}, {50, 0.1}}

In[57] := dataset // MatrixForm



1.5 Lists and ListPlot, Fit, and Show 33

Out[57]//MatrixForm =
[0

2
4
6
8
10
12
14
16
20
24
28
32
36
40
44
50

. . '_‘
Ju o an @

o

R D

BN WD oo

Although we did each step interactively, we can do it all at once as follows:

In[58] := Transpose[Partition[Join[timl, datl], Length[datl]]]

Qut[58]= {{0, 10}, {2, 8.2}, {4, 6.7}, {6, 5.5}, {8, 4.5},
{10, 3.7}y, {12, 3.}, {14, 2.5}, {16, 2.}, {20, 1.4},
{24, 0.9}, {28, 0.6}, {32, 0.4}, {36, 0.3}, {40, 0.2},
{44, 0.1}, {50, 0.1}}

Another way in which we could have done this takes advantage of Table and the listability of
tim1 and datl, both of which are unidimensional vectors. To do this we make use of the fact
that each element of the list is associated with a unique numerical position that we express as
tim1[[n]] or dat1[[m]] as follows:

Inf59]:= €timl1[[5]]
datl[[511
Out[59]= 8
4.5

Now we can put the two lists together by placing the first element tim1{[n]] and the second
element dat1[[n]] inside a set of braces, {tim1[[n]],dat1[[n]]}, which we then place inside the
Table command:

In[60]:= dataset =Table[{timl[[n]], datl[[n]]l)}, {(n, 1, Length[timl]}]



34 Chapter | A Primer of Mathematica

out[60]= {{0, 10}, {2, 8.2}, {4, 6.7}, {6, 5.5}, {8, 4.5}, {10,3.7},
{12, 3.}, {14, 2.5}, {16, 2.}, {20, 1.4}, {24, 0.9},
{28, 0.6}, {32, 0.4}, {36, 0.3}, {40, 0.2}, {44, 0.1},
{50, 0.1}}

We can now use ListPlot to display this data:

In[61]:= SetOptions{
{Plot, ListPlot},
AxesStyle - {Thickness[0.01]},
PlotStyle - {PointSize[0.02],
Thickness[0.01]},
DefaultFont - {"Helvetica", 15}
1;

In[62] := ListPlot[dataset];

10

8  J

o
6
o
o
4 .
]
o
2 °
®
®
L PY PY
10 20 30 40 50

Instead of a graph of a function we now have discrete points corresponding to the paired
values of the independent and dependent variables. We can see that this data looks like an
exponential decay of the y values with increasing x. A simple test of this would be to take the
natural log of the y-values and plot them against x. Look once again at the paired values in
the data set. We can see that if we take out one pair, then what we want is the first number



1.5 Lists and ListPlot, Fit, and Show 35

paired with the Log of the second value of the pair:

In[63] := dataset

out[63]= {{0, 10}, {2, 8.2}, {4, 6.7}, {6, 5.5}, {8, 4.5}, {10, 3.7},
{12, 3.}, {14, 2.5}, {16, 2.}, {20, 1.4}, {24, 0.9},
{28, 0.6}, {32, 0.4}, {36, 0.3}, {40, 0.2}, {44, 0.1},
{50, 0.1}}

There are several ways in which we can proceed. We could go back to the set of y-values,
datl, take the log of these, and then redo all the steps we did in the preceding. That is an
acceptable but inelegant approach. It is acceptable because it works; it is inelegant because we
already have the dataset in the form in which we need only take the log of every second value.
Therefore, a more elegant approach is to operate directly on the dataset using the power of
Mathematica’s rule- and function-based programming language. In the process of doing this
we will use more of the language and we will see why listability is so important.

When we want to take an element from a set it is simply a matter of using the correct
syntax. For example, as we discussed before, to take the fifth element from the dataset we
simply type dataset with a five after it in double square brackets:

In(64]:= dataset[[5]]
out[64]= {8, 4.5}
Since the fifth element of dataset is a pair of numbers corresponding to the fifth point the

output is this pair. If we wanted to take out of a data set the y-value of the 9th point, then we
would type 9 and 2 separately in double square brackets after dataset:

In[65]:= dataset[[9, 2]1]
Qutf65]= 2.

Similarly, if we wanted to take out the x-value from the first data point in the set:

In[66]:= dataset[[1, 1]]

out[66]= 0

I}

It is clear that we are close to what we need in this function. We could extract all the y-values
from dataset by incorporating this syntax into a Table function. For example:

In[67]:= Table[dataset[[n, 2]], {n, 1, Length[dataset]}]

Out[67]= {10, 8.2, 6.7, 5.5, 4.5, 3.7, 3., 2.5, 2., 1.4, 0.9,
0.6, 0.4, 0.3, 0.2, 0.1, 0.1}



36 Chapter | A Primer of Mathematica

Taking the Log of this and using N to evaluate numerically, we can have a vector of the Log
of y-values from dataset because it is listable:

In[68]:= NlLog[Table[dataset[[n, 2]], {n, 1, Length[dataset]}1]1]

Out[68]= {2.30259, 2.10413, 1.90211, 1.70475, 1.50408, 1.30833,
1.09861, 0.916291, 0.693147, 0.336472, -0.105361,
-0.510826, -0.916291, -1.20397, -1.60944, -2.30259,
-2.30259}

However, now we have violated our original goal, and we have taken dataset apart. We can
be even more savvy than this and avoid having to Join, Partition, and Transpose again. We
do this by writing a function in Mathematica that will do what we want from the start. The
syntax for a function in Mathematica or a rule is f[x_] := flx]. This function will take only single
values for x. We have a set of paired values as the argument of our function, so we will follow
the dummy variable on the left-hand side by a double underbar instead of a single underbar:
glx_1:= glx]. The function or rule that we want is written this way in English:

“Take an element from dataset, keep the x-value as it is, but take the Log of the
y-value and automatically evaluate it, and keep the two values xn and yn paired

as they originally were.”

Writing this in English first makes it fairly obvious what we need to do; this is our algorithm.
In Mathematica we translate this algorithm directly into a rule or function. That rule will look
like this for the nth element of any set:

In[69]:= 1gf[x_-] := {x[In, 1]]1, NlLogIx[I[n, 21111}

We should not move too fast on this because this rule is a program and it is rules like this one
that form the bricks from which we can build larger structures later. Note that the left-hand
side has function syntax with the dummy variable followed by a double underbar and set off
from the right-hand side by a colon and an equal sign. This is called the set delayed structure in
Mathematica. It means that until a specific argument is given within the brackets, this function
in unevaluated, that is, its evaluation is delayed until we give it an argument. The form of the
function is stored and will work with most any argument, provided we also given it a value
for n. On the right-hand side we find a set of braces around two commands that now should
look familiar. The first just takes the x-value of the nth element and pairs it with the log of the
y-value of the nth element. If we now put this inside the table function, we can operate on
dataset from n equals one to the end, which occurs at the value of Length[dataset]. Here it is:

In[70] := lgdatset =Table[lgf[dataset], {n, 1, Length[dataset]}]

Out[70]= {{0, 2.30259}, {2, 2.10413}, {4, 1.90211}, {6, 1.70475},

{8, 1.50408}, {10, 1.30833}, {12, 1.09861},



1.5 Lists and ListPlot, Fit, and Show 37

{14, 0.916291}, {16, 0.693147}, {20, 0.336472},
{24, -0.105361}, {28, -0.5108256}, {32, -0.916291},
{36, -1.20397}, {40, -1.60944}, {44, -2.30259},

{50, -2.30259}}

In[71]:= pllgdatset = ListPlot[lgdatset];

As we can see this looks quite linear, thereby indicating that the data follows an exponential
decay. If we want to be more precise about this, we can use Mathematica to find a fit to the
log data. That is, we can find the equation for the best fit line to lgdatset. After we have this
function, we can then plot it and graph it with the data to once again visualize the goodness
of fit. We introduce now the Fit command. The syntax for Fit is as follows—the argument
consists of three elements, the first of which is the name of the matrix of data to be fit, the
second of which is enclosed in braces and it states that we want to fit to a linear equation (we
can use any polynomial we like), and the last of which names the independent variable. The
output is a line (or polynomial) in x. As we will want to Plot this, we should give it a function
name. We can call it ftlg for fit to the Log of the data and plot it from zero to 50 in x. (First we
do it without the function name to show the output and then again with the function name.
There is no reason to do the first, except to see the values of the slope and intercept.) We can
give the plot a name, plftlg, plot of fit, to log:

In[72]:= Fit[lgdatset, {1, x}, =x]
out[72]= 2.27476 - 0.0975478x

In[73]:= ftlg[x_] := Fit[lgdatset, {1, =x}, =x]
plftlg = Plot[ftlglx], {x, O, 50}1;



38 Chapter | A Primer of Mathematica

-2

Finally, we can put the data points and this line on the same graph by calling for the Listplot,
pligdatset, and the Plot, plftlg, within the Show command:

In[74]:= Show[plftlg, pllgdatset];

2
1
10 20 30 40 50
~1
_2
o o

This looks much better than it did, but we still should give the x- and y-axes labels. Why not
call them t for time and LogY(t) for the log of position Y as a function of time. To do this we



1.6 Solve and NSolve 39

need the command AxesLabel, which has the following attributes:

In[75]:= ?? AxesLabel

AxesLabel is an option for graphics functions that
specifies labels for axes.

Attributes[AxesLabel] = {Protected}

We will put the label for each axis within a set of braces and then also within quotation marks
so that they are not interpreted as a function to be evaluated but rather as simply strings.

In[76] := Show[pllgdatset, plftlg, AxesLabel - {"t", "Logl[¥Y(t)l"}1:
Log[Y ()]

2

10 20 30 40 50

1.6 Solve and NSolve

The Solve and NSolve commands are for algebraic equation solving. The Solve provides a
symbolic result and NSolve numerically evaluates for the variable that is sought. These are
used either for single or sets of equations. They are best illustrated by example. We can begin
with Solve.

The syntax for Solve is quite simple. The argument consists of the equation or equations
to be solved followed by the variable or list of variables we seek to define. An inquiry of
Mathematica gives us the information more completely. Notice that there are Options we can



40 Chapter | A Primer of Mathematica

set that allow us to deal with special situations when they arise. For the most part we can
and will leave these at their default values, but it is important to know that the user has a
considerable degree of control over most functions in Mathematica. The program is so powerful
and the defaults work so well that one often gets the impression that nothing can be changed
or fine-tuned by the user. In fact, this is an incorrect impression.

Inf{77]:= ?? Solve

Solvelegns, vars] attempts to solve an equation or set
of equations for the variables vars. Solvelegns, vars,
elims] attempts to solve the equations for vars,
eliminating the variables elims.

Attributes[Solve] = {Protected}

Options([Solve] = {InverseFunctions - Automatic,
MakeRules - False, Method - 3, Mode — Generic,
Sort —» True, VerifySolutions - Automatic,
WorkingPrecision — oc}

To solve for one equation for one unknown we can examine how Solve works on a quadratic
equation because we know that solution so well:

In[78]:= Clear[Al, Bl, C1l, x]

Solve[0 == Alx? + Blx + C1, x]
-Bl1 + VvBl2-4Aa1cCl Bl + VvB12-4AalcCl
Out[78]= {{x—> }, x> -
2Aal 24l

We could also have two quadratic equations in x1 and x2 with appropriate constant coefficients:

In[79]:= Clear[Al, Bl, A2, B2, Cl, C2]

In[80)]:= Solve[{0 == Al1x12 + B1x2 + C1, 0 == A2x1% + B2x2 + C2},
{x1, x2}]

A2Cl-AlcC2 +v/B2Cl-B1C2
Out[80]= {({(X2 > ——F—7— 1

, Xxl»p-—4—————————}
-A2 Bl +A1B2 VA2 Bl -Al1B2
A2Cl-Al1C2 B2Cl1 - B1C2

{xX2>——, x1-
-A2 Bl + A1 B2 A2B1 - AlB2

If we move to a third-order equation, we obtain three solutions, two of which are imaginary
as shown in what follows:

In(81]:= Clear[Al, Bl, Cl1l, x]

In[82]:= Solve[Alx® + Blx® + Clx + D == 0, x]



1.6 Solve and NSolve 41

out[82]= ({x > - - (213 (-B12 +381C1))/ (321

(-2B13 + 9A1B1C1-27A12D++/4(-B12 +3A1C1)3 + (-2B13+ 9 A1 BLC1-27 Al?D)?3/3)

L2 B13+ 9 A1 B1CL - 27 A12D+/4(-B12 + 3A1C1) 3+ (-2 B1%+ 9 A1 B1 C1-27 a1?D) 2) /3 )
323

(x> — %+((1+ iv/3) (-B12+3A1C1))/(32%/2A1(-2B1%+ 9A1B1C1-27A1%D

'

+/4 (-B12+3ALCL)3 + (-2B13+9A1BLCL-27a1°D)2)¥/3) — —1
Va )7+ ( 1M — i

((1- iv/3)(-2B1°+9A1B1C1-27A1°D
+y/4 (-B12 + 3 A1C1)3+ (-2 B13 + 9A1 B1 C1- 27 A12D) %) /)y,

(x->_35§1+((1- iv/3) (-B12+3 A1 C1)) /(3 2%3A1(-2B1%+ 9 A1 B1 Cl1- 27 A1%D
+/4 (-B12+3A1C1)3+ (-2B1%+ 9 A1 B1 C1- 27 A1%D)?)1/3)

({(1+ 14/3) (-2 B1°+ 9A1 B1 C1-27 A1°D

1

62131
+V4 (-B12 +3a1C1)3 + (-2 B1%+ 9A1B1Cl - 27A12D)2)1/3)}
}

We can find solutions to most equations even when transcendental functions (Log, Sin,
Cosh...) are involved.

In[81]:= Clear([Al, Bl, C1, x]
In[82]:= Solve[Bl Log[Alx® + Blx + Cl] + Sin[Cl1l] == D1, x]
\/7 5 D1 - 5in{C1]
-B1-VyBl%-4Al1Cl+4Ale B1
Outf84]= {{x— },
2Aal
D1 - Sin[C1
-B1 +\/BJ.2—4A1 Cl+4Ale BL
{x-> 1}
2a1

NSolve appears to work in very much the same way as Solve, but instead of working out a
symbolic solution, it provides numerics. This syntax is essentially the same as that used for
Solve. We put the arguments inside the brackets as the equations and the solution variable,
but now of course the constants must be numerical. Here we take the first and last examples
from the preceding Solve examples and put them together in one cell with the assignments
of the constants.

In[85]:= Al = 1;
Bl = 10;
Cl = 9;
D1 = 8;
NSolve[0 == Alx?+Blx+Cl, x]

NSolve[Alx> +Blx% +Clx+D1l==0, x]
NSolve[BlLog[Alx? +Blx+Cl] +Sin[C1] ==D1, x]
Remove[Al, B1, C1]

OQutf89]= {{x->-9.}, {x->-1.}}



42 Chapter | A Primer of Mathematica

Out[90]= {{x—->-9.10832}, {x—>-0.445839 - 0.824346i},
{x—>-0.445839 + 0.824346i}}

out[91]= {{x->-9.2586}, {x—>-0.741399}}

Inf{93]:

Remove[Al, Bl, Cl1, A2, B2, C2]

Al = 2;

Bl = 5;

cl = 3;

A2 = 3;

B2 = 6;

Cc2 = 2;

Solve[{0==A1x%1%2+Blx2+Cl, 0 == A2x1%2 + B2x2 + C2},
{x1l, x2}]

N[%]

NSolve[{0==A1x12 +B1x2+C1l, 0==A2x12 +B2x2 + C2},
{xl1l, x2}]

Remove[Al, A2, Bl, B2, Cl1l, C2]

5 2 5 2
Out[lOO]:{{x2—>—§, x1—>—2\/;}, {x2—>—§, xl—>2\/§}}

Out[101]={{x2->-1.66667, x1>-1.63299}, {x2>-1.66667, x1->1.63299}}

out[102]={{x2->-1.66667, x1>1.63299}, {x2>-1.66667, x1 >-1.63299}}

In the last case we solved first symbolically, but with values for the constants replaced into
the solution. Then we evaluated these four solutions by using N[%]. This is a shortcut that
is handy to use occasionally. The “%"” symbol means the “last result.” We can do anything
to the last result, but in this case we evaluate it numerically with N[ ]. For completeness we
solve the problem once again using NSolve in place of Solve and we see that we obtain
the very same result as on the previous line. In both cells the last statement is the Remove
command. This is done to be sure that these symbols do not mistakenly appear with the
same values once again in some work that we will do later in the session but in a different
problem.

There is much more that can be done to manipulate equations and their solutions. For
example, there is a set of commands for doing algebra that mimics what we do by hand
(Expand, Factor, Simplify, FullSimplify, PowerExpand...). We observed here that we ob-
tained imaginary roots to these equations. If our problems demand only real roots, then we
can have Mathematica filter out the imaginaries and return just the real roots (Miscellaneous
‘RealOnly’). But we should not get too far ahead of ourselves. It is better that we learn Mathe-
matica in natural stages that follow our level of need. In other words, we will find and introduce
more sophisticated commands, routines, and procedures as we need them, so that their func-
tion is understood and retained, rather than trying to cover everything at once. With this in
mind let us turn now to some Calculus functions.



1.7 Differentiate and Integrate 43

1.7 Differentiate and Integrate

Chemical engineering is a science of chemical change and extents. When we need to treat
change we are necessarily interested in rates of change either in time or in space or both.
The language of change is Calculus. Here we will show how Mathematica provides with the
bed-rock of applied Calculus—differentiation and integration. Mathematica will differentiate
and integrate, both symbolically and numerically. Furthermore, it has many different ways to
do numerical integration, methods that can be chosen by the user for any given application.
We can begin with symbolic differentiation and integration.

Differentiation can be ordinary or partial. Here are two examples that illustrate how this
is done. The syntax is simple we write D[f[x], x], which means take the ordinary derivative of
the function of x with respect to x. We can also use the Basic Input palette to do the same, but
now we place the variable that we want to take the derivative with respect to in the subscript
box under 3, flx]:

Inf[104]:= 8x(Alx® + Blx + C1)
D[Al1x® + Blx + C1, xI]

Out{104]= Bl + 3Alx?

Oout[105]= Bl + 3Alx?

To take higher-order derivatives we specify the order n in the argument, that is, we state
DIflx ], {x, n}]:

In[106]:= D[Alx® + Blx + C1, x]
D[Al1x3 + Blx +C1, {x, 2}]
DiAlx3 +Blx +Cl, {x, 3}]
D[Alx® + Blx + C1, {x, 4}]

out[106]= Bl + 3 Al x?
OQutf107]= 6Alx
Out[108]= 6Al
Out[109]= 0

To take a partial derivative, we follow the same syntax. From the command line we type in,
for example, DIf[x, y], x] or D[f[x, yl, yl if we want the partial derivative of f[x, y] with respect
to x or y. Using the input palettes we do as we did before:

In[110]:= 8x(Alx®y + Blxy?)
By(Alxzy + Blxy?)
D[Alxzy + leyz, x]
Dlalx®*y + Blxy?, yl

Out[110]= 2Alxy + Bly?



44 Chapter | A Primer of Mathematica

Out[111]= Alx® + 2Blxy
Out[112]= 2Alxy + Bly?

Out[113]= Alx® + 2Blxy
Taking second-order ordinary or partial derivatives follows much the same syntax:

In[114]:= Ox,x(Ax®y + Bxy?)
Oy,y(Ax?y + Bxy?)
Ox,y (AX%y + Bxy?)
Oy,x(Ax?y + Bxy?)

Outf114]= 2Avy
Qut(115]= 2Bx
Qut[ll6]= 2AXx+2By

Qutfl117]= 2AxX+2By
For higher-order partial derivatives, we use the command line syntax:

In[118]:= DIAx®y + Bxy?, {(x, 2}]
DIax?’y + Bxy?, (y, 2}, {x,1}]
DIax?y + Bxy?, (v, 2}, {x,2}]

Qut[118]= 2Ay
Out[119]= 2B
Out[120]= 0

Turning now to the antiderivative we can do symbolic integrations. Integration can be done
either from the palette or from the command line and we will illustrate both. Here are two
forms of the indefinite integral over x of (A x + B):

In[121]:= /(Ax + B)dx

Integrate[Ax + B, x]

Ax2

Outf{l12l1]= Bx + T
sz
Out[122]: Bx + T

We can integrate from x1 to x2, that is, also as a definite integral:

*x2
Inf[123]:= f (Ax + B)dx

xl
Integrate[(Ax + B), {x, xl1, x2}]



1.7 Differentiate and Integrate 45

Ax12 A x22
Qut(123]= -Bx1 - > + Bx2 + >

Ax12 Ax22
Outf124]= -Bx1l - > + Bx2 + >

The algebraic output in this case can easily been seen to be simplifiable. To find more simplified
forms we request that Mathematica do the simplification for us. We can combine this into one
command line:

In[125]:= Simplify[Integrate[(Ax + B), {x, x1, x2}]]
1
Qutfl25]= —5 (x1-x%x2) (2B+A(x1+x2))

Alternatively, we may have wanted to collect the terms in A and B; we would do that this
way:

In[126] := Collect[Integrate[(Ax + B), {x, x1, x2}]1, {A, B}]
Out[126]= B(-x1 + x2) + A(_T+—)

The function we are integrating may be one with two variables:
Inf{127]:= Simplify[Integrate [Ax2 y + Bxyz, {x, x1, x2}, {(y,vl, ¥2}1]

1
out[127]= g(A(x13--x23)(y12--y22) + B(x1% - x2%) (y12 - y22))

Integration and differentiation can be done both numerically and symbolically. This becomes
very important to us, because in many cases we need both approaches in engineering problems
of the kind that we will deal with in this text. As we have seen previously, the syntax is kept
very much the same when we compare the numerical command implementation to that of its
symbolic analogue. This means that we will place an N in front of the command and we will
specify a numerical range for the variable or variables we are integrating over in the argument.
Also, as in the case of NSolve, we must be sure to have values for all the parameters. Examples
are the best way to illustrate how this works:

In[128]:= A = 10;

B = 0.5;

Cl =1;

NIntegrate[Ax? + Bx + C1, {x, 0, 10}]
Out[131]= 3368.33

Numerical differentiation is about as simple to implement. We take the derivative and then
evaluate it at a given point. The simplest way to do this is to add the evaluation command
directly after the derivative, using “/. x — a” so that the derivative is evaluated immediately



46 Chapter | A Primer of Mathematica

at x equal to a:

In[132]:= A = 10;
B 0.5;
Cl = 1;
DI[Ax?® + Bx + C1, x] /. x - 10

Out[135]= 200.5

From this vantage we are in a position to move to differential equation solving using DSolve
and NDSolve.

1.8 DSolve

Most of the differential equations that we will be called upon to solve in this text are ordinary
rather than partial. We will need to know the initial conditions in order to solve them for
a function that describes the behavior of the system we are analyzing. Both DSolve and
NDSolve can be used seamlessly to accomplish this. They can be used for multiple coupled
equations as well as they can be for single equations. Their syntax follows essentially that
which we have seen for the commands that we have used to this point.

Early on we will find that many of the differential equations that we seek to solve belong
to a general class that can be “separated.” This means that all the independent variables can
be placed on one side of the equation and the dependent ones on the other. An example of
such an equation is:

df (x)
= —C1 f(x)
This can be rewritten as:
df(x)
=—-Cld
f() *

The solution can be found by integrating both sides—on the left over f(x) and on the right over
x. Hence the first equations we will want to solve may be solved via separation and integration.
We can solve this equation, even though f(x) is left unspecified, over some interval from x1 to x2:

£x2] x2
Inf[136]:= /‘ —— df [x] == /‘ -C1l dx
erx1] £Ix] x1
Out[136]= -Log[f[x1]] + Log[f[x2]] == x1 - x2

This can be simplified as follows if we seek to find f[x2] with the initial condition that f[x1] is
fo at x1 equal to zero:

In[137]:= Solvel[-Logl[fo]l + Loglf[x2]] == -Cl1l (-x1 + x2), f[x2]1/.
{f[x1] » fo, x1 -0}

Out[137]= {{f[x2] » e *2+Loglfolyy



1.8 DSolve 47

We see that we have a solution, but we find that there is a Log in the argument of the expo-
nential. We then can ask Mathematica to simplify the solution:

Inf[138]:= Simplify[%]
out[138]= {{f[x2] > e *2fo}}

Therefore, f[x2] = fo € €1*2, We can test this solution by placing it back in the differential
equation on the left-hand side to see if the derivative will equal the right-hand side of the
equation. To do this verification, we define the function for f[x] and then take its derivative
and finally test if the derivative of the solution is the same as the original right-hand side of
the equation. We do this last operation by placing the derivative and the right-hand side of
the equation astride the double equal sign and all of this is then placed within the Simplify
command. If the two elements on either side of “==""are in fact the same then Mathematica
returns a “True” statement.

In(139]:= flx_]1 := e Cl¥ggo
Simplify(dx f£Ilx] == -C1 £[x]]
Remove[f]

Qut[139]= True

We have learned several important new concepts from this example.

e Many differential equations are separable and are nothing more than the integration of
the left-hand and right-hand sides.

e We can use Integrate or the palette equivalent to carry out this operation on the separated

form of the equation.

The solution we obtain can be made specific for the initial conditions by adding them at

the end of an appropriate Solve statement.

Solutions can typically be simplified.

The solution must be verified by testing its validity in the original differential equation.

The last point may not seem important at this point but it is, especially when we derive
analytical solutions that are far more complex. A slightly more complex form of a separable
equation is one that involves a sum on the right-hand side, such as:

dg(x)
dx

=Cl1+C2g(x)

This is also separable, but we have to take the whole of the right-hand side to the left to show
this:

dg(x)
Cl+QC2g(x)



48 Chapter | A Primer of Mathematica

This is amenable to the techniques we have just used for the simpler equation, except that
now that we know what we are doing we will combine the steps including the verification:

x2

gix2] 1
In[140]:= /‘ —— dg[x] == /‘ dx;
gix1i] C1l + C2gix] x

Flatten[Simplify[Solve[%, glx2]] /.
{glxl] - go, %1 -0, x2 ->x)}]]
glx_] := Evaluatelglx] /. %]
Simplify[Oxg[x] == C1 + C2gix]]
glx]
Remove[g, gol
-1+ e2%(1 + C2 go)
}
C2

Out(143]= {glx] -

Qut[145]= True

-1+ e%X(1 + ¢2 go)
c2

Out[146]=

In one set of statements we have solved the separated equation, rearranged for the function
subject to the initial conditions, defined the function, verified it, and then restated the solution.

Generally, we can use DSolve to find an analytical solution when one is possible. This is
more general because DSolve can find solutions to much more complex cases than we have
examined to this point—that is, for those equations that are not separable. If no analytical
solution exists, then we can solve the equation numerically with NDSolve. We will see here

how these two powerful commands work.

We can redo the problem that we have just finished to see what is similar and different
about using DSolve. The syntax is such that we place the equation and the initial condition in
braces, followed by the name of the function we seek and the name of the independent variable:

In[148]:= DSolvel[{d,glx] == Cl+ C2gix], glo0]

-1 + C2eC2x(Ci2 + go)}}

c2

out(148]= {{glx] -

Verification can be done as we did before:

—C1+C2eczx(% + go)

c2
Simplify[dxglx] == C1 + C2gix]]
Remove{g, go]

In[149]:= glx—_]1 :=

Qut[150]= True

== go}, glx], =x]



1.8 DSolve 49

Another type of equation that we are likely to encounter is the linear first-order differential
equation (LFODE). An example is given here:

In[152]:= DSolvel[{OxyI[x] + Clylx] == glx], y[0] == yo}, y[x], x]

X
out[152]= {{ylx] > e *(yo + / ePsolve’t 4srpgolvet] dDSolve't) }}
0

Notice that the solution is implicit—meaning that it is not fully evaluated. We can see that this
is so from the fact that on the right-hand side we have an integral that is over the function g
and is left in terms of the dummy variable DSolve‘t. Notice also that the exponential involves
this variable as well. Until g[x] is specified, we cannot find the full solution to this problem.
We can see what happens when glx]= x? or Sin[x], that is, for specific functional forms:

In[153]:= Clear(Cl, yol
2

DSolvel[{OxyIx] + Cly[x] == x°, y[0] == yo}, yI[x], x]

e Clx(2eflx_ 201 e1*¥x + C12eC1%x? + C13(——Ci3 +yo))

In[154]= {{y[x]~ 13

c13
In[155]:= Clear[Cl, yol
DSolve[{OxyIx] + Cly[x] == Sin[x], y[0] == yo}, ylx]l, x]
out[156]= {{ylx]~>
2 2 2
e—Clx(1+yO+Cl?yg+Cl (l+yo+2Cl ¥O)  _ eClXeooix] + c1€C1¥sin(x])
1+C1° 1+C1 13}

(-1 + C1l)( + C1)

These solutions are involved and so it is critical that we verify them before applying them:

In{157]:= Clear["Global**"]
e Clx(2eC1x _ 201e%1%yx + C12C1%x2 4+ c13 (-c% +yo0))

1[x_] :=
Y c13

Simplify[OxylIx] + Clyllx] == x?]
OQut[159]= True

In[160]:= Clear[Cl, yol
1 + yo + Cl2%yo c12(1 + yo + Cl2%yo)
+

2 _ : = -Clx
y2ix—] et 1 + c1? 1 + c1?

- e®1%cog x] + C1 eC1%Xsin[x]))/((-i + C1) (I + C1))
Simplify[Oxy2[x] + Cly2({x] == Sin[x]]

Out[162]= True
Both are valid solutions and can then be simplified further before we utilize them:

In[163]:= Simplifyl[yl[x]]



50 Chapter | A Primer of Mathematica

e Cl¥(-2 + e®1X(2 - 201x + C12x2) + C13yo)
Qutfl63]=

c13
e C1X(-2 + e1%(2 - 2Cc1x + C12x?) + Cc13yo)
In[164]:= yl[x_] := 3
cl
Simplify([y2[x]1]
e C1X(1 + yo + C1%2yo - e“*cog[x] + Clefl¥gin[x
Out [165] = { Yy Yy : [ [x1)
1+C1
-Clx 2 Clx Clx s
e (l+yo+Cl“yo - ¢ Cos[x] +Cle Sin[x]
In[166]:= y2[x_] := ¥ L4 T o )
+

Finally, given a set of parameter values for C1 and yo, we can Plot the two solutions simul-
taneously, with solid for y1 and dashed for y2 to see how they behave with increasing x in a
specific range:

Inf167]:=C1l = 1;

yo = 10;

Plot[{y1l[x], y2([x]}, {x, 0, 10},
PlotStyle - {{Thickness[.01], GrayLevel[.5],

Dashing[{0}]1}, {Thickness{0.01], Dashing[{0.05,0.05}1}},

PlotLabel - {solid "yl[x]=", dashed "y2[x]="},
AxesStyle - {Thickness[0.01]},
AxesLabel - {x, "yn[x]"}];

yn([x] {y1[x]= solid, y2[x]= dashed}
15

12.5
10
7.5
5
2.5




1.8 DSolve 51

We can see that the two solutions are in fact quite different in their behavior. For these parameter
values the first is dominated by the quadratic term and the second by the Sin function. If we
want to obtain a sense of parametric sensitivity, we can drop the value of C1 by 10> and then
raise it by 10? and replot the graphs for these two cases:

In[170]:=C1 = .1;

yo = 10;

Plot[{y1[x], y2I[x]}, {x, 0, 10},
PlotStyle —» {{Thickness[.01l], GrayLevell[.5],

Dashing[{0}]}, {Thickness[0.01], Dashing[{0.05, 0.05}1}},

PlotLabel - {go0lid "yl[x]=", dashed "y2[x]="},
AxesStyle - {Thickness[0.01]},
AxesLabel - {x, "yn(x]1"}1;

yn[x] {y1[x]= solid, y2[x]= dashed)}
16

14
12

10

In[173]:= C1l = 10;
yo = 10;
Plot[{ylIx], y2I[x]}, {(x, 0, 10},
Plotstyle —» {{Thickness[ .0l1], GrayLevel[.5],
Dashing[{0}]1}, {Thickness[0.01], Dashing[{0.05,0.05}1}},



52 Chapter | A Primer of Mathematica

PlotLabel - {s0lid "yl[x]=", dashed "y2[x]="},
AxesStyle - {Thickness[0.01]},
AxesLabel - {x, "yn[x]"}1:

yn[x] {y1[x]= solid, y2[x]= dashed}
2
1.5
1
0.5
i — ey SN ccani — X
2 I~ = 6 8 10

In[176]:= Removelyl, y2, yo, C1]

1.9 NDSolve

We turn now to NDSolve for the solution of differential equations. A good starting point would
be to begin to soive the equations that we have already solved symbolically with DSolve.
Instead of simply solving the equation we are going to name the solution. We will call it soln:

In[177]:= CleariCl, yo, soln, yl

In[178]:= yo = 10;
Cl = 1;
soln = NDSolvel
{Ox y[x] + C1 y[x] == Sin[x], y[0] == yo},
ylx], {x, 0, 10}];

What we find is that the numerical solution is presented in the form of a tidy Interpolation
function, which is good over the entire range of integration. This is much cleaner than having



1.9 NDSolve 53

a table or list of values echoed to the monitor. But to use the interpolated function we must
assign it a function name and then we can apply it and explore the numerical solution’s
behavior. To do this we use a command structure that we have utilized before; it looks like

this:

In[181]:= nyb[x—_] := Evaluate[yIx] /. soln]

What this says in simple terms is to assign to nyb[x] to the interpolating function y[x] found
in the solution called soln. This function can now be plotted:

In[182]:= Plot[nybix], {(x, 0, 10}, AxesStyle - {Thickness[0.01]1}];

0.5

-0.5

This looks identical to the plot we had before based upon the analytical solution. If we need
to have a table of values for the function we can obtain this as follows:

In[183]:= Table[{x, nyb[x]}, {(x, 0, 10, .5}] // TableForm

Out[183]//TableForm =
0 10.
0.5 6.16951
1. 4.01333
1.5 2.80625
2. 2.08375

2.5 1.5617



54 Chapter | A Primer of Mathematica

3. 1.08832
3.5 0.609911
4. 0.140736
4.5 —0.266721
5. —0.550543
5.5 —0.664192
6. —0.593765
6.5 —0.364947
7. —0.0388831
7.5 0.30149

8. 0.570951
8.5 0.702385
9. 0.66292
9.5 0.461796
10. 0.148002

It is clear that for relatively simple linear equations such as these DSolve and NDSolve
duplicate each other. When the equations become nonlinear, however, it may not be possible
to find an analytical solution. At that point NDSolve no longer merely duplicates but, rather,
it supplants DSolve. For example, if in the last differential equation y[x] appears quadratically
rather than linearly, DSolve will not return a solution:

In[184]:= Clear[Cl, yo]
DSolve[{Oxy[x] +Cly[x]%==8in[x], v[0] ==yo}, yI[x], x]

Out[185]= DSolve[{Cl y[x]?+y'[x]==8in([x], y[0] ==yo}, yvIx], x]

In contrast, NDSolve will do so and it will do it well:

In[186]:= Clear[Cl, yol

yo = 10;

Cl = 0.01;

y¥3 = NDSolvel
{Ox vIx] + C1 y[x]? == sin[x], y[0] == yo}, ylIx],
{x, 0, 10}1;

ny3[x_] := Evaluately[x] /. y3]

plny3 = Plot[ny3([x], {x, 0, 10},
AxesStyle - Thickness[0.01],
PlotStyle - Thickness[0.01]1];



1.9 NDSolve 55

10

For the sake of learning we can now go back and compare the solution of this nonlinear
equation to the linear version. To do so numerically, we must resolve the equation with the
new value of C1 set to 0.01:

In[217]:= Clear[Cl, yol

yo = 10;
Cl = 0.01;
y2 = NDSolvel
{Ox yIx] + C1 y[x] == Sin[x], y[0] == yo},

yixl, {(x, 0, 10}1;
ny2[x—1 := Evaluately[x] /. y21
plny2 = Plot[ny2[x], {x, 0, 10},
PlotRange - {{0, 10}, {0, 12}},
AxesStyle - Thickness[0.01],
PlotStyle - {GrayLevel[.5], Thickness[0.01],
Dashing[{0.05, 0.05}1},
DisplayFunction —» Identity];
Show[plny3, plny2, DisplayFunction - $DisplayFunction,
PlotLabel - {dashed "ny2=", solid "ny3="},
AxesLabel - {"x", "nyil[x]"}1;



56 Chapter | A Primer of Mathematica

= e T e .

nyi[x] (ny2= dashed, ny3= solid}

.10 Units Interconversion

Mathematica also provides a special package for the interconversion of units of measure. To
access this functionality of the software we need to load the package named Miscellaneous
‘Units’. We load this and other specialized packages from the Mathematica library with the
following command:

In[199]:= <<Miscellaneous‘'Units"®

This allows us to begin doing units interconversion immediately. The following are some
examples of this utility:

In[200] := Convert[5 Kilo Meter, Mile]

Out[200]= 3.10686 Mile

In[201]:= Convert[80 Year, Day]
Convert[80 Year, Secondl]

Out[201]= 29200 Day

Qut [202]= 2522880000 Second



1.10 Units Interconversion

In[203]:= Convert[2500 Kilo Joule, Caloriel

Qut[203]= 597115. Calorie

In[204]:= Convert[25 Furlong/Fortnight, Mile/Hour]

Convert[25 Furlong/Fortnight, Mile/Hour] // N

25 Mile
out[204]= —————
2688 Hour
0.0093006 Mile
Qutf[205]=
Hour

In[206] := ConvertTemperaturel[l9, Fahrenheit,
ConvertTemperature[l9, Fahrenheit,
ConvertTemperature[l9, Fahrenheit,

Out[206]= -7.22222
out[207]= 478.67
Out[208]= 265.928

Inf209]:= Convert[l Atmosphere, Bar]

Qut[209]= 1.01325 Bar

In[210]:= Convert[l TonForce, Dyne]
Out[210]= 9.96402 x 108 Dyne
In(211]:= Convert[l Ton, Gram]
out[211]= 1.01605 x 10°% Gram

Inf212]:= Convert[25 Angstrom, Micron]
Convert [25 Angstrom, Micron] // N
Micron

400
Out[213]= 0.0025 Micron

Out[212]=

Centigrade]

57

This same utility will also allow us to specify a measurement in an arbitrary system and then

convert this to a specified system, such as CGS, MKS, or SI:

Inf214]:= SI[350 Atmosphere]
MKS{300 Feet]
CGS[1 Inch]

3.546375x107 Pascal



58 Chapter | A Primer of Mathematica

Qutf215]= 91.44 Meter

Out[216]= 2.54 Centimeter

For more examples of this kind and to see what units are available to use in these intercon-
versions click on the Master Index in the Help Browser and Go To Miscellaneous ‘Units’.

1.1l Summary

Now we have the basic tool kit that we need in order to get started with Mathematica. As we
go through the next eight chapters and before we get to the Worked Problems in Chapter 10,
we will build upon this foundation and add to these tools.



CHAPTER E

Elementary
Single-Component Systems

Elementary single-component systems are those that have just one chemical species or material
involved in the process. Filling of a vessel is an example of this kind. The component can be
a solid liquid or gas. Regardless of the phase of the component, the time dependence of the
process is captured by the same statement of the conservation of mass within a well-defined
region of space that we will refer to as the control volume.

In this chapter we will apply the conservation of mass principle to a number of different
kinds of systems. While the systems are different, by the process of analysis they will each be
reduced to their most common features and we will find that they are more the same than
they are different. When we have completed this chapter, you will understand the concept of
a control volume and the conservation of mass, and you will be able to write and solve total
material balances for single-component systems.

2.1 The Conservation of Mass Principle
and the Concept of a Control Volume

The conserved quantities that are of utmostimportance to a chemical engineer are mass, energy,
and momentum. It is the objective of this text to teach you how to utilize the conservation of
mass in the analysis of units and processes that involve mass flow and transfer and chemical
reaction. For each conserved quantity the principle is the same—conserved quantities are

59



60 Chapter 2 Elementary Single-Component Systems

neither created nor destroyed. For mass this principle holds for all cases except those involving
nuclear reactions. In all other situations, the principle is never violated. So we can use it to the
utmost as you will see in developing both time-dependent and time-independent descriptions
of chemical processes.

The principle is so seemingly obvious that you may wonder how it can be so useful to
us. How does knowing that mass is neither created nor destroyed relate to a chemical process
unit’s behavior or to anything else for that matter? The key is that in order to use this principle
we must translate it into mathematics so that we can work with it and derive the precise and
accurate descriptions that we need.

If mass is neither created nor destroyed, that means if we seem to detect its apparent
depletion or accrual in one region of space, this can only be the case if in some other region of
space the same mass was either accruing or depleting. In other words, we always inspect some
region of space and draw conclusions based on our measurements within that region. If mass
is increasing within this space, it must be coming from somewhere else. Similarly, if we detect
that mass is decreasing, then it is because it is leaving the region of our measurement. We have
everyday experiences that correspond to these statements.The level of water in a glass left on
a table at room temperature will slowly decrease as the water leaves via evaporation. Pulling
the drain plug on a bathtub causes the water to flow out due to the force of gravity. When a
stalk of corn grows all the mass that is accumulated in such complex forms within the plant
had to be delivered to it from the soil and the surrounding atmosphere. Each of these, the
glass of water, the tub, and the corn plant, can be considered a “system,” and as such we can
measure the rate of change that occurs within them whether it is through evaporative losses,
flow, or growth. This is because each involves the transport and transfer of mass from outside
of the system to inside of it or vice versa.

Another example is that of a living cell. Nutrients are transported across the cellular
membrane and are utilized in metabolism. The by-products of metabolism are transported
out of the cell and also back across the membrane to the surroundings. The young cell grows
and increases in size and mass because the rate of by-product flow out is less than the rate of
nutrient flow in. We know this because of the conservation of mass principle, and so we need
no other information than to know that the cell grows in order to reach this conclusion. As
the mass of the cell increases, the size of the cell also increases. If the cell is nearly spherical
as is the case for some simple, single-cell organisms, then we can expect that its diameter or
radius is also increasing. Hence, the simplest measurement to make to detect cell growth in
an experiment may be to measure the cellular radii. When the cell matures, we find that the
rate of nutrient flow in is balanced by the rate out, which is why the cell no longer is growing.
This of course says nothing about the complex metabolic control mechanisms that lead to this
situation, but it does define maturity explicitly in dynamical terms. In this condition, when the
input rate is balanced by the output rate, there is no net accumulation of mass in the cell. The
cell biologist refers to this as the homeostatic state; the chemical engineer calls it the steady state.

In these word statements we find that which we need to formalize at this point. The
conservation of mass is applied to a system and more specifically to a control volume, which
is defined by a control surface that separates the control volume from its surroundings, either



2.1 The Conservation of Mass Principle 61

in actuality or abstractly. By defining the control volume and its boundaries, we know where
“inside” is. The inside of the cell is that space within the membrane just as the inside of the
glass lies within its regular walls. The same is true for the corn plant, even though it has a
more complex geometry defining its control surface. Now we can begin to bring mathematical
descriptions to bear on the problem, but not until we have accurately stated the conservation
of mass in terms of the control volume and its boundaries:

The net rate of mass accumulation within a control volume is equal to the rate at
which mass enters the control volume by any process minus the rate at which it
leaves the control volume by any process.

The mathematics that proceeds from this is at once simple and elegant. Since we are discussing
rates we will write the mathematical statement in terms of rates also—the rate of change in
mass within the control volume:

dm|t] . .
T = IMyjn — Moyt
dm|t . .
dmit = the net rate of change in mass within the control volume, rate of accumulation;
dt

mass/time;
my, = the total rate of mass flow into the control volume by any means; mass/time;

m,,: = the total rate of mass flow out of the control volume by any means; mass/time.

This is the key unifying principle that we will use throughout this book. It will be all we need
in order to analyze and model a wide array of elementary single-component systems and it is
the foundation upon which everything else we do with more complex systems will be built.
The best way to illustrate how to use this mathematical statement of conservation of mass is
through examples.

Filling a Vessel with a Pelletized Solid: Conservation of Mass
and the Constitutive Relationship

Many products come in the form of a powdered solid. The solid once produced is stored in
a container. It may be a barrel, a bag, or a can depending on the volume. Powdered milk is a
good example; so is lawn fertilizer. Catalytic solids are another. Catalysts promote the rate of
chemical reaction and are used throughout the chemical and petroleum industries; they are
usually small solid pellets of uniform size and shape. Catalysts are not consumed in the course
of the reaction they promote. Nevertheless, catalysts do eventually need to be replaced. This
is either because they were poisoned or their solid structures have become clogged with high
molecular weight molecules that prevent access to the active sites. At the end of its lifetime,
then, the catalyst must be replaced. The spent catalyst is removed from the reactor vessel,
the reactor is cleaned, and the space left open is ready for a charge of fresh solid catalyst.



62 Chapter 2 Elementary Single-Component Systems

Catalyst solid delivery to the
reactor via conveyor

Accumulation of catalyst
solids in the reactor volume

Figure 1

The fresh catalyst will be delivered to the top of the reactor by a conveyor belt and dropped in.
The process will proceed until the volume of the reactor vessel has been filled to the requisite
level as is shown in Figure 1.

Reactors are often large in volume and cylindrical in shape. We will represent the reactor
then as a simple cylindrical volume. The height of the vessel is h and its diameter is d. The
overall volume to be filled by the catalyst is given as:

V == rd*h

Catalyst is being delivered by conveyor belt at a constant mass flow rate. The question we
would like to be able to answer is: How much catalyst mass is in the reactor vessel at any
time? The reason we care is that we will be paying for the catalyst on a per pound basis. If we
look into the reactor at any time t, we may be able to measure the level to which the reactor is
filled, and from that level measurement we could in principle compute the mass of catalyst if
we had a density for the material. Remember though that this is solid and it packs irregularly
into the reactor, as we can see from Figure 1. We can at best get an average value for the density
and only after we have done an experiment in which the catalyst was carefully packed into a
known volume and massed in order to find its so-called compacted bulk density.



2.1 The Conservation of Mass Principle 63

Therefore, if we know the compacted bulk density, then it is possible to compute the mass
in the bed using the mathematical statement for the conservation of mass. In this case the
reactor and its physical dimensions define the control volume. The rate of catalyst delivery
is a constant that we will call #;,. The rate of mass flow out of the reactor is zero, that is,
oue = 0. Therefore we have:

dmlt] _ .
dt = Mljp

This says that the rate of accumulation of catalyst in the reactor is just equal to the rate of
delivery, which is exactly what we would have said based on common sense. An equation of
this kind is the simplest type of differential equation. It is separable and we integrate from
t =0 to t and from m[0] = 0 to m[t]. The integrals that result from the separation of variables
are shown in what follows. On the right-hand side we use the infix form “ /. m[0] - 0” to tell
Mathematica to use a lower-bound value of zero for m[0]:

mt] t
Inf1]:= / dlm[t]==/ mi,dt/.m[0] » O
m{0] 0

out[1]= ml[t] == tmi,

We find that the mass of catalyst in the reactor is a simple linear function of time so long as
the mass flow rate of catalyst via the conveyor remains constant. The dimensions on m;, are
mass time ™!, so we see that the resultant equation is dimensionally consistent.

In[2]:= mags == (time) mass time~!

Out[2]= True

We can put some numbers into this result. Suppose that the reactor is fairly large in volume: it
is 60 ft high and 20 ft in diameter. The catalyst delivery rate is 100 Ib per hr. The compacted bulk
density of the catalyst is 10 kg m®. First, we want to know the mass of catalyst in kilograms in
the reactor at any time t. We would also like to know to what level the reactor will be filled at
time t, if the catalyst is packing in at its full compacted bulk density (bd). (As stated earlier this
value can be obtained easily in the laboratory by simply filling a know volume with catalyst,
being careful to leave no voids in the packing and then weighing the sample.) If we compare
the actual volume in the bed to that which we calculate, then any difference between the two
values will arise from the catalyst not packing at its bd.

Todo this we willload a helpful package called <<Miscellaneous ‘Units’ from Mathematica.
We also want graphs of the predicted catalyst mass as function of time, the theoretical level
of catalytst in the reactor as a function of time, and the actual level that has been measured
in the reactor at a few times during the loading process. Finally, we can compute the catalyst
cost in $ flowing into the reactor volume per unit time. Here we calculate the mass flow in per
unit time in metric units as well as the volume and cross-sectional area of the reactor.



64 Chapter 2 Elementary Single-Component Systems

In[3]:= <<Miscellaneocus‘Units:®

mi; == NumberForm[Convert[1000 Pound/Hour,
Kilogram/Minute], 2]

Inf4]:

7.6 Kilogram

Out[4]= my, ==
[4] w Minute

In[5]:= Hreactor ==
NumberForm[Convert [60 Feet, Meter], 3]

Vreactor ==
20 Feet , 3
NumberForm[Convert [1r(——2——) 60 Feet, Meter’], 3]
20 Feet , 2

Areactor == NumberForm[Convert[n(——)“, Meter<], 3]
Out[5]= Hreactor == 18.3 Meter
Out[6]= Vyeactor == 534. Meter?
Out{7]= Areactor == 29.2 Meter?

Next we should compute the time it would take to fill the reactor if the catalyst were to pack
in at its cbd. This time will be called fnax. We find this time by setting the catalyst volume
equal to the volume of the reactor in the mass balance and rearranging:

In[8]:= Vreactor = 534.Meter?

7.6 Kilogram
Min = 7

Minute
bd = 10 Kilogram/Meter?;
ﬁlint
bd

Veat [t -]:=

Solve([Vreactor == Vcat [tmx], tmxl
Out[8]= 534. Meter?®
out[12]= {{tg, » 702.632 Minutel}}
In[13]:= N[Convert[702.6 Minute, Hourl]
In[14]:= NumberForm[Convert{%, Dayl, 3]
Qut([13]= 11.71 Hour

Qut [14]//NumberForm=
0.488 Day

The time required to fill the reactor, if the catalyst packs in at its bd, is about five days or 117
hours. If the packing is at some bed density less than the bd, then the reactor volume will
be apparently filled faster, but the catalyst load in mass will be below its design level due to



2.1 The Conservation of Mass Principle 65

voids in the bed. We will see later that if this were to go unnoticed and unrepaired, then the
production rate for the reactor will fall below its design level because it does not contain the
design mass of catalyst. Making the catalyst bed reach bd is important. The mass of catalyst
that should be in the bed at £, and bd, and the theoretical mass of catalyst in the bed at any
time are found as follows:

In[15]:= mcag[t—] 2= mMipt
tmxx = 702.6 Minute;
Mcat [tmx]
Vcat [tmx]

7.6Kilogram tmx
Outf17]

Minute
0.76Meter® tmx
Minute

Out[18]=

At constant bd the catalyst will occupy the reactor fully and will have a total mass of 5340 kg.
According to the model this mass will accumulate linearly in time:

In[19]:= SetOptions[{Plot, ListPlot}, AxesStyle - {Thickness[0.01]},
PlotStyle — {PointSize[0.02], Thickness[0.006]},
DefaultFont - {"Helvetica", 17}];

In[20]: tf = 702.6;

Minute
pimcat = Plotl[ (mgae [l ——), {t, 0, tf},
Kilogram

AxesLabel - {"t/Min", "Design mca:[t]/Kg"},
PlotStyle - GrayLevel[.511];

Design m,[tl/Kg
5000 g
4000 /////
3000 -
2000 -

1000 /
/Min

t
100 200 300 400 500 600 700




66 Chapter 2 Elementary Single-Component Systems

The volume and level of the catalyst bed will also vary linearly in time so long as the density
remains constant:
In[22]:= tf 702.6;

mint 20 Feet
- (Convert['rr(T)z, Meterzl)':l

levcar [E.] 2=

plvolcat = Plot[(Vcar [t]MinuteMeter 3), {t, 0, 7026},
PlotStyle — {Thickness[0.006], Dashing[{0.05,0.05}1},

AxesLabel - {"t/Min", "Design Vcac [t]1/m3"}];

pllevelcat = Plot[(levcar[t] Minute Meter~l),

{t, 0, 3.5 tf}, PlotStyle - {Thickness[0.007],
Dashing[{0.15, 0.05}1)},

AxesLabel - {"t/Min", "Design Levelca:[t] /m3"},
Epilog - Line{{{0, 18.4}, {3.5tf, 18.4}}11;

Design Veg[t]/m?
5000 ~
4000 s
3000 s
2000 -

e
1000 -
7~

< t/Min
10002000 30004000500060007000




2.1 The Conservation of Mass Principle 67

Design Levelga[tl/m®

60 e
50 /

40 ///’

30 ///

20 .
10 -

t/Min
500 1000 1500 2000 2500

Now we will look at some actual data that accumulated as a function of time as the unit was
being filled. We can enter this as follows and we name the data set “levdata”:

In[26]:= levdata = {{0, "0."}, {100, "2.05"}, {200, "3.55"},
{300, "4.79"}, {400, "5.87"}, {500, "6.85"}, {600, "7.74"},
{700, "8.57"}, {800, "9.34"}, {900, "10.1"},
{1000, "10.8"}, {1100, "11.4"), {1200, "12.1"},
{1300, "12.7"}, {1400, "13.3"}, {1500, "13.8"},
{1600, "14.4"}, {1700, "14.9"}, {1800, "15.4"},
{1900, "16."}, {2000, "16.4"}, {2100, "16.9"},
{2200, "17.4"}, {2300, "17.9"}, {2400, "18.3"}};

It makes sense to try fitting this data to a line since that is exactly what our model suggests,
that is, that we should have linear dependence upon time. We can do this by using the com-
mand Fit. We will fit the data to a line going through the point {0, 0} and also to a line with
a nonzero intercept. We will also plot both of these results. We shall suppress the plots with
DisplayFunction - Identity until we use the Show command, when we will use Display-
Function - $DisplayFunction to render the graphic. To plot the actual data we use ListPlot
and we suppress this also, and in the same way, until we use the Show statement. With Show
we combine the two fitted function plots, the plot of level versus time from the analysis, and
the data. The actual final level is the added horizontal line. We introduced this with the com-
mand Epilog -»Line[{{0,18.4}, {3tf, 18.4}} and we “turned on” each of these for display
with the command DisplayFunction - $DisplayFunction:



68 Chapter 2 Elementary Single-Component Systems

In[27]:= £ = 720;
Fit[levdata, {t}, t]

ftpllevdat = Plot(%, {t, 0, 3.5 tf},
PlotStyle - {GrayLevel[.5], Thickness[0.006],
Dashing[{0.05, 0.03}]},
DisplayFunction »Identity];

Fit[levdata, {1, t}, t]

ftpllevdat2 = Plot([%, {t, 0 , 3.5 tf},
PlotStyle —» {GrayLevel[.7], Thickness[0.006],
Dashing[{0.2, 0.1}]},
DisplayFunction —» Identity];

pllevdat = ListPlot[levdata, DisplayFunction - Identityl];

Show[{ftpllevdat, ftpllevdat2, pllevdat, pllevelcat},
DisplayFunction - $DisplayFunction,
Epilog - {Thickness[.01], Line({{0, 18.4)},
{3.5tf, 18.4}}1},
FrameLabel - {"t/min", "Level/m"},
PlotRange - {{0, 3.5tf}, {0, 20})},
Frame - True, GridLines - Automatic];

out[28]= 0.00871916¢t
Out[30]= 2.86214 + 0.00696683¢t

20 / —
17.5 7 7o
15 o
12.5 . 2
10 ot 7
7.5 I
5 «
254

Level/m

500 1000 1500 2000 2500
t/min



2.1 The Conservation of Mass Principle 69

The black dashed line is the result of the original model. We see that it crosses the fill line
around 700 min. This is obviously a gross underprediction of the real time required to fill
the unit, a time on the order of 2400 min. Now we fitted the data with two other lines, one
with an intercept forced through zero (dark gray dashed line) and one in which the intercept
was allowed to float (light gray dashed lines). Both do a better job of predicting the actual
time to filling. Returning to the model projected line (black dashed lines): since it crosses
the maximum level line at a time (~700 min) that is much less than the time that it actually
took to fill the reactor, we must begin to question the physical premise that the catalyst bed
remained at constant density, that is, bd, throughout the filling process. Constant density
predicts that the reactor would be full of catalyst much too soon. As we know that the mass
flow rate in is a constant, then the mass of catalyst in the reactor would be only one-third of
the design level, which if left undetected (unlikely) would have disastrous consequences for
the operability and economics of the process. When we look at the dark gray dashed line, we
find that the prediction is much better as is than made with the light gray dashed line, but
neither of these results is based upon a physical premise, and in fact the latter is unphysical
in that the initial level in the unit was zero and yet its intercept is nonzero. Furthermore, both
fitted functions under-predict and over-predict the level at different times, so neither would
be useful for intermediate time predictions. Finally, neither the fitted model nor the physically
based model captures the nonlinearity of the real data. Thus, we have a model based on
physical reasoning that fits very poorly and two based on nonphysical reasoning that at best
fit modestly. Clearly, we need to put more effort into this analysis.

What we need to realize is that as the catalyst level increases, more mass is present to
bear down upon the underlying catalyst with more force. This causes the bed to compress.
As the level rises the density at the bottom of the bed increases. With time and higher levels
this occurs throughout the whole of the bed. Even though the density begins at bd then, it
actually rises to a value above bd, especially at the bottom of the bed. The higher value at the
bottom of the bed gives rise to an average across the bed that is higher than bd measured in
the laboratory.

To handle this we can physically reason that the density of the bed must be a function of
the level of filling of the bed. We need to bring this idea into the analysis quantitatively so
that we might better predict the level as a function of time in the reactor. We begin with the
statement of conservation of mass in the reactor:

dm[t]

dt = Mip
We could integrate this expression and then convert it to the volume and level of catalyst by
use of the bd but this assumes that the density in the bed always remained at bd, which we
now realize to be incorrect. The next problem then is to find a way to bring this change in bed
density into the original analysis. To do this we express the mass of catalyst as the product of the
volume at any time and the bulk density, which in turn could be related to the level atany time:

m[t] = bd V[t] = bd Areactor LeVv[t]



70 Chapter 2 Elementary Single-Component Systems

However, as we now know, the bulk density bd is not a constant. In fact, the average bulk
density in the bed is a function of the mass of the bed and therefore time, giving at this point
the following equation for the conservation of mass:

dm[t] _ d[bd[t]Areactor lev(t]] _ Y

dt dt o
d[db[t]lev[t]]
dt - Areactor

The equation as written cannot be solved. To solve it we need a relationship between the
bulk density and the level of filling in the reactor. As we do not have a source for this we
make an educated guess. It would be intuitive to assume that the bulk density at any level is
proportional to the level:

bd[lev[t]] = k lev[t]

However, this would be “unphysical” in that it would suggest zero bulk density at zero level.
We can improve matters by letting the original bulk density vary linearly with level as follows:

bd[lev[t]] = bdo + k lev][t]

This relationship has the benefit of providing a more physical result at zero level, but it suffers
from the fact that the density continues to grow in an unbounded fashion with increasing level.
We can instead imagine that the bulk density will increase with level or crushing force but that
the compressive forces required in order for it to reach a maximum value are not attainable,
since the expression is not bounded from above. We can substitute this relationship into the
differential equation and then solve for the level as a new function of time:

dbd[t]lev[t]]  m,
dt - Areactor

bd[lev[t]] = klev[t] + bdo
d[(klev[t] + bdo)lev][t]] _ m;,

dt Areactor

d[klev [t}? + bdolev[t]] Iy
dt B Areacmr

dlev[t]? dlevit] Min
k dt + bdo dt - Areactnr

In fact, for the sake of solving this equation, Mathematica is perfectly capable of utilizing the
equation in the form just after substitution of the linear equation for the bulk density. We see



2.1 The Conservation of Mass Principle 71

that this is the case in the computation that follows:

In[34] := Remove["Global‘**"]

li‘in
DSolvel[ {8 ((bdo + klev[t])lev[t])== ———,
reactor
lev[0] == 0}, lev[t]l,t] // FullSimplify

/PAO® A eseror + dkEM;,

bdo +

out[35]= {{lev[t] »- A eactor y,
[35] S
bdo + \/bdoz Areactor T 4ktﬁlin
{lev[t] > - VAreactor B
2k

Two solutions result from this equation because the level appears quadratically in the time
derivative. The first solution will provide only a negative value of the level, so we must utilize
the second solution. We can clean it up a bit algebraically:

bdo N VbAoA actor + 4 ki,
2k Zk\/ Areactnr
_ bdo \/bdozAreactor + 4 ktrhin

— + et
2k 4k2Areactur

_bdo bdo? + trhin
2]( 4k2 kAreactor

This expression is one that can be tested against the experimental data. The rate of mass flow
in, myp, is constant as is the reactor cross-sectional area, Areactor- Therefore, the only unknown
is the value of k, the proportionality constant. We can try to fit this equation to the data:

In[36]:= levdata = {{0, "0."}, {100, "2.05"}, {200, "3.55"},

{300, "4.79"}, {400, "5.87"}, {500, "6.85"},

{600, "7.74"}, {700, "8.57"}, {800, "9.34"},

{900, "10.1"}, {1000, "10.8"}, {1100, "11.4"},
{1200, "12.1"}, {1300, "12.7"}, {1400, "13.3"},
{1500, "13.8"}, {1600, "14.4"}, {1700, "14.9"},
{1800, "15.4"}, {1900, "16."), {2000, "16.4"},
{2100, "16.9")}, (2200, "17.4"}, {2300, "17.9"},
{2400, "18.3"}};

To do so we will load the package Statistics'NonLinearFit". Then we can fit this to the data
by recognizing that there is only one parameter which we do not know and that is the value
of k. The command NonlinearFit will do this for us. (One can learn all about this or any



72 Chapter 2 Elementary Single-Component Systems

other command by inputting for example ??NonlinearFit.) The syntax is straightforward: We
provide the set of data by name, the expression or function to be fit to the data, the name of the
independent variable, and the name of the parameter. There are many different control values
we can set, including the method of minimization; in this case we have moved the number of
iterations allowed from the default value of 30 upto 100.

In[37]:= << Statistics‘NonlinearFit*®

In[38]:= bdo = 10;

12in 2.54cm 1m 1
Treactor = 10f £t

in 100cm m’

2
Areactor = T¥ peactor
mi, = 7.6;
Min
A

reactor

r tl {k}l

) . bdo [bdo? tmin
NonlinearFit [levdata, -

+ >+
2k 4k kAreactor
MaxIterations - 100]

Out[40]= 29.1864
Out[42]= 0.260396

Out[43]= -3.79651 + 4/14.4135 + 0.197719t

According to the fitting routine, the fitted function should be -3.79651+
V14.4135+0.197719¢t. Clearly the value of k must be computed from the best fit param-
eters. We have magnitudes for b%:’ and for b‘ﬁ(‘f and we can solve for k with each to be sure
that the same value results.

bdo
In[44] := NSolve[— == 3.79, kil
2k
2
NSolvel 5 == 14.4, k]
4k

Out[44]= {{k »1.319261}}
out[45]= {{k »1.31762}, {k > -1.31762}}

Now we test this expression for its appearance of fit against the data set. We do so by creating
the function lev [t} with it, computing the level as a function of time, and then plotting this
with the actual data in order to visualize the fit.

In{46]:= bdo = 10;
12in 2.54cm 1m 1

£t in 100cmm’

Treactor = 10 £

Areactor = T¥rgactor



2.1 The Conservation of Mass Principle 73

12in 2.54cm 1m 1

in 100cm;1'
12in 2.54cm 1m 1

in 100cmm’

Hreactor = 60 ft

Vryeactor = Areactor 60 ft
Mipn = 7.6;
k = 1.32;
tf = 820;

levcar,nnlt_1:= -
cat. 2k | 4X?  KAreactor

bdo . \/bdoz . tmig

levcae,nnltl]

datpl = ListPlotl[levdata, Epilog - {Thickness[0.006],
Line[{{0, 18.2}, {3tf, 18.2}}1},

PlotStyle - PointSize[0.02], DisplayFunction - Identity,
AxesLabel - {"t/min", "h[tl/m"}};
plfitnl = Plot[levear,nn.[t]l, {(t, O, 3 tf},

DisplayFunction - Identity];

Show[{datpl, plfitnl}, DisplayFunction - $DisplayFunction]:;

Out[48]= 29.1864

Out[55]= -3.78788 + /14.348 + 0.197269 t

h{t]/m

17.5
15
12.5
10
7.5
5
2.5

t/min
500 1000 1500 2000 2500

The model parameter has a value of 1.32 and the time that would be required to reach full
capacity with this new model can be found by solving the following equation:



74 Chapter 2 Elementary Single-Component Systems

Inf{59]:= bdo = 10;
t121n2.54cm im 1

r = 10f -
reactor in 100cm m
2
Areactor = MIygactor//N
- 6oftIZin 2.54cm 1m 1
reactor = £t in 100cmm
Vreactor = Areactor Hreactor
mip, = 7.6
k=1.32
bdo [bdo? tmgn
In[59]:= t/. Flatten[NSolve[1l8.3 == - + 5+ , t11
2k 4k k-Ar:eact:or
%/60
%/24

We find that the value predicted is 2400 min or 40 hr, which is much closer than our estimate
of 78 hr based on the constant bed density.

Filling a Cylindrical Tank

Most often the mass flow that we are concerned with will involve a liquid. When a liquid is
flowing we typically measure its flow rate in dimensions of volume per unit time. We consider
next the flow of a liquid into a tank (another simple single-component problem), shown in
Figure 2.

The control volume is the tank itself. This is because the liquid flowing into the tank is
homogeneous, meaning that wherever we make a measurement of composition, density, or
temperature it is everywhere the same in the liquid. The differential statement of the conser-
vation of mass is the same as it was in the first case:

dm[t] o
dt - m

Now, however, the expression for the mass flow rate into the tank is given by the product of

the density of the liquid p and the volumetric flow rate q:

dm(t)
t
The mass accumulated within the control volume is the product of the density of the liquid,

the cross-sectional area of the tank A, and the height of the liquid in the tank at any time t, h[t].
Replacing this in the time derivative and rearranging we find:

dh(®) _ q

dt Ac



2.1 The Conservation of Mass Principle 75

Mass Flow In

Figure 2

This equation states that the rate of change of liquid level in the tank is a constant. From this
we know then that the change in level must be a linear function of time:

hit] t q
Inf59]:= ]~ dh[t] ==‘/ —dt
0 o Ac
gt
Out[59]= hit] == —
Ac

Here too we can do the integration trivially because the flow rate into the tank is a constant.
Notice also that the units are consistent in the final expression:
Lengt:h3 1

In{60] := Length == - ztime
time Length

Out[60]= True

If we take the cross-sectional area of the tank to be 10 m? and the flow rate to be 0.25 m® min !,
then a plot of the level of liquid versus time is as follows:

Inf{61]:= <<Miscellaneous‘Units"
0.25Meter>? Minute™? Minute
Plot [ ( 3 t, {t, 0, 50},
10 Meter Meter

AxesLabel - {"t/min", "hit]l/m"}];



76 Chapter 2 Elementary Single-Component Systems

h[t]/m
1.2

0.8
0.6
0.4
0.2

t/min
10 20 30 40 50

If the aspect ratio of the tank is 4, that is, the ratio of the height to the diameter, then after how
many minutes will it overflow under these conditions? We know the cross-sectional area so
we can find the diameter of the tank because we know it is one-fourth of its height. Given this
height we can solve for titical:

2
In[63]:= Solve[10 == N[x% 1,d

out[63]= {{d »-3.56825}, {d »3.56825}}

.25Meter> Minute™?
10 Meter?

Inf[64]:= Solve[4*3.57 Meter == teriticals

teriticall

out(64]= {{teritical » 571.2 Minute}}

Thus the tank will begin to overflow after 571 min. How would we write the differential mass
balance for that situation? We would do it just as we have before, except that now we would
have the second term on the right-hand side:

dm[t] P
dt - in out

If we think about this, the answer is immediately obvious—the right-hand side is identically
zero. This means that the net rate of change of level in the tank is also identically zero, meaning
that it no longer can rise or fall, but stays at a steady-state value. Thus the overall behavior of



2.1

The Conservation of Mass Principle 77

the unattended tank under these conditions is simply this:

In[65]:=

h[t]/m

14
12
10

8

N A~ O

0.25 Meter> Minute ! Minute

10 Meter? Meter
{t, 0, 571.2}, AxesLabel - {"t/min",
PlotStyle - {Thickness[0.006],
Dashing[{0.025, 0.025}]},
DisplayFunction - Identityl];

a = Plotl(

"hit]/m"},

b = Graphics[{Dashing[{0.025, 0.025}],
{Thickness[0.006], Line[{{571.2,
{1000, 14.28}}1}}1;
Show[a, b, DisplayFunction - $DisplayFunction,

PlotLabel - " Oonset of Steady State"];

14.28},

/min

t
200 400 600 800 1000

We considered time-independent flow rates into the system, but what if we had to handle a
situation in which the flow rates were time dependent? How would we handle the analysis
of that situation?

Pressurizing an Initially Evacuated Tank with an Ideal Gas

Gas flows are common and offer another opportunity for us to apply this new tool we have
found in the total mass balance. Gases can be simple or complex. By simple we mean that
in some cases the atoms or molecules of which the gas is composed do not interact except at
the point of collision. They behave as if they were nanoscopic ball bearings racing around,



78 Chapter 2 Elementary Single-Component Systems

colliding with one another and the walls of the vessel in which they are contained. Furthermore,
even as we increase their pressure within the vessel by increasing their number per unit
volume at constant temperature or by raising temperature at constant number per unit volume,
they continue to behave in the same way. We refer to gases of this kind as “ideal” and their
characteristics are those of “hard-spheres.” Most gases do not behave ideally. If their properties
are nearly ideal at low pressure, we find that they deviate from ideality at higher pressure. The
reason for this is that these molecules exhibit truly molecular behavior in all its rich detail and
complexity. When they collide they do not do so as if they were merely billiard balls bouncing
off one another. Instead they are sticky or they are repulsive. They have size and they have
shape. Some are polar; others are nonpolar. It is these properties that give rise to much subtler
and richer effects than are observed in “real” gases and which the hard sphere model could
never predict. Nonetheless, the ideal gas is a good model and one from which we can learn a
great deal. We can also use it to advantage here, because going into the theory of real gases is
a subject in and of itself.
Recall that an ideal gas follows a very simple equation of state:

PV =nRT

where P is the pressure, V the volume of the vessel, n the number of moles of the gas, R the gas
constant, and T the absolute temperature. With this we can calculate the pressure in a vessel
of volume V as a function of pressure, the volume of a gas at fixed pressure and temperature,
or the temperature at fixed pressure and volume by simple rearrangements:

nRT
P=—

1%

nRT
V =

P

PV
T=—

nR

In addition, we can compute the concentration of the ideal gas in moles per unit volume or
its density in mass per unit volume:

_ nMW _ PMW
P="V TRT

where MW refers to the molecular weight of the gas. This provides the link we need between
the gas phase material and the overall mass balance. Let’s see how it can work.



2.1 The Conservation of Mass Principle 79

Gases and liquids are both fluid phases, but they differ in density. For example, the density
of water at ambient conditions is &1 g per cm®. The vapor pressure of water in equilibrium
with the liquid is 0.43 psia at 75°F. (Psia stands for pounds per square inch absolute—meaning
above vacuum.) We can compute the concentration of water in the liquid phase and compare
this to that of the equilibrium vapor phase, and then we can compute the density of the
equilibrium vapor phase and compare that to the liquid density. This way we can have a
better sense of the magnitudes of these quantities and by how much they differ. We might call
this having a “physical feel” for the numbers.

In[68] := <<Miscellaneous‘Units*

. GramMole (1000 Centimeter?)
In[69] := CncH20Liq == N[

Centimeter? (18Gram) Liter

CncH20EqQqVap ==

N[0.43 psia Atmosphere]
14.7 psia
.08205 (Liter Atmosphere) ConvertTemperature[73, Fahrenheit, Kelvin]
Mole Kelvin

DensH20E@Vap ==

N[0.434psiu Atmosphere]
14.7 psia
.08205(LiterAtmosphere) ConvertTemperature[73, Fahrenheit, Kelvin]
Mole Kelvin

18 Gram 1 Liter
Mole 1000 Centimeter?

. 55.5556 Mole
Out[69]= CncH20Liq == ——MM

Liter
0.00120472Mole
Out [70]= CncH20EgVap == ‘
Liter
0.000021685 Gram
Out [71]= DensH20EqVap == : .
Centimeter

The concentration of water in liquid water is on the order of 55 mol per L. The concentration
of water in the vapor that is in equilibrium with the liquid is less than 1 x 10~* mol per L.
From this we see that at ambient conditions the gas phase is on the order of three to four
orders of magnitude less concentrated than the liquid. The density of the gas makes this even
clearer.

A common operation in a pilot plant or laboratory, as shown in Figure 3, is the pressuriza-
tion of a batch reaction vessel with a gas such as hydrogen. A batch reactor is one that does not
have flow into or out of it during reaction. It does have to be charged with reactants prior to
operation. We can consider this process to be one that is amenable to the techniques we have
at this point for analysis. We will assume that the gas remains ideal throughout the pressuriza-
tion, not too bad an approximation for a gas like hydrogen. We will see that once we account for



80 Chapter 2 Elementary Single-Component Systems

Volumetric Flow Meter

Min: @y, Gy

@

P(t), m(t)

High-Pressure Batch
Reactor Vessel

Figure 3

the gaseous nature of this fluid, this problem looks like that of filling a tank with liquid phase
fluid.

The source of the gas is a large-volume vessel at high pressure. We assume that the whole
system remains isothermal—that is, at constant temperature throughout the procedure. This
vessel mustbe at a pressure higher than or equal to the pressure we need to attain in the reactor.
The pressure upstream of the valve is a constant and just after the valve location and into the
reactor the pressure is time dependent. The reaction vessel is initially evacuated so that only
the pure gas will be present in the gas phase. Opening the valve allows one to control the flow
of gas into the vessel. By monitoring the pressure gauge the flow can be stopped when the
proper pressure has been attained. The rise in pressure at the reactor gauge as a function of
time is also a measure of the mass flow of gas into the reactor vessel. Alternatively, if we know
the mass flow or the volumetric flow and the pressure upstream of the valve, then we can
predict the time required to reach a set pressure in vessel give its volume and temperature.
We can consider the latter situation first.

The overall material balance for the process of pressurizing the reactor vessel is:

dmlt] G
dt - m



2.1 The Conservation of Mass Principle 8i

The mass accumulation of gas in the reactor is given by:

dm(t) d[PMW_7] VMWdJP
dt — dt{ RT ~ RT dt

The right-hand side is given as the product of the feed gas density and the volumetric flow rate:

R PiMW
Min = Prqs = qu

The overall equation becomes:

VMW dP  PMW

RT dt  RT ¥
dP P
a - v

The final equation tells us that the rate of pressure rise in the vessel will be a constant equal
to the product of the ratio of the feed gas pressure to the vessel volume and the volumet-
ric flowrate of the feed gas. (Assuming that the volume of the line leading from the valve
to the vessel is negligible.) Therefore, we can see immediately that the pressure rise will be

linear:
_ (Peqgs
P[t] = (———V )t

The linear rise in pressure is nearly the same as the linear rise in liquid level in the filling tank.
In the case of the liquid level rise in the tank we found that it would rise until it reached the
ultimate level of the tank and then it would spill over. Yet, the equation we had derived did
not demonstrate this. We had to analyze it in a second regime to find this out. In this case we
see a similar feature of the solution: namely, it states that the pressure will rise to an infinite
value with infinite time. This is just the same as the problem of the finite tank height. Here
there is a finite pressure beyond which the vessel pressure may not rise. Thus the equation is
only good up to that point and we might be right to suspect that as the vessel pressure rises to
come close to the feed gas pressure the predictions we make using this equation may become
inaccurate. A deeper level of analysis would be required to address this problem. The other
way that this procedure may be done is to make measurements of volumetric flow rates for
different valve settings. By measuring the pressure as a function of time in a ballast vessel we
could calibrate the valve. For example, suppose we have the following set of data of pressure



82 Chapter 2 Elementary Single-Component Systems

(psia) as a function of time for vessel that is 300 L, and an upstream pressure of 500 psia:

t/min P/psia

0 5.12
10 84.4
20 166.
30 246.
40 341.
50 427.
60 501.

A plot of the data shows that within error it is linear and the slope can be evaluated to find
that the flow rate qf was 5 L per min.

Time-Dependent Flows

To this point we have considered all the inlet flows to be constants. We should now consider
what happens when they are functions of time. When we specify the flow rate as a function of
time we have said nothing about the mechanism that gives rise to the observed functionality.
It is simply a statement based on observation. There are cases in which the consideration of
the mechanism can make it plain that flows will be time dependent. For example the pumping
of our hearts is periodic and gives rise to periodic or pulsating flow of blood. As we open a
valve or faucet the flow grows in relation to the rate at which we open it and the opposite
happens when we are closing the valve. Therefore, there are ample numbers of examples in
which the flow may be periodic, pulsating, or otherwise time dependent.

An interesting case to examine is the flow into a tank. We have already analyzed this for
constant flow, but what would be different about, for example, a periodic flow? How would this
affect the time dependence of the rate of mass accumulation in the tank? To begin we consider
a continuous but periodic flow rate. This could be nicely described by a sinusoidal dependence
upon time. The flow can always be taken to be positive, but with a superimposed periodicity.
The flow rate could be described as:

qf(t) = qfo(1 + « Sin (Bt))

To see what this would look like we can plot it for some specific values of gfo, o, and 3:

In[72] := Removel[qf, o, 3, t]

qgf[t_.):= gfo(l + aSin[Gt])
qfo = 10;
0.5;
0.25;

o
B



2.1 The Conservation of Mass Principle 83

Plot[{gqflt]l, qfo}, {(t, O, 100},
PlotStyle - {Thickness[0.006],
Thickness[0.006], Dashing[{0, 0}],
Dashing[{0.025, 0.025}1},

AxesLabel - {"t", "gf[t]"}];

qfft]
14
12

10

% 20/ 60V 8 oo

The dimensions of the constants o« and 3 are of interest. The constant 3 is an element of
the argument of the sine, which is a transcendental function. As such its argument must be
dimensionless, and therefore 3 is an inverse time constant. On the other hand, the product of &
and qfo must have dimensions of volumetric flow rate and so a must be dimensionless. From
basic physics we also know that « is the amplitude of the wave while % is the peak-to-peak
time or the period of the wave. Now if this is the input to our tank how will the level as a
function of time behave?
The starting point is the overall material balance:

dm[t] iy
dt - mn

The right-hand side is now a time-dependent function:

dhft] gt

Tat - Ac

dh[t] o1+ Sin [t])
dt Ac




84 Chapter 2 Elementary Single-Component Systems

We can either separate and integrate or use DSolve directly:

In[78]:= Removelh, gfo, a, 3, tl

. qafo ]
Simplify[DSolve[{d:h[t] == v (L+asin[Bt]), hl[0]==0},

hit]l, tl1]

gfola + tB - aCos[tBl)
N
Acf

out[79]= {{h[t]

33

From this solution we can see that if the amplitude « is very small, then the result looks much
like it did before:

gfo(a + t3 - aCos[tS])
Acp ’

In{80):= Limit|[

o = 0]
gfot

Ac

Out[80]=

However, it is also clear that if the values of a and 3 are within certain ranges, then this will

give rise to periodicity in the change in level of the tank. We can model this to see how this
will look using the values that we had for a and 3 earlier.

qfo(a + t8 - aCos[tB3])
Acg
qf[t_1:= gqfo(l + aSin[(t])

In[81]:= hlt_]:=

qfo = 10;
a = .5;

8 = 0.25;
Ac = 10;

Plot[{ht], qflt]l}, {t, O, 70},
PlotStyle - {{Thickness[0.006], Dashing[{0, 0}1},
{Thickness[0.006], Dashing[{0.025, 0.025}1}},
AxesLabel - {"t", "h[t],qf{t]"}];



2.1 The Conservation of Mass Principle 85
h(t],af(t]

30

25

20

151 -~

10

5

t
10 20 30 40 50 60 70

This shows us that the level will of course rise, but it will do so with varying rates depending
upon the flow rate. This would actually be easier to see if we were to plot the dimensionless
leve] and flow rates. We can obtain these by dividing h[t] by the maximum level in the tank
and q[t] by gfo.

In[88]:= Plot[{h[t]/30, qf[t]l/gfo}, {t, O, 70},
PlotStyle - {{Thickness[0.006], Dashing[{0, 0}]},

{Thickness[0.006], Dashing[{0.025, 0.025}]}},
hit]  qQfit]

="

hmax qgfo

AxesLabel - {"t", '

hit] afft]
hmax ' gfo

2

t
10 20 30 40 50 60 70



86 Chapter 2 Elementary Single-Component Systems

What would happen if we were to bring the amplitude up, say, by a factor of five?

In{89]:= @ = 2.5;

Plot[{h[t]/30, qflt]/qfo}, {t, O, 70},
PlotStyle - {{Thickness[0.006], Dashing[{0, 0}1},

{Thickness[0.006], Dashing[{0.025, 0.025}1}},

hit flt
AxegLabel - {"t", “L, w“}];
hmax qgfo

hit] qfft]
hmax " gfo

\ / \ / \

t
10,200 30 4p KO 60 |70
1 \ \ \

\/ \/ \

If we look closely, we see that in the time range between 15 and 20 the level is actually
decreasing! But how can this happen when we have only flow into the tank according to our
initial total material balance? Once again we need to be very careful with the model results
that we derive. In this case, when we increased the amplitude by a factor of five we went out
of the region in which the solution gave physically meaningful results. If you look carefully, in
the same region where the level is decreasing, the flow rate is actually below zero (negative)
and in the reverse direction of the feed, namely, out of the tank. The change in sign of the
input function has given rise to this negative rate of accumulation, that is, negative slope,
in this time domain. This is not the situation that we had in mind when we began the problem.
It could correspond to some actual situation, but it does not correspond to the situation we are
analyzing. Therefore, one needs to be very mindful of the range of application of any model
and should check the resulting behavior for its correspondence to the real system.



2.2 Geometry and the Left-Hand Side of the Mass Balance Equation 87

2.2 Geometry and the Left-Hand Side
of the Mass Balance Equation

The Triangular Trough

To this point all of the situations we have dealt with have involved quite simple geometry—
the right cylinder. We may ask the question, How do we apply the new tool we have to other
geometrical shapes? The issues that we will encounter in these kinds of analyses are handled
within the differential accumulation term through V[t]. For this reason we can think of these
as “Left-Hand Side” problems. The objective of this section is to demonstrate how to do that.
We begin with an analysis of the tank that is shaped like a triangular trough as shown in
Figure 4.

The flow is into the tank at a constant rate given by the density of the fluid and its
volumetric flow rate. The mass in the tank at any time is the product of the density and the
fluid volume. Notice that as the level of the fluid increases, so too does its width. Viewed from
the top, the area of the liquid surface grows as a function of time. This is the main difference
between this “tank” and that of a right cylinder standing on end. In that case the surface of
the liquid viewed from above remains constant, so that the volume is only a function of the
level. To summarize what we have so far:

dv[t]
dt

The differential change in volume with time dV[t] can be viewed as taking place by making a
differential change in level dh[t]. Since the change in level is differential, the area of the fluid

Mass flow In

T—wt) | ~

——

Figure 4



88 Chapter 2 Elementary Single-Component Systems

at the surface is virtually unchanged. This gives us:
dV[t] = A[t] dh[t]

However, the change in area with time is just the change in the liquid’s width with time
multiplied by the length of the trough, which gives us:
dv[t] dh[t]
A T
Now we need a relationship between wit] and h[t]. To find this we can consider the geometry
of the triangular face of the tank. From the law of similar triangles we find this:

W wit]

H  h[t]

The differential equation can now be rewritten in terms of only h|tl:

dV[t] = %h{t} dh[t]
dhlt]  Hgq
hm? T 2WL

The equation is now readily soluble and we find that h[t] goes as the square root of time:

Hg
hit] = /ot

The level as function of time for a tank 10 ft high, 10 ft wide, and 40 ft long looks as follows,
if the flow rate in is 5 ft> min~':

In[91]:= Clear(h, q, H, W, L}

. {Hq
htritrol[t_] := —¢t
WL

W=25;
L = 10;
qQ =5;
H = 40;

pltritro = Plot[htritro[t]l, {t, 0, 200},
AxesLabel - {("t", "h[t]/ft"}]:;



2.2 Geometry and the Left-Hand Side of the Mass Balance Equation 89
ht]/ft

25
20
15
10

5

50 100 150 200

The Conical Tank

Another geometry that can be useful to consider is that of the conical tank. The analysis is
similar to that of the triangular trough, except that the cone is axially symmetric. This makes
some difference in the outcome. The geometry for the tank is shown here in Figure 5.

As in the case of the triangular trough, the area of the liquid surface changes with the level
in the tank. We know that the mass balance will lead to the same equation for the differential

Figure 5



90 Chapter 2 Elementary Single-Component Systems

change in volume with time. Therefore, we must find the relationship that will render the
differential volume change as a function of the level alone.
If we were to take a slice through the tank along the central axis, we would be left with a
triangular face. From the similar triangles on that face we find:
R 1ft]
H ~ hlt]
If the volume were to change differentially by some differential level change we would have:

dVI[t] = Adh[t]
= nr{t]* dh[t]

7z R?
= ?h[t]z dh[t]

The solution to the level change as a function of time is the solution to this differential equation:

7TR2 2
T hl dhlt] = q

3gqH?
hit] = t
[t] 7R?
3/3qgH
ht] = t
[t] R

For a tank of the same dimensions as the previous one and with the same flow rate the level
as a function of time is shown here along with a comparison:

In[98]:= Clear[w, H]

N[Solve[2000 == 2 W?H, H] /. W - 5]
out[99]= {{H ->40.1}}
In[100]:=Clear[R, H]

N[Solve[2000 == ’“;ZH, H] /. R »5]

Out[101]= {{H »>76.39441}}

In[102]:= Clear[h, @, H, R, L]
hconet__] := 3?ﬁH—t:
R =5;

g =5;
H = 76.4;



2.2 Geometry and the Left-Hand Side of the Mass Balance Equation 91

plcone = Plot[hcone[t], {t, 0, 200},
AxesLabel - {"t", "h[t]/ft"}, PlotStyle -
{Thickness[.006], Dashing[{0.025, 0.025}]},
DisplayFunction - Identityl:;

Show|[pltritro, plcone, DisplayFunction -
$DisplayFunction];

h[t]/ft

60 -
50 -
40 -

30
20
10

50 100 150 200

The Semicylindrical Trough

A variation of the left-hand side theme and the issues of geometry is that of the semicylindrical
trough lying on its side. The physical situation is quite similar to that of the triangular trough,
except that the walls follow a circular curve. The physical system is shown in Figure 6.

In view of the last two analyses that we have done, geometry is the only question posed
by this problem. We need the relationship between r[t] and h[t] once again. One line in the
diagram holds the key to this. That line is the hypotenuse of the triangle which has r[t] for one
leg and R — hlt] for the other. The Pythagorean theorem links the three:

R? = (R — h[t])> + r[t]?
Solving for r{t] in terms of hit]:

In[f109]:= R =.
Solve[R? == Expand[(R - h[t])?] + ri{tl?, r[t]]

out[110]J={{r(t] » -v/2Rh[t] - h[t]2}, {r[t] »+/2Rh[t] - h[t]?}}



92 Chapter 2 Elementary Single-Component Systems

Mass flow In

Figure 6

The first solution is unphysical, so we substitute the second into the expression for dV[t]:

dV{t] = Adh[t]
= 2Lr[t] dh[t]

= 2Ly/2Rh[t] — h[t]* dh[t]

Replacing this in the material balance (assuming all densities are constant and equal every-
where), we find:

>dhlt] q
v 2Rh[t] — hlt] 9t = 2L

The solution of this equation is:

hit] t q
In[lll]:=simp1ify[f V2xR - x* dx == / — ds]
0 o 2L
2 vhit]
2R ArcTan[m:—hT] 5t

1
Out[111]= 5«/(2R~h[t] Yhit] (-R+

hlt == —
V2R-h[t] +/hit] +hicl) 2L

The solution of this equation involves an integral on the left-hand side that results in an implicit
solution for h[t]. We can try to solve directly for hf t1, but Mathematica cannot do it:



2.2 Geometry and the Left-Hand Side of the Mass Balance Equation 93

2 vhIt]
2R*ArcTan[ ——="== h“__]]

+2R - hit] Jhlt]

+h([t])

1
Inf112] :=Solve[5\/2R-h[t] Yh[t] (-R+

qt
=—, h[t
oL [t1]

Solve: :tdep:
The equations appear to involve the variables to be
solved for in an essentially non-algebraic way.

hie]

1 2R?ArcTan[ =2t ]
Out[112]=Solve[—+/(2R-h[t])h[t] (-R+ V2RBIE T L ht])
5t2 J2R-h[t] vhit]
== —, h[t]]
2L

Therefore, the best bet for us it to use the analytical solution to solve for h[t] numerically or
graphically. The graphical method is not used much today but it is worth illustrating because it
reinforces a good “feel” for the functions and the numbers that result. We will look at the graph-
ical solution first. As you no doubt recall, the method used finds the solutions to this equation
that make the left- and right-hand sides equal. We can view each side as a statement for two dif-
ferent functions that intersect at certain points; these intersections are the solutions. If we graph
the two functions we can find these points. This is very easy to do in Mathematica as follows.

Let the radius of the tank be 3 m and the length 20 m. We should find the total volume of
the tank first so that we can choose a numerical value for the flow rate that does not require
too long a time to make a real change in the tank level. To find the maximum volume we
want to integrate the following equation from 0 to Vax on the left- and from 0 to fijmax on the

right-hand side:
dV{t] = 2Lv2Rh[t] — h[t]? dh[t]

In[113]:= Clear[V, R, h, t]
Vmax =.

Vmax
Simplify{f dvit] == Simplifyl[
(]

R
] 2Ly/2Rh[t] -h[t12dh[t]]]
0

1
Out[115]=Vmax == ELT[R\/ R2

Inf116]:=Vmax[R_, L_] := N[%LWR¢§;]
Vmax[5, 20]
Out[117]=785.398
At 785 m? we can choose a flow rate of 10 m>® min~! as a reasonable value. The time to over-
flow to maximum capacity would be ~78 min. To solve the problem graphically we write the



94 Chapter 2 Elementary Single-Component Systems

left- and right-hand sides as two separate functions. Then we choose a value of h and graph
this as a horizontal line versus the right-hand side as a function of time. The point of intersec-
tion provides the time at which that level would be reached subject to the chosen parameter
values. We would choose another value of h and find a new value of t with a new graph.
Before we begin it is worth noticing that the magnitude of h[t] can never exceed R because to
do so would be unphysical. Unphysical or not, it is very easy to begin plugging in values for h
on the left-hand side that mistakenly range over the chosen value for R. If we were to do this,
the mathematics will inform us of our error by providing an imaginary (complex) solution.
We begin by doing the graphical solution for the halfway point at h = 2.5. We seek to find
the time at which this will happen. The Mathematica method for doing one point is shown here:

2R?ArcTan[ 2

1 2R~h
Inf118]:=1hs[h_ := N[—-+/(2R-h)h(-R+ +h
nf ] sl ] 2\/ ( JZR-h VA )1
rhs[t_]:= -t
L = 20;
R = 5;
q = 10;

Graphics[{Line[{{0, 1lhs{2.5]}, {40, 1lhs[2.5]1}}1}1;

Plot[{rhs[z]}, {z, 0, 40}, PlotsStyle - {{Thickness[.01],
Dashing[{0.025, 0.025}]}}, DisplayFunction - Identityl];

Showl[%, %%, DisplayFunction - $DisplayFunction,
AxesLabel - {"t/min", "LHS==RHS"}]:;

LHS==RHS

10 -
8 el
,-‘
6 /”
,/
4 e
P4
,/
2 PR
/’ .
- t/min
10 20 30 40



2.2 Geometry and the Left-Hand Side of the Mass Balance Equation 95

From this we can see that the halfway point in terms of level will occur at just over 30 min. We
could replot this in the vicinity of 30 min to obtain this more accurately, but as we shall see
there are better ways to do it. To find a set of solutions beginning at a level of 1 m in increments
of 1 m, we could use the following code to create the graphic we need:

Inf126]:=Graphics[Table[{Line[{{0, lhs[h]}, {80, lhs[hl}}1},
{h, 1, 5, 1}11;

Plot[{rhs[z]}, {z, 0, 80}, PlotStyle - {{Thickness[.01],
Dashing[{0.025, 0.025}1}}, DisplayFunction - Identityl];

Show([%, %%, DisplayFunction - $DisplayFunction,
AxesLabel - {"t/min", "LHS==RHS"}]:;

LHS==RHS
20 .

15 -7

10 e

- t/min
20 40 60 80

As interesting as this approach is, it is not all that useful in comparison to what we can obtain
by solving the problem numerically. To solve numerically, however, we really do the very
same calculation: We choose a value of the level, evaluate the left-hand side, and then back
solve the resultant equation for the time. An example of this procedure is given for the halfway
pointath =25 m:

In[129]: 2.5

=h
L = 20;
R
q

1]
o
~



96 Chapter 2 Elementary Single-Component Systems

NSolve [

1
5«/(2R -h)h(-R +

2R?ArcTan [ \/%—_h 1

V2R-hh

qt
h) == —,t
) Y 1

Oout[129]=2.5
Out [133]={{t »30.70924246521891}}

We solve this to find that the exact time is 30.7 min. (We could have Mathematica limit the
figures by enclosing the command in NumberForm.) Of course what we really want to see is
a plot of the level versus time for this tank. To obtain this we need to repeat this procedure for
many different levels and then plot the resultant time and level pairs.

In[134]: 20;
5;
= 10;

=L
R
q

ntimes = Table[NSolvel[

J/B
1 2R’ArcTan[ 221 t
V(2R - h)h(-R + VZR-BT Ly == I ey,
2 v2R-hvh

{h, .25, 5, .25}1;
levels = Table[h, {h, .25, 5, .25}]:

timeleveldat =

Transpose[Partition{Join[Flatten[t /. ntimes], levels],
Lengthl[levelsl]]]:;

pllevdat = ListPlot[timeleveldat,
AxesLabel - {"t/min", "h[t]/Meter"},
DisplayFunction - Identity];

Show([pllevdat, Epilog - {Line[{{0, 5}, {80, 5}}1},
DisplayFunction - $DisplayFunction];



2.2 Geometry and the Left-Hand Side of the Mass Balance Equation

h{t]/Meter

97

5

4
3
2

20

40

t/min
60 /

It was troublesome to create these points. We might want to provide an operator with a graph
of the level versus time that could be used at any time to find the level or vice versa. The
logical thing to do at this point is to fit these points to a function of time. We can easily do so
using two parameters in a simple power law h[t] = at":

In[142]:
out[142]

In[143]:
In[144]:

In[145]:

timeleveldat

{{1.046151218379871, 0.25},
{5.35228742419150, 0.75},
{11.33279384944024, 1.25},
{18.46273275392473, 1.751},
{26.45457644963383, 2.25},
{35.10840690045179, 2.751},
{44.2681414116735, 3.25},
{53.8027306257427, 3.75},
{63.5962577259286, 4.25},
{73.5419004550265, 4.75},

Remove [NonlinearFit, a, n,

<<Statistics‘NonlinearFit:®

NonlinearFit [timeleveldat,

{2.93629534388009, 0.5},
{8.17505543966421, 1.
{14.77494200930721,
{22.36476090008060,
{30.70924246521891,
{39.63367125654707,
{48.9960956177208, 3.
{58.6739613290956, 4.
{68.5565080961337, 4.
{78.5398163397448, 5.

t]

at®, t, {a, n}]



Chapter 2 Elementary Single-Component Systems

Plot[%, {(t, 0, 80}, PlotStyle - Thickness[0.006],
DisplayFunction - Identity,
AxesLabel - {"t/min", "h[t]/Meter"}]:;

Show[%, pllevdat, Epilog - {Line[{{0, 5}, {80, 53}3}1},
DisplayFunction - $DisplayFunction];

Out[145]=0 .213730-720228

h[t]/Meter
5

4
3
2

! t/min
20 40 60 80

With the value of a4 at 0.2137 and that of n at 0.72 we find a very nice fit to the data. It is
interesting to note that this statistically fitted function fits so well and yet offers us no insight
into what is really taking place. How often do we see experimental data fitted statistically in
this way and then physical mechanisms posed to explain the form of the fitted function? Do
you think that anything fundamental ever comes from such an approach in the absence of an
analysis? Beware!

The Spherical Tank

Figure 7 shows a simple case of filling a spherical tank. The liquid flow into the tank is again
a constant and we wish to be able to predict the level as a function of time.

The total material balance statement is:

avitl
dt



2.2 Geometry and the Left-Hand Side of the Mass Balance Equation 99

Mass flow In

———r(t)

Figure 7

The differential change in volume can be thought of in terms of an area times a differential
level change:

dVit] = Adhlt]

= nr[t]® dhit]
r[t’dhlt]  q
a

The triangle in the left lower quadrant of the circular face of the sphere has a hypotenuse
of R, and two legs, one of which is r{t] and the other is R — h[t]. Just as in the case of the
semicylindrical trough, the Pythagorean theorem can be applied to this right triangle to give:

R? = r[t]* + (R — h[t])?

Inf[148]:= Remove[R, r, hl]

Solve[R? == r[t]? + Expand[(R - h[t])?], r[tl]

out[159]= {{rit] - -v/2Rh({t]-h[t]%},{r(t] »/2Rh[t] - h[t]?}}

Returning to the differential equation we substitute and need to find a solution for hlt]:

,dhltl g
2Rh[t] — h[t] T

T



100 Chapter 2 Elementary Single-Component Systems

This is similar to the equation that we encountered in the last problem for the semicylindrical
trough:

/ 2 dhlt] ¢
2RA[t] —h[H* —= = o+

The solution method would be the same. The main difference is that the tank is now axially
symmetric (as was the conical tank) and this gives rise to a 7 on the right-hand side rather than
2L. Recall that the sphere is made by rotating the semicircular face around the central axis by
w radians. The semicylindrical tank is constructed by translating the same semicircular face
by a distance L along a straight line. Symmetries of this kind are very interesting and will be
useful to take advantage of in the solution of more sophisticated problems, but at this point
we merely wish to point it out in passing.

We can proceed with the solution as follows. First, we show that by integration over h of
the wr’dh gives us the proper expression for the volume:

In(150] :=

R
q
v R
/‘dv==w/(2mrh%dh
o 0

2R3

Out[l152]= == 3

Next we integrate the left-hand side over h and the right-hand side over time. The left-hand
side has two integrals over level:

In[153]:= R

q =.
h =.
h h tq
/ mmdh-/‘fdh==/ 9 gt
0 0 0 T
h3 t
OUE[156]= -— +h?R== 3=
3 T

This last expression can now be solved for h as a function of time:

In[157]:=

R
Q

h3 2 qt
h3o = Solve[——3—- + h*R - — == 0, h]
by



2.2 Geometry and the Left-Hand Side of the Mass Balance Equation 101

21/3gR?

out(159]= {{h->R+
(273R3 - 372gt + /3V/-47°gR3t + 3wiglt2) /3

(273R3 - 3w2qgt + /3 -4 °qR3t + 3wigltL2) /3
* 213y

b,

(1 +i/3)7R?

{h>R-
22/3 (273 R3 - 3w2qt + /3/-475qR3t + 3wiqit?) /3

(1-i/3) (27°R® - 3n%qt + V/3/-4n°qR3t + 3wig?t?) /3 )
B 2213y !

(1 +i4/3)7R2

{h>R-
22/3 (273R3 - 3w2qt + V3V -4n°qR3t + 3wiqet?) /3

(1+i/3) (273R? - 372qt + V/3/-47°qR3t + 3m°qet?) /3
- 22137

3}

We obtain from this three different functions for h[t] because the equation we solved was
cubic in the level. In order to decide which of the three is correct, we assign them to
three different functions and then evaluate them over time with a given set of parameter
values:

In[160]:= h31[t_] := Evaluate[h/.h3o[[1, 1]]1}
h32[t_] := Evaluatefh/.h3co[[2, 1]1]
h33[t_] := Evaluate[h/.h3o[[3, 1]11]

q = 100;
R = 10;
tf = 35;

Plot[{h31([t], h32[t]l, h33[t])}, {(t, O, tf)},
PlotStyle —» {{Thickness[0.01], GrayLevel[0]},

{Thickness[0.01], GrayLevel[0.5],
Dashing[{0.03, .03}1)},
{Thickness{0.01], GrayLevel[0.8],
Dashing([{0.03, .03}1}},

AxesLabel - {"t", "h3x[t]"},

Epilog - Line[{{0, R}, {tf, R}}]

1;



102 Chapter 2 Elementary Single-Component Systems

h3x[1]
30

20

10

t
=10 15 20 25 30 35

----
~-—__
-

-10

The plot shows us that the first solution in black h31[t], is a decreasing function, when in fact
we know we should have one that is increasing with time since we are filling a tank. The same
problem and worse arises with h32[t], which is not only decreasing, but has negative values
of the level. This leaves us with h33[t] in gray as the only physically realistic solution. Another
way to attack this problem without a graphical presentation of the data would be to solve the
equation numerically as is shown in the cell that follows:

100;
10;

In[160]:=q
R

h3
Table [NSolve [Rh? - 3" St, hl,
™

{t, 0.1, 27, 3}]1// TableForm

Out[162]//TableForm=

h > -0.559006 h » 0.569623 h > 29.9894
h » -2.9953 h > 3.33172 h > 29.6636
h - -4.13119 h > 4.80867 h - 29.3225
h > -4.98393 h » 6.01977 h > 28.9642
h - -5.68991 h »> 7.10392 h - 28.586

h » -6.30241 h > 8.11758 h > 28.1848
h > -6.84878 h > 9.09225 h » 27.7565
h » -7.34529 h -> 10.0497 h » 27.2956
h » -7.8025 h -» 11.008 h > 26.7945



2.2 Geometry and the Left-Hand Side of the Mass Balance Equation 103

What we see is that for each value of t in the range from 0.1 to 27 we have three different
values of h[t] computed. In this case the middle column is the proper solution set. This is just
a small example of the very many different ways in which one can solve a problem like this
using Mathematica.

Depositing a Polymer Coating on a Disk

Polymers have come to play an ever more important role in our lives since the discovery
of Nylon by Wallace Carruthers more than 60 years ago. From grocery bags and clothing to
medical devices and implants, synthetic polymers have proven to be a boon to mankind. In
Figure 8 we look at a simple schematic of a polymer coating process. Nonstick cookware,
automobile finishes, and magnetic storage media all involve some polymeric coating on a
substrate. We will consider a very rudimentary example from the perspective of our analyses
based on a total material balance.

In the particular process shown in Figure 9, a substrate is translated under a spray nozzie
at some velocity v,. At the same time small droplets containing a 5:1 mixture of monomer
and activator (polymerization initiator) are sprayed. The droplets are created by sonication
of the liquid mixture in the spray gun. The action of sonication not only provides very small

Mass Flow Controllers

.
R ——

Monomer Activator
Spray Nozzle

Axial Velocity: vz

Monomer/Activator
Atomized Mist

Polymer Coating

Substrate

© @)

Figure 8 Polymer coating process on a substrate.




104 Chapter 2 Elementary Single-Component Systems

Top ingement
Area
R
alpha
R
Figure 9

droplets (~0.5 u diameter), the energy combined with exposure to oxygen in the air initiates
the conversion of monomer into polymer. As the substrate moves under the spray gun, the
polymerized droplets impinge and gel on the solid substrate, which creates a solid film on the
surface that hardens with time.

At the end of the spray nozzle there is an orifice with a circular area A,. All of the mass of
monomer plus activator must pass through this orifice area. The mass flowing per unit time
per unit area through this area is referred to as flux. After leaving the orifice the spray area
expands to form a cone-shaped region above the substrate. The spray area on a motionless
substrate would be approximately circular. The radius of the circular impingement area is
related to the distance L between the nozzle and the substrate. Experiments have shown that
the mass impinging on this area is homogeneous. Because the substrate has a width equal to
the diameter of the impingement area, if it is moved under the nozzle at constant velocity, it
will be evenly coated (excluding end effects).

From this description we should be able to predict the thickness of the polymer coating
as a function of the delivery rate and substrate velocity. The monomer and activator are taken
to have equal densities. The total material balance around the spray nozzle is:

dm[t . .
T[]‘ = Mjy — Mgyt

There should be no net accumulation in the spray nozzle, meaning that it will nearly always
operate at a steady state. (In fact a design criterion for a sprayer like this is that it have nearly



2.2 Geometry and the Left-Hand Side of the Mass Balance Equation 105

instantaneous rise and shut-off times.) From this then we can say that the mass flow rate in
must equal the mass flow rate out:

s o
Min = Moyt

The rate of mass flow into the spray gun is given as the sum of the mass flows of the monomer
and the activator. The densities of the two liquids are nearly identical and the volumetric flow
rate of the monomer is five times the flow rate of the activator. Therefore the mass out of the
orifice is:

o
Mout = Pmonomer Jmonomer + Pactivator Qactivator

= Pmonomer (qmonomer + qactivator)

= 1.2 pmonomer (Qmonomer

The mass flux from the orifice is the mass flow rate out divided by the orifice area. Since the
spray spreads in the form of a right cone, the mass flux at the substrate is smaller than the flux
from the orifice. To solve our problem we must know this. It is obvious then that the product of
the flux and the area is the mass flow rate. By the conservation of mass the mass flow to the sub-
strate must be the same as the mass flow from the orifice. Therefore we can proceed as follows:

ﬁlimpingcmunt = ﬁlmxt
]imp Aimp = jout Aout
]' _ ]out Aout
imp = ——Aimp

]' _ mout

imp = Aimp

We will review what we know. We know the mass flow out of the spray nozzle and we can
calculate the area of impingement knowing the area of the orifice A,, the distance to the
substrate L, and the angle, alpha, made by the spray leaving the nozzle. Thus the next step
must be to find the area of impingement in terms of alpha, L, and A,.

From the geometry diagram shown in Figure 10 we see that the radius of the orifice is r,
which is related to 1 through the tangent of alpha. Then the radius R of the impingement area
is related to (1 + L) through the tangent of alpha (tana = %). The distance 1 is not known,
but it corresponds to the vertex of the triangle that is within the sprayer. We can solve for it in
terms of alpha and r, both of which are known. Then we can set the two ratios equal to one

another and solve for R in terms of L.
Inf163]:=Clear[R, L, 1, r, 1, «l

R
(L + 1)

outfi164]={{R>r+LTan[al, 1 »r Cotlal}}

r r
Solve[{I==Tan[a], i= }, {1, R}l



106 Chapter 2 Elementary Single-Component Systems

alpha

R

Figure 10

The area of impingement is wR?, so the impingement flux is:

In[165]:= Ajpp=r +LTan[a]

Qutf165]= r+ LTanla]

General::spelll: Possible spelling error: new symbol name
"out" is similar to existing symbol "Out”.

Moyt

Out[166]= Jipp== m

The next part of the analysis is to find the mass accumulation of polymer on the substrate
given Ji,,, and that the substrate moves under the nozzle at a velocity equal to v:. If the
substrate did not move then the mass would accumulate on the circular impingement area.
Given a rigid solid polymer, we would begin to grow a deposit of circular cross section and
increasing thickness. As the deposit grew off the substrate, it would decrease L, and so the
circular deposition area would decrease. We could imagine that we would grow a deposit
that would be roughly like the frustrum of a cone and eventually a cone. If we allowed the
deposition to take place for some time 7, such that the thickness grew to §, and then moved
the substrate by a distance 2R and deposited for a period T again, and then continued this
stepwise process, we would have a series of circular deposits of nearly uniform thickness. We
would also have areas between the circular deposits that were nearly uncovered. This would
be a semicontinuous process. If 7 were to become very short, then the process would begin to



2.2 Geometry and the Left-Hand Side of the Mass Balance Equation 1o7

LHTEL RS B EHOPS

Coating period =2R  Coating time =t

Coating period "R Coating time = 1

Continuous Coating

Figure 11

approach a continuous one, especially if we only moved the substrate by some fraction of 2R
every time. Figure 11 shows all three deposition types discussed here.

In the continuous process we let T shrink to small values by moving at a continuous
velocity. Now the time spent under the nozzle is just 7 = 2&, that is the “residence time”
under the sprayer. By translating in this way the circular spray area becomes nearly rectangular,
save for the edges. We can write a material balance for the problem in the usual way—that is,
choosing the spray area and the growing polymer film as the control volume:

dm[t] @

dt - n
d[p olym rV[t]de 0si ] o

Py edt posit = IMjp,
d[ppolymerA[t]deposita[t]] = m
dt o
dlwzt3[H]] _ thin
dt Ppolymer

At this point we can recognize that w is related to R and substitute it in:

w = 2R

o

dlz[t]s[t]] i,
dt N ZRPpolymer




108 Chapter 2 Elementary Single-Component Systems

However, R is related to distance L, angle «, and dimension of the orifice r:
2R = 2(r + L Tan [a])
This brings us to this equation:

d[z[t]s[t]] Min
dt - 2(7’ +L Tan[a])ppolymer

Applying the chain rule to the left-hand side, we find:

dz[t]
dt

dsit] i
dt 2r +L Tan[a])ppolymer

8[t] + z[t]

If the substrate is translated at a fixed velocity then we can say that z[t], the position of the
substrate at any time, is merely a linear function of time:

z(t) = vt + ¢

This leaves us with the following equation to solve for the thickness as a function of time.
By rearranging it we can see that it is a nonlinear differential equation and we must treat it
accordingly:

dslt] My,
8[t]v- + (v-t + C _
[+t + O = 3 L TanloD pmame
d&[t] Ihin
t+C = — 8[t]v-
Wt O = 20+ L TanlaDipymer 1%
In[167] := Clear[d]
lil:i.n=~ .
Together [ Pin -dltlv,]

2(r+LTanlal) ppo1ymer
(Unset::norep: Assignment on Subscript for m;, not found.
out(168]= S$Failed

M;, -~ 2XV,Ppolymerd [t] - 2LV, ppolymerTan [« 18 [t ]

Out[l69]=
2ppolymer (r + L'Tan [a])
In[170]:= (min- Collect [2rv;ppolymerd[t] - 2LVzPpo1ymer Tanlal 6[t1,
{VzPpolymerd [£131) / (2ppo1ymer (X + L Tan[al))
. i i )
out [170]= Min~VaPporymer (2T - 2L Tan[a])S[t]

2ppolymer (r+LTan[a])



2.2 Geometry and the Left-Hand Side of the Mass Balance Equation 109

The last transformation shows us that the equation is separable into:

ds[t] o dat
m, — 2Vzppolymer(r — L Tan[«])s[t] T 2pp01ymer(r + L Tan [@])(v.t + C)

These two sides can be integrated indefinitely to give:

1
Inf171]:= Simplifyl[ [ - a1l =
nf ] implity /min—2vzpp01ymer(r-L'1‘an[a])5[1:]

1
dt
fzppolymer(r"'LTan[a])(vzt + C)

Out[171]= _COS[“]LOQ[—Cos[a]ﬁlin+2 (rCosla] -LSin{al)Vv,0p1ymerd [£]] _

2rCos [a]V,Ppolymer = 2L Sin o]l v, 01 ymer
Log[C+ tv,]

2V Ppolymer (¥ + LTan[a])

Or integrated definitely to give:

4t} 1

In[172]:= simplify[/ dy 1==
0

ﬁ‘in'zvzppolymer (r-LTanl[al)y

t
1
d
v/t; 2ppolymer (r+L Tan[al) (vzX+C)

out[172]= Cos[al{Log[-Cos[alm;,] - Log[—Cos[a]r"ni,.,—i—2(rCos[a] —LSinfal)}vippiymerd [t]])
2{rCosla]l — LSin{a])vVv;Ppolymer
__ ~Log[C] +Log[C+tv,]
2V, Ppolymer (¥ + LTan{a])
Asin:

In[{173]:= Clear[a, b, m, n, X, ¥, p, 0]

f“ 1 1ft 1
dy == — dx
o a+by pJo mx+n

-Logl[al + Log[a +bé] __-Log[n] + Log[n +mt]

Out[174]=
[174] 5 D



1o Chapter 2 Elementary Single-Component Systems

Tn[175]:= b( -Log[a] +:og[a+b5] ) == b( -Log([n] +nr:g[n+mt] )

b(-Log[n] + Log[n+mt]

Out[175]= -Loglal +Logla+bd]l==

mp
a+bd n+mt b
In[176]:= == ( )
a n
a+bd n+mt b
In[176]:= == ( ) ™
a n
a+bd n+mt b
In[177]:= Solvel ==( Y, 5]
a n
out[177]= {{§ ~» n 1}

b

We assume here that the nozzle is held 10 cm away from the substrate (L = 10) and that
the cone angle made by the spray is 20". The polymer may have density of 2 g cm 3. The
axial velocity should be small, so we choose 0.01 cm per min (v, = 0.01). The flow of polymer
mass to the substrate may also be small at 10 mg min~' (th;, = 0.01 mg min~'). The nozzle
radius will be set at 0.003 cm. Before we use this result, we should check it for dimensional
consistency. The units for each of the groups in the final formula are included on the right-hand
side of what follows. The left-hand side is just the units of § in cm. If the units are consistent
then the logical operation should return a True.

(ﬂn gjcm)

aa1e (& Fmi)"'1“‘3'““")
Inf{178]:= Simplifylcm == )|
( —ggcm)

General::spelll: Possible spelling error: new symbol name
"min" is similar to existing symbol "Min".

Qut[178]= True

The result is True, but maybe you would be more pleased to see the actual reduction to cm on
the right-hand side. If so here is that result:

(cmjxcm)
cm+ SR om
(-1 + (T lmin) &S,

(=B Syom)

9
min

Inf[179]:=

Outf179]= cm



2.2 Geometry and the Left-Hand Side of the Mass Balance Equation 11

Now that we can have confidence that the formula we have derived for 8{t] is dimension-
ally correct, we can test it with some “real” parameter values to see what it predicts:

In[180] .'=pp°1ymgr = 2;

L = 10;

20
a = —2T;

360
m, = .001;
ve = 1;
r = 0.003;
c = 0.001;
a = ﬁ‘in;
b = 2V ppolymer(r - LTanl[al);
P = 2ppolymer (r + LTanl[a]l);
m= vy;
n=c;

a(-1+%)i
o[e_1] :t# —mMMMM—
b

6[.1]

Plot[10%6[x], {x, 0, 10000}, AxesLabel -
{"t", "4/microns"}];
a(-1+3%m,) 5

NumberForm[Limit[——b————, t » ool 10%, 2]

Oout[193]= 0.0000680578
é/microns

0.687435
0.687432

0.68743
0.687428
0.687425
0.687422

t
2000 4000 6000 8000 10000



112 Chapter 2 Eiementary Single-Component Systems

Out[195] //NumberForm=
0.69

At this delivery rate of polymer, and with these substrate dimensions and velocity, the thick-
ness of the layer will be 0.69u. Notice that the transient in the graph of thickness versus time
is more apparent than real, as it involves changes in & that are on the order of one part in 10°.
Taking the limit of the expression for § as the value of time approaches infinity gives us the
same answer. Recall that we did not handle the startup of the substrate motion. We could do
so if we replaced z[t] with a form that included quadratic time dependence and acceleration.
Why don’t you try it?

2.3 Summary

In this chapter we have covered quite a number of apparently different problems that are
readily attacked by use of the concepts of a control volume and the conservation of mass. For
each case the same equation was used as the point of departure for the analysis—namely, the
differential statement of the total mass balance. It is surprising at first to find that so many
different situations can be analyzed by the correct application of this equation along with
some calculus and geometry along the way.

During the course of this chapter we also have learned how to use Mathematica interactively
to do analysis. The methods we have used are general and we will use them throughout the
text. The objective is to think and analyze the problem with the assistance of the computer in
real time.



CHAPTER 3

The Draining Tank
and Related Systems

3.1 The Right-Hand Side of the Mass
Balance Equation

In Chapter 2 we developed models based on analyses of systems that had simple inputs. The
right-hand side was either a constant or it was simple function of time. In those systems we
did not consider the cause of the mass flow—that was literally external to both the control
volume and the problem. The case of the flow was left implicit. The pump or driving device was
upstream from the control volume, and all we needed to know were the magnitude of the flow
the device caused and its time dependence. Given that information we could replace the right-
hand side of the balance equation and integrate to the functional description of the system.
This level of simplicity is not the usual case in the systems that are of interest to chemical
engineers. The complexity we will encounter will be much higher and will involve more de-
tailed issues on the right-hand side of the equations we work with. Instead of a constant or
some explicit function of time, the function will be an explicit function of one or more key char-
acterizing variables of the system and implicit in time. The reason for this is that of cause. Time
in and of itself is never a physical or chemical cause—it is simply the independent variable.
When we need to deal with the analysis of more complex systems the mechanism that causes
the change we are modeling becomes all important. Therefore we look for descriptions that
will be dependent on the mechanism of change. In fact, we can learn about the mechanism of

13



114 Chapter 3 The Draining Tank and Related Systems

change by testing our ideas about physics or chemistry in the context of a model derived from
an analysis based on some specific assumptions. Comparison of the model predictions with the
actual behavior of the system provides a check on the analysis and its assumptions. Chemical
engineers do this with almost every problem they encounter. Depending on thelevel of analysis
and the nature of the problem, the results can be anything from a useful engineering descrip-
tion of the systems to new science. Regardless of the goals and objectives of the project, the
chemical engineer uses the same powerful analysis paradigm to make progress and to solve the
problem.

With this in mind we turn now to another problem that is seemingly naive at first glance,
but which offers considerable insight into the next level of this process called analysis. The
problem that we shall consider now is that of flow out of a vessel due to the force of gravity.
We will apply the same principles as in Chapter 2, but the cause of the flow will be an essential
part of the analysis. We also have the chance to see how this problem fits into the history and
foundations of our physics. This is a 300-year-old problem that is still full of fascination for us
and from which we can learn much.

3.2 Mechanism of Water Flow from Tank—
Torricelli’s Law, A Constitutive Relationship

In 1640 a young man educated at the Collegio di Sapienza in Rome published a treatise entitled
“Trate del Moto,” that is the Treatise on Motion. This brought the author to the attention
of the preeminent natural philosopher of the day—Galileo Galilei. Impressed by the work,
Galileo invited the author, Evangelista Torricelli, to join him at the Florentine Academy in
1641. Torricelli worked as Galileo’s personal secretary for just one year before the great man
died in 1642. The faculty at Florence immediately appointed Torricelli to succeed Galileo as
professor of mathematics that same year. Torricelli is ensconced in physical science through
the unit of pressure that bears his name, in honor of his experiments that led to the creation
of the first partial vacuum and the barometer. But Torricelli did much more than this and it is
to some of his other work that we will turn to now.

Just as Galileo studied gravitational effects by dropping small and large solid masses from
towers, Torricelli followed in his footsteps by analyzing liquids “falling” out of tanks. What
he did was to measure the flow rate of liquids flowing out of tanks with holes in the bottom
as a function of initial fluid level at a fixed orifice area. The physical system that corresponds
to this is shown in Figure 1. The vessel is a right cylinder with cross-sectional area A. At the
bottom of the vessel is a hole with area Ao that has a plug in it. The initial liquid level has
been set to ho. '

When the plug is pulled out of the orifice, the liquid flows out. One can measure the flow
rate or the level as a function of time to learn how the system behaves. If we did this, then
we would notice from these experiments that the flow rate out is not constant, but seems to
drop with time. As the level drops, so does the rate at which mass leaves the tank. Before we



3.2 Mechanism of Water Flow from Tank—Torricelli’s Law 115

A = Cross-sectional area of tank

— G
— Ary — o ction § §
|_— Ao = Cross-sectional area of orifice
ho |
X B
Figure 1

consider the data that comes from an experiment like this one, we should apply the principle
of the conservation of mass to the system to see what it is that we know and do not know
about it. We begin with the same overall equation as always:

dmit] _
ar Mout

The mass flow in is zero, so we are left with just one term on the right-hand side. The density
is a constant inside and outside of the vessel and the cross section of the liquid is just that
of the tank A, and it too remains constant as the level drops. This leads us to the following
equation for the change in level as a function of time:

dhit] _ qlt]

dt A
On the right-hand side, we have noted that the flow rate changes with time by writing q as a
function of time, but that is all that we can do at this point. We have no way of knowing how
q varies with time or with the level in the tank. Therefore, we cannot go any further with this
analysis until we have some way to express this dependence. What we are seeking for q is a
constitutive relationship that will express it in terms of the level change hlt] so that the equation
has only one dependent variable in time and not two. In other words, the analysis we have
just done is incomplete, but it has shown us exactly what our experiments should be designed



116 Chapter 3 The Draining Tank and Related Systems

to do. We must find a functional relationship between the level in the tank and the flow rate
out of it. Or in mathematical terms we seek:

qlt] — f{h[t]]

dhlt] _  flhlt]]
dtr A

The first is the constitutive relationship and the second is just a restatement of the material bal-
ance. The next section takes this into account as we trace what Torricelli is likely to have done.

3.3 Experiment and the Constitutive Equation

What causes the fluid to flow or “fall” out of the tank? Gravity of course. That is easy for
us to answer because we are educated in fundamental physics concepts. But turn the clock
back to Torricelli’s day and try to answer the question again in the year in which Galileo died
and Isaac Newton was born. That means that Torricelli was working on this problem prior
to calculus and Newtonian physics! Now, Galileo and Torricelli both had strong notions and
good ideas of what this force, what we now call gravity, was and Newton was indebted to
them when he did his work, but all of that came later. So we will attack this problem from the
“experimental” side and try to piece together the findings that led to Torricelli’s Law.

In the Table are collected data from several experiments with different starting levels, but
all with the same orifice area, and all done in the same cylindrical tank. Look at the data for
some clues as to the behavior of this system. Note that it takes 60 sec to drain the tank from an
initial level of 10 cm. When the initial level is set to 50 cm, it takes 130 sec for the tank to drain:

t/sec Level/cm

0 10 20 30 40 50
10 6.8 15.4 24.2 333 425
20 4.2 11.3 191 27.2 35.6
30 23 7.9 14.6 21.8 29.3
40 0.9 51 10.7 16.9 23.6
50 02 29 73 12.7 18.5
60 0 13 47 9. 14.1
70 0 04 2.6 6. 10.2
80 0 0 1.1 36 7.
90 0 0 0.3 1.8 4.4
100 0 0 0 0.7 24
110 0 0 0 0 1
120 0 0 0 0 0.2
130 0 0 0 0 0



3.3 Experiment and the Constitutive Equation 17

We raised by a factor of five both the initial level and the volume that must be drained and
yet it took only twice the total time to complete the process. Looking even more closely at the
data, we note that in the same experiment at which the initial level was 50 cm, when the level in
that experiment had fallen to 10 cm, it took another 60 sec to completely drain the tank. In other
words, once the level gets to 10 cm it takes the same time to completion as if the experiment had
begun at 10 cm. Therefore, the first 40 cm fell out of the tank in 70 sec, but the final 10 cm took
another 60 sec to fall out. Looking across the data sets we see the same thing in each. The time
required to go to completion beginning at 20 cm is the same as the time required to empty the
tank after having reached 20 cm when beginning at any higher level. But the time required to
go from an initial level of 40 cm to 20 c¢m is just 30 sec, or less than half the time required
to drain the second 20 cm worth of fluid! This behavior had to have been very intriguing to
Torricelli and the analysis must not have been obvious, at least at the outset of the work.

The relationships that we have just described in words are much easier to see if we plot
the data as level versus time and do so all on one graph. We can use a few functions to pull
this all together. The data in the table has been entered as a matrix of levels at each time called
“totdat”:

In[l]:=totdat={{0, 10, 20, 30, 40, 50}, {10, 6.8, 15.4, 24.2, 33.3, 42.5},
{20, 4.2, 11.3, 19.1, 27.2, 35.6)}, {30, 2.3, 7.9, 14.6, 21.8, 29.3},
{40, 0.9, 5.1, 10.7, 16.9, 23.6)}, {50, 0.2, 2.9, 7.3, 12.7, 18.5},
{60, 0, 1.3, 4.7, 9.0, 14.1}, {70, 0, 0.4, 2.6, 6.0, 10.2},
{80, 0, 0, 1.1, 3.6, 7.0}, {90, O, O, 0.3, 1.8, 4.4},
{100, 0, 0, 0, 0.7, 2.4}, {110, O, O, 0, 0, 1},
{120, 0, 0, 0, 0, .2}, {130, 0, O, O, O, 0})}

out(1j={{0, 10, 20, 30, 40, 50}, {10, 6.8, 15.4, 24.2, 33.3, 42.5},
{20, 4.2, 11.3, 19.1, 27.2, 35.6}, {30, 2.3, 7.9, 14.6, 21.8, 29.3},
{40, 0.9, 5.1, 10.7, 16.9, 23.6}, {50, 0.2, 2.9, 7.3, 12.7, 18.5},
{60, 0, 1.3, 4.7, 9., 14.1}, {70, 0, 0.4, 2.6, 6., 10.2},
{80, 0, 0, 1.1, 3.6, 7.}, {90, 0, 0, 0.3, 1.8, 4.4},
{100, 0, 0, 0, 0.7, 2.4}, {110, O, O, O, O, 1},
0, 0

{120, 0, 0, 0, 0, 0.2}, {130, 0, 0, O, 0, 0}}

The matrix form of the data needs to be transformed into data sets having each time and each
level in pairs. We can do this in one small program as follows and the new data set will be
called “sepdat” for the separated data:

In[2]:=SetOptions[{Plot, ListPlot}, AxesStyle - {Thickness[0.01]},
PlotStyle - {PointSize[0.015], Thickness[0.0061},
DefaultFont - {"Helvetica", 17}1;

In[3]:=sepdat = Tablel[
Table[{totdat[[n]]([[1]1], totdat[[n]][im]l1},
{n, 1, Length[totdat]}],{m, 2, 5}1;



118 Chapter 3 The Draining Tank and Related Systems

ListPlot[Flatten[sepdat, 1],
Epilog - {Dashing[{0.025, 0.015}], Line[{{0, 10}, {120, 10})}]1},
AxesLabel - {"t/s", "h[t]/cm"}];

h[t]/ecm

40

<] B

20 . .

10»—.——'——:—L:——.— ——————————
. S T t/s

20 40 60 80 100 120

For reference the dashed line across the data is set at the 10-cm level. With this we can see that
once this level is reached, then independent of the starting point, it takes 50 sec to finish the
process. The fluid moving out of the vessel then has no “memory” of the level at which the
process was initiated. What we seek now is the relationship between the rate of change in
level and the level in the tank, since both the material balance and the experimental data drive
in this direction. We can get to this by computing the rate of change in level as a function of
time for each experiment and then plotting this for comparison.

The approximate rate of change can be computed from the data by taking the slope between
successive data points and plotting this versus the time at that second point. We can write a
function to do this and then plot the data. The algorithm for implementing this procedure on
the set “sepdat” is:

Take the nth set of data, from this extract the (m + 1) data pair and from this take
the second number, subtract from this the second number from the mth data point
of the same data set; divide this by the difference between the first number from
the (m + 1) pair from the nth set and the first number in the mth data pair of the nth
set. Do this for all the n datasets and all the m pairs in each set.

The function to do this is shown here:

x[[n, m + 1, 2]] = x[[n, m, 2]]
X [[nr m + 1/ 1]] — X [[n/ m, 1]]

rttotfx_, m_, n_]: =



3.3 Experiment and the Constitutive Equation 119

It is worth understanding because it is such a useful tool when analyzing data—the relation-
ship is written in a general way that can be implemented often in our analyses. To implement
this we simply place it inside a pair of nested Table commands. The inside command creates
a loop around the m data pairs in each set and the outside command loops over the n data
sets. As we want the slopes associated with times we also include a command that takes each
of the times and pairs it with a slope that looks like this:

{sepdat[[1, m + 1, 1]], rttot[sepdat, m, n]}

The following cell puts all of this together and makes a plot of the slopes versus time for each
set of data. Each data set corresponds to a different initial level:

x[[n, m+1, 2]] -x[[n, m, 2]]
x[[n, m+1, 11] -x[[n, m, 1]1]

In[5]:=rttotx__, m_, n_]:=

Table[Table[{sepdat[[1, m, 1]], rttot[sepdat, m, nl}},
{m, 1, Length[sepdat[[1]1] - 1}1, {n, 1, 4}];

ListPlot[Flatten[Abs([%], 1],

Ah{t] -1
AxesLabel - {"t/s", "“| —A—t-—l (cm sec™ )"},

PlotRange - {{0, 130}, {0, 0.7}}};

Ahft]

cm sec”
At | ( "

0.6§ °

0.5] - .

0.4} ° .

0.3 . .

0.2 . ) * .

0.1 . . ¢« .

. . t/s
20 40 60 80 100 120

Each data set falls on a line and the slopes of each of these lines are identical! The slopes are
the approximate second derivative of the change in level with time. From the graph we can




120 Chapter 3 The Draining Tank and Related Systems

see that all of the second derivatives are constant and each is equal to the same value, or stated
more precisely:

A(%

— = constant
At At )

Werealize now that the constant is the gravitational acceleration g. Even without knowing this
it would be logical to replot the rate of change in level against the level rather than against the
time. Out initial analysis of the system suggested this very approach, since level as a function
of time is the key characterizing variable in this system. To do this we reuse the last cell but
with a change in the table function to make the plot one of rate versus level rather than rate
versus time. Hence the line “sepdat[[1, m, 1]]” becomes “sepdatl[n, m, 2]1.”

x[[nl m+1l 2]] _x[[nl m, 2]]

In[8]:=rttot[x_, m_, n_]:=
x[[n, m+1, 1]] -x[[n, m, 1]]

Table[Table[{sepdat[[n, m, 2]], rttot[sepdat, m, nl},
{m, 1, Lengthisepdat[[1]]] - 1}], {n, 1, 4}1;

ListPlot [Flatten[Abs({%], 1],
Ahlt]
At
PlotRange - {{(0, 45}, {0, 0.7}}]1;

| (cm sec-1)"},

AxesLabel - {"h/m", "|

Ié—hml (cm sec™ )
At

0.6 . °
0.5 .
0.4
03| .-
0.2]
011,

] h/m

10 20 30 40

This is quite interesting—all the data from the different experiments now fall on one curve!
We notice that the data have distinct functional dependence, which is neither linear nor




3.3 Experiment and the Constitutive Equation 121

logarithmic, but is, rather, square root. If Torricelli pursued this approach, and no doubt
he did, then we can imagine that he felt quite a thrill when he made this graph and realized
that he had uncovered a fundamental physical law. To be sure that the rate of change data
do follow a square root dependence on level, we can fit the data to this form and evaluate
the constants. We will use Fit for doing this. The data set will be constructed from the nested
“Table” code in the last cell. The function we seek to fit to will be kv/h[t]. The procedure to
do this and the comparison to the data are done in the following routine:

In[11]:=1sdat = Flatten[
Table [
Table[{sepdat[[n, m, 2]], rttot[sepdat, m, nl},
{n, 1, Length[sepdat[[n]]] -1}]1, {n, 1, 4}]
, 11;

Fit[
Abs[1sdatl, +h, hl

Plot [Abs[%]1, {(h, 0, 50}, DisplayFunction - Identity];

ListPlot[Abs[1sdat],
Ahltl

At
PlotRange - {{0, 45}, {0, 0.7)}), DisplayFunction - Identity];

AxesLabel - {"h/m", "| | (cm sec™1)"},

Show[%, %%, DisplayFunction - $DisplayFunction];

Out[12]=0.102464vh

Ah(t] 1
| (cm sec™ )

0.6 o
0.5
0.4
0.3
0.2
0.1

h/m
10 20 30 40



122 Chapter 3 The Draining Tank and Related Systems

The fit to the experimental data is quite good. (We can get a report on the “goodness of fit” if
we need to, but it is not necessary here.) At this point we have found a function that relates
the flow rate out of the tank to the level in the tank. The parameter value that fitted the data
includes within it the cross-sectional area of the tank, as you may recall from the original
statement:

dhft] _ _ flltl _  qlBlt] _ = -2 /u
o = = kv/h[H = SVt
ék=§=o.10

At this point we would do well to analyze the dimensions of all the parameters on the right-
hand side. As the left-hand side has dimensions of length of time ™', so too must the right-hand
side. Therefore, we can solve for the dimensions on the parameter m:

Length m
Inf{l6]8elvel 'g == > VLength, m]
time Length
Lengt:h'r’/2
Qut(lé6ifm—»———1}}
time

Now if we rerun the experiment we just described, but vary the orifice area, then we will find
data that looks as follows:

hit]/m Ao = 0.5, 1, 2, 3
200e
[ ]
[ B}
®
[ N} ®
150 °
® ® ®
1 [ ]
[ ) [ ] [ )
®
100 ¢ ®e
. ee ) )
[ ]
[ ] ®
[ ]
[ ) [ ) ..
50 ® ° o.
[ ] [ ] ..
[ ] ..
[ ] ® [ ] ..
[ ] ..
s °® °, ®eo
ot 9 B g . . TWege.:. ... ... 90 0eee C/sec

25 50 75 100 125 150 175



3.3 Experiment and the Constitutive Equation 123

|Ah[t] | (cm sec™)
At Ao = 0.5, 1, 2, 3
8 °
°
°

6.

b °

°
4 « ¢ °
°® o °®
e ®

® o ¢ o o O

20 o* 00000°‘°..
.o.l:..oooot' oo

» [ n . e e P e - I h/m

50 100 150 200

An analysis of this data shows that the flow rate out of the vessel is directly proportional to the
orifice area. From experiments like these, Torricelli finally deduced that the flow rate looked
like this:

qlh] = b1 Ao V/hl{]

It turns out that b1 is the square root of 2 g, where g is the acceleration due to gravity. Thus in
full form Torricelli’s law is:

qlh] = b Aoy/2ghlH]

The parameter b is found empirically. It is related to the resistance to flow through the orifice.
If the orifice were perfectly smooth, then b would have a value of unity. It is essentially a
coefficient of friction. We check for dimensional consistency one more time and find:

. . Length?3 2
Slmpllfy[——‘—:-_—— == (1) Length“ PowerExpand|
ime

Length

In[17]: cime?

H

Lengthl]

outf[17]= True

Today it is clear that the dependence should be of haif order in t because we can do a simple
energy balance to determine that this is the case. If due to the force of gravity the fluid is falling
out of the vessel when it flows, then it truly is a falling body. The kinetic energy during the
fall can never exceed the potential energy that the body has prior to the fall. We can then state



124 Chapter 3 The Draining Tank and Related Systems

that:
1 2
mgh[t] = 2 mv[t]

v[t] = 2 ghlf]

In the case of the fluid, this is its velocity through the orifice. The product of this velocity and
the area of the orifice is by definition the volumetric flow rate:

qlh[t]] = Aov[t] = Aoy/2gh[t]

Although Torricelli did not know this, his work helped to point Newton in the right direction.
Therefore, Torricelli’s Law is the constitutive relationship that we seek to complete our model.
We return to that endeavor now.

3.4 Solving for Level as a Function of Time
The equation that will yield the level as a function of time is this one:

dhlt] _  bAoy2ghlt]

dtr A

We can solve this for h[t]:

In[18]:=Clear[Ao, g, A, ho, h, b]

Simplify[DSolve[{h’[t] == , h[0] ==ho},

bao+/2gh[t]
A

hit]l, tl1]

ﬂAobﬁ\/}Et s Ao? b? gt2
a 2A2

ﬂAobﬁJﬁt+Aozb2 gt2}
A 2A%

Out[19]= {h[t] - ho-

’

hit] - ho+

The functional form is what we should expect for the position of a body in motion and we find
it to be a quadratic in time. As we know the level is falling and not rising, the first solution is
the appropriate one for this situation. We can simplify it further as follows:

J2Raob./g/hot Ao?b?gt?

In[20] :=ho Expand[(ho - + 3 ) /hol
A 2A

V2aob,/gt  Ao?b?gt?
- +

Out[20]=ho (1l
a+vho 222 ho




3.5 Mass Input, Output, and Control 125

This can be factored because the coefficient of t is two times the square root of the coefficient
of t2. Therefore, we find:

B B Aob\/g't:r
hie =ho[1 - 24

A comparison of the function to the data points gives an excellent fit:

150
100

50

L

t/sec

25 so 75 100 125 150 175

3.5 Mass Input, Output, and Control

Mass Input and Output

Constant Input

The next logical problem to consider is that of a vessel with a specified mass flow in and gravity
mass flow out. In a very real sense the accumulation term is the response to the interaction of
these two flows. Remember also that the problem we are doing is not only a real one, but it
is also easily extended and modified for other problems that are seemingly unrelated. We use
this problem simply to illustrate the principles and that is its real value. The physical picture
is shown in Figure 2.

The material balance equation has two terms on the right-hand side.

dm(t) i o
dt - in out



126 Chapter 3 The Draining Tank and Related Systems

Mass flow in

hit]

» Mass flow out
Ao

Figure 2

The mass flow term in can be taken as the product of the density of the fluid and its volume
flow rate. The mass flow out can be specified by Torricelli’s Law multiplied by the fluid density
and the mass in the control volume is the product of the fluid density, the tank’s cross-sectional
area, and the level at any time t. This gives us the following equation:

d[p Ah
ﬁ’—dt—@ = pq — pb Aoy/2gh[t]

Simplification provides us with:

dhlt] g —bAoy/2ghlt]

dt A

This can be solved and we can examine the behavior of the time-dependent solution. We will
begin the analysis assuming that the tank is initially empty, that is, that h[0] = 0, the initial
condition. We will assume for now that q is a constant. This is also a good problem because
we can approach the solution of this equation in several ways using Mathematica.

We can rearrange this by separation to find:

dhlt] dt

g —bAo/2gh[t] A



3.5 Mass Input, Output, and Control

Solution by Direct Indefinite Integration after Separation
This in turn can be simplified to this form:

dy _ dt

a-blyy A
a=q and bl=bAo?2g

Here we do the indefinite integration:

In[21]:=Clear[a, bl, y, vo, tl

/ L g fldt
T Ay == | =
a-blyv¥y A

2.y 2alogla - blyl] ot
bl T a

outf22]=- 5
bl A

127

The result does not explicitly include the constant of integration; we add this and then evaluate

itatt =0and y=yo =0:

Inf{23]:=yo = 0;
-2, /yo 2alLogla-Dbl,/yol

==

bl b1?

2alogla
Out[24]=-_—i2[_]==c

bl

2./y 2alogla-bl.¥] 2aLoglal t
In[25]:=~- \/_- 2 -(- 2 ) ==—

bl bl bl A

2 2alogl{al 2alLogla-Dbl ] t
out[25]=-2YY , 22 %[ - gl _ Yl __t

bl bl bl

2./y 2aLogla-bl.Yy] 2aLogl(al t
In[26] :=- - ~(- Y==—// Simplif
nize] bl p12 ( p12 A ety

2 (bl -aLoglal +aLogla-bl ) t
ot 261 EPIST 108 8)  atos 2L _ ¢

Now we can set this result up as function, apply parameter values, and plot it:

2(bl - L L - bl
In[27]:=81lly_.] := -A (b1vy aLoglal + alogla v¥1)

b12

As we have an expression in y for t, we use this to compute the values of time corresponding
to a set y-value. Thus the Table function that follows gives the value of s1 [¢] first and then the

set value of .



128 Chapter 3 The Draining Tank and Related Systems

In[28] :=Clear(y]

In[29]:=a = 10;
bl = 1;
A = 10;
tsl = Table[{sl[x] // N, x}, {x, 0, 200, 5}]

out[32]={{0., 0}, {5.89788, 5}, {12.7805, 10}, {20.5158, 15},
{29.114, 20},{38.6294, 25}, {49.1474, 30}, {60.784, 35},
{73.6911, 40}, {88.0663, 45}, {104.168, 50}, {122.341, 55},
{143.053, 60}, {166.967, 65}, {195.052, 70}, {228.816, 75},
{270.785, 80}, {325.702, 85}, {404.211, 90}, {540.292, 95},
{00, 100}, {535.291-628.319i1, 105}, {394.207 -628.319i, 110},
{310.687 - 628.319i, 115}, {250.752 - 628.319i, 120},
{203.75 - 628.319i, 125}, {164.937 - 628.319i, 130},
{131.782 - 628.319i, 135}, {102.775 - 628.3191, 140},
{76.9389 - 628.319i, 145}, {53.6089 - 628.319i, 150},
{32.3096 - 628.3191, 155}, {12.69 - 628.319i, 160},
{-5.5166 628.319i, 165}, {-22.5176 - 628.3191, 170},
{-38.4775 - 628.319i, 175}, {-53.5291 - 628.319i, 180},
{-67.7808 - 628.319i, 185}, {-81.3229 - 628.319i, 190},
{-94.2306 - 628.319i, 195}, {-106.568 - 628.3191, 200}}

It is very interesting to note that the numerical values of time are real until we reach a value
of 100 and then they depart for the complex plane. We can start to see why if we com-
pute the steady-state value of y directly from the differential equation for these parameter
values:

a - bl,/ystst
In{33]:=So0lvel[0 == Ay , ystst]

Out(33]={{ystst>100}}

Therefore we see that the integration solution we have obtained works up to the point of
steady state, but not beyond. We plot the real values of this solution to see how the solution
behaves:

In[34] :=pll = ListPlot[Take[tsl, 20],
PlotLabel - "Steady State",
Epilog - Line[{{0, 100}, {450, 100}}]1,
PlotRange —» {{0, 450}, {0, 105}}1;



3.5 Mass Input, Output, and Control 129

Steady State

100
80 .
60 .

40 .
201 .

100 200 300 400

So this solution approaches the correct steady state value but we do not know if the time-
dependence is correct. We might wonder how and where this solution was derived.

Solution by Substitution

We can try the old method of substitution to solve this problem. We know that the integral of
—L_ over x gives a simple logarithmic form. Therefore, we can try using the substitution of

a+bx
u=./y
In[35]:=u = \/y;
Du, yl
Out[36] !
u =—
2y
From this we know that dy = 2 ,/y du = 2 u du. We can transform the integral as follows:
[mo=[ =[5
a—blyy Y=Jai-vu™"" | A

In[37]:=Clearf{u, a, bl, A]

2u 1
Inf38]:= )] ———— du == — dt
a - blu A

u alogla - blu])

t
Out[38]=2(- — t
ut[38]=2(-7 12




130 Chapter 3 The Draining Tank and Related Systems

To this we must add the constant of integration and then we need to evaluate this at the initial
condition, which can be after substitution of u:

In[39]:=Clear([y]

In[40]:=u = ./¥;

-u aLogla - blu] t
I 1=2(—- == —
nldl] ‘o1 b1? Y+ e A
L -bl
out[d1]=c + 2(-YY _2bogla-bly¥l ¢t
bl b12
In[42]:=¢t = 0;
Y = YO;
L - bl
SolvelC + 2(_£_a. ogla 2b \/;]) == E, Ccl
bl bl A
2al
Out [44] = {{CQL%[M
bl
In[45]:=yo = 0;
2(bl/vyo + aLogl[a - bl,/vyol)
b1?
2alL
Oout[46]= _a%m
bl
Adding this to the previous general solution we obtain:
2aLog[a]+2 vy alogla—-bl /y]\ t
b1 bl b1? A
We can bring this over just b1? to give:
In[47] :=yo =.
y =.
2aLoglal VY alogla-bly/¥]
T th —_— t 2 (-——- Simplif
ogether [ b12 +2( bl b1Z )1 // Simplify
2(bl - aL L - bl
out [49]= - (blyy- a og[a]b;a ogla N2

This is exactly the same solution that we had obtained earlier from the Mathematica direct
indefinite integration.

A2(b1ﬁ —alog[a] +aLog[a — bl /y]) _
B b12 A




3.5 Mass Input, Output, and Control 131

Power Series Expansion

At this point we could ask the question “Why not just do the integration over definite limits,
that is, from yo =0 or even y = yo at t = 0 to y at t?” The answer for both the unsubstituted
and the substituted cases is shown here:

In[50]:= Clear([a, bl, t, A]

Inf{51]:=u =.
t =.
h's tl
== ~ de
/oa-blﬁ /OA
t1
————— du == — dt
a - a - blu o A
Series::vcnt : Center point -y of power series expansion
involves the variable vy.
Series::vcnt : Center point -y of power series expansion
involves the variable y.
Series::vcnt : Center point -y of power series expansion
involves the variable vy.
General::stop : Further output of Series::vcent will be
suppressed during this calculation.
out[53]= ‘/ c
u == —
a—blf A
Series::vcnt : Center point -u of power series expansion
involves the variable u.
Series::vcnt @ Center point -u of power series expansion
involves the variable u.
Series::vcnt : Center point -u of power series expansion
involves the variable u.
General::stop : “Further output of Series::vcnt will be
suppressed during this calculation.
v u t
Qut[54]=2 ———du == -
oa—blu A

In both cases we find that the error message is the same: “Center point —y of power series
expansion involves the variable y.” This tells us why it failed, but it also gives us a direct
clue as to how Mathematica is solving this integral—it is using a power series expansion of



132 Chapter 3 The Draining Tank and Related Systems

the integrand. Since the indefinite integration works, it may also be using this method or the
substitution method. We plot the integrand to remind ourselves what is happening and why
there is a problem:

1
Inf55]:=£f[y_]1 :=
n(55] y-1 a-blly
a = 10;
bl = 1;
A = 10;

Plot([flyl, {y, 0, 200}]:
£[100]

15
10

50 1(? 150 200

-10
-15

Power::infy : Infinite expression % encountered.

Out[60]=ComplexInfinity

Right—the integrand goes to complex infinity in the vicinity of y = 100, that is, when the
numerical value of bl,/y is the same as a! This causes some difficulties in the integration. We
can now turn to the power series expansion of the integrand. We can do this as follows out to
terms of any order #; in this case we choose to go out to order 3:

In{61]:=Series| 0, 3}1

1 iy
a-bl /y" "’

1 v 3/2 2 5/2 3
Out[61]= — + VY y , Y ,_Y y 3% +0[y17/?

+ + +
10 100 1000 10000 100000 1000000 10000000




3.5 Mass Input, Output, and Control 133

Now we can use this series to do the integration:

1

In[62]:= | Series[—————, {y,
nli62] /erlesa_blﬁy

0, 3}]dy

3/2 2 5/2 3 7/2 4
y
out[62]= 2 + Y 4 Y Y Y

+ + + + + +O[y]9/2
10 150 2000 25000 300000 3500000 40000000

How does this relate to the solution that we obtained via the direct integration of the original
function? We know that solution, so we will test it against this new solution:

_2 (b1,/y — aLog[a] + a Log [a — b1 /¥])
b1?

To do so we can expand the log in a power series about zero and subtract it from the -%‘V term:

2(bl,/y - aLoglal + aSeries[Logla - bl.,¥], {y, 0, 4}1)

b12

3/2 2 5/2 3 7/2 4
outfezj- XY, ¥ ¥ LY LY .\ y
10 150 2000 25000 300000 3500000 40000000

In[63]:=

Ahal! It is clear that these are the same solution. Thus, Mathematica found the solution in terms
of the power series and then recognized that this could be written as a difference including
the log function of the argument!

We can now evaluate this power series result and compare it to the result we obtained
from the closed form solution. That is to say, if we had not recognized, as Mathematica did,
that the power series solution could be recast as a log, then we might have simply used the
solution we had. Let’s compare this new solution with the previous one by making a function
of it, evaluating t at each y and then plotting it against the previous results:

v 2b1y3/2 b12y2+2b13y5/2+b14y3 2b15Y7/2 b16y4
+ +

Inf64] :=82[y_J:=A(—+ )
a 3a? 2a3 5a4 3a’ 7af 4a’

In[65]:=a = 10;
bl = 1;
A = 10;

In[68]:=tst2 = Table[{s2[x] // N, x}, {x, 0, 100, 10}]

Out[68]={{0., 0}, {12.7795, 10}, {29.0873, 20}, {48.9513, 30},
{72.843, 40}, {101.396, 50}, {135.358, 60}, {175.578, 70},
{222.991, 80}, {278.621, 90}, {343.571, 100}}

In[69] :=pl2=ListPlot[tst2, PlotStyle -
{PointSize[0.015], GrayLevel[0.41}1;



134 Chapter 3 The Draining Tank and Related Systems

100 :

40 .

201 -

50 100 150 200 250 300 350

In[70] :=Show[{pll, pl2}, DisplayFunction - $DisplayFunction];

Steady State
100 — .

80 ° .
60 .

40 :

20| .-

100 200 300 400

The results indicate that the fourth-order approximation of the integral does follow the closed
from solution rather well for about 60% of the steady-state value, and then it deviates and does
so markedly. Notice also that it does not have an upper bound; its values go right through the



3.5 Mass Input, Output, and Control 135

steady state. How can we account for this? Recall that we approximated the integrand with a
power series of order n = 3. In so doing we dropped the higher-order terms. This has to lead to
numerical errors. Clearly, when Mathematica numerically evaluates any log function, however
it actually does it, it does so in a fashion that is far more accurate than of order 3 accuracy. We
could go to higher order, reintegrate, and see if the agreement is better. We do that now:

In[71]:=Clear([a, bl, t, A]

1
Seri ——,{y, 0, 10}]d
/ er:.es[a T bivy h'4 ] dy

v 2bly3/2 b12y2 2b13y5/2 bl4y3 2b15y7/2 b16y4 2b17y9/2
+ + + +

Out(72]= =+ + +
a 3a2 2a’ 5at 3a’ 7ab 4a’ 9a8
. b18y5 . 2b19yll/2 . b110y6 2blllyl3/2 b112y7 . 2bll3y15/2
5a’ 11al9 gall 13al? 7al3 15al?
p1M4y®  2b115y17/2  p116y9  2p117y19/2 118,10  5p119,,21/2
+ + + +
g8al® 17alt 9al’ 19a'8 10at? 21a%0
20,11
+b1 Y 0ly]23/2
11a2? Y

In{73]:=83[y_]1 == A( X+2b1y:/2+b12§2+2b13}:5/2+b14§3+2b15!;7/2+b16¥‘
a 3a 2a 5a 3a 7a 4a
2b17y9/2 b18y5 2b19y11/2 b110y6 2b111Y13/2 b112Y7
9a® = s5a° 11a10 ' gall 13al2 7at3
2b113Y15/2 b114Y8 2b115y17/2 b116y9 2b117Y19/2 b118y10
T 1salt gals 17al6 9al’ ' 19al® ' 10al®
2b119y21/2 +b120Y11
21a20 11a2!

+

)

tst3 = Tablel{s3([x] // N, x}, {x, 0, 100, 10}]

out[77]= {{0., 0}, {12.7805, 10}, {29.114, 20}, {49.1474, 30},
{73.6905, 40}, {104.159, 50}, {142.957, 60}, {194.309, 70},
{265.875, 80}, {371.793, 90}, {538.163, 100}}

In[78]:=pl3 = ListPlot[tst3,
PlotStyle - {PointSize[0.015],
GrayLevel[0.8]), DisplayFunction - Identityl];

Show[{pll, pl2, pl3}, DisplayFunction — $DisplayFunctionl];



136 Chapter 3 The Draining Tank and Related Systems

Steady State
100 .

80 s »
60 «-

40
20

100 200 300 400

Clearly, by going out to more terms, that is, to terms on the order of n = 10, the accuracy is
much better and comes closer than that which we had for the analytical solution.

Solution with DSolve—the Differential Equation Solver

Mathematica also provides us with the differential equation solver DSolve, which can be em-
ployed for this problem. When we do this we do not have to work quite as much as we did
using the integration methods. The solution looks as follows:

In[80] := Removela, bl, A]

soln = DSolvel{y’I[t] == ﬂ, vy[0] == 0},

yitl, t] // simplify

sd[t_] := Evaluate[y[t] /. soln]

InverseFunction::ifun : Inverse functions are being used.
Values may be lost for multivalued inverses.

Solve::1fun : Inverse functions are being used by Solve,
so some solutions may not be found.

Solve::ifun : Inverse functions are being used by Solve,
so some solutions may not be found.

_1-bl’t
Jale 2aA 1)2

a’(1 + ProductLogl- = }

bl)

Out([81]={y[t] -



3.5 Mass Input, Output, and Control 137

Now we have a solution that is different from any of the others that we have derived so far. In
fact, the solution depends upon a new function that is unfamiliar in name—the ProductLog
function. The Help Browser tells us that the ProductLoglz] is the principal solution to the
equation z = we"'. We should test this solution to be sure that it is one that satisfies the original
equation. We can do so as follows. We have specified the solution as the function s4 [t]. Taking
the derivative of this function, we should obtain the same result as we acquire when we
put this function into the right-hand side of the equation and simplify. Therefore, we set the
derivative with respect to time equal to the right-hand side after substitution. To be efficient
we Simplify, PowerExpand, and Simplify again using the // Command structure. If you
need to see what is happening here, redo the derivative and the right-hand side without these
additional commands, and then take the results and apply them sequentially to reach the same
final forms.

In[{83]:=Clearl[a, A, bl]

In[84]:=1hs =0 s4[t] // Simplify // PowerExpand // Simplify

rhs = 9_—1)1—1;—— /sdlt] // Simplify // PowerExpand // Simplify

lhs == rhs
_1-b1%t
a ProductLog[- e 2aA ]
Out[84] = -
A
_1_b1?%t
aProductLog[- e 2aA ]
Out[85] = - ~

Qut[86] =True

Therefore, we can be sure that this ProductLog function is a full-time solution to the
equation. The next step in our analysis then should be to compare this solution’s behavior in
time with the previous solutions using the same parameter values. We do this as follows:

In[87]:=a = 10;
bl = 1;
A = 10;

Plot([s4[t], {t, O, 1050},
Epilog - {(Line[{{O0, 100}, {1050, 100}}1},
PlotRange - {{0, 1050}, {0, 105}},
AxesLabel - {"t", "h{t]"}];

pl4 = Plot[sd[t], {t, 0, 1050},
PlotStyle - {Thickness[0.006], Dashing[{0.025, 0.015}],
GrayLevel[0.2]}, DisplayFunction - Identityl];

Show({pll, pl2, pl3, pl4d}, DisplayFunction - $DisplayFunction];



138 Chapter 3 The Draining Tank and Related Systems

—_— e ———— e —— Tre— o —— =S —— = o

t
200 400 600 800 1000

Steady State
100 .

° p—
80 I
,’
./I
A
60 -
/.)
’Y
a| -
7
[

20|

100 200 300 400

Here we can see that the solution provided by DSolve is in fact one that is a full time-dependent
solution. This solution rises in time according to the same dependence of the log function we
had obtained earlier, but it also approaches the limiting level asymptotically and, therefore,
correctly.

If we leave all else the same but begin the process with either a higher or a lower volume
flow rate, what will be the result? Will the steady-state position change? We can see the
answer immediately by using the steady-state solution. Choosing a higher or lower flow rate



3.5 Mass Input, Output, and Control 139

will markedly affect the position of the steady state, as this level depends on the square of the
flow rate in.

Fluxional Input
We can now ask what the effect of fluxional input would be. Suppose, for example, that the
input were sinusoidal as we saw in Chapter 1: What would the output look like given a
gravity-driven flow response? The virtue of Mathematica is that we can solve this problem
with very little effort beyond what we have already done and we can compare the results with
those from constant input. Here is how we do it.

First, solve the new differential equation taking q[t] for the input as qo (1+ a Sin[3t ]):

dh[t]  qo(l +a Sin[Bt]) —b Aoy/2gh[t]

dt A

This can be solved numerically for a specific value of the parameters. We then evaluate
this new definition of h[t] and call it hsin[t] to distinguish it from the earlier work we have
done. We make similar changes to the plot names. The value for qo is taken as 20 in order to
be the same as the constant flow case. The magnitudes of a and 3 are taken to be the same as
they were in Chapter 1.

II’I[93].‘Z Clear[a, ,81 g, d. qOo, bl Ao, A, h]

Inf[94]:= r = 1.7;
A = N[7wr?];
Ao = 0.134;
b = .25;
g = 9.80;
go = 10;
a = 1.;
B = .25;
bAo./2g;

tmax = 1050;

In[104] :=80ln0 = NDSolvel
1 si t - b Ao /2gh{t
{Oih[t] == (1 + asialf L) ov2ghitl] ’
h{0] == 0}, hit], {(t, 0, tmax}];

hegin[t_] := Evaluate[h[t] /. soln0]
gin[t] := go (1 + aSin[(3t])
gqexsin[t_] := b Aoy/2g hsinit]

plgsinin = Plot[gin[t]l, {t, 0, tmax},
AxesLabel - {"t/sec", "gin[t]/m sec™"},
PlotRange - {{0, tmax}, {-1, 25}}];



140 Chapter 3 The Draining Tank and Related Systems

plhsin = Plot[hsin[t], {t, 0, tmax},
AxesLabel - {"t/sec", "h[t]/m"},
PlotStyle - GrayLevel[0.4]];

plgexsin = Plot[gexsin([t], {t, 0, tmax},
PlotStyle -» GrayLevel[0.4],
AxesLabel - {"t/sec", "gex[t]/m sec™1"}];

qin[t]/m sec™
25

20
15

L

200 400 600 800 1000

t/sec

h[t]/m
1 00 Caw A '“'I Iﬁl A ,'"I |"'| I'“lI I"] IlﬁlI .'Pl' Ii"]: IIn|I I|ﬁ,| :II'II'I _|Inlll In"‘llI I.'ﬂlll ,:Il Ir'ﬂ'l II~'| ,!ﬁlll

nA NIV | NI

annv It TRIRTATAR), |/ | Y
| -f'. ['lll"||'|.| \/ I||I '.|I IUI \V I\,f I'.J '.I Vv VUVVVYWYVVUNY
v

90 N A II'-JI 'u'l \ yuvvy
80 il

70 |
60
50| |

t/sec
200 400 600 800 1000



3.5 Mass Input, Output, and Control 141

qex[t]/m Sec“'l
10 —

9

t/sec
200 400 600 800 1000

The results show that the output flow is coupled to the input flow quite tightly after an initial
transient period. We can compare these responses to the sinusoidal input with those from the
constant input case by plotting qex[t] and hlt] for both cases:

Infl111]:=bl1l = 1;
a = 10;

Plot[bly/s4[t], {t, 0, tmax)}, PlotStyle - Thickness[0.01],
DisplayFunction - Identity];

Show([plgexsin, %];
Show[plhsin, pld];

qex[t]/m sec™’
10

t/sec
200 400 600 800 1000



142

Chapter 3 The Draining Tank and Related Systems

......
s AAANAARAARAARNARA

t/sec
200 400 600 800 1000

Since we chose all the parameters to be the same, we note the fluxional values of h and gex
for the sinusoidal input case are larger earlier than they are for the fixed input. The reason is
that the input flow in the sinusoidal case rises to a value well over its average value.

In[116]:=

Show[plgsinin, Graphics[{Thickness[0.015], Line[{{0, go}.,
{1100, gol}}1}11;

qin[t]/m sec™’
25

AR AR
Il

[

200 400 600 800 1000




3.6 Control 143

3.6 Control

It would be very nice to be able to dampen the input fluctuations and to smooth the output from
this vessel. To do this requires a control function. One form of control would be to increase the
flow rate out of the tank whenever the level in the tank rises or falls above or below a designed
set point level hy. For example, the set point level could be the steady-state level that we found
from the earlier example with constant input flow, which is the also the bold black horizontal
line in level graph above. To increase the flow rate in the case of gravity-driven flow, we must
increase the size of the orifice. We can increase it in proportion to the difference between the
actual level in the tank at any time and design level. The actual implementation would involve
having a level sensor tied to an actuator, which would open the valve more or less depending
on the level. The mathematical description of this control function can be given as:

Aolh[t]] = Aoo(1 — K(hd — hjt]))

In this expression Aoo is the nominal aperture size to deliver at the design flow rate based on
the constant set input flow rate. The second term in the parenthetical expression is the product
of a proportionality constant K and the difference between the set point level and the actual
level as a function of time. We substitute this for Ao in Torricelli’'s Law and also in the equation
describing a system with sinusoidally fluctuating input flow:

dhlt]  qo(1+ aSin[Bt]) — b Aoo(1 — K(hd — h[t]))\/2gh[t]
at A

Notice that if K were set to zero, the equation would revert back to that which we have already
solved for the uncontrolled system. We can operate on the right-hand side to put it into a form
that is more readily understood:

Inf[117]:=Clearla, B, g, q, 9o, b, Ao, A, h, K, hd, Aoo]

In[118]:=Collect[Simplify[PowerExpand [

go(1l + aSin[3t]) - bRoo(1l - K(hd - h[t]))\/zgh[t]]
A

1, qol

V2 Roob,/g/hIt] (1 - hdK + Kh[t]) , 901 + asin(th])

out[118]=-
A A
In[119],=_\/fhoo by/gvhIt] Collec;[(l - hdK + Kh[t]), K]
2 Jhitl (1 + K(-hd + hlt
Out[119]:-‘/_A°° b/gvhit] (1 + K( + hitl))

A



144 Chapter 3 The Draining Tank and Related Systems

From this form of the equation we can see that we have one function of time alone and another
that is a function of level hft]:

dhlf]  v/2 Aoob /g VI + K(h[t] — hd)) . 4o(L +aSin[t))

dr A A
dnlt] 2 Aoco b /gV/h[tl (1 +K(h[t] —hd))  qo(1 + « Sin[t8])
ar A - A

We will use all the same parameter values that we have used in the previous problem, but
we will have to pick a magnitude for K. This is best done by solving the problem and then
resetting the value to get a sense of the solution’s parametric sensitivity to the magnitude of
K. We start with a value of zero to be sure that the solution to this new equation reduces to
that of the one we have solved already. See the following graphical illustrations.

In[120]:=Clear{a, B, 9, 4, Qqo, b, Ao, A, h, K, hd, Aoco, t]

In[121]:= Ao =.
r = 2;
hd = 12;
A = N[7nr?];
Aco = 0.23;

b =1;
g = 9.80;
go = 20;
a = 1;
3 = .25;
K =0;

solnl = NDSolvel[
v2a00 by/gvhx[t] (1 + K(hx[t] - hd))
A

(hx’ [£] == -

+qo(1 + a8in[ts31)
A

, hx[0] ==0}, hx[t], {t, 0, tmax}];

hcl[t_] := Evaluate[hx([t] /. solnl]
qginft] := go(l + asSin[Gt])

Ao[t_] := Aoo(l + K(hd - hc[t]))
gexcl[t_1 := b Aoltl+/2ghc[t]

plgein = Plotlgin[t], {t, 0, tmax},
AxesLabel - {"t/sec", "gin[t]l/m sec™'"},
PlotRange = {{0, tmax}, {0, 50}}1:



3.6 Control 145

PlhcO0 =Plot[{hc([t]}, {t, 0, tmax]},
PlotStyle - Thickness[0.008],
PlotRange - {{0, tmax}, {0, 10}},
AxesLabel - {"t/sec", "h[t]l/m"}];

pPlgexc0 = Plot[gexcl[t], {t, 0, tmax},
AxesLabel - {"t/sec", "gex[t]/m sec 1"}];

qin[t]/m sec™’

50
40
30
20
10

t/sec
20 40 60 80 0

h{t]/m

N A O

t/sec
20 40 60 80 100



146

Chapter 3 The Draining Tank and Related Systems

gex[t]/m sec™!

Inf[141]:=

30
25
20
15
10

5

t/sec

0, tmax}];

20 40 60 80 100
K= 1;
solnl = NDSolvel(
(hx’ [£] == V2 Aoo b/g/hx[t] (1 + K(hx[t] - hd))
A
+<I°(1 - aAsm[tﬁ]):hxwl == 0}, hx([t], {(t,
hecl[t_] := Evaluate[hx[t] /. solnl]
qin(t] := qo(1l + aSin[St])
Ao[t_] := Aco(l + K(hd - hcltl]))

qexc[t_] := bAo[tlv/2ghclt]

plgcin = Plot[qin[t], {t, 0, tmax},
AxesLabel - {"t/sec", "gin[t]/m sec'l"},
PlotRange - {{0, tmax}, {0, S50}}1;

plhc Plot [he[t], {t, 0, tmax},
AxesLabel - {"t/sec", "h[t]/m sec'l"},
PlotStyle - {GrayLevel[0.5], Thickness[.011},

DisplayFunction - Identityl]:;

plgexc Plot [qexc[t]l, {t, 0, tmax},
AxesLabel - {"t/sec", "gex[t]l/m sec 1"},
PlotsStyle - {GrayLevel[0.5], Thickness([.01]},

DisplayFunction - Identity];



3.6 Control 147

Show[plhc, plhcO, PlotRange - {{0, tmax}, {0, 20}},
DisplayFunction - $DisplayFunction,
PlotLabel - "Upper = Controlled"];

Show[plgexc, plgexc0, DisplayFunction - $§DisplayFunction,
PlotRange - {{0, tmax}, {0, 100}},
PlotLabel - "Upper = Controlled"];

qin[t]/m sec™
50

40

30

20

10 /
20 40 60 80 e

100

h[t]égl sec”'  Upper = Controlled

175
15
125
10

75
5
2.5
t/sec
20 40 60 80 100




148 Chapter 3 The Draining Tank and Related Systems

qeﬁ[é]ém sec”' Upper = Controlled

80
60
40
20

t/sec
20 40 60 80 100

Using a bit of code and ingenuity we can have Mathematica compute the responses to incre-
mental changes in K ranging from 0 to 2!/, in increments of a quarter unit. The code to do
this is shown along with the outputs in two graphical forms—a stack plot and a graphics
array:

In[152]:=Clearla, B, g, @, o, b, Ao, A, h, K, hd, Aoco, t]

Ao =.

r = 2;

hd = 12;

A = Ninr?];
Aoco = 0.1A;
b=1;

g = 9.80;
qo = 20;

o = .25;

B = .25;
K= .1;

tmax = 200;
Clearl[a, 3, g, 4, go, b, Ao, A, h, K, hd, Aoco, t]

Ao =.
r = 2;
hda = 12;

A = N[7r?);
Aoco = 0.2A;



3.6 Control 149

b =1;

g = 9.80;

qo = 20;

a = 1;

B = .25;
=0

tmax = 100;
solns=Table [NDSolve[{hx’'[t] ==
v/2 Boo b +/gvhx[t]1(1 + K(hx[t] - hd))+qo(1 + asSin[tF])
A A
hx[0] == 0}, hx[t], {(t, 0, tmax}], (K, 0, 10, .25};

r

fns = Table[Evaluate[hx[t] /. solns[[n]l]l]1I[[1]],
{n, 1, Length[solns]}]:;

plots = Table[Plot[{fns[[n]]}, {t, 0, tmax},
PlotRange - {{0, tmax}, {0, 13}},
AxesLabel - {"t/sec", "h[t]/m sec 1"},
DisplayFunction - Identity], {(n, 1, Lengthlsolns]}l;

Show[plots, DisplayFunction - §$DisplayFunction,
Epilog - {Dashing[{0.025, 0.015}],
Line[{{0, 12.0}, {(tmax, 12.0}}1}];

General::spelll : Possible spelling error: new symbol name
"solns” is similar to existing symbol “soln”.

h[t]/m sec™’

t/sec
20 40 60 80 100



150 Chapter 3 The Draining Tank and Related Systems

By increasing the magnitude of K we meet the original goal of dampening out the ex-
cursions that would take place had we not included the control function. There is nothing
essential about the particular manner in which we solved this problem. Other functions could
have been chosen for the control function. The essential feature of this analysis is the logical,
stepwise manner in which we solved it.

3.7 Summary

In this chapter we have extended the analyses that we can do well beyond the simple systems
of Chapter 1. We began with a fairly simple problem, the gravity-driven flow of fluid from a
tank that led to Torricelli’s Law. With this in the tool box we were able to step smartly through
a series of systems with input and out fluid flows that were increasingly more complex,
culminating in the proportional control of the level of a tank with sinusoidally driven input
flow. As we moved through these examples, we have begun to use Mathematica in ever more
sophisticated ways, providing us with new techniques to add to our arsenal of problem-solving
weapons.



CHAPTER 4

Multiple-Component
Systems

Single-component systems are not adequate for realistic chemical engineering problems. It is
rare to have a single component unless it is the product of many different unit operations. If
chemical engineering is the science of chemical and physical change, then it is also a science of
complexity. A major source of complexity comes as a result of having to deal with real systems
that are composed of many interacting components. The objective of this chapter is to set up
a strong foundation for the problem of multicomponent systems of all kinds.

4.1 The Concept of the Component Balance

The masses of components can be handled in much the same way that we have handled total
mass. The total mass balance is simply the sum of each of the component balances. Imagine we
are playing a game tossing black and gray balls into a box on a scale (see Figure 1). Each ball
has the same mass. The player tossing the gray balls is more skillful than the one tossing the
black ones, and as a result she is able to throw more gray balls into the box every minute than
the fellow who is tossing black balls. The scale tells us how fast the total mass of balls, both
black and gray, is changing. If we want to know how fast the mass of just black balls in the box
is changing, then we need to know how many are being thrown per unit time over the period
of the measurement and similarly for the gray balls. The sum of the arrival rates of the black
and gray balls together is the rate of mass change in total within the box.

151



152 Chapter 4 Multiple-Component Systems

Figure 1

The total material balance for this system is:

dnlmt[t]

= r;lbln « + 1 rray
dt ¢ sray

The component balances are:

dmack(t] .

= m c
dt black
dmgeay |t .
a5 U
dt

Restating the total material balance, we have:

dmtut[t] _ dmblack[t] d"lgmy[t]
at 4t dt

Therefore, the sum of the component balances is the total material balance while the net
rate of change of any component’s mass within the control volume is the sum of the rate of
mass input of that component minus the rate of mass output; these can occur by any process,
including chemical reaction. This last part of the dictum is important because, as we will see
in Chapter 6, chemical reactions within a control volume do not create or destroy mass, they
merely redistribute it among the components. In a real sense, chemical reactions can be viewed
from this vantage as merely relabeling of the mass.



4.2 Concentration versus Density 153

4.2 Concentration versus Density

To this point we have had to deal only with the mass per unit volume in the form of density,
since we were concerned only with single-component systems. Multiple components share
the volume and because of this we must use concentration as well as density. The density of
a single component i is the mass of that component per unit volume:

mass;

pi= vol

For a multicomponent system the total density is the sum of the masses of the components
per unit volume:

>, mass;
Prot = — 5
vol

The concentration of any component i can be either a mass concentration or a molar concen-

tration:
C, = m; _ mass
vol vol
Ni 1 m C; mole
M,‘ = —— = _ =
vol Mw,;vol Mw; vol

Although these definitions are straightforward, they do seem to cause problems more often
than they should, especially for those who are just beginning to work with them in earnest.

The component material balance for a system with input and output, but no chemical
reaction, is written as follows:

If the mass flows are those of liquids, then in terms of mass concentrations, this becomes:

Vdm; _ (ﬁ1 . )
V dt b i,in 1,out V

d m; fh,‘ in T;’l,' out
— | == — — 4 \¥4
dt[ % V] ( % v )

d . 0
e iV——— Lin — “iou
ZICVI = Con—Cron)V

d
E [Cl V] = (Ci,in Gin — Ci,out QOut)



154 Chapter 4 Multiple-Component Systems

The last statement is the typical form of a liquid-phase component mass balance. When this is
divided through by the molecular weight of species i, this becomes a differential mole balance
since the concentrations are expressed in molarity units:

1 d 1
M_W',-E[Ci V] = (Ciingin — Ci out qout)M—Vvi

d 1
—[M; V] = (M inqin — Mi out Jout) =™
dt[ V] = Ming Joutq t)MW,-

Typically, this last statement is written with the symbol C for molar concentration just as it is
for mass concentration. Given that this is the case and it is not likely to change, the particular
meaning of C must be understood from context. Fortunately, this is usually easy to do.

4.3 The Well-Mixed System

Once we move away from single component systems there is the real possibility that the
components will partition themselves in different parts of the vessel due to different densities,
solubilities, or miscibilities. Partitioned systems are also referred to as “distributed.” That
means that the properties are not everywhere the same over macroscopic length scales. To
handle distributed systems we typically have to choose a differential control volume, that is,
an infinitesimal volume within the macroscopic system. We will see this when we consider
plug flow down a tube.

Although partitioning is often encountered, and even though it may be advantageous
in many cases, it is also true that many systems are either naturally homogeneous or are
forced to be by the action of vigorous mixing. When a system is homogeneous, it means
that the density and concentration are everywhere the same throughout the control volume.
This is referred to as the condition of being “well-mixed.” From the purely mathematical
vantage, it refers to any system that can be described solely in terms of time as the independent
variable. We turn now to problems of systems with multiple components and which are well
mixed.

4.4 Multicomponent Systems

Liquid and an Insoluble Solid

Mixtures are combinations of two or more components that share the same volume but retain
their identity—liquid plus an insoluble solid, for example. Preparing such a mixture may be
done in a mixing tank, such as that which is used to make cement. Often done in batch mode,
it can be done continuously as well in a system such as this one shown in Figure 2.



4.4 Multicomponent Systems 155

Mass flow liquid Mass flow of solid

Well mixed

» Mass flow of
mixture out

Figure 2
There is a mass flow of both liquid and solid into the tank; the two are mixed well and

then flow out of the tank to their application. The total and component mass balances for the
system are:

d mixV o
Total: _pdt = p1q1 + Ms — Pmix Gmix
. . dC mixV
quUId3 Id—t = piqr — Cl.mix Gmix
qu mixV o
lid: ———— = s T L5, mix §mix
Soli T s — Cy mix g

We have said that the total material balance is the sum of the component balances. Is that the
case here? If so, what can it teach us? We will check it here:

dCimixV  dCemixV

it ar

d[CI,mix + Cs/miX]V
dt

= piqr — Cl,mixqmix + r;ls - Cs,mixqmix

=pq + tity — (Cpmix + Cs, mix)qmix

For this to be equal to the total material balance, it must be true that the sum of the mass
concentrations of solid and liquid are equal to the density of the mixture:

dpmixV _ A[C,mix + Cs,mix]V.
dt dt ’

iff Pmix = [Cl,mix + Cs,mix]



156 Chapter 4 Multiple-Component Systems

This is of course the case. If we remember that density is the sum of the masses occupying the
same unit of volume, then we can see that:
miy + mi my ms
Pmix = Vmix B Vmix * Vmix B Cl,mlx * CS,le

This also means that there are really only two independent equations describing this system
and that, given any two, the other can be derived. Now we can now proceed to solve these.
But before we do, it is important to inspect the component balances and the total balance for
their other details—namely, the consequence of the system being “well-mixed.”

Notice that in the total material balance the argument of the derivative involves this mix-
ture density. This as we have seen is the sum of the two concentrations of the two components,
not the density of the solid alone, nor that of the liquid alone. On the right-hand side of the
same equation, we note that the two input terms do involve the densities of the solid and
the liquid in their pure states. This is because they are being delivered to the system as pure
“feeds.” The outflow term, however, includes the mixture density, the same density that ap-
pears in the argument of the differential. This is critical to understand. It says that everywhere
in the control volume the density is the same at any time and that the material exiting the
control volume also has the same density as the material in the tank. This is the consequence
of assuming the system is well-mixed. The same analysis can be made for the two compo-
nent balances. They show the well-mixed assumption because they include the corresponding
mixture concentrations in the differential and the out-flow term.

To solve these equations we need to have a set of initial conditions for the system. We must
decide, or know, whether the tank is initially empty and both the solid and the liquid are added
simultaneously, if the tank is initially loaded with pure liquid (or pure solid), or if the tank
contains a product mix from some previous production run. For the sake of this example we
will assume that we must start up the tank and the process from scratch, that is, from an initially
empty condition to production of the target mix. To do this we will follow three time intervals:

1. Fill the tank with liquid to a predetermined level hmax.

2. Feed only solid with good mixing until a target density for the mixture pJ; is reached.

3. Feed liquid with solid to maintain this density while product mix flows from the tank
continuously.

We will want to know how long it will take to reach each stage for a given set of inputs
such as the feed rates and the target mixture density. To obtain that information we need to
solve the balance equations in each interval. We do that now.

Interval 1: No solid flow and only liquid flow implies a single-component balance problem.
The total material balance becomes:

dpmixV o
dt = piqi + My — PmixGmix
d,O[V
-_dt = piq

hliq,o A
qi

V() =qit and h(t):%t:ﬂl,:



4.4 Multicomponent Systems 157

Interval 2: Solid flow and no liquid flow to reach the critical density p’ . corresponding to
Tmix and C; ... The density of the mixture will be changing with time as the solid is fed to
the system. We need to know how long it will take to reach the target density:
dpmixv =
a7
dpmix av o
dt + Pmix dt = m;

d[Cl mix + Cs mix] dv
\Y - : C mix Cs mix] —, =
T + [C1mix + Cs,mix] at

]
dCl mix av dcs mix av °
- mix 35 Vv - s,mix 3, | = Ms
[V T +C, dt]+[ I +C,, ] m
dCI,mixV+dCs,mixV

dt dt
dcl,mixV

dt
dCs,mixV

dt

A

=0
= m,

If we expand the total material balance equation, we obtain the sum of these two back and
so we are unable to solve the problem. This is because we have the unknown and only two
independent equations. The unknowns are the concentrations of each component and the
change in volume. Each is a function of time. We need another independent equation. To
obtain this we need to think about what is happening.

When we add an insoluble solid to a liquid, the volume of the mixture must increase. In fact
the volume must grow by the volume of solid that has been added according to Archimedes’
Law.

massSgelid + massliquid

Vmix = Veolid + ‘/liquid =
Psolid Pliquid

During interval 2, the volume of the liquid is a constant but the volume of the solid in the
mixture changes with time:

gt
Vmix[t] = + Viiquid
Psolid
d Vmix [t] _ Tons
dt Psolid

Returning to the overall material balance equation, we find:

dpmix[t] deix[t]
dt + pmix[t] dt

thst dpmixlt] 1, .
( — + Viiquid) =+ Pmix[t] L= mi
Psolid at Psolid

Vmix[t]

S




158 Chapter 4 Multiple-Component Systems

Now this equation is soluble because it involves just one independent variable (function)—that
of pmix[t]. At the start of interval 2 the density of the “mixture” in the control volume is just that
of the liquid. This provides the essential initial condition that we need for solving the problem:

Infl1l]:= Clear[ms, V]

. - It
Simplify[DSolve[{(IEt + V1) pli [t] == ms(1l - M),

Ps Ps
Pmixl0] == p1}, Pmixlt], t1]

(tms + V101) ps

out[2]= {{ppixlt] -» ————1}}
tms + Vi o5

We can also solve for the change in the concentration of the solid in the mixture as a function

of time:
dCs,mix[t]Vmix[t] —
dt o
dCs mix[t] deix[t] o
Vmix t|——— Cs mix t = m,
(=5 + Comnl 15 A
ronﬁt dC~ mix[t] ﬁ1§ o
: + Vi uin) —_— Cslmix t - = M,
(psolid figuid dt []psnlid
. . m°s ’ ° cs,mix[t]
In{3]:= Slmpl:.fy[DSolve[{(;—t + V1) o gy, [t] == ms(1 - —p—),
cs,mix[ol ==0}, cs,mix[t] ,tl]
tms g
out [3]= {{Cs,nixlt] - ——1}}
tms + V) og
and for the change in concentration of the liquid in the mixture:
ms , .
In[4]:= DSolvel{(—t + Vi)cy ,;,[t] + m8 C1,mi.lt] == O,

Ps

c1,mix[0] ==P1}: cl,mix[t]I t]

Out[4]= {{Ci,mix[t] - p1 (V10s) ™ (Ems +Vyps) 7))

Our objective at this stage in the analysis was to solve for the time required to reach the target
product mixture density of (p} ; ):
(tms +Vip1)pe

In[5]:= Simplify[Solve i == o £
[5] mp v [Pmix, p tms + V, p, 1]

Vips {=P1 + Pnix, p)
II{S (ps _pmix, p)

Out[5]= {{t - 3}



4.4 Multicomponent Systems 159

Thus at a given delivery rate of solid, fixed initial volume of liquid and solid density, we find
that the time is:

. Vips(Pmix — £1)
ms(ps — Prmix)

We should also like to know the level in the tank of given volume and cross section A when
this product density is reached. It is critical that we check this. In other words the initial level of
water in the tank must also be fixed by the maximum level of the target density of the mixture
that can be held in the tank and mixed very well. We have an expression for the volume of the
mixture in the tank as a function of time during this interval. We should divide it by A and
then substitute in the time we just solved for to find the level that will be called for to achieve
target density:

gt
Vmix[t] = . + Vliquid
Psolid
Mt
hmix[t] = + hliquid,u
solid
In[é6]:= Clear([A]
Solve [hmix == A!::lt“ + hliquid,or hm:i.x]
tms
Out[7]= {{hpix = ——— + hiiquia,o}}
Apsolid

The new level in the tank at the end of this second interval will then be:

« _ Vil=pi+ pri)ps

e _+_h do
miX T A (= pr + ps)ps A

but we know that V; is just A hyjquig, o SO the overall expression becomes:

(_pl + p:;]ix)ps 1:|

* = hl id, [
e A

Interval 3: This interval begins when the product mixture reaches its target density; then the
flow out of the tank is turned on. At the same time the flow of the liquid feed must also be
turned on in order to maintain the system in a steady state. We can solve for this:

dpmixv
dt

0= piqr + s — PmixG mix

~q1 + rons = Pmixdmix

_ pmixqmix - 7;15

B o

= pq + rhs — Pmixf mix

qi



160 Chapter 4 Multiple-Component Systems

As the solid is insoluble in the liquid, we know that the volume flow rate of the mixture must
be the sum of the volume flow rates of the two components. The volume flow rate of the solid
is just the mass flow of the solid divided by its density, assuming that the latter is nonporous.
Therefore we can solve for ql as follows:

In[8]:= Clear[ql, pl

nix, n(Ql + g8) - ms ms
Simplify[Solve[{qgl == Pmix, , @8 == —1}, qlll
P1 Ps
qs(_ st mix, )
out[9]= {{ql - PP 21
P1 ™ Pmix, p

Now, we will use these solutions. The mixing will be done in a pilot-scale unit. The tank that
is available is 5 m high and has an aspect ratio of 3:1:h:d. Its diameter, area, and volume can
be immediately computed:

In{10]:= hmax = 5;
d = N[hmax/3]

a = NI (d)"]
= T —
2
Vtank = Ad
Out[11]= 1.66667
Ooutfl12]= 2.18166

Qut[13]= 3.6361

This makes the volume 3.6 m?, the cross-sectional area is 2.18 m?, and the diameter is
1.67 m. The density of the solid is 2 kg L', the liquid is 1 kg L™, and the target density p,._
is 1.5 kg L~!. Experience indicates that the level of the mixture when settled should never
rise to more than half the maximum level of the tank, to ensure that no mass leaves the tank
during vigorous mixing. This means that we can base our calculations on a mixture level of
hmax From this information and the parameters we can solve for the initial level of water in
the tank at the end of interval 1:

In(14]:= pmix = 1.5
psolid = 2
pliq = 1;
hmixt = 2.5;
hligmax = Solve[hmixt == hligo
(-pliq + pmix)psolid

w.

. s — + 1), hligqol]
(-pmix + psolid)psolid



4.4 Multicomponent Systems 161

out{18]= {{hligo — 1.25}}

out[19]= 2.72708

The volume of water that must be added during interval 1 is 2.727 m?, which is the product
of the area of the tank and the liquid level. The water can be fed at .25 m> min~"' so the time
required to add the water is 10.9 min. The mixing of the solid with the water is best done slowly
to ensure homogeneity. Therefore, 30 min is to be allowed for interval 2. Given this, we can
compute the mass flow of solid required from either of the following equations. We use both
to verify the result. We note that the densities are in units of kg/L, whereas the volumes and
levels are in units of meters. There are (as shown in what follows) 1000 L per m?. Therefore,
each of the densities must be multiplied by this factor to convert them to kg per m*:

1L 100cm

In[20]:= 3//N
[20] 1000 cm? 1m)
1000.L
out[20]= 3
m

In[21]:= t = 30;
vl = 2.727;
(tms+V1 pliql000)ps80l1id 1000 .
tms +V1 p801id 1000 » sl

V11000 psolid 1000 (pmix- pliq) .
Solve[t == 5 - - , msl]
msg 1000 (psolid - pmix)

Solve[1l000 pmix ==

out[23]= {{ms — 181.83}}
out[24]= {{ms — 181.8}}

The mass flow of solid must be 181.8 kg min~' during interval 2. We can check our work
to this point to be sure that at the end of the second interval we have a slurry with the target

density of 1.5 kg/L:

181.8_Z30min
ki L
21000,

Interval 2*)

(*Volume of the Solid Added During

In[25]:=

General::spelll: Possible spelling error: newsymbol name
"min" is similar to existing symbol "Min".

out[25]= 2.727 m®

In[26]:= 2.727 m®> (*Volume of the Liquid AddedDuring Interval 1%*)

out[26]= 2.727 m?



162 Chapter 4 Multiple-Component Systems

Inf27]:= 2(2.727 m®) (*Total Volume of the Solid and Liquid at
End of Interval 2%*)
out[27]= 5.454 m?
(181.82830min + 2.727m3>20%0%) 1
Inf{28]:= 3
2(2.727m>) 1000 L
(*Mass Solid + Liquid/Total Volume*)
1.5kg
Out[28]=

This number checks and confirms that we have the right quantities, flows, and times to this
point.

Our attention now turns to interval 3, which will be the steady-state production of slurry.
At steady state we would like to be producing 1000 kg min~! = p*. g%. of slurry at the
density of 1.5 kg /L. This would correspond to a volume flow rate equal to 666.67 L/min or
0.667 m3/min slurry. The steady-state material balance can be used to find the required solids
mass flow rate needed to achieve this production rate:

piq; + My = PmixGmix
Pmixqmix — 7;15

]:
1 ol

As the maximum water flow rate is 0.25 m® min~!, we can compute the solids flow rate:

In[29]:= pliq = 1;
ql = 0.25;

Solve[1000 pliq ql + ms == 1000, ms]

Out(31]={{ms — 750.}}

To make the production rate we seek the solids must be flowed in at a rate of 0.75 kg
min~!. A good question to ask at this point would be how would we transition from the end
of interval 2 into the steady state? How would we program the increase in mass flows that
would have to take place in order to maintain the product density and to maintain the steady
level in that tank? We can check the steady-state quantities by recomputing the volume flow
rate of slurry from the mass flow rate of solids, the volume flow rate of water, and the target
density of the product:

ki m® 1000kg
750% +.25———

In(32]:= ;‘;" m__ (*Volume Flow of Slurry at St.St.*)
1500%¢
0.666667m*
out[32]= —=2222 1
min

This checks perfectly with the previously computed value.



4.5 Liquid and Soluble Solid 163

4.5 Liquid and Soluble Solid

A more complex problem is that of a soluble solid and a liquid. The physical situation is the
same as in the previous problem. The initial equations are also the same except that now we
are dealing with a solution rather than with a mixture:

Apsom V o
Total: —[)d;— = P11 + Ms — Psolnfsoln
L. dc,, v
Liquid: dl = o191 — Cl, Gsoln
t
dACs somV o
Solid: —# = Mms; — Cs,soln‘]soln

Case |: Constant densities

If the concentration of the soluble solid does not reach a high level, then it is reasonable to
assume that the densities of the pure solvent and the solution are similar enough to treat as
equal and constant. Doing this transforms the total material balance into:

— fsoln

This can be integrated immediately if the exit flow rate is a constant:

1,
V[t] =Vo + [QI + o — — qsolnilt
soln

The component balances can be integrated in the same way. The initial condition is that the
volume in the tank is Vo of pure solvent and the concentration of the solid is zero. To find the
analytical solutions to these equations, we specify V|[t] and then we use DSolve to simulta-
neously solve for the concentrations, calling the set of two solutions “a.” Two functions are
named and then extracted from the solution set and assigned to these names. Finally, the two
new functions are placed back into the original differential equations and tested for validity.

In[33]:= Removela, V, cs8, cl, p, ql, gsoln, t, Vo, c¢sl, cll,ms];

vit_] := Vo + (q1+“$—qsoln)t
a = Simplify(DSolvel{

O (cst] V[t]) == pgl - cs[t] gsoln, cs8l[0] == 0,
O (cl[t] VIt]) == pgl - cl[t] gsoln, cl[0] == p
},

{cslt]l, cl[tl]l}
t]]



164 Chapter 4 Multiple-Component Systems

csl[t_] := Evaluatelcs[t] /. al
cll[t_] := Evaluate[cl[t] /. a]

_ qlp +ms . . _ qlp +ms
qlp? p{Vop)ale-asclm*ms mg ((glt -gsoln t+Vo)p+tms) alp-asolm +ms
+

out{35]= {cl(t] — - :
qlp +ms qlp +ms

qlp +ms . qlp +ms
qlp® qlp® (Vop) alp=asols ¥1ms ( (g1t - gsolnt + Vo) p+tms) aln-gsoln +nis

cslt] —

q1p+m°s qlp+m°s
In[38]:= Simplify[d: (cs1l[t] V[t]) == pqgl - csi[t] gsoln]
Simplify [0, (c11[t] V[t]) == pgl - clil[t] gsoln]

Out[38]= True

Out[39]= True
Parameter values are applied and the functions are plotted in time:

In[40]:= SetOptions[{Plot, ListPlot)}, AxesStyle — {Thickness[0.011},
PlotStyle - {PointSize[0.015], Thickness[0.006]},
DefaultFont - ({"Helvetica", 17)}1;

Inf41]:= Clear{p, ql, gsoln, t, Vo]
ms = .
p=1;
Vo = 100;
ms = 5;
ql = 10;

Plot[{clli[t], cs1([t]}, {(t, 0, tmax},
PlotsStyle - ({{GrayLevel[0], Dashing([(0.01, 0.015}1},
GrayLevel[0.2]}, FrameLabel - {"t/min", "cl[t],cs[t]"},
PlotRange - {{0, tmax}, {.5, 1.0}},
Frame - True, PlotLabel - "cs[t] = Dashed"];

Plot[V[t], {t, 0, tmax}, PlotStyle — Dashing[{0.06, 0.06}],
FramelLabel - {"t/min", "V[t]"}, Frame - True,
PlotLabel -+ "Volume"l;

Unset::norep : Assignment on Overscript for ms not found.



4.5 Liquid and Soluble Solid 165

Out[42]= $Failed

General::spelll: Possible spelling error: new symbol
name "tmax" is similar to existing symbol "hmax".

o
O —

cl[t],cs|t]

© 2 9
o N

t/min



166 Chapter 4 Multiple-Component Systems

The solutions show two important aspects of this model as written: The concentrations come
to a constant and equal value and the volume continues to rise indefinitely. The reason for this
is that we took the outlet concentration to be a constant. Although this may have made for a
simple model to solve, it is also one that is not very realistic. The tank would be overflowing.
A more realisitc model would be one in which the exit flowrate was either set to match the
inlet flow rate, which would make % zero and the volume a constant at its initial level, or we
could assume the flow rate out was gravity driven and would respond to the level in the tank,
that is, Torricelli’s Law.

The first case in which an instantaneous achievement of steady state is assumed follows:

In[51]:= Removel[al, V, Vo, c¢s, csl, c¢l, ¢ll1, p, ql, gsoln];

In[52]:= al = Simplify[DSolvel({
O (cs[t] Vo) == pgl - csl[t] gsoln, cs[0] == 0,
O (cl[t] Vo) == pgl - cl[t] gsoln, cl[0] == p
}, {cslt], cl[t]},
tll;

csl[t_]:= Evaluate[cs([t] /. al)
cli[t_]:= Evaluate[cl[t] /. al]
Simplify[d. (csl[t] Vo)
Simplify[d, (cl1[t] Vo)

pql - csl[t] gsoln]

pdl - cllt] gsoln]

p=1;
Vo = 100;
ms = 5;
gl = 10;

tmax = 100;

gsoln = gl +

-
I

p

Plot[{cll([t], cs1l[t]}, {(t, O, tmax},
PlotStyle -+ {Graylevel[0], GrayLevel[0.5]},
AxesLabel - {"t/min", "cl[t],cst]"},
PlotRange -+ ({0, tmax}, {.5, 1.0}}, Frame - True];

Plot([Vo, {t, 0, tmax}, PlotStyle - GraylLevel[0.6],
AxesLabel - {"t/min", "V{[t]"}, Frame - Truel;

Qut[55]= True

OQut [56]= True



4.5 Liquid and Soluble Solid 167

1
0.9
0.8
0.7
0.6

20 40 60 80 100
200

150
100
50

0
0 20 40 60 80 100

The asymptotic concentrations that we compute are the same as those that we had in the
previous case, but the volume within the system is a constant.
In the second case the outlet flow rate is given by Torricelli’s Law, that is, qsoln=

bAo,/2ghlt] :

av

e s % — bAoy/2gh[t]

dh[t]_q1 g Ao
—r —A+p—A b7\/2gh[t]



168

In[65]:=

Chapter 4 Multiple-Component Systems

Removel[a2, p, ql, A, ms, p, b, Ao, g, ho, tmax, Vo, V, t];

vV =.

ql = 10;

A = 10;

ms = 5;

p=1;

b=1;

Ao = 0.1 A;

g = 9.8;

ho = 10;

tmax = 100;

Vo = 100;

a2 = NDSolvel{ .
Oh[t] == %(Ql + inpf - bAov2gh[t]), h[0] == ho,

O (A cslt] hlt])

IE-cs[t:]l:mo\/zgh[t:], cs[0] == O,
P
pqgl-cl(t] bao+/2ghlt], cl[0] == p

Oc (A cl[t] h[t])
},

{h[t]l, cs[t], clltl},
{t, 0, tmax}];

hn[t_]:= Evaluate[h[t] /. a2]
vnlt_1:= A hn[t]

rla2v = Plot[{hn[t]/ho, Vn[t]/Vo},
{t, 0, tmax}, AxesLabel - {"t/min", "hn[t]/ho,Vn[t]/Vo"},
PlotRange - {{0, tmax}, {0, 1.5})}, Frame - Truel;

csnt_]:= Evaluate[cs[t] /. a2]
cln[t_]:= Evaluatecl[t] /. a2]

pla2C = Plot[{cln[t]), csn[t]l}, {(t, 0, tmax},
AxesLabel - {"t/min", "csnl[t],cln[t]"},
PlotRange - {{0, tmax)}, {0, 1.0}},
PlotStyle - {Dashing{{0.01, 0.01}], Thickness[0.01]},
PlotLabel - "Dashed = Csnit]", Frame - Truel;

Remove: :remal : Symbol Removed[p] already removed.

General::spelll : Possible spelling error: new symbol name
"tmax" is similar to existing symbol "hmax".



4.5 Liquid and Soluble Solid 169

— i ———————

14
1.2
1
0.8
0.6
0.4

0.2 |
20 40 60 80 100

General::spelll : Possible spelling error: new symbol name
"pla2C" is similar to existing symbol "pla2v".

Dashed = Csn[t]

08

0.6

0.4 |

0.2 [

20 40 60 80 100




170 Chapter 4 Multiple-Component Systems

Now we have solved the full problem with gravity-driven flow. We see that the concentrations
transition smoothly once again to steady-state values, but now the level and volume of liquid
in the tank do so also. The assumption that the density of solution does not change very much
with concentration is quite restrictive. Therefore, we deal with this problem explicitly in the
next section.

Case 2: Variable Densities

The ‘how and why’ of variable density. Assuming that the densities were all similar in mag-
nitude was a restriction on the solution we derived. We can rederive the solution without
this assumption; but we do need a constitutive relationship to functionally couple the density
and concentration. A suitable expression can be found by consulting either the CRC Handbook
of Chemistry and Physics, or Perry’s Handbook for data relating the concentration of various
solutions of salts to their densities. From an analysis of these data we would find that the
density of a solution is linearly related to the concentration of that salt over a wide range of
concentrations. This relationship can be expressed as follows:

p=a+yC

With some salts the volume of the solution expands as their concentration increases; this leads
to a value of the constant y. This tells us mathematically that as the salt dissolves into the
solvent, it causes volume expansion and density diminution. In other words, if metal ions
and their counterions are low in mass and if they tend to repel the water molecules, then the
overall salt plus water structure occupies more space. For some salts (and neutral solutes) the
opposite occurs and the density increases; thus the value of y is > 0. Here the masses of the
ions are high and their charges may also be high. Thus they tend to draw the water molecules
into a more densely packed configuration, so that more mass is packed into a smaller volume
when compared to water (or the solvent). If y were 0, then that would indicate that the solute
was close in mass to the solvent, occupied a similar volume when dissolved in a given volume
of solvent, and left the solvent structure unchanged. If, for example, we were to add deuter-
ated water D, O to normal untreated water H, O, the changes in density would be small and
y would be very small.

These observations, and the linear relationship they lead to, can be rationalized by con-
sidering the definition of the density of a solution. The density of a solution is the sum of the
mass of the solute and the mass of the solvent divided by the total volume of the solution:

Myolvent T+ Msolute
plmsa] = ——————
Vsolution

Msolvent

(msalt — 0; Viotution = Vsolvent) = Psolvent

ol0] =

solvent



4.5 Liquid and Soluble Solid 171

If the mass of the solute in solution were 0, then the density is just that of the solvent. What if
the solute were very special in its interactions with the solvent—suppose it neatly occupied
those spaces between the solvent molecules that were open (interstices) but caused no net
increase or decrease in the volume of the solvent? If the mass of dissolved solute causes no
change in volume, then the solution volume would be the same as the original solvent volume
and the density becomes:

Msolvent + Msolute Msolvent Msolute 0 + Msolute
= = = Psolvent
Vsolution Vsolvent Vsolvent ‘/solvent

= Psolvent + Csolute;

iff Véolution = Vsolvent

The implication is that the constant y has the value of unity (1). This can only be true if the salt
simply adds to the solution and occupies no more or less space than the solvent molecules,
as we can see from the equation. If we now reintroduce the linear relationship for density in
terms of solute concentration, and substitute in for the terms, then we see that the case we
have just considered is a special case of the general one in which y = 1. To take this analysis
one step further, we can solve for y in terms of the measurables of the solution:

In[84]:= Clear[v]

Simplify[
msalt msolvent msalt msolvent
Solvel - + - == 7y +
Vsolution Vsolution

P!
Vsolution Vsolvent 1

msalt Vsolvent +msolvent (- Vsolution + Vsolvent)
out[85]= {{y —

msalt Vsolvent

We can rearrange this expression taking V = Vsolution — Vsolvent—in other words, the
extent to which the solute either expands or contracts the solvent volume by its presence, and
we find:

1 msolvent 8V
V= msalt Vsolvent

Then in the case where y = 1, by this expression we see that §V = 0, which is a nice consistency
check for what we have done to this point. This expression for 7 is a dimensionless grouping
that offers some insight into what this constant really means physically. If the solute causes
restructuring of the solvent by drawing solvent molecules to itself in ensembles that have
higher (or lower) numbers of molecules per unit volume, then that implies a “nonideality,”
and 6V # 0, which implies that y # 1.

We can now return to the problem of the feeding a salt and water to a mixing vessel
that initially contains water, and from which the flow is governed by gravity without the



172 Chapter 4 Multiple-Component Systems

assumption of ideality:

dpsoinV o
Total: _pdlt— = P11 + Ms — Psolnfsoln
.., dC,V
Liquid: S pi91 — Ci, Gsoln
dCs somV o
Solid: _dtl— =Mms; — Cs,solnqsoln

The total material balance now becomes:

d[pl + st,soln]V
dt

. 2
= piq; + s — [p1 + ¥ Cs soimlb Ao 2Ly

Total:
ota A

Recall that p; is just the density of the pure liquid solvent, and that h[t] = ¥l can be replaced

into Torricelli’s Law. These equations have become complicated enough that we shall define
the density upfront and let NDSolve handle the work of solving the simultaneous equations
(see the In statement that follows):

In[86]:= Remove[a3, ql, A, ms, p, b, Ao, g, ho, tmax, Vo, V,
t, cs, cl, ~v1;

ql = 10;

A = 10 ;
ms = 5;

po 1;
b=1;

Ao = 0.1 A;
g = 9.8;
ho = 10;

plt_]1 := po + v cs[t]
a3 = NDSolvel{cs[0] == 0.001,

. 2
O (VIt1pItl) == poqgl+ms-pl[tlbao /fV[t], v[0] == vo,
. 2g
O (es[t]Vit]) == ms-cs[t]lbAo /7 vitl,
2g
Oc(cl[t]V[t]) == poqgl - cl[t]bao /Tvlt]’ cl[0] == po

|



4.5 Liquid and Soluble Solid 173

{vit]l, cslt]l, cllt]l},
{t, 0, tmax}];

vnit_] := Evaluate[V[t] /. a3]

pla3v = Plot[{Vvn[t]/Vo}, {t, 0, tmax},
PlotLabel -+ {("Vn[t]/Vo versus t"},
PlotStyle - {{(Dashing({0.15, 0.05}1}},
PlotRange -+ {{0, tmax}, {0, 1.2}}, Frame - True];

csn[t_]:= Evaluatelcs[t] /. a3]
cln[t_]:= Evaluate[cl[t] /. a3]

pla3C = Plot[{cln[t], csn[t]l}, {(t, 0, tmax},
PlotStyle - Dashing[{0.15, 0.05}],
PlotLabel - {~v "=v", "cl[t] = top, cs[t] = bottom"},
Frame - True]:;

show[pla3C, pla2C, PlotLabel - {~v"=vy(dash)",
"el[t] = top, cs[t] = bottom"}];

General::spelll : Possible spelling error: new symbol name
"tmax" is similar to existing symbol "hmax".

| {Vn[t]/Vo versus t} ”

0.8

0.4
0.2

20 40 60 80 100
General::spelll : Possible spelling error: new symbol name
"pla3C" is similar to existing symbol "pla3v".



174 Chapter 4 Multiple-Component Systems

{0.9 =y, cl[t] = top, cs[t] = bottom}
1 ' |

0.8
0.6

0.45 e

0.2/
oL

0O 20 40 60 80 100

(08 =y(ash), cl[t] = top, cs[t] = bottom)

1—_

A}

A}

0.8
0.6

04

0.2

0 20 40 60 80 100
The last graph compares the two solutions of the problem—with and without the inclu-
sion of the variation in density (v = 0.9) with concentration of the salt. We can see that the salt

concentration rises to a higher steady-state level (dashed curve at bottom) when the variation
in density is included.



4.6 Woashing a Salt Solution from a Vessel 175

Mass flow fresh water in

» Mass flow out

Figure 3

4.6 Washing a Salt Solution from a Vessel

In some respects, a simpler problem is the reverse of the one we have been solving. What if
at the end of the process of preparing, feeding, and using a solution we have to wash the unit
with fresh water in order to prevent it from corroding the vessel and to decontaminate it?
How long will it take? How much water should we use? Wili the flow rate matter? These are
all very relevant chemical engineering questions that we can answer and do so fairly easily.
Figure 3 shows that we have a feed of fresh water into a tank containing the salt solution as
the initial condition.
The total and component material balances for this systems are as follows:

dpw]nv
Total: - = — WMsoln¥fsoln
ota it P41 — Psolnfsol
L ac,, v
Liquid: —“— = pig; — C, Gsoln
dt
dC»: solnv
Solid: ———— = _Cs solnfsoln
oli T, ssolnfsol

It is easy to see that if the wash out is done in such a way that the volume in the tank does
not change, the concentration of salt is low enough to ignore the density effect, and the total
differential material balance is zero, then the volume flow rate in is equal to that out and so
the only equation we need to solve is the last one for the salt concentration.



176 Chapter 4 Multiple-Component Systems

In{107]:= Removela4, gsoln, Vo, t, cs, cso, cll];
a4 = DSolvel
- clft 1
{cl’[t] == (P = ciltl) gsoln
Vo
cl[0] == clo,
t 1
cs'e], == 2181 980t
Vo
cs[0] == cso},
{cl[t]l, csltl},
tl;

cld[t_]:= Evaluate[cl[t] /. ad4[[1]1];
csd[t_]:= Evaluatelcs([t] /. ad4[[11]];

General::spell: Possible spelling error: new symbol name
"pl" is similar to existing symbols {p,po}.

1 - cl4(t 1
Tn[111]:= Simplify[d. cld[t] == P v[ 1) gsoln
o
4t 1
Simplify[d, csd[t] == -4l 3’“9° n
(o]

Out({111]= True
Qut[112]= True

In[113]:= Q1 = 10;

A = 10;
gsoln = ql;
ho = 10;

clo =1+ 0.9 cso - c80;

pladC = Plot[{cld[t], csd4[t]), {t, 0, tmax)},
PlotStyle - {Dashing[(0, 0}], Dashing[{0.15, 0.05}1},
PlotLabel - "Cs[t] Washout vs Time/min",

Frame - True, PlotRange - {{0, tmax)}), {0, c¢so + clo}}l:



4.6 Washing a Salt Solution from a Vessel 177

Cs[t] Washout vs Time/min

1.4 | | | | !
1.2

1 [
0.8
0.6
0.4
0.2

50 40 60 80 100

However, we will not make any of these simplifying assumptions. Instead, we will take
the flow out as given by Torricelli’s Law and the density of the solution to be a linear function
of the salt concentration. Then all we need to do is to modify the numerical routine we had
for the previous problem by eliminating the term for the salt feed:

Inf[123]:= Removela5, ql, A, p, b, Bho, g, ho, Vo, V, t, c¢s, cl, ~1:
Setoptions[{Plot, ListPlot}, AxesStyle - {Thickness[0.01]},
PlotStyle - {PointSize[0.015], Thickness[0.006]},
DefaultFont - {"Helvetica", 17}];

<
]

ql = 10;

A = 10;

ms = 5;

po = 1;

b =1;

Ao = 0.1 A;
g= 9.8

ho = 10



178

Chapter 4 Multiple-Component Systems

plt.]l := po + ~csltl

a5 = NDSolve((

2
3. (VItlplt]l) == poql - plt] bAo‘/;gV[t], VIOl == Vo,
[2g
-¢sit] bAo ;V[t], ¢cs[0] == cso,
[2g
= poqgl - cl[t] bao :V[t],

cl[0] == pl[0] - csl0]
}l
{VIit]l, cs[t]l, cl(tl},
{t, 0, tmax}];
vnlt_] := Evaluate[V[t] /. a5]

O (cs[t]VIt])

Oy (cl[t]lVIt])

pla5V = Plot[{Vvn[t]l/Vo}, {t, 0, tmax},
PlotLabel - "Vn[t]l/Vo vs t",
PlotStyle - {{Dashing[{0.15, 0.05}], Thickness[0.01]1}},
PlotRange - ({0, tmax}, {0, 1.2}}, Frame - True];

csnl[t_.]:= Evaluate[cs{t] /. aS5]
cln[t_]:= Evaluate[cl([t] /. a5]

pla5C = Plot[{cln[t], csn[t]}, {t, 0, tmax},
PlotsStyle - {{pDashing[{0.01, 0.01}], GrayLevel[0.61,
Thickness[0.01]), {(Dashing[{0.01, 0.01}],
GrayLevel[0.6], Thickness[0.01]}},
AxesLabel - {"t/min", "c[tl"},
PlotLabel - {~v"=v", "top dashed=cl[t],
bottom dashed=cs[t]"}, Frame - True];
Show[plaS5C, pladC, PlotLabel - "With and without
variable densities"];



4.6 Washing a Salt Solution from a Vessel 179

Vn[t]/Vo vs t

20 40 60 80 100

General::spell : Possible spelling error: new symbol name
"pla5C" is similar to existing symbol "pla5V".

{0.9 =Y, t_qp_dasped=cl[t],bottom dashed=csJ[t]}

1[
0.8
0.6
0.4
0.2




180 Chapter 4 Multiple-Component Systems

With and without variable densities
| ==

0.8
0.6

0.4 \\
02

0 i
O 20 40 60 80 100

We can see from the last graph, which compares the solution accounting for the change of
density with concentration versus the simple solution without this taken into account, that
for this value of y = 0.9, the error made in the approximation is in fact quite small.

4.7 The Pulse Input Tracer Experiment
and Analysis

The key assumption we have made throughout this chapter is that the solutions within the
control volume are indeed either homogeneous or well mixed. Questions of the degree to
which mixing occurs in a system arise in sciences as seemingly diverse as medicine and
environmental engineering. If a system is well mixed, then when we inject a pulse of tracer,
we should see a characteristic decay of the concentration in the system as a function of time.
Cardiologists use this method to measuring the pumping speed of a heart by inserting a
catheter and injecting a tracer of known volume into the heart. The rate of decay of the
concentration within the chambers of the heart provides the flow rate away from this organ.
Similarly, an environmental engineer may need to know the flow rate and mixing dynamics
in a river or stream. By injecting a water-soluble and harmless dye into the flowing water, the
diminution of the dye concentration at the point of “injection” can be used to visualize and
then model the dynamics of the river’s flow.



4.7 The Pulse Input Tracer Experiment and Analysis 181

Chemical engineers also use this kind of experiment. It can be utilized to great advantage
in chemical reactors to find the “residence time distribution” of the reactor, a crucial piece of
information which links microscopic flow behavior, that is, fluid dynamics, to measurables
of the system, such as chemical conversion and selectivity. For vessels that are not used for
reaction processes, but are used for other operations that are also critically dependent upon
mixing, this tracer experiment provides a great deal of insight into how the system behaves.
We can analyze how a pulse of injected tracer would behave in the well-stirred vessel we have
been analyzing here.

Imagine that an injection is made as a pulse of tracer, the concentration of which can be
measured in the tank and in the exit stream as a function of time. For a laboratory vessel, the
injection may be done by hand with a syringe full of tracer such as a dye or a radioactively
tagged molecule. For larger vessels at pilot and production scale ingenious methods have
been invented for putting a “pulse” of tracer into the unit. Ideally, the pulse should be added
instantaneously, which means in as short a time period as possible. In other words, the time
to add the tracer must be much shorter than the time required to “wash” it out of the unit.

For the case of the unit we have been considering, water would be flowing to the system
continuously with stirring and the whole system would be at a steady state with respect to level
and volume. The injection would be made at the top of the vessel with a very small volume
of highly concentrated dye; nothing else would or should be done. The high concentration
is critical to making the measurements accurate and precise. It also makes it possible to use
only a small volume of the dye, which is important so that the steady state is maintained with
respect to volume. Finally, small volume, high concentration injections can be done fast.

How can we model such a problem? To do the analysis we need to introduce and become
comfortable with two new functions: the Dirac-Delta function and the UnitStep (or Heaviside)
function. The Dirac-Delta function is infinitely intense and infinitesimally narrow—Ilike a pulse
of laser light. We can imagine it arising in the following way. We begin by considering a pulse
that is quite broad, such as the function that is plotted here:

Inf[146]:= 6 = 2
t
Plot[Sqrt[l/(BPi)]Exp[—(5)2],
{t,-5, 5}, PlotRange - All,

Plotstyle - GraylLevel[0.11]:

Out[146]= 2



182 Chapter 4 Multiple-Component Systems

We can sharpen this function in time by decreasing the value of the “time constant” ¢, as
follows:

In[148]:= Clear[f, £, al
t
£l0_, t_] := N[SQrt[l/(Pi)1Exp[- (=)?1]

0
flx, yl

6 = {1, .5, .1};

Table(

Plot(£[6, tl[[nl]l, {(t, -2, 2},
PlotRange - All,
DisplayFunction - Identity,
PlotStyle - GrayLevell[.l n],
AxesLabel - {"t", "I[t]"}

1,

{n, 1, Length([0]1}];

i /1
Out[150]= 0.5641892.71828 = [—
X

In[153]:= Showla, DisplayFunction - $DisplayFunction];



4.7 The Pulse Input Tracer Experiment and Analysis 183

t
-2 -1 1 2

As we decrease the time constant the function becomes more intense in and around the
t = 0. Doing this in the limit of & — 0 transforms this into the infinitely intense pulse of
infinitely short time duration. We can use this Dirac-Delta function, once we know more
about its properties and how it is implemented in Mathematica.

If we begin with a simple Table function, we see that if we ask for “t” in the interval from
—5 to 5, we get back a simple vector of those integers:

In[154]:= Clear[t, x]
Ta.ble[t, {t' -21 2}]

Out[155]= (-2, -1, 0O, 1, 2}

Taking the product (xf[t]) over the same interval leads to a vector of elements, each one of
which is the product of x and f[t] evaluated at the integer:

In[156]:= Clear[t, x]
Ta.ble[x flt]lt, {tl -21 2}]

out157]= {-2xf[-2], -x£f[-1], O, xf[1l], 2xf[2]}

However, look at what happens when we take the product (x DiracDelta [t]) over the same
range of t values:

1]

In{158]: Table[N[x DiracDeltal[t]l], {t, -5, 5}1

Out[158] {0., 0., 0., 0., 0., x DiracDeltaf0.], 0., 0., 0., 0., 0.}



184 Chapter 4 Multiple-Component Systems

The only element that is nonzero is that which falls at the point t = 0. This is because at every
other point the Dirac-Delta function is identically zero by definition. This is the consequence
of being infinitely intense and infinitely short in duration. We can display the position of this
pulse by placing another integer in the argument of the Dirac-Delta as follows:

In[159]:= Table[N[x DiracDheltal[t-5]], {t,-5, 5}1
OQutf159}j= {0., 0., 0., 0., 0., 0., 0., 0., 0., 0., x DiracDhelta{0.1}

In this case the nonzero value of the function has been pushed to the positive extremum of
this interval on t. If we integrate the product of the dye mass myy. and the Dirac-Delta, we
obtain this:

In{160]:= Clear[t, m]

In[161]:= Integrate[DiracDeltal[t] mgy, {t, -5, 5}]

Out[161]= mgye

The integration returns just my,. integrated over time.

Now we can use this technique to determine how the concentration of dye changes as
a function of time in a well-stirred vessel. We need only write and integrate the component
balance on the dye to have the answer because the volume of the tank is assumed not to change
with time. We will use the following equation for the rate of change of the dye mass:

d cayelt] _ Myye DiracDelta[t] — cay.[t]qex

dt \Y

Notice how we have used the Dirac-Delta in the balance. At time t = 0 all the mass of the dye
is injected instantaneously. At all other times the term for dye input is identically zero. We can
integrate this analytically:

In[l162]:= Clear[gex, t, to, V, cdye]
General::spelll : Possible spelling error: new symbol name
"cdye" 1s similar to existing symbol "dye".

In{163]:= Simplifyl

DSolve [
mgye DiracDeltal[t] - cdye[t] gex
{cdye’ [t] == —= v .
cdye[to] == 0}, cdyel[t], t]

1

““maye (UnitSteplt] - UnitSteplt
Out [163]= {{cdyel[t] — - (Uni ep[V] nitStepl o])}}




4.7 The Pulse Input Tracer Experiment and Analysis 185

We find that the integration looks like an exponential decay except that now a new function
has appeared—the UnitStep function. To see how the UnitStep function behaves in time we
can plot it as shown here:

In[164]:= Plot[UnitSteplt], {t, -5, 5},
AxesLabel - {"t", "UnitStep[t]"}.,
PlotStyle -+ {Thickness[0.01], Dashing[{0.05, 0.02}]}];

UnitStep(t]

T

0.8
0.6
0.4
0.2

4 -2 2 4

The UnitStep function is everywhere zero until it comes to t = 0 and then it goes to a value of
unity, which maintains ad infinitum. We can rewrite the solution as a function of time:

In[l165]:= Clear[gex, t, to, V, cdye, m]

ext

€V Mgy (UnitStep[t] - UnitStep[to])
v

In[166]:

cdyel[t_] :=

Maye = 10;
gex = 1;
Vv = 100;
to = -5;
pll = Plot[cdyelt], {(t, -100, 500},
AxesLabel - ({"t", "cdyel[tl"},
PlotStyle = {{Thickness[0.01l], Dashing[{0.05, 0.1}1}}1;



186 Chapter 4 Multiple-Component Systems

cdye|t]

0.1k

0.08
0.06

0.04

\

0.02
~

T

-100 100 200 300 400 500

Here we see that the pulse is injected at time “zero,” the concentration instantaneously jumps
discontinuously to a magnitude of 0.1, and then begins to descend exponentially as a function
of time. This is the characteristic curve we should see if the unit is well mixed.

To make this result more general we can nondimensionalize both axes. The concentration
of dye can be referenced to the maximum concentration at time zero cay.[0]. But what of
the time axis? How shall we nondimensionalize this? We will use the “holding time” as the
reference time. The holding time is the time required for a volume of liquid equal to the volume
of the unit to pass entirely through the unit. This is the ratio of the volume to the flow rate,

thatis, r = q <- We can remake the graph in nondimensional form:

[
[
(=]
-e

In[172]:= Mgye =
gex = 1;

qex'
cdye([0];

e " my,, (UnitStep[tr] - UnitStepltrol)
cdye[0]V

ndcdyel[tr_] :=

Plot([
ndcdye(t],
{t, -1, 5},
AxesLabel - {"tr", "n.d.cdyeltr]"},
PlotStyle - {Dashing[{0.01, 0.015}], Thickness[0.01]}
1;



4.8 Mixing 187

n.d.cdye[tr]

1%‘

0.8]%

0.6

0.4
0.2

o ccsmmmma {r

-1 1 2 3 4 5

The time axis is the reduced time, which is the ratio of real time to the holding time tr = { and
the y-axis is the nondimensionalized dye concentration. If we were to plot the experimental
change in nondimensionalized concentration versus reduced time, it should fall very near to
this curve. The extent to which the real system deviates is a measure of the degree to which
the system veers from the ideally “well-mixed” limit.

4.8 Mixing

Consider the following case, illustrated in Figure 4. In this experiment everything is the same
as in the last one, except that there are two well-mixed tanks rather than one. The same overall
flow gex is diverted through the two units with a 50:50 split and the same mass of tracer or
dye is added instantaneously to the inlet flow. The volumes of the lines to and from the tanks
are considered to be negligible. Each tank has exactly 50% of the volume of the previous tank,
and therefore their residence times are half that of the one large tank with the same overall
volume. The lines from the two tanks come together prior to the analysis and are assumed
to be perfectly mixed when they do. The question is: Will the time distribution of the tracer
concentration look the same or different from that of one well-mixed tank?

We do not need to redo the analysis. Instead we will take the solution for one well-mixed
tank and apply it to the two tanks. We have to be careful about handling the splits at the input
side where the stream divides into two and again when the two separate tank streams come
back as one. The overall input is divided into the two flows q1 and g2 by the fraction a and b.
The mass of the dye trace also will be split in the same way. This is done because the mass of
dye into the first splitter must be the same as the total mass of dye out, which is just the sum



188 Chapter 4 Multiple-Component Systems

mdye q1 = a gex
D e
- |
gin = gex - 1 !
| |
Cdye,a[l]
q2 =b qex
[ v | > Cdyetot[t]
=
Cdye.,b [l]
Figure 4

of the masses in the two streams:

Maye,in = Cdye,inqin 8t
= Cdye,1q18t + Caye,2q2 8t
= aCyye,19ex 8t + b Cyye 2qex 8t
= (aCuye,1 + b Caye,2) gex 8t

where 6t is the instantaneous or infinitesimally short duration of the Dirac-Delta function
pulse. This is also the time for the mass of the dye to hit each tank, that is, zero time.

The concentration of dye in each tank is exactly the same solution we derived already and
it is now applied individually to each vessel:

ae VT myy.(Unit Step[t] — Unit Step|to])
V1

cdye2aft ] :=

e ¥ myye(Unit Step[t] — Unit Steplto])

b
cdye2b[t ] := o

Notice that we have rewritten q1 and q2 in the arguments of the exponentials as “a gex” and
“b gex,” where “a” and “b” are the splits fractions that set the stream flows. We can compute
these two concentrations and plot them as functions of time, but what we really want is the

time dependence of the dye concentration after the two streams are recombined. Our goal



4.8 Mixing 189

is to compare the overall effect of two tanks on the tracer with that of one tank given that
the sum of the volumes of the two are the same as the one. We also want to be able to split
the flows between these two tanks in different ratios and with different tank volumes to see
how this affects overall time dependence. In other words, what if we did not know there were
two tanks? What if all we knew were the inputs and the outputs at the dotted box around the
two tanks? Would we be able to detect a difference for this system versus the one tank system
on the basis of the tracer experiment? To find out we continue our analysis.

To find the concentration at the point where the streams come back together we again
apply the conservation of mass. The mass of dye in the two lines coming into this mixing
point per unit time must be equal to the total mass going out of it per unit time. The rate of
mass flow in is just the sum of the products of the concentrations and flow rates of the two
streams exiting the tanks, while the rate of mass flow out is the concentration of the dye times
the total flow rate. The mathematical statement is much more succinct:

(a Cdye2a [t] + b Cdye2b [t])qex = Cdye2tot [t] (a + b) gex
(a Cdye2alt] + b Cdye2b[t])
a+b)

Cdye2tot [t] =

This last concentration is what we can measure if the tanks inside the outer box are hidden
from view, so this is the computation we want to make and to compare to the first case of one
unit in plain view. We should also do one more calculation to be sure we are not making any
errors. The mass of dye into the units must eventually come back out. Therefore, we should
integrate the product of the exit concentrations and flows from each tank and sum these to be
sure it is equal to the dye input mass. Yet another application of the conservation of mass.

The code for doing all of this is shorter than the description of it. Once it is written we can
use it over and over again. We could also put it into nondimensional form if we chose to, but
instead we will make our comparisons in real time and concentration. Recall that “a” and “b”
are the splits—these are entered as fractions, but they must sum to unity!

To check ourselves, in the first case we set the splits to one-half each and the volumes are
equal. We compare the concentration versus time curve for this case versus that for the one
tank. We do all the calculations for the two-tank case and then end with a graph comparing it
to the one-tank case (see the following graphs):

In[180]:= Clear[a, Dbl
In{181]:= Remove|[cdye2b]

In[{182]:= a 1/2;

b=1/2;

_agext

ae V1 mg.(UnitStepit] - UnitStep[to])

Vi
_bgext

be v my,(UnitSteplt] - UnitStepl[to])
v2

cdye2alt_] :

cdye2b[t_] :

mgye = 10;



190 Chapter 4 Multiple-Component Systems

gex = 1;
Vi = 50;
V2 = 50;

to = -5;
pl2 = Plot[{cdye2a[t], cdye2b[t]}, {(t, -100, 500},
AxesLabel - ({"t", "cdye[tl"},

PlotStyle - ({{Thickness[0.01l], GrayLevel[0.5]},
{Thickness[0.01], Dashing[{0.01, 0.025}1}},
PlotRange - All];

pl12b = Plol:t{n cdye2a[t] + b cdye2b[t] }, {t,-100,500},
a+b
AxesLabel - {"t", "cdye[t]"},
PlotStyle - ({{Thickness[0.01], GrayLevel[0.5],
Dashing[{0.05, 0.05}1}}, PlotRange - All]
NIntegrate[cdye2a[t] a gex, {(t, -100, 400}]1;
NIntegrate[cdye2b[t] b gex, {(t, -100, 400}];

% + %%
NIntegrate[cdye([t] gex, {t, -100, 400}]
Show[pl2b, pll];

General::spelll: Possible spelling error: new symbol name
"cdye2b” is similar to existing symbol ”"cdye2a”.

cdye|t]
0.1

0.08
0.06
0.04
0.02

t
-100 100 200 300 400 500



4.8 Mixing 191

Possible spelling error: new symbol name

to existing symbol “pl2~”.

0.06 \
0.04 \

\
0.02 <

S
——

t
-100 100 200 300 400 500

OQut[192]= -Graphics-

NIntegrate::slwcon :
Numerical integration converging too slowly; suspect one

of the following: singularity, value of the integration

being 0, oscillatory integrand, or insufficient

WorkingPrecision. If your integrand is oscillatory try

using the option Method —»Oscillatory in NIntegrate.

NIntegrate::ncvb:
NIntegrate failed to converge to prescribed accuracy

after 7 recursive bisections in t near t = -0.390625.

NIntegrate: :slwcon :
Numerical integration converging too slowly;
of the following: singularity, value of the integration
being 0, oscillatory integrand, or insufficient
WorkingPrecision. If your integrand is oscillatory
try using the option Method —»Oscillatory in NIntegrate.

suspect one

NIntegrate: :ncvb :
NIntegrate failed to converge to prescribed accuracy

after 7 recursive bisections in t near t = -0.390625.



192 Chapter 4 Multiple-Component Systems

Out[195]= 9.82826

NIntegrate::slwcon:

Numerical integration converging too slowly; suspect
one of the following: singularity, wvalue of the
integration being 0, oscillatory integrand, or
insufficient WorkingPrecision. If your integrand
is oscillatory try using the option
Method —»0Oscillatory in NIntegrate.

NIntegrate: :ncvb:
NIntegrate failed to converge to prescribed accuracy
after 7 recursive bisections in t near t = -0.390625.

Out[196]= 9.82826

cdye(t]
0.1

0.08
0.06
0.04
0.02 \‘\\\\

e . 1

-100 100 200 300 400 500

We see that the tracer curves all overlap perfectly and that the integrals are all approach-
ing 0 after 400 time units. Therefore, the code is working and our derivations are verified.
Now we can turn to a more relevant case. We will assume that the flows are not evenly split,
but a is 2/3 and b is 1/3. Take the volumes to be different: We will set V1 to 20 and V2 to
80. (Recall that V1 and V2 have to sum to the same value as that of V in the one-vessel case



4.8 Mixing

193

if we are to make valid comparisons.) To demonstrate, follow the In and Out statements and

the following graphs:
In[198]:= Clearl[a, b]
In[199]:= Remove[cdye2b]
Inf200]:= a = 2/3;
b = 1/3;

_agext

ae VI Mg, (UnitStep[t] - UnitStep[to])
vl

cdye2al[t.] :

_bgext

be V2 mgy (UnitStepl[t] - UnitsStep[tol)

cdye2b[t_] :

v2
magye = 10;
gex = 1;
Vvl = 20;
V2 = 80;
to = -5;

pl2 = Plot{{cdye2alt], cdye2b[t]}, {t, -100, 500},
AxesLabel - {"t", "cdyel[t]"},
PlotStyle - {{Thickness[0.0l1], GrayLevel[0.51},
{Thickness[0.01], Dashing[{0.01, 0.025}1}},
PlotRange - All];
pizb = plop(2S¥e2altl * bodyedbItl, ‘e, -100, 5003,
a+ b
AxesLabel - {"t", "cdyelt]"},
PlotStyle - {{Thickness{0.01], GrayLevel[0.5],
Dashing[{0.05, 0.05}]1}}, PlotRange - All]
NIntegrate[cdye2al[t] agex, {t, -100, 400}];
NIntegratel[cdye2b[t] bgex, {t, -100, 400}];

% + %%
NIntegrate[cdyel[t] qex, {t, -100, 400}]
Show[pl2b, pli];

General::spelll : Possible spelling error: new symbol
name "cdye2b" is similar to existing symbol "cdye2a".



194 Chapter 4 Multiple-Component Systems

cdye(t]

0.3
0.25
0.2
0.15
0.1
0.05

t
-100 100 200 300 400 500

cdye[t]

0.2“
0.15]!
0.1
0.05) \

————— -

-100 100 200 300 400 500




4.8 Mixing 195

Out[210]= =-Graphics-

NIntegrate::slwcon
Numerical integration converging too slowly; suspect one
of the following: singularity, value of the integration
being 0, oscillatory integrand, or insufficient
WorkingPrecision. If your integrand is oscillatory try
using the option Method —»Oscillatory in NIntegrate.

NIntegrate: :ncvb
NIntegrate failed to converge to prescribed accuracy
after 7 recursive bisections in t near t = -0.390625.

NIntegrate::slwcon

Numerical integration converging too slowly; suspect one
of the following: singularity, value of the integration
being 0, oscillatory integrand, or insufficient
WorkingPrecision. If your integrand is oscillatory
try using the option Method —Oscillatory in NIntegrate.

NIntegrate: :ncvb
NIntegrate failed to converge to prescribed accuracy
after 7 recursive bisections in t near t = -0.390625.

out[213]= 9.39734

NIntegrate::slwcon

Numerical integration converging too slowly; suspect
one of the following: singularity, value of the
integration being 0, oscillatory integrand, or
insufficient WorkingPrecision. If your integrand is
oscillatory try using the option Method —Oscillatory
in NIntegrate.

NIntegrate: :ncvb
NIntegrate failed to converge to prescribed accuracy
after 7 recursive bisections in t near t = -0.390625.

Out[214]= 9.82826



196 Chapter 4 Multiple-Component Systems

cdye([t]

0.2
0.15
\
\

\ <
N~

——

0.1

0.05

'—"'h__————t

-100 100 200 300 400 500

We see that the time dependence of the tracer in this case is markedly different, sharper and
narrower overall. Why? Because 2/3 of the flow is shunted through the small vessel with a
much shorter holding time. Therefore, even though the total flows through the two systems
with equal volumes are the same, the behavior is quite different. Therefore, even if we could
not see the two tanks, we would have to know that there was a very different flow mechanism
in this second case versus the case of one well-mixed tank of equal volume. Try other values
of a and b as well as V1 and V2 to see what happens.

To extend this model to three tanks would be straightforward, but so too would it be to
extend it to n tanks where n was large. One of the points to note about the equations is that
the argument of the exponential term is a ratio of the actual time to the holding time in each
unit because the holding time in the nth unit 6, is r‘z/—,' that is, the ratio of the flow volume of
the unit to the flow rate through it;

an e~ % my,.(UnitStep[t] — UnitStep[to])qtot
Vn
an e~ i mgy.(UnitStep[t] — UnitStep|[to])
on

cdyen]t] =

Now if we kept the total volume and total flow rate through these n different units the same
(as shown in Figure 5) as for the one-unit case, then we could have a very different tracer
concentration-time curve, depending on the distribution of the flows and the volumes within
the green box. There would be n different holding times in this overall unit, but the average



4.8 Mixing 197

Vi/qi [ v ]
mdye
—e—

V2/q2

==
=3

V3/q3 | Y

- Cdye,tot [t],
[@1+92+q3+..+qn]

Vn/gn

Figure 5

would be the same as the single vessel. If n were a discrete number of units, then there would
be a discrete distribution of holding times. But as n grew larger, say toward infinity, the volume
in any one unit would be infinitely small and so too would be the holding time in each. At this
point the discrete distribution could be described nicely by one that was continuous in the
holding time. The key would be to know how those discrete volumes, and hence residence
times, making up the total volume were distributed.

The model we constructed in Figure 5 can be thought of as a metaphor for one unit with
incomplete mixing. Rather imagine that in this poorly mixed unit some of the fluid goes
through faster than the average holding time and some slower. Thus depending on the path
taken, the fluid may spend more or less time in the unit than we would predict from the
calculation of the holding time. These times are the residence times of the fluid elements in the
unit. Such residence times come about due to the coupling of the fluid’s mechanical properties
with the geometry of the vessel and the type and energy of mixing. It is not uncommon to find
that even in an apparently well-mixed unit the fluid moves through some regions of longer
residence time due to recirculation cells, and other regions of shorter times due to bypassing
(see Figure 6).



198 Chapter 4 Multiple-Component Systems

Figure 6

As we have said, the key to the analysis of a system like this one is to have a function
that approximates to the actual residence time distribution. The tracer experiment is used
to find that distribution function, but we will work from an assumed function to the tracer
concentration-time curve to see what the experimental outcome might look like.

A good distribution function to examine in this context is the Normal or Gaussian dis-
tribution. Using this function, we would take the residence times ¢ to be normal distributed
around some mean value #m and with a standard deviation or spread of §6:

_w Hm)z
e 2402

NormalDistribution{fm, 0] = ——

V2 86

Mathematica has this function and many others built into its set of “add-on” packages that are
standard with the software. To use them we load the package “Statistics'NormalDistribution’.
The syntax for these functions is straightforward: we specify the mean and the standard
deviation in the normal distribution, and then we use this in the probability distribution
function (PDF) along with the variable to be so distributed. The rest of the code is self-
evident.



4.8 Mixing 199

In(216]: <<Statistics‘NormalDistribution:®

Remove [/, fmin, Omax]

fm = 100;

40 = 20;

ndist = NormalDistribution[fm, §60];

pdl = PDF[ndist, #];

pdl

Plot[pdl, {6, 30, 165},
AxesLabel - ({"6", "PDF[O]"},
PlotStyle - Thickness[0.01],
Epilog - ({GrayLevel[0.7], Thickness[0.01],
Line[{{100, 0}, {100, 0.022}}1},
PlotLabel - "fm"

1;

e~ (~100+6)?

20421

In[217]:

In[218]:

Out[222]=

PDF[6] om
0.02

0.015
0.01

0.005

60 80 100 120 140 160

With the mean value 100 and the deviation 20 time units the distribution has a familiar look (see
the preceding graph). The function tells us that most of the fluid elements (63%) go through
the unit with residence times that are between 60 and 140 time units. There are, however,
18.5% of the fluid elements that bypass with very short residence times and 18.5% that take
very long times to emerge due to recirculation cells. Some of these never emerge!



200 Chapter 4 Multiple-Component Systems

Now that we have a model for the residence-time distribution, how shall we use this in
the analysis of the unit? We need weighting factors for each residence time. These come from
the PDF itself. For example, if we integrate the PDF between any two residence times, we
obtain the probability density for that range of times:

In[224] := Removelf, fmin, Omax]

Inf225]:= 6m = 100;
00 = 20;
ndist = NormalDistribution[fm, 460];
pd2 = PDF[ndist, 0];
NIntegratel[pd2, {#, 50, 80}]

Out [229]= 0.152446

This result states that the fraction of residence times between 50 and 80 time units is just over
0.15. That would be the weighting factor for the flows with that range of residence times. If
there are 1 residence times, then as we have seen there are n weighting factors. If the number of
residence times is large then n tends toward infinity and the distribution of residence times is
continuous. We can obtain the weighting factor for the whole of the distribution by integrating
the probability density function over the range of residence times. In fact, we can see from the
form of the equations, which will actually be the PDF over the residence time, that we must
integrate since the form of the equation becomes:

f
o; endis[t] = Bed—(mdchiracDelta[t] — endis|t])

We will integrate over 6 and then over ¢ to solve the problem. This is done in what follows
in two steps below for clarity and with specific values for the mean residence time and its
deviation about the mean.

Removel[cndis, t, 6, Omin, Omax]
ndist = NormalDistribution[fm, 3460];
pd3 = PDF[ndist, 0];

In[230]:
In[231]:

3
Integrate[l%, {0, O6min, Omax}]

fm = 100;

00 = 22;

fmin = 0;

Omax = 56m;

ndist = NormalDistribution[fm, 46];
pd4 = PDF[ndist, 01;

_(0-6m)2
Omax @ 2062
fmin [4
V2md6o

pll = Plot[pd4,
{6, .00016m, 26m},

de
wf = N[

1;



4.8 Mixing 201

AxesLabel - {"6", "PDF[f]"},
PlotStyle - Thickness[0.01],
PlotRange - {{0, 26m}, {0, Max[Table[N[pd4],
{0, eminl fmax}]11}},
Epilog - {GrayLevel[0.7], Thickness[0.01],
Line[{{fm, 0}, {fm, Max[Table[N[pd4],
{6, 6min, 6fmax}11}1}1},

PlotLabel - "fm", DisplayFunction - Identity];
Show[pll, DisplayFunction - $DisplayFunction];

§max @ wiy (~100+8)?

OUC{233}= fmin 2]
20+/278

Integrate::idiv : Integral of enﬁag

converge on {0, 500}.

NIntegrate::slwcon :

Numerical integration converging too slowly; suspect
one of the following: singularity, wvalue of the
integration being 0, oscillatory integrand, or
insufficient WorkingPrecision. If your integrand
is oscillatory try using the option
Method = 0Oscillatory in NIntegrate.

dg

does not

NIntegrate::ncvb: NIntegrate failed to converge to
prescribed accuracy after 7 recursive bisections
in # near 60 =2.1849968739518537"' %"~ — 54,

PDF[6] om
0.0175
0.015
0.0125
0.01
0.0075
0.005
0.0025

0
25 50 75 100 125 150 175 200



202 Chapter 4 Multiple-Component Systems

In[243]:= Simplifyl
a = DSolve(
{cndis’ [t]
cndis[to]
]
cnd[t_, to_] := Evaluate[cndis[t] /. al]

(wf) (mgye DiracDeltal[t] - cndis|[t]),
0}, cndis([t], t]

cnd[x, Yyl
Maye = 10;
to = -100;

Out[243]= {{cndis[t] — 0.247489 e 0924748%¢ ynitStep[t]}}
Out [245]= {0.247489 e V247489 ynjitgStep[x]}

In[248]:= plndis
= Plot[

cnd[t, tol, {t, 0, 46m},

PlotRange - All,

PlotStyle - {{Thickness[0.01], GrayLevel[0.5],
Dashing[{0.05, 0.05}1}},

AxesLabel - ({"t", "Cdyel[t]l"},

DisplayFunction - Identity];

Show{plndis, pll, DisplayFunction - $DisplayFunction];

Show([pll, plndis, DisplayFunction - $DisplayFunction];

Cdyelt]
0.25}

0.2]\

-
-

0.15

-~

0.1 °

-

0.05 N\

100 200 300 400



4.9 Summary 203

PDF[6] om
0.0175
0.015
0.0125
0.01
0.0075
0.005
0.0025

4
25 50 75 100 125 150 175 200

The results are quite dramatic! We see that the normal distribution of residence times gives rise
to a much sharper change in the dye concentration transient than does the single value. In fact,
as we make the distribution broader by increasing only 6 while keeping the mean #m constant,
we find that the transient response becomes sharper and tends toward a Delta function close
to zero. Therefore, as the distribution becomes broader, we have much less perfect mixing, but
the response becomes sharper! To experiment with this effect simply change the value of §6;
the most pleasing values are in the range of 20-25; below this range the curves are too similar
and above it they are too different.

4.9 Summary

We have now fully integrated the concept of a component and the rate of change of a compo-
nent’s mass into our analysis toolkit. Along the way we have taken some time to understand
the concepts and meaning of density and how it relates to the concentration of the solute or
salt and of the solvent. This included the notion of nonideality when we realized that for most
solutes the volume either expands or contracts with their dissolution compared to that which
it would have had if the solute added simply was more solvent, but of different mass per
molecule. In going from a set of simplifying assumptions to a fuller analysis including these
density changes with solute concentration, we had to introduce more computing methods,



204 Chapter 4 Multiple-Component Systems

but we were able to move seamlessly from analytical solutions to numerical ones in order
to compare the results from increasingly complex cases. The last section of the chapter was
devoted to some new ways of looking at the idea of mixing. In this analysis we learned to
use the Dirac-Delta function. We also defined the holding time and used this to construct a
general nondimensionalized solution for the tracer injection problem. These are all tools that
we will see again.



CHAPTER 5

Multiple Phases—Mass
Transfer

A topic of utmost importance in chemical engineering is that of mass transfer. We are often
faced with processes that require moving molecules between different phases in order for the
outcome we desire to take place (see Figure 1). For example, a “simple” catalytic hydrogenation
of a liquid-phase unsaturated molecule, such as benzene, is not really so simple in that it
requires many mass transfer steps to occur prior to reaction. The hydrogen molecule must
move from the gas phase to the liquid phase. Once there it must diffuse through the liquid
and to the catalyst particle’s outer surface. From the surface it must now move from outside
to inside the particle. Next it needs to adsorb onto the internal surface and then diffuse to the
active site and react with a benzene molecule, which also has undergone all the same liquid-
phase steps of mass transfer and diffusion! All of this must occur before the reaction can take
place. Then the product must leave the active site and the catalyst in a reversal of these steps.
We can imagine that the rate at which these molecular transfers between and within phases
take place will affect the rates that we observe. If the molecules transfer quickly compared to
the pace at which they are reacted, then the reaction rate, that is, the chemistry will control
the rate of disappearance of benzene. If, however, the rates of benzene or hydrogen transport
are slow, then one or both of these may limit the rate of conversion to that of the rate of arrival
of the reactants at the active site. In other words, if the chemistry is “fast,” which it should be
with an effective catalyst, then it “waits” on the physical transport processes.

This chapter sets out to provide a means of handling these types of interphase mass
transfer problems taking into consideration their fundamental characterizing variables, the
conservation of mass, and appropriate constitutive relationships.

205



206 Chapter 5 Multiple Phases—Mass Transfer

Hydrogen from Gas to Liquid Phase Hydrogen to Catalyst Particle Surface

B Catalyst Particle

B Liquid Phase

Hydrogen to Active Site

Figure 1

5.1 Mass Transfer versus Diffusion

The concept of diffusion is one that is familiar to us. If a bottle of fragrance is opened in a room
full of fresh but still air, that fragrance will slowly reach all corners of the room. Our sensation
of the fragrance will be highest closest to the bottle and lowest in the corners of the room
farthest away from it. Eventually, we may find that our sensation of the fragrance is about the
same everywhere in the room. The process that takes the fragrance molecules from the vicinity
of the uncapped bottle and throughout the room, raising their concentration as a function of
time, is diffusion. Random molecular motions are all that are necessary for the fragrance
molecules to migrate from regions of higher concentration to those regions that are lower.

Diffusion need not occur only in the gas phase. If a drop of dye is placed carefully into a
solvent, then initially the color is very intense within the region of the droplet. With time the
droplet of dye molecules becomes more “diffuse,” by that we mean larger in volume and less
intense in color. This process continues with time until, to the naked eye, the whole solution
looks to be colored to the same intensity. Again the mechanism behind this process is diffusion,
the random motion of molecules following a gradient in concentration from regions of higher
to lower concentration.

Diffusion is a process that also occurs in solids. The manufacture of solid-state transistors
involves the diffusion of dopants, such as boron or phosphorus, into silicon in order to create



5.2 Salt Dissolution 207

n- and p-type semiconductors. Since solids are dense, there is a high resistance to diffusion
and this makes for very low diffusivities versus those measured in gases, on the order of 10
orders of magnitude lower!

In each case we have spoken about the transfer of mass along a concentration gradient
(that is the differential change in concentration over the differential change in position) within
one phase. Yet, there are many situations when the mass is moving between phases. For
example, the phosphorus delivered to a semiconductor solid for doping typically is transferred
to the solid from the gas phase. Thus, before diffusion within the solid can occur there must
be gas-to-solid mass transfer of the phosphorus. Here too we can wonder which will be
faster—the rate of phosphorus transport to the solid or the rate of diffusion taking phosphorus
away from the gas-solid interface and into the bulk solid? In this case, because the rate of
diffusion is so low within the solid, it is a good bet that this will be the slower process. When
mass transfer is from the gas phase into the liquid, then it may be that the rate processes
are limited by the transfer between the phases, rather than the diffusion within the liquid.
However, generalizations should not be made hastily because each case needs to be analyzed
separately.

We will not be concerned here with diffusion per se; instead we will concentrate on the
issue of mass transfer between phases and how that is handled in the context of our analysis
tools. The examples begin with an analysis of the dissolution of salt in water and move to more
complex systems including the permeation of hydrogen through a palladium membrane.

5.2 Salt Dissolution

The dissolution of a solid particle of salt is a good place to begin because we already know quite
a bit about this process. The solid, say sodium chloride, consists of cations and anions that
make up thesolid lattice in some fixed ratio. The Coulombic forces of attraction—the Madelung
energy—keep the lattice together in the solid state. These forces are strong enough to make
the crystalline lattice an energetically favorable configuration for the ions (see Figure 2).

When the lattice of ions held together in this way is placed in liquid hydrocarbon such as
hexane, nothing happens. The lattice might just as well be standing in air. It remains stable;
the hexane does not affect it. We say that the hexane is not a solvent for the salt. Why? We
know the hexane is a nonpolar hydrocarbon, whereas the salt is made up of charged ions that
are at the limits of polarity—one is a cation and the other is an anion! If the lattice were to fall
apart into ions in hexane, it would do so only if the ions were more stable in solution than
they were in the lattice. This is not the case with hexane because it lacks polarity to interact
with the ions in order to stabilize them.

Experience shows, however, that water will dissolve the salt and will do so very well. The
reason is that water is polar; the oxygen is electronegative and carries a more negative partial
charge than the hydrogens, which are partially positively charged. These charges make all the
difference in the process, because the hydrogens will coordinate with the anion of the salt to



208 Chapter 5 Multiple Phases—Mass Transfer

Figure 2

partially dissipate its charge, while the oxygen will coordinate to the cation to do the same.
Nature finds bare charges to be unfavorable, so this coordination by water is highly favorable.
For obvious reasons this interaction is called solvation.

Quantitatively, we also know that the concentration of the ions in solution is given by
their solubility product or K. This is nothing more than the equilibrium constant for the salt
in water, rearranged to take up the activities of the pure water and the pure solid salt:

K _ 4 cation@anion
solvation = — —
Aaltd H,0

Ksp = KsolvationasaltaHgO = A cation?anion

Ksp = ycationccationVanioncanion
At low concentrations the activity coefficients are close to unity and we have:

Ksp - Ccationcanion



5.3 Batch 209

This is just a review of what we already know about cation solvation in water, based on general
chemistry. The information is purely thermodynamic, however, and does nothing to tell us
how long a dissolution process may take. Even if a salt is soluble, we do not have a means to
get at its rate of dissolution. Furthermore, how do salts with smaller K, values compare with
those with larger Ky, values? Will they dissolve faster, slower, or is the rate independent of
this factor? What role does the form of the salt play in the rate of dissolution? Does it matter
at all, only at the early stages of dissolution, or throughout the process? How does the ratio
of solvent mass to solute mass figure into this? These are the kinds of questions we want to
be able to handle quantitatively.

5.3 Batch

Background. The dissolution of a salt into a surrounding solution is easiest to think of as
taking place in a closed vessel, that is, in a “batch” with no flows in or out of the vessel. But
remember there are “flows” between the solid and the liquid phases. We take a particle of
the solid as one control volume and the volume of solvent as the other. We can solve this one
particle problem and then handle many particles. The process is taken to occur at constant
temperature. The physical situation looks like that shown in Figure 3.

The dissolution process will continue until either all the salt has dissolved, or the saturation
limit of the solvent has been reached. Therefore, the ratio of the volume of the solvent to the
mass of salt will be critical. If we were to do this experiment several times with the same volume

Figure 3



210 Chapter 5 Multiple Phases—Mass Transfer

of solvent and with the same mass of salt, but with different numbers of particles of the salt,
we would find that the experiments done using more, smaller particles would require less
time to fully dissolve the salt than would those that use fewer, larger particles. Our common
experience of dissolving sugar in coffee or in tea is that stirring makes the dissolution process
go faster. Therefore, if we were to do a series of salt dissolution experiments, keeping all else
the same, but varying the rate of mixing, we would find that faster and better mixing would
lead to more rapid dissolution. This is obvious, but we will still write it mathematically before
we go on:

rategissolution® Ainterface

rategissolution T as miXing 0

Rate of Dissolution. Experiments also would show that the rate of dissolution must stop
when the solution reaches the saturation limit and, furthermore, the rate will be fastest early
in the process, when the concentration of salt in the solvent is low. All of this behavior can be
apprehended in a simple rate for the dissolution process:

sat”d i
rateyissolution = Km Ai|1t¢'rf‘1cg‘(C:;]g‘ - Csa]t[t])

. . . Length . . . .
Km is the mass transfer coefficient, —%, Ajnterface 15 the area of the solid in contact with

the liquid (either for one particle or for n-particles), C33 ¢ is the concentration of the salt in
the solvent phase I at the saturation limit, and C!_[t] is the concentration of the salt in the
solvent at any time t. This rate law includes all the phenomena we just said would be observed
in experiment. The mass transfer coefficient will be larger if the mixing is larger, otherwise
smaller. The interfacial area is linearly related to the rate—the more area the better. When the
concentration of salt in solution hits the saturation limit, the dissolution stops. The term in
brackets is the so-called “linear driving force”: linear because the concentration dependence
is first order, that is, power unity, and driving force because the rate is proportional to the
difference between the maximum and the actual concentrations. Hence the rate is maximum

at an instant after time zero when the difference is just C32} 7.

Conservation of Mass across Phases. The next step is to apply the conservation of mass
principle to this problem. We need to write a material balance on salt for both phases. Any

mass that leaves one phase must end up in the other phase. Then we can say the following
regarding the rate of salt mass accumulation in the two phases:

dmslalt dCslaltVI
S = S =+ Airg
dm” dcll Vll

salt __ salt _ —A‘rd
= = i

dt dt




5.3 Batch 211

where A; = Ainterface and 1y = rategissolution- We can substitute in the constitutive expression
for the rate of mass transfer between the two phases to obtain:

dm! dcl, V' '

dtalt = iialtt = +K,, A (C::{t a salt[t])
ant, _dch, v

Tl Tl K A (CE - CLylt])

The material balance for the solid phase includes in the differential term CLi, . Because salt
is a pure solid, this is the same as the density of the solid, which remains constant through-
out the process. This means that the water is assumed not to disrupt the solid lattice by
penetrating into it and slowly expanding it to result in dissolution. Instead, it is only the
first few layers that are involved in the process and the interior of the particle is left un-
perturbed until it becomes surface. The process is like one of layer-by-layer lift-off and
dissolution. If the mass transferred between the phases is in total small, then we can ig-
nore the change in solution volume that comes with the density change as the salt con-
centration rises. If this is too restrictive, then we can relax it later, but for now it makes
good sense to ignore it and concentrate on the mass transfer problem. The equations can be

rewritten as:

dm! dc/, [t sat’c
= VIR = HKaA(CG - Clult)
dmi! dv'e] sat’d
_7’“ = psa“—d—t-— = —KmAJ(Csa:t S’\lt[t])
dc! dv"
Lyl lTsakt salt ——
- it Psait dt

This can be integrated assuming thatatt = 0, C!_,[t] = 0 and V'![] = V! and then rearranged
to give:

paan (VI = VI[E]) = VIC [ [t]

V”[t] — VII Vlcslnlt[t]
? Psalt
psalt(V - V“[t])
salt[t] - V]

The last equation relates the concentration of the salt in the liquid phase at any time to the
volume of the salt remaining in the solid at the same time. This solution and the one for



212 Chapter 5 Multiple Phases—Mass Transfer

the concentration of salt in solvent are implicit. To use these equations we would need to
measure the actual volume of the solid salt as a function of time—not an easy measurement
to make in practice! What we really need then is an explicit solution in time. To obtain this we
must return to the statements of the material balance between the phases.

The salt leaving the solid follows this equation:

dv't sat’
PsaltT[] = —K, A4 (C vl _ Cslalt[t])

salt

If we are concerned only with the case in which the total mass of salt transferred is small
relative to the volume of solvent and the saturation limit, then the equation becomes:

dv'[t b’
Psalt dt[ ] = —K”,A,'C:;’ft d

This looks as though we should be able to integrate it immediately, but look again! The area
between the two phases is the area of the salt particle; it must be changing with time, and
quite considerably at that. Therefore we cannot integrate this as of yet. We need a relationship
between the volume of the solid at any time and the surface area it projects. Thankfully we
can find this easily. If each particle of solid is the same size then their interfacial areas are the
same and we can write:

Vil 3 ]
A =NA y= Ny(—ﬁ) = Niyviis

Here N is the number of identical particles of solid, and y is the surface area to volume
ratio, or the shape factor which accounts for the geometry of the solid, assuming that it is
a regular polytope; the subscript i refers to the number of any individual particle. The total
volume of the solid phase divided by N is the volume of any individual particle and when we
raise this to the 2/3 power we approach to within a constant y, the surface area of that same
particle. This allows us to rewrite the rate of change in solid volume (dropping the notation
for t-dependence) :

dV” _ K,,,N% y Vll%c:;iltt'd
dt Psalt




5.3 Batch 213

We can separate, integrate, and rearrange to obtain:

Jon_ KaNiyCsd \°
VII[t] — ( ‘/0" _ . 1t )
salt

We have already stated that the measurement of the solid volume would be a difficult exper-
iment to conduct. The measurement of salt concentration as a function of time is easy to do
and so we want an explicit equation for the concentration. To obtain this we use this equation
for volume change with time to obtain the concentration change with time.

3
1 ; K,,N yCH‘" d
psan(V ( Vil = =t

VI

salt[t] -

If we made a series of experiments in which we sought the mass transfer coefficient, then we
would rearrange this so that we could plot a function of the salt concentration against the

time:
L sat’d
oSty (e
Psat V! Psalty/ V!

A plot of this left-hand side versus the time gives a graph whose slope is the coefficient of t.
Everything in this group with inverse time as its dimensions should be known before the
experiments are even conducted. If we knew the mass transfer coefficient, then the inverse
of this group would provide the time required to dissolve all N particles of the salt. We can
see this because when the time t is equal in magnitude to the reciprocal of this group the
right-hand side goes to zero identically.

1— salt[t]V, ={1- i
psa]tV” - 0

K N% yC§at' d

salt

Yyl
Psalt V()

The left-hand side must also be zero. Therefore, the concentration of the salt at that time will
be the reciprocal of the product of the density of the salt and its initial volume divided by the
volume of the liquid.



214

Chapter 5 Multiple Phases—Mass Transfer

5.4 Fit to the Batch Data

Table 1 gives data for an experiment in which 100 salt cubes (y = 6) were dissolved in
100 cm? of water. The total volume of the salt was 1 cm?, its density was 2 g cm®, and the
saturation limit of the salt was 0.05 g cm~>. Data points were logged every 50 sec for a total of

2500 sec.

t/sec Csalt [t] t/sec Csalt [t]
50 0.00171084 1300 0.0196429
100 0.00279533 1350 0.0192367
150 0.00424841 1400 0.0193228
200 0.00494699 1450 0.0193325
250 0.00635887 1500 0.0192889
300 0.00763428 1550 0.0201392
350 0.00835931 1600 0.0197141
400 0.010246 1650 0.0197589
450 0.0105354 1700 0.0203605
500 0.0116536 1750 0.0202748
550 0.0120036 1800 0.0200916
600 0.0135537 1850 0.0201311
650 0.0137191 1900 0.02012
700 0.0142037 1950 0.0200507
750 0.0150545 2000 0.0195248
800 0.0153611 2050 0.0202914
850 0.0165474 2100 0.0199335
900 0.0169347 2150 0.0204394
950 0.0167272 2200 0.0204604
1000 0.0177943 2250 0.0203341
1050 0.018098 2300 0.0200852
1100 0.0184004 2350 0.0196325
1150 0.0188067 2400 0.0205709
1200 0.0190497 2450 0.0198959
1250 0.019132 2500 0.020606

Table 1




5.4 Fit to the Batch Data 215
Putting the data into vector notation for manipulation we have:

In[1]:= csaltdata =
{{"o", "0.00004044"), {"S50", "0.001815"}, {"100", "0.002589"},
{"150", "0.004589"}, {"200", "0.005424"}, {"250", "0.006528"},
{"300", "0.00783"}, {"350", "0.008987"}, {"400", "0.009514"},
{"450", "0.01022"}, {"s500", "0.01143"}, {"550", "0.01287"},
{"e00", "0.01328"}, {("650", "0.01399"}, ("700", "0.01488"},
{"750", "0.01535"}, {"800", "0.01536"}, {"850", "0.0161"},
{"900", "0.01694"}, {"950", "0.01755"}, {"1000", "0.01704"},
{"1050", "0.0183"), {"1iio00", "0.01851"}, {"1150", "0.01894"},
{"1200", "0.01894"}, {"1250", "0.01861"}, {"1300", "0.01951"},
{"1350", "0.01946"}, {("1400", "0.01949"}, {"1450", "0.01958")},
{"1500", "0.01997"}, {"1i550", "0.01968"}, {"1600", "0.02014"},
{"1650", "0.01973"}, {"1700", "0.02041"}, {("1750", "0.02017"},
{"1800", "0.02026"}, {"1850", "0.02036"}, {"1900", "0.02042"},
{"1950", "0.02023"}, {("2000", "0.0204"}, {"2050", "0.01979"},
{"2100", "0.02013"}, {"2150", "0.02013"}, {"2200", "0.02035"},
{"2250", "0.0196"}, {("2300", "0.02043"}, {("2350", "0.02035"},
{"2400", "0.02025"}, {"2450", "0.02061"}, {"2500", "0.02048"})};

As we plan to do considerable graphing we set the options for the style of the graphs to make
them most visible and then ListPlot the data.

In[2]:= SetOptions[{Plot, ListPlot},
AxegStyle - {Thickness[0.01])},
PlotStyle - {PointSize[0.015],

Thickness[0.006]},
DefaultFont - {"Helvetica", 17}};

In[3]:= datpl = ListPlot[csaltdata,
AxesLabel - {"t", "Csaltit]"},
PlotStyle - PointSize[.015]1];



216 Chapter 5 Multiple Phases—Mass Transfer

Csalt[t]

0.02 ......O..............OQ.O

t
500 1000 1500 2000 2500

We shall want to fit this data “csaltdata” as seen in the preceding graph to the expression that
we have derived because, as we can see from the data, the final concentration is less than 50%
of that at saturation. To be safe we will fit just the early time data out to 1500 sec. One way to
do this is to do a one parameter, nonlinear fit to the expression after we have simplified it by
evaluating all the parameters. The first step is to obtain the fitted expression, evaluate it, and
then compare it to the data.

Here are the parameters relevant to the problem and their values followed by the function
definition:

In[4]:= psalt = 2;

VoIl = 1;

Yy = 6;

Km =.

Csaltsatd = .05;
VI = 100;

n = 100;

tmax = 2500;

1
psalt (VoII - (/VoII - XmnlyCsaltsatd,,s,
csaltft_] : psalt

VI
flt__] := Simplifyl[csalt([t]]



5.4 Fit to the Batch Data 217

Calling “Statistics'NonlinearFit"”” will allow us to fit the data with the command “Non-
linearFit,” which we can then call “g” with the command g = % and, finally, we can Plot
and Show g versus the data set:

In[14]:= << Statistics‘'NonlinearFit:®

In[15]:= NonlinearFit([csaltdata, £[t], t, Km]:;
g = %;

plfit = Plotl[g,
{t, 0, 2100},
PlotRange - ({0, 2500}, {0.0.02}},
DisplayFunction - Identityl];
Show[datpl, plfit,
DisplayFunction - $DisplayFunction];

Csalt[t]

t
500 1000 1500 2000 2500

The coefficient of t is used to evaluate Km and that is:
In[19]:= Solve[0.696238 Km == 0.00051, Km]
outf19]= {{Km - 0.0007325081}}

The fitted value is 7.3 x 1072 cm sec™!, which is a reasonable, although small, value for this
constant.



218 Chapter 5 Multiple Phases—Mass Transfer

5.5 Semicontinuous: Pseudo Steady State

We can imagine a situation where our goal is to dissolve a sparingly soluble salt out of a unit in
which it has precipitated. An example of such salts are the alkaline salts that deposit in boilers
and heat exchangers as “scale.” Nothing more than the accumulation of precipitate on the
inner walls of the vessel over time, these salts can present a real hazard in that they reduce the
heat conduction through the wall, because they are good insulators. As a result of this, boilers
can develop hot spots and explode, and heat exchangers can become much less efficient over
time with similarly deleterious results. At the same time these salts may be sparingly soluble
except in acidic solution, which, if the pH is too low, will etch away the vessel wall along
with the salts over time. Therefore, one may be forced to accept the low solubility in the less
acidic pH range, and be willing to pump large volumes of solvent through for longer periods
of time. This is an optimal solution to the problem.

The essence of this problem, and others like it, is that the transfer of mass from the solid
to the liquid occurs slowly over time, but now there is a continuous flow of solvent over a
slowly diminishing mass of solid. The flow of solvent does two things—it provides a large
volume of solvent when the flow is integrated over time and, if it is at relatively high rates, it
provides much better mass transfer rates than if the same large volume were merely standing
in contact with the solid without flow. Flow gives mixing and mixing gives higher mass
transfer coefficients, which means it will take less time to dissolve than it would with less or
zero mixing. The physical situation is as shown in Figure 4.

. o o T
W™ ™ o WL v

Fresh Solvent Feed G 42 Salt + Solvent b Dissolved Salt Waste

Sparingly Soluble Salt

Figure 4



5.5 Semicontinuous: Pseudo Steady State 219

The equations look largely the same, except that the solution phase balance on the salt has a
convective flow term for the mass of salt leaving the unit by this process:

dm! dac! [t] ,
d;alt =V ;a;t = +Kn A (C::ft ‘- Cslalt[t]) . CsIalt[t]le
dmg, _ AV

- _KmAi(Csat’d _c! [t])

salt

dt = Psalt — d"t

salt

The interfacial area in this case will be taken to be a constant well approximated by the surface
area of the unit. In the diagram this would be the cross-sectional area of the tank 7rr?. This
means then that the salt is removed by a process that removes layers, making the change in
salt volume a one-dimensional problem of computing the salt thickness at any time.

If the salt is sparingly soluble, then C::{td is small in magnitude, and if the product K,,A;
is relatively large due to gross mixing, then the salt concentration is likely to be a constant and
close to but not as large as C®2! 4, depending on the magnitudes of the parameters. Given that
salt concentration is a constant, then its rate of change is zero, that is, the salt in solution is at
steady state. This is the case even though the salt mass is changing steadily and constantly as a
function of time. Because of this mixed condition the two-phase system as a whole is said to be
in a pseudo-steady state. This is the case because if we could measure only the concentration
of salt exiting the reactor, we would find it to be a constant at constant conditions. However,
we know the salt is coming from inside the control volume because we are not feeding it.
That means that according to the principle of conservation of mass, the salt is emerging from
a dissolving source within the control volume, and this mass must be decreasing with time.

The equations work out as follows for the pseudo-steady state:

0= +K, A (C:;‘ft" — Cl stst) = CL stst gex
K Ai(C32V? — ! stst) = CL | stst gex
and
dv'[#] ;
psaltT = —C_,stst gex

Vit = vl - Cl  stst gqex t

sal

This very simple solution comes about as a result of the fact that at the steady state the
concentration of salt is a constant and the exit mass flow has to be equal to the rate of salt mass
transfer into the solvent.



220 Chapter 5 Multiple Phases—Mass Transfer

5.6 Full Solution

By solving the equation in the way we have just described, we make the mathematics much
simpler, but we also place severe constraints on the solution. Instead of doing that, we now
solve the equations without these assumptions, in this way they are then appropriate for
the most general case—from short time to long, and for sparingly soluble to very soluble
salts.

dp'[t]V'[t]

dt = (psolvent - pI [t]) gex

pl[t] = Psolvent + aCs[all‘[t]

dmiy, _ dCL V'] at’

dt : - Itdt - ”I (C:altt 1 salt[t]) s,alt[t] qex
dmsa dV”[t] sat’ ¢

df t— psaltT =-K,, (C‘,qltt ! >1lt[t])

Here we have added one equation—the total mass balance—which includes the density of
phase one as it flows out of the system. Recall also that for a double salt M,L; we have the
following:

Kip = Ca"Cu ' = (aC3 )" (bC )"
We can solve for the saturation concentration of the salt in terms of its Ksp and the stoichio-
metric numbers:

In[20]:= Solve[Ksp == PowerExpand[(a Csatd)® (b Csatd)Pl, Csatd]

Solve::ifun : Inverse functions are being used by
Solve, so some solutions may not be found.

outf20]= {{Csatd - (a‘ab‘stp)rwltE}}

Turning once more to the equations, we will derive code that will solve these numerically and
simultaneously by using this expression for the saturation concentration of the salt and the
linear dependence of density upon concentration. The code that follows does just this. The
tank parameters are specified along with the volumes of the solution and salt phases at time
zero (Vlo and VlIlo), the salt parameters, the mass transfer and flow rates, the maximum time
for the integration to be done, the function calls for the exit flow rate in terms of the inlet
flow rate, density of the solution and the saturation concentration of the salt, the material
balance equations, the implementation of the numerical solution of the equations and the
assignment of the interpolation functions to function names, and finally the graphical output
routines.



5.6 Full Solution 221

In[21]:= "The tank parameters are:";
r = 2;
Ai = N[nr?];
VIo = 100 Air;
VIIo = 10;
VI =.
"These are the salt parameters";
psolvent = 1;
psalt = 2;

Ksp = 1107%;
v = 0.9;
cIo = 10719;

"The mass transfer coefficient and flow rates";
Km = 7.3 1073;

go = 10;

f = .05;

"Thig is the maximum time for the integration";
tmax = N[2.5 1031;

"These specify the exit flow the density in solution

and the saturation concentration or solubility";

1+ft)
pIlt_]1 := Nlpsolvent + -~ycI[t]]

gexit_] := go (

3
csatd[a_, b__, Ksp_1 := N[(a"®b™PKsp) **:]
"set of equations to be solved";

egns = {

O (pI[t]l VI[t]) == psolventqo - pI[t] gqex(t],
VI[0] == VIo,

O (cI[t]1VI[t]) == KmAi(csatd{a, b, Ksp]l - cI[t])
- cI[t] gqex[t], cI[0] == clo,

-mAi t 4 bl Ks - I[t
O (VII[t]) == (csatd(a Pl cI[ ])’
psalt

VII[0] == VIIo};

"Numerical solutions and assignments";
soln = NDSolvel

eqns,

{VvI[t]l, VII[t], cI[tl},

{t, 0, tmax}];



222 Chapter 5 Multiple Phases—Mass Transfer

cOnel[t__] := Evaluate[cI[t] /. soln[[1]]]
vOne[t_] := Evaluate[VI[t] /. soln[[1]]]
vIwo[t_] := Evaluate[VII[t] /. soln[[1]]]

General::spelll : Possible spelling error: new symbol
name "VIIo"is similar to existing symbol "VIo".

General::spelll : Possible spelling error: new symbol
name "csatd"is similar to existing symbol "Csatd".

General::spelll : Possible spelling error: new symbol
name "vOne"is similar to existing symbol "cOne".

In[52]:= "The graphical routines";
0 =.

(=2,

VIo

Plot[{qo, gex[tl}, {(t, 0, tmax},
PlotRange - {{0, tmax}, {0, qo}},
AxesLabel - {"t", "qex[t]"}

1;

gex(t]

t
500 1000 1500 2000 2500



5.6 Full Solution 223

In[56]:= csatd == csatd[a, b, Kspl;
Plot [N[cOne[t]], {t, O, tmax},
PlotRange - {{0, tmax},
{0, Max[Table[cOne[t],
{t, 0, tmax}]1]1}},
AxesLabel - {"t", "Cl.[t]1"},
PlotStyle - (Thickness[0.01], Dashing[{.03, .03}1}];
VIo/Ai;
Plot[{VIo/Ai, ((vOne[t]/Ai) - (vOne[0]}/Ai))}, {t, 0, tmax},
PlotRange - {{0, tmax},
{0, Max[Table[(1l + .05) ((vOne[t]l/Ai) - (vOme[0]/Ai)),
{t, 0, tmax}]]}},
AxesLabel - {"t", "Ah[t]"},
PlotLabel - "Rise in tank level"
1;

Plot [vTwo[t], {(t, 0, tmax},

PlotRange - {{0, tmax},
{0, Max[Table[(1 + .05) vTwo[t], {t, 0, tmax}]1}},
AxesLabel - {"t", "vII[t]"},

PlotStyle - {{Thickness{[0.01], Dashing[{0.05, 0.05}1}},

Pl
PlotLabel - "Change in salt volume"”

1;

Clsalt [t]

0.0008 P
V4
/

0.0006 /

/

/
0.0004|

/
0.0002 |4
~ I ———— t

500 1000 1500 2000 2500



224 Chapter 5 Multiple Phases—Mass Transfer

Ah(t] Rise in tank level

70
60
50
40
30
20
10

t
500 1000 1500 2000 2500

Vit Change in salt volume

t
500 1000 1500 2000 2500



5.7 Liquid-Liquid System 225

This can now be used interactively to experiment with parameter values in order to learn how
they affect the observed behavior of this system. There are several points that must be noted
about this code that bear explanation. First, the initial concentration of the salt in the solution
cJo is not taken as zero; it is set to a very low value to simulate zero at time zero. If we set
this identically to zero, the numerical routine will come back with a complex infinity error
because it will have divided by zero at the start of the calculation. Second, the exit flow rate
has been made a function of the inlet concentration. This is one way to handle the problem of
the exit flow rate. By doing it this way, the exit flow rises to the inlet flow over some period
of time, which is parametrically dependent upon the magnitude of f. One could envision that
a controller could be used at the exit to produce this effect. If one wishes to see what the
solutions would look like if this were not included and if the exit flow rate instantaneously
equaled the inlet flow rate, this is easily accomplished by letting f be large in magnitude, say
10”. The solution is remarkably stable, but this is not to say that with the right (or wrong)
choices of parameters, it will not become numerically unstable. It certainly will, especially if
the parameters begin to imply nonphysical conditions. The simulation has been run to times
that are two orders of magnitude larger than the current tmax value, with Ksp at 107!, and
f =1, and the only limit to going longer in time was patience. Some small instability is noted
in the concentration of salt as a function of time when the integration is done for long times,
at high initial volumes of solvent, and large Ksp values. The reader should experiment with
the parameters to find cases where this type of behavior is displayed.

5.7 Liquid-Liquid System

Fully Continuous

Steady State: Equilibrium Stage. Liquid-liquid extractions are used in many different
applications from chemical production to environmental clean-up. It is possible to extract
organics from water by contacting the water with a better solvent for the impurities, which
is also immiscible with the water. When there are two liquid phases involved we have new
equilibrium considerations to take into account, whereas in the case of the salt we had only
one, the solubility, since the second phase was the pure salt. The phases will not change in
volume within the unit that is used for contacting them. There are now two “solubilities”
of the transferred component—one for each phase. These are better termed the equilibrium
concentrations of the component dissolved separately in each phase. Many, if not most of
us, have some experience with this sort of process done at the bench by organic chemists.
The solution to be extracted is typically aqueous and contains the desired compound. This is
added to a separatory funnel first. Then a less dense, immiscible solvent with a higher affinity
for the target compound is added as a layer on top. This solvent’s “higher affinity” for the
target, means that the target is more soluble in it than in water. Often, diethyl ether is used as
this second solvent. After capping the funnel, inverting it, and opening the petcock to allow



226 Chapter 5 Multiple Phases—Mass Transfer

Contaminated feed - Pure solvent feed

Recycled
| solvent
stream

Well-Mixed contactor

Decantor Unit l B Light product

stream

Y

Heavy product stream

Figure 5

the ether vapor to escape, the mixture is shaken vigorously for some time. Then the funnel
is returned to a stand and the two solvents are allowed to separate. The lighter solvent, now
containing the target molecule, is decanted or siphoned off the top. The process is typically
repeated three times. Then the second solvent is evaporated or reduced in volume.

Interestingly, at the scale of a process all the same things are done, but typically con-
tinuously for large scale production. Batch processes, however, can be scaled up to larger
volumes, and this is done in processes that yield specialty chemicals or pharmaceuticals with
high added value. We will consider the continuous process run at steady state. The physical
situation is as shown in Figure 5.

The denser contaminated feed is mixed with the less dense pure solvent in a contactor.
The well-mixed stream emerges from this unit and flows into the decanter unit where the two
phases are given enough time to fully separate. This is done continuously, so at the entrance
of the unit the two liquids are well mixed, but by the end, they are well separated, as shown
in the schematic. We will not worry about the internal configuration of this unit. The top
layer is the solvent, which leaves the unit with the impurity within it. Some of this solvent is
removed from the unit continuously, but the balance is sent back to the contactor for further
use. The heavier stream emerges from the decanter unit with a much reduced concentration of
impurity. The analysis of this unit calls for a detailed analysis of the subunits that make it up.

We begin at the top of the unit with the pure solvent. The stream of solvent coming into the
unit comes in with a density ps and a flow rate qs. This is mixed with the recycled stream that



5.7 Liquid-Liquid System 227

has a density prs, a flow rate qrs, and an impurity concentration of Cirs. The two streams are
mixed combined into one with a flow rate gsf, a density of psf, and an impurity concentration
of Cisf. The steady-state mass balances at the mixing tee are:

ps gs + prs qrs = psf qsf
Cirs grs = Cisf gsf

At the contactor we have the impure heavy stream and the solvent stream being fed, and at
the outlet the two have been mixed. The material balances for this unit are:

phf ghf + psf gsf = phc ghc + psc gsc
Cihf ghf + Cisf gsf = Cihc ghc + Cisc gsc

The decanter unit has these equations associated with it. Remember that we are not concerned
with its internals but only with the mass flows into and out of it. The mass flow in is that of the
mixed feed from the contactor. The flows out are those of the impure solvent and the purified
heavy stream:

phc ghce + psc gsc = pds qds + pdh qdh
Cihc ghc + Cisc gsc¢ = Cisd qds + Cihd qdh

Finally, the solvent stream is split with one flow back to the inlet solvent tee and the other
flow out of the unit. The equations that describe this are:

pds gds = prs qrs + psp gsp
Cisd qds = Cirs qrs + Cisp gsp

The schematic of the flow sheet is shown once again (Figure 6) with all the streams labeled
and with an imaginary box around the unit, which cuts all the streams that either enter or
leave this unit.

The box is an imaginary control surface for the unit as a whole. Despite all the details that
we have just considered, there is one overall set of mass balances for the unit as a whole. This
treats the unit as a so-called “black-box,” which means that even if the internal workings were
hidden from view, we would be able to do an overall balance on the system, as shown in
Figure 7.

As this greatly simplifies the initial stages of this problem, it is a logical place to begin.
From Figure 7 and the conservation of mass, we can write that:

pihf ghf + ps gs = pdh gdh + psp gsp
Cihf ghf = Cihd qdh + Cisp gsp



228 Chapter 5 Multiple Phases—Mass Transfer

Cihf pihf ghf = ps Qs
Contaminated feed Pure solvent feed

[

* psf qsf Cisf

l Cirs prs qrs

=T Recycled
solvent
stream
i B
Well-Mixed contactor ohc pec Cihc ghe Cisd
: pds qds
ks Cisp psp qsp
. o Aak: i Light product
Decantor Unit o B —— stream
Cihd pdh qdh
v
Heavy product stream
Figure 6
Cihf pihf ghf ps Qs
Contaminated feed Pure solvent feed

Cisp psp gsp
Light product
stream

Cihd pdh qdh

Heavy product stream

Figure 7



5.7 Liquid-Liquid System 229

In these two equations we have a total of 14 parameters and variables. We need to reduce this
number. How can we do this? The most crucial assumption we can make is that the unit runs at
equilibrium. This means that the concentrations of the impurity in both liquid phases emerging
from the unit are at equilibrium. To understand this we will pretend that the separation was
done stepwise rather than continuously. The volume of light solvent added would be gs At.
The volume of the impure stream would be qihf At. The initial concentration of the impurity
in the heavy phase is Cihf. If the two phases are in contact, then the impurity will transfer
spontaneously to the light phase where its affinity is higher. This transfer will occur until the
concentrations of the impurity in the two phases are no longer changing—in other words, until
the impurity comes to equilibrium between the two solvents. For this reason, a unit assumed
to operate at the limit of equilibrium is referred to as an equilibrium stage, and this level of
analysis is the equilibrium stage analysis. If the ratio of these two concentrations at equilibrium
is a constant over a range of different concentrations, then the constant is referred to as the
partition coefficient Kd:

_ Cih, e

Kd = Cis, e

If the system we are examining also comes to an equilibrium condition, then the concentra-
tions of impurity in the two outlet streams are coupled:

_ Cihd
" Cisp

Kd

It is also reasonable to expect that the densities of the contaminated streams are not too diff-
erent from their pure densities, since the contaminant is usually at low concentrations:

ph ghf + ps gs = ph qdh + ps gsp

1
Cihf ghf = Cihd{ qdh + ——gsp
Kd
In(61]:= Simplify[Solvel{phqgqhf + psqgs == phqgdh + psqgsp,
1
Cihfghf == Cihd(gdh + xa qgsp)}, {qgqdh, Cihd}1l]

General::spelll : Possible spelling error: new symbol
name "ps"is similar to existing symbol "ph".
General: :spelll : Possible spelling error: new symbol
name "Cihd"is similar to existing symbol "Cihf".

hf ph + gs ps - gs S
Qutf6l]= {{qdh—>q P d fl asp P ,
p

. Cihf Kdghf ph
Cihd - 13}
Kdghf ph + gspph + Kdgsps ~ Kdgsp ps




230 Chapter 5 Multiple Phases—Mass Transfer

Thus we can show that the flow rate of heavy liquid from the unit is equal to its flow rate in
plus a factor related to the ratios of the densities of the light and heavy liquids:

qdh = ghf ph + (qs — gqsp)ps

S
oh = ghf+ g—h(qs —qsp)

If the flow rate of the solvent is the same going in as coming out, then the flow rate of
the heavy is the same in and out. Therefore, the concentration of the impurity in exit the
flow is:

Cihd = = = Cih S
(Kd ghf + gsp)ph + Kd ps(qs — qsp)  (Kd ghf + gsp)ph thghf

Cihf Kd ghf ph Cihf Kd ghf ph . f( 1 )
1

One way to use this result would be to compute the flow rate of the solvent that we would
need in order to achieve a certain exit impurity concentration Cihd in the heavy stream, given
Kd, the flow rate of the impure heavy feed and its impurity level Cihd.

In[62]:= cihd = 107%;
Ccihf = 107%;
Rd = .01;
ghf = 100;

qg8p
KA qhf

1
NSolve[Cihd == Cihf(l—), qspl
+

outf[66]= {{gsp — 99999.}}

We find that at these conditions, given that the impurity is 100x more soluble in the light
solvent than in the heavy liquid, to reduce the concentration from 10~* to 10~? would require
a solvent flow of 10° for a contaminated feed stream flow of 10%. A calculation like this makes
clear how costly cleanup can be.

Mass Transfer Analysis: Nonequilibrium. The previous calculation was helpful from a
global perspective, but it assumes that the two streams really do come to equilibrium with
respect to their impurity concentrations. Will they? How can we know this? What does it
depend upon? The equilibrium stage analysis does not involve time but is simply based
on thermodynamics. Yet, we know that thermodynamics can, in some cases, be misleading
because we can compute the equilibrium position correctly, but for a real process it may take
literally eons to move to that state. In other words, for design we need to have the time and
the rate process uppermost in our minds. Equilibrium can tell us only how well we can do
in the limit of everything going to its fullest extent of mass transfer. We must return then to
the analysis of the units and focus our attention on the contactor, for this is the unit where the



5.7 Liquid-Liquid System 231

mixing and interphase mass transfer must take place. To assess how well this unit is doing,
that is, how close the concentrations of the impurity in the exiting solvents are to equilibrium,
we need to analyze the mass transfer rate explicitly, and especially if we are to do even a
first-order design of this unit.

If we recall the material balances that we wrote around the contactor, then you may well
be wondering where the rates of mass transfer come in:

phf ghf 4 psf gsf = phc ghc + psc gsc
Cihf ghf + Cisf gsf = Cihc ghc + Cisc gsc

The way we can answer this is to go back to our usual approach to this kind of problem and
write the time-dependent mass balances for component i in each of the phases:

ih
Heavy phase: % = Cihf ghf — Cihc ghc — Km Ai(Cihc — Kd Cisc)
4Ci
Solvent phase: —(—:—jiﬁg = Cisf gsf — Cisc gsc + Km Ai(Cihc — Kd Cisc)
Components

i = impurity

h = heavy phase

s = lighter solvent phase
f = feed

¢ = contactor

If the contactor is at steady state, the left-hand side of each equation is identically zero. Adding
the two equations and placing the terms for the heavy phase and the light solvent phase on
opposite sides of the equation lead to the “steady-state” material balance we had before! Now
we can see where the rates of mass transfer come in.

The rate of mass transfer that we introduced in this analysis requires some explanation.
The constant Kd is the distribution coefficient for i between the two phases. Km and Ai are the
mass transfer coefficient and the interfacial area. But what about the driving force term? Why
is it written as the difference between the actual concentration of i in the first phase minus the
actual concentration of i in the second phase multiplied by Kd?

Driving force term = (Cihc — Kd Cisc)

This happens because the driving force to transfer species i from the first phase to the second is
dependent upon the concentration of i in the second phase. Remember the reason an impurity



232 Chapter 5 Multiple Phases—Mass Transfer

transfers at all is that it is more soluble in the second phase. Thus, the concentration of i in
the heavy phase may be well below its solubility limit, but it will still transfer to the second
solvent phase because it is even farther below its solubility limit in that phase. We will put
into words the rate of transfer of impurity from the heavy phase to the light phase:

The rate of mass transfer of i from phase h to s is proportional to the difference
between the actual concentration of i in phase h and the concentration of i that
would be in equilibrium with the actual concentration of i in phase s.

If we try to put this into a mathematical sentence, it would look something like this:
ti h—s = Km Ai(Cihc — Cihc,e[Cisc])

where Cihc,e[Cisc] means the concentration of i that would be in equilibrium with the actual
concentration of i in phase s, that is, the theoretical concentration of i is a function of the
concentration of i in the light solvent phase. However, that concentration is calculable from
the partition constant:

Cihc,e[Cisc] = Kd Cisc
. Iih-s = KmAi(Cihc — Kd Cisc)

We could repeat the same arguments for the rate of transfer of i from the light solvent phase
s to the heavy phase h and we would get the same expression, except that it would be the
negative of the first:

#i < = —Km Ai(Cihc — Kd Cisc)

This is because any mass that appears in the second phase had to leave the first phase and
it must appear in the second phase at the same absolute rate that it disappears from the first
phase.

We can simplify these two equations by recognizing that the mass transferred between
the two phases does not significantly affect the density of either phase nor its volume flow
rate:

d Cihc ghc  KmAIi
= (Cihf — Cihc)=—— —

(Cihf = Cihe) G ™ Vhe
Km Ai

Vsc

h, Heavy phase: (Cihc — Kd Cisc)

d Cisc

s, Solvent phase: = (Cisf — Cisc)% + (Cihce — Kd Cisc)

These two equations are nicely soluble, but before we solve them we should discuss them
further. Notice that the convective flow rates are divided by the volumes of each phase.



5.7 Liquid-Liquid System 233

These two terms are the reciprocal holding times for the two phases in the contactor, 01;1
and 6_.'. The coefficients of the two driving force terms are the ratios of the product of the

mass transfer coefficient and the interfacial area to the volume of the phase. Recalling that Km
has dimensions of Ltiinni;:—h, we can see that this group is also an inverse time constant, but now
this is a reciprocal characteristic time for mass transfer 7. If we multiply through on both

sides by the holding time we obtain:

d Cihc . . Onc
h, Heavy phase: thd—t = (Cihf — Cihc) — —he

(Cihc — Kd Cisc)

4Ci
s, Solvent phase: OSC% = (Cisf — Cisc) +

O (Cihc — Kd Cisc)
7S¢

We could go one more step and refer all the concentrations to the inlet concentration of the
impurity in the heavy feed Cihf, which is a constant. If we do this we would be dividing both
sides of both equations by this quantity to give the nondimensionalized concentrations X:

Xih .
e _ 1 — Xihe) — 2 (Xihe — Kd Xisc)
thce

d
h, Heavy phase: 6 T

dXi 0,
s, Solvent phase: 6, d_ltsc = (Xisf — Xisc) + SCC (Xihc — Kd Xisc)
T

Finally, we can see that the time constants can also be used in the same way; we can multiply
the second equation on both sides by g:: and then reexpress both time derivatives in terms of
the reduced time, that is, the ratio of real time to holding time:

d Xih c
h, Heavy phase: Ohc—L = (1 — Xihc) — L (Xihe — Kd Xisc)
dt the
cd Xi . . Osc v .
s, Solvent phase: 05c£ e (Xisf — Xisc) + — (Xihc — Kd Xisc)
b dt T8¢
d Xih c
h, Heavy phase: 2" _ (1  Xihc) — 2 (Xihe — Kd Xisc)
6 the
9; d Xi osc . .
s, Solvent phase: —— d(;sc = (Xisf — Xisc) + s (Xihe — Kd Xisc)

d Xi
4XISC _ xisf — Xisc) + 21 (Xihe — Kd Xisc)

de TSC
Now we can obtain a general solution for this prototypical case, which can be used for specific
cases simply by computing the time constants from the parameters or vice versa. The code for
solving these analytically is shown here:



234 Chapter 5 Multiple Phases—Mass Transfer

In{67]:= Removel[Thc, 7s8c, Xisf, Kd, 6hc]

sol = Flatten|
Simplify([
DSolve[

6h
{8y Xihc [0] == (1-Xihc[6]) - i (Xihe[0] - KdXisc[6]),

6h
ngisc[Bl==(xisf—xisc[0])+—;§(xihc[Bl-deisc[Ol),
T

Xihc[0] ==0, Xisc[0]==0},
{Xihc[0], Xiscl[81},
0]
]
1;
xihc[6_1] := sol{[1l, 211
xisc[O_] := soll[[2, 2]]

xihc[0] // FullSimplify
xisc[0] // FullSimplify

General::spelll : Possible spelling error: new symbol
name "rsc"is similar to existing symbol "thc".

General::spelll : Possible spelling error: new symbol
name "fhc is similar to existing symbol "thc".

General::spelll : Possible spelling error: new symbol
name "thc"is similar to existing symbol "6hc".

General::spelll : Possible spelling error: new symbol
name "Xisc"is similar to existing symbol "Xihc".

General::spelll : Possible spelling error: new symbol
name "Xisf"is similar to existing symbol "Xisc".

General::stop : Further output of General::spelll
will be suppressed during this calculation.

General::spelll : Possible spelling error: new symbol
name "xihc"is similar to existing symbol "Xihc".

General::spell : Possible spelling error: new symbol
name "xisc"is similar to existing symbols {xihc, Xisc}.

Kd

out[71]= (e P +¥heline+ 300 (11 4 kKAXisf) the rsc?
+ e ¥ (e’thersc? + (-1 + e?)Kd? 6hc the (the + Xisf tsc)
1
4»5(-1+ e”) Kdtsc (26hc (the + Xisf tsc)

+the(2the+ (1+ e”) Xisfrsc))) -KdXisfrthersc? Coshl8]1)/
((Kdthec + tsc)(Kd6hec the + (fhe + the) tsc) )



5.7 Liquid-Liquid System 235

Kd

Oout[72]= (-e P IHhelaz+ii)) (L1 4 RAXisf) rhe? rsc
-e?(thc + Xisfrsc) (Kdfhcthe + (6hc + the) rsc)
+{(Kdthc + tsc) (fhcthe + Xisf (fhc + the) tsc))/
((Kdthe + tsc) (Kdfhcthe + (fhe + the) tsc))

We can get a feel for these solutions by making some guesses as to the parameters. Let 7sc be
unity and Thc be 1073 assuming based on the batch calculation we did earlier that we need
about three orders of magnitude more solvent than feed. The magnitude of Xisf should be
<1, and we can say that it may be as small as 1072 or two orders of magnitude below the
concentration of the impurity in the feed. It is also necessary to include the magnitude of Kd.
The value we used earlier was 107%; we can use this again. The really difficult parameter to
estimate is Oy, the holding time in the unit. We can test different values for this parameter to
see its effect. The way we do it is to vary it by orders of magnitude, that is 10".

If we do this directly, it gets kind of sloppy after a few cases and we get annoying error
messages about the choice of variable names that are somewhat too similar for Mathematica’s
checker to be silent. A better way then to do this sort of calculation repetitively is to write
a function call using “Module.” The only variable we care about varying at this point is n,
the exponent on 10 that sets the order of magnitude for the heavy liquid holding time in the
unit. Therefore, we write one Module for each of the dimensionless concentrations. The first,
ifromh[n], is for xihc, the fraction of i left in h after contacting with s. The second, itos[n], is
xisc, which is the ratio of the concentration of i in s to the original concentration of i in h:

In[{73]:= ?? NumberForm

NumberForm[expr, n] prints with approximate real numbers
in expr given to n-digit precision.

Attributes [NumberForm] = {Protected}

Options [NumberForm] = {DigitBlock - oo,
ExponentFunction -—» Automatic, ExponentStep — 1,
NumberFormat — Automatic, NumberMultiplier - x,
NumberPadding — {,}, NumberPoint - .,

NumberSeparator — ,, NumberSigns - {-,},

SignPadding — Falsel

In[74]:= NumberForm[3.12256, 3]

Out(74]//NumberForm=
3.12

In[75]:= ifromh[n__] := Modulel
{the = 1073, 78c = 10°, Xisf = 1072, Kd = 1072,

pll, pl2},
fhc = N[10"];



236 Chapter 5 Multiple Phases—Mass Transfer

xihe[6_] := (e 00*he(ac+7)) (|1 4 RAXisf) The Tsc?
+ e (ePrherec? + (-1 + €?)KA%2 6hc The (The + Xisf 7s8¢)

1
+ 5(-1+ e?)Rd T8¢ (20hc(the + Xisf Tsc)

4+ The(27he + (1+¢€%) xisfrsc)))
- RdXisf thc rsc? cosh([O]1)/
((Kd7he + 78c) (Kd 6hc The + (fhc + The) T8¢) ) ;

pll = Plot[{xihc[f#]}, (6, 0, 10 6hc},
PlotStyle - Thickness[0.01],
AxesLabel - {"0", "xihcl01"},
PlotLabel - StyleForm["Ohc =",
NumberForm[fhc, 2], FontSize - 10],
PlotRange - All]
]

Inf[76]:= itos[n_]1 := Modulel
{thc = 1073, 78c = 10°, Xisf = 1072, Kd = 1072,
pll, pl2},

6hec = N[10"};

xisc[0_1 := (-e 00*heing+ 0 (11 4 RAXisf) ThelTsc
- e (thc + Xisfrsc) (Kd6hc the + (fhc + Thc) Ts8c)
+(Kd7he + 718c) (fhcTthe + Xisf (fhec + Thec) T8c))/
((Kd7he + 78c) (KA fhcThe + (fhc + The) T8¢€));

pl2 = Plot[{xiscl[fl}, {6, 0, 1006hc},
PlotStyle - {{Thickness[0.01],
Dashing[(0.05, 0.05}1)}},
AxesLabel - ("8", "xisc[0]1"},
PlotLabel -
StyleForm["fhc ="NumberForm|[fhec, 2],
FontSize - 10], PlotRange - All]

1

We can see how the two Module functions work by choosing a value of n, say, unity, and
testing them:

In[77]:= ifromh[.5];
itos([.5];



5.7 Liquid-Liquid System 237

thc[g] 6hc =3.2
0.0004
0.0003
0.0002
0.0001
6
5 10 15 20 25 30
XiSC[g] 6hc = 3.2




238 Chapter 5 Multiple Phases—Mass Transfer

"

Within the Module functions we could have placed a semicolon “;” after the Plot commands.
This would have allowed the graphs to be rendered, but the output “Graphics” would have
been lost. We need the “Graphics” in order to plot arrays of these two functions with varying
values of n. Therefore, we have left the semicolon out of the Modules. We can now use these
in arrays and stacks.

We can place the two new functions we have written in a Table and let n vary from —1 to 1
in order to see how the two ratioed concentrations vary with decade increases in the holding
time of the heavy stream:

In[79] := SetOptions[{Plot, ListPlot}, AxesStyle - {Thickness[0.011},

PlotStyle - ({PointSize[0.015], Thickness[0.006]},
DefaultFont - {"Helvetica", 10}];

In[80]:= Table[{ifromh[n], itos([nl}, {n, -1, .5, .5}1;

xihel6) ohc = 0.1
0.01

0.008

0.006

0.004

0.002

0.2 0.4 0.6 0.8 1



5.7 Liquid-Liquid System 239

xiscld] 6hc = 0.1
0.007 -

0.006 ~
0.005 ”

0.004 g
0.003 e
7
0.002
7

0.001 /7

X ;

0.2 0.4 0.6 0.8 1

xihci6] ¢hc = 0.32

0.003

0.0025

0.002

0.0015

0.001

0.0005

0.5 1 1.5 2 25 3



240 Chapter 5 Multiple Phases—Mass Transfer

xisc[f]

éhc =0.32

xihc[d]

6hc =1.

0.001

0.0008

0.0006

0.0004

0.0002



5.7 Liquid-Liquid System 241

xisc[d]

0
xihcl6] bhc = 3.2
0.0004
0.0003
0.0002
0.0001
o



242 Chapter 5 Multiple Phases—Mass Transfer

xiscl6] ghc =3.2

5 10 15 20 25 30

Now these can be assembled into a GraphicsArray within the Show command for a more
pleasing presentation of the changes:

In[81] :=Show[GraphicsArray[(%]]:;

xihc[6] 6hc = 0.1 xisc(6) ghc =0.1
0.01 0.007 _ -
0.006 -
0.008 0.005 -7
0.006 0.004 Pad
0.004 0.003 P s
0.002 y
0.002 0.001| ~
6 A 6
02 04 06 08 1 02 04 06 08 1
xihc{6] #hc =0.32 xiscl6] ¢hc =0.32
0.003 0.01 - -
0.0025 0.008 P
0.0015 /
0.001 0.004| ,

4
05 1 15 2 25 3 05 1 156 2 25 3



5.7 Liquid-Liquid System 243

xihcl6] 6hc =1. xisc(6] fhc =1.
0.001F oot -7 T T T~
0.0008 0.008|
0.0006 0.006]| /
0.0004 0.004|/
0.0002 0.002 |/
) 9
2 4 6 8 10 2 4 6 8 10
xihc[6] ohc =3.2 xisc[f] ohc =3.2
0.0004 f oot ,~ T T 7
0.0003 0.008 |/
0.0002 o.ooehl
0.004 [l
0.0001 0.002
0
5 10 15 20 25 30 5 10 15 20 25 30

If after seeing this GraphicsArray, we realize that we prefer this type of presentation, then we
might be tempted to place the Table command that generates the Graphics directly into the
Show|[GraphicsArray| ]] statement, but this would not do what we want. It would give us
the standard output of the individual Graphics and then the array. If we want only the array
we need to go back and modify the Module functions so that the rendering of the graphs

is delayed until we call for them. We do this with DisplayGraphics — Identity in the Plot
commands:

In{82]:= ifromhin_] := Modulel
{the = 1073, 78c = 10°, Xisf = 1072, R4 = 1072,
pll, pl2},
6hc = N[10"];

0((1 + O)thcrsc + Kd O00hc(Tthe + Xisfrsc)) .
(1 + ) (Kd06hcthc + (the + O(6hc + The)) Tsc)
pll = Plot[{xihc[f1}, {6, 0, 106hc},

PlotRange - All,

PlotStyle - Thickness[0.01],
AxesLabel - {"0", "xihc[61"},
PlotLabel - StyleForm["Ohc ="

NumberForm{fhc, 2], FontSize - 10],
DisplayFunction - Identity]

xihcl[O_1:=




244 Chapter 5 Multiple Phases—Mass Transfer

In[83]:= itos[n_] := Modulel[
{The = 10~3, 78c = 10°, Xxisf = 1072, K4 = 1072,
pll, pl2},

6he = N{10"];

O(Xisf Thetsc+0(Xisf Thersc+6hc(Thec+ Xisf 7sc)))
(1+60) (RA86hc the + (The + 0 (6hc + The) )Ts8c)

pl2 = Plot{xisc[0]}, {6, 0, 106hc},
PlotRange - All,
PlotStyle - {{Thickness[0.01],
Dashing[{0.05, 0.05}1}},
AxesLabel - ("0", "xisc[0]"},
PlotLabel - StyleForm["fhc ="
NumberForm[6hc, 2], FontSize - 10],
DisplayFunction - Identity]

xisclf_]:=

1

When we run the Module functions in this form, we obtain just the Graphics output without
the rendering. This can now be placed directly inside the Show[GraphicsArrayl 1] command:

In[84]:= Table[{ifromh[n], itos[n]}, {(n, -1, 1}]
out[84]= {{-Graphics-, -Graphics-}, {-Graphics-, -Graphics-1},
{-Graphics-, -Graphics-1}

In[85] := SetOptions[{Plot, ListPlot}, AxesStyle — {Thickness[0.01]},
PlotStyle -+ {PointSize[0.015], Thickness[0.006]},
DefaultFont - ("Helvetica", 10}];

In[86] := Show[GraphicsArray|[Table[{ifromh[n], itos[n]},

{n, -1, 1}111;
xihc[6] 6hc =0.1 xisc[6] 6hc =0.1

0.01 -
0.008 0.005 _ - -

’ 0.004 P -
0.006 0.003 _ 7
0.004 0.002 7

7
0.002 0.001!
) g

02 04 06 08 1 02 04 06 08 1



5.7 Liquid-Liquid System 245

xihc(d] ohc =1. xisc[6] éhc =1.
0.01 - ——
0.001 f’ i} -
0.0008 0.008 , <
0.0006 0.006| ,
0.0004 0.004 |
0.0002 0.002 |/
0 6
2 4 6 8 10 2 4 6 8 10
xihc[6] ghc =10. xiscl[6] 6hc = 10.
0.0002 -————— = = -
0.01} ,
0.00015 0.008 |/
0.0001 0.006 §
0.004
0.00005 0.002
0 0
20 40 60 80 100 20 40 60 80 100

Using these ideas in tandem we can examine the effect of the holding time of the heavy feed
in the contactor over a range of 10° as shown here:

In[87]:= Table[{ifromh[n], itos(n]}, {(n, -2, 4}]1:;
Show[GraphicsArray[%]]:;

NumberForm: :sigz : In addition to the number of digits
requested, one or more zeros will appear as placeholders.

NumberForm: :sigz : In addition to the number of digits
requested, one or more zeros will appear as placeholders.

NumberForm: :sigz : In addition to the number of digits
requested, one or more zeros will appear as placeholders.

General::stop : Further output of NumberForm::sigz
will be suppressed during this calculation.



246

xihc[0]

0.04
0.03
0.02
0.01

6hc =0.01

)
0.02 0.04 0.06 0.08 0.1

xihc[6] ghc = 0.1 xisc[6] phc = 0.1
0.01 -
0.008 0.005 _ - -
' | 0.004 _ <
0.006
0.003 Pad
0.004 0.002 s
7/
0.002 0.001| ,
0 o
02 04 06 08 1 02 04 06 08 1
xihc[6] ohc = 1. xisc[6] phc = 1.
0.01 —-——
0.001 ¢ P
0.0008 0.008 L,
0.0006 0.006| ,
0.0004 0.0041/
0.0002 0.002 |/
6
2 4 6 8 10 2 4 6 8 10
xihc[6] ghc = 10. xisc[f] 6hc = 10.
.0002 —_—————— ==
0.00 001} ,
0.00015 0.008 |/
0.0001 0.006 f
0.004
6 6
20 40 60 80 100 20 40 60 80 100

Chapter 5 Multiple Phases—Mass Transfer

xisc[f] ghc = 0.01
/ -
0.0008 -
”
0.0006 Phd
P
0.0004 P
7”7
0.0002 P
7

0
0.02 0.04 0.06 0.08 0.1




5.7 Liquid-Liquid System 247

) xisc[6] 6hc = 100.
xihc[6] 6hc = 100. ———— - — — —— .
0.00012 0.01}
0.0001 r 0.008
0.00008 0.006
0.00006 0.004
0.00004 0.002
] ]
200 400 600 800 1000 200 400 600 800 1000
xihc[ 0] ghc = 1000. xisc[] ghc = 1000.
0.0001 0.01
0.00008 0.008
0.00006 0.006
0.00004 0.004
0.00002 0.002
9 9
2000 4000 6000 8000 10000 2000 4000 6000 8000 10000
xihc[6] ghc = 10000. xisc[6] ghc = 10000.
0.0001 0.01
0.00008 0.008
0.00006 0.006
0.00004 0.004
0.00002 0.002
9 6
20000 40000 60000 80000 100000 20000 40000 60000 80000 100000

Recall that the @-axis in these graphs is the reduced time, that is, the real time ratioed to the
holding time. (Note: In the last six graphs the time axis is too compressed and the time labels
are too close together. This could be overcome by splitting the first set of outputs from the
second with two function calls and appropriately different plotting options.) We notice in the
first case with a short holding time of 0.01 that the unit has not yet reached a steady state even
after 10 holding times have passed. In the cases that follow, 10 holding times are more than
enough time to ensure that a steady state has been derived. When we look at the data, we can
see that the impurity levels are much reduced in the heavy stream as it exits the reactor. Even
in the first case, at 10 holding times, the concentration is ~5% of that of the inlet stream. As we



248 Chapter 5 Multiple Phases—Mass Transfer

increase the holding times by factors of 10, we see that the picture improves; in fact, we notice
that the fractional concentration of the impurity at steady state decreases by a factor of 10 for
every factor of 10 increase in the holding time. Remember that holding time is just the ratio
of the volume of the impure stream to its volume flow rate through the unit. Increasing the
holding time at a fixed flow rate is the same as increasing the volume of the impure feed in the
unit, or in other words the same as making the unit bigger. This way a larger contactor unit
gives a larger holding time and more effective transfer of the impurity to the extracting solvent
phase. Depending upon how far below the inlet feed concentration the exit concentration of
impurity needs to be, we would use this calculation to find the volume of the system required.
Keeping everything else the same, reducing the concentration by a factor of 10° between exit
and inlet would require a much larger unit than the unit that would reduce this by only a
factor of 10.

We will come back to this overall unit scheme later in our studies when we seek to write
models for a group of units. For now we can use the knowledge we have gained here by
applying it to some other seemingly different systems that are actually quite similar at the
level of analysis.

5.8 Summary

Now that we have seen how mass moves between phases and those factors that control the
rate of this process, we can bore in at the molecular level on mass action, especially adsorption.



CHAPTER B

Adsorption and Permeation

6.1 Adsorption

Net Rate of Adsorption

Adsorption is a fundamental process of separation that is practiced for different purposes;
removal of volatile organics contaminants (VOCs) from air is one, removal of water vapor
from nitrogen is another. Hydrogen purification, that is, removing trace quantities of hydro-
carbons, is important, especially for applications in electronics fabrication processes (such as
metal organic chemical vapor deposition (MOCVD)), which require “ten nines” and better
purity (that is less than one part impurity in 10° parts of the gas!). Although adsorption will
not give this level of purification, it is one of the methods that can be used in the process of
producing such high purity hydrogen. Diffusion of hydrogen through a palladium membrane
gives the highest attainable purity, as hydrogen and only hydrogen can be transported through
the metal. We will cover permeation after we examine adsorption.

Although we include adsorption here following the chapter on mass transfer, we should
be clear that it is a very specific process in its fullest fundamental meaning. Adsorption is
the process by which molecules in the fluid phase in contact with a solid move to the solid
surface and interact with it. Once at the solid surface these molecules may be reversible or
irreversible adsorbed, that is, they may come back off the surface to the fluid phase with their
full molecular integrity intact, or they may be so strongly bound that the rate of removal is for
all purposes close enough to zero to be considered zero.

249



250 Chapter 6 Adsorption and Permeation

When the discussion turns to removal of some component from a fluid stream by a high
surface area porous solid, such as silica gel, which is found in many consumer products (often
in a small packet and sometimes in the product itself), then the term “adsorption” becomes
more global and hence ambiguous. The reason for this ironically is that mass transfer may be
convoluted with adsorption. In other words the component to be adsorbed must move from
the bulk gas phase to the near vicinity of the adsorbent particle, and this is termed external
mass transfer. From the near external surface region, the component must now be transported
through the pore space of the particles. This is called internal mass transfer because it is within
the particle. Finally, from the fluid phase within the pores, the component must be adsorbed
by the surface in order to be removed from the gas. Any of these processes, external, internal,
or adsorption, can, in principle, be the slowest step and therefore the process that controls the
observed rate. Most often it is not the adsorption that is slow; in fact, this step usually comes
to equilibrium quickly (after all just think of how fast frost forms on a beer mug taken from
the freezer on a humid summer afternoon). More typically it is the internal mass transport
process that is rate limiting. This, however, is lumped with the true adsorption process and
the overall rate is called “adsorption.” We will avoid this problem and focus on adsorption
alone as if it were the rate-controlling process so that we may understand this fundamentally.

True adsorption is a “mass action” process rather than a mass transfer process. What this
means is that it will occur even in the absence of a concentration gradient between the bulk
gas and the surface. It comes about due to the rapid and chaotic motion of the fluid phase
molecules, and their impingement on the surface. From the elementary kinetic theory of an
ideal gas we can compute the number of molecules impinging upon a surface per unit time
per unit area at a given temperature and pressure. It is:

Number Molecules ICL‘ 1 / 8RT PL PL / 1 P
= - V= — —— = =
area time 4 4V MW RT 2 RTMW /27 RTMW

Hence the number of molecules hitting the surface per unit time per unit area is a flux. Also,
it is proportional to the pressure of the gas and the mean speed of the gas molecules and to
T-:. At room temperature and pressure the impingement frequency of nitrogen is:

, [8RT PL

Inf[l]:= i1y - == NumberForm[
TMWRT
PowerExpand [
gom?
- 7 Joul 22
wpBatm 6.0210%°mole™* 88.314107 22 = 300K” 21
3 Latm g r
4 1000%0.082055‘;—“3001( 28 -
RT
PL,/ 2.3 x 1023
Out(l]= ==

J27RT cm?s



6.1 Adsorption 251

Thus, nearly one-third of a mole of nitrogen molecules strikes every square centimeter every
second. No wonder the time to equilibration of adsorption is so fast!

Irving Langmuir, the Nobel prize-winning industrial physical chemist who worked at
General Electric, built an elegant structure upon this foundation in kinetic theory. He reasoned
that not every molecule would adsorb, but only some would do so. Furthermore, one reason
for this was that to be adsorbed there should be a site for adsorption to occur. It stands to
reason then that on the basis of mass action, the rate of adsorption should be proportional to
the concentration of molecules in the gas phase and to the number of sites available on the
surface. Additionally, the rate should be related at any time to the number of sites not covered
at that time rather than to the total number of sites present per unit area. Conversely, and again
by the principle of mass action, the rate of desorption should be proportional to the number
of sites currently occupied at that time. Using ka and kd as the proportionality constants (that
we will call the rate constant for adsorption and desorption, respectively), we can write the
net rate of adsorption for gas phase species i as the difference between the rate of adsorption
and the rate of desorption:

rate; ads net = kaicig (Ci —site total — Ci—sitcs,occupicd by i) — ki Ci~sitos,nccupicd by i

All the sites are assumed to be identical, and the adsorption at one side does not affect that
at another site, that is, they interact with the gas phase independently. In addition to the two
rate constants the term C;_gjte total is also a constant and is the number of sites available on the
solid per unit area. This raises another point: if this and the concentration of occupied sites
are written on a per unit area basis, and the gas phase concentration C;g is written on a per
unit volume basis, then what are the dimensions of the rate constant?

The net rate of adsorption is the number or moles of molecules adsorbed per unit area per
unit time, where the area is the area made available for adsorption by a given mass or volume
of the adsorbent solid. Therefore, the two rates on the right-hand side must also be moles per
unit area-time. This means that the rate constants must be dimensioned as follows:

mole [ length® mole ( mole 1 ( mole
length? time | mole time | | length® |\ | length? time | \ [ length?

These dimensions (bold) are what we expect from mass action kinetics for a second-order and
for a first-order rate constant.

Consider now an adsorbent that offers little or no resistance to mass transfer because it is
“macroporous.” This means that the pores within the solid are large (macro), that is, greater
than 20 nm in diameter or width, and that transport of small molecules (0.2 nm) is unhindered
and takes place as if they were in the bulk phase surrounding the solid. This means that the
bulk gas phase concentration is the same in the pore spaces within the solid as it is outside
the solid.

If the gas around the adsorbent solid occupies some fraction € of a volume V, and if this
volume contains an adsorbing gas i, then the rate of adsorption of the gas onto the adsorbent




252 Chapter 6 Adsorption and Permeation

and the rate of depletion of that species from the gas phase are coupled batch processes. The
component mass balances for the gas and solid phases are as follows:

dC; ,eV
Gas phase: T,gtéﬁ = ~(1 — €)rate; ads,net As s V
dC; (1 —e)A
Solid phase: w = (1 — €)rate; ads net As s V
i mole as phase
g = volume gasp

€ = void fraction in the bed of solid and gas

mole 1
Cis = surface phase
area

V = total volume occupied by solid and gas
Aot = A:pV = Length’
rate; .45 net = Net rate of adsorption of i on solid

2 2
As= / Length
g mass

g mass

A= cm Length

When rearranged and written with the explicit rate of adsorption these become:

dCiy _ (1-9)
dr

d is
Solid phasei t(i:t“ = (kq, Ci,g(ci,s/tot —Cis) —kasCis)

Gas phase: (kaCi ¢(Cistot — Cis) — ka sCis)AspsV

There are two types of experiments suggested by these equations and that actually are done to
obtain the rate constants for adsorption of a species i on a given adsorbent. The first experiment
is done gravimetrically. The adsorbent is placed in small container suspended from a balance
and inside an evacuable enclosure. After heating under dynamic vacuum to remove any
water or other adsorbates, the sample is cooled to the experimental temperature, and then
the adsorbate is admitted in such a way that its pressure remains constant throughout the
course of the experiment. This is done either by constant delivery or by connection to a large
ballast volume of the adsorbate gas. The mass uptake is measured as a function of time. The
parameters Cistot and £2 are typically known from separate measurements. Thus only ka
and kd need to be fitted to the data, either in differential or integral form. To fit to the integral
form, we need the expression for mass adsorbed per time. Hence we need to integrate the



6.1 Adsorption 253

mass balance for the adsorbate over time:

dCi 5
dt’ = (kaCi,g(Ci,s,tot = Cis) —kasCis)
d
ECi'S (1 — €)Vp; As Mwi = (k, Ci/g(ci,s,tot = Cis) ~kasCis (1 — €)ps AV Mwi
dmi,s .
T = (ka Ci,g(Ci,s,tot(l - E)ps As V Mwi — mi,s) - kd,smi,s)
dmi,s
ar = kaci,g(mi,s,tot — Mis) — Ka,sMis

where M tor = Cistot(l — €)ps AV Mwi

This concentration of i in the gas phase is a constant, which makes this equation simple to
integrate:

In[2]:= Simplify[DSolvel
{Omig[t] ==kaCig (mistot -mis[t]) - kdmis[t], mis[0] == 0},
misft], tl]

Clg(—l + e—(Cigka+kd)t)kamistot

Oout[2]= {{mis[t
uelz] misfe] - Cigka + kd

3}

We can put some realistic numbers into this equation to see how it would behave. We can
take € to be 0.4, which is a reasonable number for a packed bed of particles. The area per unit
volume can be taken as 100 m? per g (~10° cm? per g), the density of the solid is on the order
of 1 g cm™>, and the number of sites per unit area N; s o is on the order of 10" per cm?, making
Cistot ~ 107° mole sites cm?. (On a perfect surface there are ~10'® per atoms cm?, so we have
taken 10% of this value as the number of sites, which corresponds to one site in every 1 nm?.
Finally, the mass concentration of the adsorbate (if the latter is ideal) is ®M¥! We use these
numbers and a value of ka, which is one order of magnitude larger than kd. If the system
were to come to equilibrium, then the mass uptake would go to zero. This would be the same
when rate of adsorption is balanced exactly by the rate of desorption. We can compute the
mass of i on the solid when this occurs as follows:
% =0=k, Ci,g(mi,s,tot —mis) —kasmis
In[3]:= Clear[mistot, miseq, ka, kd, Cg]
Solve[kaCg (mistot - miseq) - kdmiseq == 0, miseq]

Cgkamistot }

out[4]= {{mis
ut (4] leq—-)Cgka+kd



254

Chapter 6 Adsorption and Permeation

The full time-dependent solution comes from the solution of the material balance equation.
Both solutions are presented here:

In[5]:

In[6]:

SetOptions[{Plot, ListPlot}, AxesStyle - {Thickness[0.01]},
PlotStyle - {PointSize[0.015], Thickness[0.0061},
DefaultFont - {"Helvetica", 17}1;

"The expression on the right needs to be
divided by grams to make it dimensionless for plotting";

Cg(-1 + e fCoka+kdit) kamistot/g]

mis[t_] := N[-

Cgka + kd
, cm’
ka = 10—
mole
kd = .001;
pPi = 1 atm;
Mwi = 100 g H
mole
T = 300 K;
cm’atm
R = 82.05 —;
] mole K
pi
Cg = H
g RT
e = 0.4;
V = 1cm®;
ps = 2.5 gem™3;
As = 10°cm?g!;
Vs = 10cm?;
. 14 -2 1 mole
Cistot = 10*cem™ —— —;
6.021023

tmax = 1000;
mistot = (1 - €)CistotVAspsMwi;

"In the following two expressions
the unit of mass needs to be eliminated for plotting";
Cgkamistot 1000

miseq = ;
(Cgka + kd)gpsV/g

mis[t]1000
Plot[ ——, {(t, 0, tmax},
psV/g

T
AxesLabel - {"t/s", "_g"}'
g

Epilog - {Thickness{0.01], Dashing[{0.05, 0.05}1],
GrayLevel{[0.6], Line{{{0, miseq), {tmax, miseqg}}]}



6.1 Adsorption 255

mg
9

B —— — - — = =

200 400 600 800 1000

In this case, the equilibrium is reached at a modest level of 8 mg of adsorbate per gram of
adsorbent, which is a low level of adsorption. Higher values would be on the order of 80 mg
per gram.

A different experiment that appears to be simple is to expose the adsorbent to a volume
of gas and then measure the pressure change as a function of time. This has the same aim as
the procedure we just analyzed but it is much more complex. A brief analysis will show us
why. Let V,, be the volume that is occupied by the gas at a known pressure and temperature.
Once the two volumes are connected, the total volume of the system is Vtot = €V + V,, on
the basis of a solid that was space occupying but not adsorbing. The initial pressure P4, after
opening a valve between the two, is given by:

PV, =P](€V+Va)=> P = (6_‘5(:}-‘/(—)‘/())

Is this the correct initial pressure to use? Or should we account for the internal void of the
adsorbent as well when we compute the initial pressure. To do so would lead to one more
term in volume, namely, that of the void fraction within the solid. This is not the void between
the solid particles, but that which is within the solid particles. If the mass of the particles is ms
and their density is ps, then the volume of the particles is Vp = 72, and if the fraction that is
unoccupied by solid is &, then this extra volume is £ Vp = £72. The corrected initial pressure
would be:

PV,

P,V, = P,(eV +V, + &£V P, —
o 1(eV+V, +EVp) = P, VTV, +EVp)




256 Chapter 6 Adsorption and Permeation

Assuming that we can compute a reasonable initial pressure, then the pressure is measured as
a function of time and the data would be fitted either to the differential or integral expressions
from these equations:

dCi 1—¢
s L . ) (ksCog(Crstor — Cis) — ks Ci) Asps V

dt

dP,‘ 1—¢

—dT = _'( P )(ka Pi(Cis ot — Cirs) — kd,sRT Cis)AspsV
RT d‘(j:;,s = ka Pt (Ci,s,tot - Ci,s) - kd,s RT Ci,s

These equations appear to be very similar to those we have just seen, and hence they seem to be
simple. In fact they are not simple because the pressure of the gas is a function of time as is the
concentration on the surface. The previous experiment has the advantage of being designed
around an analysis that was simple to carry out and solve for an analytical expression. We can
solve these two equations using Mathematica, but the closed-form solutions are anything but
straightforward. To see this run the DSolve code:

In[26]:= Clear[ka, kd, p, c, Cstot, As, ps, V]

Simplify[DSolvel
{8.plt] == -(kap(t](Cstot - clt]) - kdclt])aspsV,
O.clt] == (kapit] (Cstot - c[t]) - kdc[t]),
pl0] == P1,
cf0] == 0},

{P[t]: cltl}, tll

General::spelll : Possible spelling error: new symbol name
"Cstot" is similar to existing symbol "Cistot”.

Solve::ifun : Inverse functions are being used by Solve,
so some solutions may not be found.
1
(2AskaVps
(kd + ka(P1l + AsCstotVps)

out[27]= {c[t] -

+ /~kd? -ka? (Pl - AsCstot Vps)2~-2kakd (Pl + AsCstot Vps)

1
Tan[g't:\/—kd2 -ka? (Pl - AsCstotVps)?-~2kakd(Pl+ AsCstotVps)

et /o7 /(kd+kaPl+AsCstotkaVps)?
Cstot Pl\/ AsCstot ka?PlVps

\/_ kd2 + ka2 ( P1 - As Cstot Vps)2 + 2ka kd ( P1 + As Cstot V ps)

- ArcTan/| 1),

As ka?Vps



6.1 Adsorption 257

1

clt] »———
(2AskaVps

(kd + ka(P1 + AsCstotVps)

+/-kd? -ka? (P1 - AsCstot Vps)? - 2ka kd (Pl + AsCstot Vps)

Tan [

1
Et\/—kdz - ka2 (Pl - AsCstot Vps)? - 2kakd (Pl + AsCstot Vps)

~————— /o /(kd+kaPl+ AsCstotkaVps)?
Cstot Pl\/ AsCstot ka?PlV ps
+ ArcTan|( 11),
_kd’+ka?(Pl-AsCstotVps)? +2kakd(Pl+ AsCstot Vps)
As ka?Vps

1
t - -
plt] >ka

(kd - kaPl + AsCstotKaVps

+y/-kd? - ka? (Pl - AsCstot Vps)? - 2kakd (Pl + AsCstot Vps)

Tan [

1
Et\/—kd2 —ka? (Pl - AsCstot Vps)?-2ka kd(Pl+AsCstotVps)

T~ /=3 /(kd+kaPl+AsCstotkaVps)?
Cstot Pl\/ AsCstot ka“ PlVps
- ArcTan]| — , 1,
_kd'+ka" (Pl - AsCstotVps) 4+ 2kakd(Pl + AsCstot Vps)
As ka’ Vps

1
t] » -—
plt] 2ka

(kd - kaPl + AsCstotVps)

+4/-kd? -ka? (P1 - AsCstot Vps)? - 2kakd (Pl + AsCstot Vps)

Tan [

1
Et\/—kdz -ka?(Pl-AsCstotVps)?-2kakd(Pl+AsCstotVps)

v /57 /(kd+kaPl+ AsCstotkaVps)®
Cstot Pl\/ AsCstot ka’ P1lV ps
+ ArcTan| - 1101}
/ _kd? +ka?(Pl - AsCstotVps)?+2kakd(Pl+AsCstotVps)

As ka’ Vps

As we can see from these solutions this is anything but a simple experiment. This is a
good illustration of how the analysis can be used to define and indeed to design the ex-
periment.



258 Chapter 6 Adsorption and Permeation

Semicontinuous Adsorption: Pseudo-Steady State

From the experimental point of view there is one more experiment that can be done to ob-
tain adsorption rate parameters and this is the use of a semicontinuous approach. Here the
adsorbate is fed at a mass flow rate that is equal to the rate of adsorption, and a very sen-
sitive pressure transducer is slaved to a mass flow controller for the adsorbate. As this gas
is adsorbed, and were there no flow into the system, the pressure would drop. This would
lead to the complexities we have just analyzed. If, however, the mass flow controller is slaved
in such a way that it opens whenever there is a slight 6P of pressure drop below the fixed
experimental pressure set point, then the pressure can be maintained as a constant. The mass
flow rate into the system is the same as the mass rate of adsorption “out” of the gas phase and
“onto” the adsorbent phase I1.

The analysis of this experiment begins with a slightly modified version of the equations
we have seen:

dC; eV
Gas phase: —7\;—— = Ci g — {1 — e)rate; ags net As sV
dCi (1 - Ao
Solid phase: % = (1 — e)rate; sds net As ps V

The gas phase balance includes a convective flow term for the mass flow of species i into the
system. The pressure would rise were it not for the rate of adsorption, that is, the process that
removes i from the gas phase and locates it in the second phase, the adsorbent. Now we can
make progress in the analysis even before we substitute in the rate expression. The reason is
this: in the experiment the rate of adsorption must be equal to the rate of delivery. Therefore
we have a pseudo-steady state in that the gas phase concentration remains constant all the while
the surface concentration is changing:

Ci,gq = (1 — €) rate; ads net As ps V

CdCis(1 =€) A

o dt

dC,‘/g _ C,',gq
At~ (1 —e€)Ap.V

=Ci¢q

Given that the gas phase concentration is constant, this is immediately integrated to a linear
form in time:

Cieq
= ———2 =
Ci«[t] (I—G)A,o\Vt CSt



6.1 Adsorption 259

This can be substituted back into the rate expression to give:

dci,s
dt

= (ka Ci,g(ci,s,tot - Ci,s) - kd,sci,s)

= (""Cf«? (Cosso~ =gty ) - kdfsa%ﬁt)
= (ks Ci,¢(Cis tor — CSt)—k;;CSH

=k,Ci,yCistot —kaCigCSt—ky,CSt

=k;Ci ¢Cistot — ki Ci g +ka,s)CS t

Inf[28)]:= Clear([Cis, ka, kd, Cig, CS, Cistot, q, As, ps, €,V]

Simplify[DSolvel
{Cis’[t] == kaCigCistot - (kaCig + kd)CSt, Cis[0] == 0},
Cis([t], tl}

1
out[29]= {{Cis[t] — —Et(—2CigCistotka + CigCSkat + CSkdt)}}

1
Inf30]:= Simplify[Solve[—Et(-zcigcistotka + CigCSkat + CSkdt)
== CSt, {ka, kd}]]
Solve::svars : Equations may not give solutions for all
"solve" variables.

2CS + CSkdt

out[30]= {{ka > ; : -
2CigCistot - CigCSt

To solve for ka and kd explicitly, we need one more equation. We can get this from the
consideration of an equilibrium condition. When the concentration on the surface of the
adsorbent is no longer changing, then rates of adsorption and desorption are equal. From
this we find:

0= (knCi,gv(Ci,s,mt - Ci,sc) - kd,sci,sc)
This can be rearranged to give the ratio of the rate constants on the left-hand side:

ka Cise

kd ~ Cige(Cistot — Cise) . °




260 Chapter 6 Adsorption and Permeation

Dividing through by the total number of sites we get the fraction of sites occupied, which is
8, and the well-known Langmuir isotherm:

(Cise/Cistot)
Kads =
ads Cige (Cistot — Cise)/Cistot
0
Kads = ——F——
ads = e 1= 9)
0

In[31]:= Solvel[Kads == ]

Cige(l1 - 9)°
General::spelll: Possible spelling error: new symbol name
"Cige" is similar to existing symbol "Cig".

CigeKads

out[31]= {{8 — - 1}
1 + Cige Kads

Thus from this one measurement we can find the ratio of the rate constants, Kads, and if we
have some independent measure of the total number of sites, Cistot, then we can compute the
rate constants:

o  2CS+CSkdt _ 2CS+CS ot
~ 2CigCistot — CigCSt ~ 2Cig Cistot — Cig CSt
2cs + cs X2t
In[32]:= Simplify [Solve [ka == , kall

2cigcCistot - CigcCst
2 CS Kads

out[32]= {{ka—> - - - - 1}
-2CigCistot Kads + CSt + CigCSKadst

We should note that the fraction of sites occupied at any equilibrium gas phase concentration
follows a graph that looks as follows:

Inf33]:= K = 1;
Plot[1 y gs+ (C, 0, 100}1;



6.1 Adsorption 261

—— p—— = L T S e . i e it St e et g S e e e sy

0.8

0.6

0.4

0.2

20 40 60 80 100

The expression reduces to a constant when the concentration is large relative to K, at about
20x, but at low concentration the expression is linear in C:

In[35]:= Show([
GraphicsArray!

PlOt[T—EC—KC, {C, 0, .6}1
PlotRange - {{0, .6}, {0, .4})},
AxesLabel - ("C", "6"},

PlotLabel - "Low C range"],

Plot[{ s gz, {C, 20, 100},

PlotRange - {{20, 100}, {0, 1}},
AxesLabel - {("C", "6"},
PlotStyle - {Thickness[0.01],
Dashing[{0.025, 0.025}]), GrayLevel[0.6]},
PlotLabel - "High C range"]
]
1;



262 Chapter 6 Adsorption and Permeation

0 Low C range
0.4

0.35
0.3
0.25
0.2
0.15
0.1
0.05

01 02 03 04 05

6 High C range

L [ T R

0.8
0.6
0.4
0.2

C
30 40 50 60 70 80 90 100

In the low concentration limit the adsorption isotherm is a linear law as was the partition
coefficient, and just as the isotherm deviates from linearity outside of the low concentration
limit, so too does the partition relation between the two liquid phases.

There is much more that we can say about adsorption and what we can do with it, including
the coupling together of mass transfer and adsorption. There is no better example of that kind
of process than that which occurs with membranes, and this is called permeation.



6.3 Permeation—Adsorption and Diffusion 263

6.2 Permeation

Permeation is a process by which mass is transferred through a membrane from a region of
higher concentration or pressure to one of lower concentration or pressure. The membrane
can be polymeric, metallic or ceramic. Our bodies and all living organisms use membranes
as critical structural components of cells. Separating the inside from the outside of the cell
provides it with its integrity and specialization. Only certain molecules and ions are allowed
to move across the membranes, thus rendering them highly selective. Synthetic membranes
seek to emulate this but with much simpler structures and with mechanisms of operation
for much less complex separations. Polymeric membranes can be obtained that will separate
molecules on the basis of their relative affinities for the interior of the membrane. Those
molecules with higher affinities partition themselves to a larger degree in the membrane
versus the bulk phases than do their competitors. With higher concentrations within, they
also transport across the membranes faster. A classic example of this is the membrane that is
used for hemodialysis. Rendered incapable of clearing the blood of toxins, patients with renal
dysfunction can be “dialyzed” by passing their blood continuously through the membrane
unit. The polymers making up the membranes transport these toxins to a dialysate solution
in which they are very soluble, and thereby return the blood in refreshed state to the patient.

Ceramic and metallic membranes hold the promise of conducting small molecule separa-
tions continuously and with much less energy than required by other processes. The ceramic
membranes offer the opportunity to operate at elevated temperatures (even as part of a chem-
ical reactor, which can offer enhanced conversions and yields of products) by transporting
one product away from the reaction zone, selectively and continuously in order to bypass the
equilibrium limitations. Metallic membranes of palladium and its alloys are special in that
they transport hydrogen and only hydrogen. This makes them particularly interesting for
hydrogen purification, recovery, and use. They may also play a role in fuel cells. Before we
can begin to work with membranes we must know how to analyze their behavior, which is
the goal of this section of the chapter.

6.3 Permeation—Adsorption and Diffusion

Batch. Permeation involves the transport of molecules across a membrane phase. The trans-
port process involves either dissolution or adsorption within the substance of the membrane
and then transport from regions of higher to lower “potential” (that is, concentration) within
the membrane phase. The global measurement of the rate of transport across the membrane,
given in terms of the measurable changes in the concentrations in the bulk above and below
the membrane, is permeation. Transport within the membrane, described quantitatively in
terms of the concentration within it, is diffusion. The processes that take gas phase species
from the bulk either to the surface of the membrane or that lead to their dissolution within
the near surface region are adsorption and partitioning (dissolution), respectively.



264 Chapter 6 Adsorption and Permeation

The rate of transport across the membrane in units of mass (or moles) per unit time per
unit area is termed a flux J and it is found to be proportional to the difference between the
concentrations on either side of the membrane. The proportionality constant is called the
permeability P,, with intrinsic dimensions of Lu'.'f-;,&?, the same as the mass transfer coefficient
and the same as velocity.

J=Pa(C' -C")

Higher permeabilities make for higher fluxes as do higher concentrations and pressures. The
high concentration side of the membrane from which mass typically flows is termed the
retentate, while that side to which mass flows is the permeate.

At relatively low pressures and concentrations, the permeability is the product of two
terms—the adsorption constant or partition coefficient and the diffusivity:

P, =KD (K=Kd or Kads...)

We will see how this factors into the analysis as we go through this material.
Consider the following diagram, Figure 1, for a simple system for batch permeation.
The concentrations of B and D are given as Cy and C}, on the retentate side and as C and
Cp on the permeate side of the membrane. The permeation process is considered to take place
at fixed temperature. The membrane has an area Am through which the flux is measured.

' Retentate

B D

1l Permeate

BII Drl

Figure 1



6.3 Permeation—Adsorption and Diffusion 265

The volumes of the two compartments are V! and V. Each molecule will have its own per-
meability and we will assume that they permeate independently of one another. The material
balance equations are:

2L — —Buaam(cy — )
dcdi’tvl = —P,,p Am(C}, — C}})
Y = punam(ch —cl)
1Y = by Am(ch ~ Cl)

There are four equations that describe the system. We see that independent of which side of
the membrane is the higher concentration side, these equations still work, as they must if they
are to be valid. The concentrations could be in mass per volume or in moles per volume (we
will assume the latter). If B and D were ideal gases, we could express these equations in terms
of the pressure. In all four equations the right-hand side is just the flux of the component times
the area of the membrane. The volumes of the compartments are constant; thus they can be
brought to the right-hand sides:

dCL _ P,,,,B Am(CL—Cg)

dt v

dCj P,,p Am (Cp — C})
at Vi

dcll P, 3 Am(CL —C)
dt Vi

4Cll PppAm(Ch—Cl)
it Vi

It is interesting that yet again this simple operation provides a useful time constant. This is
the ratio of P™A™ which has dimensions of reciprocal time. Therefore, the reciprocal of this
group is a time, 4= is a characteristic length, and 5 is a time per length; thus their product

is a time.

We can solve these equations analytically for the case in which the permeate side is initially
evacuated and the retentate side is charged with initial concentrations of B and D. Also, to
simplify the result, we can take the volumes to be equal:

In[36]:= Clear["Global‘*"]

In[37]:= VI = VII;



266 Chapter 6 Adsorption and Permeation

memsol =
Flatten|
Simplifyl([
DSolvel
(8. C1B[t] == -P"“%—f‘“(cm[t] - C2B[t]),
8.C1D[t] == -%“i‘(cm[t] - C2D[t1),
8. C2B[t] == +%‘“(c1a[t] - C2B[t]),
8,C2D[t] == +%‘“(c1n[t] - C2D[t]1),
C1B[0] == ClBo, C1D[0] == C1Do,
C2B[0] == 0, C2D[0] == 0},

{C1B[t], C2B[t], C1D[t], C2D[t]},
t]
1
]
CIB[t__] := Evaluate[ClB[t] /. memsol[[1]]]
CIIB[t_] := Evaluate[C2B[t] /. memsol[[2]]]
CID[t__] := Evaluate[Cl1D[t] /. memsol[[3]]]
CIID[t_.] := Evaluate[C2D[t] /. memsol{[[4]1]]

General::spelll : Possible spelling error: new symbol
name "ClBo" is similar to existing symbol "C1B".

General::spell : Possible spelling error: new symbol
name "ClDo" is similar to existing symbols {ClBo, C1D}.

2 An pPmRt

l — < Am PmBt
Out[38]= {C1B[t] — -ClBo(l+e ¥ ), C2Blt] - iClBo(l-e v ),

2 Am Pmidt — 2 Ambmin

1 -
C1D[t] — —ClDo(l+e "¥i'), C2D[t] - iC1lDo(1-e” Vi

General::spelll : Possible spelling error: new symbol
name "CIIB" is similar to existing symbol "CIB".

General::spell : Possible spelling error: new symbol
name "CIID" is similar to existing symbols {CID, CIIB}.



6.3 Permeation—Adsorption and Diffusion 267

PmD = 10°5;
VII = 1;
Am = 10;

SetOptions[Plot, DefaultFont - {"Hevetica", 10},
AxesStyle - Thickness[.02]1];

VI

PmBAm
DisplayFunction - Identity,
AxesLabel - ("t", "Cl1B(t]"}, PlotRange - All,
PlotStyle - ({Thickness[0.02],
Dashing[{0.025, 0.035}1}];

VI

PmBAm
DisplayFunction - Identity,
AxxesLabel - {"t", "C1D[t]"}, PlotRange - All,
PlotStyle - {{Thickness[0.02],
Dashing[{0.025, 0.035}1}1;

plI = Plot[CIB[t]l, {(t, O, },

plII = Plot[CID[t], {t, O, },

vIi

PmBAm
DisplayFunction - Identity,
AxesLabel - {"t", "C2B[tl"},
PlotRange - All,
PlotStyle - ({Thickness[0.02], GrayLevell[0.5],
Dashing[{{(0.15, 0.05}1}1;

plIII = Plot [CIIB[t], {(t, O, },

VI
PmBAm
DisplayFunction - Identity,
AxesLabel - {"t", "C2D([t]"},
PlotRange - All,
PlotStyle - {Thicknessg([0.02], GrayLevel[0.5],
Dashing[{0.15, 0.05}]1}1:

plIV = Plot[CIID[t], {t, O, },

Show|[GraphicsArray{{{plI, plII}, {plIII, plIV}}]l:

General::spelll : Possible spelling error: new symbol name
"plII" is similar to existing symbol "plI".

General::spelll : Possible spelling error: new symbol name
"plIII" 1s similar to existing symbol "plII".

General::spell : Possible spelling error: new symbol name
"plIV" is similar to existing symbols {plI, plII}.



268 Chapter 6 Adsorption and Permeation

ClB[t ClD[t]
+* . . - t - £
s 200 400 600 800 1000 200 400 600 8001000
. 3 . '_93\-% \‘ 2 U U VU LUUU
s ~
\‘ 0.9 %
0.8 s “e
-
pat ¥ 0 4 =
N 7 \\ s
0 - 0. 99 “a
q,“. 0.9 ~
0.6 “ea. 0.99 ~
2B[t C2D[t
0.01
0.4 - —_— ”~

s I -
Qo O«
o 00

7~
7~

e el
200 400 600 8001000

]
(8

o O O o

o o

% I <N

C
[

=
) O (¢

C

Oq

200 400 600 800100

We see from the preceding graph that over the period of time —y'— the concentration of B
has fallen sharply on the retentate side and has risen as sharply on the permeate side. The
two sides are almost at equilibrium with respect to species B, with each cell going to 0.5
concentration units. The other species D has barely begun to transfer across the membrane. It
takes on the order of 10? times longer to get to equilibrium, which it nearly reaches in 2
time units. Were this achievable, the selectivity would be nearly perfect as there is so little D
on the permeate side compared to B. It would be very nice to try this continuously to see how
well the systems would work.

Continuous Permeation. The continuous process must have feed and exit on the retentate
side and at least exit flow on the permeate side. We could have an additional sweep (gas or
liquid) feed on the permeate side, which adds very little to the analysis. The new physical
situation is as shown in Figure 2:

The material balance equations for components B and D on the retentate and permeate
sides become:

acLv!
dt
aclv!
dt
dclivt
dt
dcliyn
dt

= (Ck - Chg' = P,y Am(C} - C})

= (Co¢ = Cp)q' = Pup Am(Cp - Cp

= ~Clq" + P, s Am(CL —C})

= —CBq" + P, p Am(C} — C},



6.3 Permeation—Adsorption and Diffusion 269

Feed gases Retentate
>
| Retentate
B D'
Am v
Membrane
Il v \ Permeate
B D"
k-
y
Permeate
Figure 2

When the system runs at steady state, the derivatives are identically zero. We can divide both
sides of both of the equations by the volumes to give:

0= (c} C)qv',—”"’—;‘“ﬁq ct)

0= (Cy — D) M(CD—C
—cg?/" L"*/ﬂ(cg-c")

0= —chin 4 Todmcr

There are now two characteristic times in the equations: the first is the holding time ($) " and
the second is a permeation time (5"‘}‘—’")*1. We have four equations, two inlet concentrations,
four outlet concentrations, two flow rates, two volumes, two permeabilities, and one area for a
total of 13 variables and parameters. If we know the two inlet concentrations of B and D, their
two permeabilities, the two volumes and the area of the membrane, and the retentate flow



270

Chapter 6 Adsorption and Permeation

rate, then we have eight of these in hand. Hence, there are four to be calculated if we measure
one. Let us say we measure the permeate flow rate. Then we should be able to compute the

four exit concentrations:

In[55]:= Clear["Global‘*"]
VI = VII;
PmB = 107%;
PmD = 10°%;
VII = 1;
r = 2;
Am = 107;
CBIf = .1;
CDIf = 0.1;
qI = 10;
qIl = qI;
General: :spelll Possible spelling error: new symbol name
"CDIf" is similar to existing symbol "CBIf".
In[66]:= solmem = Flatten|
Simplifyl
Solve|
qI
{0 == (CBIf - CBI)— - (CBI - CBII),
VI
qIl
0 == (CDIf - CDI)— - (CDI - CDI1IX),
VI
0 == -CBII% + PESAD (cp1 - cBID),
qII PmDAmM
0 == -CDII— + (CDI - CDII)},
VII VII
{CBI, CDI, CBII, CDII}]
1
1;
CBlss = solmem{{1l, 2]];
Chlss = solmem{{2, 2]1:;
CB2ss = solmem[[3, 2]];
CD2ss = solmem[[4, 2]];

Cazss/CBlss.
CD2s8s/CD1ss
CBlss
CcBIf '




6.3 Permeation—Adsorption and Diffusion 271

CDlss
cD1f '

CB2ss qII
CBIf qI

CB2ss QII

General: :spelll Possible spelling error: new symbol name
"CBII" is similar to existing symbol "CBI".

General::spell : Possible spelling error: new symbol name
"CDII" is similar to existing symbols {CBII, CDI}.

General::spelll : Possible spelling error: new symbol name
"CDlss" is similar to existing symbol "CBlss".

General::spelll : Possible spelling error: new symbol name
"CD2ss" is similar to existing symbol "CB2ss".

Out(74]= 0.333333
Out[75]= 0.333333

We might justifiably question how long it would take such a system to reach a steady state.
To determine this we can solve the same set of equations that we have just examined at the

steady state only now in the full time domain.

qIIb PmBAm
In[76]:= Solve[{0 == ~-CBII[t] - +

qIId PmDAm
0 == -CDII[t] + (CDI[t] ~ CDII[t])},
VI VI

(CBI[t] - CBII[t]),

{gqIIb, qIId}]

General::spelll Possible spelling error: new symbol name
"gIIb" is similar to existing symbol "gII".

General: :spell Possible spelling error: new symbol name
"qIId" is similar to existing symbols {gII, qIIb}.

10(CBI[t] - CBII[t])

out[76]= {{qIllb - , “CDIlt) _+ cpiilc]yy
CBII[t]

qlid - - T0CDITIL]

Next, we input the parameter values:

0.000001;
0.000001;

In{77]:= CIBo
CIDo
VI = 1;



272

General: :spelll

General: :spell

Chapter 6 Adsorption and Permeation

PmB = 107¢;
Pmb = 10°%;
VII = VI;
r=25;

Am = 10%;
CBIf = .1;
CDIf = 0.1;
qI = 10;

n = 10;

Possible spelling error: new symbol
"CIBo" is similar to existing symbol "CIB".

"CIDo" is similar to existing symbols {CIBo, CID}.

Solve the equation and assign the functions:

In[89]:= permflow = Flatten|
qIIb PmBAm
Solvel[0 == -CBII[t] (CBI[t] -CBII[t]),
]
permflow[[1, 2]]
10(CBI[t] - CBII[t
out(89]= {gIIb ( (e] [ ])}
CBII[t]

10 (CBI[t] - CBII[t])

Qut90]=
CBII(t]

name

Possible spelling error: new symbol name

QgIIb]l

Now we use this solution in the solution of the full set of equations and to make the required
plots. The first taks is to set the equations using the new definition for glIb[t]:

In[91]:=

In[92] :=

In[93]:=

qIIb[t_] := permflow[[1l, 2]]
qI PmB Am
eqns = {B.CBI[t] == (CBIf - CBI{t]) — - (CBI[t] - CBII[t]),
VI VI
qI PmD Am
d:CDI[t] == (CDIf - cnx[t])ﬁ - (CDI[t] - CDII[t]),
qIIb[t] PmB Am
O¢CBII[t] == (-CBII[t]) + (CBI[t] - CBII[tl),
VII VII
qIIb|t] PmD Am
O:CDII[t] == (-CDII[t]) (CBI[t] - CBII[t]),
vVII VI
CBI[0] == CIBo, CDI[0] == CIDo, CBII[0] == 107°, CDII[0] == 0};
egns



6.3 Permeation—Adsorption and Diffusion 273

outf93]= {cBT'[t] == 10(0.1 - CBI[t]) -~ 10(CBI[t] - CBII[t]),
1

CDI'[t] == 10(0.1 - CDI[t]) + E(—CDI[t] + CDII[t]), CBIT'[t] == O,

, 1 10(CBI[t] - CBII[t])CDII[t]
CDIT [t] == — (CBI[t] - CBII[t]) - ,

10 CBII[t]
1
CBI[0} == 1.x107%, ¢DI[0] == 1.x107%, CBII[0] == —MM ———,
10000000000

CDII[0] == 0}

Next, we solve the equations numerically subject to the initial conditions and over the time
range of interest:

In[94] := numsol = Flatten[NDSolvel

egqns, {CBI[t], CDI[t], CBII[t], CDII[t]},
VI
311

{t, 0, n
PmB Am

numsol
out{94]= {CBI[t] - InterpolatingFunction({{0., 1.}}, <>1([t},
CDI[t] - InterpolatingFunction({{0., 1.}}, <>][t],
CBII[{t] — InterpolatingFunction([{{0., 1.}}, <>]([t],
CDII[t] - InterpolatingFunction[{{0., 1.}}, <>]1[t]}

out{95]= {CBI[t] - InterpolatingFunction[{{0., 1.}}, <>]I[t],
CDI[t] - InterpolatingFunction[{{0., 1.}}, <>][t],
CBII[t] — InterpolatingFunction[{{0., 1.}}, <>]1[t],
CDII[t] — InterpolatingFunction[{{0., 1.3}}, <>]1([t]}

The solutions are assigned to functions:

In[96]:= ClB[t_]:= Evaluate[CBI[t] /. numsol([[1]]]
ClD[t_]:= Evaluate[CDI[t] /. numsol[[2]]]
C2B[t_]:= Evaluate[CBII[t] /. numsol[[3]]]
C2D{t_]1:= Evaluate[CDII[t] /. numsol[[4]]]

(C1B[t] - C2B[t])
C2B[tl]

g2[t_]:= AmPmB

Finally, we set the plotting options and then make the plots:

In[101]:= SetOptions[Plot, DefaultFont - {"Helvetica", 10}];

ClB[t] VI
pll = Plot[————, {t, 0, n
CBIf PmB Am

},



274 Chapter 6 Adsorption and Permeation

Plotstyle - {Thickness[0.02], GrayLevel[0.6]1},
DisplayFunction - Identity,
,C1B[t]

AxesLabel - {("t",
CBIf

ll}’

VI
PlotRange - {{0, nPm Pm}' {0, 1}},

Epilog - {Thickness[0.02],

. CBlss VI CBlss
Line[{{0, }, {n ’ 331}
CBIf PmB Am CBIf
1;
ClDI[t] VI
pPl2 = Plot[————, {t, 0, n },
CDIf PmB Am

PlotStyle - ({Thickness[0.02], GrayLevell[0.6]},
DisplayFunction - Identity,
ClD[t]

AxesLabel -» {"t", "———"},
CBIf

PlotStyle -+ GrayLevell[.4],

VI
PlotRange - {{0, n Am}' {0, 1}),

Epilog - {Thickness[0.02],

. CDlss VI CDlss
Line([{{(O, }, {n ’ }}11}1;
CBIf PmBAm CBIf
VI

pl3 = Plot{[C2B[t], {t, 0, n },

PmB Am

PlotStyle - ({Dashing[{0.04, 0.04}],
Thickness[0.02], GrayLevel[0.8]},

DigplayFunction - Identity,

AxesLabel - {"t", "C2B[t]"},

PlotStyle - {GrayLevel[0], Dashing[{0.05, 0.05}]},

VI
PlotRange - {{0, n }, {0, CBIf}},
PmB

Epilog - {{Thickness{0.02],

. VI
Line[{{0, CB2ss8}, {(n b A’ CB2ss}}1}}
1;



6.3 Permeation—Adsorption and Diffusion

pld

VI
n

PmB Am
PlotStyle - ({Dashing[{0.03, 0.04}],
Thickness[0.02], GrayLevel[0.8]},
DisplayFunction - Identity,
AxesLabel - {"t", "C2D[t]"},

= Plot[C2D[t], {(t, O,

r

VI
PlotRange - {{0, n }, {0, CDIf}),
PmB Am

AxesOrigin - {0, 0}];

Show[GraphicsArray[{{pll, pl2)}, {(pl3, pl4}}]1];

C1B[t] C1D[t]
CBIf CDIf
0.8 08|l /
0.6 0.6} /
0.4 0.4]/
0.2y 0.2¥
t
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8
C2B[t] C2D[t]
0.1 0.1
0.08 0.08
0.06 0.06
0.04 0.04
0.02 0.02

275

- t
02 04 06 08 1

02 04 06 08

t
1

The numbers all seem reasonable until we examine them a bit more carefully. We notice that
the concentration of B at steady state on the retentate side divided by its feed concentration is
well below the value of 0.66, which we had computed from the purely steady-state analysis.
Furthermore, the concentration of B on the permeate side is nearly zero for all times! The
product of the permeate concentration and flow rate is the molar flow of the impurity B out
of the system below the membrane. The molar flow is reasonable in magnitude, but when we
compute the volume flow we see that it is ludicrously large O (10°)! Why? The reason is the
seemingly reasonable assumption that the permeate side would always be at a steady state,
that is, there would be no time lag for the flow to fully develop out of the unit here. But the
concentrations at the lower side of the membrane are so low that in order for the mathematics



276 Chapter 6 Adsorption and Permeation

to satisfy the steady state that we have imposed the flow must be compensatingly large. If we
set the initial concentration of B on the permeate side to zero, the flow must be infinite and
so it goes from there with real number values for this concentration. This is a case where the
transient and steady state do not mix well!

We have two options: either include an inlet flow on the permeate side of the membrane,
or set the exit flow rate. From the mathematical perspective the two amount to the same thing,
thus they get us out of the bind. Physically, they are reasonable as well. We can certainly con-
figure a mass flow controller and a pump that would keep the flow out of the system constant,
but the inlet flow is easier to do experimentally, and therefore we will include this.

The inlet flow on the permeate side would be that of an inert gas, for instance, which
continuously sweeps the lower side of the membrane and clears the permeate. If the flow is
large compared to the volume, then we will have near zero concentrations of the permeate
gas and maximal permeation rates. (In fact, this is what the steady-state analysis we just did
imposed automatically.) We still need to consider only the component balances at this point.
We will use all the same numbers and equations except that qII will be fixed at the inlet and
outlet of the permeate side of the unit:

In[107]:= Clear[PmB, PmA, Am, VI, VII, CIBo, CIDo, plI, plII, plIII,
plIiv, tl]

In[108]:= CIBo = 0.000001;
CIDo = 0.000001;

VI = 1;
PmB = 107¢;
PmD = 107%;
VII = VI;
r =5;

Am = 107;
CBIf = .1;
CDIf = 0.1;
ql = 10;
qII = 10;
n = 10;

Inf121]:=

qI Am
eqns={6kCBI[t]==(CBIf—CBI[t])GE - (CBI[t] - CB1II[t]),

QI PmDAm
8.CDI[t] == (cnxf-cnx[t]);i - (CDI[t] - CDII[t]),

qII PmB Am
O CBII[t] == (-CBII[t])— +
VII VII

(CBI[t] - CBII[t]),



6.3 Permeation—Adsorption and Diffusion 277

gII PmDam
O.CDII[t] == (-CDIX[t])— + (CBI[t] - CBII[t]),
VII VII
CBI[0] == CIBo, CDI[0] == CIDo, CBIXI[0] == 1071,
CDII[0] == 0};
numsol = Flatten]
NDSolve [
egns,
{CBI[t], CDI[t], CBII[t], CDII[t]},
vIi
{t, 0, n }
PmB Am

]
1;
ClB[t._]:= Evaluate[CBI[t] /. numsol[[1]1]11]
ClD[t__]:= Evaluate[CDI[t] /. numsol[[2]]]
C2B[t_]:= Evaluate[CBII[t] /. numsol[[3]]]
C2p[t_]:= Evaluate[CDII[t] /. numsol[[4]]]

SetOptiong[Plot, DefaultFont - {"Helvetica", 10},
AxesStyle - Thickness[0.02]1];

C1lB([t] VI
pll = Plot[———, {(t, 0, n },
CBIf PmB Am
DisplayFunction - Identity,
ClB [t]
AxesLabel -» {"t", "————"},
CBIf

PlotStyle - {Thickness([0.02], Dashing{{0.02, 0.03}1},

PlotRange - {{0, n . {0, 1}},
PmB Am
Epilog -
{GrayLevel[0.5], Thickness[0.02],
] CBlss VI CBlss
Line[{{0, }, {n ’ }31}1;
CBIf PmB Am CBIf
12 Pl t[CID[t] {t, O Vi }
= ot[———, s N ’
P CDIf ! PmB Am
DisplayFunction - Identity,
ClD[t]
AxesLabel -» {"t", "———"},
CDIf

PlotStyle — {Thickness[.02], Dashing[{0.03, 0.03}]},

VI
PlotRange - {{0, n Am}' {0, 131}1;



278 Chapter 6 Adsorption and Permeation

VI

PmB Am
DisplayFunction - Identity,
AxesLabel - ({"t", "C2B[t]"},

PlotStyle - {Thickness[.02], Dashing[{0.15, 0.05}1},

pl3 = Plot[C2B[t], {(t, 0, n },

VI

Plot 0, . {0, CBIf}},

otRange - {{ an }n} { i
Epilog -

{GrayLevel[.6], Thickness[0.02],
Line[{{0, CB2ss}, {(n VIM, CB2ss}}1}]1;

VI
PmB Am

DisplayFunction - Identity,
AxesLabel - {"t", "C2D[t]"},

PlotStyle - {Thickness[.03], Dashing[{.03, .09}],
GrayLevel[.71},
PlotRange - {{0, n

pl4 = Plot[C2D[t], {t, 0, n

},

VI
}, {0, CDIf}},
Am
AxesOrigin - {0, 0}];

Show[GraphicsArray[{{pll, pl2}, {(pl3, pl4d}}1l:;

CiB[t] C1D[t]
(1:B|f (1)le _______
0.8 o8|l 7
0.6 06| /
, [}
04}, 0.4|s
02§ 0.2
t t
0.2 0.4 06 0.8 1 0.2 0.4 06 0.8 1
C2B[t] C2D[t]
0.1 0.1
0.08 0.08
0.06 0.06
0.04 0.04
0.02 // 0.02

t t
02 04 06 08 1 02 04 06 08 1



6.3 Permeation—Adsorption and Diffusion 279

The following is a plot of the mass flow of B from the system that is the product C2B[t]qlI:
VI
Inf133]: Plot[C2B[t] gqII, {(t, 0, n }.
PmB Am

AxesStyle - Thickness[.01],

AxesLabel - {"t", "CIIB[t]*QII"},

PlotStyle - {Thickness[.01],
Dashing[{0.05, 0.05}], GrayLevel[ .61},

VI
PlotRange - {{0, n—}, {0, .35}}]1:
PmB Am

ClIB[t]+qll

0.3
0.25
0.2
0.15
0.1
0.05

t
0.2 0.4 0.6 0.8 1

Now the analyses make sense. The steady-state analysis agrees with the transient analysis.
However, let us consider all of this one more time. In what manner did the analysis show us we
should move if we wish to get the ultimate removal of B from the feed stream with the areas,
feed flow, and permeances all fixed? The answer is obvious. The pseudo-steady-state analysis
showed us that if we could somehow reduce the concentration of B on the permeate side to
near zero values, then we could remove nearly 50% of it versus only 33% with these condi-
tions. How could we do this? How about raising the sweep flow rate on permeate side? This
will have the effect of keeping the concentration of B very low and increasing the driving
force for B across the membrane. How much higher would the sweep flow have to be to
accomplish this? The answer is in what follows; on the order of a factor of 10 increase will
doit!

In[134]:= Clear{PmB, PmA, Am, VI, VII, CIBo, CIDo, plI, plII, plIII,
plIv, t]

In[135]:= CIBo = 0.000001;
CIDo 0.000001;
VI =

;
PmB = 107%;

Ll |



280 Chapter 6 Adsorption and Permeation

PmD = 107%;
VII = VI;

r = 5;

Am = 107;
CBIf = .1;
CDIf = 0.1;
qI = 10;
qII = 103;
n = 10;

PmB Am

I
In[148]:= eqns = {O.CBI[t] == (CBIf -CBI[t]) % - (CBI[t] - CBII[t]),

Qql Am
0.CDI[t] == (CDIf -CDI[t]) VI (CDI[t] - CDII{t]),
qII PmB Am
O.CBII[t] == (-CBII[t])— + (CBI[t] - CBII[tl),
VII VII
qlII Am
O.CDIT[t] == (-CDII[t])— + (CBI[t] - CBII[t]),
VII VII
CBI{0] == CIBo, CDI[0] == CIDo, CBII[0] == 10719,
CDII[0] == 0);

In[149]:= numsol = Flatten|
NDSolve |
eqgns,
{CBI[t], CDI[t], CBII[t], CDII[t]l)},

{t, 0, n
PmB Am

1

ClB[t_]:= Evaluate[CBI[t] /. numsol[[1]]1]
ClD[t_]:= Evaluate[CDI[t] /. numsol[[2]]]
C2B[t_]:= Evaluate[CBII[t] /. numsol[[3]]]
C2D[t_]:= Evaluate[CDII[t] /. numsol[[4]1]]

SetOptions|[Plot, DefaultFont - {"Helvetica", 10},
AxesStyle - Thickness[0.02]];
C1lBit] VI
pll = Plot[———, {t, 0, n
CBIf PmB Am
DisplayFunction - Identity,




6.3 Permeation—Adsorption and Diffusion 281

CliBI[t]
AxesLabel -» {"t", "——"},
CBIf

PlotStyle - {Thickness[0.02], Dashing[{0.02, 0.03}1},

VI
PlotRange -» {{0, n——}, {0, 1}),
PmB Am
Epilog - {GrayLevel[0.5], Thickness[0.02],

. CBlss VI CBlss
Linel[{{0, }, {n ' }}1}1:;
CBIf PmB Am CBIf
C1D[t] A28
pl2 = Plot[————, {t, O, n },
CDIf PmB Am
. s . C1D[t]
DisplayFunction - Identity, AxesLabel - {"t", "-C_DE_"}'

PlotStyle - ({Thickness[ .02)], Dashing[{0.03, 0.03}]1)},

PlotRange - {{0, n VI }, {0, 1}}1;
Am
VI
PmB Am
DisplayFunction - Identity,
AxesLabel - ("t", "C2B[t]"},
PlotStyle —+ {(Thickness[.02], Dashing[{0.15, 0.05}1},

pl3 = Plot[C2B[t], {t, 0, n

3,

PlotRange -~ {{0, n

VI
}, {0, CBIf}},
am

Epilog - {Graylevel[.6], Thickness[0.02],

VI
Line[{{0, CB28s)}, {n , CB28s}}1}l1:
PmB Am

VI

PmB Am
DisplayFunction - Identity,
AxesLabel - ({"t", "C2D [t]1"},
PlotStyle - {Thickness([.03],

Dashing{{.03, .09}], GrayLevel[.7]},
VI

PmB Am
AxesOrigin - {0, 0}];

pld = Plot[C2D[t], {t, O, n

3,

PlotRange - ({0, n

}, {0, CDIf}},

Show[GraphicsArray[{{pll, pl2}, {(pl3, pld}}il;



282 Chapter 6 Adsorption and Permeation

CiBI[t] CiDIt]
CBIf
0.02 E t
0.20.40.60.81
C2B[t]
0.1
0.08
0.06
0.04
0.02 . . ‘
0.20.40.608 1 02040608 1

And once again the total flow of B from the system:

VI
PmBE Am
AxesStyle - Thickness[.01],
AxesLabel - {"t", "CIIB[t] * QII"},
PlotStyle - {Thickness[.01l], Dashing[{0.05, 0.05}1,
GrayLevel[.6]},

In[160]:= Plot[C2B[t]lqQII, {t, 0, n },

Vi
PlotRange - {{0, n ———}, {0, .5}}1;
PmB Am

CIB[t]=qll
05] _ = = = = = = = —

04| /
0.3

0.2 |

0.1 r

0.2 0.4 0.6 0.8 1

6.4 Expanding Cell

Consider the following problem. A spherical cell consists of a thin membrane surrounding a
salt solution. Outside of the cell membrane there is a solution that is isotonic with that within
the membrane. The cell is removed instantaneously from its surroundings and placed into
an environment of pure water. The action of osmosis immediately drives water through the



6.4 Expanding Cell 283

membrane to cause dilution of its contents. The transport across the membrane is a permeation
process with a rate of:

]HZO — Pm(nguglde _ C}I_rilzs(l)de)

The direction of the flow is from the region of lower salt concentration to higher salt concentra-
tion, but from higher water concentration to lower water concentration. The concentration of
water on the outside of the cell is taken to be equal to the density of pure water cg;gide = PH,0-
Inside the membrane the concentration of water is increasing as the density of the solution is
decreasing. The density of the cellular content follows the linear relationship:

pcell[t] = pH,0 + stCzj:l[t]

While water transports osmotically across the cell membrane to dilute the cellular contents,
the cell grows. The membrane stretches to accommodate the newly accumulated mass. The
geometry of the cell remains constant, that is it grows in every direction through the whole of
the solid angle by the same amount in the same time period. The physical situation with this
cell is sketched in Figure 3:

We would like to know how the membrane grows as a function of time, how much the
cellular contents are diluted in time, and related information about this process. We will find
the answers to these questions by modeling the dynamic process. We begin by writing the

Cell membrane
H20

H20

H20

Csalt, 0

Csalt[t]

time

Figure 3



284 Chapter 6 Adsorption and Permeation

material balance equations within the cell in a general form:

dml;ott[t] _ Pm SA(Cg;.x(t)side Cln51de)
dmsalt[t]
dt

d t .
mZZtO[ ] — pm SA(Cg;glde CInSlde)

=0

The surface area and volume of the cell are functions of the radius:

VIt] = ézrr[t]3 SA[t] = 4mr[t]

dV[t] dr[t] dSA[t] 8nr[t]dr[t]

- ]2 —— =
dt mrlt] dt dt

We will need to relate the water concentration to the salt concentration and the change in den-
sity to the water rather than the salt concentration, as it is the latter that is flowing into the cell:

peenlt] = pr0 + yCSiMt]
Cell

Cait [t + CRBI = oo + v CGi T

salt
Coltl = pro + (v — DCEY)

Sj?)[ 1 - poH.0

(v-1

Sflc')[t] — PH,O

peenlt] = pro + ¥ Y

CC(H[ ]

salt

ﬁj%[t] — PH,0

peailt] = _(—"1)—

With these expressions and the component balances we can now find the expression for CS/'[t]

and Cce" olt] as functions of r[t]:

dezO[t] =P, SA(COutside _ C]l—?s(i)de)
2

dt
naall] _ o ATV _ cgrm | vndcia?[t]
CCslfy) = cSojviol  cSlfolr?
Vil [P

CCell[O] 3

CRltl = pro + (v — 1) Sa‘[tp



6.4 Expanding Cell 285

Taking the derivative of this, we find the change in salt concentration as a function of time to be:

Infl61]:= r =.

. csttrolr?
B.CS [t == B (puo + (v - 1)—%[”73

out[162]= (Ci%h) [t] == 0

il

Returning to the total material balance, we can use all of the definitions for the variables in
terms of r(t] to solve for the derivative of r[t] in terms of just the cell parameters. Once we
have this, we can then solve for r[t] explicitly in time:

dm t Outsi C
tOtf[ ] = Pm SA(CH;glde - CHSlCl)[t])
dpce LIVt side
“[ t] [ ] Pm SA(Cozu(t;ldt CC;.’” [t])

The following cell solves and reexpresses, the left- and right-hand sides in terms of rlt] and
then solves for r'[t]. Finaily, we solve for r[t] and plot the function:

In[163]:= r =.

Cell 3
c [t_] .= + -1 salt, o o
H,0 Pu0 (v ) SE

Crolt]l - py0

Pcern [t 1 s= pyo + v

(v - 1)
4 3
vit_] : = 3 rit]
lhs = Ot(pcern [EIVIE])
General::spelll : Possible spelling error: new symbol name

"cell" is similar to existing symbol "Cell".

4 rBCCell r’[t] r3CCell
Out[167]= - rovsale o + 4r[t1? (puo + Y¥osale, o r'it]
rit] : rit]?

Inf168]:= SA[t_] := 4nrit]?
rhs = PmSA([t] (pPu,o ~ Cuoltl)

Solve[lhs == rhs’r/[t]]
4rPm{-1 + y)ricceil
Out[169]: - 4 o“salt, o
rlt]
TPm(-1 + )rBCCell
out[170]= {{r'[t] »- Y ToCsalt, 04,

rit]?puo



286 Chapter 6 Adsorption and Permeation

Inf171]:= Simplify[PowerExpand[DSolvel[

wPm(-1 + V)ric‘i:i: o
{Bexlt] == - 3 s
rit]pu0
r[0] == r.},
r[t]l, t111]
3/4 Cell/d Folz0Caate, 0 y 1/4
(1 + iyatiem (-1 + y)Mir)tegl /(b + oontsane
out[171]= {x(t] > - 1/4 - — !
Pu,0
—Cell
(1 - Datiemi/e (-1 + p) VA 'CS Y (b v fleteie ) 1
rit] -~ 1/4 !
Pu,0
. oPH30C5stts o
(1 - nyreml/4 (-1 + V)1/4 3/4C2211Li/4o(t + :ngnfo— 4rrlleny)1/4
rit] -» /4 !
Pr,0
_ 3/4 Cell/d ToPu0Comiis o
(1 + D)atipm/4 (-1 + y)Vir /Csilt/o(t + 47erzci47r]P1:ny)l/4}
rit] » 1/4
PH,0
rlt] t 7Pm(-1 + V)rsc::itl: o
In[172]:= Solve[f r(t]® drlt] == [ - — dt,r(tl]
0 Pu,o

Pmt (-1 + y)rocgg%i 0)1/4}

’

rot
out[172]= {{r[t] —» —\/'2_<T -

Pu.0
ro’ TPmt (-1 + y)ricseil
{rit] - -1/2(—/— - oSttty vy,
4 PH.0
a APmt (-1 + 3cell
{r[t] R —Bﬂ(ﬁ _ { y) rolsate, 0)1/4}:
4 Pu.0

3~Cell
rPmt (-1 + y)rocsglt,o)l/zl}}

4
(rie] >v2 (-
4 Pr,0
There are four solutions to this equation, and two are real and two are complex. By calling
the package Miscellaneous ‘RealOnly’, only the real solutions are displayed. Of the two real
solutions, only the second is physical, as it is growing as a function of time (see what follows
here in the In statements and graph):

[173]:= SetOptions[{Plot, ListPlot)}, AxesStyle - {Thickness[0.01]},
PlotStyle - {PointSize[0.015]}, Thickness[0.01]1},
DefaultFont - {"Helvetica", 17}];

In[174]:= x© =.
rot TPmt(~1 + ro3c 1/4
creny e va(T - TERECL S D)
4 Pu,o

ro = 10°4;



6.4 Expanding Cell 287

Pm = 107 3;

v = 0.9;
Csalt,o = 0.01;
Puo = 1;

3Pm
tmax = 1000 ;

r[ol’

Plot[r[t]10%, {t, 0, tmax},
AxesLabel - ({"1000 f#/sec", "rl[t]lx10%/u"},
PlotLabel - "Radial Cell Growth"];

rit]x10%:  Radial Cell Growth
8

6

1000 6/sec
500010000150002000025000 30000

This solution to the problem shows that it grows very fast at a short time, but then it slows at
longer times. There is, however, one noticeable issue that crops up with this solution, which is
that the radius continues to grow with increasing time. To be physical the membrane surface
would have to be infinitely elastic, which is impossible. Instead we expect the membrane to
rupture and explode at some critical radius. Thus the solution should be indicative of this
behavior.

We can modify the solution to include this behavior. The critical radius can be expressed
as a multiple of the initial radius at time zero. We want the function to literally “blow-up”
when we reach this radius. The critical condition can be expressed with the UnitStep function.
It will be of unit value until the critical condition is reached, whereupon it will go to zero.
Recall the behavior of the UnitStep given in terms of r[t] and the critical condition of 2r[0]:

In[183]:= Plot[l - UnitSteplir[t] - 3r[0]], (t, -5, 1050},
Plotstyle - {Thickness[.01l], GrayLevel[.6]}];



288

0.8

0.6

0.4

0.2

Chapter 6 Adsorption and Permeation

200 400

600 800 1000

By dividing rlt] by the UnitStep function we obtain the correct behavior; the solution is
meaningful up to the critical radius but not beyond and is shown in what follows in the In

statement and two graphs:

In[184]:= Clear[rbl, us]
rbl[t__] :=

V2

ro* wPmt(-1 + 7)ro3C“1t,°)1/‘

1 - UnitSteplir[t]
ro = 10°%;

= 1073;

v = 0.9;

csalt,o = 0’01;

szO = 1;
3Pm

tmax = 25 ;
rio]l

us =

Plot[{3UnitStepl(r(tl]

- 3r[0]] 4

Plot [3UnitStep[r(t]
PlotStyle -+ ({Thickness[.01],

- 3r[0]1]1, rbl[t]110%},

(— -

Puo

- 3r[0]1]1, {t, -5, tmax},

GrayLevel[.6]1}];

{t, 0, tmax},

AxesLabel - {"1000 0/sec", "r[t]lx10%/u"},
PlotLabel - "Radial Cell Growth",

PlotsStyle - {{Thickness[.01]}, {Thickness[.01],
GrayLevel([.6]1}}1;



6.4 Expanding Cell 289

3
2.5
2
1.5

0.5

100 200 300 400-500 600 700
Power::infy : Infinite expression % encountered.
1

Power::infy : Infinite expression 5 encountered.

1
Power::infy : Infinite expression — encountered.

General::stop : Further output of Power::infy will be
suppressed during this calculation.

Plot::plnr : rbl[t] 10% is not a machine-size real number
at t = 658.1365691561368".

Plot::plnr : rbl{t] 10? is not a machine-size real number
at t = 641.6663540073249".

Plot::plnr : rbl[t] 10% is not a machine-size real number
at t = 638.1017437770654".

General::stop : Further output of plot::plnr will be
suppressed during this calculation.



290 Chapter 6 Adsorption and Permeation

r[t1x10*/u Radial Cell Growth

3 S—
25
2
1.5
1
0.5

1000 6/sec
100200 300400500 600700

We also might wish to project the growth in the plane. When we do so we can use our expression
for the radius as a function of time and then plot the circular surfaces at integer time steps
separated by a constant increment:

In[194] := Show[Graphics[Table[{Circle[{0, 0}, rbl[t]l]l},
{t, 0, .8tmax, 20}], AspectRatio - Automatic,
Axes - Automatic]l];




6.4 Expanding Cell 291

Another way to visualize the growth of the cell is to watch its contents expand and change
structure as the membrane stretches. We can do this by “filling” the cell with smaller circu-
lar entities that are fixed in number. Imagine that can form attachments to the cell wall at
fixed angular separations all around the membrane. As the membrane grows these attach-
ments will grow in length but not width and thus their structure will emerge as the cell
expands.

Let us envision how this can work with simple examples first, one taken at initial time
zero and one at some later time. We will set the outer radius equal to that of rbl[0]. Inside this
membrane we will place 32 smaller bodies with radii that are 3.5% of that of the outer radius
of the cell plus one at the center. To arrange these around the interior of the cell we compute
their {x, y} locations in terms of the radius as follows:

{m rbl{0] Cos [n Pi]//N, m rbl{0] Sin [n Pi]//N}

By incrementing m we take fractional positions along the radius at some fixed angle, which is
given by [nPi]. The increment n moves the angle around the cellular interior. By nesting two
Table functions, one in 1 and the other in m, we cover the interior completely. The radius of
0.035 rbl[0] was chosen so that the subcells eventually would overlap and fill the inside of the
membrane.

To implement this we use the Disk function for the subcells, because it is filled with an
RGBColor. This command calls for the position of the center of the disk and then for the
radius of the disk. We have implemented as follows:

Disk[{m .98rbl[0] Cos [n Pi]//N, m .98rbl[0] Sin [n Pi]//N}, .035rbl[0]]}

The factor of 0.98 is used to keep the cell contents inside the membrane rather than on it. At
time t = 0 and then at f = 12 we can show the cell and its subcellular contents with this code
(remember that rft] and rbl[t] need to be active first). See In statements [195] and [197] and
graphs that follow:

In{195]:= circlsl = Flatten[
Table [
Table [
{Graphics
[
{
Disk(
{m .98rbl[0]Cos[nPi] // N,
m .98rbl[0]1Sin[nPi] // N}, .035 rbl[0]1]}
1},



292 Chapter 6 Adsorption and Permeation

{n, 0, 2, .25}1,
{m, 0, 1, .25}1],
1);
Show([{%, Graphics[{Circle[{0, 0}, rb1[0]]1}]1},
AspectRatio - Automatic,
PlotRange - {{-.0002, .0002}, {-.0002, .0002}}]:;

In[187]:= t = 120;
circls2 = Flatten[
Table|[
Table[
{Graphics
[

Disk[
{m .98 rbl[tlCosInPi] // N,
m .98 rbl[t]lSin[nPi] // N}, .035rbl[0]]
1},
{n, 0, 2, .25}],
{m, 0, 1, .25}1,
11;
Show([{%, Graphics[{Circle([{0, 0}, rbl[t]]}]},
AspectRatio - Automatic,
PlotRange - {{-.0002, .0002}, {-.0002, .0002}}]1:;



6.4 Expanding Cell 293

Between these two times we see that the cell has expanded and also that the subcells have
moved along fixed radii to larger separation distances. Now, we can decrease the increments
m and n by factors of ten in order to increase the number of subcells in total by a factor of 100
to 3200 + 1. This will fill the cell and make for a much richer visualization. Note: This may
take a few minutes to render, depending upon the CPU speed of the computer you are using;:

Inf[200] :=Clear[cixcls, t, m, n]

circls = Flatten|
Table[
Table[
{Graphics|[
Disk[{.5 m .98rbl(t] Cos[nPi] // N,
.5m .98rblit] Sin[nPi] // N}, .035 rbl([0]]
1},
{n, 0, 2, .025}],
{m, 0, 1, .025}1,
11;

cells = Table[
Show[
{circls,



294 Chapter 6 Adsorption and Permeation

Graphics ([
Circle[{0, 0}, .5 rbl[t]]
]
}, AspectRatio - Automatic,
PlotRange - {{-.0002, .0002), {-.0002, .0002})},
PlotLabel - rbl[t] 10%"'y = r[tl",
DisplayFunction - Identityl,
{t, 0, .8tmax, 30}
]
General::spelll: Possible spelling error: new symbol

name "cells” is similar to existing symbol "cell".

Out [202]= {-Graphics-, -Graphics-, -Graphics-, -Graphics-,
-Graphics-, -Graphics-, -Graphics-, -Graphics-,
-Graphics-, -Graphics-, -~Graphics-, -Graphics-,
-Graphics-, -Graphics-, -Graphics-, -Graphics-,
-Graphics-, -Graphics-, -Graphics-, -Graphics-,
-Graphics-1}

Now we can choose to examine just three of the cell structures that result, for example, 1, 10,
and 20:

In[203]:= Show[GraphicsArray[{cells[[1]], cells[[10]], cells[[201]1}1,
DisplayFunction - $DisplayFunctionl]:;

u = rit] 2.43107u = r(t]

Or we can look at all of the structures in groups of three at a time by utilizing the GraphicsArray
command:

Inf[204] := Show[GraphicsArray[Table[{cells[[n]], cells[[n + 1]],
cells[{n + 2]1}, {n, 1, 18, 3}}111;



6.4 Expanding Cell 295

u = xr[t] 1.47784 u = rit] 1.70947 1 = rt]

1.87311 4 = r(t] 2.00248 u = r(t] 2.11075u = r[t]

2.20454 4 = rt] 2.28768 u = r(t] 2.36264 4 = r(t]




296 Chapter 6 Adsorption and Permeation

By keeping the number and area of the subcellular bodies constant we can consider these to be
conserved during the simulation much as mass of salt would be in the real case. The outcome is
that the “mass” is redistributed all along the interior of the cell as it expands. We have chosen to
have the “mass” be redistributed along equiangular lines, which leads to an interesting pattern
of distribution. In a well-mixed system the distribution would expand evenly everywhere. Yet,
at the same time, natural systems do display remarkable patterns especially during growth
that resemble the one we have constructed here. In fact the final outcome is reminiscent of
the patterns that mollusks create during mineralization of their shells. One wonders what the
underlying mechanisms of mass transfer must be in such processes, which can to lead to such
“un-mixed” results!

6.5 Summary

We have covered a body of material in this chapter that deals with movement of mass along
gradients and between phases. We have examined the commonalities and differences between
linear driving forces, net rates of adsorption, and permeation. Each has the common feature
that reaction is not involved but does involve transport between apparently well-defined
regions. We move now to chemically reactive systems in anticipation of eventually analyzing
problems that involve mass transfer and reaction.



CHAPTER 7

Reacting Systems—Kinetics
and Batch Reactors

Chemical kinetics are at the heart of industrial chemistry and hence chemical engineering. In
addition to being a fascinating subject worthy of scientific inquiry in its own right, chemical
kinetics are the quantitative description of chemically reacting systems. The concept of rate in the
context of a chemical reactor is the central issue in chemicals production. The mathematics
of kinetics is crucial to such essential tasks as calculating the size and type of reactor that is
needed to meet a defined target of production, but also for the prediction of which species,
wanted or unwanted, will emerge from that reactor. Although the cost of the reactor is typically
small as a percentage of the total cost of an overall production facility, the chemical events that
occur within it dictate how much of the theoretical profit associated with a chemical reaction
can be captured rather than being surrendered back as costs of manufacturing.

The reason for this is simple. If the reaction chemistry is not “clean” (meaning selective),
then the desired species must be separated from the matrix of products that are formed and
that is costly. In fact the major cost in most chemical operations is the cost of separating the
raw product mixture in a way that provides the desired product at requisite purity. The cost
of this step scales with the complexity of the “un-mixing” process and the amount of energy
that must be added to make this happen. For example, the heating and cooling costs that go
with distillation are high and are to be minimized wherever possible. The complexity of the
separation is a function of the number and type of species in the product stream, which is a
direct result of what happened within the reactor. Thus the separations are costly and they
depend upon the reaction chemistry and how it proceeds in the reactor. All of the complexity
is summarized in the kinetics.

297



298 Chapter 7 Reacting Systems—Kinetics and Batch Reactors

Can we predict these costs beforehand? If a company is considering committing capital to
a new project, then in order to determine if that capital investment would be a wise one, that
is, one that would meet expected rates of return and would be superior to placing the capital
in other investments or projects, modeling of the new process must be done to calculate the
expected costs of production. This modeling must begin with kinetics.

These are the chemical engineering motivations for studying kinetics. A physical chemist
might look at these, then stand back and say there are many other reasons to study kinetics
and molecular dynamics that are quite separate and distinct from the industrial production
of chemical materials. In contrast to chemical engineers, chemical scientists examining kinet-
ics or chemical dynamics are often investigating simple chemical systems that involve only
one type of molecule. However, the processes that they are examining may be detailed and
complex, and may, for example, take place entirely within the molecule rather than between
molecules. Again the descriptions are made in the context of kinetics. Because of this there is
a seamlessness in chemical kinetics from the very applied to the esoteric.

Finally, how do thermodynamics fit in with kinetic descriptions of chemical reactions?
Thermodynamics provides information at equilibrium. Yet many chemical reactions take
place within chemical reactors and never reach equilibrium. Although some reactions do
move to equilibrium quickly, many of industrial interest do not. Instead, these reactions must
often be pushed and pushed hard with high temperature and pressure to the product side.
Typically, a catalyst must be used to make the reaction go in economic yields, at acceptable
costs, and within a reasonable time frame. (The catalyst is a device that is not consumed by
the reaction but lowers the temperature required to make a reaction take place. The extent of
reaction, however, is dictated by the equilibrium thermodynamics. The catalyst only accel-
erates the rate to equilibrium.) As powerful as thermodynamics is, it does not provide any
information about how fast or how slow will be the rate of approach to equilibrium. The rela-
tionship of thermodynamics to chemical process engineering is like that of having an itinerary
for travel between two cities. This itinerary tells us how far apart each city is but provides no
information on the terrain that lies between them. We have no way to estimate what kind of
trip it would be, or what kind of vehicle would be best to use to make the trip. This is analogous
to the situation we find ourselves in when we have chemical thermodynamics information
but are completely lacking kinetics. To drive the analogy a bit further, imagine that you were
asked if one could operate a profit-making business by moving clients between the two cities
and all you knew was how far they were apart!

7.1 How Chemical Reactions Take Place

We know from elementary chemistry that reactions take place when molecules collide with
one another. We also know that reactions often take place faster at higher temperature and
that a catalyst often improves the rate further. Enzymes are the prototypical natural catalysts
and they work by orienting molecules along specific directions that are preferred for reaction.



7.1 How Chemical Reactions Take Place 299

We can say then that reactions have strong temperature and orientational dependence, and
that collisions alone are not enough for reaction to take place.

We can get a quantitative sense for this by turning once again to the kinetic theory of gases
to compute the number of collisions that take place per unit volume and time at fixed temper-
ature and pressure. The collision number Zab between two molecules A and B is given as:

(da + db)®> [8RT Na Nb Nav?
Zab =7
4 T V2

__(da+db)’ [8RT PaPb
=TTy 7u (RTR

= AvC, Gy
where R = ideal gas constant, [ j/mol-K]
T = absolute temperature, [K]
Ma Mb .
@ = ————, mean molecular weight
(Ma + Mb)

_ 8RT
v = | ——, mean molecular speed
T

M = molecular weight, [g/mol]
7(da + db)?

Ac = —4—'—, [sz]

da, db = molecular diameters of A and B, [cm]
Na, Nb = [number]
V = volume, [cm’]

Nav = Avogadro’s number, [number per mol]

This is the product of the molecular cross section at collision, the mean speed, and the product
of the number concentrations of A and B. We can compute this value for standard conditions:

Inf1]:= da = 2.5 1078 cm;
db = 3 1078 cm;
2
R1 = 8.314 10’ genm ;
82molK

T = 300 K;

- 9 .
B= mol
Pa = .8 atm;
Pb = .2 atm;



300 Chapter 7 Reacting Systems—Kinetics and Batch Reactors

cmatm
R2 = 82.05 ——;
molK
23 1
Nav = 6.02 10¢° ——;
mol
(da + db)? [8R1T PaPb Nav?’
Zab == PowerExpand[m ]
4 g7 (R2T)?
8RI1T
meanspeed ==
™
1.04617 x 10°®
Out[10]= Zab == 3
cm’ s

cm?
Out [11]= meanspeed == 46012.4 —
s

This shows that we have O (10%) collisions per cm? per second between molecules such as
oxygen and nitrogen in air at room temperature. Yet we know that these do not react under
these conditions even though oxidation of nitrogen can lead to formation of nitrogen oxides.
Also, a rule of thumb for chemical reactions is that every 10-degree rise in temperature leads
to a doubling of the rate of reaction. We can see by inspection that the rate of collisions does
not rise in this way with temperature. Also, if we were to convert Zab into moles of collisions
per unit volume per unit time, it would be on the order of 16,000 moles per cm® per second!
Clearly, there is much more to chemical reaction kinetics than simply collisions.

From basic chemistry we know that for reaction to take place the energy of the collision
must be above a threshold value and the molecules must be oriented properly. Reaction of
real molecules is much more complex than what one would expect from the collisions of hard
spheres. Molecules have shape and reactive regions and bonds that usually are broken in order
for reaction to take place. At the beginning of the twentieth century Arrhenius articulated this
in a simple, yet elegant mathematical statement for the rate constant:

K[T] = Ae "

Here, A is a pre-exponential factor—the A factor—that accounts for geometric effects, while
the temperature dependence is accounted for in the exponential. The term Ea is the activation
energy, the threshold that must be surmounted for a collision to lead to reaction. We can rewrite

this statement in terms of the reaction temperature Ty, = E—,f

Tran

K[T] = Ae

If we take the threshold energy to be 40,000 cal/mol, and given R = 1.98 ~ 2-5L then the
threshold reaction temperature is ~20,000 K. At this threshold temperature for reaction we can
see that adding 10 degrees to an initial temperature will indeed double the rate constant and,

if all else is the same, the rate of reaction. We also can see that if the threshold temperature is



7.2 No-Flow/Batch System 301

40,000 K, then a 10-degree temperature rise will nearly quintuple the rate, whereas at 10,000 K
the rate is barely raised by 1.5 times its initial value:

Inf{12]:= T2 T1L + 10;
Tl = 500;
Trxn = 20000;

-Trxn
e T

k1
Solvel{— == —%}, k2] // N
k2 e Tz

We have not discussed the issue of the dimensions of the rate constant. The reason is that the
dimensions change with the change in the rate dependence upon concentration. Hence we
have postponed consideration of dimensions until we reach that point.

Reactions take place in a localized region of space, that is, a system defined by a control
volume. The control volume can be real or abstract such as a cell or organelle, or a region of
an organelle. They can be macrosized such as a reactor or abstractly macrosized as in the case
of the reactions that take place within the nucleus of a star. We choose the control volume
according to the dictates of the analysis that we are undertaking. The control volume should
be one phase or it may be abstract and treat more than one phase as if it would behave as a
single phase.

We will begin with the case of the batch reactor. In this case the vessel defines the control
volume. We will move to systems with flow in and both flow in and out. The former is the case
of semibatch operation while the latter will be treated as the continuous stirred tank reactor
(CSTR) and the plug flow reactor (PFR). All the chemical kinetics that we will need can be
introduced within the context of these four different kinds of reactors.

7.2 No-Flow/Batch System

We know from the conservation of mass that when we run a reaction in a batch reactor the
mass of products must be equal to the mass of reactants so long as nothing has escaped
from the reactor. This holds absolutely and is independent of the chemical reaction type,
mechanism, or stoichiometry. All that chemical reactions do is to rearrange the atoms and
mass in the molecules. In essence the labels on the mass change but that is all. If the reaction in
solution leads to a gas such as the reaction of baking soda with vinegar water (that is, sodium
bicarbonate with dilute acetic acid), then a mass change can take place because one of the
products is a gas and can escape the vessel:

Na,CO; + 2CH3COOH — 2Na(CH3COO) + CO; 1+ + H,O

On the other hand, if a provision is made to trap the carbon dioxide, say, with a balloon placed
over the mouth of the vessel, then the mass of sodium acetate, water, and carbon dioxide will



302 Chapter 7 Reacting Systems—Kinetics and Batch Reactors

be equal to that of the original sodium carbonate and acetic acid. This is the consequence of
the conservation of mass and nothing more.

What is the proper expression for a batch reactor? We know that the total mass balance will
be equal to zero based on the conservation of mass and the assumption that nothing escapes
the vessel. This means that the net accumulation will be zero:

dpV
dt 0

If the net accumulation is zero for the overall mass in the vessel, then what can we say about
the component balances? We know that the reaction proceeds forward to completion and in so
doing the concentrations of the species change with time. Therefore even though the overall
mass does not change, the mass of any given species or component does change and this is
what we measure. Consider the reaction:

A+B—-D+E

This is simple stoichiometrically and we can assume that it is irreversible, which means that
reaction proceeds to the right-hand side completely and that product D does not return to A
and B. The component mass balances become:

dCaV _dCbV

=—r,V=—-1V
at dt r o
dCdVv dCeV
- =gV =r.V
dt dt TV =1
Ip=Ip=—Id =~—Te =T

The reactants are considered to be decreasing in concentration, and the products are increasing
in concentration. Thus, the rates of the reactants are taken to be negative and the product rate
is positive. The important point is that the rates are oppositely signed as is shown by the last
expression. If the reaction does not produce a change in volume, then the control volume does
not change, and the volume term is a constant that can be cancelled across all the equations:

dCa _dCb
at o dt
dCcd dCe _

At ar

The next step is to find kinetics for the rate of reaction that can be used as a constitutive
relationship to replace the rate r on the right-hand side. When we say that we look for a



7.3 Simple Irreversible Reactions—Zeroth to Nth Order 303

constitutive relationship for the kinetics to replace the right-hand side, we are seeking to
make the equation autonomous. This means that we are seeking a function for the RHS that is
explicit in the concentration of one or more of the components.

7.3 Simple Irreversible Reactions—Zeroth
to Nth Order

First-Order Kinetics

The simplest case to consider by far is that of first-order or linear kinetics in a constant volume
batch reactor. If the rate of reaction is directly proportional to the rate of the reaction, then we
call this the first order in the concentration of reactant, and the right-hand side becomes:

r=kCa
dCa

et
qt Ca

Ca(t) = Caoe ™

This is an expression for the rate of decay of the concentration of species A. (It should remind
us of the expression we derived for the change in level of the draining tank for which we
used a linear constitutive relationship between level and rate of flow.) The dimensions of k
in this case are reciprocal time, that is, sec~! or min~? etc. The reason for this is that the rate
of reaction is given in dimensions of ——™!___Therefore to be dimensionally consistent the

volume time*
first-order rate constant must be in dimensions of inverse time.

As the stoichiometry for the rate of reaction of component B is the same we can show that:

dCa dCb
dt T at
Ca — Cao = Cb — Cbo
Cb(t) = Ca(t) — (Cao + Cbo)

From which we find:

Cb(t) = Caoe ™ — Cao + Cbo
= Cao[e ™™ — 1] + Cbo



304 Chapter 7 Reacting Systems—Kinetics and Batch Reactors

In a similar fashion we find that the rate of appearance of component D is:

dCa B ﬂ
dt dt
Ca — Cao = —(Cd — Cdo)
Cd(t) = (Cao + Cdo) — Ca(t)
= (Cao + Cdo) — Caoe

= Cao[l — e ] + Cdo

The change in concentration of component E at any time would follow the same form with
the substitution of Ceo for Cdo.

We can now plot these concentration functions so that we can see how a reaction system
of this kind would behave in time. To do this we will assume that the concentrations of the
products are both zero at time zero and that the initial concentrations of the two reactants are
both equal. Also, in order to make the behavior general, we will plot the change in the ratio of
the concentrations of the reactants to an initial concentration of one of the reactants Cao. We can
go one step further and normalize the time coordinate with the “inverse reaction time.” What
is that in this case? Well, for a first-order reaction rate constant, its dimension is the reciprocal
of time, that is, inverse time. Thus, in essence for the first-order case, the rate constant is the
inverse of the characteristic time for the chemical reaction. Therefore if we multiply the rate
constant k by real time t the result is dimensionless time, which we shall refer to as 7. In fact
we already had this result in hand. Look back at the expression for the change in concentration
of A with time. We notice that the RHS has an exponential term, the argument of which is the
product k t. Because the exponential is a transcendental function, such as sine, cosine, etc., the
argument must be a pure number that is dimensionless. Thus the solution of the differential
equation that leads to this result naturally generates the dimensionless time T simply as an
outcome of the solution procedure.

Therefore, what we plan to plot will be Ca(7)/Cao, Cb(71)/Cao, Cd(1)/Cdo, and Ce(7)/Ceo
against the dimensionless time 7. We can use Mathematica to do this, the beauty of which
is that we can let the product kt=7 vary as natural numbers without actually assigning a
specific value to k, and for the same reason the concentrations will vary as natural numbers
between zero and unity. To emphasize the nondimensional nature of the concentrations, we
can introduce a new variable, namely, the Greek letter ® for dimensionless concentrations.
When the initial concentration of B is divided by that of A, we will call this #bo, and likewise
for the other two species. The new expressions in dimensionless form will be:

ba=e "

¢b = [e " — 1]+ ®bo
dd =[1—-e7]— ddo
dbe=[1—-e"]— deo



7.3 Simple Irreversible Reactions—Zeroth to Nth Order 305

As the initial concentrations of the products D and E are taken to be zero, the corresponding
dimensionless initial concentrations are also zero. Also, we can see that ®d = ®e. Thus we
will examine only ®d, and if ®bo = 1, then #a = ®b and we need only consider ®a:

In[12]:= SetOptions[{Plot, ListPlot},
AxesStyle - {Thickness[0.01]},
PlotStyle -» {PointSize[0.015], Thickness[0.0061},

DefaultFont - {"Helvetica", 17}1];

In{13]:= firstordpll = Plot(
{N[Exp[-7]], N[(1 - Exp[-71)1}, {7, O, 10},
AxesLabel -» {"7","®a, Pa"},
PlotStyle - {{Thickness[.0l1], Dashing[{0, 0}]1},
{Thickness[.01], GrayLevel[0.5]1}}1];

da,dd
1

0.8
0.6
0.4
0.2

T
2 - 6 8 10

The plots show what we would expect, that is, the concentration of A diminishes exponentialily
along with B while the concentrations of D and E grow exponentially to their final value, which
is the same as that of the initial concentrations of A and B.

What would be the result if the concentration of B were initially twice that of A? We can
find this result by setting ®bo = 2 and plotting the results as we did before:

In[14]:= firstordpl2 = Plot[{
N[Exp[-7]], N[Exp[-7] - 1 + 2], N[(1l - Exp[-7]1)1},
{r, 0, 10},
AxesLabel -» {"r", "®a,Pb, Pa"},



306 Chapter 7 Reacting Systems—Kinetics and Batch Reactors

PlotStyle - {{Thickness[0.01], Dashing[{0, 0}1},
{Thickness[0.01], Dashing[{0.025, 0.025}]1},
{Thickness[0.01], GrayLevel[0.6]}}];

da,db,dd

2\
\

1.5] »

0.5

T
2 4 6 8 10

Now we note that the Y-axis for dimensionless concentration varies from 0 to 2, and the concen-
tration of B drops from an initial value of 2 to a final value of 1. This indicates that only half of
the original concentration of B would be used to produce C and D, even though all of A would
have been consumed. In this case we see that component A is the “limiting reagent.” If we were
to make the concentration of B initially 100 times that of A, we would find that the concentra-
tion of B would move from 100 to 99, and would be virtually “unchanged” in the process.

Under such conditions, unless our measurements on the concentration of B were very
accurate, that is, accurate enough to pick up a change this small, ~1% in concentration, we
might find that the variation in B would be undetectable, which is smaller than our exper-
imental error. If this were to happen, then we would think that the rate of reaction did not
depend upon the concentration of component B, and in fact under conditions such as these,
that would be a good working conclusion. However, it must strike us as odd that if B is not
present, then the reaction to C and D from A will not take place, and yet we find little rate
dependence on B.

Perhaps this is what happened when the data were analyzed for this reaction and that is
why the kinetics we have used are first order in A and “zero order” in B, that is, independent
of B. Maybe this reaction rate only appears to be first order in A at the conditions under which
the experiment was run, when in fact it is really first order in A and in B. If this should prove
to be the case, then the first-order rate expression for the reaction of A and B to give D and
E is actually pseudo-first order, rather than true first order. A pseudo-first-order reaction may
really be second order when we analyze the data and plan the experiments more carefuily.



7.3 Simple Irreversible Reactions—Zeroth to Nth Order 307

In other words, the second-order rate expression, which is first order in A and B, may appear
to be first order in A only if the experiments were done with a large excess of B present and its
change in concentration went undetected! Let us see how this works out in the next section,
by considering second-order kinetics for the same reaction.

Second-Order Kinetics Overall

For the reaction of A and B to produce C and D, it is more likely that the kinetics would be
second order overall, with first order in the concentration of both A and B rather than just
first order in A. If this were the case, then the solution would be different than that which we
found in the foregoing and would be derived as follows:

r=kCaCb

dCa = —kCaCb
dt

This cannot be solved as written; we need an expression for Cb in terms of Ca in order to
substitute and do the integration. This can be obtained by going back to the stoichiometric
statement:

dCa dCb
dt o dt
Ca—Cao=Cb-Cbo
Cb = Ca — Cao + Cbo
Cb = Ca — (Cao — Cbo)

Now, we can substitute this expression for Cb in terms of Ca into the differential equation
describing the change in Ca, make it autonomous, and derive an expression for the time
dependence of Ca:

dCa
dt

=-kCaCb

= —k Ca[Ca — (Cao — Cbo)]
= —k Ca® + k Ca(Cao — Cbo)
= —k [Ca® — Ca(Cao — Cbo)]

Using Mathematica we have two primary choices on how to proceed with the solution to this
equation—we can rearrange it into its separable components and then integrate both sides of
the equation or we can solve it directly; we will do the latter.

In[15]:= DSolve[{Ca’[t] == -kcalt]l? + kca[t](cao - Cbo),
cal0] == Cao}, Cal[t], t]



308 Chapter 7 Reacting Systems—Kinetics and Batch Reactors

Cao (Cao - Cbo)eCtackt
Out[15]= {{Calt] - Cao ecaokt Cboecbokt}}

This solution is one that we would like to explore as we did with the previous solution for
the first-order rate equation. We could at this point convert the solution for Ca into one that
is “nondimensionalized,” but as it stands we might make errors in doing so. In fact it would
be easier to have “nondimensionalized” the equation to be solved in the first place. Therefore,
instead of working on the solution, we will rework the differential equation and resolve it:

dCa

- = —k Ca? + k Ca(Cao — Cbo)

First, we will let #a = Ca/Cao and ®b = Cb/Cao once again. In this case we can multiply
through on both sides of the equation by Cao/Cao. In the case of the first term on the RHS,
we will multiply by Cao?/Cao?. This yields:

d®
Caod—ta = —k Cao*®a’ + k Cao Pa(Cao — Cbo)

If we divide each side by the residual Cao on the LHS, then we find:

% = —k Cao ®a® + k ®a(Cao — Cbo)
What about the rate constant that appears in both terms of the equation? Can we clear this
as well? We can because we have already said that kt = 7, for the first-order case and so this
meant that k dt =d(kt) = dr. But what about in this case, with second-order kinetics? Can
we still do this? To understand what is happening, we need to be very mindful of what the
dimensions are for each term. If we were to simply divide by k, and make the substitution
with dT, we would have:

d?:;_a = —Cao da’ + da(Cao — Cbo)

Look carefully at this equation because it is misleading. Our goal was to nondimensionalize
it. Therefore we expect the accumulation term, that is, the LHS, to be dimensionless. But how
can it be? The RHS clearly is not dimensionless, and it has units of concentration! This is the
key to seeing where we went wrong; our error was in assuming that the rate constant k for
this second-order rate expression had the same units as those used for the first-order system.
It does not. The dimensions for this second-order rate are vol/mol/tim; in other words, inverse time and
inverse concentration. Why? Because the accumulation term on the LHS must have the same
dimensions of mol/volume/time regardless of the order or complexity of the rate expression



1.3 Simple Irreversible Reactions—Zeroth to Nth Order 309

on the RHS. Therefore the units of the rate constant will always be dictated by the form of the
rate expression and the need for proper dimensions on the LHS.

Recalling the steps we took to nondimensionalize, we see that the error we made came
about when we expressed the dimensionless time variable. Instead of kt = 7, for the second-
order case we have found that kCao t = 7. We can group the rate constant and the initial
concentration of A parenthetically to give:

kCaot=1
(kCao)t=r1
kKt=r1

The product of k and Cao has units of inverse time, the same as the first-order rate constant.
Thus, we can identify the product (k Cao) as the new rate constant k' and this is now a
pseudo-first-order rate constant. Of course the choice of Cao was arbitrary; if we had chosen to
nondimensionalize in terms of Cbo, then k' would still be pseudo-first order, but it would be
the product of Cbo and k. We can immediately see that if we had run a kinetics experiment
with B in such great excess over A, its concentration change would have been undetectable,
and we would observe first-order kinetics rather than second-order overall kinetics.

Let us return to the nondimensionalization of the equation. Before we replaced time t
inconsistently with the true dimension of the second-order k, we had the following form of
the equation:

do
Caod—: = —k Cao’®a? + k Cao da(Cao — Cbo)

By dividing both sides of this equation by (k Cao?), we get the result that we were seeking,
which is properly dimensionless on both sides:

dda 2 (Cao — Cbo)
77 ba—— =
kCaodt Pa + ba Cao

The last step we take is to recognize that (k Cao dt) is the same as dr, rendering the equation
as:

dda » (Cao — Cbo)
dr ba”+ da Cao

Following the procedure taken in the latter half of the last section, we can now experiment
with the behavior of this equation by solving it and plotting the dimensionless results. To do
so let M replace the ratio of initial concentrations:



310 Chapter 7 Reacting Systems—Kinetics and Batch Reactors

Inf1l6]:= DSOlVe[(Qa'[T] == 'Qa[T]z + MQ&[T]I Qa.[O] == an}l
D71, 71
GMIM(DaO
Out[16]= {{P;[1] - )

M- cDaO + eMr(DaO
Thus, we find that:

eMtMCDaQ

o.(1] =
a[ ] M—‘bao-{-eMrd)ao

This can be plotted to determine how the dimensionless concentration of A changes with time.
We know that the concentration change for B will follow that of A based on the stoichiometry.
The change in concentration of the products D and E will also track each other; thus we need
only solve for one. To solve for the change in the dimensionless concentration of D, we recall
that:

dCa dCd

dt ~ dt
Ca— Cao =Cdo - Cd
~.Cd () = Cdo - Ca (t) + Cao

If we divide every term by Cao to render this expression dimensionless, we find:
Dy(1) = Pap — Pa(r) +1

Taking the initial concentration of D as zero and replacing for ®a(r) we have:

eMrM‘Dao
M-d,0+ eMTq)a()

(Dd(T) =1-

These two equations can now be plotted as shown in the following graph to determine their
behavior after we assign initial values to ®ao, Cao, Cbo and to M. The simplest case is that of
®ao =1, and 2Cao = Cbo making M= — 1

II’I[17].': (I)aozlr'

M= -1;
secordpll = Plot([{N[ e M®q 1,
M- ®, + e¥WP,,
‘EMTM‘I’ao
N[l - 1}, {7, 0, 10},

M - @ao + eMTan

AxesLabel -» {("t", "®a, P4"},



7.3 Simple Irreversible Reactions—Zeroth to Nth Order 311

PlotStyle - {{Thickness[.0l1], Dashing[{0, 03}1},
{Thickness[.01], GrayLevel[0.51}}]:;

da,dbd
1

0.8
0.6
0.4

0.2

.
2 - 6 8 10

What happens if Cbo is equal to Cao? Then we find that M =0, and any of the second-order
solutions that we have just derived become zero, or, in other words, meaningless! Why? The
reason is that when we solved these equations either in regular or dimensionless form, we
implicitly assumed that Cao # Cbo. If they are equal, then the equation changes and we obtain:

dCa

— =-kCacCb
dt
= —k Ca® 4 k Ca(Cao — Cbo)
= —k Ca?
or in dimensionless form:
dda 5 (Cao — Cbo)
= —dal+ Pa—n
dz a+®a Cao
dba _oa?
dr

Working with the dimensionless form we have:

In[20]:= ®,u9 =.
DSOlVe[{@a'[T] == _Qa[T]Azl Qa[ol == éao}l (pa[‘r]l T]



312 Chapter 7 Reacting Systems—Kinetics and Batch Reactors

Out(21]= ({®a(7] —» —220 3,
1 + Td)aO
By the same stoichiometric relationship between D and A, but using this new solution for

dimensionless A concentration we find:

D4(1) = Pgo — Pa(r) +1
Do
=¢g - ———+1
do 14 7oy +
Using the same procedure as we used before we can solve for and plot the new solution subject
to the condition that Cao = Cbo and we obtain:

Inf22]:= @59 = 1;

Qdo = 0;
secordpl2 = Plot[
(I)aO an
N[—————1, N[®Pgy - ————— + 11}, {7, 0, 10},
{ [1 + 7'<I>a0] [Pao 1 + 7P, ] { }

AxesLabel -» {("t", "®a, P4"},

PlotStyle -» ({{Thickness[.01l], Dashing[{0.05, 0.025}]},
{Thickness[.01], Dashing[{0.05, 0.025}1,
GrayLevel[0.5]1}}];

da,dd
)
0.8\ T
\ /
06| \ 7

X

04| / '\
/ "™

0.2 [ ~
A

S

Y
—_— e
—_— e e

2
2 - 6 8 10

This set of two solutions can be compared to the set of two solutions that we obtained earlier
with Cao # Cbo.



7.3 Simple Irreversible Reactions—Zeroth to Nth Order 313

e e e e ————— e e =

Show[secordpll, secordpl2,
PlotLabel - "Dashing for Cao=Cbo"];

®a,®d  Dashing for Cao=Cbo
:

0.8
0.6
0.4

0.2

#
2 - 6 8 10

The results show that the solutions obtained when Cao # Cbo are sharper and more steeply
rising and falling than the corresponding solutions when Cao = Cbo.

Given the form of the rate expression with k Ca?, it is natural to wonder if it uniquely
applies to the situation we just analyzed. The answer is that it does not. The solution we
derived for the case of A reacting with B and with equal initial concentrations to produce D
and E is also a description of the similar case in which A reacts with itself to give D:

A—->D

If this reaction happens to follow second-order kinetics and for every mole of A reacted we
get one mole of D, then the resultant analysis will lead to the same result we have just seen:

dCa dCd

dt —  dt
Ca—Cao=Cdo-Cd
Cd = Cdo + Cao — Ca

dCa 2
=k

T Ca
Calt] = — S2°

1+ Caokt



314 Chapter 7 Reacting Systems—Kinetics and Batch Reactors

and

1

These are just the same expressions we had already obtained for the second-order case in
which two different species were involved, and they had the same initial concentrations.

Nt Order

The order of a reaction may not be as simple as first or second order. We often find nonintegral
order in what is called “power-law” kinetics. This typically indicates that the “reaction” rate
we have measured is not for a single reaction, which is one elementary step, but for several
elementary steps taking place simultaneously, the sum of which is the overall reaction that we
observe. Normally, we refer to rate expressions such as these as global rates or kinetics (global
in the sense of overall or measurable as opposed to intrinsic or fundamental rates and kinetics).
Consider the reaction of A to B:

A—->B
ra- = kC}
dCa
dt
dCg
dt

- —kC
= +kC?,

When we nondimensionalize, these become:

doa

dr T A
dog

—B _ L n
dr TPA

Solving for the concentrations of A and B we find:

In[26]:= Remove[Ca, ca, solnordl]

In{27]:= solnordA = Simplify([
DSolve[
{Ca’[t] == -kcCalt]l®, Ca[0] == Cao},
{Caltl}, t]
]
cal[t_] := solnordAa[[l, 2]]



7.3 Simple Irreversible Reactions—Zeroth to Nth Order 315

solnordB = Simplifyl(
DSolvel[
{Cb’[t] == +kcaltl®, Cb[0] == Cbo},
{Cb[t]l}, t]
]
cb{t_] := solnordB[[1l, 2]]
Solve::ifun : Inverse functions are being used by Solve,
so some solutions may not be found.

Solve::ifun : Inverse functions are being used by Solve,
so some solutions may not be found.

1 i =
out[27]= {Calt]l] - ((—) + k(-1 + n)t)n}
Cao
General::spelll : Possible spelling error: new symbol
name "solnordB" is similar to existing symbol
"solnordA".
1 :
Oout{29]= {{Cb{t] - Cbo - k(-1 + n)t(((E——)'Hn + k(-1 + n)yg)y )"
ao
1 - l+n 1 -1+n ﬁ)n - 1 )—1+n
Cao Cao Cao
FK(-1 ¢ mE) T )
In[{31]:= Clear["Global‘*"]
In{32]:= nda = DSolvel[{®a’[T] == -PalrT]”, Pa[0] == Pao},
dalr]l, 71
PA[T__]) := ndal[1]]1[[2]]
PalT]

ndb = Simplifyl[
DSolvel[
{®Pb’ [7] == ®A[T]", PDLI[O] == 0}, PblT], T]

]
$B[T7_] := ndb[[1, 1, 2]]
$PB[T]

General::spelll : Possible spelling error: new symbol
name "®a" is similar to existing symbol "d".

General::spelll : Possible spelling error: new symbol
name "dao" is similar to existing symbol "da".

Solve::ifun : Inverse functions are being used by Solve,
so some solutions may not be found.



316 Chapter 7 Reacting Systems—Kinetics and Batch Reactors

Solve::ifun : Inverse functions are being used by Solve,
so some solutions may not be found.

(_1__)—1+n n(#)—1+n .
out [32]= {®al[r] - (-1 + nr - —=° p —Beo )Te)
-1 +n -1 + n
General::spell : Possible spelling error: new symbol

name "®$A" is similar to existing symbols {&, da)}.

___l_)*l+n n(%)—1+n 1
out[34]= (-t + nr - —22° + bao )T
-1 + n -1 + n
General::spell : Possible spelling error: new symbol

name "db" is similar to existing symbols {®, Pa}.

1

out[35]= {({®blr] - -(-1 + n)t (((-1 + n)t + {( Theny oy
dao
+ (- (-1 + mT + (o) ~tamy oy
dao
1 1 .

+ = l+n Ty -|+r1}}

dao dao
General::spell : Possible spelling error: new symbol

name "®B" is similar to existing symbols {®, da, db}.

Out [37]= -(-1 + m)t (((-1 + nm)t + ¢( ! ’l”WT%)“
dao
1 ~l+ny ——yn
+ (=(((-1 + n)T + (¢ao) ) )
1 ~l+ny =\ n 1 -l+n
+ ( E) ) ) )((D_ao-)

In[38]:= SetOptions[{Plot, ListPlot},
AxesStyle - {Thickness[0.01}},
PlotStyle - {PointSize[0.015], Thickness[0.006]},
DefaultFont - {"Helvetica", 17}1;

In[39]:=n = 3.3;
Pao = 1;

Plot[{®AlT], ®BI[T]}, {r, O, 10},
AxegLabel - {"r", "®a,Pdq"},
PlotStyle - {

{Thickness[0.01], GrayLevel{O0l},
{Thickness[0.01], GrayLevel[0.6]}},
PlotLabel - n "order"];



7.4 Rever5|ble Reactlons—ChemlcaI Equ1l|br|um 317

dPa,od 3.3 order
3

0.8
0.6
0.4

0.2

7.4 Reversible Reactions—Chemical
Eqmllbrlum

= e o s e —— =

= - e e T —

Chemical reactions do not move in the forward dlrectlon only but in either direction and come
to a “resting” point of concentrations known as the position of chemical equilibrium. Our goal
in this section is to understand how we analyze such a common situation and at the same
time to discover the interrelationships between kinetics and thermodynamics as they apply
to chemical systems.

Take as a starting point the simplest most, reversible reaction:

A=B

This is “simple” because the stoichiometry is one mole of reactant goes to one mole of product,
and because the conversion of A to B follows first-order kinetics, as does the conversion of B
back to A. Thus, when we assemble the two-component mass balance equations in a constant
volume batch reactor, we find:

dCa Crtr
_dt_ a b
dCb

— =Ia—1Ip



318 Chapter 7 Reacting Systems—Kinetics and Batch Reactors

These expressions reflect the fact that the overall rate of “accumulation” of either species will
be the difference between their rates of formation and depletion, that is, the net rate. If we take
both r; and 1y, as first order in Ca and Cb, respectively, then we have:

dCa

T = —kaCa + kbe

dCb

— =K, — b
G k,Ca — kp,C

These two equations can be solved simultaneously to give Calt] and Cblt] for any arbitrary
initial concentrations of A and B.

The following set of commands shows us the variable names used to this point in the
notebook and that they are indeed removed by the Remove command.

In[42] := Names["Global‘*"]
Remove ["Global‘*"]
Names ["Global‘/*"]

Out (42]= {a, a0, atm, ca, Ca, Cao, cb, Cb, Cbo, cm, d0, da, db,
firstordpll, firstordpl2, g, k, M, meanspeed, mol, n,
Nav, nda, ndb, Pa, Pb, Rl1, R2, s, secordpll, secordpl2,
solnordA, solnordB, t, T, zZab, u, v, o, ®a, oA, dao,
&b, &B, $1, $2, $3, $4, $5}

Out [44]= {}

Now we set up the solution of the rate equations that express the reversible chemical
process:

In[45] := reversoll = Simplify[DSolve][

{Ca’[t] == -kacCalt] + kbCb[t],
Cb’[t] == +ka Calt] - kbCb[t],
Ca[0] == Cao, Cb[0] == Cbo},

{Ca[t], Cbltl}, tl1;

Palt_] := reversoll[[1l, 1, 2]1]/Cao
$b[t__] := reversoll[[l, 2, 2]]1/Cao

Palt]
$b[t]

General::spelll : Possible spelling error: new symbol
name "®b" is similar to existing symbol "da".
Cbho(l - e tkatkbitykp 4 Cao(e” %a*kPItka 4+ kb)

Cao(ka + kb)

Out [48]=



7.4 Reversible Reactions—Chemical Equilibrium 319

Cao(ka - e (ka+kbitiay 4 Cbo(ka + e~ (ka+kbityp)
Cao(ka + kb)

Out[49]=

We could have nondimensionalized these equations completely, as we have done for other
cases, but then we would lose the individual contributions of ka and kb. Instead we have
referenced to the initial concentration of A, but we have retained the real time t.

Inf{50] := SetOptions[{Plot, ListPlot},
AxesStyle - {Thickness[0.01]},
PlotStyle - {PointSize[0.015], Thickness[0.0061},

DefaultFont - {"Helvetica", 17}1]:

Inf[51]:= ka = 1.;

kb = 1.;
Cao = 1.;
Cbo = 0.;

Plot [{N[Pa([t]], N[Pb[t]]1}, {(t, 0, 5},

PlotRange - All,

AxesLabel -» {"t", "®a, ®4"},

PlotStyle —» {{Thickness[0.01], Dashing([{0, 0}1},
{Thickness[0.01], GrayLevel[0.5]}},

PlotLabel - {(ka "= ka", kb "= kb", Cao "= Cao",
Cbo "= Cbo"}1];

®a,®d (1. = ka, 1. = kb, 1. = Cao, 0. = Cbo}
1

0.8
0.6

0.4
0.2




320 Chapter 7 Reacting Systems—Kinetics and Batch Reactors

What we observe is that the concentrations of A and B move to a value of 0.5 by t = 3 and then
they remain unchanged. This is the equilibrium point for the parameters that we set. Could we
have calculated this before solving the differential equations explicitly? The answer is yes. The
reason is that at equilibrium the rates of the forward and reverse reaction are equal, which is
why the system appears unchanging. Given that this is the case, we can reason that the accu-
mulation terms (that is, the differentials on the LHS) are zero-valued because their arguments
are no longer time-dependent. Thus, after fully nondimensionalizing, we can see that:

d ®Pa ky
—C — _pa+-—" (1+ b
a7 A kg LT PO
dda _
dr eq -
 Paleg = L(l + ®bo)
T (ko + k)

Because we chose ka=kb and ®bo = 0, we find that:
¢al,, =05

We can also note that the kinetics relate directly to the thermodynamics (equilibrium) in this
manner:

Kkp
(ka + kb)

0 = —da (k, + k) + k(1 + dbo)

0=—-%a+ (1+ ®bo)

0 = —dak, — bak, + kp(1 + ®bo)
0 = —dak, +ky(1 + ®bo — da)

But we have already shown that:

®b =1+ dbo — da
0= —dak, + Pbky

bk,

Pk
This well-known result provides the kinetics definition of chemical equilibrium and relates
the rate constant from thermodynamics to the ratio of the forward and reverse rate constants.

The case that we have analyzed is the simplest and one more example of mixed order

is worth studying in the same way. Let us take as an example the case of one molecule
dividing into two different molecules. Examples abound—PCl;s reacts to give PCl; and Cl,,
ethylbenzene (CsHs CH, CH3) reacts to give styrene (C¢Hs CH = CH;) and dihydrogen (H).
We can generalize this type of reaction to:

A=B+D



7.4 Reversible Reactions—Chemical Equilibrium 321

For this case we will assume that in the direction from A to B and D the rate is first order in A
and in the opposite direction we will take it as second order overall, first order in B and D each.

TA = kACA

s =Ip= kBCBCD

These are constitutive kinetics that we need to complete the model for this type of reaction
taking place in a constant volume batch reactor. The component equations are:

dC
A _ —kaCa + kgCpCp
dt
dCg
— kaCa —
T ACa — kpCpCp
dCp
T — kaCa — C
It ACa — kgCpCp

If we try to solve the three simultaneous equations in their initial form, an error message is
the result we get back:

In[56]:= Remove([Ca, Cb, Ccd, ka, kb]

In{57]:= DSolvel
{ca’[t] == -kaCalt] + kbCb[t] cd[t],
Cb’[t]) == +kacCalt] - kbCb[t] Ccd[t],
cd’[t] == +kaCalt] - kbCblt] cdlt],
cal[0] == Cao, Cb[0] == Cbo, Cd[0] == Cdo},

{calt]l, Cblt]l, cd[t]}, t]

Solve::tdep : The equations appear to involve the
variables to be solved for in an essentially
non-algebraic way.

DSolve::dsing : Unable to fit initial/boundary
conditions {Ca(0] == 1, Cb[0] == 0, Cd[0] == Cdo}.

Qut[57]= {}

If, however, we can say that the initial concentrations of B and D are equal, then we can
reexpress Cd in terms of Cb as they are equal. Now, we can solve analytically as follows:

In[58]:= Names["Global’*"]
Remove ["Global‘*"]
Names["Global‘*"]

Out [58]= {Ca, Cao, Cb, Cbo, Cd, Cdo, ka, kb, reversoll, t, ®a, Pb}



322

Chapter 7 Reacting Systems—Kinetics and Batch Reactors

Out[60]=
In[61]:=

Out[63]=

Out[65]=

Out [66]=
Qut[67]=

In[68]:=

out[68]=

{}

reversol2 = Simplify[DSolvel[{Ca’[t] == -ka Calt]
+ kbCb[t]l?, Cb’[t] == +kacCalt] - kbCb[t]Z,
Ca[0] == Cao, Cb[0] == Cbo}, {Caltl]l, Cb[tl}, tl1]:;

calt_.] := reversol2([[2, 2]]
calt]
cb[t__] := reversol2[[4, 21]
cb[t]

Simplify[d¢ (calt] -ka calt] + kbcb[t]?]
Simplify[8¢ (cb[t] +kacalt]l - kbcb[t]?]

Solve::ifun : Inverse functions are being used by
Solve, so some solutions may not be found.

)
)

1
Ek_ﬁ(ka + 2(Cao + Cbo)kb + /-ka(ka + 4(Cao + Cbo)kb)

1
Tan[E\/~ka(ka + 4(Cao + Cbo)kb)t

KH{=Cao ka +Chot kb)

+ ArcTan| IR
2\/ka\/4Cao + 4Cbo + %

\/an ka - 4CbO:) kb\/ (ka +2Cho kb)) -

1
—%(ka + /-ka(ka + 4(Cao + Cbo)kb)

1
Tan[—2—J~ka(ka + 4(Cao + Cbo)kb)t

\/4Cao ka - 4Cbhbo” Kb (Ka + 2Cho kb -

kb (=Cao ka +Cbo k)
+ ArcTan]| 1)

2,/ka\/4Cao + 4Cbo + %

True
True

Simplifylcalt]]
Simplifylcb[t]]

1
%(ka + 2(Cao + Cbo)kb + +/-ka(ka + 4(Cao + Cbo)kb)

1
Tan[—z—\/—ka(ka + 4(Cao + Cbo)kb)t

JV4Cao ka - 4Cbo? kb kb((ka+2Cbo Kb)

-Cao ka + Cbo"’ kb)
+ ArcTan/| 11)

2«/ka\/4Cao + 4Cbo +

kb



7.4 Reversible Reactions—Chemical Equilibrium 323

1
Out[69]= —%(ka + o/-ka(ka + 4(Cao + Cbo)kb)

1
Tan[EJ—ka(ka + 4(Cao + Cbo)kb)t

— 3 {(ka + 2Cbo kb)?
+/4Cao ka - 4Cbo kb\/kb(—Cao ka + Cbo? Kb)

2«/ka\/4Cao + 4Cbo + ka

kb

+ ArcTan|

1]

These solutions are still somewhat cumbersome and we have already constrained them to
equal initial concentrations of A and B. Let us relax this constraint and solve in nondimensional
form. We can express the concentrations of B and D in terms of the concentration of A through
the stoichiometric relationships:

dCa dCg dCp
dt ~  dt  dt

Ca —Cao=Cpo—Cp =Cpo —Cp
Cg = Cpo +Cpo — Ca

CD = CAO + CDo - CA

Rewriting we have:

dC
_d—tA = —kaCa + kp(Cao + Cbo — Ca)(Cao + Coo — Ca)
dC

dt“ = kaCa — kg(Cao + Cgo — Ca)Cao + Cpo — Ca)

We can collect the terms in the concentration of A on the right-hand side and then simplify to
put the equations in a simpler looking form prior to solving them:

In[70]:= Clear["Global‘*‘"]

dcC, . .
In[71):= — == Simplifyl
Collect[-kACA + kB(CAo + cBo - CA) (CAD + CDO - CA): CA]]
dCe Simplifyl
—_— == 1 1
ac P Y
Collect[kxCh - kg(Ca + Cpo = Ca)(Ca + Cpo - Ca), Call
dC, 5
out[71]= ac == Cikpy + (Cpo + Cio) (Cpo + Ciolky
- CA(kA + (2C]\o + CBO + C[)O)kg)
dCy 5
Qut[72]= ac == -Chiky - (Cuo + Cuo) (Cao + Cpolky

+ Calka + (2Cp + Cpo + Cpo)kp)



324 Chapter 7 Reacting Systems—Kinetics and Batch Reactors

These can be nondimensionalized with C,, as follows:

do

CAod—tA = Ca,Pikp + Cio(Pao + Po)(Pao + Ppodkp — CaoPalka + (2Cao + Chgo
+ CDo)kB)
do
th = Cao®ikp + Cao(Pao + PN Pao + Ppodkp — Palka + (2Cao + Cio + Cpolks)

Recognizing that Ca, kg is in every term, we can divide through by the product of this con-
centration parameter and the rate constant for the reverse reaction. This product has units
of inverse time as the rate constant is second order. Therefore on the left-hand side we have
le,ks d:ﬁ", which is just the same as dz", where d7 = Cackgdt. This puts the equations in
complete dimensionless form:

do ka 4+ (2Cao + Cio + Cpo)k
d A = q)zA + ((DAO + (DBO)(d)AO + q)Do) - ¢'A( A ( A B D ) B)
t Caoks
do ka + (2Cao + Cgo + Cpo)k
Gi = —(‘D%\ - (q)/\o + q)Bo)((DAn + Cb[)o) + ‘DA( A ( Ac B D ) B)
t Caoks
The group of constants (k"ﬂzc"gﬁf;’Jrc"“)k“) , which we shall call M, that make up the coefficient

of the linear term in ® 4 are worth looking at in more detail. Recall that kg is a second-order rate
constant with dimensions of vol/mol/time. When this is multiplied by the sum of the initial
concentrations (2Ca, + Cgo + Cpo), the resultant dimensions are 1/time, the same as that
of ka (the other term in the numerator), and as the product Caokg seen in the denominator.
This makes sense and the overall group is dimensionless. We also see that if we provide the
relative magnitudes of the rate constants and the initial concentrations, then this term can be
evaluated. To solve these equations we stop just short of this and give initial dimensionless
concentrations and the ratio of the rate constants:

In[73]:= Names["Global‘*"]
Remove ["Global‘*"]
Names ["Global‘*"]

out({73]= {A, Ao, B, Bo, ca, Ca, Cao, cb, Cb, Cbo, d, dt, k, ka,
kb, reversol2, t}

out[75]= {}

In[76]:= ndreversol3 =
Pao = Cao = 1;
$bo = $do = Cbo = Cdo = 0;
kb = 10 ka;

ndreversol3 = Simplify[DSolvel{®a’[T] == Pa[T]?
+ (Pao + Pbo) (Pao + Pdo) - Pa[T] M,



7.4 Reversible Reactions—Chemical Equilibrium 325

b’ [7] == -Pal[r]? - (Pao + ®bo) (Pao + Pdo)
+ Pa [T] M,

$Pal[0] == Pao, Pb[0] == Pbo},
{(Palr], ®$biT1}, 711

PA[T__] := ndreversol3[[1l, 2]]
P$B[T_] := ndreversol3[[2, 2]]

Simplify[8,(PA[T]) == BA[T]? + (Pao + ®bo) (Pao + Pdo)
- ®A[T] M]

Simplify[O, (PB[T])
+ PA[T] M]

= -®A[7r]? - (Paoc + Pbo) (Pao + Pdo)

General::spelll : Possible spelling error: new symbol
name "®bo" is similar to existing symbol "dao".

General::spell : Possible spelling error: new symbol
name "®do" is similar to existing symbols {®ao, dbo).

General::spelll : Possible spelling error: new symbol
name "®a" is similar to existing symbol "dao".

General::spell : Possible spelling error: new symbol
name "®b" is similar to existing symbols {®a, Pbo}.

Solve::ifun : Inverse functions are being used by
Solve, so some solutions may not be found.

1 1 2 - M
Out[80]= {<Da[t]—>5(M + V4 - M/Tan[a\/él ~ M1 + ArcTan|—m—11),

Vi - W
(-2 + M) (-V4 - M+ (2+M) Tan[++v/4 - M1+ ArcTan [ —=11)
db(r]—> _ Vir
244 - W
General::spelll : Possible spelling error: new symbol

name "®A" is similar to existing symbol "®a".

General::spell : Possible spelling error: new symbol
name "®B" is similar to existing symbols {dA, Ob}.

Qut [83]= True

Out {84]= True

The solutions are more complex than we have seen before, but the check we have put them
through indicates their validity. The complexity arises from the fact that this problem is one
that is fully transient until the equilibrium point is reached. It is important to realize that
there is a marked difference between equilibrium and steady state, as we will see when
we examine flow reactors. We can have a steady state in a flow reactor, which is far from
equilibrium.



326 Chapter 7 Reacting Systems—Kinetics and Batch Reactors

We can test these solutions further after we have applied a specific value for the forward
rate constant; we take k, = 107> min~". Taking the limit as T goes to zero should give us unity
and zero for dimensionless A and B. At long times they should go to the equilibrium values.

In{85]:= Pao = Cao = 1;

®bo = #do = Cbo = Cdo = 0;

ka = .001;

kb = 10 ka;

M (ka + (2Cao + Cbo + Cdo)kb)

’

Cao kb
ndreversol3 // N

Limit [ndreversol3[[1, 211, T - 0}
Limit [ndreversol3([[2, 2]], T - 0]

ndreversol3[[1, 2]] /. T - 10°
ndreversol3[[2, 2]] /. T - 10°

Out[90]= {Palr] - 0.5 (2.1 - 0.640312 Tanh[(0.157462 + 0.1)
+ 0.320156 1),
®db[r] - (0.-0.0780869i) ((0.-0.6403121)
+ (0. + 4.11)Tanh[(0.157462 + 0.1} + 0.3201567])}

Out[91]= 1. + 0.1
out[92]= 0. + 0.1
out[93]= 0.729844 + 0.1
Out[94]= 0.270156 + 0.i

We see that at zero time the values of dimensionless A and B concentration are as they should
be, and at long time they tend to 0.73 and 0.27, respectively. We can check this by computing
the equilibrium extent of reaction « from the expression for the equilibrium constant. Recall
that the magnitude of the equilibrium constant at any temperature is given by the ratio of the
forward to the reverse rate constants; and the concentration of the products at equilibrium in
this case is just @ Cao and the reactant is (1 — &) Cpo. This gives the following expression to
be solved:

ka o?
In[95]:= Solve[— == Cp , al
ks l-ao
~kn - JEkaJ/Knt ACKa ~kn + JKa/Kn T A0 K
out[95]= {{a——" YA R, (e L YAV AT o TRy,
ZCAokB 2CAokB

Clearly, the extent of reaction must be positive and the value of 0.27 agrees exactly with
the value derived from the kinetics. Finally, we can graph the concentrations of A and B in
dimensionless form as a function of dimensionless time. But before we can do so we need to
examine the solutions carefully. We know they are correct, but we also notice that the term 0.1
appears in both. In order to plot these solutions we must have fully real forms; that is, even



7.4 Reversible Reactions—Chemical Equilibrium 327

if the coefficient of i is zero, we cannot graph such an expression in the real plane because
Mathematica takes this as a complex number. Let us look at these solutions before and after we
use Complex Expand on them:

In[96] := ndreversol3[[1, 21]
ndreversol3[[2, 2]]
Simplify[ComplexExpand[ndreversol3[[1, 2]11]]
Simplify[ComplexExpand[ndreversol3[[2, 21111

1
out[96]= 3 (2.1 - 0.640312 Tanh[(0.157462 + 0.i) + 0.3201567])

out{97]= (0.- 0.0780869i) (-0.640312i
+ 4.1i Tanh[(0.157462 + 0.i) + 0.3201561])
0.1
1.4+ Cosh[0.314925 + 0.6403127]
0.320156 Sinh[0.314925 + 0.64031271)
1. + Cosh[0.314925 + 0.64031271]
0. + 0.
1. + Cosh[0.314925 + 0.64031271]
(0.320156 + 0.i)8inh[0.314925 + 0.6403127]
1. + Cosh[0.314925 + 0.64031271]

Out[98]= 1.05 +

OQut[99]= (-0.05 + 0.1)

+

It is easy to see that the first expression is fully real, but the second expression for
dimensionless B is less clear until we expand it. After expansion we can see that although
the solutions appear to involve complex numbers the coefficients of i are all identically zero
(see what follows in the next graph):

(0.320 Sinh[0.315 + 0.6407])

(1 + Cosh[0.315 + 0.6407])

(0.320) sinh([0.315 + 0.6407]

Pplr__1 := - .05
(1 + Cosh{0.315 + 0.64071])

In[100]:= ®plT7__1 := 1.05 -

Plot [
{(®al7r], ®5l71}, {7, 0, 10},
PlotRange - All,
AxesLabel -» {"t", "®a, P4"},
AxesStyle -» {Thickness[0.01]},
PlotStyle -» {{Thickness[0.01], GrayLevel{01l},
{Thickness[0.01], GrayLevel[0.6]1}},
Epilog - {
{GrayLevel({0.6], Dashing([{0.02, 0.02}1,
Thickness[.01}, Line[{{O0, 0.27}, {10, 0.27}}1},
{GrayLevel[0], Dashing[{0.02, 0.02}], Thickness[.01],
Line[{{0, 0.73}, {10, 0.73}}1}
}, DefaultFont - {"Helvetica", 17}
1;



328 Chapter 7 Reacting Systems—Kinetics and Batch Reactors

da,dd
1

0.8

0.6
0.4
0.2

2 4 6 8 10

7.5 Complex Reactions

Series

Reactions rarely take place in isolation of other reactions. Reversibility is one example of the
simultaneity of reaction chemistries. Another classical problem is the one that arises when a
reaction is immediately preceded by another reaction. When reactions occur in series, they are
referred to as being consecutive. An example would be:

A—-B—->D

If each of these proceeds via a first-order rate process, then this can be analyzed readily. Higher-
order reaction rates follow the same analysis, but they require a bit more mathematical effort.
We can begin by writing the key material balance equations:

dCa

= —kaC
at ACa
dCp
— =k — kgC
m ACa — kgCsp
dCp

=k
It 8Cs

We can see that the first of these equations can be integrated immediately to give:
Ca = Caoexp (—kat)

This can be substituted into the second equation and the integration can be done for the
concentration of B. Subsequently, we substitute this into the equation for the rate of change of



7.5 Complex Reactions 329

D and integrate once more for the full solution. Alternatively, we can let the DSolve algorithm
do for us all at once:

In{103]:= Clear{"Global’*"]

In[104]:= Simplify|

DSolve [

{cAa’[t] == -kacA[t],

cB’[t] == kacA[t] - kbeB[t],
ch’ [t] == kbcB[t],

cA[0] == cAo,

¢cB[0] == O,

cD[0] == 0},

{cA[t], cBI[t], cD[t]},

tl

1
General::spelll : Possible spelling error: new symbol

name "cAo" is similar to existing symbol "Cao".

. CAO(e—ka: _ efklwt Y ka
Out[104]= {{cA[t] — cAoe *', cB[t] — ,
-ka + kb
cho(ka - e *'ka + (-1 + e *!)kb)
cD{t] — 1}
ka - kb

We could also have chosen to nondimensionalize the differential equations before solving
them in order to find a general solution in fewer absolute parameters. We can divide all by

kaCao, which will give us:
1 C

kaCao | dt
1 dCB kB
S b, AP P
[hcm]dt 27 ka ”
1 7dCo ke
kaCao| dt — ka °

However, kadt = d+ because k, is an inverse time constant associated with the rate of the
first chemical reaction and 7 is “reduced” time. This gives us the following three equations:

dd,
=—-¢

dr A
ddg kg
=Py — ]
dr ATk, P
dodp k

D _ X8,

dr —-kA



330 Chapter 7 Reacting Systems—Kinetics and Batch Reactors

Now the ratio of ﬁl is not an equilibrium constant because both reactions are considered to
be irreversible. It is simply the ratio of the rate constants and we will leave it as such.

In{105]:= Clear["Global‘*"]

In[l106]:= ka =.
kb =.
Pao =.
sersoll = Simplify[DSolvel[
{Pa’'[7] == -®PalT],
kb
$b’ [7] == +Palr] - —PbIT],
b ka
3’ [7] == +—Pb[T],
ka
Pa[0] == Pao,
$b[0] == O,

®4[0] == 0},
{®al7], ®bl7], PdlT]},

7]
1:
PA[T__] := sersoll[[1l, 1, 211
$B[T_] := sersoll[[1l, 2, 21}
$D{T_] = sersoll[([1, 3, 2]]

Palr] == PA[T]
Pb[T] == PBIT]
®d[T] == ®DI[T]

Plotl(

{®alr], ®BIT], ®DIT]},

{7, 0, 10},

PlotRange - All,

AxesLabel - {"7", "®a,Pb, Pd"},

AxesStyle - {Thickness[0.01]1},

PlotStyle -

{{Thickness[0.01], Dashing[{0, 0}1},
{Thickness[0.01], Dashing[{0.05, 0.025}],
GrayLevel[0.4]},

{Thickness[0.01], GrayLevel[0.71},

DefaultFont - {"Helvetica", 20}},

PlotLabel -» {ka "= ka", kb "= kb", ®Pao "= Pao"}];



7.5 Complex Reactions 331

General::spell : Possible spelling error: new symbol
name "®d" is similar to existing symbols {®, &a,

db, ddo}.
General::spell : Possible spelling error: new symbol
name "®D" is similar to existing symbols {®, oA,
oB, &d}.
Out[113]= dalr] == e "Qao
(e " - e‘%)kafbao
Out[114]= dblr] ==
-ka + kb

(ka - e ""ka + (-1 + e 7)kb)®ao
ka - kb

Oout[115]= ddlr] ==

®a,®b,d (2 —ka, 1.= kb, 1. = ®ao)
1

0.8
0.6
0.4 N

0.2 [ ~

S,

h“
“T

2 - 6 8 10

The preceding graph shows the behavior expected for a set of reactions taking place in series.
We see the reactant being depleted, and the intermediate concentration grows and then falls
while the final product grows monotonically throughout the process. It would be handy to
be able to look at this “A to B to D” process with different rate constants in order to gain a
better understanding of how the concentration profiles for each species vary in character with
changes in the magnitudes of the rate constants. However, this would be cumbersome if we
were to use the code we have just written. Instead it makes much more sense to write a Module
function based on this code, which can be invoked and utilized like any other command. Here
is the means to do that:

In[120]:= Clear["Global‘*"]



332 Chapter 7 Reacting Systems—Kinetics and Batch Reactors

In[121]:= sersol2[ka_, kb_, ®Pao_, tT™max_] :=
Module[ {®a, Pb, P4},
Palr_] := e 7 Pao;

(e™7 - e“’%)ka Pao
-ka + kb !

$blT__1

kb T
ka - e xaka + (-1 + e 7)kb)Pao
Palr_1 ( ¢ ) kD) ;
ka - kb

SetOptions[Plot, DefaultFont - ({"Helvetica", 8}];

Plot [
{Pal[7]l, ®biT], P4AIT]}.,
{T, 0, 7Tmax},
PlotRange —» {{0, Tmax}, {0, 1}},
AxesLabel - {"r", "®i"},
AxesStyle - {Thickness[0.01]},
PlotStyle -

{{Thickness[0.01], Dashing[{0, 0}1},
{Thickness[0.01], Dashing[{0.05, 0.025}1},
{Thickness[0.01], GrayLevel[0.7]}},

DisplayFunction - Identity]

Now if we input the Module and then run it with parameter values as shown, we obtain the
same result as that which we had in the preceding:

In[122]:= Showl[sersol2[l., .5, 1., 10],
DisplayFunction - $DisplayFunction];

0.6

0.4 \




7.5 Complex Reactions 333

Furthermore one can now run as many cases as one should like in order to compare the
effects of different parameters. We have left the semicolon out after the Plot routine in the
Module function, so that Graphics are a bonafide output. This allows us to use sersol as part
of GraphicsArray.

In[123]:= Showl[
GraphicsArray[{Tablel[sersol2[1., n, 1., 10],
{n, 0.01, 1.01, .5}],
Table[sersol2[1l., n, 1., 101, {n, 1.51, 2.52, .5}1,
Table([sersol2[1., n, 1., 10], {n, 3.01, 4.02, .5}1,
Table[sersol2[1., n, 1., 101, {n, 4.51, 24.51, 10}]
}, DisplayFunction - $DisplayFunctionl]];

0.8 0.8 08
0.6 0.6 0.6
0.4 04| A A 0.4
r ! b o lf /NS
).2 ).2 !\_ 0.2 N
———— —
———
2 4 6 8 10 2 4 6 8 10 4 4 € 8 1(

1 1 1
0.8 0.8 0.8
0.6 \ 0.6 \ 0.6
0.4 0.4

0.4

0 0.4
7 g s L
02y \\¥ bt \\\ e k

0.8 0.8 0.8
06 0.6 0.6
0.4 0.4 0.4
0.2 ,\\‘ 0.2 ,k 0.2|,

4 6
; 1 1‘ )
0.8 0.8 ).8
0.6 0.6 0.6
0.4 0.4 04
0.2 _\ 0.2 k 0.2 L
“-_‘-‘- ; b N L
T * 2 4 6

2 4 6 8 10 2 4 6 a8 10

8

This array shows the full gamut of the effects that the magnitude of kb at fixed ka has upon
the chemistry. We see that when kb is 10? smaller than ka, the reaction appears to be that
of A — B. When we begin to increase the magnitude of kb we see that the intermediacy of B
grows as does the final amount of D at 107. With longer times, the amount of B would grow to
be equal to the original amount of A, but we are concerned here with a fixed batch holding time
of 107. As kb increases and overtakes ka, the maximum amount of B continuously diminishes



334 Chapter 7 Reacting Systems—Kinetics and Batch Reactors

and shifts to earlier 7. Finally with kb at ~25ka, the maximum in B is shifted to very short t
and to a value of less than 0.1.

If we were to change the kinetics so that the first reaction was second order in A and the
second reaction was first order in B, then we would see largely the same picture emerging in
the graphs of dimensionless concentration versus time. There would of course be differences,
but not large departures in the trends from what we have observed for this all first-order
case. But what if the reactions have rate expressions that are not so readily integrable? What
if we have widely differing, mixed-order concentration dependencies? In some cases one can
develop fully analytical (closed-form) solutions like the ones we have derived for the first-
order case, but in other cases this is not possible. We must instead turn to numerical methods
for efficient solution.

Suppose that the following reaction is a series network with square kinetics for the first
reaction and half-order kinetics for the second:

2A—->B—->D

Then accounting for the stoichiometry of two going to one we have the following set of
equations to solve:

dCa 2
T = —kaCa

2
dCb =+kaCa _ xbVTh
dt 2
ﬁ: kbvCb
dt
dCb__ldCa_dCd
dt — 2 dt dt

Nondimensionalizing must be done carefully. We begin with the first equation, which gives
the expected result:

CaodCa Cao?

Rahiiehi k 2
Cao dt Cao? aCa
(]
Caod——a = —Cao’ ka da’®
dt
C—i?f = —Caoka da?
dt
dda

= —da’
dr a



7.5 Complex Reactions 335

As we are going to need the nondimensionalized form for the rate of change of D to obtain B
we proceed with this equation next:

4o — kovCh

1 dCd + 1
kaCao’® dt  kaCao®

]
dd=+ kb Job

dr kav/Cao®

Finally, we take these two results and combine them to derive the nondimensionalized form for
the rate of change of B. We first show that the overall nondimensionalized equation is parallel
in form to the fully dimensional equations and then make the appropriate substitutions and
so on:

kbvCb

dCh  1dCa dCd

dt 2 dt dt
1 dCb_ 1 (_ld(k&_dCd)
kaCao® dt  kaCao? 2 dt dt

dCDb__ldd)a_dCDd
dr = 2 dt dr

16>} 2

dr 2 kav/Cao®

If we try to solve this analytically, we find that we cannot do it, at least not directly with
DSolve:

In{124]:= Names["Global’/*"]
Remove["Global‘*"]
Names["Global‘/*"]

outf{124]= {A, Ao, B, cA, cAo, Cao, c¢B, Cbo, cD, Cdo, k, ka, kb,
M, n, ndreversol3, sersoll, sersol2, t, «, T, Tmax, t$,
o, da, A, dao, das, db, B, dbo, Ibs, b4, ¢D, ddo,
®ds, s$1}

outf126]= {}

In{127]:= DSolvel
(®a’[T] == -PalT]?,

i ] 2 k
$b’ [7] + alr] - b VebiTl,

2 2ka./Cao?




336

Out [127]= DSolvel {da’

Chapter 7 Reacting Systems—Kinetics and Batch Reactors

kb

P4’ [1] == +2kaJE;;§\/§b[T],
®baf[0] == Pao,

‘Pb[O] == 01

$4[0] == 0},

{Pal7r], ®bi7], P4AIT]},

7]

General: :spelll
" q)b "

Possible spelling error: new symbol

name is similar to existing symbol "®a".

General: :spell
" (I)du

Possible spelling error: new symbol

name dby.

is similar to existing symbols {®a,

General: :spelll Possible spelling error: new symbol

name "dao" is similar to existing symbol "da".
[r] == -®alr]’,
, dalr]”’ kby/®b[1]
®ob" [1] == - ,
2 2{/Cao'ka
o [r] KOVOPIT] o) ®ao, ®b(0] 0
T == —, a == ao, == ‘
2/ Cao’ka
®d[0] == 0}, {Palr], Pbl(r], Pdlr]}, t]

We turn then to numerical methods in NDSolve and find the solution readily, as long as we
specify parameters.

In[128]:

In[129]:

Remove ["Global‘*"]

ka = 10.;
kb = .5;
Cao = 1;
Tmax = 40;
sersol3 = NDSolve[{®a’[T] == -®Pa[r]?,
daf[r]? kb
$b’' [T] == + - vV®bilT],
2 ka+v/Cao3
kb
Pa’' [1T] == +—F——=+/Pb[T],
ka\/Cao3
$al0] == 1,
@b[O] == ol
‘I’d[O] == O}l
{Palr], ®bi7], P4AlT]},
{r, 0, Tmax}];



7.5 Complex Reactions 337

di

1
0.8
0.6
0.4
0.2

PA[T_] := sersol3[[1l, 1, 2]]
PB[T_] := sersol3[[1l, 2, 2]]
®D[7T_] := sersol3[[1l, 3, 2]]

Plot[{®PA[T], PBIT], PDIT]},
{T, 0, Tmax},
PlotRange - {{0, tmax}, {0, 1}},
AxesLabel - {"r", "®i"},
PlotStyle -

{{Thickness[.01], Dashing[{0, 0}]1},
{Thickness[0.01], Dashing[{0.05, 0.025}1},
{Thickness[.01l], GrayLevel([0.7]1}},

PlotLabel - ({ka "= ka", kb "= kb"}1;

General::spelll : Possible spelling error: new symbol
name "®b" is similar to existing symbol "dar.

GCeneral::spell : Possible spelling error: new symbol
name "®d" is similar to existing symbols {®a, ®éb}.

General::spelll : Possible spelling error: new symbol
name "®PA" is simllar to existing symbol "da".

General::spell : Possible spelling error: new symbol
name "®B" is similar to existing symbols {PA, db}.

General::spell : Possible spelling error: new symbol
name "®D" is similar to existing symbols {®A, ®B, ¢4} .

{10. = ka, 0.5 = kb}

e .

5 10 15 20 25 30 35 40



338 Chapter 7 Reacting Systems—Kinetics and Batch Reactors

The beauty of an analytical solution (see preceding graph) is that it allows us to see the function
and all of its parametric dependencies “all at once.” The disadvantage of the numerical solution
is that it does not allow for this, at least not directly. On the other hand, we do obtain solutions
where there may not have been any if we lacked the numerical tools. Mathematica allows us
to approach this problem by creating a Module function of the numerical routine. With this
Module we can use a Table loop to find how the solutions vary with different parameters. We
can do this as follows:

In{138]:= Clear["Global‘*"]

In[139]:= mixord[ka__, kb_, ®ao_, Cao_, ™max_] := Module
[{sersol, ®a, $b, ¥4, A, B, D, T},
sersol = NDSolvel

{Pa’[7T] == -PalT]?,
Palr]? kb
b’ [r] == + - vVebIT],
2 ka+/Cao?
kb
¢4’ [1] == +—+—/Pb[7T],
kay/Cao?
Pa[0] == Pao,
$b[0] == 0,

$4[0] == 0},
{®alir]l, ®biT]l, ®d4lT]},
{7, 0, T™max}]:;

A[7T] = Evaluate{®alrT] /. sersol];
B[7] = Evaluate{®blT] /. sersol];
D[7T] = Evaluate[®d[T] /. sersol];

SetOptions[Plot, DefaultFont - {"Hevetica", 8}];

Plot[{Al7T]l, BIT], DIT]},

{r, 0, Tmax},

PlotRange - {{0, 7max}, (0, 1}},
AxesLabel -» {"7", "®i"},

PlotStyle -

{{Thickness[.01], Dashing[{0, 0}1},
{Thickness[0.01], Dashing[{0.05, 0.025}1},
{Thickness[.01], GrayLevel[0.71}},

DisplayFunction - Identity]
]

In[140]:= Show[mixord[30, .5, 1, 1, 100],
DisplayFunction - $DisplayFunction];



7.5 Complex Reactions

339

20 40
In[141] := Show|[
GraphicsArray|[
{Table [mixord[n, .5,
Table [mixord[5., m,
11:

i -~

e T
25 5 75 10 125 15 175 20

]

60 80 100
1., 1., 201, {n, 10, 50, 40}],
1:5 10 2017 (my 1+ 3 3313

Oi

1
0.8
0.6
0.4 ———————
0.2

o

e

T
5 75 10 125 15 175 20

25




340 Chapter 7 Reacting Systems—Kinetics and Batch Reactors

We notice that at constant kb as the value of ka increases so does the concentration of A
at shorter times. However, notice that the concentrations of A and B have much different
parametric sensitivities than they did in the other cases. Even with a small value of ka=0.1,
we find that with kb = 0.5 nearly all the A is converted to D in about 157. In simpler terms
every time A is converted to B, then B is immediately converted to D. Thus we see very little
A. As kb increases at constant ka, the trend is reversed. We also note that these equations are
numerically “stiff” for some values of their parameters. For example, if we choose ka = 0.1
and kb = 0.5, the integration becomes unstable after about 67.

In{142]:= Show[mixord[.l1l, .5, 1, 1, 15],
DisplayFunction - $DisplayFunction];

Plot::plnr : BS$536[1$536] is not a machine-size real
number at 1$536 = 11.846017793583648".

Plot::plnr : B$536([1$536) is not a machine-size real
number at 1$536 = 11.76600439063428" .

Plot::plnr : B$536[1r$536] is not a machine-size real
numper at t$536 = 11.75609901499778" .

General::stop : Further output of Plot::plnr will be
suppressed during this calculation.

Series-Parallel Reactions

Next, we shall consider the series-parallel reaction system. Here, we shall examine the case
where the reactions are all first order. This keeps the math simple and allows us observe the
general behavior of such a group of reactions. If the order of the rates of reaction becomes



7.5 Complex Reactions 341

higher, or nonintegral, then numerical methods such as those used in the last section may be
employed.

If instead of the one species reacting to one other species, we will look at the situation
in which there can be two products formed by competing reactions. We can also let one of
the two primary products react to produce one other product. Thus, this set of reactions, or
reaction network will involve four components and three rate constants as follows:

ki ko
A—->B - D
\‘k3
E

This is a rather simple network of reactions that can be solved readily by employing the same
analysis methods that we have used to this point:

ddCtA = —k;Ca — k3 Ca
% =k Ca — k2 Cp
di” =k, Cg

1 e,

We note that in the first equation the rate constants are the proportionality factors that deter-
mine how much of A proceeds to B and E. Also, the rate of depletion of A follows an observed
rate constant that is the sum of the two rate constants for the parallel forward reactions. The

other equations are much as we would expect. We can nondimensionalize using the sum
k1 + k3 and of course Cx,:

dda

dr —oa

dodg

— = Kj ([)A — K2 CDB

dz

d:;D = k2 P

dog

a4 e Da

where
K K K
Ttk T k) T Itk

This is the DSolve routine for this network of reactions. We have used ®i to denote the
dimensionless concentration of component i. One more routine is added here. We have nested



342 Chapter 7 Reacting Systems—Kinetics and Batch Reactors

the DSolve routine in the Simplify function “Simplify[DSolve[<>]].” This ensures that the
output statement corresponds to an algebraically reduced form.

In{143]:= Clear["Global’*"]

Simplify[DSolve[{®a’[T] == -Pal[r], Pb’'[T] == k1lPa[T]
- K2®b[7], PA’'[T] == K2PDbI[T], Pe’'[7T] == k3PalT],
$a[0] == Pao, Pb[0] == Pbo, PA[0] == Pdo,

Pe[0] == Peo}, {Pairt], ®blr], ®dl7T], Pelrl}, 711

General::spell : Possible spelling error: new symbol
name "®e" is similar to existing symbols { ®a, bb, ®d}.

General::spell : Possible spelling error: new symbol
name "®bo" is similar to existing symbols {dao, Pb}.

General::spell : Possible spelling error: new symbol
name "®do" is similar to existing symbols {®ao, Pbo, dd}.

General::stop : Further output of General::spell
will be suppressed during this calculation.

out[144]= {{®Palr] - e "dao,

e U T (e’ 1 dao - el (k1Pao + ®bo - k2dbo))
dblir] - ,
-1 + k2
ddir] -
(& T et Te1k2®a0 € (k1dao.dho xk2®bo) €77 (1.42) (x1Pac.Pbo.Pdo) ) )
1.2 ’
de(t] - k3 (Pao - e "dao) + deo}}

These are the output statements. We note that the loss of A from the systems goes as a typical
exponential decay, but recall that  is made nondimensional as the product of real time and the
sum of the rate constants for the two reactions that consume A. If there were three A-consuming
reactions, then we would use the sum of all three. If there were reactions consuming A and
reactions producing A simultaneously, then we would still take the sums of the rate constants,
but the signs would be positive and negative. Thus we would have a sum and difference in
the argument leading to .

It is also noteworthy that the stoichiometry will be controlled by the rate constants k;
and ks. This is clear and evident in the expression for ®e [r]. If ®eo is zero, then at large
T, Pe[r] — rkiPao, where k3 = (n_ﬁ]ﬁ' the ratio of k3 to the sum of k; and k3. This ratio 3 is
also a measure of the selectivity of the reaction network.

In what follows in In statement [145] and the graph, we have assigned values to the
parameters of the system. The rate constant k; has been set to unity for simplicity and all the
others are set in relation to it. In this case, the rate constant of the third step, which leads to E,
is set at twice the value of that of the step leading to B. The rate constant between B and D is
taken as half the magnitude of k;. The initial concentration of A is unity and zero for the other
species. The solutions derived from DSolve are implemented as local functions ®i[r __1.



7.5 Complex Reactions

= Clear["Global‘*"]
kl1 = 1.;
k2 = 0.5 k1;
k3 = 2 k1;

Tmax = 10;

k1
Kl=m—-u--+——3;
(k1 + k3)
k2
K2 = ——+—3;
(k1 + k3)
k3
K3Ii=—m ———;
(k1 + k3)
Pao = 1;

®bo = Pdo = Peo = 0;

Palr_] := E"Pao

1
Pblr_] 1= —— (B RAT(_(ET - B*?")k1dPao
-1 + K2
+ E (-1 + k2)Pbo))
PA[T_])] := ——— (K1l(-1 + E"?" 4+ K2 - E"k2)®Pao
-1 + K2
+ E®?7 (-1 + K2) ((-1 + Ef?")®dbo + E*27®do))
Pel[r_] := K3(Pao - E77 Pao) + Peo

SetOptions[Plot, DefaultFont - {"Helvetica", 12}1]:

Plot[{®Palr]l, ®bilT]1, Pdl7T], Pelr]}, {7, 0, Tmax},

PlotRange - {{0, tmax}, {0, 1}},
AxesLabel -» ("T", "®i"},
PlotStyle -
{
{Thickness[.01], Dashing([{0, 0}1},

{Thickness[.01], Dashing[{0.06, 0.03}]},
{Thickness[.01], Dashing[{0.05, 0.025}1],

GrayLevel[0.6]1},

{Thickness[.01], Dashing[{0.01, 0.015)}],

GrayLevel[0.7]}
},

PlotLabel -» {" A = blk-sl1d4”, ”B = blk-dsh”,

"D = Dk-Gry-Dsh", "E = Lt-Gry-Dsh"}];

343



344 Chapter 7 Reacting Systems—Kinetics and Batch Reactors

®1a = blk-sld, B = blk-dsh, D = Dk-Gry-Dsh, E = Lt

0.8
0.6
0.4
— _
/ i "‘“

2 2 6 8 10

Because A is consumed rapidly by the two pathways to B and E, its concentration profile drops
sharply with time. The concentration of E rises very rapidly in response to the drop in A, but B
lags behind. The reason is that B is not only formed more slowly, but as it is formed it is depleted
by reaction to produce D, albeit at a comparably slower rate than the other reactions. The
ultimate products Eand D finally reach constant values over a long time and their magnitudes
are 0.66 and 0.33, each corresponding to the rate constant ratios as we predicted.

This is an illustration of the intricacies that can develop even in a very simple reaction
network. Imagine the kind of complexity that arises in some petroleum processing steps that
involve numerous reactant molecules and many potential pathways for reaction (thermal,
acid-catalyzed, metal catalyzed...). This is what reaction selectivity is all about and why
chemists and engineers spend so much time dwelling on the topic. Nature has spent eons
“dwelling on the topic” as well, and the result is reactions that ultimately are as highly specific
as is possible. The critical factor in making this possible in natural systems is the enzyme
catalyst with its “lock and key” mechanism for rejecting unwanted substrates (reactants) and
driving to specific products and all at ambient temperature, where the rates of most chemical
reactions as we know from Arrhenius (k = A exp (—Ea/RT)) are relatively low. A high degree of
molecular specificity or molecular recognition combined with slow but steady rates gives natural
systems the advantage over the best man-made catalysts. This quest for selectivity is what
drives so much fundamental and applied chemical research in catalysis and bio-technology.

Langmuir-Hinshelwood-Hougen-Watson Kinetics

In heterogeneous catalysis, the kinetics we use must account for the fact that the reaction
takes place not in the gas phase but on the surface of the solid. Hence heterogeneous catalysis
is also referred to as contact catalysis in the older literature. In fact reaction takes place in



7.5 Complex Reactions 345

A

‘-—-._._____

s by B
Catalytic Sites

Figure 1

combination with adsorption. We have already seen how adsorption can be treated from
the point of view of mass action. Now we need to couple the adsorption with the mass
action kinetics for the surface reaction. To do this we will assume that the rates of adsorption
and desorption are fast compared to the rates of surface chemical reaction. This is a good
assumption for many cases, but not all. To go into the cases where adsorption or desorption
rates limit the rate of chemical reaction would be to go beyond the bounds of the present
discussion.

We will consider first the case of a simple surface reaction that takes A into B, for example,
an isomerization. The reactant A adsorbs onto a site where it reacts at that site to form B;
then B desorbs to the gas phase, relinquishing the site for another round of reaction. This is
pictured on two equivalent sites in the schematic shown in Figure 1.

Given that adsorption and desorption of A and B are at the same site, they are in essence
competing for the sites. We account for this is in the adsorption rate term, as shown for A in
what follows:

I'A,ads = kA,adsCA [Ctot - CA,surf - CB,surf] - kA,desCA,surf

At adsorption-desorption equilibrium this rate goes to zero. Then we have:

Ka,adsCAlCrot — Ca surf — Cp surf] = Ka desCa surf
Ca Kaads _ Ca,surf
Kades  (Ciot = Casurt — Cpsurf)

Casurf Chot
(Ctot = Casurf — Ch,surf) Cort
Ca surf Chot

Ciot  (Crot — Ca surf — Cpsurf)
1

(1~ 6 —6p)

CAKA =

CAKA =

CAKA =6a



346 Chapter 7 Reacting Systems—Kinetics and Batch Reactors

where 6, stands for the fraction of the total sites occupied by A on the surface and the same
meaning is attributed to 85 for species B. Repeating this analysis for species B we find:

1

CgKg=6g———n-—
A

We can solve the two equations simultaneously for 84 and for 85 to get them both in terms of
the gas-phase concentrations and the adsorption constants for each:

In{161]:= Clear["Global’*"]

0 =.
K =.
Solve[ {CxAK 7] 1
olve == ,
e (1 - 65 - 6y)
CgK, 7] ! {6 6511
BAAB == B(l _ 05 _ 05) Ars B
C/\K/\ CHKH
Out[164]= {{8. — , By - 3
1 + C/\K/\ + CHKH 1 + C/\K/\ + CHK);

The surface reaction is reversible and is first order in the surface concentrations of A and
of B:

FAB surf = kAHB,surfCA,surf - kBaA,surfCB,surf

. . C . . . .
Multlplym.g through by 4 provides these expressions in terms of the fractional surface
concentrations:

TA—B,surf = kA—»B,surmetHA — kg A,surfctoteB
Replacing with the expressions for the fractional surface concentrations:

kA—»B,surfCtotCAKA - kB—»A,sur(CtotCBKB
1+ CaKa + CgKp

I'AB surf =

The reversible surface reaction has associated with it an equilibrium constant, which is just
the ratio of the forward to the reverse surface rate constants:

ka B, surf

KA@B,surf =7
kB—»A,surf

Sk kA—»B,surf
KBS Asurf <R oo/

KaoB,surf



7.5 Complex Reactions 347

Making this substitution and factoring out the product of the forward surface rate constant
and the total surface concentration of sites:

KA&B,sur[

YA B,surf = 1 + CAKA + CBKB

kA—> B,SurfCtot (CAKA _ _CpKp >

On the far right of the numerator we have two parameters that may be difficult to obtain
independently. They are the adsorption equilibrium constant for B and the surface equilibrium
constant for the reaction Agyf <> Bsurs. Our goal is to clear these by reexpressing them in
terms of something that is unchanging. After all both of these may be strong functions of
the catalyst structure and composition. The overall reaction A < B is, however, one which is
fixed at any temperature and pressure by the overall equilibrium constant. This is independent
of the catalyst. Therefore we want to use this in the reaction rate expression. Here is how we
do it:

_ CB _ CB CB,surf C/\,surf
CA CB,surf CA,surf CA

1
= —K sur K
KB A B surfINa
Kg  Ka

' KA@B,surf Keq

Keq

and

o

1+ CaKa +CpKp

CgK
kAaB,surfCtot(CAKA - ]2 A)

TAB,surf =

l(AaB/suerACtOt (C - ‘S—:)
TA—B,surf = 1+ CaKa + CgKp

ki aB (CA - E—Z)

14+ CaKa +CgKp

TALB,surf =

The product ka_gsurfKaCiot is usually taken as the “global” forward rate constant on the
surface k¢ ap. Now we can proceed to see how this equation behaves.

Consider a batch reactor of volume V into which the catalyst that does the conversion
of A to B has been placed. The catalyst occupies a fraction (1 — €) of the reactor volume.



348 Chapter 7 Reacting Systems—Kinetics and Batch Reactors

The component balances for A and B are:

C
dcseVl )

dt 1+ CaKa + CsKg
_ G
d[CpeV] o k¢ B <CA Keq) v
dt - 1+ CaKa +CsKg

In the following cell we compute the two concentrations as functions of time, and in the Epilog
we compute the equilibrium levels of A and B and graph horizontal lines corresponding to
each. The equilibrium level of reaction in this case is given by:

Keq =

11—«

In[165]:= Clear["Global‘*"]

Infl166]:= € = 0.4;
kf = 107%;
Ka = 1;
Kb = 10;
Keq = .5;
Cao = 1;
Cbo = 0;

tmax = 100;

LHHW1 = NDSolvel
(1 - €) kf (Ca[t] - SRt

Keq

{Ca’[t] == 7
€ 1 + KaCal[t] + KbCb[t]
1 - kf(Calt] - <RIt
Cb’ [t] == +( 6) Keq ,
€ 1 + RaCaft] + KbCb[t]
Ca[0] == Cao,
Cb[0] == Cbo},

{Calt]l, Cb[t]},
{t, 0, tmax}];

CA[t__] := Evaluate[Calt] /. LHHW1]
CB[t__] := Evaluate[Cb[t] /. LHHW1]

SetOptions[Plot, DefaultFont - {”Hevetica”, 12},
AxesStyle - {Thickness[0.01]}];



7.5 Complex Reactions 349

Plot[{CA[t], CB[t]},

{t, 0, tmax},

AxesLabel - {”t”, ”Cal[t],Cb[t]”},

PlotsStyle -» {{Thickness[0.01l], GrayLevel([0.5]},
{Dashing[{0.03, 0.03}], Thickness[0.01}],
GrayLevel[0.2]})},

Epilog -

{
{Thickness[0.01], Dashing[{0.01, 0.01}],

Line[{{0, Flatten[NSolvel[Keqg ==
[[1, 211 + .002},
{tmax, Flatten[NSolve[Keq == I—?_—' all
[[1, 211 + .002}}
1},

{Thicknessg[0.01], GrayLevel[0.5],
Dashing[{0.01, 0.01}],

s ]l
(84

Line[{{0, (1 - Flatten[NSolve[Keq == ifé?ii, all
[[1, 2]] + .002)}, o
{tmax, (1 - Flatten[NSolve[Req == I_j__' all
[[1, 2]] + .002)}}
1}

}
1;

ca[t],Cb[t]

[

20 40 60 80 100



350 Chapter 7 Reacting Systems—Kinetics and Batch Reactors

The hydrogenation and dehydrogenation of alkenes and alkanes are reversible processes that
favor the alkane and involve multiple sites. For this reason it is worth considering a prototyp-
ical general case to see how we progress with the LHHW analysis.

The reaction proceeding from alkene to alkane can be taken as the forward direction as it
is the thermodynamically favored direction. The overall reaction is:

A+Hy < B

The individual steps including the sites (®) are as follows:

A+R = AQ® Adsorption/Desorption
H;+2® <= 2H® Dissociative Adsorption/Desorption
A®+2H® <= B®+2® Surface Reaction
B® <= B+® Adsorption/Desorption

In this mechanism the dihydrogen molecule must dissociatively adsorb prior to reacting with
the alkene A. This requires two sites (see Figure 2). When the surface reaction takes place to
convert the alkene and two hydrogen atoms into one alkane, the two sites are regenerated.
Therefore, we need to examine how the dissociative adsorption step is handled and what
ramification this has upon the rate expression, assuming all the adsorption-desorption steps
are at equilibrium.

The dissociative adsorption-desorption of hydrogen follows this rate expression:

2 2
I'H2,ads = kHZ,adsCHZ(Ctut - CH,surf - C/\,surf - CB,surf) - kH/desCH,sur(
: Overall
Al N A __ Reaction

Figure 2



7.5 Complex Reactions 351

The adsorption includes the difference between the total concentration of sites and the sites
occupied by hydrogen atoms A and B. Notice also that this term is squared because there are
two sites involved in the adsorption process. On the desorption side of the expression we see
that the rate depends upon the square of the concentration of surface hydrogen atoms. Once
again we assume this step and the other adsorption-desorption steps to be at equilibrium:

2 2
kH2,adsCH2(Ctot - CH,surf - CA,surf - CB,surf) = kH,desCHlsurf

2
kHZ,ads C CH,surf
H2 =
l(H,des (Ctot - CH,surf - CA,surf - (:B,surf)2
2 2
CH,surf Ctot

Kti2,0asCiiz =
(Ctot - CH,surf - CA,surf - CB,surf)2 Cfot

2 &
K C _ < H,surf) ( tot >
H2, ads’-H2 Ctzot (Ctot - CH/surf - CA,surf - CB,surf)2

2
9H/surf
(1 - OH,surf - 9A,surf - GB,surf)z

Kh2,adsChz =

GH,surf
VKH2,adsCh2 =

(l - 9H,surf - 9A,5urf - gli,surf)

From the same analyses of the adsorption-desorption processes for A and B we find:

GA surf
KA,adsCA =
(1 - OH,surf - GA/surf - OB,surf)
OB surf
Kg,aasCp =

(1 - 0H,surf - 0A,surf - GB,surf)

The term for B is written in the form that it would have if B were adsorbing in order to keep
the meaning Kp uniform with the other adsorption constants. We can solve for the fractional

surface concentrations to get:

In[{179]:= Clear["Global’*"]

6 =.
K =.

In[180]:

Simplify|[

Solvel
0a

1_0H_6A_0B’

{CAKA ==



352 Chapter 7 Reacting Systems—Kinetics and Batch Reactors

{eAl eBI GH}]

]
out[182]= {{6 Caka
u = —> ’
A 1 + CaKy + CpKp + /CipKip
CBKB
08 hd 7
1 + CAKA + CBKB + \/CHZKH2
Cwp K
0, — n2 Kip .

Cio Kz + (1 + CaKn + CpKp)+/CiaKyp

The surface reaction rate begins to take shape:

2 2
FA+2H & B, surf = kA+2H«>B/surfCA/surfCHlsurf - kB—»A+2H,surfCB,surchmpty,s,'tcs

3 3

=k C C2 Ctot k C C2 Ctot
TA4+2H& B, surf = KA+2H-B,surfCA surf H,surf CT — KB— A+2H,surf\~B,surf empty, sites CT
tot tot

3 3 2
TA+2He B surf = Kar2H-BsurfCro a0tz — Ko asoH surfCiy 086

3 3 2
IA 1 2HeBsurf = Kat2H B,surfCioy a0 — Ko A 21, 5urtCon @8(1 — B — O — )

Qs(l — 6y — 64 — 93)2)

Kat2HoB surf

3 2
TA+2HoB,surf = Ka12H-B,surfCiroy (9A9H -

This begins to look a bit formidable because of the algebra that would be involved in manip-
ulating this expression. We will let Mathematica do most of the algebraic manipulations by
following these steps that use PowerExpand| ] to expand the higher-order terms Together| ],
which brings separate terms over the same denominator and FullSimplify[ 1, which does just
that. Here is the result of this approach to the parenthetical expression of the right-hand side
of the rate expression:

In[183]:= @ Ca Ka
n = = .
7 1 + CaKa + C5Ks + O K
0 CsKp
5= 1+ CaKy + CgKp + \/Cﬂzxi{z’
Cu K
0, = 12 K

C2Kiz + (1 + CaKy + CpKp)/CrmKup



7.5 Complex Reactions 353

FullSimplifyl[
Together [

O5(1 - - 0, - 052
PowerExpand[OABf( - n Ox 2 ) ]
KA+ 2H o B, surf
]

]
-CpKg + CarCw KaKip Kar2ne B, surt
(1 + CaKa + CpKpg + /Crio/Kiz) *Kasznes, surt

We can manipulate this into the form that we are interested in as follows:

out[186]=

(CaCrKaKpp — p—52Ke )

Ka+2HeB surf

(1 + CaKa + CeKp + +Cr2Kp2)?
K. — CB _ CB CB,surf CA,surf C%—{,surf _1_
17 CaCr2  Cosuri Casurt Ca CZ i Cri2

2
_ CB CB,surf CA,surf 1 CH,surf
CB/surf CA,surf CA Clz-l,surf CHZ

3
I'A42H o B, surf = kA+2H4>B,SurfCtog

2
_ CB CB,Surf CA,surf CH,surf
- 2
CB,surf CA:SU"fCH,surf CA CHZ

_ KatonessutKaKnz

Ks
. Kg _ KaKw
. KA+2H¢>B,surf Keq
(CaCha— g
A+ 2HoBsurf = Kat2HoBsurfKaKm Gl 01 CaKn +CoK +(1/C—K)3
AKa+CsKp H2 Kn2)’

(CaCh2 — &

g

1+ CaKa + CsKp + VCi2 Kii2)?

TA+2He B surf = Kglobal

Now we can write some code that will evaluate the kinetics and the equilibrium and then
graph the relevant gas and surface phase concentrations for us all at once. The equilibrium
extent of reaction can be computed as follows for any given value of the equilibrium constant:

In[187]:= Req = .5;

a =.
Cao = 1;

o
NSolve[Keq == al

Cao(l - )2’

out[190]= {{a — 3.73205}, {a — 0.267949}}



354 Chapter 7 Reacting Systems—Kinetics and Batch Reactors

We see that the second of the two evaluations is the correct one. We imbed this into the Epilog
as the y-coordinate of a line for the equilibrium concentration of the product at time zero
and tmax, and we take one minus this value to get the line corresponding to the equilibrium
concentration of reactant. By doing it this way we can set the magnitude of the equilibrium
constant and the code will automatically compute these concentrations for the graph. This
allows us to visualize immediately where the concentrations are at any time relative to the
equilibrium concentrations:

In[191]:= Clear["Global‘*"]
In[192]:= € = .4;
kglo = .01;

RKa = .1;
Kb = .01;
KH2 = .5;
Keq = .5;
Cao = 1;
CH20 = 1;
Cbo = 0;

tmax = 500;

LHHW2 = NDSolvel

{OcCalt] ==
(1 - ¢€) kglo(Cal[t]lCH2([t] - 9%51)
€ (1 + KaCalt] + KbCb([t] + /KH2CH2[t])3
O.CH2[t] ==
(1 - €) kglo(Calt]CH2[£] - 2L,
€ (1 + RaCalt] + KbCb[t] + KE2CH2[t])®
O:Cb([t] ==
L1 - kglo(Calt] CH2[t] - SLtl) ’
€ (1 + RaCalt] + KbCb[t] + /KH2CH2[t])?
Caf0] == Cao,
CH2[0] == CH2o0,
Cb[0] == Cbo},

{Calt], CH2[t], Cb[t]},
(tl ol tmax}];



7.5 Complex Reactions 355

cAl{t_] := Evaluate[Calt] /. LHHW2[[1]]1]
cH2[t_] := Evaluate[CH2([t] /. LHHW2[[1]1]1]
¢cB[t_] := Evaluate([Cb[t] /. LHHW2[[1]]]
cA[t]

cH2[t]

cB[t]

General::spelll : Possible spelling error: new symbol
name "cH2" is similar to existing symbol "CH2".

Out[206]= InterpolatingFunction{{{0., 500.}}, <>1[t]
Qut[207]= InterpolatingFunction[{{0., 500.}}, <>1[t]

OQut [208]= InterpolatingFunction[{{0., 500.}}, <>][t]

KacA[t]
Inf[209]:= OAlt_] :=
1 + KacA[t] + KbcB[t] + /KH2cH2[t]

KH2cH2 [t

OH[t __]1:= [t

1 + KacA[t] + KbcB[t] + /KH2cH2[t]

0,lt]

Oxltl

General::spell : Possible spelling error: new symbol

name "fAA" is similar to existing symbols {8, ®A}.

General::spell : Possible spelling error: new symbol
name "#H" is similar to existing symbols {8, 6A}.

out[211] CaKa [t]
u =
1 + CaKy + CuKy + /CipKip
CiuK
out[212]= i (t]

CipKyp + (1 + CaKy + CuKp)/CinKip

In{213]:= SetOptions[Plot, DefaultFont - {"Helvetica", 12},
AxesStyle - {Thickness[0.01]1}]:
Plot[{cA[t], cB[t]}, {t, 0, tmax},
AxesLabel - {”t”, “Calt],Cb[t]”},
PlotStyle - {{Thickness[0.01], GrayLevel[0.5]},
{Dashing[{0.03, 0.03}], Thickness[0.01],
GrayLevel[0.2]}},
PlotLabel - Keq "= Keq”,
Epilog - {
{GrayLevel[0.6], Dashing[{0.05, 0.025}],



356 Chapter 7 Reacting Systems—Kinetics and Batch Reactors

«©

Line[{{0, Flatten[NSolve[Keq == —F
(1 - a)?

all
[[2, 211 + .002},
{tmax, Flatten[NSolve[Keq == ———fi———, all

(1 - a)?
{2, 211 + .002}}
1},

{GrayLevel[0.6], Dashing[{0.05, 0.025}1],

Line[{{0, (1 - Flatten[NSolvel[Keq == ———fi———, all
(1 - a)?
[[2, 2]] + .002)},
{tmax, (1 - Flatten[NSolve[Keq == ———fi———, all
(1 - o)?
[[2, 211 + .002)}}
1}
}

1;
Plot[{AA[t], OH[t]}, {(t, 0, tmax},
AxesLabel - {"t”, "0,[t],04[t]1"},
PlotStyle -
{Thickness[0.01], Dashing[{0, 0}1},
{Thickness[0.01], Dashing[{0.02, 0.02}1}}1;

Ca[t],Cb([t] 0.5 = Keq

1
0.8
0.6
0.4

_---_—_---
0.2 ‘_....-""""
-~
”

100 200 300 400 500



7.5 Complex Reactions 357

Oalt]. . Gult]

e
0.25 S

-
~~~--
Toeeoeceececececccecaoasese

t
100 200 300 400 500

The next step could be to make the preceding into a Module so that we can test parametric
sensitivity readily.

Microbial Population Dynamics

At present there is an unprecedented research explosion in the biological sciences. The break-
throughs in the basic sciences of genomics and related disciplines have brought us to the
threshold of a new era in biological technology. Paramount to this new technology is the use
of microbes (that is, cellular organisms) as reactors. Organisms have evolved mechanisms for
dealing with environmental stress (such as the presence of a new substrate chemical in their
surroundings) by rerouting their metabolic pathways. Metabolic engineers can take advan-
tage of this through a procedure of accelerated adaptation in order to generate new microbes
that consume a given substrate and produce a specific target chemical.

Microbes use enzymes as catalysts to obtain the desired or beneficial reaction and typically
under mild conditions. The brewing of beer and fermentation of fruit and vegetable mass high
in starches to produce consumable ethanol are the oldest and most familiar examples of using
microbial action to achieve a desired end. But now much more has been demonstrated, from
the production of essential human hormones to the synthesis of specialty chemicals.

In a reactor containing substrate a colony of microbes is innoculated and brought to
maturity. As the colony grows the substrate is consumed to supply the microbes with their



358 Chapter 7 Reacting Systems—Kinetics and Batch Reactors

building blocks. Some fraction of the substrate is necessarily diverted into the formation
of biomass (that is, cells—their membranes and organelles) but some other fraction is used
to produce the target molecule. In a batch process when the substrate has been consumed,
the microbial colony either dies rapidly or if the process is to be stopped prior to complete
substrate consumption, it is killed by a rapid change in conditions (for example, by raising
the temperature as is done in the pasteurization of raw milk). From this point the problem of
recovering the target molecule is one of separating it from the biomass and aqueous medium.

Thebasis of life is molecular. Therefore we can describe the rates of substrate consumption,
product formation, and even microbe population growth in much the same way that we would
describe the rates of molecular-level chemical processes.

We will take the microbe, substrate, and product concentrations to be alt], bltl], c[t],
respectively. The ways in which these kinetics are written are somewhat different. The equa-
tions that describe the rates of change of each of these are shown in the following:

bit]
Ks+blt] k>am’

e pmax b[t]
bt == ( ys Ks+b[t])a[t]'

, bt]
C [t] == (a + ﬂ HmaXm]‘)a[t],

The kinetic expressions are highly nonlinear because they include the following rate term:

b[t]

Ks + b[t]a[t]

pmax =

where pmax is a maximum rate constant, Ks is a saturation concentration, and ys is a di-
mensionless parameter that is similar to a stoichiometric coefficient. Likewise, a and 3 are
dimensionless numbers that are also similar to stoichiometric coefficients; they relate the rate
of production of the desired molecule to the rate of growth of microbial cell mass. In the cell
that follows we build a model for these kinetics to examine how they behave:

In[216]:= Clear["Global‘*"]
In[217]:= pu = .15; "pmax";

K .04; "KRs";

y = 1’. "ysll;



7.5 Complex Reactions 359

tmax = 300;
k =0.1;

"a[t] is the change in microbial concentration;
decreasing";

"Hh[t] is the change in the substrate concentration;
increasing";

"c[t] is the change in product concentration;
increasing”:;

bugsl = NDSolvel[({

[tl] ( ble] k)alt]
a’ == _ - a ,
® K + blt]

{alt], bIt]l, cltl},
{t, 0, tmax}];

al[t__] := Evaluate[a[t] /. bugsl];
bl[(t_]1 := Evaluatel[b[t] /. bugsll];
cl{t_] := Evaluate(cit] /. bugsl];

pal = Plot[al[t], {t, 0, tmax},
DisplayFunction - Identity,
PlotStyle - {Thickness[0.01], Dashing({0.02, 0.02}]},
PlotRange - {{0, tmax}, (0, b1[0]1[[11]1}}];

DisplayFunction - Identity,
PlotStyle - {Thickness[0.01], GrayLevel[0.5]}];

pcl = Plotl[cl[t], {t, O, tmax},
PlotStyle - {Thickness[0.01]1},
DisplayFunction - Identityl]:

Show[pal, pbl, pcl, DisplayFunction - $DisplayFunction,
PlotLabel - tmax “= tmax,al[t]:gray, blt]:dashed,
clt]:blk”];



360 Chapter 7 Reactlng Systems—Kmetlcs and Batch Reactors

e e e e T s = e B e e e S S

300 = tmax,a([t]:gray, b[t]:dashed, c[t]:blk

bo

-
-
- e
-----

50 100 150 200 250 300

out{217] = Nulli®

How do we interpret these results? The substrate concentration (gray) falls slowly at very
short time after innoculation of the microbial colony. This is an induction period over which
the colony grows slowly. After this induction time, the colony of microbes (dashed) suddenly
grows “explosively” and reaches a maximum. At the same time that the explosive growth
occurs the substrate is diminished at a precipitous rate. After the substrate is used up, the
colony begins to diminish in number. This occurs in the present case at a much slower rate
than their growth. During the period of explosive growth and shortly after the maximum is
attained in microbial population, the product concentration (solid black) increases and then
levels to a constant with time as the colony finally expires.

7.6 Summary

In this chapter we have covered a wide spectrum of chemical kinetics from the simplest rate
laws with relatively straightforward forms and interpretations to those involving catalysts and
enzymes, which are more complex and necessarily more abstruse. As complex as the kinetics
may have been, we have throughtout this chapter assumed the most simplistic of chemical
reactors—that of the batch reactor. Ironically, although we speak of the batch reactor as being
simple, in fact its description as we have seen can be not at all simple due to the fully transient
nature of the processes occurring within it. Interestingly, if we introduce flows of reactant and
product to and from the control volume, we will find that the system will have a condition that
we refer to as the steady-state condition that is totally independent of time. At steady state the
flow reactor is simple to describe even though the reactor seems to be more complex. Before



7.6 Summary 361

we analyze such systems we will first cover the semi- or fed-batch reactor, which involves
flow of reactant into the system continuosly or intermittently. This type of reactor may attain
a steady state in which case its mathematics are “simple,” but it may also operate transiently
making the mathematics complex due to their time dependency. Whatever type of reactor we
examine, in every case there will be some form of chemical reaction to consider and the rate
of that reaction may be described using the rate laws and methods that we have developed in
this chapter.



This Page Intentionally Left Blank



CHAPTER

Semi-Continuous Flow
Reactors

8.1 Introduction to Flow Reactors

A batch reactor is useful for laboratory studies and the production of small quantities of ma-
terials. Its disadvantage is that each time it is used it must be charged, operated, and then
discharged in three separate stages. The time spent in charging and discharging is time lost
to production. Nonetheless, if the value of the product is very high and the production quan-
tities required are low, then the batch system is often an optimal reactor choice. As it is not
a dedicated unit, many different kinds of products can be scheduled and processed in the
same unit. This can be done effectively for many pharmaceuticals and for some ‘specialty
chemicals. However, as the production requirements rise and the value-added in the product
falls, efficient production is a must and the reactor must be used as continuously as possi-
ble. There should be relatively few shut-downs and the process should be operated continu-
ously for as long as possible. With respect to reactor size and the need for process continuity,
the petroleum refinery lies at one extreme of the spectrum with pharmaceutical production
at the other.

There are three idealized flow reactors: fed-batch or semibatch, continuously stirred tank, and
the plug flow tubular. Each of these is pictured in Figure 1. The fed-batch and continuously
stirred reactors are both taken as being well mixed. This means that there is no spatial de-
pendence in the concentration variables for each of the components. At any point within the
reactor, each component has the same concentration as it does anywhere else. The consequence

363



364 Chapter 8 Semi-Continuous Flow Reactors

|

| | | |
|

] l T | i Continuous
Fed-Batch I | No Position Flow-Stirred

‘ | Dependence Tank

| :

l .

Yy

Reactants Products

>

Tubular Plug-Flow

Figure 1

of this assumption is that as soon as the reactants cross the boundary from outside to inside
of the reactor, their concentrations go from their feed stream values to the exit stream concen-
tration values. This is true even if the reactor is considered to be operating transiently rather
than in a steady state. The conversion of reactants is the same everywhere and, as we will see,
it is set by the holding time in the reactor. Of course the exit stream has product and reactant
concentrations that are exactly the same as those within the reactor. All this is a consequence
of the mathematical assumption of perfect mixing.

In contrast to the first two reactors, concentrations within the tubular flow reactor are
characterized by position dependence. When we assume plug-flow, we take the concentrations
to be independent of their radial positions. (The axial direction z is along the horizontal
axis in the diagram; the radial direction is taken from the central axis out to the wall and
is perpendicular to the axial direction.) The term plug means that there is no concentration
profile in the radial direction; the gas moves through the cylindrical tube as if it were a “plug”
of material translating through the volume. So in this case we must account not only for time
dependence, but also for position of the front of the plug of gas. Near the entrance of the
tube the gas is nearly 100% reactant and at the exit it is a mix of reactant and product, if the
conversion is <100%. At axial positions between the two ends the gas is a mix of products
and reactants. Our goal will be to predict how the mix changes as a function of position and
flow parameters, that is, the holding time.



8.2 Semicontinuous Systems 365

Some very interesting consequences of complete mixing versus partial mixing can be
defined in terms of reactor efficiencies. For positive-order kinetics the fully mixed reactor will
require a larger volume than the partially mixed tubular system to achieve the same conversion
and at the same holding time. This is a very important result that requires using analysis to
understand it. At the same time, although conversion may be higher, so too may selectivity be
lower, if multiple reactions are involved. There is much to learn about the systems in which
chemical reactions are conducted, even if we assume these systems to be at the extremes of
ideal behavior.

8.2 Semicontinuous Systems

Fed-Batch Reactors

The fed-batch reactor is a special system that can be used whenever the need arises to carefully
control the reaction rate in a batch system. For example, if a reaction is highly exothermic, then
mixing the reactants at their full stoichiometric ratios can lead to uncontrollable temperature
rises, which are referred to as thermal excursions. In simple terms the reaction produces heat
at a rate that is faster than the rate at which heat can be transferred away from the vessel. As a
result the temperature in the vessel rises. The higher temperature leads to faster reaction rates
and even higher rates of heat production. And so it goes with the heat of reaction feeding
back into the kinetics and the kinetics rising with the increased temperature. The outcome
of a thermal excursion can be, at a minimum, reduced selectivity and, at its worst, total loss
of control of the reacting system with dire consequences. This phenomenon is called reactor
runaway and it can lead to detonation of the system. However, by adding one of the reactants
slowly or intermittently, we can control the system and maintain good heat transfer away
from the vessel. As the amount of reactant is limited, the rate of reaction proceeds at a much

Fed-batch No position

dependence

Figure 2



366 Chapter 8 Semi-Continuous Flow Reactors

reduced average rate, which allows the rate of heat transfer to keep pace with the rate of
reactions. This approach is well known and much utilized by synthetic chemists at the bench
and it is also used for all the same reasons that a production chemist or engineer would use it
on a larger scale. The concentration changes within the reactor are periodically changing if the
mass and volume of reactant are added intermittently, but they become continuously variant
in time, that is, transient, if the flow to the system is continuous. For example, bioreactors are
in a very real sense fed-batch systems in that oxygen may be fed continuously to the microbial
colony for its sustenance, even if the substrate is fully charged at the beginning of the batch,
since the volume of solution changes very little throughout the course of the process.

If the rate of the irreversible chemical reaction of A and B to form D is given by rag, and
the flow rates of reactants are given by g 4 and g5 with corresponding feed concentrations of
Caf and Cgt, then the component balance equations for the fed-batch reactor that produces D
are:

d CAlt]V[t

deanvie = Cafga—rap VIt]
dt

d Cp[t] VIt

L{dg—u = Cpegp — rap VIt]

dCp[t]V]t

——D([it] 11 = rap VI[t]

These are the three relevant equations we need to solve for this problem. The immediate ques-
tion that arises is that of the form of the kinetics. We will assume that the reaction between
A and B is first order in A and first order in B, that is, second order overall. The equations
become:

%?V[t] = Carqa — kasCaltIC3lt] VIt]
%@ = Cprqgn — kapCa[t]Cp[t] V[t]
SCD_([;t]@ = kap CAltIC[t] VIt]

8.3 Negligible Volume Change

In some cases the volume change may be negligible from the start to the finish of the batch.
For example, one reagent may be added in a very concentrated form to a dilute solution of
the second reactant in the reactor. This can lead to a situation in which the volume of added
reactant is quite small compared to that of the initial volume of solution. The equations for



8.3 Negligible Volume Change 367

this become:

dCd,:[t] _ CA‘f/QA — kasCAltIC5IH]
% = —kasCAlt]Clt]
dC;[:[t] = kABCA[t]CB[t]

We can attempt to find a complete solution for this system of equations:

Infl]:= DSolvel
{CA’[t] == CAfgA - kabCA[t] CB[t],

CB’[t] == -kab CA[t] CBI[t],
CD’[t] == kabCA[t] CB[t],
CA[0] == O,
CB[0] == CBo,
CD[0] == 0},
{ca[t], CB[t}, CD[t]},
tl]
Out[1]= DSolvel[{CA'{t] == CAf gA - kab CA[t] CB[t],
CB'[t] == -kab CAf{t] CB[t], CD'[t] == kab CA[t] CBI[t],
CA[0] == 0, CB[0] == CBo, CD[0] == 0},
{caftl, CB[t], CD[t]}, t]

What we see is that this set of seemingly naive equations is not readily soluble analytically.
The combination of the second-order kinetics plus the convective flow term is enough to
require the use of numerical methods. To prove this to ourselves, we can redo the problem
after removing the convective flow term. That is done in the cell that follows.

In[2]:= Clear["Global’*"]
In[3]:= Simplifyl
DSolvel
{C1’[t] == -k Cl[t] C2([t],
c2/[t] == -kC1l[t] C2([t],
C3’[t] == +kC1l[t] C2[t],
Cl1[0] == Clo,
C2[0] == C20,
C3[0] == 0},

{C1[t], C2[t], C3[t]},
t]



368 Chapter 8 Semi-Continuous Flow Reactors

Solve::verif : Potential solution {C[2] - 0, C[3] —» 0}
(possibly discarded by verifier) should be checked
by hand. May require use of limits.

Solve::ifun : Inverse functions are being used by
Solve, so some solutions may not be found.

. o . 1
Power::infy : Infinite expression 6 encountered.

. .1 :
Power::infy : Infinite expression 63 encountered.
o0::indet : Indeterminate expression 0k ComplexInfinity
encountered.
. . . 1
Power::infy : Infinite expression 5 encountered.

General::stop : Further output of Power::infy will be
suppressed during this calculation.

00::indet : Indeterminate expression 0k ComplexInfinity
encountered.
o¢::indet : Indeterminate expression 0 ComplexInfinity
encountered.

General::stop : Further output of o0::indet will be
suppressed during this calculation.

Clo(Clo - C20)
Clo - CZOe( Clo+C20)kt

(Clo-C20)C20et20kt
c2lit] - - T Cloefiont & Cageciort C2[(t] — Indeterminate,

CloC20(-1 + el Clo:Cloike
C3[t] — Indeterminate, C3[t] - P T }

, Cl[t] — Indeterminate,

Out[3]= {C1l[t]

Having removed the flow term, the analytical solution is found; however, we also see that
along the way the solver found indeterminance in addition to the closed-form solutions. If we
look back at Chapter 5, we find that we already solved this problem, but there we made a substi-
tution for C2[t] in terms of C1[t], which thereby made the solution process easier and avoided
an encounter with the infinite expression. Nonetheless, we see that including the constant
flow term makes the analytical solution difficult to obtain. On the other hand, the numerical
solution is trivial to implement, just as long as we have proper parameter values to apply.

In[4]:= SetOptions[{Plot, ListPlot}, AxesStyle - {Thickness[0.01]},
PlotStyle - {PointSize[0.015], Thickness([0.006]},
DefaultFont - {"Helvetica", 17}1]:



8.3 Negligible Volume Change

In[5]:= Clear(["Global’/*"]

caf = 1.;
CAo = 0;
CBo = .1;
CDho = 0;
kab = .1;
qAf = .001;
tmax = 20000;
$D = 5;

$B = 5;

$a = 4;
Mwd = 60;
Mwb = 40;
Mwa = 20;
Vr = 100;

fbsoll = NDSolvel

CAf gAf
{CA'[t] == e kab CA[t] CB[t],
CB’[t] == -kabCA[t] CBI[t],
CD’[t] == kabCA[t]CBI[t],
CA[0] == Cao,
CB[0] == CBo,
CD[0] == CDo},

{ca[t], CBI[t], CDIt]},
{t, 0, tmax}]:

calt_] := Evaluate[Ca[t] /. fbsoll]
cb{t_] := Evaluate[CB[t] /. fbsoll]
cd[t_] := Evaluate[CDI[t] /. fbsoll]
ep[t_] := $D cdlt] Vr Mwd - $B cb[t] Vr Mwb

- $A CAf gAf Mwa t

Plot[{calt]l, cblt], cdltl]l},
{t, 0, tmax},
PlotRange - All,
PlotsStyle - {

{Dashing[{0.0, 0.0}]1, Thickness[0.01]},
{GrayLevel[0.5], Thickness[0.01]},
{Dashing[{0.02, 0.02}], Thickness([0.01]}},

AxesLabel - {"t", "Ci[t]"},

PlotLabel - "solid blk = Ca, gray

dashed = Cd"];

369



370 Chapter 8 Semi-Continuous Flow Reactors

Cilt] solid blk = Ca,gray = Cb, dashed = Cd
0.1

---------—

0.08
0.06
0.04 /’
0.02

t
5000 10000 15000 20000

The preceding graph shows the time-dependent concentrations of each component. The
profile for B drops nearly linearly with time and that of product rises the same way. The
concentration of A is very small until most of B is used up and then it rises sharply with
time.

The following graph is most important. Here we have computed the total mass of A added
at tmax plus the total mass of B present initially and compared this with the masses of B and
D at any time:

Total Mass of A + B = (Caf gas Mwa tmax) + Cp[0]Vr Mwb

In[26]:= Plot[{(cAf gAf Mwa tmax) + cb[0] Vr Mwb, cblt] Vr Mwb,
cd[t] Vr Mwd}, {t, 0, tmax},
PlotsStyle - {{Dashing[{0.0, 0.0}1, Thickness[0.01}},
{GrayLevel[0.5], Thickness[0.01]},
{Dashing[{0.02, 0.02}], Thickness([0.01]}},
AxesLabel - {"t", "mj[t]"},
PlotLabel - "gry=mb, blk=mtot([A+B], dsh=md"}l;



8.3 Negligible Volume Change 371

mMilt] gry=mb, blk=mtot[A+B],dsh=md

800

600

400

200

-----------

t
5000 10000 15000 20000

The mass of D cannot exceed the mass of A + B, and it does not. This provides the necessary
check on the model. We have included the mass of B as a function of time and it goes to zero

as we would expect.

Next we can introduce and compute the economic potential of the mixture as a function

of time:

ep[t_] := $D Cp[t]VrMwd — $B C[t]Vr Mwb — $A Cs¢ qas Mwat

The maximum economic potential is the difference between the values of the products and the
reactants. The terms $D, $B, and $A are the values per unit mass of each component. Because
this is a semibatch process, the economic potential goes through a maximum. We can plot this
below and show this behavior for the case we are considering:

In[27]:=$D 5;
$B = 5;
$A = 4;
Plot [ep(t],
PlotStyle
PlotRange
AxesLabel
PlotLabel

{t,

N

0, tmax},

{{Thickness[0.01]), GrayLevel[0.5]1}},
All,

{("t", "$[tl1"},

"Economic Potential"]:;



372 Chapter 8 Semi-Continuous Flow Reactors

$[t] Economic Potential

t
00 10000 15000 20000
-1000

-2000

In this case the maximum value of the mixture is reached after 10,000 time units. Before this
time we have not converted all of the reactant to product, but after this time we begin to merely
dilute the product in reactant A. The next calculation and plot we shall make is the change in
total volume calculated on the basis of the flow rate of reactant:

In[31]:= Plot[{(qgqAf t + Vr)}, {t, 0, tmax},
PlotRange - All,
AxesLabel - ({"t", "V[t]"},
Plotstyle - ({{Thickness[0.01l], GrayLevel[0.8]1}}
1;

V[t]
120

115
110

105

t
5000 10000 15000 20000



8.4 Large Volume Change 373

The volume change in this case is on the order of 20%, which is really too large to be acceptable
within the context of an analysis in which it was assumed that negligible volume change would
occur. Hence we are motivated to do the analysis again without this simplifying assumption.

8.4 Large Volume Change

The equations for variable volume are:

d_(:a—iw = Caf qaf — kab Ca[t]Cb[t] V[t]
d_(i([;‘t]\/ﬂ = —kab Ca[t]Cb[t] V[t]
% = +kab Ca[t]Cb[t] V[t]

As there are four time-dependent variables and only three equations, we need another equa-
tion, which is obtained in the total material balance. The mass in the control volume increases
only by the additional mass admitted through the feed stream:

dpV[t]
a °

If the density is essentially unchanging and if the flow rate in is a constant, then the volume
change is linear in time:

V[t] = Vo + qaft

In{32]:= Clear["Global‘’/*"]
In[{33]:= CAf = 1.;
Cho = 0;
CBo = .1;
Cho = 0;
kab = .1;
gAf = .001;
tmax = 20000;
$D = 5;
$B = 5;
$A = 4;
Mwd = 60;
Mwb = 40;
Mwa = 20;

Vr = 100;



374 Chapter 8 Semi-Continuous Flow Reactors

fbsol2 = NDSolvel

{O.V[t] == gAf,
d. (CA[t] VIt]) == CAf gAf - kab CA[t] CB[t] V[t],
O, (CB[t] VIt]) == -kab CA[t] CB[t]VI[t],
8. (CD[t] V[t]) == kabCA[t] CB[t] V[t],
Vv[0] == Vr,
CA[0] == ChAo,
CB[0] == CBo,
CD[0] == CDo},

{vIt]l, CA[t], CB[t], CD([tl}.,
{t, 0, tmax}];

vit_] := Evaluatel[V[t] /. fbsol2]
cal[t_] := Evaluate[CA[t] /. fbsol2]

cb[t_] := Evaluate[CB[t] /. fbsol2]
cd[t_] := Evaluate[CD[t] /. fbsol2]
ep[t_] := $Dcdlt] v[t] Mwd - $Bcbl[t] vI[t] Mwb

- $A CAf gAf Mwa t

Plot[{calt]l, cbl[t]l, cdltl},

{t, 0, tmax},

PlotRange - All,

PlotStyle - {{Dashing[{0.0, 0.0}], Thickness[0.01]},
{GrayLevel[0.5], Thickness[0.01]},
{Dashing[{0.02, 0.02}], Thickness[0.01]}},

AxesLabel - {"t", "Ci[tl"},

PlotLabel - "blk=Ca,gr=Cb,dhsd=Cd"];

Plot [ { (CAf gAf Mwa tmax) + cb[0] Vr Mwb, cb[t] v[t] Mwb,
cd[t] v[t] Mwd}, {(t, 0, tmax},
PlotStyle - {{Dashing[{0.0, 0.0}], Thickness([0.01]},
{GrayLevel[0.5], Thickness[0.01]},
{Dashing[{0.02, 0.02}], Thickness[0.01]}},
AxesLabel - {"t", "m;[t]"},
PlotLabel - "gry=mb, blk=mtot[A+B], dsh=md"];

Plot [ep[t], {t, 0, tmax},
PlotsStyle - {{Thickness[0.01], GrayLevel[0.5]}},
PlotRange - All,
AxesLabel - {"t", "$[tl"},
PlotLabel - "Economic Potential"];



8.4 Large Volume Change 375

Plot[{(v[t])}, {t, O, tmax},
PlotRange - All,
AxesLabel - {"t", "V[t]"},
PlotStyle - {{Thickness{[0.01], GrayLevel[0.8]}}
1;

Cilt] blk=Ca,gr=Cb,dhsd=Cd
0.1

0.08
0.06
0.04 /’
0.02

t
5000 10000 15000 20000

mi[t] gry=mb, blk=mtot[A+B],dsh=md
800

600
400
200

t
5000 10000 15000 20000



376 Chapter 8 Semi-Continuous Flow Reactors

$(t] Economic Potential
2000

1000

t
00 10000 15000 20000
-1000

—-2000

VIt
120

115
110
105

t
5000 10000 15000 20000

The next step we take is to create a Module function semi2 from this code so that we may run
many different cases of this semibatch reactor. The groups of similar variables and parameters
are grouped within curly brackets:

In{57):- semi2 [{CAf_, CRo_., CBo_, Cho_}, kab.., qAf__,
{¢D_, $B_, S$A_}, {Mwd_, Mwb_, Mwa__}, Vr__, tmax__]:=
Module [
{v, ¢ca, CB, CD, v, ca, cb, cd, fbsol2, ep, t},

fbsol2 = NDSolvel
{at V[t] == qul
O. (CA[t] V[t]) == CAf gAf - kab CA[t] CB[t] VI[t],



8.4 Large Volume Change 377

O, (CB[t] VI[t]) == - kab CA[t] CB[t] VI[t],
0. (CD[t] VI[t]) == kab CA[t] CB[t] V[t],
Vv[0] == Vr,
CA[0] == CRo,
CB[0] == CBo,
CD[0] == CDo},

{V[t]l, CA[t], CB[t], CDI[t]},
{tl 01 tmax}]:’

v[t] = Evaluate[V[t] /. fbsol2];

cal[t] = Evaluate[CA[t] /. fbsol2];
cblt] Evaluate[CB[t] /. fbsol2];
cdl[t] Evaluate[CD[t] /. fbsol2];

ep[t] = ($D cd[t] vIt] Mwd - $B cb[t] vI[t] Mwb -
SA CAf gAf Mwa t);

SetOptions[Plot, DefaultFont - {"Helvetica", 10}]1;

Plot[{calt], cb[t], cdlt]l},

{t, 0, tmax},

PlotRange - All,

PlotsStyle - {{Dashing{{0.0, 0.0}], Thickness([0.02]},
{GrayLevel[0.5], Thickness[0.02]},
{Dashing[{0.04, 0.04}]1, Thickness[0.02]1}},

AxesLabel - {"t", "Ci[tl"},

PlotLabel - "blk=Ca, gr=Cb, dhsd=Ccd4d",

DisplayFunction - Identity]:

{{Graphics[Plot[
{(CAf gAf Mwa tmax) + CBo Vr Mwb, cbl[t] v[t] Mwb,
cdlt] vit]l] Mwd}, {t, 0, tmax},
AxesLabel - {"t", ""},
PlotStyle - {{Dashing[{0.0, 0.0}], Thickness[0.02]},
{GrayLevel[0.5], Thickness[0.02]},
{Dashing[{0.04, 0.04}], Thickness[0.02]}},
AxesLabel - {"t", "my[t]"},
PlotLabel - "gry=mb, blk=mtot{A+B], dsh=md",
DisplayFunction - Identityll},

{Graphics[Plot[ep[t], {t, O, tmax},
PlotStyle - {{Thickness[0.02], GrayLevel[0.5]}},
PlotRange - All,
AxesLabel - {"t", "$[t]l"},
PlotLabel - "value",
DisplayFunction - Identityll},



378 _ ~ Chapter 8 Semi-Continuous Flow Reactors

{Graphics[Plot[{(vI[t])}, {t, 0, tmax},
PlotRange - All,
AxesLabel - {"t", "V[t]"},
PlotStyle - {{Thickness[0.02], GrayLevel[0.81}},
DisplayFunction - Identityl]}}
]

This function can now be used to examine how the behavior of the fed-batch reactor system
behaves with variation in its parameters. In the example that follows, the parameters are
held constant, except for the values of the product which are varied from 5 to 15 in three
increments of 5 each. We have done this by making a table of the Module “semi2.” The output
from semi?2 is three graphics, one for each relevant graph. Our goal is to show these as an
array of plots. We do this by flattening the output “solgrp,” to remove all the internal curly
brackets. Then these are partitioned into groups of three and finally we "Show” the results as
a set of GraphicsArray as follows:

In[58]:= solgrp = Table[
semi2 [{1, O, .1, 0}, .1, .001, {n, 5, 4}, {60, 40, 20},
100, 200001, {n, 5, 15, 5}
1;
Partition[Flatten[solgrpl, 31:
Show[GraphicsArray[%]];

gry=mb, blk=mtot[A+B],dsh=md Sit] Value VIt]
800 2000 120
400 ” t 110
560 d 00 10000 15000 20000 X
P ~1000 105
t -
5000 10000 15000 20000 -2000 5000
gry=mb, blk=mtot[A+B],dsh=md S[t] Valu VI[t]
ue =
800 5000 120
600 - - 4000
P Ll 3000 1o
400 »7 2000 110
’ 1000
200| t 105
’ -1000 /5000 10000 15000 20000
t -
5000 10000 15000 20000 2000 5000
800gry:mtn. blk=mtot[A+B],dsh=md $it) Value VIt]
8000 120
600 SR —— 6000 115
400 ’,’ 4000 110
2000
200 : 105
”,
t [/ 5000 10000 15000 20000 A
5000 10000 15000 20000 -2000 5000



8.5 Pseudo-Steady State 379

The overall value in $ of the economic potential increases significantly with the increased
value of the product, but each case shows the same maximum and at the same point in time.
The changes in mass of B and D are apparently linear in time over most of the run up to
~10,000 time units. Why should this be? Linear time dependence indicates a constancy of
slope. However, this is a fully transient, that is, time-dependent, system. How can we have
a constant slope, that is, a constant rate of change, in the concentrations for a fully transient
system? To understand this we must reintroduce the concept of the pseudo-steady state.

8.5 Pseudo-Steady State

A situation that can arise in the well-stirred fed-batch reactor is one in which the rate of
consumption of the added component is balanced exactly by its rate of addition. In this case
the rate of change of the mass of A in the reactor is effectively zero as long as there is sufficient
B present for reaction to take place. This leads to a period of operation that can be considered
to be a steady state, but we refer to it is a pseudo-steady state because at the same time the rate
of change of B is real and constant. We will go back to the equations of change to understand
what this means:

ga([i%@ = Caf qaf — kab Ca[t]Cb][t] V[t]
% = —kab Calt]Cb[t]V[t]
ﬁfigtl‘ﬂ = +kab Ca[t|Cb[t]V(t]

If the rate of change of the concentration of A is zero, then the following simplifications apply:

0 = Caf qaf — kab Ca[t]Cb[t]V[t]

d Cb[t]V[t]
hudud 2 RALE G

at af qaf
———d Cd(gi]V[t] = +Caf gaf

If the feed flow rate and concentration of A are constant, then we would find that the con-
centrations of B and D are linear in time and with oppositely signed slopes. We use “stst” to
designate the steady-state time-dependent concentrations of B and D.

In{61]:= Clear["Global‘*"]

Simplify[DSolvel
{0 (VIt]) == qaf,



380 Chapter 8 Semi-Continuous Flow Reactors

O, (Cbstst[t] V[t]) == -Caf gaf,
O, (Cdstst[t] V[t]) == +Caf gaf,
v[0] == Vo,

Cbstst [0] == Cbo,

Cdstst[0] == Cdo},

{V[t], Cbstst[t], Cdstst[t]l},
tl]

General::spelll : Possible spelling error: new symbol
name "gaf" is similar to existing symbol "gAf".

General::spelll : Possible spelling error: new symbol
name "Caf" is similar to existing symbol "CAf".

General::spelll : Possible spelling error: new symbol
name "Cdstst" is similar to existing symbol "Cbstst".

General::stop : Further output of General::spelll will
be suppressed during this calculation.

-Cafgaftt + CboVo
out[62]= {Cbstst([t] - .
gaft + Vo

Cafgaft + CdovVo
Cdststlit] - , Vit]l] - gaft + vo}
gaft + Vo

We can goback to the full time-dependent solution and define a flow condition for A that would
lead to these steady-state results. The key to the pseudo-steady state is that the mass flow of
A into the system be balanced by the rate of chemical reaction. We can write a new Module
function that takes the solutions that we just derived for the steady state and compares them
to those that we had already obtained for the fully time-dependent case. This is constructed in
what follows by copying those pieces of “semi2” that we need and adding in the steady-state
solutions.

In[63]:= semi3[{CAf_, Cao_, CBo_., Cho_}, kab__, qaf_, Vr__,
tmax__]:=
Module [
{v, CcA, CB, CD, v, ca, cb, cd, castst, cbstst, cdstst,
fbsol3, t},

fbsol3 = NDSolvel

{8, Vit] == qAf,
O (CA[t] VI[t]) == CAf gAf - kab CA[t]CB[t] V[t],
O (CB{t]VIt]) == -kabCA[t]CB[t]VIt],

. (CD[t] V[t]) == kabCA[t] CB[t]) VIt],



8.5 Pseudo-Steady State 381

VI[0] == Vr,
CA[0] == CAo,
CB[0] == CBo,
CD[0] == CDo},

{vit]l, ca[t]l, CB[t], CD[t]},
{t, 0, tmax}];

vit] = Evaluate[V[t] /. fbsol3};
cal[t] = Evaluate[CA[t] /. £fbsol3];

cb[t] = Evaluate[CB([t] /. fbsol3];
cd[t] = Evaluate[CDI[t] /. fbsol3];
CBoVr - CAfgAft
cbstst[t] = ;
gqAft + Vr
cafqgAft + CDoVr
cdstst[t] = ;
gAft + Vr

Ploti{caltl, cblt], cdlt], cbstst[t], cdstst[t]l},
{t, 0, tmax},
PlotRange - All,
PlotStyle - {{Thickness[0.01], GrayLevel[0.8],
Dashing[{0.01, 0.02}1},
{Thickness[0.01], GrayLevel{O0]},
{Thickness[0.01), GrayLevel[0.5]},
{Thickness[0.01], Dashing[{0.15, 0.05}],
GrayLevel[0]},
{Thickness[0.01], Dashing[{0.15, 0.05}],
GrayLevel[0.5]})},
AxesLabel - {"t", "Ci[t]l"},
PlotLabel - "lt-gry-dsh = Ca, blk = Cb,
dk-gry = Cd, blk-dsh = Cb stst,
dk-gry-dhs = Cc4 stst",
DisplayFunction - Identity]
]

General::spell : Possible spelling error: new symbol name
"cbhstst" is similar to existing symbols {castst, Cbstst}.

General::spell : Possible spelling error: new symbol name
"cdstst" is similar to existing symbols {castst, cbstst,
Cdstst}.

In[64]:= semi3[{1, 0, .1, 0}, .1, .001, 100, 20000];
Show[%, DisplayFunction - $DisplayFunction]:



382 Chapter 8 Semi-Continuous Flow Reactors

e e e e e R T T R T LS T s e aa AR A ST ——

Ciltly_gry-dsh = Ca, blk = Cb, dk-gry = Cd, blk—dsh = Cb stst, dk-gry-dhs = Cd stst

-
0.15 /

5000 10000 \15000 20000
-0.05 \

The results show in the preceding graph that the steady-state solutions (dashed) map well
onto the transient solutions for the concentrations of B and D at early time. Beyond ~8000
time units, the steady-state concentrations begin to deviate noticeably from the full solutions.
This is also the time at which the concentration of A begins to rise above near-zero values. The
steady-state solutions are useful because they allow us to compute the flow rate of reagent A
and the time dependence of the systems with very simple equations, but we cannot push such
an analysis too far beyond its region of applicability. From the perspective of analysis, the
pseudo-steady state is important to us because it explains the behavior of the more complex
and complete model in a very straightforward way.

~—

8.6 Summary

In this chapter we have found that a reactor type that is familiar to us and that has intu-
itively obvious usefulness, namely, the well-mixed semibatch reactor, is also very complex to
treat—at least analytically—due to its transient behavior. It is also evident that we would
never use this kind of reactor to evaluate even the most basic chemical kinetics. Thus we need
a simpler type of reactor that is mathematically more tractable and experimentally more feasi-
ble to operate. We will see instances of these in the next chapter. Along the way we have now
added the final element that we needed in our Mathematica toolbox, the writing of Modules.
We will build on this to produce even more useful Packages in what follows.



CHAPTER 9

Continuous Stirred Tank
and the Plug Flow Reactors

The two most useful idealizations of chemical reactors are the continuously stirred tank reactor
(CSTR) and the plug flow reactor (PFR). Both are idealizations in that they are two different
and quite distinct extremes of mixing. Real reactors are more complex, but often they can
be analyzed approximately in terms of these idealizations. Furthermore, when starting from
scratch to consider the design of a new reactor system, these simplified models are used to
estimate the size of the system that will be required and, in some cases, which mixing regime
will lead to better results. Finally, the ideal reactors allow us to do analyses that will give us
insight into how real reactors operate, which factors are most important, and how to control
them for better performance. Therefore, although the CSTR and PFR are idealizations, they
are quite powerful models for chemically reacting systems and we have much to gain from a
study of them. We begin first with the perfectly mixed system.

9.1 Continuous Flow-Stirred Tank Reactor

The name continuous flow-stirred tank reactor is nicely descriptive of a type of reactor that
frequently for both production and fundamental kinetic studies. Unfortunately, this name,
abbreviated as CSTR, misses the essence of the idealization completely. The ideality arises
from the assumption in the analysis that the reactor is perfectly mixed, and that it is homo-
geneous. A better name for this model might be continuous perfectly mixed reactor (CPMR).

383



384 Chapter 9 Continuous Stirred Tank and the Plug Flow Reactors

o7, 7 C— .

| | Continuous
= _+_ Flow-Stirred
No Position Tank
Dependence
csmv s
A » D
Vtot, Acr
P CA,CD,q
Figure 1

Nonetheless, as long as we realize this and its mathematical consequences, and that the ter-
minology refers as much to the mathematics as it does to any specific configuration, then the
more prevalent name CSTR is serviceable.

Because of the well-mixed assumption, it is natural to think of the CSTR as a liquid phase
reactor with a mixer as shown in Figure 1:

The chemistry in this case is the irreversible conversion of A to B, which follows sim-
ple, linear kinetics. When we write the time-dependent mass balances for this system we
have:

% = Caf qaf — Ca(t]q — kad Ca[t] V[t]
d_%tlv[fl = —Cd|t]q + kad Ca[t] V[t]
d_p[% = paf gaf — p[tlq

If the system is at steady state, then the total mass in must be balanced by the total mass
out. Furthermore, if the densities of the feed and product are nearly the same, then we can



9.1 Continuous Flow-Stirred Tank Reactor 385

take the flow rate in as equal to the flow rate out. The equations at steady state become:

0 = (Caf — Ca)g —kadCaV
0=-Cdq+kadCaV
0=gqgaf—q

We can divide both of the component balances by the product Caf V to find:

(1 —®a)
=

@d
0= ’—7 +kad¢a

0 — kad ®a

where % = 6 is the holding time for the CSTR. If we now solve for the dimensionless exit
concentration, we find:

(1 - Pa)
In[19]:= Solve[0 == — Y - kad®a, Pal
Out[19] {{® ! 1}
= _ —
“ a 1+kad®

Solving both equations simultaneously to find ®d:

In[20]:= Clear("Global‘'*"]
(1-Pa)

P4
Solve[{0 == — kad®Pa, 0 == 5’ kad®a), {(Pa, $3}]

General::spelll: Possible spelling error: new symbol name
"$ad” is similar to existing symbol “da”.

kad# 1
a ®

Outf21]= d4a _ -
utf21]= {{ 1+kad® a - 1+kad®

1}

The concentration of A leaving the reactor is the reciprocal of the sum of one plus the
product of the first-order rate constant and the holding time. The first-order rate constant, we
recall, has dimensions of reciprocal time, and the holding time is just time, so their product is
dimensionless. In fact this product is actually the ratio of the holding time to the characteristic
time required for the chemistry to occur. If the rate constant is taken to be of order unity, then
we will see how the concentrations of A and D change with holding time.

In[22]:= SetOptions[{Plot, ListPlot},
AxesStyle - {Thickness[0.01]},
PlotStyle - {PointSize[0.015], Thickness([0.006]},
DefaultFont - {"Helvetica", 17}1]1:;



386 Chapter 9 Continuous Stirred Tank and the Plug Flow Reactors

1
Inf23]:= ®al[f_]:= ————
nl23] al ] 1+kadéd
kad @
$4[0_1 := ——
[ ] 1+kad@
kad = 1;

Plot[{®Palf], ®d4[61}), (6, 0, 50},
PlotStyle - {{Thickness[0.01l], GrayLevel[0l},
{Thickness{[0.01)], GraylLevel[0.5]}},
AxesLabel - ("0", "®i[t]l"},
Epilog - {Thickness[0.01], Dashing[{0.02, 0.02}],
Line[{{0, 1},{50, 1})}1},
PlotLabel - "St.St.CSTR 1lst Ord. Irrev. Rate"];

®i[t] St.St.CSTR 1st Ord. Irrev. Rate

L [ R —————

0.8
0.6
0.4
0.2

=_9

10 20 30 40 50

When the holding time has become a factor of ten larger than the characteristic time for the
reaction chemistry, then we find that the concentration of A has dropped by ~90% of its feed
value. Hence, the concentration of product D is said to tend toward unity asymptotically.

There is another important way to view these equations. If we go back to the dimensional
form it will be more evident. Typically, the CSTR is considered to be operated at steady state,
which greatly simplifies the problem as we will see.

0 = (Caf —Ca)q— kadCaV
0=-Cdg+kadCaV



9.2 Steady-State CSTR with Higher-Order, Reversible Kinetics 387

We can rearrange these as follows:

(Caf — Ca)% — kadCa

(Caf — Ca)
0
(Caf — Ca)
0

= kad Ca
= Tad

This last equation shows why the CSTR at steady state is such a valuable tool to the experi-
mentalist seeking kinetic parameters. The rate of reaction, independent of the form of the kinetics,
is simply the change in concentration of A between the feed and exit streams divided by the
holding time. We will see this repeatedly.

There is something to learn from rearranging the second equation also:

0=-Cdq+kadCaV
Cd

’“V—q =Tad

Given the rate of a chemical reaction, and the target production rate Cd q we can compute the

volume necessary for a well-mixed reactor to achieve this output. Thus in a very real sense this

becomes a useful design equation to be employed in the earliest stages of a study of economic

feasibility.

9.2 Steady-State CSTR with Higher-Order,
Reversible Kinetics

The first-order, irreversible chemical rate case is useful in terms of providing us with insight
into what are the consequences of perfect mixing and with a sense of how the characteristic
times for reaction and flow are related. On the other hand, it is limited in usefulness because it
represents highly simplified chemistries and correspondingly simple kinetics. Often the actual
kinetics are far more complex. Let us consider the same chemistry as that we examined in the
fed-batch reactor, namely, that of A and B reacting to give D (see Figure 2). The rate law will
be second order overall and first order in each component. However, this time we will assume
that it is reversible and that the rate law for the reverse reaction will be second order in D:

rasBep = kabCaCb — kd Cd®

kd
Keq=—



388 Chapter 9 Continuous Stirred Tank and the Plug Flow Reactors

qAf, CAf, CBf ) -

| Continuous
i W TS | Flow-Stirred
¢ Tank
No Position
Dependence
Viot, Acr 2 R
» CA,CB,CD,q
Figure 2

The transient balance equations for this system will be:

59%@ = Caf gf — Ca[t]q — kab Ca[t] Cb[t] V[t] + kd Cd[t]* V[t]
w = Cbf qf — Cb[t]q — kab Ca[t] Cb[t] V[t] + kd Cd[t]* V[t]
%@ = —Cd[t]q + kab Ca[t] Cb[t] V[t] — kd Cd[t]*

%ﬂvm = pfabf — pltlltlq

Atthe steady-state condition the mass input must be the same as the mass output. Furthermore,
the net rate of change in concentration of each of the components is zero. This makes the
differentials each zero in all four equations. The inlet densities of the liquid reactant streams
are typically not too different from each other or from the density of the outlet stream including
products. The inlet flow rates and concentrations are also equal. Thus the equations reduce to:
0 = Cafqf ~Caq—kabCaCbV + kdCd*V
0 = Cbfqf - Cbq —kabCaCb V + kd Cd*V
0=—-Cdq+kabCaCbV —kdCd’V
0=qf—q

These are four equations that include a total of 10 variables and parameters, and only three of
the four equations are independent, as three can be solved to find the fourth. The solutions to



9.2 Steady-State CSTR with Higher-Order, Reversible Kinetics 389

these equations are “easy” to find, in the sense that they are a set of simultaneous algebraic
equations rather than differential equations. We can solve the three component balances for
the concentrations at the exit of the reactor using Solve.

In[27]:= Clear["Global‘**"]
cstrl = Simplifyl[

Solve[
(0 == (caf - Ca)q - kabCaCbV + kdcd?v,
0 == (Cbf - Cb)qg - kabCaCbV + kdcd?v,
0 == -Cdq + kabCaCbV - kdcd?v}, {Ca, Cb, cd}l]

]

out{28]= {{ca —
g+ Cbf kab V - Caf (kab - 2kd) V + «/4Caf Cbf kab (-kab + kd) V2 + (q + (Caf + Cbf ) kab V)2
2 (kab-kd) v ’

1
Cbh —» - —————— (q+CafkabV-CbfkabV+2Cbf kdV+
2 (kab-kd)V

J4caf Cbf kab (-kab + k@) vV’ + (q+ (Caf +Cbf ) kabV)*),

q + Caf kab V + Cbf kabV + /4Caf Cbf kab {-kab + kd) V7 + (q + (Caf + Cbf) kabV}?

cd ,
2 {kab~kd)Vv
{ca - -q - Cbf kabV + Caf (kab - 2kd) V + J4Caf Cbf kab (-kab + kd) V¥ + (g + (Caf + Cbf) kab V)7,
° . 2(kab-kd)V

Cb > ———— (g-Caf kabV +Cbf kabV - 2Cbf kd Vkern3pt+

2(kab-kd)Vv

J4Caf Cbf kab (-kab+kd) V' + (gq+ (Caf + Cbf ) kabVv)?),
ca q+ Caf kabV +Cbf kabV - J4Caf Cbf kab {-kab+kd) Vv’ + (g+ (Caf +Cbf)kabVv)? 1}

2{(kab-kd)Vv

The result is that we get two sets of symbolic solutions for the concentrations. The first set
appears to be the appropriate one as the leading coefficient is positive, whereas for the second
set the same term is negative, suggesting that for real positive values of the parameters it
would return negative concentrations, which are unphysical. Thus we can extract the first set
of solutions with the bracketed number 1:

Inf29]:= c8trl[[1]]

out[29]= {ca —
g+ Chf kabV - Caf (kab — 2 kd) V +/4Caf Cbf kab (-kab + kd) V2 + (q+ (Caf + Cbf ) kab V) 2

2(kab-kd}Vv
Cb —
g+ Caf kabV - Cbf kab V + 2Cbf kd. V+ /4 Caf Cbf kab {-kab +kd) V2 + (q+ (Caf + Cbf) kabV)?
2 (kab - kd)V !
cd —

g+ Caf kabV+Cbf kab Vv + /4Caf Cbf kab{-kab+ kd)V* + (g + (Caf + Cbf)kabVv)? }
2({kab-kda)v




390 Chapter 9 Continuous Stirred Tank and the Plug Flow Reactors

We note that in order to solve for these concentrations, we would have to know the values of
the two rate constants, the two inlet concentrations, the three flow rates, two in and one out,
and the one reactor volume for a total of eight known quantities out of 11. This makes perfect
sense as we have only three independent equations and 11 possible unknowns. To extract the
right-hand sides of the three solutions and to apply them as functions we use the sequence of
bracketed numbers as follows for the concentration of A:

In[30]:=cstrl[([1l, 1, 2]}

q-f-bekabV—Caf(kab—2kd)V+\/4Cabefkab(—kab-fkd)V2 +(q+(Caf +Cbf ) kab V) 2

Out[30]= 2 (kab - kd) V

Now we can really see why the CSTR operated at steady state is so different from the
transient batch reactor. If the inlet feed flow rates and concentrations are fixed and set to be
equal in sum to the outlet flow rate, then, because the volume of the reactor is constant, the
concentrations at the exit are completely defined for fixed kinetic parameters. Or, in other
words, if we need to evaluate kab and kd, we simply need to vary the flow rates and to collect
the corresponding concentrations in order to fit the data to these equations to obtain their
magnitudes. We do not need to do any integration in order to obtain the result. Significantly,
we do not need to have fast analysis of the exit concentrations, even if the kinetics are very
fast. We set up the reactor flows, let the system come to steady state, and then take as many
measurements as we need of the steady-state concentration. Then we set up a new set of
flows and repeat the process. We do this for as many points as necessary in order to obtain a
statistically valid set of rate parameters. This is why the steady-state flow reactor is considered
to be the best experimental reactor type to be used for gathering chemical kinetics.

Why is it that the flow rate should change the concentrations at the exit of the reactor? To
see this we should nondimensionalize our equations. We will divide each component balance
by V and by Caf:

_ (Caf —Ca)q —kabCaCb V + kd Cd* V
- Caf Vv

—(1— ¢a)% — kab ®a Cb + kd &d Cd?

0

We can multiply the last two terms by % in order to express each concentration in non-

dimensional terms:

1 Caf Caf



9.2 Steady-State CSTR with Higher-Order, Reversible Kinetics 391

For each of the components we obtain by this procedure:

0=(01- CDa)% — kab Caf ®a &b + kd Caf &d*

Cbf 1 )

0:—<bd%+kab<bad>b—kdd>d2

The flow rate through the reactor is q, and thus the holding time is %, which is 8. Because the
stoichiometry is 1:1 we can take Cbf = Caf:

In[31]:

In[32]:

Out[32]=

0 = (1 — da) — kab Caf § ®a ®b + kd Caf 6 dd?
0 = (1 — ®b) — kabCaf 9 ®da db + kd Caf ¢d?
0 = — &d + kab Caf 8 da &b — kd Caf 9 &d?

Clear(["Global**"]

ndcstrl = Simplifyl[

Solve[

{0 == (1 - Pa) - kabcaffd PadPb + kdcCaf § $4a?,
0 == (1 - ®b) - kabcaffd PaPdb + kdcaf 9 a2z,
0 == -Pd + kabCaff PaPb - kdcaf g 4?)},

{®a, ®b, P4r1l

General::spell: Possible spelling error: new symbol name
"®b” is similar to existing symbols {da,dd}.

1+2caf kdf - /1 + 4Caf kab#8 + 4Caf? kab kd §?

{{Pa - ]
-2Caf kab @ + 2Ccaf kdé

1+2Caf kd# - /1 + 4Caf kab8 + 4Caf? kabkd 62

Pb — .
-2Caf kab0 + 2Caf kd ¢

1 +2Caf kad 6 - /1 + 4Caf kab6 + 4Caf? kabkd 2

dd - 1,
2Caf kab0 - 2Ccaf kd @

(ba - 1+2Cafkd9+\/l+4Cafkab9+4Caf2kabkd92’
~2Caf kab8 + 2Caf kd @
ob l+2Cafkd0+\/l+4Cafkab0+4Caf2kabkd92I
-2Caf kab8 + 2Caf kd 6
1+ 2Caf kad#f + /1 + 4Caf kab 8 + 4Caf? kab kd 62 '3

2Caf kab0 - 2Caf kd o

$d -



392 Chapter 9 Continuous Stirred Tank and the Plug Flow Reactors

These are the same solutions as before, but in nondimensionalized form they are more compact
and more easily understood.

Inf33]:= ¢alf..]1 := ndestrl[[l, 1, 2]]
¢blO_.]1 := ndcstrlil[l, 2, 2]]

$d[O_.]1 := ndestrli[[1l, 3, 2]]
Caf = .25;
kd = 1.5;

_ 1 kab o a?
aeq = NSolvel *d - 1 - a)z' al
Plot[{¢alf], $d[0]1},
{6, tmin, tmax},
PlotStyle - {{Dashing[{0.15, 0.05}], Thickness[0.01],
GrayLevel[0]}, {Dashing[{0.15, 0.05}],
Thickness[.01], GrayLevel[.5]}},
PlotLabel - "rd = ¢a; bl = ¢d; lines = eq",
AxesLabel - ({"8", "¢il[81"},
Epilog - {
{Dashing[{0.01, 0.01}], GrayLevell[.5],
Line[{{tmin, aeq([2, 1, 2]]1}, {(tmax, aeqll2, 1, 2]1}1}1},
{Dashing[{0.01, 0.01}], Line[{{tmin, 1-aeqll[2, 1, 211},
{tmax, 1 - aeqll2, 1, 2]1}}1}}

9.3 Time Dependence—The Transient
Approach to Steady-State
and Saturation Kinetics

Although the steady-state CSTR is simple to operate and analyze and even though it offers
real advantages to the kineticist, it is also true that these systems must go through a start-up.
They do not start up and necessarily achieve steady state instantaneously. The time period in
which the system moves toward a steady-state condition is called the transient, meaning that
the system is in transition from one that is time-dependent to one that is time-independent.



9.3 Time Dependence—The Transient Approach to Steady-State 393

I ¥
-
H_q:::H B Surface
Catalytic Sites

Figure 3

We have no way of knowing how long it will take a given reaction or set of reactions to achieve
a steady state in the CSTR before we either do an experiment or solve the time-dependent
model equations. If we choose to do experiments as a means to assessing this, then we need to
be prepared to do many of them. But if we already know the kinetics, then we do the analysis
and the math instead. If we do it correctly, then it is fast and it provides us with insights
that complement the experiments and in many cases provides interpretations that a purely
experimental approach cannot yield. Therefore, in this problem we will consider just such a
case with a more complex set of kinetics.

Consider the reaction of a molecule that takes place on a solid catalyst surface. This
reaction simply involves converting one form of the molecule into another: in other words,
it is an isomerization reaction. But the reaction in question only takes place on the catalyst
surface and not without the catalyst. (See Figure 3.)

As we saw in Chapter 6, when we analyze a reaction of this kind we find that at least two
steps are involved—adsorption and surface reaction. The adsorption equilibrium steps take
place by the interaction of the molecule in the bulk phase with a so-called adsorption site on
the solid surface. The adsorption site is the locus of points on the surface that interact directly
with the molecule:

Abulk + site = Asurface
Asurface - Bsurface

Bsurface = Bbulk + site

Once B is formed, it too undergoes adsorption and desorption. The desorption carries B from
the surface and into the bulk fluid phase. In this case we will assume that the reaction is
irreversible and that the rate of this reaction is first order in the surface concentration of A. It
also is first order in the concentration of surface sites. Thus the kinetics follow a simple surface



394 Chapter 9 Continuous Stirred Tank and the Plug Flow Reactors

rate law:

/
Ya- = ksurfaceCA,surfaceCsites

The surface concentration is difficult to measure; thus we need to reexpress it in terms of
the bulk phase concentration of species A. To do this we take advantage of the fact that the
molecules often adsorb and desorb so quickly that they come to equilibrium rapidly with the
surface sites. Therefore, subject to this assumption, we can express the surface concentration
in terms of the equilibrium. The equilibrium gives rise to the following relationship for the
surface concentration of A in terms of the bulk concentration of A:

KaC4
Chsurtace = T &~

We can substitute this expression into the rate expression for the reaction. This leads to this
rate in terms of the bulk phase concentrations:

KaCa

Fa-= ksurface sitesm

The concentration of sites can be incorporated into the rate constant by rewriting the product
of the surface site concentration and the surface rate constant simply as a rate constant:

!
k= ksurfaceCSifes

We can do this because the surface site concentration is also a constant. Thus the overall rate
for this catalytic reaction is:

kKACa

ra = ——D
/ 1+ KaCx

The time-dependent component balance equations for A and B in the CSTR are as follows:

dC eV
é‘f =(Car—Ca)q— (1 —e)rsV
Vv
dccl;: = —C8q+(1 —€yaV

Recall that the solid catalyst occupies a fraction 1 — e of the reactor volume leaving a fraction
¢ for the fluid phase volume. We write the balances in terms of the fluid phase. The kinetics
have been written also in terms of the fluid phase concentration, but they are written for a



9.3 Time Dependence—The Transient Approach to Steady-State 395

process that occurs within the second phase, which is the catalyst. This is called the pseudo-
homogeneous approximation. In this case we take that phase as homogeneous and continuous,
and occupying the (1 — €) of the reactor volume. We can substitute into these equations the
kinetics we just derived:

dCAGV kKACA
= — —_— 1 —

a = Car—Cag- (-
dCpeV kKaCa
_— = — 1-— _

at Coq+ (-1 ¢,

The integration of these two equations in time will show us how long it will take the reactor
to achieve a steady-state conversion of A and production of B.

The first step is to set up a solution to these equations and a graphical display of the results.
Using NDSolve, we can solve these time-dependent equations to find the concentrations as
functions of time. We make a new Module function “cstr4” to handle this.

In[33]:= cstrdlk_, Kl_, gq_, tmax_], :=
Modulel[
{Caf =1, Vv = 1000, Cao = 0, Cbo = 0, € = .4, solns,
Ca, Cb, CA, CB, t},
solns = NDSolvel({

ca’[t] (caf - calt]) T - (1 ) SKicale]
eCa’ == - Ca - - -€)—————,
v 1+KlCaftl
€Cb’ [t] == _cb[t]S + (1 - G)w
T v 1+Klca[t]’
Ca[0] == Cao, Cb[0] == Cbo},

{Ca[t], Cb[t]}, {t, 0, tmax}l:

CAlt]
CB[t]

Evaluate[Cat] /. solns];
Evaluate[Cb[t] /. solns];

SetOptions[{Plot}, AxesStyle - {Thickness[0.01]},
PlotStyle - {Thickness[0.006]},
DefaultFont - {"Helvetica", 10}]1;

Plot [{(CA[t], CB[t]}, {t, 0, tmax},
PlotStyle - {{Thickness[0.02], Dashing[{0.04, 0.04}],
Graylevel[0])}, {Thickness[0.02], GrayLevel[ .61}},
PlotRange - {{0, tmax)}, {0, Caf}},
PlotLabel - {k "=k", K1 "=K1", q "=q"},
DisplayFunction - Identity]

]

We can examine the solution at a few extremes to try and understand how the parameter
values affect its behavior. We can take k = 0 first to see how the system responds to the flow



396 Chapter 9 Continuous Stirred Tank and the Plug Flow Reactors

of A. This gives us a sense of how long it takes the flow and mixing to come to steady state
in the absence of reaction. Experimentally, we could do this with a noncatalytic solid present.
Keeping all else the same, we vary the rate constant k from 0 to 100 in multiples of 10.

In[34] := Show|[GraphicsArray[{{cstr4[0., .01, 10, 1000],
cstrd4[1l., .01, 10, 1000]}, {cstr4[10., .01, 10, 1000],
cstr4[100., .01, 10, 100011}}11;

{0.=k, 0.01 =K1, 10=q) g {1.=k, 0.01 =K1, 10=q}
08| ¢ 0.8

l - E S S S SES S S S . .
06|, 061,
0.4 04|l
0.2 0.2

200 400 600 800 1000 200 400 600 800 1000

(10. =k, 0.01 =K1, 10 =q) . {100. =k, 0.01 =K1, 10=q)
08| -~ 0.8
0.6 0.6
0.4 0.4 |

200 400 600 800 1000 200 400 600 800 1000

In the first plot, with k = 0, we note that it takes the system about 200 time units at this flow
rate to reach a steady state. As we raise the rate constant from unity to 10 and then to 100, the
steady-state concentrations of A (dashed) drop from 0.6 to less than 0.2 to nearly zero. We also
see that the time to reach steady state for the product B (solid) is about 200 time units in each
case, whereas for A it is always less than that time, and the time to steady state shortens as
the rate of chemical reaction increases. This is because the concentration of A at steady state
decreases as k increases; thus the time required to reach the plateau is less.
Looking back at the rate expression we see:

. kK AC A
TA-= 14+ KAC4xy
If K4C4 is large compared to unity, then the rate reduces to just k, that is, a constant or “zeroth-
order” rate. Alternatively, when K4Cj, is small compared to unity, the rate becomes kK, C4
or first order with respect to C4. Letting k be unity, for example, we can vary K4 from 1072 to
10° over a range of C, from zero to unity and then plot the results as an array to see the effect



9.3 Time Dependence—The Transient Approach to Steady-State 397

of the adsorption constant:

Inf{35]:= k = 1;
SetOptions[{Plot},
AxesStyle - {Thickness[0.01]},
DefaultFont - {"Helvetica", 10}]:
Show[
GraphicsArray|[
10" Ca

k
Table[Plot[———— C 0, 1
{Table[ (=} [1+10"Ca' {Ca, ’ },

DigplayFunction - Identity,
PlotStyle - {{Thickness[0.03],
Dashing[{0.04, 0.04}], GrayLevel[0]1}},
AxesLabel - {"Ca", "ra-"},
PlotLabel - 10™ "=Ka"],
{n, -2., 0}1,
10" Ca

Table[Plot[———, {Ca, 0,1},
1+10*Ca

DisplayFunction - Identity,

Plotstyle - {{Thickness[0.03],
Dashing[{0.04, 0.04}]1, GrayLevel[0]})},
Axeslabel -»> {"Ca","r, "},

PlotLabel - 10 "=Ka"],

{n, 1., 3}1}

Ca
0.20.40.60.81 Ca 020406081 _2
ra- 10.=Ka ra- 100. =Ka ra. 1000.=Ka
0.8 "'-—-.--- . Ca
06
04
02 . ) c
0.20.40.6081 ~2 0.20.40.6081 ~°

In the first two plots, KaCj, is small compared to unity and we see that the rate is first order
in concentration C4 over the whole range. The last two plots are cases in which K4 C, is large
compared to unity at most values of C,4, except for the very smallest ones. Hence the rate
becomes constant at larger values of C4 and this is called saturation. It means that the rate
cannot increase in magnitude even though the concentration of reactant has been increased



398 Chapter 9 Continuous Stirred Tank and the Plug Flow Reactors

and the rate is an apparently strong function of C4. In fact, when K4 C4 is large, we see that the
rate is a very weak function of C4. Hence Langmuir-Hinshelwood (and Michaelis-Menton)
kinetics are often referred to as “saturation kinetics.” The intermediate values of Ka lead to
intermediate results and rate behavior.

How will the effect of saturation kinetics show up in the evolution to the steady state in a
CSTR? We can find this out by letting K1 vary over this range of magnitudes from 1072 to 103
within the Module function “cstr4.” We also have taken the rate constant down from 1.0 to 0.05
to make the differences more evident for the same values of q and V, that is, the holding time.
This does not change the effect of K1 because we are comparing its product with Ca to unity:

In[38] :=Showl
GraphicsArray{
Partition|
Table[cstrd4[.05, 10%, 10., 10001, {n, -2., 3}],
2]
1
1;

{0.05 =k, 0.01 =K1, 10. =q}

1 - - S - - - - - e e

{0.05 =k, 0.1 =K1, 10.=q}

0.8 ¢ 71 (R ——
06|, 06|,

0.4

0.2

200 400 600 800 1000
{0.05 =k, 1.=K1, 10.=q}

0.8
0.6
0.4
0.2

200 400 600 800 1000

{0.05 =k, 100. =K1, 10. =q}
1 o~

0.8
0.6
0.4
0.2

200 400 600 800 1000

200 400 600 800 1000

(0.05=k, 10.=K1, 10. =q}

0.8
0.6
0.4
0.2

200 400 600 800 1000

; {0.05 =k, 1000.=K1, 10.=q}

0.8
0.6
0.4
0.2

200 400 600 800 1000



9 3 Tlme Dependence—The Transient Approach to __Steady-State 399

FECmES T Yy R L e R e et eSS LA pt e e )

The results are not dramatically different than what we had seen before. The saturation kinetics
at these flow rates, that is, holding times, give rise to complete conversion as we see in the last
two plots in which K1 has values of 10 and 10°.

Finally, the last calculation prompts the question of holding time effect. If we vary the flow
rate q at fixed V, keeping k and K1 constant we should see the conversion rise with longer
holding times, that is, lower flow rates:

In[39] :=8how[

GraphicsArrayl
Partition|
Table([cstrd[.05, 103, 10®, 10001, (n, -2., 3}1,
2]
]
1;
140.05 =k, 1000 =K1, 0.01 =q} 1 {0.05 =k, 1000 =K1, 0.1 =q}
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2 /—"
200 400 600 800 1000 200 400 600 800 1000
{0.05 =k, 1000=K1, 1.=q} {0.05=k, 1000=K1, 10.=q}
1 1, ~—
0.8 0.8
0.6 0.6
0.4 0.4
02| / 0.2
200 400 600 800 1000 200 400 600 800 1000
1{0,05=k,1000:K1,100. =q} 1|005 =k, 1000 =K1, 1000. =q}
0.8 0.8
0.6f 0.6
0.4 0.4
0.2 0.2
e
200 400 600 800 1000 200 400 600 800 1000

The effect is dramatic. We have taken K1 = 1000, which puts the kinetics in the zeroth-order
regime. We see in the upper-left plot that the conversion appears to be complete, but even after



400 Chapter 9 Continuous Stirred Tank and the Plug Flow Reactors

1000 time units the system is still far from the steady state. At the lower right, the conversion is
essentially zero, and the system comes to steady state nearly instantaneously. The other plots
show self-consistent behaviors. Notice that with q = 10, the approach to steady state is fast
and the conversion is essentially complete.

But what would happen if we took the adsorption constant K1 to be quite small, say, on
the order of 10722 We will find out in the following:

In(40] :=Show|[

GraphicsArray|
Partition]|
Table[cstr4[.05, 1.10°2%, 10®, 10001, {n, -2., 3}],
2]
]
1:
’ {0.05=k, 0.01 =K1, 0.01 =q} ’ {0.05 =k, 0.01 =K1, 0.1 =q}
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2 i i
I=-----
200 400 600 800 1000 200 400 600 800 1000
{0.05 =k, 0.01=K1, 1.=q} 1 {0.05 =k, 0.01 =K1, 10. =q}
’----------n
0.8 s 08| ¢
0.6 G 06/,
-
0.4 ”I
Olzﬁ/‘-‘_’
200 400 600 800 1000 200 400 600 800 1000
1 {0.05=k, 0.01 =K1, 100.=q} q {0.05 =k, 0.01 =K1, 1000.=q}
- e e - - G -G G - .G - .- I“-----------
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2

200 400 600 800 1000 200 400 600 800 1000



9.4 The Design of an Optimal CSTR 401

Aha! This is very interesting and instructive. Here we see that K1 is so small that at any of
the holding times (even the highest ones) the rate is so small that the conversion is effec-
tively zero throughout the range. This means that the catalyst just lacks the adsorption forces
necessary to make the reaction run fast. In other words, for the reaction to take place effi-
ciently, the reactant A must be adsorbed. If it is not adsorbed to an appreciable extent, then
the rate is always going to be small unless the rate constant for the surface reaction is very
high.

Before we go on to the next section we should do some “housekeeping.” The command
Names is shown below with its Mathematica explanation:

Inf[41]:= ?Names

Names[”string”] gives a list of the names of symbols
which match the string. Names|[”string”,
SpellingCorrection — True] includes names which match
after spelling correction.

As we have worked through this session, or any other session, we have generated many new
Names for functions. These show up in the Global context. If we ask for them we will get a
list of those that we have created and used so far. (We show this in the following, but we have
suppressed the output.)

In{42] := Names["Global‘*"];

To clean up the Global context, we can Remove everything we have created in the Global
context as follows. Asking for Names in this context once again returns an empty set:

In{43]:= Remove["Global‘*"]
Names ["Global‘**"]

Out[44]= {}

9.4 The Design of an Optimal CSTR

Several questions arise with respect to the design of an optimal CSTR for a given chemistry.
Chief among these are several equations that relate conversion, cost and profitability to each
other. As we can plainly see, the volume of the CSTR controls the extent of conversion. Thus
the magnitude of the volume goes up with the requirement of conversion. It would seem, then,
that we might simply want the largest volume reactor that we can build as this will provide the
highest conversion of reactant to product. However, it is self-evident that such logic is highly
flawed because the cost of the reactor must scale with its size. Therefore, how do we decide



402 Chapter 9 Continuous Stirred Tank and the Plug Flow Reactors

what level of conversion and reactor size is appropriate? The value of the product relative to
that of the reactant must be a critical factor. We can do an analysis of the following reaction to
see how this works:

A—>B

ra- =1y =kCy
The steady-state CSTR equations for components A and B are as follows:

(Car—Ca)g—kCyvV =0
_Cpq+kCaV =0

The inlet concentration Cas is a good reference point for reaction. We can normalize the equa-
tions by dividing through by Cas:

Ca
1— =2 )q—kCV =0
( c )q "

Af
Cp Ca
——q+k=—V=0
Cqu Cas

The conversion of A can be written as (1 — g—:f) and Cq = Cas (1 — Xa). Hence the equation
for A can be rewritten in terms of X,:
Xaq—kV(l-X4) =0
1%
Xa— k;(l - X4 =0
Xa—kt(1 - X4 =0
where 7 is the holding time in the CSTR. We can see that we can solve for it in terms of the

conversion and the first-order rate constant. The inverse of this rate constant has dimensions
of time.

T = Xa
T k(1 — Xa)
1% Xa



9.4 The Design of an Optimal CSTR 403

We can immediately see the direct relationship between the volume of the reactor and the
conversion of A. To make this absolutely clear we can rearrange one more time to give:

1

=X
1+5

When we consider the extremes we acquire a feeling for the behavior of this relationship:

q 1
; ;T 0 X
V-0 kV—>oo l+oo_) — Xa

On this basis we can see that all we really have learned is what we already knew intuitively—
making the reactor as large as possible will provide the highest possible conversion. Thus we
really need a better measure of our objective than simply the conversion.

When a chemical engineer balances an equation it must be done first from the perspective
of stoichiometry, and second taking value and profit into consideration. Thus for a given
reaction:

aA +bB - dD +eE

As in Chapter 7 we showed that the maximum profit potential is:

. . $ $ $ $
max. profit potential = [(d ol D + - ) - (a mole A + bmole B )]

The conversion dictates how much product will be made and how much of the starting ma-
terial will be left and this thus dictates the value of the mixture. For the simpler case we are
considering we can write:

. 4 [ $ $
max. profit potential = _(bm) - (am)]
~ $ $
= (e st) = (C9meten )]
_ $ $
= _(qumole Bt) - ( ”qmole A )]




404 Chapter 9 Continuous Stirred Tank and the Plug Flow Reactors

- ':(CanAqmofe B t) h (Caf qt - XA)moife At>]

=C trX 3 )—(1—X) $
= afq [\ " mole B ole A

i $ $ $
= Cat qt_XAmole B  mole A + XAmole Al
[ $ $ $

=C, - _4+X -
¢ fqt_XAmole B + ‘mole A~ mole Al

- -
=Cuqt XA< $ + 5 ) $

mole B ' mole A)  mole A

The maximum profit potential for a chemical reaction is only a crude, zeroth-order measure of
value. To gain a better measure of the economics, we must have a fuller analysis of the process.
The maximum profit potential can never be achieved because it costs money both to invest
in the process hardware and to operate the process. If we simply were to try to maximize the
potential profit by maximizing the conversion X4, then we would need a reactor of infinite
volume:

However, as V — oo the cost of the reactor also goes to infinity and the net profit must go to
zero. Hence the net profit must be a better measure of value generation and this must consist
of at least the cost of the reactor and its operation in addition to the cost of the reactant and
the value of the product.

$ Net Profit = {$ Value of Product — $ Cost of Reactant — $ Investment in Reactor
— % Cost of Operation}

This is of course just another accounting statement of the kind that we have used all along to
this point. Generally, it says that the net rate of accurnulation of a measurable is simply the
difference between the rate input minus the rate output:

Rate of Accumulation = {Rate of Input — Rate of Output}

The individual components of this equation for profit can be written in terms of a preset
time over which we will evaluate the project ¢, and the relevant parameters and variables of
the problems. We will assume we are still considering the same simple reaction as before and



9.4 The Design of an Optimal CSTR 405

the reactor is a steady-state CSTR and we have the following terms:

$ Value of Product = Czq

t
molB 7

$ Cost of Reactants = Cx¢q t,

mol A
$ Investment in Reactor = Vieactorx

$ Cost of Reactor Operation = t,3

$ Net Profit == Cqu()l Btp - Cqumtp - V,eactora ot tp,B
qXa

Cp =CaX Vrea or =~ 74 o <

B Af XA ct (1 — Xx)
$ Net Profit = Ca¢Xaq t, — Cacq - 43

mol B 7 molA7?  k(1—X,) P
. $ $ B aqXA

Net Profit = Ca¢qt, | X — — —

$ Net Pro Afd '( AmolB _ molA cqu) k(1 — X4)

This equation now allows us to compute an optimal profit as a function of the conversion or,
in other words, as a function of the reactor size or holding time.

In[45]:= netprofit[Caf__, gq_, t_, $a_, $b_, k_, $v_, $t_, xa_]:=

Caf t((xa) 1) qg(xa) t
d $b $a’ k(l1-xa)$v $t

In[46]:= Caf = 1;

q = 10;
t = 100;
$a = 1;
$b = .1;
k = 0.01;
$v = 10;
$t = 50;

Inf54]:= netprofit[caf, q, t, $a, $b, k, $v, $t, x]
SetOptions|[{Plot}, AxesStyle - {Thickness[0.01]},
PlotStyle - ({(Thickness[0.006]},
DefaultFont - {"Helvetica", 17}1;
Plot[netprofit[caf, q, t, $a, $b, k, $v, $t, xal,
{xa, 0.01, .99}, AxesOrigin - {0, 0},
PlotStyle - {GraylLevel[0.5], Thickness[0.01]},
AxesLabel - {"t", "$[t]1"}]:

100.x
Outf54]= -2-

+1000(-1+10.x)



406 Chapter 9 Continuous Stirred Tank and the Plug Flow Reactors

I[t]
6000
4000

2000

In[57]:= Caf = 1;

q=
t = 100;
$a = 1;
$b = .1;
k =.
$v = 10;
$t = 50;
xa =

b = Table[netprofit[Caf, 10°, t, $a, $§b, 107", $v, $t, xal,
{n, 0, 6, 1}];
%;
Plot[{bl[11], bl[2]1], b[[3]1]1, bi[4]1]1}, {xa, O, .999},
PlotStyle - {({GrayLevel[0.5], Thickness{0.01]1}},
AxesLabel - {"t", "$[t]1"}];



9.5 Plug Flow Reactor 407

e e e e | e g . L  ———

I[t]

5x 108

—5x%x 108

~1x10°

The curves from the preceding graph show a clear optimum with respect to the holding time
and parametric in the rate constant.

9.5 Plug Flow Reactor

We turn now to the plug flow reactor. Here, as we have said, there is absolutely no mixing in
the direction of flow but perfect mixing perpendicular to it, that is, between the centerline and
the walls. This special case of a tubular reactor can be operated transiently or in the steady
state, but it is the latter mode that is most often considered for kinetics and design. Consider
the reactor shown in Figure 4 in which A is converted to B irreversibly and with linear kinetics.

For the first time we must as a consequence of the plug flow take into account spatial
variation as well as time dependence. This means that the concentrations of A and B will have
z- and t-dependence and the equations describing them will be made up of partial rather
than ordinary differentials. We can derive the equation that describes the plug flow system by
first visualizing a zone of reaction (Figure 5) that corresponds to a differential control volume
Acr dz.

The total differential of the concentration is equal to the rate of chemical reaction in this
zone over some differential time dt. In Mathematica the total differential of f[x, y] is given as
Dt[f[x, y]]:

In[69]:= Dtlflx, ¥ll]

out[69]= Dtlylf %Y [x, vyl +Dt(x] £+ [x,y]



408 Chapter 9 Continuous Stirred Tank and the Plug Flow Reactors

Reactants Products

Caf, q o Ca, Cb, q
Tubular Plug-Flow
rA- =ka Ca
Figure 4

Figure 5

This output statement means:

a, flx, yldy + a: fIx, y]

or

of [x, y] f[x, yl
3y dy + 9% dx

Taking the total differential of the concentration and the rate, we obtain:

In[70]:= =z =.

t =.
Dt{Ca[z, t]] == -ra Dt[t]
out[72]=ptitlca'®™ PV [z, t]+Dt[zlca* P [z,t] == -raDt[t]

We can use the shortcut of dividing through by Dtlt], that is, the derivative of the time dt to
obtain the following;:

In[73]:= Simplif [Dt[t]Ca(o,l)[z,t]+Dt[21Ca(1,o)[z't]] __ -raDtlt]
n ;= i ify T - e

Dt[z]Ca't'% [z, t]
outf[73]= ca'® Y[z, t]+ [ == -ra
Dt (t]




9.5 Plug Flow Reactor 409

In the second term on the left-hand side, we have the ratio of DD:[[f}], (%). This is the velocity of
the plug of gas through the differential volume in the axial direction. We will use the symbol
vz for the axial velocity. Making this substitution we have:

In[74]:= ca'®Y[z,t] +vzcall9[z,t] == -ra

outf[74]= ca'® Y[z, t]+vzcat [z, t] == -ra

Written in traditional form this states:

0Ca(z, ] . 9Calz, t]

— TtV A_
at 3z A

In words, this mathematical “sentence” states that the partial derivative of the concentration
of A with respect to time is equal to the negative of the sum of the product of the axial velocity
and the partial derivative of the concentration of A with respect to position and the rate of
reaction of A.

For the product B we would have the following equation:

8Cblz f] _ aCblz ]

3t 3z A

A more intuitive way to arrive at these equations begins at the well-mixed approximation.
Imagine that within the region Az the fluid phase is “well mixed.” The volume of this region
is AV = AcrAz. The flow rate across the volume is taken to be ¢, and the concentrations in the
volume element are C;; while those exiting are C;,. Writing the mass balance for A we have:

dCaAV
d = (Cn,l —Cn,z)q — 1A AV
t
dCaAcrA
—adt—cu =(Cs1 —Cu2)g —ra-AcrAz
dCa . (Ca,] - Ca,Z)q _,
dt ~  AcrAz A=
dCa —AC,, ,
=y, .
dt Az A

We can write the corresponding differential difference equation for component B. When we
take thelimit as Az — 0, these two differential equations become partial differential equations:

Limit| 452 =, 8¢, 5% 3G,
az0 | dt 7 Az A at . oz 4

. ..[dCb ACy aCb aCy
Limit| —— = —v,— + 74 | = —— = —v:— +ra
Az—0 AZ ot 9z



410 Chapter 9 Continuous Stirred Tank and the Plug Flow Reactors

Thinking physically, it is as if we have taken a slice out of a poorly mixed reactor that is of
infinitesimal thickness, but across which the mixing is perfect. This is a “CSTR” of vanishing
or differential thickness Az and cross-sectional area Acr.

We are usually interested in solving these equations for the concentrations at steady state.
In this condition the time differentials are as usual identically zero. Recall that v, divided into
a distance z would be the time 7 required to translate across that distance. If we divide v, into
the differential distance dz then we have the differential time d required to translate across
the infinitesimal distance. Thus £ is just o=, and the equations transform at the steady state
as follows:

_q_dC,I:_r =>v9&=—r =>Q=—-r
Acr dz A * dz A dr A
Acr dz A * dz A dr A

Remarkably, the form of the steady-state PFR equations is identical to the form of the fully
transient well-mixed batch reactor with no volume change. The only difference is that instead
of the derivative with respect to real time, the PFR equations involve the derivative with respect
to reduced time. This is a very significant result. It shows us why the steady-state PFR is also
such a useful reactor for kinetic studies—its model equations are quite simple! Whichever form
of the equations used is simply a matter of preference; they all mean the very same thing.

9.6 Solution of the Steady-State PFR

First, we begin by solving for the concentrations with linear kinetics, and we do this in
complete form. We will do this with DSolve as an exercise, even though the equations are
trivial to solve:

In[{75]:= Clear["Global‘*"]

Simplify[

DSolve(

{vz0,Calz] == -kabCal[z],
vz9,Cb[z] == +kabCalz],
Cal[0] == Caf,

Cb[0] == 0}1

{ca[z], Cbizl},

z]

]

Out[76]= {{Calz] — Cafe " ,Cb[z] — Caf - Cafe % }}



9.6 Solution of the Steady-State PFR 411

Recall that kab is just TL,,,.' that is, the reciprocal of the characteristic time for reaction and ;f— is
the same as % or the holding time 7 for the PFR. Therefore, these solutions become:

kal

Calz] = Cafe " = Ca[r] = Cafe 7 = Ca[r] = Cafe ™=

kabz

Cb[z] = Caf(1 — €™ v ) = Cb[r] = Caf(l — e *®7) = Cb[r] = Caf(1 — e =)

When we solved the transient, well-mixed batch reactor with linear kinetics, we obtained
the same solution functionally, but instead of kab 7, we had kabt as the argument of the
differential, that is, in terms of real time instead of holding time.

We return now to the Langmuir-Hinshelwood kinetics from the CSTR section to see how
the PFR will behave and to compare the CSTR and the PFR. As in the case of the steady-state
CSTR, we will write a steady-state PFR Module function. Recall that the rate law was:

__ _kKaCu
A_—1—+—KACA

Therefore, once again invoking the pseudo-homogeneous approximation, the equations we
must solve are:

dC,  (1—¢€) kKuCa

“dz T 7 € 1+ KaCa
dCy (1—€) kK.Cy
"z T T ¢ 1+ KaCh

The Module function for this PFR will be called “pfrl.” The basic backbone of the code was
borrowed from cstrd with appropriate changes to the latter having been made. The arguments
in “pfrl” are the rate constant k, the adsorption equilibrium constant K1, the volume flowrate
q, and the radius of the reactor cross section r. So that we can make comparisons to the CSTR,
we have kept the total volume the same at 1000. Once we specify the radius, that fixes the
circular cross section. This divided into the volume gives the length of the reactor zmax.
Therefore, instead of specifying the reactor length, we simply specify the reactor radius and at
constant volume this fixes zmax. Everything else will be kept the same for comparison sake,
especially € and the holding time %.

In[77]:= pfrlilk_., Kl_, g, r_] :=
Modulel[
{Caf =1, Vv = 1000, vz, Acr, Cao =1, Cbo =0, € = .4,
pfrsolns, Ca, Cb, CA, CB, zmax}
Acr = N[nr?]l;




412 Chapter 9 Continuous Stirred Tank and the Plug Flow Reactors

pfrsolns = NDSolve|[{
(1—€) kKlCalz]
- € 1+Klcalz]’
(1 - €) kKl1cCal[z]
€ 1+Klca[z]’
Ca[0] == Cao, Cb[0] == Cbo},
{ca[z], Cblz]}, {z, 0, zmax}];

vzca'[z] ==

vzCb'[z]

SetOptions[{Plot}, DefaultFont - {"Hevetica", 10}];

CA[z] = Evaluate[Calz] /. pfrsolns];
CB[z] = Evaluate([Cb[z] /. pfrsolnsl;

Plot[{CcA[z], CB[z]}, {z, O, zmax},

PlotStyle - {{Dashing[{0.15, 0.05}]1, GrayLevel[0.6],
Thickness([.02]},

{Dashing[{0.15, 0.05}], GraylLevel[0], Thickness[.02]}},
PlotRange - {{0, zmax}, (0, Caf}},
PlotLabel - ({k "=k", K1 "=K1", q "=q@", r "=xr"},
DisplayFunction - Identity]

]

To see how the program runs we will try it out for a radius of 100 units. This makes zmax
only 10 units. Such a reactor would be odd to find because it would have an aspect ratio of
L:D:1:200. Run at very high volume flow rates, that is, high v., units of this kind are called
short contact time reactors because the gases are within the reactor volume for so little time. In

the present case that time is not short—it is on the order of 100 = 1932.

In[78]:= Showlpfrl[0.05, .01, 10, 100],
DisplayFunction - $DisplayFunctionl];

k, 0.01 K1, 10 d, 00




9.6 Solution of the Steady-State PFR 4i3

We can see that with this particular flow rate the concentrations exiting at the end of the PFR
correspond to approximately 10% conversion. Would this have changed if the radius were
smaller, say, only 1? The answer is no. The reason is that the holding time will be the same
because the volume and flow rate are the same.

In[79]:= Showlpfrl[0.05, .01, 10, 1.1,
DisplayFunction - $DisplayFunction];

0.05=k, 0.01=K1, 10=q, 1 r
- oS e
=UTERLER GRS
0.8
0.6
0.4
0.2
T TS o= ch e LI
“

50 100 150 200 250 300

Now for comparison to the CSTR, we can build a new Module function that allows us to
create a plot of the exit concentration from a CSTR under the same conditions and also as a
“function” of z. Of course, there is no functional z-dependence for the CSTR as we shall see;
the plots will be simply horizontal lines, but graphed over the same range as the axial distance
through the PFR. In this way we can put the two on one graph for comparison. Here is the
steady-state CSTR Module:

Inf80]:= cstrststl[k_, Kl_, g, x_] :=
Module [
{Caf = 1, Acr, V = 1000, € = .4, ststsolns,
Ca, Cb, CA, CB, t},
Acxr = N[nr?];
v
Acr

zmax =

-
’



414 Chapter 9 Continuous Stirred Tank and the Plug Flow Reactors

ststsolns = Solvel[

{0 (Caf - ca) ¥ - (1 - ¢ XKLCa
== ~ Ca)— - - €
v 1+KlCa’
q kKlCa
0 == -Cb— + (1 - €) ————)},
v 1+KlCa

{Ca, Cb}1;
SetOptions[{Plot}, DefaultFont - {("Hevetica", 8}]:

Ca = ststsolns([[1, 1, 2]11;
Cb = gtstsolns[[1l, 2, 2]1]:
Plot[{Ca, Cb}, {t, 0, zmax},

PlotStyle - {{Dashing[{0.15, 0.05}]1, GrayLevel[0.6],
Thickness[.02]}, {(Dashing[{0.15, 0.05}1],
GrayLevel[0], Thickness[.02]}},

PlotRange - {{0, zmax}, {0, Caf}},

PlotLabel - (k "=k", K1 "=K1", q "=q"},

DisplayFunction - Identity]

1

In[81]:= Showl[cstrstst({0.05, .01, 10, 100],
DisplayFunction - $DisplayFunction];

{0.05 =k, 0.01 =K1, 10 =q}
e RIS SN,  SUUMSGNDED SIS

When we put the PFR and CSTR results on the same graph we find:

In[{82] := Show[{pfrl[0.05, .01, 10, 100],
cstrstst[0.05, .01, 10, 100}1)},
DisplayFunction - $DisplayFunction];



9.6 Solution of the Steady-State PFR 415

{0.05 =k, 0.01 =K1, 10 =q, 100 =r}

1

o
3%}

0.005 0.01 0.015 0.02 0.025 0.03

Although the conversions are relatively small, we see that conversion at the exit of the PFR is
larger than that of the CSTR at the same condition by nearly a factor of two!

We can vary the flow rate over five orders of magnitude for both the PRF and the CSTR
to see what will happen. This is done by combining the two functions into one Table and then
plotting the results as a GraphicsArray.

In[83]:= Tablel[{pfr1{0.05, .01, 1. 10", 100],
cstrstst(0.05, .01, 1. 10°, 1001}, {n, -3, 1, 1}1]

Show(
GraphicgArray[%]
1;

Out[83]= {{-Graphics-, -Graphics-}, {-Graphics-, -Graphics-},
{-Graphics-, -Graphics-}, {-Graphics-, -Graphics-},
{-Graphics-, -Graphics-}}

{0.05 =k, 0.01 =K1, 0.001 =q, 100 =r} {0.05 =k, 0.01 =K1, 0.001 =g}
1 o— 1 .
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2

0.005 0.01 0.015 0.02 0.025 0.03 0.005 0.01 0.015 0.02 0.025 0.03



416 Chapter 9 Continuous Stirred Tank and the Plug Flow Reactors

{0.05 =k, 0.01 =K1, 0.01 =q, 100 =r} {0.05 =k, 0.01 =K1, 0.01 =q}
1 - . - . 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
E— Ca— .
0.005 0.01 0.015 0.02 0.025 0.03 0.005 0.01 0.015 0.02 0.025 0.03
{0.05 =k, 0.01 =K1, 0.1 =q, 100 =r} {0.05 =k, 0.01 =K1, 0.1 =q}

’-——— 1

0.8 / 0.8 ;
0.6 0.6
0.4 0.4

0.2 \ 0.2 4

\-— .
0.005 0.01 0.015 0.02 0.025 0.03 0.005 0.01 0.015 0.02 0.025 0.03
(0.05 =k, 0.01 =K1, 1. =q, 100 =r} (0.05 =k, 0.01 =K1, 1. =q}
1 \ 1
0.8 ~— 0.8 .
\
0.6 0.6
==
04 / 0.4
0.2 - 0.2 .
0.005 0.01 0.015 0.02 0.025 0.03 0.005 0.01 0.015 0.02 0.025 0.03
{0.05 =k, 0.01 =K1, 10. =q, 100 =r} ; {0.05 =k, 0.01 =K1, 10. =q)
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
— S— .

0.005 0.01 0.015 0.02 0.025 0.03 0.005 001 0.015 0.02 0.025 0.03

The left-most column of the graphs is for the PFR. Starting at the bottom and working vertically
to the top of the column, we notice that the conversion rises from the low level we saw at q = 10
to nearly complete conversion at q = 0.1 and beyond. For the CSTR the trend is the same:
as q drops the conversion rises, but notice that at ¢ = 0.1 the conversion is ~75%, whereas
at the same condition in the PFR it is complete, that is, 99.99%. In fact, even at q = 0.01, the
CSTR has still not achieved full conversion of the feedstock. Remember: The only difference
between the two cases is that the CSTR is well mixed throughout its volume, but the PFR is



9.6 Solution of the Steady-State PFR _ 417

well mixed only radially, and not at all axially. This leads then to the oft-quoted rule-of-thumb
that the PFR is more efficient than the CSTR. At the same volume of reactor one achieves
higher conversion, or to achieve equivalent conversion the PFR volume can be smaller than
the CSTR volume.

In the previous calculations, we assumed that K1 was small. This forces the rate toward
first-order dependence. Therefore, how does the comparison between PFR and CSTR work
out if we vary K1 over several orders of magnitude to make the kinetics range from first order
to zeroth order? To do this we will fix the flow rate at q = 1 and vary K1 from 1073 to 10° as
follows:

In[85]:= comps2 =
Table[{pfrl1[0.05, 1. 10", 1., 100],
cstrstst[0.05, 1. 10", 1., 1001}, {(n, -3, -0, 1}];
Show[GraphicsArrayl[comps2]];

{0.05 =k, 0.001 =K1, 1. =q, 100 =r} {0.05 =k, 0.001 =K1, 1. =g}
| p— e cs— c— == 1 o
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
— — _— e — —
0.005 0.01 0.015 0.02 0.025 0.03 0.005 0.01 0.015 0.02 0.025 0.03
{0.05 =k, 0.01 =K1, 1. =q, 100 =r} {0.05 =k, 0.01 =K1, 1. =q}
T 1
— :
0.8 T 0.8
‘=‘~;.._h___
0.6 T 0.6
} -
0.4 / 0.4
0.2 ~ 02— — — — —
0.005 0.01 0.015 0.02 0.025 0.03 0.005 0.01 0.015 0.02 0.025 0.03
{0.05 =k, 0.1 =K1, 1. =q, 100 =r} {0.05 =k, 0.1 =K1, 1. =q}
1% / —— CE— S— 1
0.8\ / 08l —— c—— c— —
0.6 ]°~_ 0.6
4
0.4 ]\1 0
0.2 N 0.2

0.005 0.01 0.015 0.02 0.025 0.03 0.005 0.01 0.015 0.02 0.025 0.03



418 Chapter 9 Continuous Stirred Tank and the Plug Flow Reactors

{0.05 =k, 1. =K1, 1. =q, 100 =r} {0.05 =k, 1. =K1, 1. =q]
i — - - 1 e —
0.8 I 0.8
0.6 0.6
0.4 0.4
0.2 0.2

0.005 0.01 0.015 0.02 0.025 0.03 0.005 0.01 0.015 0.02 0.025 0.03

The results indicate that even if the adsorption equilibrium constant is large, the PFR shows
better results than the CSTR. The only time this is violated for an isothermal reaction system
is if the kinetics are of negative order overall, because then the CSTR will actually be more
efficient than the PFR; otherwise the PFR wins.

9.7 Mixing Effects on Selectivities—Series
and Series-Parallel with CSTR and PFR

e e —————————

. —— T

o

In the previous chapter, we examined series and series-parallel kinetics. The extent of mixing
can have an effect on the selectivity to the various products in such reaction networks. The
selectivity is the percentage of the products that are any one of the products. To compute the
yield we take the product of the conversion and the selectivity. Thus the yield is a fraction of
a fraction.

We can begin by computing the selectivities and yields for the series network in the CSTR
versus the PFR first. Consider the simplest series reaction network:

A—->B->D

tab = kiCu;  1oa = koChp

The Module functions for the CSTR and PFR with these species and kinetics are written in
what follows as “cstrABD” and “pfrABD.”

In(87]: Clear(["Global‘'*"]

In[88]:

¢cstrABD[kl1__, k2_, gq_, r_]:=

Module [
{Caf = 1, Acr, V = 1000, ststsolns, Ca, Cb, Cd},
Acr = Nlnr?]l;

v
Zmax = :
ACr
ststsolns = Solvel[
{0 == (Caf - Ca)% - klcCa,

0 == -Cb% + kl1Ca - k2Cb,



9.7

Mixing Effects on Selectivities

0 == —Cd% + k2Cb},

{Ca, Cb, Cd}];
CA = ststsolns[[1l, 1, 2]];
CB = ststsolns[[1, 2, 2]11];
CD = ststsolns[[1, 3, 21];
SetOptions[Plot, DefaultFont - {"Helvetica", 10}];
Plot[{CA, CB, CD}, {t, 0, zmax},
PlotStyle - {{GrayLevel[0.6], Thickness[0.02]},

419

{GrayLevel[.0], Thickness[0.02]}, {GrayLevel[0.8],

Thickness[0.02]}},
AxesLabel - ({z, Cstr},
PlotRange - ({0, zmax}, {0, Caf}},
PlotLabel - {k1l "=kl1", k2 "=k2", q "=q@"},
DisplayFunction - Identity]]

In[89]:= pfraBD[kl_, k2_, q_, r_] :=

Module{
{Caf =1, V=1000, vz, Acr, Cao = 1, Cbo = 0, Cdo =
€ = .4, pfrsolns, Ca, Cb, Cd, CA, CB, CD, zmax},
Acr = N[nr?];

q
vZ = ;
ACr
A\'2
Zmax = ;
AcCr
pfrsolns = NDSolvel({
vzCa’[z] == -klcCalz],
vzCb’ [z] == +klCalz] -~ k2Cb([z],
vzCd’[z] == +k2Cbl[z],
caf0] == Cao, Cb[0] == Cbo, CA[0] == Cdo},

{ca(z], ¢blz], cdlzl}, {(z, 0, zmax}];

CA[z] = Evaluate[Calz] /. pfrsolns];

CB[z] = EvaluateiCb[z] /. pfrsolns];
CcDh{z] = Evaluate[Cd[z] /. pfrsolns];

0,

SetOptions|[Plot, DefaultFont - {("Helvetica", 10}];

Plot{[{cAalz], cCBI[z], CDIz]}, {z, O, zmax},

PlotStyle - {{Dashing[{0.15, 0.05}], GrayLevel[0.6],

Thickness[0.02]},
{Dashing[{0.15, 0.05}],

GrayLevel[0], Thickness[0.02]},
{Dashing[{0.15, 0.05}], GrayLevel[.8],

Thickness[0.02]}},

AxesLabel - ({(z, Pfr},

PlotRange - {{0, zmax}, {0, Caf}},

PlotLabel - {k1l"=kl1l", k2"=k2", q"=q", r"=r"},

DisplayFunction - Identity]]



420 Chapter 9 Continuous Stirred Tank and the Plug Flow Reactors

In[90]:= Showl
GraphicsArrayl
{{pfrAaBD[.4, .03, 10, 101},
{cstrABD[.4, .03, 10, 10]1}}1,
DisplayFunction - $DisplayFunction];

Pir (0.4 =k1, 0.03=k2, 10=q, 10=r}

1Cstr {0.4=k1, 0.03=k2, 10=q}
0.8
0.6
0.4
0.2




9.7 Mixing Effects on Selectivities 421

For both reactors the volumes are identical, and that is critical to this comparison. If B (black
dashed lines, upper part of the graph, and black solid, lower) were the species that we wished
to produce, then for the same volume the CSTR with its perfect mixing produces a higher
yield than does the PFR at the same volume and flow conditions. This is a consequence of the
higher efficiency of the PFR. Notice, however, that if we made the PFR smaller by cutting it
off at z = 0.3 for volume of 19 = 100, then it would be better for the production of B than
the CSTR with a volume of 1000 for the production of B.

Next, we rewrite the two codes to handle another limiting case, that of parallel reactions
of A to form either B or D:

A->B—->D rab=k1CA; T‘ad=k2CB
\
E ¥ae =k3CA

We will take the magnitudes of the two rate constants to be the same as in the previous example,
which makes the rate of formation of B a factor of two greater than the rate of formation of D.
The codes are called “cstrABAD” and “pfrABAD.”

In[{91]:= Clear["Global‘**"]

In[92]:= cstrABAD[kl_, k2_, k3_, gq_, r_1:=
Module [
{Caf = 1, Acr, Vv = 1000, ststsolns, Ca, Cb, Cd4, Ce,
Ca, CB, CD, CE},
Acr = N[nr?];

v
Zmax = ;
Acr
ststsolns = Solvel[
{0 == (Caf - Ca):—I’ - k1Ca - k3Ca,
0 == -CbY + kica - k2Cb,
v
0 == -Cd% + k2Cb,0 == -Ce% + k3Ca},{Ca,Cb,Cd,Ce}];
Ca = ststsolns[[1, 1, 2]]:;

Cb = ststsolns[[1, 2, 2]];

cd = ststsolns[[1l, 3, 2]1;

Ce = ststsolns([[1l, 4, 211:;

SetOptions[Plot, DefaultFont - ({"Helvetica", 10}]:

Plot[{Ca, Cb, C4, Ce}, {t, O, zmax},

PlotsStyle - {
{Thickness[0.02], Dashing[{0, 0}], GrayLevel[0.1]},
{Thickness[0.02], Dashing[{0.02, 0.03}], GrayLevel[0.31},
{Thickness[0.02], Dashing[{0.05, 0.05}], GrayLevel[.5]},
{Thickness([0.02], Dashing{{0.1, 0.1}], GrayLevel[.71}
},



422 Chapter 9 Continuous Stirred Tank and the Plug Flow Reactors

PlotRange - {{0, zmax}, {0, Caf}},
PlotLabel - {CSTR, k1l "=k1", k2 "=k2", k3 "=k3"},
DisplayFunction - Identity]
]
General::spelll: Possible spelling error: new symbol
name ”“cstrABAD” is similar to existing symbol "cstrABD”.
In[93]:= pfrABADI[k1l_, k2_, k3_, gq—, r_]:=
Module[
{Caf = 1, VvV = 1000, vz, Acr, Cao = 1, Cbo = 0,
Cdo = 0, Ceo = 0, € = .4, pfrsolns, Ca, Cb, C4d, CA,
CB, CD, zmax},
Acr = N[7r?);

q
vz = H
Acr
v
zmax = H
Acr

pfrsolns = NDSolvel({

vzCa’[z] == -klCa[z] - k3Calz],
vzCb’ [z] == +klCal[z] - k2Cblz],
vzCd’ [z] == + k2Cb[z],
vzCe’ [2z] == + k3Calz],
ca[0] == Cao, Cb[0] == Cbo, Cd[0] == Cdo,
Ce[0] == Ceo},

{Calzl, Cb[z], Cd[z], Ce[zl}, {(z, 0, zmax}];
CA[z] = Evaluate[Ca[z] /. pfrsolns];
CB[z] = Evaluate[Cb[z] /. pfrsolnsl];
CD[z] Evaluate[Cd[z] /. pfrsolns];
CE[z] Evaluate[Ce(z] /. pfrsolnsl];
SetOptions[Plot, DefaultFont -+ {"Helvetica", 10}];
Plot[{CA[z], CBI[z]l, CD[z], CE[z]}, {z, O, zmax},
PlotStyle - {
{Thickness[0.02], Dashing[{0, 0}], GrayLevel[0.1]},
{Thickness[0.02], Dashing[{0.02, 0.03}], GrayLevel[0.3]1)},
{Thickness[0.02], Dashing{{0.05, 0.05}], GrayLevel[.5]1},
{Thickness[0.02], Dashing[{0.1, 0.1}], GrayLevel[.7]}
},
PlotRange -+ {{0, zmax}, {0, caf}},
PlotLabel - (Pfr, k1 "=k1", k2 "=k2", k3 "=k3"},
DisplayFunction - Identity]
]

General::spelll: Possible spelling error: new symbol
name "pfrABAD” is similar to existing symbol “pfrABD”.



9.7 Mixing Effects on Selectivities 423

In[94] := Showl[
GraphicsaArrayl
{{pExrABAD[.05, .1, .025, 10, 10]),
{cstrABAD[.05, .1, .025, 10, 10]1})
1,
DisplayFunction - $DisplayFunction];

{Pfr, 0.05=k1, 0.1 =k2, 0.025 =k3}

{CSTR, 0.05=k1, 0.1 =k2, 0.025 =k3}

0.8
0.6

i = TS TS O T o T $TaES 2dES
0.4

| [ P IR S Ak I 50 QT T WA SR ®

0.5 1 1.5 2 25 3
A =Blk Sld; B =BlkDSh; D =LtGryDsh; E=DkGryDsh.



424 Chapter 9 Continuous Stirred Tank and the Plug Flow Reactors

We see once again that the overall conversion is higher in the PFR than in the CSTR and that
the fractions of D and E in the products are therefore larger than in the CSTR. The efficiency
of the PFR with positive order kinetics versus the perfectly mixed CSTR raises an interesting
question—if one were to divide the volume of one CSTR into two CSTRs in series of equal
volume, would there be any change in efficiency? What if there were three or even more
CSTRs in series with equal volumes that all summed up to that of the original one—would
there be a significant difference? We address this in the next section.

9.8 PFR as a Series of CSTRs

The main difference between the PFR and CSTR idealizations is the mathematical one of a
spatially distributed versus homogeneous system, which leads to quite different equations. If
one were to take the globally homogeneous CSTR and break it up into smaller homogeneous
regions, then in the limit of an infinite number of these taken in series they would become
equivalent to one PFR of equal total volume. We can see this by comparing one, two, three,
and more CSTRs in series with one PFR. As the number of CSTRs increases the results will
approach the PFR (see Figure 6). The simplest way to do this is to write bit of code that allows
us to specify the total volume and then to vary the number of contiguous homogeneous cells
that are present. We can begin by taking a look at the case of A — B with linear, irreversible
kinetics, because this is simple. We also understand it well because we can solve it exactly.
The steady-state solutions for one CSTR are shown here:

In[95]:= ststsolns = Solvel

{0 == (Caf - Ca)% - kl1cCa,
q
0 ==-Cb— + klCa},
v
{Ca, Cb}]
Cafklv Cafg
out{95]= {{Cb ——, Ca - 1}
g+klv g+k1lv

We can generalize this for any nth CSTR in a series as follows:

In{96]:= Clear[ca, cb, q, Caf, ntot, Vtot, k, nl]

Solve[
{0 == (Ca[n - 1] - Ca[n])% - kCaln]l,
0 == (Cbn - 1] - Cb[n])% + kcalnl},

{Caln], Cbin]}

]
kvCal[-1+n] gCal-1+n]
Out(97]={{Cb[n] » —  +Cb[-1+nj,Caln] » —1}}
g+kvVv a+kv



9.8 PFR as a Series of CSTRs 425

1
’_

CSTR Vo [ [ .

Figure 6

This is a recursion formula for the exact case. We would like to be able to apply this to
any number n of CSTRs in series and find an analytical and then quantitative result for
comparison to the exact PFR result. To do this we need recursive programming. There are
three programming styles in Mathematica: Rule-Based, Functional, and Procedural. We will
attack this problem in recursion with Rule-Based, Functional, and Procedural programming.
We can begin by looking at the rule-based recursion codes for Ca and Cb in any n CSTRs.

The “seeds” for these rules are the solutions for the first CSTR, and then these exit con-
centrations become the inlet concentrations to the second CSTR, whose exit concentrations
become the inlet concentrations for the third CSTR, and so it goes on through to n CSTRs.
We can have Mathematica assemble the equations and the variables that we will need for the
Solve routine. This is illustrated with n = 3:

Inf98]:= n = 3
Clearliq, V, Vo, k, Caf, Cbf, Cdf, Ca]

Table[{(Cali - 1] - Ca[i])% - kcafi] == 0,
(Cb[i - 1]—Cb[i])% + kCa[i] == 0},
{i, 1, n}]

vars = Table[{Cal[i), CbI[il)}, {i, 1, n}]



426 Chapter 9 Continuous Stirred Tank and the Plug Flow Reactors

out[98]= 3
General::spelll : Possible spelling error: new symbol
name “Cdf” is similar to existing symbol ”CDF”.

+Q(CbEOI—Cb[l])

out[1007= ((HRZCARD ycqry) oo 0,kcar) . == 0},
{q(Ca[l]—Ca[Z]) -kCa[2] == O,kCa[2]4-Q(Cb[l]_Cb[2]) == 0},
v v
(3Cal2l 2Cal3l) scara) == 0,kcar3)« LRI oy,
v v
Out[101]= {{Ca[l], Cb[11}, {Cal2], Cb(2]}, {Cal3], Cb[3]}}
Now we place these into Solve as follows:
In[102]:= Clear[q, V, VO, kl cafl be, Cdf, n, ca]
n=4;
Vo
vV = H
n
Timing[eqns = Table[{(Ca[i-—l]-Ca[i])%-—kCa[i] == 0,
(CbLi - 1] - CBIi])J +kCalil == 0},

{i, 1, n}l;
vars = Table[{Cal[il, CbI[il)}), {i, 1, n}]l;
ca[0] = caf;
Cbio0] = 0;
solns =
Flatten[Solve[Flatten[egns], Flatten[vars]]]]

Out{105]= {0.22 Second, {Cb[4] -
-256 Caf kg’ Vo - 96 Caf k?q® Vo? - 16 Caf k*qVo? - Caf k? vo?

- 1

(4g+kVo)*
-8 Caf kqVo - Caf k? Vo?
Cb[2] - ’
{(4g+kVo)?
-48caf kg?vo - 12 Caf k?qVo? - Caf k’vo>
Cb[3] - - .
(4g+kvVvo)?
Caf k Vo 256 caf g*
Cbl1] —F, Caf4] -» ———,
4g+kVo (4g+kvVvo)?
64 caf ¢’ 16 caf g
Cal3] -\ Caf2] » —mM8M8M8M8™—,
(4g+kVo)3 (4g+kVo)?
4 Caf g
Calll] _
4g+kVo

We see that in this program the equations are first written explicitly from n = 1 to n, their
output is suppressed, but then they are solved symbolically. We have enclosed the overall



9.8 PFR as a Series of CSTRs 427

functions in “Timing” in order to obtain a report of the CPU time required to conduct this.
By supplying the necessary parameters and changing Solve to NSolve, we can find a solution
for the outlet of n-CSTRs. We make this into a Module function of n, the number of CSTRs:

In[106]:= << Miscellaneous‘RealOnly"‘

In[107]: Clear|[Cstr, cstr, q, V, Vo, k, Caf, Cbf, Cdf, n]

Clear{"Global‘*"]

General::spelll : Possible spelling error: new symbol
name “cstr” is similar to existing symbol ~“Cstr”.

Inf[109]:= cstr[n_] :=
Module [
{g = 10, Vo = 100, k = 0.1, eqgns, vars, solns, i},
- voo
" n
eqns = Table[{(Ca[i - 1] - Ca[i])% - kca[i] == 0,

(Cbli - 1] - Cb[i])% + kca[i] == 0},

{i, 1, n}l;
vars = Table[{Cafi], Cb[il}, {i, 1, n}];
cal[0] = 1;
Cb[0] = 0;
solns = NSolve[Flatten[egns], Flatten[vars]l][[1]];
{solns[[2 n - 1]1,
solns[[2 n]l}]

Now we can try out this module program with 1000 CSTRs in series and check its timing;:

In[110]:=¢cs8tr[1000] // Timing
Out[110]={14.22 Second, {Cal[l1000] - 0.368063, Cb[1000] — 0.631937}}

We have called the package “Miscellaneous’RealOnly” to avoid the complex solutions that
might otherwise be returned. We have also taken just the solutions from the last CSTR by using
{solns[[2n — 1]], solns[[2n]]}. Now we can use the “listability” of this function cstrn] and
Map it down a vector of values for n. The infix form for Map is /@ and so we use it as follows:

In[111]:= n = {1, 2, 3, 10, 20, 100, 1000};
cstr /@n // Timing

Out[112]= {16.26 Second, {{Cal[l] —» 0.5, Cb[1l] - 0.5},
{Ca[2] — 0.444444, Cb(2] - 0.555556},
{Cai3] — 0.421875, Cb[3] —» 0.578125},
{Ca[10] — 0.385543, Cb[10] — 0.614457},
{Ca[20] — 0.376889, Cb[20] - 0.623111},



428 Chapter 9 Continuous Stirred Tank and the Plug Flow Reactors

{Ca[l00] - 0.369711, CbI[100] - 0.630289},
{Ca[1000] — 0.368063, Cb[1000] —» 0.631937}}}

This computation took ~47.75 sec of CPU time on an old Pentium I processor but just 2.1 sec
on a newer 1-GHz Pentium chip. We added //Timing after the command line also in infix
form, in order to obtain this information. The time will vary with different machines and
processors. More important, what we notice is that there is a large change in Ca and Cb when
we go from one CSTR to 2 or 3 or even to 10, but when we get beyond 10 to 20, 100, and even
1000, the increase in the number of CSTRs gives diminishing returns.

In the following code we solve the equations for the PFR at the same conditions and with
the same parameter values, especially that of the volume Vo.

Inf113]:= Clear["Global‘*"]
Infl114]:= Caf = 1;
Vo = 100;
q = 10;
kl = .1;
zmax = 10;
vo
A = H
zZmax
d
vz = —;
A
pfr = NDSolvel
{vzCa’{z] == -klcCa(z],
vzCb’ [z] == +klCalz],
Cal[0] == Caf, Cb[0] == 0},

{ca[z], Cblzl},
{z, 0, zmax}];

CA[z_] := Evaluate[Calz] /. pfrl:
CB{z_] := Evaluate[Cb{z] /. pfrl:;

{CA[zmax], CB[zmax]}// Timing

General::spelll: Possible spelling error: new symbol
name “pfr” is similar to existing symbol “Pfr~”.

Out[124]= {0. Second, {{0.367879}, {0.632121}}}

Here we see that the limiting values of Ca and Cb are 0.37 and 0.63, respectively, exit con-
centrations which were nearly identical to those obtained with the large number of CSTRs
(>100) and closely approached by even 10 CSTRs. The important point we learn from this is
that even with two or three CSTRs we begin to move toward the PFR limit.

Now we will return to the recursive programming part of this problem because it is a
prototypical type problem we can expect to encounter often in chemical engineering analysis



9.8 PFR as a Series of CSTRs 429

and computations. We can now try functional programming to derive the solutions that we
seek. We know the solution for Ca at the exit of the first CSTR and we have a recursive
relationship for the exit concentrations emerging from the next n-CSTRs. Therefore, we can
put these two together into a functional program as follows:

In[125]:= Clearca, V, g, Caf, Vol

gCaf
cal[l)] = ———;
q + kV
gqca[n - 1]
caln_] := caln] = ————
q + kv

We can see how this works. We defined the seed for ca[1] first and then we created the function
for any caln] as follows:

ca[n_] := ca[n] = %

Taking n = 4 we find:

In[128]:= cald]l

caf g*

Qutf{l128]= ———
utl (q+kv)?

Recall that in this recursion relation the symbol V =Y2; therefore, we can redo the computa-
tion to derive:
Vo

In[129]:= V = a H

cal4]
Together [%]

caf g*

out[130]= —————
(g+52)e

256 Caf gl

Outf{131}]= ————
f ] (4g+kvVo)4

Referring back to the earlier solution that we derived for n = 4, we see that the two agree
perfectly. The function for caln] may be used in the Table function to derive the first four
solutions symbolically:

In{132]:= n = 4;
Table[cal[x], {x, 1, n}]
Together [%]



430

Out(133]=

Out134]=

Chapter 9 Continuous Stirred Tank and the Plug Flow Reactors

( caf g caf g° caf ¢° caf q*
kvo k Vi 4 k Vv ! k Vi
a+ i (@) (g R (g )
4cafg 16 Caf g° 64 caf o’ 256 caf g

{4q+kVo'Mq+kVoV'(4q+kVoP'(4q+kVoﬂ

This is a simple and yet very powerful use of Mathematica’s set-delay utility : = . The right-hand
side is the whole recursive equation with an equal sign, but by placing this after the set-delay
: = it becomes a pattern that will not be evaluated until n is specified. When n is specified,
then it begins with the seed and evaluates the function until it gets to the value of n. Thus,
when we set n = 4, we obtain the concentration expression for the exit of the fourth CSTR. If
we place the function in a Table, and set n = 4 we obtain the exit concentrations for all four
of the CSTRs. We follow the same procedure for cb[n] as shown here:

In[135]:

In[139]:

Out[139]

Out[140]

Out[141]

Clear([cb]
Vo
vV = H
Caf kv
cb[1l] = ;
qg+kVv
kVcaln-1]
cb[n_] := cb[n] = —— + cb[n-1]
qg+kVv
8 = 4
cbls]
Together [%]
4
cafkqg’vo cafkag’vo cafkgVo caf k vo
+ +
A+ 521 a(q+ER)3 A(q+ER)2 4(g+ ER)
256 Caf kg’ Vo + 96 Caf k?*q? Vo + 16 Caf k*qVo? + Caf k? vo!
(Ag+kvVo)!

Again, the solution for Cb at the exit of CSTR number 4 matches that previously derived.
Note also that this solution for B was explicit in n because we had already defined ca[n]. If we
had not done this, then what follows is what we would have seen:

Infil42]:

In[143]:

Clear(["Global**"]

Vo
vV = H
s
Caf kv
cb[1l] = ;
q+kVv
kvcaln-1}
cb[n_] := ¢cbfn] = —— +cb[n-1]
qg+kvVv
8 = 4
cb(s]

Together [%]



9.8 PFR as a Series of CSTRs 431

OQutfl46]= 4
caf k Vo kvVocal[l]l] kVocal[2] kVocal3]
+

out[147]=

+ +
d(g+5R)  a(g+ER)  a(g+ER)  ag+ER)
CafkvVo+kVocal[ll +kVocal[2] +kVocal3]

Out[148]=

4g+kVo

To avoid any such problems we simply place the two sets of functions together into one
working cell as follows:

In[149]:= Clear["Global**"]

Vo
In[150]:= = :
-]
gCaf
cal[l] = ;
qg+kVv
gqcaln-1]
ca[ln_] := cafjn] = ——M—
qgq+kVv
Caf kv
cb[l] = ;
q+kvVv
kVca[n-1]
cb[n_] := cb[n] = ——— +cb[n-1]
q+kV

Testing the result we obtain:

In[155]:= 8 = 4;
{Together [ca[s]], Together[cb[s]]}

256cafqg? 256Caf kg’ Vo + 96 Caf k?q® Vo? + 16 Caf k*qVo? + Caf k?vo*
Out[156]= | . }
(4g+kVo)* (4g+kVvo)?

We can apply values to the parameters and the values n. We use s to define the number
of CSTRs rather than n per se in order to avoid a name clash that leads to an infinite loop.
Before we try this, however, we shall set the $RecursionLimit to 1000. The default value of
256 is not sufficient for us to go out to numbers as large as n = 1000 CSTRs.

In[157]:= Clear["Global‘'*"]

In[{158] := $RecursionLimit = 2000;

Vo
VvV = H
gCaf
cal[l] = ;
qgq+kVv
qcain-1]
ca[n_] := ca[n] = ——
qg+kVv
CaftkvVv
cbll] = H
qg+kVv
kVcain-1]

cb[n_] := cbin] +cb[n-1]

q+kV



432 Chapter 9 Continuous Stirred Tank and the Plug Flow Reactors

Caf = 1;
k= .1;
q = 10;
Vo = 100;
s = 1000

{cals], cblsl]} // Timing
Qut[168]=1000
Out[169]={1.49 Second, {0.368063, 0.631937}}

We can see that this is a huge speed-up from the original code that we wrote in which we first
rewrote all the equations and then did the computations. This new program required only
291 sec on a Pentium I to do the same and just 0.17 sec with the 1-GHz Pentium III processor.

We can also solve this recursion problem more traditionally using a procedural approach.
The recursion in this case is buried within a “Do” loop, which is the classic structure in the
procedural programming paradigm. The “Do” loop is placed within a Module function to
keep all the variable names localized:

In[170]:= calin_] :=
Module[{m, ca},

_ Vo
~on’ caf [m-1]
Dofcall] = oo ;ca(m] = *2 "0 (m,0,n}1;
q+kVv q+kV
caln]
]
In[171]:= call4l
Together [%]

Out[171]= 0.4096

Out{172]= 0.4096

Within the Do loop we have the same recursion that we had implemented by rules—we specify
the seed as cal[1] and then the recursion relation as calm]. The set-delayed function argument of
cal[n_]suppliesn, as the limit of the iterative sequence. The last statement just outside the Do
loop writes the value of ca[n] and then it stops. We implement the same approach for species B:

In{173]:= Clear[cal]
Inf[174]:= ¢blIn_] :=
Module[{m, cb},
vV = %g;
CafkVv
Do{cb([1l] = ;

q+kV'



9.8 PFR as a Series of CSTRs 433

cal[m-1lkV
cbm] = ———— +cb[m-1],{m, 0, n}l;
q+kV

cbn]
]

In[175] :=cbl[4]
Together [%]

Oout[175]= 0.2+0.2cal[l]+0.2cal[2]+0.2cal[3]

Out[176]= 0.2+0.2call[1]1+0.2cal[2]1+0.2call3]

In order to evaluate the expression fully in term of just the parameters, we need the expression
for calln] to have been evaluated. We do the two in one cell to make this happen:

In[177]:= cacb[n_1:=
Module[{m, ca, cb},

Vo
V=rni
gcCaf
Do[{ca[0] = caf, ca[l] = —, cb{0] = O,
q + kv
Caf kV
cb[1l] = —1};
q+ kvV
gqcalm - 1] ca[lm - 1]kV
{ca[m]=————, cb[m]l=—— —+—— + ¢cb[m - 11},
q + kv q+kVv

{m, 1, n}];
{Together{caln]l]], Together[cb[nll}
1

In[178]:= cacbl4]
out[178]= {0.4096, 0.5%04}

This works very nicely indeed. We can apply numerical values to these solutions, solve, and
even obtain the timing for a comparison to the rule-based and functional programming cases:

In[179]:= Caf = 1;

k= .1;
q = 10;
ntot = 10;
Vo = 100;

cacb[1000] // Timing
Out[184]= {1.43 Second, {0.368063, 0.631937}}

We see here that the procedural solution is identical to the asymptotic solutions obtained
earlier and the time to do n = 1000 is only 1.98 sec of CPU on a Pentium I and 0.22 on the



434 Chapter 9 Continuous Stirred Tank and the Plug Flow Reactors

Pentium III (I GHz), which is much faster than the first, rule-based program and a little slower
than the functional implementation. Once again we apply the function cacb that we have
created in listable so we can Map it down the vector of n values that we had used before in the
rule-based computations and we can compare timings:

Inf185]:=n = {1, 2, 3, 10, 20, 100, 1000};
cacbhb /@n // Timing

Out[186]= {1.59 Second,
{{0.5, 0.5},{0.444444,0.555556},{0.421875,0.578125},
{0.385543, 0.614457}, {0.376889, 0.623111},
{0.369711, 0.630289}, {0.368063, 0.631937}}}

When we did this via brute force using all the equations and no recursion, we utilized 17.54
sec of CPU time while the procedural program required just 1.26 sec.

Now we can compare how the conversions grow to the PFR limit as the number of CSTRs
increases. First we compute the concentrations of species A and B for 1-150 CSTRs.

In[187]:=n = {1, 2, 3, 5, 10, 20, 30, 50, 60, 90, 100, 150};
cstrconcs = cacbhb /@n
Out[188]= {({0.5, 0.5}, {0.444444, 0.555556}, {0.421875, 0.578125},

{0.401878, 0.598122}, {0.385543, 0.614457},
{0.376889, 0.623111}, {0.373927, 0.626073},
{0.371528, 0.628472}, {0.370924, 0.629076},
{0.369914, 0.630086}, {0.369711, 0.630289},
{0.369102, 0.6308981}}

Out[198]= {{0.5, 0.5}, {0.444444, 0.555556}, {0.421875, 0.578125},

{0.401878, 0.598122}, {0.385543, 0.614457},

{0.376889, 0.623111}, {0.373927, 0.626073},

{0.371528, 0.628472}, {0.370924, 0.629076},

{0.369914, 0.630086}, {0.369711, 0.630289},
0

{0.369102, 0.630898}}
Next we plot these versus the PFR limiting concentrations:

In[189]:= << Graphics‘*MultipleListPlot"®

In[190]:= calist = Table[{n[[x]], cstrconcs[[x, 1]1]}, {x, 1, Lengthin]}];
cblist = Table[{n[[x]], cstrconcs[[x, 211}, {x, 1, Lengthnl}];

MultipleListPlot|
calist, cblist, DefaultFont - {"Helvetica", 15},
SymbolShape - {PlotSymbol[Triangle, 5], PlotSymbol[Box, 51},
SymbolStyle - {GraylLevel[0], GrayLevel{[0.5]},



9.9 Residence Time Distribution 435

Epilog = {
{GrayLevel[0.5], Line[{{O0, .63}, {150, 0.63}}1}.,
{Line[{{O0, 1 - .63}, {150, 1 - 0.63}}1}
},
AxesLabel - {"n-CSTRs", "Ca,Cb"},
PlotLabel - "nCSTRs (pts.) - PFR (lines)"
1;:

General::spelll : Possible spelling error: new symbol name
"cblist” is similar to existing symbol “calist”.

Ca,Cb nCSTRs (pts.) » PFR (lines)
s == e 4
0.6 u"

0.55 :

0.5¢

045
A

A
| 420440460 80,100 120 140,

After approximately 30 CSTRs in series the result is the same as one PFR of equal volume. This
makes sense mathematically in terms of our analysis and it also makes good sense intuitively

n—-CSTRs

because we are using the same total volume more efficiently.

9.9 Residence Time Distribution

We first encountered in Chapter 3 on mixing in multicomponent systems the problem of
bypassing and less than perfect mixing. If we have two or more reactants that must mix in
order for reaction to occur, then any deviations from a single-valued residence time distribu-
tion will show up as an apparent deviation from the predictions based upon perfect mixing.
The spread in the residence time distribution leads to different extents of reaction for the fluid
elements with these different times.

The lack of perfect mixing leads to this distribution. Recirculation zones may lead to
longer than average residence times in some regions of the tank and bypassing to shorter than
average time (see Figure 7). Longer or shorter times can translate into regions of higher or
lower conversion. It is this type of problem we want to examine now.



436 Chapter 9 Continuous Stirred Tank and the Plug Flow Reactors

Figure 7

We have developed the equations for a steady-state CSTR in which the reversible reaction of
A and B produces D and one mole of D reacts back to produce A and B but the kinetics are
second order:

A+B =D
0= (Caf—Ca)qV — kab CaCb + kd Cd?

0 = (Cbf — Cb)% — kabCa Cb + kd Cd?

0= —quv + kabCaCb — kd Cd?

0=qgbf—q
0= (Caf—Ca) —kabCaCb + kd Cd?
0= =D bcach+ kdCd?

0= —(;—b +kabCaCb — kd Cd?



9.9 Residence Time Distribution 437

Of course { = , theholding time for the fluid in the reactor. When we derived these equations
we did so under the assumption of perfect mixing, or complete back-mixing, which is another
term for this idealization. If there were perfect mixing, then there would be just one residence
time and that would be the same as the holding time 8. When the residence time distribution
is a DiracDelta function at one time, then we have one holding time. But what if this is not
the case? What if, instead, the times spent by fluid elements are distributed about some mean
value—then what? Well, then we would have to average these equations over the distribution
to get the average concentration emerging from the less than perfectly mixed reactor. We begin
by solving the equation in terms of :

In[193]:= Clear["Global‘**"]

In[194]:= ecstr = Simplifyl[
Solvel

(Caf - Ca) 2

{0 == f - kabCacCb + kdcd“,
(Cbf - Cb) 2

{0 == f - kabCaCb + kdcd“,
ca )

0 == —7 + kabCaCb — kdcd‘},

{Ca, Cb, Ccd}ll;
TableForm[cstr, TableDirections - {Column, Column}]

OQut{195]//TableForm =
1+ Cbf kab# - caf (kab - 2kd)# + /-4Caf CbE kab (kab - kd)#- + (1 + Caf kab# + Cbf kab)

Ca
2(kab-kd)#

b — 1+ Caf kab# - Cbf {(kab - 2kd}# + - 4Caf Cbf kab (kab - kd)#“ + (1 + Caf kab# + Cbf kab#)"-
2 (kab-ka)#

cd — 1+ Cbf kab# + Caf kab# + /- 4Caf Cbf kab (kab - kd}#? + (1 + Caf kab# + Cbf kab#)*

2 (kab-kd)#
c _y 1-Cbikabd+Caf (kab = Zkd)t + v/ = 4Cat Cbt kab(kab = kd) 07 + (1 +Cat kabtl +Cbt ka1 ?
a T kab T kd 10

b — -1-Cafkab# +Cbf {kab-2kd)# + /- 4Caf Cbf kab (kab - kd)#? + (1 + Caf kab# + Cbf kab#) *
2{kab-kd)#

ca 1+ Cbf kab# + Caf kab# - /- 4Caf Cbf kab (kab - kd)#? + (1 + Caf kab# + Cbf kab#)~

2 (kab-kd)#

The next step is to express these as functions of 6. By examination, we can find that the second
set of solutions is the one that leads to physically realistic values of the concentrations; thus
we use these:

In[196]:= Clear[Ca, Cb, Cdl
calf_] = cstrl[2, 1, 2]];
Cb[0_1] cstr(([2, 2, 2]];
cdfo_1 cstr{2, 3, 2]11]1;



438 Chapter 9 Continuous Stirred Tank and the Plug Flow Reactors

Testing the solutions requires putting them back into the equations to see if they are valid:

Caf -Cal[6
Inf200] := {Simplify([0 == i——_—agj—ll—-kabCa[G]Cb[9]+ded[0]2],
Cbf -Cb[6f
Simplify[0 == (—O—I:—ﬂ—kabCa[Bl Ccbh[0]1 +kdcd[8]?]1,
care
Simplify[0 == - [ ]+kabCa[0] Cb{01 -kdcdl81%1)

Out[200]= {True, True, True}

This shows that the functions we are using do indeed satisfy the equations for the steady-state
CSTR.

We will use the NormalDistribution to make the representations of the residence time
distribution. The Probability Density Function (PDF) is made up of the Normal Distribution
and the variable 6. This can be integrated in closed form:

Inf{201]:= << Statistics‘NormalDistribution:®

In[202]:= Clear[ndist, pdf, O, 60, Omin, Omax]
ndist = NormalDistribution[fm, 60];
pdf = PDF[ndist, #];

Integrate[pdf, (6, Omin, 6Hmax)]

General::spelll: Possible spelling error: new symbol
name “pdf” is similar to existing symbol “PDF”.

General::spelll: Possible spelling error: new symbol
name “fm” is similar to existing symbol "6~.

Hm+(~)max = 6m+#H#min
V5 80 Erf [ —TEmex] - /T80 EBxf [ T CEE

JE39

Because the Normal distribution PDF requires a mean value and a variance, we supply these
and then Plot the result in order to visualize the distribution. We have purposefully chosen
a very narrow distribution for the first case. Next the parameter values are assigned and we
Integrate the products of the concentration functions and the PDF in € over the range of 6
values. As shown in the following graph, these are the residence-time-averaged values of the
concentrations and the conversion of A and B:

Out[205]=

In[206]:= 6m = 10;

60 = .2;
fmin = 0.001 Om;
Omax = 5 6m;

ndist = NormalDistribution[fm, 60];
pdf = PDF[ndist, 01;
NIntegratel[pdf, {6, Omin, Omax}]
NIntegratel[0 pdf, (0, Omin, 6fmax}]/



9.9 Residence Time Distribution 439

NIntegrate[pdf, {6, O6min, Omax}]

Plot [pdf,
{6, .0001 O6m, 26m},

AxesLabel - ({"6", "PDF[O1"},

PlotStyle - {GraylLevell[0.4], Thickness[0.01],
Dashing[{0.02, 0.03}1},

PlotRange - {{0, 20m}, (0, Max[Table[N[pdf] + .1,
{6, Omin, 6max}11}},

Epilog - {Line[{{fm - .01, 0}, {fm - .01,
Max[Table [N[pdf] + .1, {6, Omin, Omax}11}}1},
PlotLabel - "6m"]l;

Caf = 1;
Cbf = 1;
kd = 1.1;
kab = 2.2;
cave = NIntegrate[Ca[f8]pdf, {6, 6min, Omax)}]
NIntegrate[pdf, {0, fmin, fmax}]
_ NIntegrate [Cb{0#]pdf, {0, 6min, Omax)}]
cdave = NIntegrate [pdf, {f,6min, fmax)]
NIntegrate[CA[f] pdf, {(#,0min, Omax}]
cdave =

NIntegrate{pdf, {#,6min, Omax}]
100(1 - cave)

out[212]= 1.

out[213]= 10.

PDF[#] om
- 1
)

%

1.5 L[
I

Ul

1 ||
Ul

L)

0.5 i i
I
I

2.5 5 7.5 10 12.5 15 17.5 20



440 Chapter 9 Continuous Stirred Tank and the Plug Flow Reactors

Out[219]= 0.432349

General::spelll: Possible spelling error: new symbol
name “cbave” is similar to existing symbol “cave”.

out[220]= 0.432349

General::spell: Possible spelling error: new symbol
name “cdave” is similar to existing symbols {cave,
cbave}.

Out[221]= 0.567651
Out[222]= 56.7651

In[223]:= Clear["Global‘'*"]

Rather than copy this code cell multiple times and run it successively, it would be much
better to create a Module function, but even better than a Module function would be a Package.
A Package is a program that we can call at any time simply by loading it and then running it.
This will allow us to run without name collisions and to use what we have developed outside
of this notebook context. Normally, when we are running Mathematica we are operating in the
Global context, which is why we have often started our codes cells with Clear[”Global’*"].
This means clear all the variable names that we have made or used within the Global context.
To find out which context we are in we input:

In[224]:= $Context

Out[224]= Global:

Contexts are very much like directories and you can find much written about this topic else-
where. We will create a package called cstrresdist, which we will store in a folder called
AddOns within the Applications folder. The inputs will be the forward and reverse rate con-
stants kab and kd, the mean residence time m, and the variance in the residence time 66.
The general form for a Package is:

Begin Package[ “Context'PackageName”]
PackageName::Usage="Narrative explanation of Package...”
Begin["“’Private’”]

function name| variables_]: = ...

End[ ]

EndPackage [ ]

We will use this format and the functions we have defined will be implemented as a Module
Function. For the case at hand, instead of making the Context = AddOns’, it has been placed
directly into the Global” context.



9.9 Residence Time Distribution 441

In/225]:= BeginPackage["Global‘'‘cstrrtd‘",
{"Statistics'ContinuousDistributions‘'",
"statistics‘NormalDistribution'",
"Statistics‘Common'DistributionsCommon‘",
"sStatistics‘'Descriptivestatistics"

3

cstrrtd: :Usage = "cstrrtdlkab,kd,fm,60] creates the
r.t.d, plots it and then computes the average exit
concentrations of A and B and the conversion of A"
Begin["‘Private‘"]

cstrrtdl[kab_, kd_, fm_, 66_] :=
Module [
{Caf = 1, Cbf = 1, caave, cbhave, cdave, a, b, 8,
conversion, x, vy, z},
fmin = 0.0016m;
fmax = 560m;
cal[f_] = 1 (-1 - Cbfkab8 + Caf(ka - 2kd)8
2(kab - kd4)8

+4/(-4cafCbfkab (kab - kd) 6 + (1+Cafkabf+Cbfkab#)?));

1
cdlO_1 = (1 + cafkabf + Cbfkab@-
2(kab - kd)@

V/(-4CafCbfkab(kab - kd) 6%+ (1 + Cafkabf + Cbfkabf)?));
distfuncix_, y_, z_] = PDF[NormalDistribution[x,v].,z];

Plot [distfunc[fm, 66, 0],
{6, .00016m, 26m},

AxesLabel - ({"O", "PDF[0]"},

PlotStyle - ({GrayLevel[0.4], Thickness[0.01],
Dashing[{0.02, 0.03}1},

PlotRange -
{{0, 26m)}, {0, Max[Table[N[distfunc([fm, 60, 611,
{6, Omin, O6max}11}},

Epilog - {(Line[{{fm, 0},
{6m, Max[Table[N[distfunc([fm, 66, 611,
{6, Omin, OAmax}11}}1},

PlotLabel - "fm"];

a = NIntegrate[distfunc(fm, 660, 01, (0, 6min, Omax}];
b = NIntegrate[f distfunc[fm, 60, 6], (0, Omin, Omax}]/
NIntegratel[distfunc[fm, 60, 081, {0, Omin, Omax}];

caave = NIntegratel[cal[f) distfunc[fm, 60, 0], {0, Omin, Omax}]/
NIntegrate[distfunc[fm, 60, 6], {f, Omin, Omax}];



442 Chapter 9 Continuous Stirred Tank and the Plug Flow Reactors

cdave = NIntegrate[cd[f8] distfunc[fm, 60, 0], (O, 6min, Omax}]/
NIntegrate[distfunc([fm, 60, 01, {0, Omin, Omax}];

conversion = 100(1 - caave);
{a, b, caave, cdave, conversion}
1

Endl[]

EndPackagel]

Qut[225]= Global'‘cstrrtd:

Out[226]= cstrrtdl[kab,kd,fm, s8] creates the r.t.d, plots it and
then computes the average exit concentrations of A
and B and the conversion of A

Out[227]= Global‘'cstrrtd'Private’

Qut(229]= Global‘cstrrtd‘Private’
To see how this works we can run a case as follows:

In[231]:= estrrtdl[2, 1, 10, .19]

PDF[4] om
2 s
1.5 l'
!

I

1 !
T

1k

0.5 L

|0

0|

A H
2.5 5 7.5 10 12.5 15 17.5 20

Out[231]= {1., 10., 0.434089, 0.565911, 56.5911}

The graph is the distribution of residence times about the mean. The bottom line of output
gives us the integral of the PDF, the mean normalized residence time, the concentration of A



9.9 Residence Time Distribution 443

and B, and, finally, the conversion of A. We see from this graph that with the mean residence
time of 100 and variance of just 2, this is a very sharp distribution. What would happen if the
r.t.d. were broader—say, 30?

In[232]:= cstrrtd(2, 1, 10, 3]

PDF[#d]

0.12 ’
0.1 /
0.08 / \
0.06 / \
0.04 / \

0.02

2.5 5 7.5 10 12.5 15 17.5 20

out[232]= {0.999566, 10.0047, 0.436484, 0.563516, 56.3516}

We see from the preceding that even though the distribution has been broadened considerably,
there is no evidence of an effect on the overall conversion. This makes sense because there
are just as many fluid elements below the average as there are above and so we get average
behavior—just as we intuitively know we should. What, however, happens when the flow is
so maldistributed that the residence time is actually bimodal?

In the following package, Global ‘rtdcstr’, two normal distributions are weighted (wfl
and wf2) and added together to give the overall residence time distribution. The second
Gaussian distribution is taken to be centered at half the mean value of the first, but with the
same variance. The function p is their sum (see the following):

In[233]:= BeginPackagel["Global‘rtdcstr‘",
{"Statistics‘ContinuousDistributions‘",
"Statistics‘NormalDistribution‘",
"Statistics‘Common‘DigtributionsCommon‘",
"Statistics‘Descriptivestatistics'"

}]



444 Chapter 9 Continuous Stirred Tank and the Plug Flow Reactors

rtdcstr::usage = "testing 1,2,3..."

Begin|["‘Private‘"]

rtdcstrl[kab_, kd_, Om_, c6_, wfl_, wf2_]:= Module|
{Caf = 1, Cbf = 1, x, xmin, xmax},

0.0016m;

smax = 50m;

ndistl = NormalDistribution[fm, o8];

ndist2 = NormalDistribution[.50m, o0]1;

pdfunctionl = PDF[ndistl, =x];

pdfunction2 PDF[ndist2, x];

wfl pdfunctionl + wf2 pdfunction2

wEl + wE2 d

xmin

1
caly_] = -1-Cbfkaby+Caf(kab-2kd)y+
[y_1] 2(kab - kd)y ( Y ( )y

v%-4Cabefkab(kab-kd)y2+(1+Cafkaby+cbfkaby)2));
Plot[p, {x, 0, xmax},
AxesLabel -~ {"6", "PDF[O]"},
Plotstyle - {GrayLevel[0.4], Thickness[0.01],
Dashing[{0.02, 0.03}]1)},
PlotRange - {{xmin, 20m},
{0, .01 + Max[Table[N[p], {x, xmin, xmax}]]}},
Epilog - {Linel[{{fm, 0}, {fm, Max[Table[N[pl,
{x, xmin, xmax}11}}1},
PlotLabel - "fm,o0"];

totp = NIntegratel[p, {(x, 0, xmax}]:;
NIntegrate[xp, {x, 0, xmax}]
7

thetam =
totp
NIntegrate[calx] p, {x, 0, xmax}]
caave = ;
totp

conversion = 100 (1-caave);
{totp, thetam, caave, conversion}

]
End[]
EndPackage(]

Out[233]= Global‘'rtdcstr®
Out[234]= testing 1,2,3...
Out[235]= Global‘'‘rtdcstr'Private’
Out[237]= Global‘'rtdcstr Private:

In[239]:= rtdestr[2, 1, 10, 1.5, 4, 2]



9.9 Residence Time Distribution 445

PDF[#] ém.o

0.175 7|\
0.15 Py
0.125
0.1 ! \
0.075
0.05 /

0.025 / \

25 5 7.5 10 12.5 15 17.5 20

Oout[239]= {0.999857, 8.33458, 0.441837, 55.8163}

We see that this extreme case has some effect on the conversion, but not to any significant

extent.
Let us turn now to the case of series reaction:

A—->B—-D

We can once again solve the equations for the concentrations as a function of the residence time:

In[240]:= Clear["Global**"]

cstrabd2=SimplifyI[

Solvel

(Caf - Ca)

{0 == ————— - kabCa,

0

-Cb

0 == —5— + kabCa - kbdCb,
Cb

0 == -F + ka.be}

{Ca, Cb, Cd}ll:
TableForm[cstrabd2, TableDirections - {Column, Column}]

out[242]//TableForm=
Ccaf kab kbdg?

(1 + kab#) (1 + kbdf)

cd



446 Chapter 9 Continuous Stirred Tank and the Plug Flow Reactors

Caf kabf
Cb —
(1 + kab#8) (1 + kbdh)
Caf
Ca _
(1 + kab#8)

The package that we have just written for the bimodally distributed residence times can
be adapted to give a new package we shall call rtdcstrabd?2. The output of this Package will be
the r.t.d. of the integrated PDF value, the average residence time, then the conversion followed
by the selectivities to A and to B:

In[243] := BeginPackage["Global‘rtdcstrabd2‘",
{"statistics‘ContinuousDistributions‘",
"Statistics‘NormalDistribution‘'”,
"Statistics‘Common‘DistributionsCommon‘",
"Statistics‘'DescriptiveStatistics‘'"
11
rtdcstrabd2::usage = "testing 1,2,3..."
Begin["‘Private‘"]
rtdcstrabd2[kab_, kbd_, fm_, o00_, wfl_, wf2_]:= Module|
{caf
Xmin

1, Cbf = 1, x, xmin, xmax},
0.0016m;

xmax = 56m;

ndistl NormalDistribution[fm, o0];
ndist2 NormalDistribution[.56m, o01];
pdfunctionl PDF[ndistl, x]:
pdfunction2 PDF[ndist2, x];

wEl pdfunctionl + wf2 pdfunction2

p =

wEtl + wf2
[ ] Caf
ca —_ = ——7
¥ l+kaby
Caf kaby
cbly. ] = ;
(l+kaby)(1+kbdy)
Caf kab kbd y?
cdly_1 = ;

(l+kaby) (1+kbdy) '

Plot[p, {x, 0, xmax},

AxesLabel - ("6", "PDF([O]"},

PlotStyle - {GrayLevell[0.4], Thickness[0.01],
Dashing[{0.02, 0.03}1},

PlotRange - {{xmin, 26m),
{0, .0l1l+Max[Table[NI[p]l, {x, xmin, xmax}l1l]}},
Epilog - {Linel{{6m, 0}, {fm, Max[Table[NIp],
{x, xmin, xmax}11}}1},

PlotLabel - "6m,o0"l;



9.9

Residence Time Distribution

totp = NIntegratelp, {x, 0, xmax}]:;
NIntegrate[xp, {x, 0, xmax}]

thetam =
totp
NIntegrate[ca[x]p, {x, 0, xmax}]
caave = H
totp
NIntegrate[cb[x]p, {x,0,xmax}]
cbave = ;
totp
NIntegrate[cd[x]p, {x, 0, xmax}]
cdave = ;
totp
conversion = 100 (1 -caave);
cbave
selB = ;
caave + cbave + cdave
cdave
selD = ;
caave + cbave + cdave
{totp, thetam, conversion, selB, selD}
]
Endf{]
EndPackage(]

Out[243]= Global‘'rtdcstrabd2:

Out[244]= testing 1,2,3...

out[245]= Global'rtdcstrabd2 Private’
Out [247]= Global'rtdcstrabd2 Private’
1.5, 1, .25]

In[249] := rtdcstrabd2[2, 1, 10,

PDF[6] fm,o

0.2 \
0.15

0.1 [ \

0.05

12.5 15 17.5

20

447



Chapter 9 Continuous Stirred Tank and the Plug Flow Reactors

448

9.00081, 94.1074, 0.102341, 0.838733}

.1, 10, 1.5, 1, 01,
.1, 10, 1.5, 0, 1],
.1, 10, 1.5, 1, 1],
.1, 10, 1.5, 1, .25]}

outf249]= {0.999914,
{rtdcstrabd2[.2,
rtdcstrabd2[.2,
rtdcstrabd2[.2,
rtdcstrabd2[.2,

In[250] :=

0.25
dK
0.2
0.15
! \

0.1
! \

0.05 I} 3

15 175 20

PDF[6] o
!
0.25 \
l' :
\
0.2 ! A
! \
0.15 ! \
! \
0.1 ' \
! \
]
0.05 ) ‘\
’ \
s > P
15 175 20

5 7.5 10 12.5



9.9 Residence Time Distribution

449

PDF[6] pea,
0.14
T
0.12 p p
0.1 ! !
[ '
0.08 i \ !
[ \/ \
0.06 ! \
! \
0.04 2 \
0.02 ’ \
/ \
4 - )
25 75 10 125 15 175 20
0.2 e
[}
[
0.15 !
[
[
0.1 ' \
P \
! \
0.05 2™ g \
y \
’ \
g - 6
25 75 10 125 15 175 20
out[250]={{1., 10., 66.3228, 0.332179, 0.331049},
{0.999571, 5.00231, 48.8138, 0.323047, 0.165091},
{0.999785, 7.50169, 57.5702, 0.327614, 0.248088},
{0.999914, 9.00081, 62.8222, 0.330353, 0.297869}}

Here we can see a much stronger effect of the r.t.d. on the conversions and the selectivities.
The cases we have chosen to examine are purposefully extreme. With the r.t.d. centered at



450 Chapter 9 Continuous Stirred Tank and the Plug Flow Reactors

6m = 10, the conversion of A is 66% and the selectivities to A and to B are virtually 1:1. When
we push the r.t.d. to a shorter residence time and #m = 5 the whole picture changes to one of
lower conversion and higher selectivity to B by almost 2 : 1 over D—as we would expect. Note,
however, that the yield to B is now under 16%, whereas in the first case it was closer to 22%.
With a bimodal distribution having nearly equal probabilities at 8m = 5 and 10, the picture
changes once again: The conversion is lower than the narrowly distributed case centered at
Om = 10, and so too is the selectivity to D rather than B. Finally, if the maldistribution is less
severe, then too is the departure from the unimodal result.

For comparison, we show in the following and compute the case of a very narrow distri-
bution and the actual values for the base case of a single holding time, that is for Dirac-Delta
Function of residence times:

In[251]:= rtdcstrabd2(.2, .1, 10, .2, 1, 0]

PDF[6] P
2
1
¥
:
(!
I
1 "
I
I
0.5
11
Iy
e

2.5 5 7.5 10 12.5 15 17.5 20

out[251]= {1., 10., 66.6607, 0.333315, 0.333293}

In[252]:= kab = .2;
kbd .1;
Caf = 1;
6 = 10;
Caf kab kbd 6°
cd - NI ]
(1+kab0) (1+kbdf)
b Ccaf kab 8
cb =~ Nl:(1+ka.b0)(1+kb¢10)]
Caf
ca ~ N[1+kab0]

out[256]= {{{{Cd —» 0.333333}, {Cb — 0.333333}, {Ca — 0.333333}}}}



9.10 Time-Dependent PFR—Complete and Numerical Solutions 451

9.10 Time-Dependent PFR—Complete
and Numerical Solutions

The PFR equation that we derived had two partial derivatives—one in time and one in space.
Recall that this is the equation for component A being fed to the PFR:

dCa  —q 9Ca .
3t Acr 9z ¢

The time-dependent derivative of concentration is the accumulation term for the differential
volume Acr dz. This is essentially the same for all the reactor types we have studied. What
makes the PFR different and perhaps more interesting is the spatial derivative.

Since it was not within our ability to solve the time-dependent equation, we naturally
solved the steady-state problem so that the accumulation term went to zero, which left only
the spatial derivative:

This problem is more soluble because it involves only this one derivative. In fact, if we
recall that 4 is the velocity v. in the PFR, then we simplify the equation further:

iaCa -

Adz "
aCa .

U:—az— = —YA-

However, 5= is the ratio of a constant velocity to a differential distance. This has units of re—
ciprocal tlme Formally, we can take the constant into the derivative and this gives us a

which can be defined as the reciprocal of the differential holding time -. The equatlon
becomes:

aCa _

ar

This result is very nice because it shows us that at the steady state the PFR has the same govern-
ing equation as the transient batch reactor, except that instead of the real time the differential
is given in terms of the differential holding time.



452 Chapter 9 Continuous Stirred Tank and the Plug Flow Reactors

9.11 Transient PFR

The question arises as to how long it will take a reactor operating in the plug flow regime to
reach a steady state for a specific set of reaction kinetics, volume, and flow rate. To solve this
problem we need to solve both in time and in space. If the kinetics are simple, then we can
solve the problem analytically, that is, we can derive expressions for the concentrations that
are functions of time and position. However, often the kinetics are not straightforward and
analytical solutions must be surrendered in favor of numerical solutions.

The numerical solution will produce values of the concentration at specific times and
positions. What happens then is that the equations are solved for a grid of times and positions.
Starting with initial conditions, each new solution is based on the solution at the previous grid
point. The differentials are approximated by differences and the problem reduces to one of
solving the simultaneous difference equations. Many very elegant numerical recipes are used
to do this, but none that need concern us here. Instead, we accept the work from decades of
research and development in computing and applied math and simply use its powerful results.

9.12 Equations, Initial Conditions,
and Boundary Conditions

Consider the following reaction and its occurrence in a transient PFR:
A+B—->D—>E

The first reaction takes place via second-order kinetics k1 Ca Cb and the second is first order
in D, k2 Cd. The concentrations of every species will be a function of both space and time:

Cilz, t]

The differential equations for the concentrations of each species are of the form shown for
species A:

We can write these as a set of equations for A, B, D, and E, each of which is coupled through
their concentrations. We also need four initial conditions for these concentrations. We can set
the concentrations of A and B to their inlet values as if the tube were uniformly filled with



9.12 Equations, Initial Conditions, and Boundary Conditions 453

them initially. For the two products we can set each of them to zero at time zero at all z positions
in the reactor. We do this as follows:

Creactant|z, 0] == Creactant, o

Cproduct|z, 0] ==

For a partial differential equation we also need to have a set of boundary conditions. The ini-
tial conditions are for the time differential and the boundary conditions arise for the spatial
differential. The boundary conditions are analogous to initial conditions. The boundary con-
ditions must be satisfied at some position or positions for all times. The assignment of proper
boundary conditions to physical problems usually becomes the most challenging part of the
analysis, but it is also the most interesting! Boundary conditions for our problem can be fairly
straightforward: We will let the concentrations of the reactants A and B be equal to a constant
at the inlet for all times. The other concentrations will be zero. Here is how we express that:

Caj0, t] == Cao
Cb[0, t} == Cbo
Cd[o0, t] == 0...

The first part of this problem is to write the set of component equations, the initial conditions,
and the boundary conditions, including the kinetics. Call this set eqns. Next write out the set
of variables that will be solved for calling it vars.

eqns = { component equations, initial conditions, boundary conditions}

vars = {Ci[z, t]....}

We make a vertical list of parameter names and values and then we use NDSolve with the set
of equations and variables as follows:

solns = NDSolveleqns, vars, {t, 0, tmax}, {z, 0, zmax}]

When NDSolve does the numerical integration it automatically fits a set of polynomials to
the numerical values of each variable at each grid point in time and position. Therefore, the
output will be an interpolation function. We assign these interpolation functions to function
names and patterns. We will solve numerically and then plot the concentrations for A, D,
and E in z- and t-space. As this is unlike the other problems we have done to this point, we
will present it in a highly interactive step-by-step fashion. Putting these pieces together into
a Module or package only makes sense after the computation and the implemented code



454 Chapter 9 Continuous Stirred Tank and the Plug Flow Reactors

are understood. Here is the code we have just described. We will let the results for each step
flow to output so that we can see how this works in detail:

Inf257]:= Clear[ca, cb, cd, ce, q, A, k1, k2, cao, cbo, cdo, ceo,
tmax, zmax, cA, ¢B, c¢D, cE]

General::spelll: Possible spelling error: new symbol name
“cao” is similar to existing symbol “Cao”.

General::spelll: Possible spelling error: new symbol name
"cbo” is similar to existing symbol “Cbo”.

General::spelll: Possible spelling error: new symbol name
"cdo” is similar to existing symbol “Cdo”.

General::stop: Further output of General :: spelll will be
suppressed during this calculation.

Here are the equations, the initial and boundary conditions, and the variable names:

In[258]:= eqns = {

D[ca[z, t], t] == -% Dl[calz, t], z] -kl calz, t] cb[z, t],

Dicb[z, t], t] == ——g D[cb[z, t], z] -klcb[z, t] cblz, t],

Dicd[z, t], t] ==—S Dlcdlz, tl, z] + klcalz, t] cb[z, t]
A

-k2cdlz, t],
Dlce[z, t], t] == -% Dlce[z, t], z] + k2cd[z, t],

cal[0, t] == cao,
cb[0, t] == cbo,
cd[0, t] == cdo,
ce[0, t] == ceoO,
cal[z, 0] == cao,
cbiz, 0] == cbo,
cd[z, 0] == 0.0,
celz, 0] == 0.0}
vars = {calz, t], cblz, t]l, cdlz, t], celz, t]};

gca> P [z, t]
a ’
qcb(l,O) [z,t]
A
ca® Y[z, t] == klcalz, t] cblz, t] - k2calz, t]
ch(l,O) [Z,t]
- a

out [258]= {ca'® Y [z,t] == -klcalz,tlcblz,t]

ca® ¥ [z,t] == -klcbiz,t]?

’



9.12 Equations, Initial Conditions, and Boundary Conditions

qce(110) [z, t]

cal®V [z, t] == k2calz, t] - = ,cel
cb[0,t] == cbo, cdl0,t] == cdo, cel[0,t] ==
calz,0] == cao, c¢cbl[z,0] == cbo, cd(z,0] ==
cel[z,0] == 0.}

To solve this numerically we need the following parameter values:

In[260]:=q = 7.5;
A = 10;
kl1 = 0.15;
k2 = 0.04;
cao = 1;
cbo = 1;
cdo = 0;
ceo = 0;
tmax = 100;

455

0,t]l == cao,

ceo,

0

.7

Next the equations and variables are placed within NDSolve and solved over a range of
positions (z-values) and times. Then we assign the resultant interpolation functions to the

appropriate function names:

In[280]:= solns = NDSolvel[egns, vars, {z, 0, zmax}, {t, 0, tmax}];
In[281]:= cAlz__, t_]:= Evaluate[calz, t] /. solns[[1]]]

cB[z_, t_]:= Evaluatelcbl[z, t] /. solns[[1]]]

cD[z_, t_]:= Evaluateicd[z, t] /. solns([1]]]

CcE[{z_, t_):= Evaluatelce[z, t] /. solns[[1]]]

Finally, we use the newly defined functions in graphical routines as shown in the following,
which are now three dimensional in order to provide us with surfaces of points that make up

the solutions to this problem for each species:

In[286]:= a = Plot3D[cA[z, t], {(z, 0, zmax}, {t, O, tmax},
ColorOutput - Graylevel,
AxesLabel - {("z "," t", "cA "}, ViewPoint - {1, -2, 2},

PlotPoints - 20,

Ticks - {Automatic, Automatic, {0, 0.5, 1}},
DisplayFunction - Identity];

b = Plot3D[cBlz, t], {(z, 0, zmax}, {t, 0, tmax},
ColorOutput - GrayLevel,
AxesLabel -» {"z "," t", "cB "},
ViewPoint - {1, -2, 2}, PlotPoints - 20,



456 Chapter 9 Continuous Stirred Tank and the Plug Flow Reactors

Ticks - {Automatic, Automatic, {0, 0.5, 1}},
DisplayFunction - Identity];

d = Plot3D[cD[z, t], {(z, 0, zmax}, {t, 0, tmax},
ColorOutput - GrayLevel,
AxesLabel - {("z "," t", "cb "},
PlotPoints - 20,
Ticks - {Automatic, Automatic, {0, 0.15, .30, .45}},
DisplayFunction - Identityl;

e = Plot3D[cE[z, t], {z, 0, zmax}, {t, 0, tmax},
ColorOutput - GrayLevel,
AxesLabel - {"z "," t", “"cE "},
PlotPoints - 20,
Ticks - {Automatic, Automatic, {0, 0.25, .5, .75}},
DisplayFunction - Identity];

Show[GraphicsArray[{{a, b}, (4, e}}],
DisplayFunction - $DisplayFunction];

cA

S
R
R
R
AN
R

AR D
SRR

The graphs of each of the species concentrations are plotted as a function of position along
the tube z and time t. At the edges of the graphs for the concentrations of A and B we see the
boundary and initial conditions. All values are unit or zero concentration as we had specified.
As we move through time, we see the concentrations of both species drop monotonically at
any position. Furthermore, if we take any time slice, we see that the concentrations of reactants
drop exponentially with position—as we know they should. At the longer times the profiles of



9.13 Summary 457

A and B through the reactor have reached their steady-state values. Species D is intermediate
in the network. Its concentration rises sharply as a function of time and of position, maximizing
across the reactor at short time and then falling to its steady-state value. The only region of
the reactor in which the concentration of D persists at relatively high levels is at a position
approximately 10 units from the entrance. As time goes on the initially high D concentration
beyond position z = 10 falls. Species E is the ultimate product of this network. At the lower left
corner of the CE concentration graph, the concentration is zero. Through time and position this
rises to a steady-state level of nearly 0.8 in the upper right corner of the plot (which represents
the reactor outlet after much time has passed).

Allin all, the series network in a transient PFR appears to follow the trends that we would
expect in evolving to the steady-state condition. The time to reach the steady state is a function
of the rate constants, the inlet concentrations, and the holding time, that is, of the volume flow
rate and reactor volume.

9.13 Summary

This chapter has been devoted to continuous reactors and their analyses. We have examined
the powerful idealizations of the CSTR and PFR. Pseudo-steady states and steady states
have been covered as well as chemical equilibrium. We must remember that the steady-state
condition can be far from the equilibrium condition, and the two time-independent situations
must not be confused. The time-dependent CSTR and PFR are interesting problems, but they
are less often used than the steady-state solutions.

We have seen how the kinetics fit into a reactor equation as a constitutive relationship.
Flow and reaction come together in these systems to affect the rate of accumulation. Hence
when we refer to the “rate” we must be careful to be specific about the reactor—if it is a
constant volume batch reactor, then rate means the chemical rate. If the reactor is a transient
CSTR or PFR, then the rate of change of the concentration at the exit of the reactor is not the
chemical rate alone. Mixing effects are important and we have seen how to begin to account
for the fluid mechanics in a reactor through the empirical measure of the r.t.d. The r.t.d. does
affect the outcome from the reactor, but the sensitivity to the r.t.d. depends upon the kinetics
and their functional form.

Finally, we have taken our Mathematica skills up another level by writing not just Module
functions, but actual Packages. By writing Packages in the Global context we implement them
immediately. We can, however, write and save packages to another context and then call them
from our own library as we need them, either as stand-alone computations or as embedded
functions in another package.



This Page Intentionally Left Blank



CHRAPTER ] u

Worked Problems

The following are exercises that have been used with honors students and that seem to be
both interesting and challenging. In many cases only the rudimentary coded solution is
given. From this one can build much more sophisticated code and in many cases create Mod-
ule functions that can be used repeatedly with different parameter values. Note that all of
these separate problems were run as if the Kernel had to be restarted with each computa-
tion. Running sequentially without adding statements to clear variables will result in absurd
output.

10.1 The Level-Controlled Tank

Introduction

The filling or draining of a tank is a relatively simple situation to model. If the tank has
both input and output then it is a combination of the two previous cases and the differential
equation for the rate of change of the level in the tank is as follows:

dh[t]  (gf—¢q)
dt A

459



460 Chapter |0 Worked Problems

When the input flow rate is equal to the output flow rate, the system is at steady state and the
level remains constant because % =0.

A tank could be operated in such a way that the inlet was always equal to the outlet when
the two were at their designed magnitudes. Thus if q* was the designed flow rate in a CSTR,
for example, then the system could be maintained at some specific design level h* and design
volume V*. As long as the inlet or outlet rates did not change, the system would remain at this
condition. From our study of kinetics, we know that maintaining V* as a constant would be
desirable in order to keep the holding time v = VT constant and to remain at the design level
of production.

Perturbation of the Inlet Flow Rate and Control

Suppose that the inlet flow rate was mostly a constant but from time to time it suffered an
upset. The upset would either increase the inlet flow or decrease it. If this were to occur, then
the level in the tank would either increase or decrease, unless there was some attempt made
to change the outlet flow rate. A simple control algorithm would be one in which the exit flow
rate is adjusted automatically when there is an upset, either above or below the design flow
rate. To do this analysis we need to specify the upset and the system’s response to it.

Let the upset be some additional flow rate over or below the design value. Stated in simple
mathematical terms:

af =q"+qp

where q* is the design magnitude and qp is either positive or negative. We will say more about
the upset flow rate momentarily, but first we will describe the controlled outlet flow rate. The
outlet flow rate is typically at the setpoint q* until the upset qp takes place. At that point the
flow rate must be adjusted to compensate the change in the inlet flow rate. We describe this by
setting the adjusted flow rate equal to the set point plus a new flow rate that is proportional
to the difference between the set point level and the actual level at that time:

q=q —K(h" - h(t)

For this to be dimensionally consistent, it is clear that the proportionality constant must have
dimensions of area per time so that its product with h* — h(t) is in dimensions of volume per
time. During the upset we are discussing here, the system responds transiently, that is, it goes
away from steady state. The governing equation is:

dh(t) _ 4" +qp—(@* - K(r" — h(t)))
dt A

dh(t) _ qp + K(i* — h(t))
dt A




10.1 The Level-Controlled Tank 461

This equation is the one that must be integrated and to do so we must know how the upset
behaves in time. Before the upset from t = 0 until some time just below t1, qp is zero and h* =
h(t):

peren BO_o i

The upset begins at time t1, and it instantaneously rises to a value of qp. The upset stays
at the level gp from tl until a time just less than t2. At time t2 it falls instantaneously
back to zero. This kind of function is called a UnitStep. For the sake of making a graph
of this type of disturbance, we plot the UnitStep function and 1 — UnitStep function us-
ing the parameters 1 and 6 in order to have a pulse of unit height that is five time-units
wide:

In[2064]:= << Calculus’DiracDelta’
a = Plot[UnitStep[x - 11, {x, -3, 6},
DisplayFunction - Identity];
b = Plot[1l - UnitStep[x - 61, {x, 10, 1},
DisplayFunction - Identity]:;
Showl[a, b, DisplayFunction — $DisplayFunction];

DiracDelta: :obslt
All DiracDelta and UnitStep functionality 1s now
autoloaded. The package Calculus ' DiracDelta’ 1is
obsolete.

In general the height of the disturbance is gqp and its width is t2 — t1. The question now
becomes one of how to do the integrations during and after the disturbance.



462 Chapter 10 Worked Problems

Integration Through and Beyond the Disturbance

We must now integrate this equation from t1 to t:

dh2(t)  qp + K(h* — h2(t))
dt A

The initial condition is h2(t1) = h* and we should integrate to any t less than t2, so we integrate
tot

When this is done we have an expression for h(t) during the course of the disturbance.
We must next integrate after the disturbance is complete, that is, from t2 out to any additional
time t. Here we have the following equation to work with because gp is zero:

dh3(t)  K(h* — h3(t)
dt A

The initial condition for this period is h3[t2] = h2[t2]! Therefore, we must evaluate the constant
of integration very carefully.

Finally, we know that if the disturbance is positive, then the inlet flow increases and the
tank level should rise. If there were no control it would rise and stay at a new higher level.
With control it should rise and then fall back to the control or design level. Tracking the change
in level versus time we should see a sawtooth that looks like this:

Problem Statements

A) Find the expression for h2[t] by using DSolve. Evaluate the constant of integration using
the initial condition that h2[0] => h2[t1] = hd:




10.1 The Level-Controlled Tank 463

B) Find the expression for h3[t] using DSolve. Evaluate the constant of integration using the
initial condition that h3[0} => h3[t2] = h2[t2].

DSolve[hs'[t] — KA i, t]

C) Create functions for h2{t] and h3[t], and given the following parameter values, Plot, h1, h2,
and h3 consecutively in time.

hd = 50;
K=5;

A =10;
qp = 10;
tl =5;

12 = 10;
tmax = 30;

Solution to Part A

Find a general solution to the differential equation:

In[1]:= Clear[h2, qp, hd, K, A, tl1, t2]

K(hd - h2[t
DpSolvel{h2’[t] == 2 * K ~ D)y na2re1, &

hd K
out[2]= {{h2(t] — ——K"L—qp s e FC[1]))

Evaluate the constant of integration at the initial condition h2[t1] = hd using Solve:

hdK + qgp _Kel
In[3]:= Solve[hd == — % + e ~C[1), c[1]]
out[3]= ({Cl1] - - e%qp}}

Define the constant C1 and then replace it and simplify:

Ktl

€ * gp
K

In[4]:= C1

.
s

hdK + gp Kt

Collect[Simplify[AK— + e *Cl1l], apl



464 Chapter 10 Worked Problems

(1 - e » H)ap
K

OQut{5]= hd +

Now define a function for h2[t] to use in parts B and C:

R(-t+tl)
A

e

1
Inf{6]:= h2{t_] := hd + (E - )ap

K

Solution to Part B
Find the general solution to the differential equation defining the rate of change in the level
of the tank after t2:

In[7]:= Clear[hd, h3]
K(hd - h3[t])

Dsolve[{h3'[t] == A }, h3[t], t]

outf8]= {{h3[t] - hd + e = C[1]}}

The initial condition in this case is given as h3[0] = h3[t2] = h2[t2]. We find this by substituting
h2[t] into the initial condition equation and evaluating C again:

In[9]:= h2[t2]

Out [97= hd + (2 c -

u = + X R ap

In[10]:= Solve[h2[t2] == hd + e_%? Cc[1l], CI11]
% _1 r\'(\l/\l/”

out [10]= {(C[1] — -—= ¢ +Ke eI

Replacing the expression for C into that derived for h3[t], we find the expression for h3[t]:

Kt2 K(t1l-t2)
e €r (-1 4+ € )
In[11]:- Simplify[hd + e % (-5 . @

Ki-rat 2} Kerl-t2y

e * (-1 +e * )ap
K

Qut({l1l]= hd -



10.1 The Level-Controlled Tank 465

Anticipating the need for this function, we define it:

R{-t+tl) K(-t+t2)

hdK + (-e = + € * )@p
K

In[12]:= h3[t_] :=

Solution to Part C— Graphs of hi[t],h2[t],h3[t]

The code that follows works with the three functions we have derived for the three intervals of
time-dependent behavior. After specifying the three functions, we list the parameter values.
Each has a semicolon at the end in order to prevent its value from being echoed back to the
monitor. Note that t1 and t2 are constants that must be specified.

The first plot is made with the following command:

Plot[{h1[t], h2[t], h3[t]}, {t,0,50}];

The syntax involves specifying the functions to be plotted first and the time interval over
which they should be plotted next. The details show that the functions are implemented as a
setincluded within the curly brackets {} as is the time range. The disadvantage of this approach
is that all functions are plotted over the whole time range, even though they only apply to
separate intervals of time. To overcome this problem we use the three code lines that follow.
These have the following format:

pl1 = Plot[ h1[t], {t,0,t1}, DisplayFunction—Identity, PlotStyle— Huel.4]];

The command structure is nearly the same as that used before with some notable differences.
We include only one function in each command—in this case h1[t]. Then we specify the interval
we want to plot this function over; for hl it is from t = 0 to t = t1. For h2[t] we set the interval
to be from t1 to t2 and for h3[t] from t1 to t. Next, we set the DisplayFunction to Identity.
This surprises the output of the graphics but saves them in the plot called “pl1.” In order to
distinguish between these three plots we change their color. This is done by setting PlotStyle to
Hue[0.4] (Hue can have a value between 0 and 1). We use different value for the three different
plots. Finally we call each of the plots in the show command pll, p12, and pl3, and we set
DisplayFunction to $DisplayFunction. This makes one plot from the three separate plots and
we have no overlapping of the functions.

In{13]:= SetOptions[{Plot}, DefaultFont - {"Helvetica", 12}]:
hi[t_] := hd



466

54

52

50

Chapter 10 Worked Problems

R{-t+tl)
A

1 e
h2[t_] := hd + (- - —)ap

K K

th ( R{-t+tl) eK(—t+t2) )
+ (-e & + A
h3[t_] := av
K

hd = 50;
K =5;
A = 10,‘
gp = 10;
tl = 5;
t2 = 10;

tmax = 30;

Plot[{h1[t], h2[t], h3[t]}, {t, 0, 50}1;

rll = Plot[hl[t], {t, 0, tl}, DisplayFunction - Identity,
PlotStyle —» {{Thickness[.0l1l], GrayLevel[0.01}}1;

rl2 = pPlot[h2[t], {t, tl1l, t2}, DisplayFunction - Identity,
PlotStyle - ({{Thickness([.0l], GrayLevel[0.21],
Dashing([{0.03, 0.03}13}}1;

prl3 = Plot[h3[t], {t, t2, tmax}, DisplayFunction - Identity,
PlotStyle - {{Thickness[.01l], GrayLevel[0.6],
Dashing[{0.03, 0.03}1}}1;

Show[pl3, pl2, pll, DisplayFunction - $DisplayFunction,
PlotRange - {{0, 20}, {48, 52}},
AxesLabel - {"t", "h([t]"}];

f e L e PR T R U | Y S

10 20 30 40 50



10.2 Batch Competitive Adsorption 467

h(t]
52

51.5 2
51 /
50.5 /
50
49.5
49
48.5

2.5 5 7.5 10 125 15 175 20

10.2 Batch Competitive Adsorption

Introduction

Adsorption of an impurity onto a porous solid such as activated carbon, alumina, or silica
is often used to purify gases and liquids. Adsorption usually is reversible, but if the heat of
adsorption is high then the tendency to desorb may be low. Typically adsorption is done in
a continuous process. It also may be done in a batch process for small-scale separations or
to determine the parameters that control the adsorption process for a given adsorbate (the
adsorbing molecule) and a given adsorbent (the porous solid).

In this problem we will simulate a batch adsorption process that takes place with two
adsorbate components. The simulation will allow us to do computational experiments with
the aim of learning how the adsorption and desorption parameters affect the behavior of
this process. Building the simulation will provide new experience in developing the model
equations, utilizing more complex constitutive relationships, finding numerical solutions to
these equations, and displaying the results graphically.

Adsorption/Desorption
Adsorption Sites

Adsorption and desorption can be considered to be analogous to a reversible chemical reaction.
By way of this analogy there must be a forward rate corresponding to adsorption and a reverse
rate for desorption. The net rate of adsorption is the difference between these two rates.



468 Chapter 10 Worked Problems

When a molecule descends to a solid surface and comes to “rest” we consider this an
adsorption event. The time a molecule spends in this state may be very short (107*3 sec) or
it may be long (>hours). Because molecules have real bulk, volume, and dimensions, when
they rest at the surface they occupy some area. Thinking of a flat plane as the surface, then the
cross-sectional area (shadow area) of the molecule is the area of the surface that is occupied.
The locus of points beneath this molecule can be termed the “adsorption site.” The area of
the surface divided by the area of the site gives the theoretical number of sites present at the
surface:

ASurface
Asite

Nsites =

Dividing this number by Avogadro’s number L and the volume occupied by the surface,
that is, by the volume of the high surface area solid V; gives the concentration of adsorption
sites:

Ns'itos
V.L

CSitcs =

Rates of Adsorption and Desorption

The rate of adsorption is proportional to the concentration of the adsorbate in the bulk phase
(gas or solid) surrounding the solid and the difference between the total concentration of
sites in the adsorbent phase (porous solid) and the number of sites already occupied by the
adsorbate molecules:

Buik Surface
radsorptionac/\ (CS| tes — C A L)

Bulk Surfac
Tadsorption = k/\,,adsc/\ (CSitus -C3 t.)

The proportionality constant is the adsorption rate constant for the species A on this particular
solid.

The rate of desorption of a given molecule is proportional to that molecule’s concentration
on the surface:

Surface
rdesorptionac/\

Surface
T desorption = k/\,,desC/\

The surface concentrations are given in a way that is analogous to the adsorption site concen-
tration, that is, as the number of moles of the adsorbed species per volume of the adsorbent
solid.



10.2 Batch Competitive Adsorption 469

Competitive Adsorption

If two adsorbate molecules A and B compete for the same sites then the adsorption and
desorption rate expressions are:

Bulk Surface Surface
Tadsorption, A = kA,,adsCAu (CSites - CA - CBur )

Bulk Surface Surface
Yadsorption, B = kB,,adsC}_L;u (CSites -C3 - C3" )

Surface
Ydesorption = kA,,desCA

Surface
T'desorption = kB,,desCB

Note that the competition for the sites is accounted for only in the adsorption rate term. This
term recognizes that the surface is occupied by two species and to the extent that this happens
simultaneously, the rate of adsorption of either species is diminished by the presence of the
other at the surface, just as it is diminished by its own occupancy of the surface.

Problem Statement

1. Set up the material balance equations for the competitive adsorption of A and B on an
adsorbent phase. Since there are two phases and two components there must be four compo-
nent equations.

2. Using the constitutive kinetics given, show explicitly that the equations are dimensionally
consistent. To be consistent what must the dimensions of the adsorption and desorption rate
constants be?

3. Develop a simulation for this system utilizing NDSolve to integrate the equations and Plot
to display the time-dependent behavior of the four concentrations in one plot. Set up the
simulation with the equations and initial conditions given first as a set. The variables also are
given as a set. These are followed by the parameters in a vertical list so that they can be easily
changed to test behavior. Next use NDSolve to find the numerical solutions to the equations.
Assignment of the interpolation functions to a series of four functions is done next. Finally a
Plot routine is implemented. The skeleton of the simulation then should be:

Egns = {egn 1, ean 2, eagn 3, egn 4, initial conditions (1,2,3,4)}
Parameters;

vVars = {Ci[t]...Cl[t]}

solns = NDSolve[Egns, Vars, {t,0,tmax}]

Cin(t__]1 := Evaluate([Ci{t]/.solns]...Cln[t] := Evaluate[Cl[t]/.solns]
Plot [{Cin[t]...Cln[t]}, {t,0,tmax},...]

4. Use this simulation to examine the behavior of this seemingly simple set of equations by
varying the parameters according to the following matrix. After each simulation save the
graphical output by copying the graph and pasting it to a new bracket in your notebook, to a
new notebook, or to a Word document.



470

Chapter 10 Worked Problems

: Bulk Surface Bulk Surface . A A B B
Sim. No. CA,o CA,o CB,o CB,o CSlteS kAds kDes kAds kDes tmax

1
2
3
4.a
4b
5

5. How could you write a piece of code using Module to accomplish all of this and require

1 0 1 0 1 1 1 1 1 10
1 0 1 0 1 10 10 1 1 10
1 0 1 0 1 100 100 1 1 5

1 0 1 0 1 1 10 1 .001 10
" " " ” " " " " ” 100
1 0 1 0 10 .01 001 .1 .00001 50

only the simulation parameters and number?

Solution

Here is an example of how this can be handled for the case of the fifth set of parameters:

In[1]:

SetOptions[{Plot}, DefaultFont - {"Helvetica", 10}];

eqnsa = {Cab'[t] == -kaa Cab[t](Cs - Cas[t] - Cbs[t])
+ kad Cas([t],
Cas'[t] == +kaa Cab[t] (Cs - Cas[t] - Cbs[tl])
- kad Cas|[t],
Cbb'[t] == -kba Cbb[t](Cs - Cas[t]l - Cbs[t])
+ kbd Cbs[t],
Cbs'[t] == +kba Cbb[t] (Cs - Cas[t] - Cbs[t])
- kbd Cbs(t],
Cab[0] == Cabo, Cas[0] == Caso, Cbb[0] == Cbbo,
Cbs[0] == Cbso};

vars = {Cabl[t], Cas[t], Cbbl[t]l, Cbs[t]}:

tmax = 50;

n =5;

Cabo = 1;
Cbbo = 1;
Caso = 0;
Cbso = 0;

kaa = .01;
kad = .001;
kba = .1;
kbd = .00001;
Cs = 10;

solns = NDSolve[egnsa, vars, {t, 0, tmax}];



10.2 Batch Competitive Adsorption 471

Cabn[t_] := Evaluate[Cabit] /. solns]
Casn[t_] := Evaluate[Cas[t] /. solns]
Cbbn[t_] := Evaluate[Cbb[t] /. solns]
Cbsn[t_] := Evaluate[Cbs[t] /. solns]:
n "= Simul. No."

tmax "= tmax"

kaa "= kaa"

kad "= kad"

kba "= kba"

kbd "= kbd4"

Plot[{Cabn[t], Casn[t], Cbbn([t], Cbsn[tl}, {(t, 0, tmax},
PlotStyle - {{GrayLevel{[0.6], Thickness[.01]},
{pashing[{0.15, 0.05}], GrayLevel[0.61],
Thickness[.01]},

{GrayLevel[0], Thickness[.01]},
{pPashing[{0.15, 0.05}]1, GrayLevel[O],
Thickness[.01]})}, AxesLabel -» {"t", "Ci[t]"},
PlotLabel - "n"= SimNo, Gry = A, Blk = B,

S1d = Blk, Dashed = Surface"];

General::spelll : Possible spelling error: new symbol
name "Cabo" 1s similar to existing symbol "Cab".

General::spell : Possible spelling error: new symbol name
"Caso" 1s similar to existing symbols {Cabo, Cas}.

General::spell : Possible spelling error: new symbol name
"Cbbo" 1s similar to existing symbols {Cabo, Cbb}.

General::spell : Possible spelling error: new symbol name
"Cbso" is similar to existing symbols {Caso, Cbbo, Cbs}?.

General::stop : Further output of General::spell will be
suppressed during this calculation.

General::spell : Possible spelling error: new symbol name
"Cabn" is similar to existing symbols {Cab, Cabo}.

General::spell : Possible spelling error: new symbol name
"Casn" is similar to existing symbols {Cabn, Cas, Caso}.

General::spell : Possible spelling error: new symbol name
"Cbbn" is similar to existing symbols {Cabn, Cbb, Cbbo}.

General::spell : Possible spelling error: new symbol name
"Cbhbsn" is similar to existing symbols {Casn, Cbbn, Cbs,
Cbso} .



472 _ _ 3 - Chap_ter IO‘_ quked Probl_ems

OQut[20]= 5 = Simul. No.
Out[21]= 50 = tmax
Oout(22]= 0.01 = kaa
outf23]= 0.001 = kad
outf24]= 0.1 = kba
Out[25]= 0.00001 = kbd

Ciltl 5 - SimNo, Gry = A, Blk = B, Sid = Blk, Dashed = Surface
1

0.8
0.6
0.4

0.2

10 20 30 40 50
The following creates a Module function from the code provided in the preceding text.

In[27]:= adsdes[Cabo_, Cbbo_, Caso_, Cbso_, kaa_, kad_, kba_,
kbd_, tmax_, n_] :=
Module[ {egnsa, vars, solns, Cabn, Casn, Cbbn, Cbsn,
Cab, Cas, Cbb, Cbs, t},
SetOptions[{Plot}, DefaultFont - {"Helvetica", 12}1];

eqnsa = {Cab'[t] == -kaa Cab[t](Cs - Cas[t] - Cbs[t])
+ kad Casl[t],

Cas'[t] == +kaa Cab[t](Cs - Cas[t] - Cbs[t])
- kad cCas|[t],

Cbb'[t] == -kba Cbb[t](Cs - Cas[t] - Cbs[t])
+ kbd Cbslt],

Cbs'[t] == +kba Cbb[t](Cs - Cas[t] - Cbs[t])

- kbd Cbs[t],



10.2 Batch Competitive Adsorption

473

Cab[0] == Cabo, Cas[0] == Caso, Cbb[0] == Cbbo,
Cbs[0] == Cbso};
vars = {Cablt], Cas[t], Cbb[t], Cbs[t]l}:;
solns = NDSolvel[eqgnsa, vars, {t, 0, tmax}]:;
Cabn[t] = Evaluate(Cab[t] /. solns]:;
Casn[t] = Evaluate[Cas[t] /. solns];
Cbbn[t] = Evaluate[Cbb[t] /. solnsl;
Cbsn[t] = Evaluate([Cbs[t] /. solns];
Print["Simulation Number ="n];
Plot[{Cabnlt], Casn[t], Cbbn[t], Cbsn[t]l)}, {t, 0, tmax},

PlotStyle » {{GrayLevel[0.6],
{Dashing[{0.15, 0.05}], GrayLevel[0.6],
Thickness[.01])}, {GrayLevel[0],
{Dashing[{0.15, 0.05}]1, GrayLevel[O],
Thickness([.01]}},

AxesLabel - {"t", "Cil[t]"},
PlotLabel -» "Gry = A, Blk = B, Sld = Blk,
Dashed = Srf"]
]
In[{28]:~- adsdes(l1, 1, 0, 0, .01, .o001, .1, 001, 50, x]
Simulation Number = x
Ciltl  Gry=A ,Blk = B,SId = Blk , Dashed = Srf
1 i
.n——"{fr*
0.8 '
A"".\.
0.6 /
\
04 N
O . 2 *'-'k._\‘“t—
~—
%-:?_,__h___mm_
10 20 30 40 50

Out [28]= - Graphics -

Thickness[.01]},

Thickness([.011},



474 Chapter 10 Worked Problems

10.3 A Problem in Complex Kinetics

Introduction

Most reactions occur while other reactions are also taking place simultaneously. Very often the
products of one reaction are the reactants for the next. Similarly, a reactant may be involved
in more than one reaction. When reactions occur in a sequence, this is referred to as a series
network. An example would be:

A=B=2D=E
Alternatively, reactions may take place in parallel:

AZB
A=D

Additions of these two simple cases can lead to series parallel networks of chemical reaction.
When we encounter a problem like this one, we have to handle the kinetics carefully. This is
just what we will do in the case of this problem.

Parallel and Series Reversible Reactions

Consider the case of a reversible reaction whose products lead to another product:

A+B=D+E
Freti = k1 Ca Cb — k2 Cd Ce

D+E—>F
Tnet,2 = k3 Cd Ce

A+A=2G
Tnet,3 = kd Ca® — k5 Cg

The net rate of the first reversible reaction can be given as rq 1 = k1 Ca Cb — k2 Cd Ce. The
second reaction is in series with the first and we find it has kinetics that are given by r =
k3 Cd Ce. It is irreversible. The third reaction, A to G, is parallel to that of the first reaction
and it too is reversible. This reaction is second order in the forward direction and first order
in the reverse direction.

Problem Statements

A) Using NDSolve, set up the model equations for each component assuming that the reactions
take place in a batch reactor. The following parameters are those that you will need to solve
the equations numerically. Show, using Plot, the change in each concentration as a function of
time.



10.3 A Problem in Complex Kinetics

k1l =.1;
k2 = .05;
k3 =.1;
k4 = .065;
k5 = .02;
Cao=1;
Cbo=1;
Cdo =9;
Ceo=0;
Cfo=0;
Cgo=0;
tmax = 250;

475

B) Having solved the batch case, now set up the same kinetics for the case of a CSTR operated at
steady state. Use NSolve to find the optimal flow rate and holding time for the production of D
(and E) assuming that the inlet concentrations of A and Bare each 1 and that the volume is 100.

Solution

In[l]:= SetOptions[{Plot}, DefaultFont - {"Helvetica", 12}]};

kl = .1;
k2 = .05;
k3 = .1;
k4 = .065;
k5 = .02;
Cao = 1;
Cbo = 1;
Cdo = 0;
Ceo = 0;
Cfo = 0;
Cgo = 0;

tmax = 250;

solns = NDSolve[{Ca'[t] == -kl Calt] cb[t] + k2 Cd[t] Celt]
- k4 caltl?+ k5 cglt],
cb'[t] == -kl Ccalt] Cb[t] + k2 cd[t] Celt],
cd'[t] == k1 calt] Ccblt] - k2 cdlt] Ce[t]

- k3 cdlt] Celt],

Ce'[t] == k1 Ca[t] Cb{t] - k2 Cd[t] Celt]

- k3 cdlt] Celtl,



476

Can[t_] :=
Cbnl[t_] :=
Ccdn[t_]
Cen[t_]
cfnlt__] :=
Ccgnlt_1 :=

Chapter 10 Worked Problems

cd[t] cCelt],
caf[t]? - k5 cg[tl,

Cao,
Cbo,
Cdo,
Ceo,
Cfo,
Cgo},

{ca[t]l, Cb[t], cdl[t], celt], Cflt]l, Cglitl},
{t, 0, tmax}];

Evaluate[Ca[t]
Evaluate[CbI[t]

= Evaluate[Cd[t]
= Evaluate[Ce[t]

Evaluate[Cf[t]
Evaluate([Cgl[t]

NN N NN N
. .

. solns]

solns]

. solns]

solns]

. solns]

gsolns]

Plot[{Can[t], CdnIt], Cfn[t]l, Cgn[t]l}, {t, 0, tmax)},
PlotStyle -» {GrayLevel[0], {Thickness[.01],
Dashing([{0.03, 0.02}],
{Thickness[.01], Dashing[{0.03, 0.02}], GrayLevel[0.5}},
{Thickness[.0l1l], GrayLevel[0.5]}},
"A-Blk, D-BlkDsh, F-GryDsh, G-Gry",
{"t", "Ci[t]l"}];

PlotLabel -
AxesLabel -

GrayLevel[0]},

Cift] A-BIk, D-BIkDsh, F-GryDsh, G-Gry

1

|

0.8 |

0.6




10.3 A Problem in Complex Kinetics

477

Now we will put together a set of CSTR equations at steady state, fix the volume, and vary
the flow rate in order to maximize the formation of D (and E).

In[22]:= Clear[Ca, Cb, C4, Ce, Cf, Cg, t, solns, Can, Cbn,

Cdn, Cen, Cfn, Cgn, ql
kl1 = .1;
k2 = .05;
k3 = .1;
k4 = .065;
k5 = .02;
Cao = 1;
Cbo = 1;
Cdo = 0;
Ceo = 0;
Cfo = 0;
Cgo = 0;
tmax = 250;
eqns = {(Caf - Ca)% -kl CaCb + k2 cd Ce - k4 ca?
+ k5 Cg == 0,
(Cbf - Cb)% - k1 CacCb + k2 cd Ce == 0,
—Cd% + kl CaCb - k2 Cd Ce - k3 Cd Ce == 0,
—Ce% + kl CaCb - k2 Cd Ce - k3 Cd Ce == 0,
q
-Cf— + k3 C4d Ce == 0,
\'4
q 2
-Cg; + k4 Ca“ - k5 Cg == 0};
vars = {Ca, Cb, Cd, Ce, Cf, Cg}:
Caf =1
Cbf =1
v = 100
g = 5.75
v/qg

Needs["Miscellaneous’‘RealOnly’"]
NSolve[egqns, vars]

Out[37]=1
Outl[38]=1

Out [39]= 100
Out [40]= 5.75



478 Chapter 10 Worked Problems

Out[41]= 17.3913

Nonreal::warning : Nonreal number encountered.

Out{43]= {{Cf - Nonreal, Cg — Nonreal, Cb — Nonreal,
Cd -» Nonreal, Ce — Nonreal, Ca - Nonreal},
{Cf -» Nonreal, Cg — Nonreal, Cb - Nonreal,
Cd - Nonreal, Ce — Nonreal, Ca — Nonreal},
{Cf - Nonreal, Cg — Nonreal, Cb — Nonreal,
Cd -» Nonreal, Ce — Nonreal, Ca — Nonreall},
{Cf - Nonreal, Cg — Nonreal, Cb — Nonreal,
Cd - Nonreal, Ce — Nonreal, Ca — Nonreal},
{Cf - 0.977466, Cg — 0.238722, Cb —» 0.772229,
Cd - -0.749695, Ce —» -0.749695, Ca — 0.533507},
{Cf - 0.12714, Cg — 0.162419, Cb —» 0.602479,
Cd - 0.270381, Ce —» 0.270381, Ca — 0.44006}}

10.4 Transient CSTR

Time Independence

A very real advantage of a CSTR or PFR is that it can be operated at steady state. This makes
it very easy to analyze kinetics of a chemical reaction because the experiments are so easy
to conduct. We can see this by looking at the CSTR equation once again. Assuming steady
state then, the equation for species A undergoing reaction to B is:

(Caf — Ca)g
—_— = 1A
Vv

And for species B the equation is:

————C‘?/Bq = +ra-

The quantity ¥ is fixed once the flow rate is fixed because the reactor volume is a constant.
We refer to ¥ as the holding time 6. Thus { is the reciprocal of the holding time, or 1. So
the difference between the inlet concentration of A and its outlet concentration, divided by
the holding time, is the rate of chemical reaction! It is startling to realize that something as
nanoscopic, or molecular, as the rate of chemical reaction can be found from measurements
that are so macroscopic. By varying the flow rate we can vary the holding time and find the
rate of the chemical reaction. By varying the inlet concentration of A keeping all else constant
we can find the dependence of the rate on the concentration of A by plotting the rate versus
Ca. In this way kinetic rate expressions can be readily determined using a CSTR.



10.4 Transient CSTR 479

It is also interesting to note that the second equation is actually the design equation for a
CSTR. If we are told the rate at which B must be produced and given that we have kinetics
available for the rate of reaction, then we can substitute in the kinetics for the rate and solve
for the volume. All of this assumes a steady state.

Time Dependence —The Transient Approach to Steady State

Although steady-state CSTRs are simple to operate and to analyze and even though they
offer real advantages to the kineticist (scientist who studies kinetics), it is also true that these
systems must start up. They do not start up and achieve steady state instantaneously. The
time period in which the system moves toward a steady-state condition is called the transient,
meaning that the system is in transition from one which is time dependent to one that is time
independent and at steady state. We have no way of knowing how long it will take a given
set of reactions to achieve a steady state in the CSTR before we either do an experiment or
solve the time-dependent model equations. If we choose experiment as a way to assess this
we need to be prepared to do many experiments and to make a sizeable expenditure of time
and/or money. This is impractical, so we do the math instead. If we do it correctly, then it is
cheap, fast, and provides us with insights that experiments cannot yield. We will consider just
such a case in this problem.

Complex Catalytic Kinetics

Consider the reaction of a molecule that takes place on a solid catalyst surface. This reaction
simply involves converting one form of the molecule into another; in other words, it is an
isomerization reaction. However, the reaction in question takes place only on the catalyst
surface and not without the catalyst.

When we analyze a reaction of this kind we find that at least two steps are involved. The
firstis called adsorption and is reversible. Adsorption is the transfer of a molecule from the bulk
phase, either the gas or liquid, to the solid surface. The adsorption process is reversible and
takes place without any change in the molecule. Like any reversible process, adsorption comes
to equilibrium. Because no change occurs in the molecule, the rate of approach to equilibrium
is very rapid and occurs essentially instantaneously. Once this occurs then the molecule on the
surface can react to product. We can break the problem down into the adsorption equilibrium
and the reaction rate of the adsorbed molecule. Take the isomerization to be first order on a
surface concentration of species A and consider the reaction to be irreversible. The adsorption
equilibrium steps take place by the interaction of the molecule in the bulk phase with a
so-called adsorption site on the solid surface. The adsorption site is the locus of points on the
surface that interact directly with the molecule.

Abulk + site = Asurface
Asurface = Bsurface

Bsurface = Bbulk + site



480 Chapter 10 Worked Problems

Once B is formed, it too undergoes adsorption and desorption. The desorption carries B from
the surface and into the bulk fluid phase. The rate of this reaction is first order in the surface
concentration of A and first order in the concentration of surface sites. It follows a simple
kinetic rate law:

TA- = ksurfaceCA, surfaceCsites

The surface concentration is difficult to measure, so we need to reexpress it in terms of the bulk
phase concentration of species A. To do this we take advantage of the fact that the molecules
adsorb and desorb so quickly that they come to equilibrium rapidly with the surface sites.
Therefore we can express the surface concentration in terms of the equilibrium. The equilib-
rium gives rise to the following relationship for the surface concentration of A in terms of the
bulk concentration of A:

KaCa

CA,surface = m

We can substitute this expression into the rate expression for the reaction. This leads to this
rate in terms of the bulk phase concentrations:

KiCa

surface mcsites

VA,=k

The concentration of sites can be incorporated into a rate constant by rewriting the product of
the surface site concentration and the surface rate constant simply as a rate constant:

k= ksurfacecsites

We can do this because the surface site concentration is also a constant. Thus the overall rate
for this catalytic reaction is:

kKACa

Ta- = 14+ KaCax

Transient Response of a CSTR with Catalytic Kinetics

The time-dependent component balance equations for A and B in the CSTR are as follows:

dCAV dCBV
a (Car— Cag—raV —_dt—

= —CBq +raV

We can substitute into these equations the kinetics we have just derived:

dC,V kKaCa v dCzV kKACa

ar = Car—Cag—g + KACa dt —Cra+ T KaCa




10.4 Transient CSTR 481

The integration of these two equations in time will show us how long it will take the reactor
to achieve steady-state conversion of A and production of B.

Problem Statements

A) The first step in this problem is to set up a solution to these equations and a graphical
display of the results. Using NDSolve, solve these time-dependent equations and by using
Plot graph the concentrations as functions of time for the following set of parameters:

Caf=1;
V=1;
q=10;
Cao=0;
Cbo =0;
k=2;

K1 =.01;
tmax = 1000;

What is the level of conversion with this system volume and flow rate?

B) Increase the volume of the reactor in decade intervals and examine the steady-state con-
version at each new volume. What is happening? As this happens, what happens to the time
required to achieve a steady state? Show all plots.

C) Set the reactor volume to 1000 and the flow rate q to 1. Plot and record the conversion.
Now repeat the calculation increasing q in decade intervals to 10,000. What happens to the
conversion and why does it happen?

D) How could you use this reactor to evaluate the kinetics?

Solution

Here is code to get the work started.

In(l]:= SetOptions[{Plot}, DefaultFont - {"Helvetica", 12}];

Caf = 1;
vV = 1000;
q = 10;

Cao = 0;
Cbo = 0;
k = 2;

Kl = .01;

tmax = 1000;



482

solns =

Chapter 10 Worked Problems

NDSolvel {
q k K1 Cal[t]
Ca'{t] == (caf - Calt]})— - '
v 1 + K1 Calt]
aq k K1 Calt]
Cb'[t] == -Cb[t]l—- + '
v 1 + K1 Calt]
Caf[0] == Cao, Cb[0] == Cbo},

{cal[t]l, Cb[tl}, {t, 0, tmax}l];

calt_]
CB[t_]

Evaluate[Cal[t] /. solns]
Evaluate[Cb[t] /. solns]

Plot[{CA[t], CB[t]l}, {t, 0, tmax},
PlotStyle - {{Thickness[.0l1l], GrayLevel[0.0]},
{Thickness[.01l], GrayLevel[0.5]}},
PlotRange -» {{0, tmax}, (0, Caf}},
AxesLabel - {"t", "Ci[t]l"}]:;

Ci[t]
3

0.8
0.6
0.4

0.2

200 400 600 800 1000

10.5 CSTR-PFR—A Problem in

Introduction

Reactions are often complex. By that we mean that rather than having one reaction take
place the reactants and products are involved in many different chemical transformations
simultaneously. For example, at the temperature required to produce B from A, we may find

Comparison and Synthesis



10.5 CSTR-PFR— A Problem in Comparison and Synthesis 483

that A will also react to produce D. These are two parallel reactions:

A—> B
A—D

In addition, whether more D or more B is produced depends on the values of the two rate
constants for the two steps.

Another case that is often encountered is one in which the product of the reaction of A to
B may itself be reactive and at the same conditions will produce D. These reactions occur in
series:

A—-B—->D

We will concern ourselves with this problem using the series network of reactions. We will
explore the differences between the complete back-mixed CSTR and the axially distributed
but radially well-mixed PFR.

A — B — D Network

Consider this reaction network in more detail. Let us assume that D is in fact the product
that we seek to produce, but that it must go through B. It is quite realistic to suppose that
this is the only viable route to D, but that B is very undesired. For example, D may be a
pharmaceutical or nutraceutical with special properties, whereas B is harmful when present
in quantities above a given level. Impurity problems of this kind also show up in other chem-
ical products, including specialties and materials. The presence of B above a certain thresh-
old may deleteriously affect the performance of the product. Thus the impurity problem is
one that is very real and that crops up across the industries in which chemical engineers
participate.

When faced with a problem such as this there are many options that may be pursued to
solve it. The crudest, but often practiced approach is to tolerate the impurity insofar as it is a
component of the product mix emerging from the reactor, but to separate it downstream of
the reactor in a dedicated unit. In some cases this may be the only cost-effective or efficient
option. There is another approach and that is to employ reaction engineering.

If B is to be minimized we can see intuitively that at higher overall conversion of A and
production of D, B will also be converted to a higher level. If the reactor is made larger,
then this can be achieved. But how much larger should it be? If the reactor is to be larger,
does it matter if it is back mixed or not? What if there is an existing reactor of specific
size and type? Can we improve its behavior and reduce separation costs through reaction
engineering?

To answer these questions we must have the relevant kinetics and a target level for this
species.



484 Chapter 10 Worked Problems

Kinetics and the Objective

The kinetics for each step are given in what follows. We use relative values for the parameters
and variables to keep the details simple and to maximize our learning:

r1 = k1 C4(A — B); k1 =1 units
r,=k2 C%(B — A); k2 = .09 units

Let us also assume that the concentration of B in the exit stream should be 0.01 or less to ensure
the performance of the specialty chemical D in its application. The inlet or feed concentration
of A, CAf, is taken as unity and those of B and D are zero. The relative volume flow rate is
also taken as unity.

Problem Statements

A) Using NSolve, develop a steady-state model for a CSTR with a volume of 50. What would
the relative concentrations of A, B, and D be as they emerged from this reactor?

B) Using NDSolve, develop a steady-state model for a PFR with the same volume and a cross-
sectional area of 10 units. At which position in the PFR does the concentration of B maximize?
What is the value of the concentration at this point? What would the relative concentrations
of A, B, and D be as they emerged from this reactor? How do they compare to the CSTR with
equal volume?

C) Using the two preceding simulations, link them to form a new reactor consisting of a CSTR
and PFR in series. To integrate the PFR equation initial conditions are needed at the inlet. Let
each initial condition needed for the PFR concentrations be given as the exit concentrations
from the CSTR.

i) If the volume of the CSTR is 50, then what additional PFR volume must be used in order to
bring down the concentration of B to a level of 0.01?

ii) Instead of adding a PFR to the exit of the CSTR, suppose your colleague had chosen to add
simply another back-mixed reactor, that is, another CSTR to the first. (This is just the same as
increasing the volume of the original CSTR.) What volume would the CSTR-CSTR require to
match the performance of the CSTR-PFR, that is, to bring the concentration of B to 0.01?

CSTR Alone
In{l]:=q@ = 1;
k1l = 1;
k2 = .9;
Caf = 1;



10.5 CSTR-PFR— A Problem in Comparison and Synthesis

cstrsolns = NSolvel[({

(Caf - CAcstr) - k1 CAcstr? == 0,

cstr

-CBcstr

cstr

-CDcstr + k2 CBestr? == 0},

cstr

{CAcstr, CBcstr, CDcstr}]
Evaluate[CAcstr /. cstrsolns([[4]]]
Evaluate[CBcstr /. cstrsolns[[4]]]
Evaluate[CDcstr /. cstrsolns[[4]]]

Capfro
CBpfro
CDhpfro

General::spelll : Possible spelling error: new symbol
name "CBcstr" is similar to existing symbol "CAcstr".

485

+ k1 CAcstr? - k2 CBestr? == 0,

General::spell : Possible spelling error: new symbol name

"CDcstr" 1is similar to existing symbols {CAcstr,

Oout{6]= {{Chcstr — 1.1533, CAcstr — -0.0732549,
CBcstr — -0.08004511},
{CDcstr 1.00652, CAcstr — 0.0682549,
CBcstr -0.0747783},
{CDcstr 0.998765, CAcstr — -0.0732549,
CBcstr 0.0744896},
{CDcstr 0.862522, CAcstr — 0.0682549,
CBcstr 0.0692228}})

VLol LV

Out{7]= 0.0682549

General::spelll : Possible spelling error: new symbol
name "CBpfro" is similar to existing symbol "CApfro".

out{8]= 0.0692228

CBcstr}.

General::spell : Possible spelling error: new symbol name

"Chpfro" is similar to existing symbols {CApfro,

Out[9]= 0.862522

PFR Alone
In{10]:= BAcs = 10;
CApfro = 1;
CcBpfro = 0;
CDhpfro = 0;

Vestr = 50

CBpfro}.



486

Out[14]=

Qut[15]=

Chapter 10 Worked Problems

pfrsolns = NDSolvel[ {CApfr'[z] == B k1l capfr(z]?,
CBpfr'[z] == +A;" (k1 capfrlzl? - k2 CBpfr[zl?),
CDpfr'[z] == LI CBpfr(z]?,
aq

CApfr[0] == CApfro,
CBpfr[0] == CBpfro,
CDpfr[0] == Cbpfro},
{CApfr(z], CBpfrlz], CDpfrlzl},

V.
{z, 0, ==y

Acs

Evaluate[CApfr([z] /. pfrsolns]
:= Evaluate[CBpfr(z] /. pfrsolns]
:= Evaluate[CDpfr[z] /. pfrsolns]

Caexitl[z_]
Cbexit([z_]
Cdexit[z_]
Vestr

Acs

Plot[{Caexit[z], Cbexit[z], Cdexit[zl}, {z, O, },

PlotStyle -

{GrayLevel[0], {(Thickness([.01], Dashing[{0.03, 0.02}],
GrayLevel[0]},
{Thickness[.01], Dashing({0.03,

GrayLevel{0.5]},
{Thickness[.01], GrayLevel[0.51}}]1;

0.02}],

Zf = Vcstr
Acg
{Caexit[zf], Cbexit[zf], Cdexit[zf]}
» VCBCI'
Table[Cbexit([z], {z, 0, —}]
Acg

50

General::spelll Possible spelling error: new symbol

name "CApfr" is similar to existing symbol "CApfro".

General::spell Possible spelling error: new symbol
name "CBpfr" is similar to existing symbols

{CApfr, CBpfro}.

General::spell Possible spelling error: new symbol
name "CDpfr" is similar to existing symbols

{Capfr, CBpfr, CDpfro}.

{{CApfr(z] — InterpolatingFunction[{{0., 5.}}, <>]1[z],
CBpfr[z] — InterpolatingFunction[{{0., 5.}}, <>]11[z},
CDpfrlz] — InterpolatingFunction[{{0., 5.3}}, <>]1[z1}}

General::spelll Possible spelling error: new symbol
name "Cbexit" is similar to existing symbol "Caexit".



10.5 CSTR-PFR—A Problem in Comparison and Synthesis 487

outl[20]=5
Out{21)= {{0.0196083}, {0.0342294}, {0.946162}}

out[22]= {{0.}, {0.155406}, {0.0827424}, {0.056225}, {0.0425573},
{0.03422941}}

In{23]:= Acg = 10;
Veser = 150

ACB

k1l CApfriz]?,

pfrsolns = NDSolvel{CApfr'{z] == -

ACS 2 2
CBpfr'{z] == + (k1 capfrz]® ~ k2 CBpfrizl®).,
ACB
CDpfr'[z] == + k2 cBpfrizl?,
CApfr{0] == CApfro,
CBpfr{0] == CBpfro,
CDpfr[0] == CDpfro},

{Capfr[z], CBpfriz], CDpfrizl},

Vestr
{z, 0, —1}I
Acs

Evaluate([CApfriz] /. pfrsolns]
Evaluate[CBpfr[z] /. pfrsolns]
Evaluate[CDpfr{z] /. pfrsolns]

Caexit[z_]
Cbhexitz_]
Cdexit[z_]

\Y
Plot [{(Caexit[z], Cbexit[z], Cdexit[zl}, {(z, 0, —iﬂi},
{od:]
PlotStyle -
{{GrayLevel[0]}, {Thickness[.01],

Dashing[{0.03, 0.02}], GrayLevel{O0l},



488 Chapter |10 Worked Problems

{Thickness[.01], Dashing[{0.03, 0.02}],
GrayLevel[0.51}}];

VEstr
Acg
{Caexit[zf], Cbexit[zf], Cdexit[zf]}

zf =

cstr

V.
Table[Cbexit[z], {z, 0, ——}1]

out[24]= 150

out[25]= {{CApfr[z] — InterpolatingFunction([{{0., 15.}}, <>11[z],
CBpfr[z] — InterpolatingFunction({{0., 15.}}, <>1[z],
CDpfr(z] - InterpolatingFunction[{{0., 15.}}, <>][z]}}

—
T S e ——_—_—_—_— — — — — —

B

1< 1l

Out[30]= 15
Out[31]= {{0.00662276}, {0.0115696}, {0.981808}}

Out[32]= {{0.}, {0.155406}, {0.0827424}, {0.056225}, {0.0425573},
{0.0342294}, {0.0286256}, {0.0245975}, {0.0215631},
{0.0191948}, {0.0172951}), {0.0157377}, {0.0144375},
{0.0133356}, {0.01239}, {0.0115696}

10.6 Membrane Reactor — Overcoming
Equilibrium with Simultaneous
Separation

Introduction

Reversible chemical reactions given enough time will come to equilibrium. In the batch reactor
equilibrium is diagnosed when the conversion of the reactant no longer changes even when
the reaction time, that is, the batch holding time, is increased. When the reactor is a flow



10.6 Membrane Reactor 489

reactor, either CSTR or PFR, we find equilibrium when the conversion no longer changes with
increased holding time (q/V).

Often the equilibrium position of a reversible process is such that the conversion to product
is low at reasonable holding times (i.e., flow rates and reactor volumes). For example, the
dehydrogenation of saturated alkanes and alkyl aromatics to produce alkenes and aryl-alkenes
and hydrogen is a very important case in point:

CH;CH,CH,CH; = CH3CH,CH = CH, + H,

This is economically disadvantageous because it means either that rates of production will
be low or that the investment in the reactor will be very high because it needs to be so large.
There is a clever way around this that always has been employed on a small scale and that is
now gaining currency for selected larger-scale processes.

Reaction with Separation

Chemical equilibrium responds to a “stress” by moving to the side that relieves the effect of
“stress” and returns the system to equilibrium, according to Le Chatlier’s Principle. If we add
heat to an exothermic reaction it will shift toward the reactants on the left. If we add mass,
concentration, or pressure on the reactant side of the equilibrium, the system responds by
shifting toward the products. If we can remove products from the reaction zone (the system
or control volume), then we also shift the reaction equilibrium to the right. In fact, even if we
remove just one of the products from a set of products, the system will shift to the right.

In the case of the reaction class we are considering, that is, the dehydrogenation of alkanes
to alkenes and hydrogen, continuous removal of either the alkene or hydrogen from the system
will shift the conversion of the reactant alkane further to the products. This is the phenomenon
we wish to examine.

Hydrogen-Selective Membranes

Palladium and its alloys as well as some new ceramic membrane materials will separate
hydrogen selectively from hydrocarbons and they will do so at temperatures that are high
enough for reaction to take place. Thus, one can operate a membrane separation of hydrogen
in conjunction with the production of hydrogen by a dehydrogenation of alkane. The extent to
which the hydrogen is removed from the reaction zone will be the extent to which the reaction
proceeds to olefin at a conversion level beyond that achieved at equilibrium. In the case of
palladium the hydrogen must first dissociate into atoms at the surface prior to entering the
lattice to diffuse through the membrane. One of the advantages of the ceramic membranes
is that they are nanoporous and so dihydrogen in molecular form will diffuse through them
intact. This process requires less energy and is relatively faster. It also leads to a simple linear
dependence upon the dihydrogen rather than to a square root dependence. For these reasons
we will consider this type of membrane.



490 Chapter 10 Worked Problems

Consider the following reaction as representative of this type and the rates of the forward
and reverse reactions:

A=B+H2
r; = k1 CA?
frev = k2 CB CH2

The rate of transport of hydrogen across the membrane of area As in units of mol/time is
given by:

Ttransport = As Pm(CH2I — CH2II)

The reaction can be considered to take place in the volume above the membrane. Only
hydrogen is transported through the membrane, whereupon it leaves the lower volume via
convective flow. Unconverted alkane A, the product alkene B, and hydrogen are also con-
vected out of the volume above the membrane. Consider both the volumes above and below
the membrane to be well mixed.

Problem Statements

A) Construct the time-independent model equations for the change in concentration of A,B
and H2 on the top side of the membrane and for H2 on the lower side of the membrane.

B) The first step is to establish whether or not the reactions have adequate holding time to reach
equilibrium in the absence of permeation. Therefore, letting Pm = 0 and using the following
list of parameter values, show what happens as the flow rate on the top side of the membrane
drops in decade increments from 1000 au to .001 au. What happens and in which decade
interval of flow rate (i.e., holding time) does the reaction attain equilibrium. What are the
equilibrium levels of A,B and H2?

CAf=1;
ql = 100;
qll = 1000;
VI=10;
VII = 10;
Am=1;
k1l = .01;
k=1;

Pm = 0.0;



10.6 Membrane Reactor 491

C) Using the same model and the same parameter values, set Pm = 0.01. Now increase the
value of Am in decades and note the values of A,B,CH2I (top) and CH2 (bottom). What
happens and why does it happen?

D) Starting at the final parameter values in part C begin to increase gll in decade increments.
What effect if any does this have on the conversion of A and the production of B? Why?

Utilize NSolve to numerically solve the equations. The recommended format for doing this is
as follows:

eqns = {set of four model equations including convection,
reaction, and permeation}
vars = {set of four variables to be solved for in time: CA...}

Vertical list of parameters;
solns = NSolvelegns, vars}]

E) In fact, the expression for hydrogenation permeation across a palladium membrane is not
simply linear in the concentrations, but instead follows the square root of each hydrogen
concentration:

Piransport = Pm Am v/Ks (CH2I[t] — /CH2II[t])

Rewrite the model equations for the time-dependent case to handle this complication and
solve using the same parameter values as before.

Solution
For parts A through D the following code will be useful:

Steady-State Membrane Reaction with Separation

I

In[1]:= eqns = {(CAf - CAI)%E - k1 CAI + k2 CBI CH2I == 0,
ql

(_CBI)GE + k1 CAI - k2 CBI CH2I == 0,

I
(—CHZI)%E + k1l CAI - k2 CBI CH2I
- Pm Am(CH2I - CH2IT) == 0,
qIl
(-CH2IT) VEE + Pm Am(CH2I - CH2II) == 0}

vars = {CAI, CBI, CH2I, CH2II}

CAf = 1;



492 Chapter 10 Worked Problems

qIl = 100;
gII = 1000;
VI = 10;
VII = 10;
Am = 1;

ki = .01;
k2 = 1;

Pm = 0.0;

NSolvel[eqns, vars]

General::spelll : Possible spelling error: new symbol
name "CH2II" is similar to existing symbol "CH2I".

(CAf - CAI)qgI

out[1l)= {-CAI k1 + CBI CH2I k2 + o -= 0,
CBI qI
CAI k1 - CBI CH2T k2 - —7 == 0,
CH2I gqI
CAI k1 - CBI CH2I k2 - Am(CH2I -~ CH2II)Pm - g == 0,
CH2TT gTII
AmM(CH2I - CH2II)Pm - ———— "= —— 0}
VII

Qut[2]= {CAI, CBI, CH2I, CH2II}

Out[12]= {{CH2ITI —» 0., CAI —» 11.011, CBI - -10.011,
CH2I —» -10.011},
{CH2II - 0., CAI — 0.999001, CBI — 0.000998901,
CH2I - 0.000998901}}

For parts D and E this code will be necessary (note that permeabilities are set to zero).

Transient Membrane Reaction with Separation

In[71]:= SetOptions[{Plot}, DefaultFont - {"Helvetica", 10}];

egqns = {CAI'[t] == (CAf - CAI[t]):I’—; - k1l CATI[t]
+ k2 CBI[t] CH2I[t],
CBI'I[t] == (—CBI[t])?’—i + k1 CAI[t]
- k2 CBI[t] CH2I[t],
CH2I'[t] == (-CHZI[t]):I’—: + k1 CAI[t]
- k2 CBI[t] CH2I[t] - Pm Am(CH2I[t] - CH2II[t]),



10.6 Membrane Reactor

CH2II'[t] ==

+ Pm Am (CH2I[t]

CAI[O] ==
CBI[0] == CBIo,
CH2I[0] == CH2Io,
CH2II[0] == CH2IIo};

vars = {CAI[t], CBI[t],

Clear[cAaf, qI, qII, VI, VII,

CBIo, CH2Io, CH2IIo]

caf = 1;
ql = .01;
QqII = 1000;
Vi = 10;
VII = 10;
Am = 1;
k1 = .01;
k2 = 1.0;
Pm = 0.0;
CAIo = 0;
CBIo = 0;

CH2Io = 0;

CH2IIo = 0;
Clear[solns]
tmax = 6000

golns = NDSolvel[egns,
MaxSteps - 2000]

Ccal[t_] := Evaluate[CAI[t] /.

a = Plot[Cal[t], {t,

PlotStyle - {Thickness[0.01],
Dashing([{.03, .03}1},

PlotRange - {{0,

(-CH2II[t])

0,

qgII

II

- CH2II(t]),

CH2IT[t]};

k1,

solns]

DisplayFunction - Identityl];

Cbl[t_] := Evaluate[CBI[t] /.

b = Plot[Cb1l[t], {t,

PlotStyle - {Thickness[0.01],
Dashing[{.03, .03}1},

PlotRange - {{0,

solns]

DisplayFunction - Identity];

k2,

tmax},

CAf}},

CAaf}},

Pm, Ks,

GrayLevel[0],

493

CATo,

GrayLevel[0.3],



494 Chapter 10 Worked Problems

CH21[t_] := Evaluate[CH2I[t] /. solns]
h21 = Plot[CH21[t], {t, 0, tmax},
PlotStyle - {Thickness[0.0l1], GrayLevel[0.5],
Dashing[{.03, .03}1},
PlotRange - {{0, tmax}, {0, CAf}},
DisplayFunction —» Identity];

CH22[t_] := Evaluate[CH2II[t] /. solns]

h22 = Plot[CH22[t], {t, 0, tmax},
PlotStyle - {Thickness[0.01], GrayLevel[0.7],
Dashing([{.03, .03}1},
PlotRange - {{0, tmax}, {0, CAf}},
DisplayFunction - Identityl];

Show[{a, b, h21, h22}, AxesLabel - ({"t", "Ci[t]"},
DisplayFunction - $DisplayFunction]

Oout(89]= 6000

Out [90]= {{CAI[t] — InterpolatingFunction[{{0., 6000.}}, <>]]
CBI[t] — InterpolatingFunction([{{0., 6000.}}, <>][
CH2I{t] — InterpolatingFunction[{{0., 6000.}}, <>]
CH2II[t] - InterpolatingFunction[{{0., 6000.}}, <>

£,
el
(el,
Jlels

Cilt]
1
P -— - - S IS == - -
-—
0.8 "
7
Ve
0.6 /
/
/
0.4 ,
/
02 [/
, pmp—_— B IS GED CENF T CGED TE TGS G .
[ 2 . . ot o
1000 2000 3000 4000 5000 6000

OQut[99]= - Graphics -



10.6 Membrane Reactor 495

Palladium Membrane

In[126]:= Clear([vars, eqgns];

SetOptions[{Plot}, DefaultFont - {"Helvetica", 10}1];
eqns = {CAI'[t] == (CAf - CAI[t]) %% - k1 CAaT[t]
+ k2 CBI[t] CH2I[t],
CBI'[t] == (-CBI[t]) %; + k1 CAI[t]
- k2 CBI[t] CH2I([t],
CH2I'[t] == (-CH2I[t]) %; + k1l CAI[t]

- k2 CBI[t] CH2II[t]

- Pm Am /Ks (4/CH2I[t] - +/CH2II[t]),

qII
CH2ITI'[t] == (~CH2II[t]) —
VII
+ Pm Am /Ks (4/CH2I[t] - +/CH2II[t]),
CAI[0] == CAIo,
CBI[0] == CBIo,
CH2I[0] == CH2Io,
CH2II[0] == CH2IIo};

vars = {CAI([t], CBI[t], CH2I[t], CH2II[t]};

caf = 1;
ql = 1;
qll = 1;
VI = 10;
VII = 10;
Am = 10;
kl = .1;
k2 = 1;
Pm = 0;
Ks = .1;
CAIo = 0;
CBIo = 0;
CH2Io = 0

CH2IIo = 0;

Clear([solns]

tmax = 100

solns = NDSolvel[egns, vars, {t, 0, tmax}];

Cal[t_] := Evaluate[CAI([t] /. solns]
Cbl[t_] := Evaluate[CBI[t] /. solns]



496 Chapter 10 Worked Problems

CH21[t_] Evaluate[CH2I[t] /. solns]

CH22[t_]

Evaluate[CH2ITI[t] /. solns]

Plot[{Cal[t], CH21[t], Cbl[t], CH22[t]}, {t, 0, tmax},
PlotStyle - {{Thickness[0.01l], GrayLevel[O0],
Dashing([{.03, .03}]1},
{Thickness[0.01], GrayLevel[0.3], Dashing[{.03, .03}]1},
{Thickness[0.01], GrayLevel[0.5], Dashing[{.03, .03}]1},
{Thickness[0.01], GrayLevel[0.7], Dashing[{.03, .03}]1}}]

out[145]= 100

-
7
0.6 /
’
/
04 ¢
/
! o e o
el
/
I,
LS
20 40 60 80 100

10.7 Microbial Population Dynamics

Introduction

The current explosion in biological sciences research is unprecedented. The breakthroughs in
the basic sciences of genomics and related disciplines have brought us to the threshold of a
new era in biological technology. Naturally, the chemical industry is involved and chemical
engineers are participating in increasing numbers. Some technology pundits are predicting
that this green revolution will supplant the processes and products related to the chemical
industry that we have come to know in the twentieth century with new ones that are environ-
mentally benign and biodegradable. It is a stunning and in some ways captivating vision for
the future that will have obvious benefits, but unknown and unforeseeable consequences as
well.



10.7 Microbial Population Dynamics 497

Microbes as Reactors

Paramount to this new technology is the use of microbes, that is, cellular organisms as re-
actors. Organisms have evolved mechanisms for dealing with environmental stress, such as
the presence of a new substrate chemical in their surroundings, by rerouting their metabolic
pathways. Metabolic engineers can take advantage of this through a procedure of accelerated
adaptation in order to generate new microbes that consume a given substrate and produce a
specific target chemical.

Microbes use enzymes as catalysts to make the desired or beneficial reaction take place,
and typically under mild conditions. Brewing of beer and fermentation of fruit and veg-
etable mass high in starches to produce consumable ethanol are the oldest and most familiar
instances of using microbial action to fulfill a desired end. But now much more has been
demonstrated, ranging from the production of essential human hormones to the synthesis of
specialty chemicals.

In a reactor containing a substrate a colony of microbes is inoculated and brought to
maturity. As the colony grows the substrate is consumed to supply the microbes with their
building blocks. Some fraction of the substrate is necessarily diverted into the formation of
biomass, that is, cells—their membranes and organelles, but some other fraction is used to
produce the target molecule. In a batch process, when the substrate has been consumed,
the microbial colony either dies rapidly or if the process is to be stopped prior to complete
substrate consumption, it is killed by a rapid change in conditions (for example, by raising
the temperature as is done in the pasteurization of raw milk). From this point the prob-
lem of recovering the target molecule is one of separating it from the biomass and aqueous
medium.

Kinetics
The basis of life is molecular and therefore we can describe the rates of substrate consumption,
product formation, and even microbe population growth in much the same way that we would
describe the rates of molecular-level chemical processes.

We will take the microbe, substrate, and product concentrations to be a[t], b[t], and c{t],
respectively. The equations that describe the rates of change of each of these are shown
here:

. blt]

a [t] = (MmaXm - k)a[t],
_—_— umax  bft]

w10 = (5 b )0

b
clt] = (a + ﬁumaxﬁﬂm)a[t]



498 Chapter 10 Worked Problems

The kinetic expressions are highly nonlinear because they include a Michaelis-Menton rate
term:

b[t]

Ks 1 b

pumax
where pmax is a maximum rate constant, Ks is a saturation concentration, and ys is a
dimensionless parameter that is similar to a stoichiometric coefficient. Similarly, « and 8

are dimensionless numbers that are also similar to stoichiometric coefficients—they relate the
rate of production of the desired molecule to the rate of growth of microbial cell mass.

Problem Statements

A) Using NDSolve, build a simulation of the dynamics of microbial growth described by these
equations.
i) Parameter values should be:

p o= .15; "pmax";
K = .04; "Ks";

y = 1; "ys";

a = 107%;

n=2

8= .1;

tmax = 500

k =0.1

ii) Plot the change in A, B, and C on one graph against time.
iif) What do the plots indicate about how the process occurs?

B) If there are two microbial species present show the dynamics of microbe growth and product
formation from each and in toto. Find A1,B1,C1 and A2,B2,C2 for each microbe.

i) Parameter values for each should be:

pl = 1.1; "pmax";

Kl = .04; "Ks";
yl = 1; "ys";

al = 0.02;

Bl = .5;

p2 = .9; “"pmax";
K2 = .025; "Ks";
y2 = 1; "ys";

a2 = 0.004;

B2 = .5;

tmax = 100



10.7 Microbial Population Dynamics 499

ki = .3
k2 = .1

ii) Plot the change in A, B, and C on one graph against time for each microbe and then plot
all six on one. Also plot the total substrate and total product concentration on a separate plot.
iii) What is happening to these microbes according to this kinetic simulation?

Solutions
For Part A:
Infl]:= p = .15; "pmax";
K = .04; "Ks";
y = 1; "ys";
a = 1077;
n = 2
B = .1;
tmax = 500
k =0.1

"a{t] is the change in microbial concentration;
decreasing";

"b[t] is the change in the substrate concentration;
increasing";

"c[t] is the change in product concentration; increasing";

bugsl = NDSolvel{

rft] == (—E[t]— k)altl]

a == M x Ty e !
pn blt]

b’[t] == -————al(t],

[t] YK+ b[t]a[ ]

b[t]

c’[t] == (o + ﬁu——K Y BIC] yaltl,
af0] == .01,
b[0] == 10,
cl0] == 0
},

{alt]l, b[t], c[tl},
{t, 0, tmax}];

all[t_]
bl[t__] :
cl[t_]

Evaluate[a[t] /. bugsl]);
Evaluate[b[t]l /. bugsl]:
Evaluate[c[t] /. bugsl];



500

Chapter 10 Worked Problems

pal = Plot[al[t], {t, 0, tmax}, DisplayFunction - Identity,
PlotStyle —» {{Dashing[{0.03, 0.03}], Thickness[.01],
GrayLevel[0.41}},
PlotRange - {{0, tmax}, {0, 20}}1;
pbl = Plot[bl[t], {t, 0, tmax}, DisplayFunction - Identity,
PlotStyle - {Thickness[.01], GrayLevel[0]}1]:;
pcl = Plot[cl[t]l, {t, 0, tmax},
PlotStyle - {{Thickness[.01], GrayLevel[0.0],
Dashing[{0.03, 0.03}1})},
DisplayFunction - Identity];
Show[pal, pbl, pcl, DisplayFunction - $DisplayFunction,
PlotLabel - tmax "= tmax,a[t]:Gry Dsh, b[t]:Blk sld,
c[t]:Blk Dsh"]:;

Qut[5]= 2
Out[7]= 500

out[8]= 0.1

500 = tmax,a[t]:Gry Dsh, blt]:Blk S1d, clt]:Blk Dsh

For Part B:

In[20]:= Clear[al, bl, cl, «l, B1, K1, k1, yl, a2, B2, K2, k2,
Y2, n, t, tmax, bugs2, Al, B1l, Cl1l, A2, B2, C2, pl, p2l;

SetOptions[{Plot}, DefaultFont - ("Hevetica", 10}1]:



10.7 Microbial Population Dynamics 501

pl 1.1; "pmax";
K1 = .04; "Ks";
vyl = 1; "ys";

al = 0.02;

Bl = .5;

p2 = .9; "pmax";
K2 = .025; "Ks";

",
I

y2 = 1; "ys
a2 = 0.004;

B2 = .5;
tmax = 100
k1 = .3
k2 = .1

"a[t] is the change in microbial concentration;

decreasing";

"b[t] is the change in the substrate concentration;
increasing";

"c[t] is the change in product concentration;
increasing";

bugs2 = NDSolve[{

al’[t] == ul(———EEEEl——— - kl)al([t],
Kl + bl[t]
pirie] == P PIYT il
vl K1 + bllt]
_p2_ bIIe] azitl,
y2 K2 + bl[t]
cl’[t] == «l allt] + (1 ul ———Eiigl———al[t],
K1 + bl[t]
a2’'[t] == pu2 (———Eliil——— - k2)a2[t],
K2 + bll[t]
c2'[t] == a2 a2lt] + B2 u2 _ bilel a2[tl],
K2 + bl[t]
al[0] == 0.01,
bl[0] == 10,
cl{0] == O,
a2[0] == 0.01,
c2[0] == 0
},

{al[tl, blIt], cl[t], a2lt], c2[t]},

{t, 0, tmax}];



502 Chapter |0 Worked Problems

Al{t_] := Evaluate[al[t] /. bugs2];
Bl[t_] := Evaluate[bl[t] /. bugs2];
Cl[t_] := Evaluate[cl[t] /. bugs2];
A2[t_] := Evaluatel[a2[t] /. bugs2];
C2[t_] := Evaluate[c2[t] /. bugs2];:

pl = Plot[{Al[t], B1l[t], C1l[t]}, {(t, 0, tmax},
PlotStyle -» {{Dashing[{0.03, 0.03}], Thickness[.01],
GrayLevel[0.41},
{Thickness[.01l], GrayLevel[O0]},
{Dashing[{0.03, 0.03}1],
Thickness[.01], GrayLevel[0.71}},
PlotRange - {{0, tmax}, {0, 12}}]1;
p2 = Plot[{Aa2[t], B1l([t], C2[tl}, {t, 0O, tmax},
PlotStyle » {{Thickness[.01l], GrayLevel[0.41]},
{Thickness[.01], GrayLevel[0]},
{Thickness[.01], GrayLevel[0.7]1}},
PlotRange -» {{0, tmax}, {0, 12}},
PlotRange -» {{0, tmax}, {0, 4}}];
p3 = Plot[{C1[t] + C2[t]}, {t, O, tmax},
PlotStyle - {{Thickness[.01l], GrayLevel[0.0],
Dashing[{0.03, 0.03}1}},
PlotRange -» {{0, tmax}, {0, 12})},
PlotRange - {{0, tmax}, {0, 4}}];
Print[tmax "= tmax"]
Show|[
pl, p2, p3, PlotLabel - "Sbstrt= Blk.Sld.;
Tot.Prdt. = Blk.Dshd.;Bugs = Gry",
AxesLabel - {"t", "Ci(tl1"}1:;

General::spelll : Possible spelling error: new symbol
name "B1" is similar to existing symbol "al".

General::spelll : Possible spelling error: new symbol
name "B2" is similar to existing symbol "«2".

General::spell : Possible spelling error: new symbol
name "ul" is similar to existing symbols {al, B1}.

General::spell : Possible spelling error: new symbol
name "u2" is similar to existing symbols {w2, B2}.

Out [32]= 100
out[33]= 0.3
Out(34]= 0.1



10.7 Microbial Population Dynamics 503

/ \
N — — —
20 40 60 80 100

12

|

10 1
8
6

60 80 100



504 Chapter 10 Worked Problems

12

10 |

20 40 60 80 100

Ci[t]sbstrt; Blk.Sld. ;Tot.Prdt.= Blk.Dshd. ;Bugs = Gry
12

10 »

’—-------—-—----

20 40 60 80 100



A

Adsorption

applications, 249

constant, 264

defined, 249

diffusion and, 263-282

Langmuir-Hinshelwood-
Hougen-Watson
kinetics, 345-357

net rate of, 249-257

semicontinuous
{pseudo-steady state),
258-262

transient time dependence,

392401
Algebraic equation solving,
39-42
Archimedes’ Law, 157
Arrhenius, 300
AxesLabel, 39
Axes lines
changing fonts, 16
making darker, 14
making more visible, 15
AxesStyle, 14

Index

Backgrounds, adding gray,

19-20

Basic calculations menu, 2
Basic Input, 43
Batch

background, 209-210

conservation of mass across
phases, 210-213

fit to batch data, 214-217

mass transfer coefficient,
210

permeation, 263-268

rate of dissolution, 210

Batch competitive adsorption

example, 467473

Batch reactors

disadvantages of, 363

irreversible reactions,
303-317

no-flow, 301-303

reversible reactions, 317-328

Boundary conditions, 453
Braces, use of, 2
Bulk density, 62-66, 69-70

505

Calculus, 43-46
Catalysts in reactors,

conservation of mass and,
61
calculating mass flow, 63-64
computing time to fill
reactor, 64-65
determining amounts, 62-74
plotting, 6568
volume and level,
determining, 66

Cell membrane expansion,

282-296

Chemical equilibrium point,

317,320

Chemical kinetics

collisions, determining
number of, 299

complex reactions, 328-360

control volume, 301

example in complex, 474478

first-order, 303-307

irreversible reactions,
303-317



506

Chemical kinetics (continued )
Langmuir-Hinshelwood-
Hougen-Watson,
345-357
microbial population
dynamics, 357-360
no-flow batch reactors,
301-303
n'h order, 314-317
rate constant and threshold
values of molecules,
300-301
reversible reactions, 317-328
role of, 297-298
second-order, 307-314
series-parallel reactions,
341-345
series reactions, 328-341
Chemical reactions, how they

take place, 298-301
Commands
See also under type of
format, 1-2
simple, 2-3
Compacted bulk density, 6266,
69-70
Complete back-mixing, 437
Complex Expand, 327

Component balance, 151-152
no-flow batch reactors, 302
Component mass balances, for
gas and solid phases, 352,
358
Component mass balances, for
no-flow batch reactors,
302
Concentration versus density,
153-154
Conical tank, 89-91
Consecutive reactions, 328
Conservation of mass principle,
59-86
See also Mass balance
equation, left-hand side;
Mass balance equation,
right-hand side
across phases, 210-213
basics of, 59-61
filling a cylindrical tank,
74-77
filling a vessel with
pelletized solid, 61-74
pressurizing empty tank
with ideal gas, 77-82

time-dependent flows, 82-86
water flow, 115
Constant density, 69, 163-170
Constant volume batch reactor,
317-328
Constitutive equation, 116-124
Constitutive relationship, 61-74,
115
Contact catalysis, 345
Continuous flow reactors
See also under type of
continuously stirred tank,
363-364
fed-batch or semibatch,
363-364, 365-366
plug flow, 363, 364
pseudo-steady state, 379-382
volume change, large,
373-379
volume change, negligible,
366-373
Continuously stirred tank
reactors (CSTR), 363-364,
383-387
example in comparison and
synthesis of PFR and,
482488
example in transient,
478-482
mixing effects on selectivities
with series and
series-parallel reactions
with, 418424
optimal design, 401407
plug flow reactors as a series
of, 424435
residence time distribution,
435-450
steady state, 387, 387-392
transient time dependence,
392401, 478-482
Continuous permeation,
268-282
Control, draining tank, 143-150
Control volume
defined, 60-61
filling a cylindrical tank,
74-77
filling a vessel with
pelletized solid, 61-74
no-flow batch reactors,
302
pressurizing empty tank
with ideal gas, 77-82

Index

rate of change in mass
within, 61
time-dependent flows,
82-86
Coulombic forces of attraction,
207
CRC Handbook of Chemistry and
Physics, 170
Cylindrical tank, filling a, 74-77

D

data, 30
dataset, 35
DefaultFont, 16
Definite integral, 4445
Density
concentration versus,
153-154
constant, 163-170
variable, 170-175
Derivatives, 4344
Desorption
Langmuir-Hinshelwood-
Hougen-Watson
kinetics, 345-357
transient time dependence,
392401
Differential change in time and
volume with time, 87-88
conical tank, 89-91
draining tank, 115
polymers, 103-112
semicylindrical trough,
91-98
spherical tank, 98-103
triangular trough, 87-89
Differential equations
DSolve, 46-52, 84, 136-139
NDSolve, 52-55
Differentiate (differentiation)
numerical, 4546
symbolical, 43-45
Diffusion
adsorption and, 263-282
mass transfer versus,
206-207
Diffusivity, 264
Dimensionless concentrations
first-order kinetics, 304-306
reversible reactions and,
324-328
second-order kinetics,
308-313



Index

Dirac-Delta function, 181-184,
188, 437

Direct indefinite integration
after separation solution,
127-129

DisplayFunction —
$DisplayFunction, 67

DisplayFunction — Identity,
67

DisplayGraphics, 243
DisplayTogether, 23
Dissolution
rate of, 210
salt, 207-209
Distributed systems, 154
Dividing, 9-10
Do loop, 432
Draining tank
constant input, 125-126
constitutive equation,
116-124
control, 143-150
direct indefinite integration
after separation
solution, 127-129
DSolve, 136-139
fluxional input, 139-142
mass balance equation,
right-hand side,
113-114
mass input and output,
125-143
mechanism of water flow
(Torricelli’s law),
114-116
power series expansion,
131-136
solving for level as a function
of time, 124-125
substitution solution,
129-130
DSolve, 46-52, 84, 136-139,
256-257, 329, 336, 342, 343,
410

Elements, taking from sets, 35
Epilog, 354
Epilog — Line{{0, 18.4}},

{3tf, 18.4}}, 67
Equilibrium stage, 225-230
Expand, 42
External mass transport, 250

F

Factor, 42
Fed-batch reactors, 363-364,

365-366
File menu, 2
First-order kinetics, 303-307
Fit, 37-38, 67
Fit to batch data, 214-217
Flows

time-dependent, 82-86
water, 114-116

Flux, 104
Fluxional input, 139-142
Fonts, changing, 16
FrameLabel, 21
Frames, inserting, 17
FullSimplify, 42, 353
Functional, 425, 429432
Functions, syntax for, 36
Fundamental rates/kinetics, 314
fix. ]:=f[x], 36

G

Gas, pressurizing empty tank
with ideal, 77-82
Gaussian distribution, 198
Geometry problems
conical tank, 89-91
cylindrical tank, 74-77
polymers, 103-112
semicylindrical trough,
91-98
spherical tank, 98-103
triangular trough, 87-89
Global context, 440450
Global names, 401
Global rates/kinetics, 314, 348
Graphical method, 93-95
GraphicsArray, 242-243, 294,
333-334, 378, 398400,
415-418
<<Graphics ‘Graphics’, 23
Graphics Option, 13
Graphs. See Plots, changing
appearance of
Gravity, experiment, 116-124
Grid lines, adding, 18

H
Heterogeneous catalysis, 345

Impingement frequency, 250

507

Indefinite integral, 44
Infix notation, 11
Insoluble solid, liquid and an,
154-162
Integrate (integration), 47
direct indefinite integration
after separation
solution, 127-129
numerical, 45
symbolic, 4445
Internal mass transport, 250
Interpolation, 52-53
Intrinsic rates/kinetics, 314
Irreversible reactions, 303-317

)
Join, 31

K
Kinetic theory, 250-251

L

Labels
adding, 21
for x and y axes, 38-39
Langmuir, Irving, 251
Langmuir-Hinshelwood-
Hougen-Watson kinetics,
344-357
Langmuir isotherm, 260
Level as a function of time,
124-125
Level-controlled tank, 459467
lgdatset, 36-37
Linear driving force, 210
Linear first-order differential
equations (LFODE), 49
Liquid and an insoluble solid,
154-162
Liquid and a soluble solid
constant densities, 163-170
variable densities, 170-175
Liquid-liquid state
mass transfer analysis,
nonequilibrium stage,
230-248
steady state, equilibrium
stage, 225-230
List, 3
Listability, 9, 33, 35
ListPlot, 3, 30-37, 67
Lists, combining, 31-34
Log, 3,35



508

M

Madelung energy, 207
Map, 11
Mass balance equation,
left-hand side
conical tank, 89-91
polymers, 103-112
semicylindrical trough,
91-98
spherical tank, 98-103
triangular trough, 87-89
Mass balance equation,
right-hand side, 113-114
Mass flow rate, polymers,
103-112
Mass input and output, 125-143
Mass transfer
applications, 205
batch, 209-213
coefficient, 210
external, 250
fit to batch data, 214-217
full solution, 220-225
internal, 250
liquid-liquid state, 225-248
pseudo steady state, 218-219
salt dissolution, 207-209
versus diffusion, 206-207
Material balance equations, 254,
265, 268, 284
MatrixForm, 32
Membrane reactor example,
488-496
Microbial population dynamics,
357-360
example of, 496-504
Miscellaneous “Units’, 56
Module function, 331-333, 338,
376-378, 380-382, 395-398,
411, 413415, 418421, 427,
440
Molecular specificity /
recognition, 345
Molecules, case of one dividing
into two, 320-328
Multiple-component systems
component balance, 151-152
concentration versus density,
153-154
liquid and an insoluble solid,
154-162
liquid and a soluble solid,
163-175
mixing, 187-203

pulse input tracer
experiment, 180-187

washing salt solution from a
vessel, 175-180

well-mixed system, 154

N

Names, 401
NDSolve, 52-55, 172, 336-338,
395, 453
<<"“Needs”, 23
Net rate of adsorption, 249-257
Nondimensionalize
second-order kinetics,
308-309
series-parallel reactions, 342
series reactions, 329, 325
Nonequilibrium stage, 230-248
NonlinearFit, 71-72
nth order, 314-317
Normal distribution, 198
probability density function,
438-440
N[%], 42
NSolve, 41-42, 427
NumberForm, 96

P

Package, 440450
Palettes, 2
Parentheses, use of, 1
Partition, 31
coefficient, 264
Partitioned systems, 154
%, 42
Perfect mixing, 437
Permeation
batch, 263-268
cell membrane expansion,
282-296
continuous, 268-282
defined, 263
Perry’s Handbook, 170
w, 100, 106-107, 343
Plot, 3, 11
SetOptions, 21-22
setting increment values, 13
PlotPoints, 29-30
Plots, changing appearance
of, 13
adding backgrounds (gray),
19-20
adding grid lines, 18

Index

adding labels, 21
axes lines, 14-16
combining graphs, 23
inserting frames, 17
return to original values,
24-25
Plot3D, 25-30
Plug flow reactors (PFR), 363,
364, 407410
equations, initial conditions,
and boundary
conditions, 452-457
example in comparison and
synthesis of CSTR and,
482-488
mixing effects on selectivities
with series and series-
parallel reactions with,
418424
residence time distribution,
435-450
as a series of CSTRs, 424-435
steady state, 410418
time-dependent, 451
transient, 452
Polymers, coating process,
103-112
Position of chemical
equilibrium, 317, 320
PowerExpand, 42, 353
Power-law kinetics, 314
Power series expansion,
131-136
Pressurizing empty tank with
ideal gas, 77-82
Probability distribution
function (PDF), 198, 200
normal distribution, 438—440
Procedural, 425, 432-435
ProductLog function, 137
Pseudo-first order, 306-307
rate constant, 309
Pseudo-homogeneous
approximation, 395
Pseudo-steady state
in continuous flow reactors,
379-382
semicontinuous adsorption,
258-262
semicontinuous mass
transfer, 218-219
Pulse input tracer experiment,
180-187
Pythagorean theorem, 91, 99



Index

Q
Quadratic equations, 40

R

Rate constant of adsorption/
desorption, 251-257,
259-260

Rate of dissolution, 210

Reactor runaway, 365

Real roots, 42

Recursive programming, 425,
428-435

Remove, 42, 318, 401

Residence time distribution,
181, 435450

Resolution, increasing, 29-30

Retentate, 264

Reversible reactions, 317-328

RGBColor, 291

Rule-Based, 425

Rules, syntax for, 36

3

Salt
dissolution, 207-209
solution from a vessel,
washing, 175-180
Scientific notation, 10-11
Second-order kinetics, 307-314
Selectivity of reaction network,
343
mixing effects on, 418-424
Semibatch reactors, 363-364,
365-366
Semicontinuous adsorption
(pseudo-steady state),
258-262
Semicontinuous mass transfer
(pseudo-steady state),
218-219
Semicylindrical trough, 91-98
Series-parallel reactions,
341-345

mixing effects on selectivities

with CSTR and PFR
and, 418424

nondimensionalize, 342
Series reactions, 328-341
mixing effects on selectivities
with CSTR and PFR
and, 418424
nondimensionalize, 329, 325
square kinetics, 334
Set delayed, 36, 430
SetOptions, 21-22
Show, 38, 67
Simplify function, 42, 47, 342
Soluble solid, liquid and a
constant densities, 163170
variable densities, 170-175
Solvation, 208
Solve, 39-40, 47, 425, 426
Spherical tank, 98-103
Square roots, 11
Statistics NonLinearFit, 71
Steady state, 60
continuously stirred tank
reactors, 387-392
plug flow reactors, 410-418
Substitution solution, 129-130
Surface reactions, 345-357

T

Table, 3—11, 33
dividing, 9-10
naming, 4
scientific notation, 10-11
suspressing values, 4
Take, 11
Third-order equations, 4041
Time, solving for level as a
function of, 124-125
Time-dependent flows, 82-86
lug flow reactors, 451
Together, 353
Torricelli’s law, 114-116, 123,
166, 167,172,177
Transient continuously stirred
tank reactors, example for,
478-482
Transient plug flow reactors,
452

509

Transient time dependence,
392401

Transpose, 32-33

Triangular trough, 87-89

9]

Units of measurement,
interconversion, 56-57
UnitStep function, 181, 185-187,

287-289

\4

Variable densities, 170-175
Variable name, changing, 2
Volume change, in continuous
flow reactors
large, 373-379
negligible, 366-373

w

Washing salt solution from a
vessel, 175-180

Water flow, 114-116

Well-mixed system, 154

X

x-values
labels for, 38-39
of nth element, 36

taking out, from data points,
35

Y

y-values
labels for, 38-39
natural log, 34-35
of nth element, 36

taking out, from data points,
34-35

y 4
Zab collision number, 299



This Page Intentionally Left Blank


Administrator
Note
Uploaded by:

TrUe LiAr



For More Books, softwares & tutorials Related to Chemical Engineering



Join Us



@google+: http://gplus.to/ChemicalEngineering



@facebook: https://www.facebook.com/AllAboutChemcalEngineering

@facebook: https://www.facebook.com/groups/10436265147/






	Cover
	Half-Title-Page
	Introduction to Chemical Engineering Analysis Using Mathematica
	ISBN: 0-1226-1912-9
	Dedication
	Contents
	Preface for an Instructor
	Preface for the Student 
	Acknowledgments 
	1. A Primer of Mathematica 
	2. Elementary Single Component Systems
	3. The Draining Tank and Related Systems
	4. Multiple-Component Systems
	5. Multiple Phases~Mass Transfer
	6. Adsorption and Permeation
	7. Reacting Systems---Kinetics and Batch Reactors
	8. Semi-Continuous Flow Reactors
	9. Continuous Stirred Tank and the Plug Flow Reactors
	10. Worked Problems
	Index 
	TrUe LiAr



