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Preface

Mathematica by Example bridges the gap that exists between the very
elementary handbooks available on Mathematica and those reference books
written for the advanced Mathematica users. This book is an appropriate ref-
erence for all users of Mathematica and, in particular, for beginning users
such as students, instructors, engineers, businesspeople, and other profes-
sionals first learning to use Mathematica. This book introduces the very
basic commands and includes typical examples of applications of these com-
mands. In addition, the text also includes commands useful in areas such as
calculus, linear algebra, business mathematics, ordinary and partial differen-
tial equations, and graphics. In all cases, however, examples follow the intro-
duction of new commands. Readers from the most elementary to advanced
levels will find that the range of topics covered addresses their needs.

Taking advantage of Version 6 of Mathematica, Mathematica by Exam-
ple, Fourth Edition, introduces the fundamental concepts of Mathematica
to solve typical problems of interest to students, instructors, and scientists.
The fourth edition is an extensive revision of the text. Features that make
this edition easy to use as a reference and as useful as possible for the
beginner include the following:

1. Version 6 compatibility. All examples illustrated in this book were
completed using Version 6 of Mathematica. Although many com-
putations can continue to be carried out with earlier versions of
Mathematica, we have taken advantage of the new features in Version
6 as much as possible.

2. Applications. New applications, many of which are documented by
references from a variety of fields, especially biology, physics, and
engineering, are included throughout the text.

3. Detailed table of contents. The table of contents includes all chap-
ter, section, and subsection headings. Along with the comprehensive
index, we hope that users will be able to locate information quickly
and easily.

4. Additional examples. We have considerably expanded the topics
throughout the book. The results should be more useful to instruc-
tors, students, businesspeople, engineers, and other professionals
using Mathematica on a variety of platforms. In addition, several
sections have been added to make it easier for the user to locate
information.
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5. Comprehensive index. In the index, mathematical examples and
applications are listed by topic or name, and commands along with
frequently used options are also listed. Particular mathematical exam-
ples as well as examples illustrating how to use frequently used
commands are easy to locate. In addition, commands in the index
are crossreferenced with frequently used options. Functions avail-
able in the various packages are cross-referenced both by package and
alphabetically.

6. CD included. All Mathematica code that appears in this edition is
included on the CD packaged with the text.

7. Exercises at the end of each chapter. Each chapter of this edition
concludes with a section of exercises that range from easy to difficult.

We began Mathematica by Example in 1990 and the first edition was
published in 1991. Back then, we were on top of the world using Macin-
tosh IIcx’s with 8 megs of RAM and 40-meg hard drives. We tried to choose
examples that we thought would be relevant to beginning users—typically
in the context of mathematics encountered in the undergraduate curricu-
lum. Those examples could also be carried out by Mathematica in a timely
manner on a computer as powerful as a Macintosh Ilcx.

Now, we are on the top of the world with iMacs with dual Intel pro-
cessors complete with 2 gigs of RAM and 250-gig hard drives, which will
almost certainly be obsolete by the time you read this. The examples pre-
sented in this book continue to be the ones that we think are most similar
to the problems encountered by beginning users and are presented in the
context of someone familiar with mathematics typically encountered by
undergraduates. However, for this edition of Mathematica by Example, we
have taken the opportunity to expand on several of our favorite examples
because the machines now have the speed and power to explore them in
greater detail.

Other improvements to the fourth edition include the following:

1. Throughout the text, we have attempted to eliminate redundant
examples and added several interesting ones. The following changes
are especially worth noting:

(a) In Chapter 2, we have increased the number of parametric and
polar plots in two and three dimensions. For a sample, see
Examples 2.3.17, 2.3.18, 2.3.21, and 2.3.23.

(b) In Chapter 3, we have improved many examples by adding addi-
tional graphics that capitalize on Mathematica’s enhanced three-
dimensional graphics capabilities. See especially Example 3.3.15.
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Chapter 4 contains several examples illustrating various tech-
niques for quickly creating plots of bifurcation diagrams, Julia
sets, and the Mandelbrot set.

The graphics discussion in Chapter 5 has been increased consi-
derably with the addition of Section 5.6, Matrices and Graphs,
and the improvement of many of the examples regarding curves
and surfaces in space. We have also added a brief discussion
regarding the Frenet frame field and curvature and torsion of
curves in space. See Examples 5.5.11 and 5.5.12.

In Chapter 6, we have taken advantage of the new Manipulate
function to illustrate a variety of situations and expand on
many examples throughout the chapter. For example, see Exam-
ple 6.2.5 for a comparison of solutions of nonlinear equations to
their corresponding linear approximations.

. We have included references that we find particularly interesting in
the Bibliography, even if they are not specific Mathematica-related
texts. A comprehensive list of Mathematica-related publications can
be found on the Wolfram website:

http://store.wolfram.com/catalog/books

Also, be sure to investigate, use, and support Wolfram’s MathWorld,
which is simply an amazing web resource for mathematics, Mathe-
matica, and other information.

Finally, we express our appreciation to those who assisted in this project.
We express appreciation to our editor, Lauren Schultz, our production editor,
Mara Vos-Sarmiento, and our project manager, Phil Bugeau, at Elsevier for
providing a pleasant environment in which to work. In addition, Wolfram
Research, especially Maryka Baraka, has been most helpful in providing us
up-to-date information about Mathematica. Finally, we thank those close
to us, especially Imogene Abell, Lori Braselton, Ada Braselton, and Mattie
Braselton, for enduring with us the pressures of meeting a deadline and for
graciously accepting our demanding work schedules. We certainly could not
have completed this task without their care and understanding.

Martha Abell
(email: martha@georgiasouthern.edu)

James Braselton

(email: jbraselton@georgiasouthern.edu)
Statesboro, Georgia

December 2007
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CHAPTER

Getting Started

1.1 INTRODUCTION TO MATHEMATICA

Mathematica, first released in 1988 by Wolfram Research, Inc. http://www
.wolfram.com/, is a system for doing mathematics on a computer. Mathemat-
ica combines symbolic manipulation, numerical mathematics, outstanding
graphics, and a sophisticated programming language. Because of its versa-
tility, Mathematica has established itself as the computer algebra system of
choice for many computer users. Among the more than 1 million users
of Mathematica, 28% are engineers, 21% are computer scientists, 20% are
physical scientists, 12% are mathematical scientists, and 12% are business,
social, and life scientists. Two-thirds of the users are in industry and gov-
ernment, and there are a small (8%) but growing number of student users.
However, due to its special nature and sophistication, beginning users need
to be aware of the special syntax required to make Mathematica perform
in the way intended. You will find that calculations and sequences of cal-
culations most frequently used by beginning users are discussed in detail
along with many typical examples. In addition, the comprehensive index
not only lists a variety of topics but also cross-references commands with
frequently used options. Mathematica by Example serves as a valuable tool
and reference to the beginning user of Mathematica as well as to the more
sophisticated user, with specialized needs.

For information, including purchasing information, about Mathematica,
contact:

Corporate Headquarters:
Wolfram Research, Inc.

100 Trade Center Drive
Champaign, IL 61820

USA

telephone: 217-398-0700

fax: 217-398-0747

email: info@wolfram.com
website: http://www.wolfram.com
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Europe:

Wolfram Research Europe Ltd.
10 Blenheim Office Park

Lower Road, Long Hanborough
Oxfordshire OX8 S8LN

United Kingdom

telephone: +44-(0) 1993-883400
fax: +44-(0) 1993-883800

email: info-europe@wolfram.com

Asia:

Wolfram Research Asia Ltd.
Izumi Building 8F

3-2-15 Misaki-cho

Chiyoda-ku, Tokyo 101

Japan

telephone: +81-(0)3-5276-0506
fax: +81-(0)3-5276-0509

email: info-asia@wolfram.com

A Note Regarding Different Versions of Mathematica

With the release of Version 6 of Mathematica, many new functions and
features have been added to Mathematica. We encourage users of earlier
versions of Mathematica to update to Version 6 as soon as possible. All
examples in Mathematica by Example, fourth edition, were completed
with Version 6. In most cases, the same results will be obtained if you
are using Version 5.0 or later, although the appearance of your results
will almost certainly differ from that presented here. However, particu-
lar features of Version 6 are used, and in those cases, of course, these
features are not available in earlier versions. If you are using an earlier
or later version of Mathematica, your results may not appear in a form
identical to those found in this book: Some commands in Version 5 are
not available in earlier versions of Mathematica; in later versions, some
commands will certainly be changed, new commands added, and obso-
lete commands removed. For details regarding these changes, please refer
to the Documentation Center. You can determine the version of Math-
ematica you are using during a given Mathematica session by entering
either the command $Version or the command $VersionNumber. In this
text, we assume that Mathematica has been correctly installed on the com-
puter you are using. If you need to install Mathematica on your computer,
please refer to the documentation that came with the Mathematica software
package.
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Wolfram Website...
Demonstrations...

Internet Connectivity...
Give Feedback...
Online Registration...

Why the Beep?...
Why the Coloring?...

Startup Palette...

1.1 Introduction to Mathematica

On-line help for upgrading older versions of Mathematica and installing
new versions is available at the Wolfram Research, website http://www
.wolfram.com/.

Details regarding what is different in Mathematica 6 from previous
versions of Mathematica can be found at

http://www.wolfram.com/products/mathematica/newin6

What'y Norw in &

Ut At newn | -

FraDum s Computas Uafle Gobse Dogie Appie (F1)*
e B

INTRODUCING A COMPUTING REVOLUTION
Wolfram Mathematica6

Also, when you go to the Documentation Center (under Help in the
Mathematica menu) you can choose New in 6 to see the major differences.
In addition, the upper right-hand corner of the main help page for each
function will tell you if it is new in Version 6 (Newin6 ) or has been updated
in Version 6 (Updatedint ),

1.1.1 Getting Started with Mathematica

We begin by introducing the essentials of Mathematica. The examples pre-
sented are taken from algebra, trigonometry, and calculus topics that you
are familiar with to assist you in becoming acquainted with the Mathematica
computer algebra system.

We assume that Mathematica has been correctly installed on the
computer you are using. If you need to install Mathematica on your com-
puter, please refer to the documentation that came with the Mathematica
software package.

Start Mathematica on your computer system. Using Windows or
Macintosh mouse or keyboard commands, activate the Mathematica

3
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program by selecting the Mathematica icon or an existing Mathematica
document (or notebook) and then clicking or double-clicking on the icon.

Mathematica

If you start Mathematica by selecting the Mathematica icon, a blank
untitled notebook is opened, as illustrated in the following screen shot,

ene B¥ Untitled-1 =

along with the Startup Palette.

[a) Startup Palette

Wolfram Mathemdﬁca'ﬁ

Whary

For th latent inhormation, viait s wrd e caom

When you start typing, the thin black horizontal line near the top of the
window is replaced by what you type.

®ene B¥ Untitled-1 ‘=7
now I start doing mathematics 3
nft}= 2+ 10 i
oufi}= 12 3

[



With some operating
systems, Enter
evaluates commands
and Return yields a
new line.

The Basic MathInput
palette:

) Basic Math ...

3
"
8

HE
+ ]
A x

[ 4
nlz

=
)

B

w B s
blelx [

-
(= (8 ™| o =

| |

L}

L]
1

1.1 Introduction to Mathematica

Once Mathematica has been started, computations can be carried out
immediately. Mathematica commands are typed and the black horizontal
line is replaced by the command, which is then evaluated by pressing
Enter. Note that pressing Enter or Return evaluates commands and press-
ing Shift-Return yields a new line. Output is displayed below input. We
illustrate some of the typical steps involved in working with Mathematica
in the calculations that follow. In each case, we type the command and
press Enter. Mathematica evaluates the command, displays the result, and
inserts a new horizontal line after the result. For example, typing N[, then
pressing the 7 key on the Basic Math Input palette, followed by typing,
50] and pressing the enter key

N[, 50]
3.1415926535897932384626433832795028841971693993751

returns a 50-digit approximation of 7. Note that both 7 and Pi represent
the mathematical constant 7, so entering N[Pi, 50] returns the same result.
For basic computations, enter them into Mathematica in the same way as
you would with most scientific calculators.

The next calculation can then be typed and entered in the same manner
as the first. For example, entering

Plot[{Sin[x], 2Cos[2x]}, {x, 0, 37},
PlotStyle — {GrayLevel[0], GrayLevel[0.5]}]

graphs the functions y = sinx and y = 2 cos 2x and on the interval [0, 37]
shown in Figure 1.1.

72 -
FIGURE 1.1
A two-dimensional plot

5
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With Mathematica 6, you can easily add explanation to the graphic. Go
to Graphics in the main menu, followed by Drawings Tools. You can use

0 2D Drawing
Y

"
oW
the Drawing Tools palette ~ © to quickly enhance a graphic.

@ B

I AR

—i—

) 2D Drawing

Bl »

"

v

In this case we select the Arrow button ~ ©
(o)

IS AR

to add two arrows

H—i—

Plot({8in[xz], 2Cos[2 =]}, {=, O, 3},
PlotStyle -+ {GrayLevel [0], GrayLevel[0.5]}]

0 2D Drawing

oy

s
and then the A button 7
o

B g 2 a

IS AR
—i—
to add some text to help identify each plot. The various elements
can be modified by clicking on them and moving and/or typing as
needed.
With Mathematica 6, you can use Manipulate to illustrate how changing
various parameters affects a given function or functions. With the following
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command, we illustrate how a and b affect the period of sine and cosine
and c affects the amplitude of cosine:

Manipulate[Plot[{Sin[2Pi/ax], cCos[2Pi/bx]}, {x, 0, 41},
PlotStyle — {GrayLevel[0], GrayLevel[.5]}, PlotRange — {- 477/2, 477/2},
AspectRatio — 1], {{a, 2Pi, “Period for Sine”},.1,4},
{{b, 2Pi, “Period for Cosine},.1, 5},
{{c, 2Pi, “Amplitude for Cosine”},.1, 5}]

Plot[{Sin[x], 2 Cos[2x]}, {x, O, ¥ =]},
1 yle = [GrayLevel[0], Level [8.5]1]

Thin is the grach of conine.

Thbs bs the graoth of une

c

Period for Sine

Cc3

Period for Cosine

cH

Amplitude for Cosine

Use the slide bars to adjust the values of the parameters or click on
the + button to expand the options to enter values explicitly or generate
an animation.

7
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Period for Sine D
3.305 =D I+

M
U
122
M

Period for Cosine

Amplitude for Cosine

<
3.46

2 )

. Use Plot3D to generate basic three-dimensional plots. Entering
Notice that every

Mathematica Plot3D[Sin[x + Cos[yl], {x,0,4mw}, {y,0, 47}, Ticks — None,

command begins with Boxed — False, Axes — None]
capital letters and the
argument is enclosed graphs the function z = sin(x + cos ) for 0 < x < 47 and 0 < y < 47 shown

by square in Figure 1.2. To view the image from different angles, use the mouse to
brackets [...]. select the graphic and then drag to the desired angle.



1.1 Introduction to Mathematica

FIGURE 1.2

A three-dimensional plot

4

Plot3D[Sin[x + Cos[y]], {(x, 0, 4n}, {v, 0, 47}, Ticks -+ None,
Boxed + False, Axes -+ None]

o

To type x° in
Mathematica, press
the -—] on the
Basic Math Input
palette, type x in the
base position, and
then click (or tab to)
the exponent position . g o e
and type 3. Use the {1y, {xa 3 (-2-V5) ] [x 2 (245 ]}
esc key, tab button, or

mouse to help you

place or remove the {1y, (= ; (-1-v5)} [= ; (-1+93)}}
cursor from its

current location.

Notice that all three of the following commands

Solve[x"3-2x+1==0]

Solve[x’ -2x+1:==0]

Solu|r’ -2x+l== l.'ll

[ = N R T S

2-_ v te .2.

solve the equation x> =3x+1=0 for x.
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In the first case, the input and output are in StandardForm,; in the sec-
ond case, the input and output are in InputForm; and in the third case, the
input and output are in TraditionalForm. Move the cursor to the Mathe-
matica menu,

-’ & m File Edit Insert Format Cell Graphics Evaluation Palettes Window Help

select Cell, and then ConvertTo, as illustrated in the following screen shot:

m Graphics Evaluation Palettes Window Help

InputForm on .
| Cell Properties »  RawinputForm o%R |
Cell Tags » | OutputForm
Grouping 9 StandardForm {HEN
| TraditionalForm TRT
yivide C %0 | - |
Merge Cells oM | Postscript
Bitmap
i Notebook History... | PDF ]
ieiri
Delete All Output QuickTime
Text Display

Show Expression (3E | InputForm Display

1 StandardForm Display
TraditionalForm Display

You can change how input and output appear by using ConvertTo or
by changing the default settings. Moreover, you can determine the form of
input/output by looking at the cell bracket that contains the input/output.
For example, even though all three of the following commands look differ-

2 .
ent, all three evaluate jO"xS sin x dx:

Integrate[x*38in[x], (x, 0, 2Pi}] 3

12Pi-8?ia |

an
J x* Bin[x] dx
o

v
4
]
=
3
(="

In the first calculation, the input is in InputForm and the output
in OutputForm,; in the second, the input and output are in Standard-
Form; and in the third, the input and output are in TraditionalForm.
Throughout Mathematica by Example, fourth edition, we display input
and output using InputForm (for input) or StandardForm (for output),
unless otherwise stated.



1.1 Introduction to Mathematica

To enter code in StandardForm, we often take advantage of the Basic
Math Input palette, which is accessed by going to Palettes under the
Mathematica menu and then selecting BasicMathInput. See Figure 1.3.

Use the buttons to create templates and enter special characters. Alter-
natively, you can access a complete list of typesetting shortcuts from
Mathematica help at guide/MathematicalTypesetting in the Documentation
Center.

Mathematica sessions are terminated by entering Quit[] or by select-
ing Quit from the File menu, or by using a keyboard shortcut, such as
command-Q, as with other applications. They can be saved by referring
to Save from the File menu.

Mathematica allows you to save notebooks (as well as combinations
of cells) in a variety of formats, in addition to the standard Mathematica
format.

Insert Format Cell Graphics Evaluation Wir_ldaw_ !-Ielp

] Special C Algeb |0 Basic Math ... | ©) Algebraic Manip...
¥, g P bl EE RS AR
“lalglr Tslelelale {B::"sicrl:a:lhlnput w | 2 || Expandis]
i = = o lorSchemes = ExpandAll[m]
tfxfdjpu|v|éfo]|n va [V e foiid
e Nl_:tebookLauncher Factor(a]
ipleir{vivielx slideShow f wic |5
wlrlels|s SpecialCharacters __ Togetherfal
AB|TIA|E|Z Hle Generate Palette from Selection _r.d: d... Apartie]
[LjKjAlMNISOfT Heiode: Generate Notebook from Palette | - Caucelia}
IPIZITIY|T|®[X]¥ Install Palette... Simplifyln]
ald L i o £ e B FullSimplify(a]
[Greek Leters ) s ~ | FInCHONEKpANS]
D r——y mlelil=|® TrigExpand|m]
= — ) Create Slide Show =
Default x[+]x]=]ml TrigFactor{m] .
7= SlideShow 7 =|#|s|2|e| TrigReduceln]
» Bock T ~[alviuln ExpToTrig{s]
» Creative. | alBlr|d]e TrigToExpie]
r haport e C|n|8]|x|d|| PowerExpandim]
» Utility Convert Notebook ulv|€|x|p ||[ComplexExpandiu]
[Demonstration Table of Contents afr|e]e|x
View Environment ¥lojrisje
AlE|e|¥|n
L L S A ]
Slide Show
MR LIL
P Extras...
FIGURE 1.3

Mathematica 6 palettes

11
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@ Mathematica File Edit Insert Format Cell Graphics Evaluation Palettes Window [IEETH

806 K& Mathematical Ty ing - Wolfram Mat - Documentation Center
e e TR ' Find Selected Function O¥F |
) — e WL |
Wolfram Website...
Palettos » Basic Input Palstte — bring up & palette of comman Input notations Demonstrations...

Palettes » Special Characters Palette — access all Mathematica special characters » internet Connectivity...
Give Feedback...

Keyboard Input Online Registration...

= (Ctrl+ A or Ctrl +8) <o (Ctrl+_) - = (Ctrl+/) - VT (Ctrb+2) - . Why the Beep?...
Ciri+Space — move out of 2 script position Why the Coloring?... |
Cirl+(, Cori+) — start, end an infine math cell in text, or text in math Startup Paletre... |

Special Charscters #

x (EscpBsc) - i (V-1 ) (Esc iiEsc) - w (Esc inf Esc) - [(Esc int Esc) - d (differential d) (Escdd Esc) - o (Esca
Ese) - ...

Symbolic Notational Forms =
Subscript (. ) - OverBar () - CirclePlus () - LeftRightArrow {++) « ...
Table & Layout Constructs =

MatrixForm - Grid - Column - Row - Framed - Labeled - Tooltip -...
Number Formatting »

Numberform - PaddedForm - ...

Ganeral Styling = L/
Text — text within math
Style - Bold - Italic - Large « Small - Red - ...

bl display withaut them

Options & Tweaking »

ScriptSizeMultipliers - Linelndent - Invisible - ...

TUTORIALS

» Basic Editing Techrigues

= Farms of Input and Output

» Entering Two-Dimensional Expressions
= Entering Two-Dimensional Input r
« Reducing Express: Telr Stangard Form

Mathematica [[f[J] Edit Insert Format Cell Graphics Evaluation Palettes Window Help

&) | New >
| Open... #0

Open Recent >
Close ®w
Save £
Save As... {r38s
Save Selection As...
Revert...
Install....
Printing Settings >
Print...
Print Selection...

Remark 1.1 Input and text regions in notebooks can be edited. Editing input can create a
notebook in which the mathematical output does not make sense in the sequence
it appears. It is also possible to simply go into a notebook and alter input without
doing any recalculation. This also creates misleading notebooks. Hence, common
sense and caution should be used when editing the input regions of notebooks.
Recalculating all commands in the notebook will clarify any confusion.
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Preview

In order for the Mathematica user to take full advantage of this powerful
software, an understanding of its syntax is imperative. The goal of Math-
ematica by Example is to introduce the reader to the Mathematica com-
mands and sequences of commands most frequently used by beginning
users. Although the rules of Mathematica syntax are far too numerous to
list here, knowledge of the following five rules equips the beginner with the
necessary tools to start using the Mathematica program with little trouble.

Five Basic Rules of Mathematica Syntax

1. The arguments of all functions (both built-in ones and ones that you

define) are given in brackets [. . .]. Parentheses (. . .) are used for
grouping operations; vectors, matrices, and lists are given in braces
{. . .}; and double square brackets [[. . .]] are used for indexing lists
and tables.

2. Every word of a built-in Mathematica function begins with a capital
letter.

3. Multiplication is represented by a * or space between characters.
Enter 2«xxy or 2x y to evaluate 2xy not 2xy.

4. Powers are denoted by a . Enter (8xx~3)A(1/3) to evaluate (8x3)
8!/ 3(x3)1/ 3 = 2x instead of 8x71/3, which returns 8x/3.

5. Mathematica follows the order of operations exactly. Thus, enter-

1
(IZX) , whereas (1 + x)A(1/x) returns (1 + )"~

13 _

ing (1 + x)/x returns

. . 4 .
Similarly, entering x"3x returns xXx=x , whereas entering x"(3x)
returns x>

Remark 1.2 If you get no response or an incorrect response, you may have entered or executed
the command incorrectly. In some cases, the amount of memory allocated to
Mathematica can cause a crash. Like people, Mathematica is not perfect and
errors can occur.

1.2 LOADING PACKAGES

Although Mathematica contains many built-in functions, some other func-
tions are contained in packages that must be loaded separately. Experienced
users can create their own packages; other packages are available from
user groups and MathSource, which electronically distributes Mathematica-
related products. For information about MathSource, visit

http://library.wolfram.com/infocenter/MathSource
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Over time, Wolfram
Research expects that
packages will become
obsolete and that
Mathematica will
automatically load
functions that are
needed at startup

or when called.

or send the message “help” to mathsource@wri.com. If desired, you can
purchase MathSource on a CD directly from Wolfram Research, or you can
access MathSource from the Wolfram Research website.

With Mathematica 6, many packages included with previous versions of
Mathematica have been made obsolete because their functionality has been
incorporated into Mathematica, combined into a new package, or elimi-
nated altogether. In addition to MathSource, you should also think about
investigating Wolfram’s MathWorld website.

1.2.1 Packages Included with Older Versions of
Mathematica

Packages are loaded by entering the command <<directory’packagename,
Needs[directory' packagename’], <<packagename or Needs[packagename’,
where directory is the location of the package packagename. Entering
the command <<directory’'Master makes all the functions contained in all
the packages in directory available. In this case, each package need not
be loaded individually.

For most teachers and students, a function like f(x) = (x — 1)1/ 3 (x + 1)2/ 3
is a real-valued function for all values of x. Nevertheless, when we ask
Mathematica to plot the function with Plot,

Plot[(x-1) " (1 /3)(x + 1) A (2/ 3), {x, -2, 2}, PlotStyle — GrayLevel[0]]

we see in Figure 1.4 that Mathematica does not compute real values for x
values between —1 and 1 because complex roots are selected by Mathe-
matica for the x values between —1 and 1, which is where the values of
f(x) are negative.

Generally, when Mathematica computes the odd root of a negative num-
ber, it returns a complex number. (Note that % refers to the previous

20
1.5
1.0

0.5

—-05F

_'1 5 .
FIGURE 1.4
When computing odd roots of negative numbers, Mathematica returns complex values




1.2 Loading Packages 15

output; N[x] returns a numerical approximation of x, and Abs[x] returns
the absolute value of the number x.)

(-8 (1/3)

2(_ 1 )1/3

N[%]

1.+1.73205i

Abs[%]

2.

To instruct Mathematica to select the real third root, we load the
RealOnly package that is contained in the Miscellenous directory. Note
that the RealOnly package has been included with many versions of Mathe-

matica but not included with Mathematica 6. If you need to obtain the
RealOnly package, you need to download it from the Wolfram website.

8ene % Miscellaneous "RealOnly " - Wolfram Mathematica ()
450k #*E .Corrnanbuluw_Tumnals Miscellaneous/RealOnly | »| |8

!

|

!

|

|

Upgrading from: j" t

Miscellaneous RealOnly” il

!

W

Miscellaneous RealOnly” was available as an add-on package in previous versions of Mathematica |
and is now available on the web at library.wolfram.com/infocenter/MathSource/6771.

_100% »]

After loading the package, when we reenter the Plot command, Mathemat-
ica generates the expected plot, which is shown in Figure 1.5.

<< Miscellaneous’'RealOnly’
Plot[(x - 1) * (1/3)(x + 1) (2/3),{x, -2, 2}, PlotStyle — GrayLevel[0]]

1.2.2 Loading New Packages

One new package included with Mathematica 6 is VectorFieldPlots, which
replaces several packages in previous versions of Mathematica.
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FIGURE 1.5

We see the real values of fix) for —1 <x < 1 after loading the RealOnly package

© O O EE Vector Field Plotting Package - Wolfram Malherrﬂca [=]

|4 [#E] veaorfieidpiotsguide »| [&

Vector Field Plotting Package

VectorFieldPlot — plot a vector field from a vector-valued function
VectorFieldPlot3D — plot a vector field in 3D

ListVectorFieldPlot — plot a vector field from an array of vectors
ListVectorFieldPlot3D — plot a vector field in 3D

GradientFieldPlot — plot the gradient field for a function
HamiltonianFieldPlot — plot the Hamiltonian field for a function
PolyaFieldPlot — plot the Polya field for a complex function
GradientFieldPlot3D — plot the gradient field for a function in 3D

VectorHeads - MaxArrowLength - ScaleFactor - ScaleFunction

MORE ABOUT !
= Function Visualization -

-
= Data Visualization 3

[100% »

Example 1.2.1 The differential equation dy/dx = cos(y/x) is a first-order homogeneous
differential equation. Using DSolve, we see that the solution contains an integral
that does not have a known closed form. The result returned by DSolve indicates
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that the integral curves for the differential equation satisfy the equation contained
within the brackets in the output:

DSolvely'[x] == Cos[y[x]/x], y[x], x]

Solve::tdep: The equations appear to involve the variables to be solved
for in an essentially nonalgebraic way. ))

yix]

= 1
Solve |:J-1 m dK[1] == C[1] - Log[x],y[x]

For a differential equation like this, even the function g(x, ) = jly/x Pa—

In|x| is difficult to evaluate for particular values of x and y, so generating a plot of
the level curves of g(x,y) = C (the integral curves for the differential equation) for
various values of C is challenging.

To see how the solutions of the differential equation behave, we plot a
direction field or slope field for the equation. For this equation, the slope of
a solution at (x,y) satisfies dy/dx = cos(y/x). A direction field for the equation is
generated by selecting a grid of (x,») points and then plotting line segments at
those points with slope dy/dx = cos(y/x). With Mathematica, we can do so with
the VectorFieldPlot function that is contained in the VectorFieldPlots package.
First, we load the package with

<< VectorFieldPlots’;

Now that the package has been loaded, you can can use ? or Options to
obtain information about the commands contained in the package. Finally, we
generate a slope field for the equation with

p1 = VectorFieldPlot[{1, f[x, y1}, {x, - 2Pi, 2Pi}, {y, — 2Pi, 2Pi},
PlotPoints — 25];
Show[p1, Axes — Automatic, AxesOrigin — {0, 0}]

Note that Mathematica returns several error messages due to the division by
0 in the y/x term that are not displayed here. The plot is displayed in Figure 1.6.
From the slope field, we see that solutions of the differential equation can behave
quite strangely near x = 0.

1.3 GETTING HELP FROM MATHEMATICA

Becoming competent with Mathematica can take a serious investment of
time. Hopefully, messages that result from syntax errors are viewed light-
heartedly. Ideally, instead of becoming frustrated, beginning Mathematica
users will find it challenging and fun to locate the source of errors. Fre-
quently, Mathematica’s error messages indicate where the error(s) has
occurred. In this process, it is natural that you will become more proficient
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FIGURE 1.6

Numerically solving a differential equation such as dy / dc = cos(y / x) is difficult. To
help us understand how the solutions behave, we use a slope field

with Mathematica. In addition to Mathematica’s extensive help facililities,
which are described next, a tremendous amount of information is available
for all Mathematica users at the Wolfram Research website. Not only can
you get significant Mathematica help at the Wolfram website but also you
can access outstanding mathematical resources at Wolfram’s MathWorld
resource,

http://mathworld.wolfram.com

One way to obtain information about Mathematica commands and func-
tions, including user-defined functions, is the command ?. ?object gives
a basic description and syntax information of the Mathematica object object.
?70bject yields detailed information regarding syntax and options for the
object object. Equivalently, Information[object] yields the information on the
Mathematica object object returned by both ?object and Options[object] in
addition to a list of attributes of object. Note that object may either be
a user-defined object or a built-in Mathematica object.
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Example 1.3.1 Use ? and ?? to obtain information about the command Plot.
Solution ?Plot uses basic information about the Plot function,
?Plot 9

PIOLS, (X, i %max |] GENerates a plot of f as a function of x from x., 10 Xug,.
Plotllf}, fa, ...}, (%) Zmins Xmas ] plOts several functions f. =

whereas ??Plot includes basic information as well as a list of options and their
default values.

If you click on the >> button, Mathematica returns its extensive description of
the function. Notice that the updated button in Version 6 (Updatediné) shows that
Plot has been updated. Click on Show Changes and then More Information to
see the changes in Version 6.

Options[object] returns a list of the available options associated with
objects along with their current settings. This is quite useful when work-
ing with a Mathematica command such as ParametricPlot, which has many
options. Notice that the default value (the value automatically assumed by
Mathematica) for each option is given in the output.
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Example 1.3.2

Solution

77 Plot 37
51
Plot(f, [, Xumins Xma}] OENerates a plot of f as a function of x from xu, 10 X
Plot{Lf}, fa, ...}, [%) Zusins Xmax|] ploOts several functions f,. =
Attributes[Plot] = (HoldAll, Protected} 3
¥ 1. i 3 ~ =
Options|[Plot] = {Al:.qnmentroint » Center, AspectRatio !
Axes -» True, AxesLabel -» None, AxesOrigin -» Automatic,
AxesStyle - [ }, Background -» None, BaselinePosition -» Automatic,
BaseStyle » [}, ClippingStyle - None, ColorFunction -» Automatic,
ColorFunctionScaling -+ True, ColorOutput -» Automatic,
ContentSelectable -+ Automatic, DisplayFunction :+ §DisplayFunction,
Epilog - [}, Evaluated -» System Private” §Evaluated,
EvaluationMonitor - None, Exclusions - Automatic,
ExclusionsStyle » None, Filling -» None, FillingStyle - Automatic,
FormatType :+» TraditionalForm, Frame -» False, FrameLabel -» None,
FrameStyle -+ {}, FrameTicks -» Automatic, FrameTicksStyle - {},
GridLines -» None, GridLinesStyle - (}, ImageMargins -+ 0.,
ImagePadding -+ All, ImageSize + Automatic, LabelStyle - {},
MaxRecursion -+ Automatic, Mesh - None, MeshFunctions -+ {2l &},
MeshShading - None, MeshStyle » Automatic, Method -» Automatic,
PerformanceGoal :+ §PerformanceGoal, PlotLabel - None,
PlotPoints -» Automatic, PlotRange -+ {Full, Automatic},
FlotRangeClipping - True, PlotRangePadding -» Automatic,
PlotRegion -» Automatic, PlotStyle - Automatic,
PreservelmageOptions -+ Automatic, Prolog - [},
RegionFunction -+ {True &), RotateLabel - True, Ticks - Automatic,
TicksStyle » [}, WorkingPrecision -+ mchinaprecis.‘ion;
enn e oc.ens ot =
e -~ = =
Plot Updatedin 6 Plot Updd i 6
- e
e e 7 i of A i 7 et s i
0061 (e Spe s (84 Rt Bl LT S S )
predlipe iy s vt Aart f,
o - Fle il (K M Bis s )] petaf
¥ Basic Eanmpien ¢ = —
mn:-:-::::l-l.rl.l,lnll ’—'*- - 1 rrmamicaty
oare s \ il
1\ |'I lI| I'u
IR [l L
«| \[ A\ Mapaiaiia Npet—" e o e
P bt Sl
P e et i o 1 e o i e
iy PRONEQRANTR ] WANLERL, SARIIT N, (8 6, 3PN T — e e
P | S——r e !
o= S WAV H Fillingtiyie — v i o g I
L n‘ o A '& o
Use Options to obtain a list of the options and their current settings for the

command ParametricPlot.

The command Options [ParametricPlot] lists all the options and their current
settings for the command ParametricPlot.



Example 1.3.3

Solution

1.3 Getting Help from Mathematica

Options [ParametricPlot]

L

{AlignmentPoint -» Center, AspectRatio -» Automatic, Axes - True, 3
AxesLabel -» None, AxesOrigin - Automatic, AxesStyle - [},

Background -» None, BaselinePosition - Automatic, BaseStyle » (},
BoundarysStyle -» Automatic, ColorFunction -+ Automatic,
ColorFunctionScaling -» True, ColorOutput -+ Automatiec,
ContentSelectable -+ Automatic, DisplayFunction:s $§DisplayFunction,
Epilog - {}, Evaluated -» Automatic, EvaluationMonitor -» None,
Exclusions -» Automatic, ExclusionsStyle -» None,
FormatType :+ TraditionalForm, Frame - Automatic, FrameLabel - None,
FrameStyle - { }, FrameTicks -» Automatic, FrameTicksStyle - [},
GridLines - None, GridLinesStyle - {}, ImageMargins + 0.,

ImagePadding + All, ImageSize -+ Automatic, LabelStyle -+ [},
MaxRecursion - Automatic, Mesh -» Automatic, MeshFunctions -+ Automatic,
MeshShading -+ None, MeshStyle -» Automatic, Method -» Automatic,
PerformanceGoal :+ §PerformanceGoal, PlotLabel - None,

PlotPoints - Automatic, PlotRange -» Automatic, PlotRangeClipping - True,
PlotRangePadding -+ Automatic, PlotRegion -+ Automatic,

PlotStyle - Automatic, PreservelmageOptions - Automatic, Prolog -+ {},
RegionFunction -+ (True &), RotatelLabel » True, Ticks -+ Automatic,
TicksStyle -+ [}, WorkingPrecision -» MachinePrecision}

The command Names["form"] lists all objects that match the pattern defined
in form. For example, Names ["Plot"] returns Plot, Names["+Plot"] returns all
objects that end with the string Plot, Names["Plot«+"] lists all objects that begin
with the string Plot, and Names["«Plot+"] lists all objects that contain the string
Plot. Names["form",SpellingCorrection->True] finds those symbols that match the
pattern defined in form after a spelling correction.

Create a list of all built-in functions beginning with the string Plot.

We use Names to find all objects that match the pattern Plot.

Names[ “Plot”™] 'j1 ‘ ‘

(Plot} il

Next, we use Names to create a list of all built-in functions beginning with the
string Plot.

Hames [ "Plot«"]

{Plot, Plot3D, PlotiMatrix, PlotDivision,
PlotJoined, PlotLabel, PlotMarkers, PlotPoints, PlotRange,
PlotRangeClipping, PlotRangePadding, PlotRegion, PlotStyle}

In the following, after using ? to learn about the new Mathematica 6 func-
tion ColorData we illustrate its use with a Plot command. We first go to the
Mathematica menu

r

@ ITTTIETTIEN File Edt Insert Format Cell Graphics Evaluation Palettes Window Help

and select Palettes, followed by ColorSchemes.

21
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AlgebraicManipulation
BasicMathinput
ColorSchemes
NotebookLauncher
SlideShow
SpecialCharacters

Generate Palette from Selectior
Generate Notebook from Palette
Install Palette...

We are given a variety of choices, which are illustrated throughout

Remember that on a  Mathematica by Example.
computer running

Mathematica, these o Color Schemes
. . 0 Color Sche;
graphics will appear = == S i
. w Gradients ey
in color rather than = > o —
s . e w Named
& - Gn
in bla.ck agd white as E q S Comm > m
seen in this text. —— = P Pyl
mE I R [ wnne S
| | ¥ e w Indoxed
?Mn-mn | . Gy 3 -
L= Bl R ]
»n pm— | L
i n | . | L = m mmm
WisiieSpectnum | Ligheied
B W o —
OarsAaibow ot Pk #
- - BlackBodySpectrum N ——
0. Sot color () 5
- 2 : . . . e = L "L N
€ Insert L] 1006 2500 0000
. e LI ;
b Pawesl — : T | TR TR
» Named » Named C insert Y 1 -
» Indassd » Indexed > [res— ( Insert —3

We then use the help facilities description of the ColorData function
to help us generate a plot of y = sinx on the interval [0, 27] in deep red
on our computer. (Of course, the plot is dark gray in a black-and-white text
such as this).

As we have illustrated, the ? function can be used in many ways. Enter-
ing ?letters« gives all Mathematica objects that begin with the string letters;
?+letters+ gives all Mathematica objects that contain the string letters; and
?«letters gives all Mathematica commands that end in the string letters.

Example 1.3.4 What are the Mathematica functions that (a) end in the string Cos, (b) contain the
string Sin, and (c) begin with the string Polynomial?
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Solution Entering

7Colorbata

ColorData["scheme”] gives a function that generates

colors in the named color scheme when applied to parameter values.
ColorDatal scheme”, “properry”] gives the specified property of a color scheme.
ColorData[collection”] gives a list of color schemes in a named collection.
ColorData[] gives a list of named collections of color schemes. =

Plot[sin(x], {x, O, 2Pi},
PlotStyle » {{Thick [.01], Col & inbow®, 1]}}]

1op

o0s

? «Cos
¥ System’

returns all functions ending with the string Cos, entering

?eBine

¥ System’
ArcSin SingleLetteritalics
ArcSinh SingleLetterStyle
FourierSinTransform SingularvalueDecomposition
IncludeSingularTerm SingularvalueList
InverseFourierSinTransform SingularValues
Sin Sinh
Sine Sinhintegral
SingleEvaluation Sinintegral

returns all functions containing the string Sin, and entering

? Polynomials

¥ System’
PolynomialExtendedGCD PolynomialQuotient
PolynomialForm Polynomi
PolynomialGCD PolynomialReduce
PolynomialLCM PolynomialRemainder
PolynomialMod Polynomials
PolynomialQ

returns all functions that begin with the string Polynomial.

a

23
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Mathematica Help

Additional help features are accessed from the Mathematica menu under
Help. For basic information about Mathematica, go to the Mathematica
menu, followed by Help

@ Mathematica File Edit Insert Format Cell Graphics Evaluation Palettes Windowm

ene Documentation Center
Find Selected Function {3F

Wolfram Website...
Demonstrations...

Internet Connectivity...
Give Feedback...
Online Registration...

Why the Beep?...
Why the Coloring?...

Startup Palette...

and select Documentation Center.

ene [ Wolfram Math ica: Doc ion Center =

4| [E guideMathemarica » |15

Mathematica

DOCUMENTATION C ER

Core Language Dynamic Interactivity

2 owerful symbok t ¢ c hat define 8 new kind of dynamic interactiv

Visualization and Graphics
Mathematics and Algorithms g oraphics and unp

T rid’s largest integrated web of mathematical capabdities

with uniquely flexible

| Characters -

Systems Interfaces & Deployment

e cL zability and connectivity pawered by symbelic

ool
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If you are a beginning Mathematica user, you may choose to select First
Five Minutes with Mathematica.

ane [ First Five Minutes With Wolfram Mathematica 6.0

(FIRST FIVE MINUTES WITH

3¢Mathematica

Start with something really easy...

2+3 Type this in the box balow, then press [shift] + [enter]
hold dawn the Shilt key, then press Enter

1]

To obtain information about a particular Mathematica object or function,
open the Documentation Center, type the name of the object, func-
tion, or topic, and press the Go (>>) button as we have done here with
ExampleData. A typical help window contains not only a detailed descrip-
tion of the command and its options but also hyperlinked cross-references
to related commands and can be accessed by clicking on the appropriate
links.

[ 11 FO—— e e s =31+ 1. E— JELampletin - ek Subsmeiics, — 2

[ErTS R = TSI —— =

4 St o8 g ot g ExamaieDale & Bearch oe ol pges roetaining Exampieats
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You can also use the Documentation Center to search for help
regarding a particular topic. In this case, we enter color schemes in the
top line of the Documentation Center and then click on the >> button
(or press Enter) to see all the on-line help regarding “color schemes.”

anA [ Search Resubts: color schemes o
[50] [BF [ utern = B
Search Results 1k e2r

» Cober Schamas | o
Matheraries DO 8 WSE SR B Gy SR GO BT T G [Ty DY U Erigr T
Matherustics Grapnics and vimisTecon sy

= ColerData e o
ot - T8t GEmerases crlors 9 e nawed ior S hen SORE 5 paEmRE ek,
CHIDUL ST, ” Sy Gl e eGTRd

FAPTCH EPECHTHE WhICH FRECIen TR8T SE0CER W Tolioer Y 1D Be DaDiayen, F posse, M e

. Yomin, ¥ man}] makes o Secity et of e o forwtien of s et p

MRS FSey vou I Gt e 19w B SIS OLNCT A0t TER0NE. T KOmBAInen of Suenta Y-
FhNE dresIivee. tacemner win

c of the comerustion anet stying of graphics The ectioe are
Sarutally Seigrar i be Satn feuter &

LSRG 1 89 ASHES Y GARASII A0 PIBSES FLASESN] TR ISEENed wAST MTRIAERE SESES B uth h SEISAAG 0D mETERL

[ o]
Clicking on the topic will take you to the documentation for the topic.
Here is what we see when we select ColorDataFunction:
enn e - Wolfram Mathematic o

(4w (@1 [wicobdnfonc = B

ColorDataFunction

—

CoLosPaTARSICtion A, .
5 & Function that regvesents  calor scheme.

aamation |
= Ealorbatabestion works the Panctlon

* COLOFDATAFEction .| [ peri fAnds the color commpsading 1o parameler por i Lha coke chvoma e ented
by the SolorCataFunct Loe

= Eolorbata | *shes "] g s ColoToataFunaE Los cbjet.

¥ Exasets

¥ Wasic Dmmples (1
EolceDats retumt a Calorlas abanction ateet
Tii}= Colarouts*LightTemparn turanag®]

tufi}s Eslarvatarusction|it, 1), -

Rrturs n coior whes e apeciic pare=eters a'r apcled

11~ § - Colormata ] EmRL"]

cut|- Enloroatarunasion| (Alicenlos, = ld6m], -iTET

e f1%asret)
Ol RCECOLOF[S. 942176, 1., 1.

e & coior functon for the et
i)~ £ o Colortata | Darkhalnbow’ | L

cutil- Colordstaruntion| (e, 1), mm—1|
[T
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As you become more proficient with Mathematica, you will want to learn
to take advantage of its extensive capabilities.

New in Wolfram Mathermabica 6: Dynamic Graphical Input « previous | next »

Use Forms Directly as Evaluatable Input

Mathamatica & lets you create arbarary forms, which can then be sed a3 input—evaluating
mmediately to the settings they are given.

Anstant Plot
jore: (S
S| "':’“ :"'{ 1 , J's;..;.ﬂ]h_

maxi  [Im

Anstant Plot
Function: [Snfx = Sr(5x]
P ; IIS}IIIXI +Sinls 1) dx}

ma:  [10%

Remember that Mathematica contains thousands of functions to perform
many tasks. If you wish to perform a task that is not discussed here, go
to the Documentation Center and type a few words related to what you
want to do.

Example 1.3.5 In this example, we investigate digit operations. Mathematica by Example, fourth
edition, has a copyright in 2008, which has four digits.

IntegerDigits[2008]
{2,0,0,8}
As a string, the number is

IntegerString[2008]
2008

In base 2, the copyright year is
IntegerString[2008, 2]
11111011000
On the other hand, with Roman numerals the copyright year is

IntegerString[2008, "Roman"]
MMVIII
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1.4 EXERCISES

1. Generate the same plot of f(x) = (x — 1)1/ 3(x + 1)2/ 3 as that shown
after loading the RealOnly package without loading the RealOnly
package. Hint: Abs[x] returns the absolute value of the real number x.

2. After using the Documentation Center to obtain help regarding
the function Plot, describe the use of the Plot function.

3. Use Mathematica help and the Documentation Center to describe
the ExampleData function. Use ExampleData to generate the plot of
the torus shown in Figure 1.7.

4. Use ? to determine the value of the Golden Ratio, GoldenRatio.

5. Determine the proper syntax for evaluating lim,_, , sinx and eval-
uate the limit.

6. Load the VectorFieldPlot package. Use Options to learn about the
options associated with VectorFieldPlot. Describe the use of three of
those options. Your description should contain sufficient detail so
that it is readily understandable by an intelligent classmate.

7. Find the graphing options available with Plot3D and ParametricPlot3D.

8. Determine the Mathematica objects that contain the string
“gamma.”

9. Do any Mathematica objects begin with the letter “z”? Do any end
with “z”?

10. What Mathematica function is used to represent the inverse tangent
function?

11. Create a list of all Mathematica objects.

FIGURE 1.7

A plot of a torus generated with ExampleData
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12. Visit MathWorld at http://mathworld.wolfram.com. Use Randominteger
to generate a random integer n between 1 and 11. Visit the
nth mathematical topic in the subject list. Then, randomly visit
a subtopic followed by another subtopic. From the list of topics,
choose one that sounds interesting but that you know nothing
about. Follow the link and learn about the topic. Write a brief
(one-page) report on your findings.
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CHAPTER

Basic Operations on Numbers,
Expressions, and Functions

Chapter 2 introduces the essential commands of Mathematica. Basic
operations on numbers, expressions, and functions are introduced and
discussed.

2.1 NUMERICAL CALCULATIONS AND BUILT-IN
FUNCTIONS

2.1.1 Numerical Calculations

The basic arithmetic operations (addition, subtraction, multiplication, divi-
sion, and exponentiation) are performed in the natural way with Mathema-
tica. Whenever possible, Mathematica gives an exact answer and reduces
fractions.

1. “a plus b,” a + b, is entered as a+b;

2. “a minus b,” a — b, is entered as a-Db;

3. “a times b,” ab, is entered as either a*b or a b (note the space
between the symbols a and b);

4. “a divided by b,” a/b, is entered as a/b. Executing the command a/b
results in a fraction reduced to lowest terms; and

5. “a raised to the bth power,” ab, is entered as a’\b.

Example 2.1.1 Calculate (a) 121 +542; (b) 3231 — 9876; (C) (=23)(76); (d) (22341)(832748)(387281);
467

and (g) 3

31
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Example 2.1.2

CHAPTER 2 Basic Operations on Numbers, Expressions, and Functions

These calculations are carried out in the following screen shot. In each case,
the input is typed and then evaluated by pressing Enter. In the last case, the
Basic Math template is used to enter the fraction.

= Example 1 1]
121+ 452 37
573 3
3231 - 9876 97

6645
-23+76 97
1748 3.
22361 x 832748 x 387281 3
7211589719761868 )
467/31 37
467 ]
31 |
467 )
31
467 j
31 i

The term " = Y/a"= ({/a)” is entered as ar(n/m). For n/m = 1/2, the
command Sqrt[a] can be used instead. Usually, the result is returned in
unevaluated form but N can be used to obtain numerical approxima-
tions to virtually any degree of accuracy. With N[expr,n], Mathematica
yields a numerical approximation of expr to 7 digits of precision, if
possible. At other times, Simplify can be used to produce the expected
results.

If the expression b in a” contains more than one symbol, be sure that the expo-
nent is included in parentheses. Entering a*n/m computes a”/m = %a”, whereas
entering a*(n/m) computes a™”.

Compute (a) V27 and (b) v/8% = 8%,

Solution (a) Mathematica automatically simplifies 27 =3v/3. We use N to obtain an

approximation of v/27. (b) Mathematica automatically simplifies 8*°.



N[number] and
number//N return
numerical approxi-
mations of humber.

Example 2.1.3

Solution

2.1 Numerical Calculations and Built-in Functions

sqrt[27] 3}
33 j
N[Bqrt[27]] 'j]
5.19615 3
8~ (2/3) 3
: Y

When computing odd roots of negative numbers, Mathematica’s results are
surprising to the novice. Namely, Mathematica returns a complex number.
We will see that this has important consequences when graphing certain
functions.

2 2/3
Calculate (a) % <—£> and (b) ( 27) .

64 T 64

(a) Because Mathematica follows the order of operations, (-27/64)72/3 first com-
putes (-27/64)> and then divides the result by 3.

(-27/64)°2/3 3
243 ‘]
4096

(b) On the other hand, (-27/64)"(2/3) raises —27/64 to the 2/3 power. Mathematica

does not automatically simplify (-2)*>.

9 (~112/3

(-27/64) ~(2/3) 3}
16

[ N—.

However, when we use N, Mathematica returns the numerical version of the
. . 2/3
principal root of (=)™

N[(-27 /64) " (2/3)]

0.28125 + 0.487139 1 3

(.
—_

To obtain the result

33
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which would be expected by most algebra and calculus students, we first square
—27/64 and then take the third root.

((-27/64)"2)"(1/3) 3
; ﬂ
16

Alternatively, download the RealOnly package from the Wolfram website.

enn H& Miscellaneous " RealOnly” - Wolfram Mathematica (=]

4| | Compatibay Tutorials Miscellaneous RealOnly »| |5

m

Miscellaneous RealOnly”

Miscellaneous™ RealOaly” was available as an sdd-on packsge in previous versions of Mathematics and is
now available on the web at library. wolfram.com/infocenter/MathSource/6771.

.

1008 »

Then,
<< Miscellaneous RealOnly" bl
Ceneral::obspkg : 3
Miscellaneous "RealOnly " is now obsolete. The legacy version being loaded

may conflict with current Mathematica functionality.

See the Compatibility Guide for updating information. = ]
(-27/64)"(2/3) bl
: ]
16 J

returns the result 9/16.

2.1.2 Built-in Constants

Mathematica has built-in definitions of nearly all commonly used mathe-
matical constants and functions. To list a few, e = 2.71828 is denoted by
E, m=3.14159 is denoted by Pi, and i = /-1 is denoted by I. Usually,
Mathematica performs complex arithmetic automatically.

Other built-in constants include co; denoted by Infinity; Euler’s constant,
v =0.577216, denoted by EulerGamma; Catalan’s constant, approximately
0.915966, denoted by Catalan; and the golden ratio, 1 (1+/5) =1.61803,
denoted by GoldenRatio.



2.1 Numerical Calculations and Built-in Functions

Example 2.1.4 Entering

Example 2.1.5

N[number] or
number//N returns
approximations of
number.

Exp[x] computes e”.
Enter E to compute
e=2.718.

N[E, 50]
2.7182818284590452353602874713526624977572470937000

returns a 50-digit approximation of e. Entering

N[, 25]
3.141592653589793238462643

returns a 25-digit approximation of . Entering

performs the division (3 +#)/(4 — ©) and writes the result in standard form.

2.1.3 Built-in Functions

Functions frequently encountered by beginning users include the expo-
nential function, Exp[x]; the natural logarithm, Log[x]; the absolute value
function, Abs[x]; the trigonometric functions Sin[x], Cos[x], Tan[x], Sec[x],
Csc[x], and Cot[x]; the inverse trigonometric functions ArcSin[x], ArcCos[x],
ArcTan[x], ArcSec|x], ArcCsc[x], and ArcCot[x]; the hyperbolic trigonometric
functions Sinh[x], Cosh[x], and Tanh[x]; and their inverses ArcSinh[x],
ArcCosh[x], and ArcTanh[x]. Generally, Mathematica tries to return an exact
value unless otherwise specified with N.

Several examples of the natural logarithm and the exponential functions
are given next. Mathematica often recognizes the properties associated with
these functions and simplifies expressions accordingly.

Entering

Exp[-5)//N
0.00673795

returns an approximation of e™> = 1/¢>. Entering

Log[E®]
3

computes In e’ = 3. Entering

35
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Log[x] Cor;1p11t6§ Inx. Exp[Log[]]
Inx and e are inverse
functions (lne* = x
and ™ = x) and
Mathematica uses
these properties
when simplifying
expressions involving 5
these functions.

w

w

computes €7 = 7. Entering

Abs[-5]

computes | -5|=5. Entering

Abs|x] returns the Abs[ﬂ
2-0l

absolute value of

x| x| 13

85
computes |3 + 2i)/(2 — 97)|. Entering
Cos| ]
1+v8
2Vv2
N[Cos[]]
0.965926

computes the exact value of cos(zr/12) and then an approximation. Although
Mathematica cannot compute the exact value of tan 1000, entering

N[number] and
number//N return N[ Tan[1000]]
approximations of 1.47032
number.
returns an approximation of tan 1000. Similarly, entering

N[ArcSin[1/3]]
0.339837

returns an approximation of sin™'(1/3), and entering

ArcCos[2/3]//N
0.841069

returns an approximation of cos™'(2/3).

Mathematica is able to apply many identities that relate the trigonometric
and exponential functions using the functions TrigExpand, TrigFactor,
TrigReduce, TrigToExp, and ExpToTrig.



Example 2.1.6
Many of the algebraic
manipulation
commands can
be accessed from
the Algebraic-
Manipulation palette.
) Algebraic Manip...

Expand(m]
ExpandAll[m]

Factor[m]

Together[u]

Apart[m]

Cancel[m]
Simplify[m]
FullSimplify[m]
FunctionExpand[m]

TrigExpand[m]

TrigFactor[m]
TrigReduce[m]

ExpToTrig[m]

TrigToExp[m]
PowerExpand[m]
ComplexExpand[m]

2.1 Numerical Calculations and Built-in Functions

Il

? TrigExpand

TrigExpand|expr] expands out trigonometric functions in expr. =

L

]

?TrigFactor

TrigFactor[expr] factors trigonometric functions in expr. =

L

Il

? TrigReduce

TrigReduce|expr] rewrites products and powers of trigonometric functions in expr
in terms of trigonometric functions with combined arguments. >

]

?TrigToExp

TrigToExplexpr] converts trigonometric functions in expr to exponentials. >

L

?ExpToTrig

ExpToTriglexpr] converts exponentials in expr to trigonometric functions. =

L

L

Mathematica does not automatically apply the identity sin’x + cos®x = 1.
Cos[x]"2 + Sin[x]"2
Cos[x]? + Sin[x]?

To apply the identity, we use Simplify. Generally, Simplify[expression] attempts to
simplify expression.

Simplify[Cos[x]*2 + Sin[x]"2]
)

Use TrigExpand to multiply expressions or to rewrite trigonometric functions. In
this case, entering

TrigExpand[Cos[3x]]
Cos[x]® —3Cos[X]Sin[x]?

writes cos3x in terms of trigonometric functions with argument x. We use the
TrigReduce function to convert products to sums.

TrigReduce[Sin[3x]Cos[4x]]
%(— Sin[x] + Sin[7x])

We use TrigExpand to write

TrigExpand[Cos[2x]]
Cos[x]? - Sin[x}?

in terms of trigonometric functions with argument x. We use ExpToTrig to convert
exponential expressions to trigonometric expressions.

37
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ExpToTrig[1/2(Exp[x] + Exp[-x])]
Cosh[x]

Similarly, we use TrigToExp to convert trigonometric expressions to exponential
expressions.

TrigToExp[Sin[x]]

%ie—ix_%ieix

Usually, you can use Simplify to apply elementary identities.
Simplify[ Tan[x]" 2 + 1]

Sec[x]?

A Word of Caution

Remember that there are certain ambiguities in traditional mathematical
- . .2 . -

notation. For example, the expression sin (77'/6) is usually interpreted

to mean “compute sin (7/6) and square the result.” That is, sin’ (7/6) =

[sin (7/6)] ? The symbol sin is not being squared; the number sin (7/6) is
squared. With Mathematica, we must be especially careful and follow the
standard order of operations exactly, especially when using InputForm.
We see that entering

Sin[Pi/6]"2 ]

1 |
4 |

computes sin’ (7/6) = [sin (77/6)]2, whereas
sin*2[(Pi/6] ‘J‘|
sanlél il

raises the symbol Sin to the power 2 [%] Mathematica interprets

Ma2
sin[ ] ﬂ
1
: I
to be the product of the symbols sin’ and 7/6. However, using Tradition-

. . 2 .
alForm we are able to evaluate sin” (77/6) = [sm (77/6)] with Mathematica
using conventional mathematical notation.

s[5

1
4

(W—
T
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Times

| Power | | Power | | Power |
AN /\
| Plus || Plus | |Plus |—1|
i

FIGURE 2.1
Visualizing the order in which Mathematica carries out a sequence of operations

Be aware, however, that traditional mathematical notation does contain
certain ambiguities and Mathematica may not return the result you expect
if you enter input using TraditionalForm unless you are especially careful
to follow the standard order of operations, as the following warning message
indicates.

You are asking Mathematica to interpret
TraditionalForm input. Only InputForm and

- StandardForm provide complete and precise
specifications of Mathematica Input. Do you want
to evaluate the input?
Mathematica has rules for trying to convert input from other
forms, but ambiguities may arise. To see how Mathemarica
will convert your expression, choose items from the “Convert
Ta" submeni of the "Cell” menu.

Always { No { Yes

Example 2.1.7 As stated, Mathematica follows the order of operations exactly. To see how Math-
ematica performs a calculation, TreeForm presents the sequence graphically.

. 2cray’ .
For example, for the calculation “*2-<*>- TreeForm gives us the results shown
in Figure 2.1.

Clear[a, b, c,d, x,y, z]
TreeForm[(a + b)*2(c + d)*3/(x + y-2)]

2.2 EXPRESSIONS AND FUNCTIONS: ELEMENTARY
ALGEBRA

2.2.1 Basic Algebraic Operations on Expressions

Expressions involving unknowns are entered in the same way as num-
bers. Mathematica performs standard algebraic operations on mathematical
expressions. For example, the commands

1. Factor[expression] factors expression;
2. Expand[expression] multiplies expression;
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3. Together[expression] writes expression as a single fraction; and
4. Simplify[expression] performs basic algebraic manipulations on
expression and returns the simplest form it finds.

For basic information about any of these commands (or any other), enter
?command as we do here for Factor,

?Factor b

Factor| pely] factors a polynomial over the integers.

Factor| poly, Modulus —> p] factors a polynomial modulo a prime p.

Factor] pely, Extension —> {ay, a3, ...}] factors a polynomial allowing coefficients
that are rational combinations of the algebraic numbers a,. =

or access the Help Browser as we do here for Factor.

enn & Factor - Wolfram Mathematica (=]

45k & retFactor »

Factor Updated in 6

Factor [poly!
factces a polynomisl over the integers.

Factor [pely, ¥odulus -» p
facters a palynomial modulo & prime p

Factor [poly, Extension -» (ay, oz, ...
facters a polynomisl allowing coefficients that are rational combinations of the algebrak numbers &

¥ EXAMPLES

¥ Basic Examples
Factor pohmams:
Factor[ls2x+x"2]
Lex?
Facter(x”10-1]
Lexp flox) (Loxon®-x?ou') (lomox?on?int
Fagtor[x” 10 -y * 10]

-y xey) (2t -wyexty cxy oy iy Yy exy eyt

Factor moduio 2
Factor[x” 10 - 1, Modulus -» 2]

P v

[ 100% »

When entering expressions, be sure to include a space or * between
variables to denote multiplication.

Example 2.2.1 (a) Factor the polynomial 12x” + 27xy — 84)”. (b) Expand the expression (x + %)’
. 2 X . .
QBGx —y)s. (c) Write the sum i % as a single fraction.
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Solution The result obtained with Factor indicates that 12x” + 27xy — 84)” = 3(4x — 7))

Factor[x"*2 - 3] returns
X =3

(x + 4. When typing the command, be sure to include a space, or *, between
the x and y terms to denote multiplication. xy represents an expression, whereas
X y or x*y denotes x multiplied by y.

Factor[12x? + 27xy - 84y?|
3(Ax—7y)(x + 4y)

We use Expand to compute the product (x + y)z(Sx - y)3 and Together to express
2 2
= - X as a single fraction.
X 2
Expand|(x + y)?(3x-)’|
27x% + 27xy —18x3y? —10x%y2 + 7xy* —y°

Tog:iether [x% - "—:]

4-X
2x2

To factor an expression such as X - 3= X - (\/5)2 = (x - \/3) (x+ \/57),
use Factor with the Extension option.

Factor[xA2-3, Extension — {Sqrt[3]}]
- (\/§ - x) (\@ + x)
Similarly, use Factor with the Extension option to factor expressions such as
2 2 2 . .
X +1l=x"—-i"=W+i)x—-1).
Factor[x"2 + 1]

142

Factor[x”2 + 1, Extension — {l}]
(=i +x)(+x)

Mathematica does not automatically simplify vx? to the expression x

Sqrt[x2]
VX2

because without restrictions on x, vVx? = [x|. The command PowerExpand
[expression] simplifies expression assuming that all variables are positive.
Alternatively, you can use Assumptions to tell Mathematica to assume that
x> 0.

PowerExpand[Sqrt[x"2]]
X

Simplify[Sqrt[x” 2], Assumptions — x>0]
X
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Example 2.2.2

Solution

Thus, entering

Simplify[Sqrt[a”2b™ 4]]
vazpb*

returns Va2b?%, but entering

PowerExpand[Sqrt[aA2bA4]]
ab?

Simplify[Sqrt[a’ 2b” 4], Assumptions —
{a>0,b>0}]
ab?

returns ab’.

In general, a space is not needed between a number and a symbol to
denote multiplication when a symbol follows a number. That is, 3dog means
“3 times variable dog,” dog3 is a variable with name dog3. Mathematica
interprets 3 dog, dog*3, and dog 3 as “3 times variable dog.” However,
when multiplying two variables, either include a space or * between the
variables.

1. cat dog means “variable cat times variable dog.”
2. cat*dog means “variable cat times variable dog.”
3. But, catdog is interpreted as a variable catdog.

The command Apart[expression] computes the partial fraction decomposi-
tion of expression; Cancellexpression] factors the numerator and denomina-
tor of expression and then reduces expression to lowest terms.

1

(@) Determine the partial fraction decomposition of ——— . (b) Simplify
=3 -1
X -1
x2-2x+1
. 1 1 1 )
Apart is used to see that = - . Then, Cancel is
@=-3x-1 2x-3) 2x-D
used to find that ——— 1 G- De+D X+l s calculation, we have
x?=2x+1 (x - 1)? x—-1

assumed that x # 1, an assumption made by Cancel but not by Simplify.

1
Apart[(x-s)(x-n]

|
2-3+%x  2(-1+x

Cancel[ -1 ]

x2 = 2x+1

d+x
-1+x




Example 2.2.3

Solution

2.2 Expressions and Functions: Elementary Algebra

In addition, Mathematica has several built-in functions for manipulating
parts of fractions.

1. Numerator(fraction] yields the numerator of fraction.

2. ExpandNumerator{fraction] expands the numerator of fraction.

3. Denominator[fraction] yields the denominator of fraction.

4. ExpandDenominator{fraction] expands the denominator of fraction.

Given ———————, (a) factor both the numerator and denominator; (b) reduce
X +x2—4x -4

X +2—x-2

X +x2—dx—4
X2 —x-2

The numerator of —————— is extracted with Numerator. We then use
X3 +x? — 4x —

Factor together with %, which is used to refer to the most recent output, to
factor the result of executing the Numerator command.

3 2
Numerator [M]

x3 +x2-4x-4

—2-x+2¢ +x°

Factor[%]
(=1 +X)( +x)(2+X)

Similarly, we use Denominator to extract the denominator of the fraction. Again,
Factor together with % is used to factor the previous result, which corresponds
to the denominator of the fraction.

. 3 4 ox®_xo
Denominator [M]

x3 +x2-4x-4

—4—Ax+ X2+ X8

Factor[%]
(=2 +X)(1 +X)(2 +X)

Cancel is used to reduce the fraction to lowest terms.

Cancel [M]
x3 +x2-4x-4

-1+x
24X

Finally, Apart is used to find its partial fraction decomposition.

3 2
Al [x +2x —x-2]
part x3 +x2-4x-4
1

1+ -2+X
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Example 2.2.4

Solution

You can also take advantage of the AlgebraicManipulation palette, which
is accessed by going to Palettes under the Mathematica menu, followed by
AlgebraicManipulation, to evaluate expressions.

26 -+ D 3
W+2(x—3)(x+ D7,

Simplify
First, we type the expression.

2(x-3)2 1 3
,(:—.)_(.L.}...z(x_J,) (301]:” 1
3 (K X 1)4.-‘]
Then, select the expression.
+2 (x-3) (x+1)27
3 (K + 1)4.’]

2(x-3)2 (x+1) ‘

Move the cursor to the palette and click on Simplify. Mathematica simplifies the
expression.

B (-3+X) X
3 (L+x)3

[ I— |

2.2.2 Naming and Evaluating Expressions

In Mathematica, objects can be named. Naming objects is convenient:
We can avoid typing the same mathematical expression repeatedly (as we
did in Example 2.2.3) and named expressions can be referenced through-
out a notebook or Mathematica session. Every Mathematica object can be
named—expressions, functions, graphics, and so on can be named with
Mathematica. Objects are named by using a single equals sign (=).

Because every built-in Mathematica function begins with a capital letter,
we adopt the convention that every mathematical object we name in this
text will begin with a lowercase letter. Consequently, we will be certain to
avoid any possible ambiguity with any built-in Mathematica objects.

With Mathematica 6, the default option is to display known objects
in black and unknown objects in blue. Thus, in the following screen
shot,
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Fractionx y

Apart

apart

2Pipin

7 Plot Expand Cancel
EeE

Fraction, X, y, apart, pi, €, and E are in blue; Apart, 2, Pi, 7, 7, Plot, Expand,
Cancel, and E are in black.

To automatically update named variables, Dynamic[x] returns the current
value of x.

Thus, Dynamic[x] returns dog.

x = dog 3 LU
dog |
Dynamic([x] h|
dog 3

However, when we enter x =7 afterwards, Dynamic[x] is automatically
updated to the new value of x.

|
x = dog f'U
dog 3
Dynamic([x] 1]
7 il
x=17 7
7 3

Expressions are easily evaluated using ReplaceAll, which is abbreviated
with /. and obtained by typing a backslash (/) followed by a period (),
together with Rule, which is abbreviated with -> and obtained by typing a
forward slash (/) followed by a greater than sign (>). For example, entering
the command

xN2/.x->3

returns the value of the expression X if x= 3. Note, however, that this
does not assign the symbol x the value 3: entering x=3 assigns x the
value 3.

3 2
Example 2.2.5 Evaluate XA mx-2 if x =4, x=-3, and x = 2.
X3 +x2—4x -4
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Solution

Of course, you can
simply copy and paste
this expression if you
neither want to name
it nor retype it.

If you include a
semicolon () at the
end of the command,
the resulting output is
suppressed.

2 Basic Operations on Numbers, Expressions, and Functions

3 2 3 2
X +2X —x—2 . . X +2X —x—2
, we define fraction to be

T id retyping ——— A2 —dx— 4
0 avoid retyping e — B2 —dx—4

. 3 2 _x—
fraction = X +2x7-x-2
x3 +x2-4x-4
—2-x+2x2 +x3

—4-4x+x2 +x3
/. is used to evaluate fraction if x = 4 and then if x = -3.

fraction/.x-> 4

3
2

fraction/.x->-3

SIS

When we try to replace each x in fraction by 2, we see that the result is undefined:
division by 0 is always undefined.

fraction /. x = -2

1 }
Power::infy : Infinite expression 0 encountered. = ] ’
w::indet : Indeterminate expression 0 Complexinfinity encountered. » a I

Indeterminate

However, when we use Cancel to first simplify and then use ReplaceAll to evaluate

fraction2 = Cancel [fraction] 3
1+x b |
24+x J

fraction2 /. x -2

3
4

—_ L4
—_

we see that the result is 3/4. The result indicates that lim,_,_, ;% =3,
We confirm this result with Limit.

Limit[fraction, x -+ -2] ']]

: I

Generally, Limit[f[x], x->a] attempts to compute lim,_,, ftx). The Limit function is
discussed in more detail in the next chapter.




Example 2.2.6

2.2 Expressions and Functions: Elementary Algebra

2.2.3 Defining and Evaluating Functions

It is important to remember that functions, expressions, and graphics can
be named anything that is not the name of a built-in Mathematica function
or command. As previously indicated, every built-in Mathematica object
begins with a capital letter so every user-defined function, expression, or
other object in this text will be assigned a name using lowercase letters
exclusively. This way, the possibility of conflicting with a built-in Mathe-
matica command or function is completely eliminated. Because definitions
of functions and names of objects are frequently modified, we introduce
the command Clear. Clear[expression] clears all definitions of expression, if
any. You can see if a particular symbol has a definition by entering ?symbol.

In Mathematica, an elementary function of a single variable, y = f(x) =
expression in x, is typically defined using the form

f[x_] = expression in x or f[x_] := expression in x.

Notice that when you first define a function, you must always enclose the
argument in square brackets ([...]) and place an underline (or blank) “_”
after the argument on the left-hand side of the equals sign in the definition
of the function.

Entering

fix_1=x/(x*2+1)

X _
1+x2

defines and computes fix) = x/(x2 + 1). Entering

f[3]

3
10

computes f(3) = 3/(3° + 1) = 3/10. Entering
f[a]

-
1+a2

computes fa) = a/(a’ +1). Entering

f[3+h]

3+h
1+@3+h?2

computes f3 +b) = (3 + b)/((3 + b)* + 1). Entering
n1 = Simplify[(f[3 + h] -[3])/h]

8+3h
10(10 +6h +h?)
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h —
computes and simplifies M
ni/.h—-0

-2
25

and names the result n1. Entering

evaluates n1 if » = 0. Entering

n2 = Together[(f[a + h] -f[a])/h]
1-a2-ah

(1+a2)(1 +a2 +2ah +h?)

bh) —
computes and simplifies w and names the result n2. Entering
n2/.h—-0

1-a2
(1 +a2)2

evaluates n2 if b =0.

Often, you will need to evaluate a function for the values in a list,
list = {a,,a,,a,,...,a,} .

Once f(x) has been defined, Map [flist] returns the list

{f(al)’ -f(uZ)’ f(aS)’ R f(ﬂn)} .
Also,
The Table function
will be discussed in 1. Table [f[n], {n, n1, n2}] returns the list

more detail as needed.

{f(ny), f(n, +1), f(n,+2),..., f(ny)}.

2. Table [{n, f[n]},{n, n1, n2}] returns the list of ordered pairs

{(nl,f(nl)),(nl+1,f(n1+1)),(n1+2, f(n1+2)),...,(n2, f(nz))}

Example 2.2.7 Entering

Clear[h]

h[t-] = (1 + ) (1/1);
h[1]

2

defines h® =1 +H" and then computes h(1) = 2. Because division by 0 is
always undefined, »(0) is undefined.

h[0]

|
Power::infy : Infinite expression = encountered. >» i ‘
2]

r1indet : Indeterminate expression 1°9FPiS¥IREZRILY ancountered. »»

Indeterminate



RandomReal[{a, b}]
returns a random

real number bet-
ween a and b;
RandomReal[{a, b}, n]
returns n random real
numbers between a
and b.

Example 2.2.8

Including a semicolon
at the end of a
command suppresses
the resulting output.

The f,, we have
defined here
returns the
Fibonacci number
F,. Fibonacci[n]
also returns the nth
Fibonacci number.

2.2 Expressions and Functions: Elementary Algebra

However, h(®) is defined for all £ > 0. In the following, we use RandomReal together
with Table to generate six random numbers “close” to 0 and name the resulting
list 1. Because we are using RandomReal, your results will almost certainly differ
from those here.

t1 = Table[RandomReal[{0, 10~ "}], {n, 0, 5}]
{0.457711,0.0446146,0.00848021,
0.000465453, 0.0000566835, 1.6690247776250502*"- 6}

We then use Map to compute h(@) for each of the values in the list t1.

Maplh, t1]
{2.27817,2.66002,2.70684,2.71765,2.7182,2.71828}

Vs

From the result, we might correctly deduce that lim, . (1 + e.

In each of these cases, do not forget to include the blank (or underline)
(_) on the lefthand side of the equals sign in the definition of each
function. Remember to always include arguments of functions in square
brackets.

Entering

Clear|f]
f[0] = 1;
f11=1;
fln_] :=f[n-1] + f[n-2]

defines the recursively defined function defined by f(0) =1, f(1) =1, and f(n) =

S =D+ fm-2). For example, f(D) =fD+f0) =1+1=2; fG)=fD+[f(D =

2+1=3. We use Table to create a list of ordered pairs (n, fin)) for n=0,1,
.., 10.

Table[{n, f[n]},{n, 0, 10}]

{01}, {1,1},{2,2},{3,3}, {4, 5},
{5,8},{6,13},{7,21},{8,34},{9,55}, {10,89}}

In the preceding examples, the functions were defined using each of the
forms f[x]:=... and f[x]=.... As a practical matter, when defining “rou-
tine” functions with domains consisting of sets of real numbers and ranges
consisting of sets of real numbers, either form can be used. Defining a
function using the form f[x]=... instructs Mathematica to define f and then
compute and return f[x] (immediate assignment); defining a function
using the form f[x]:=... instructs Mathematica to define f. In this case,
flx] is not computed and, thus, Mathematica returns no output (delayed
assignment). The form f[x_]:=... should be used when Mathematica can-
not evaluate f[x] unless x is a particular value, as with recursively defined
functions or piecewise-defined functions, which we will discuss soon.

19
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Generally, if attempting to define a function using the form f[x]=...
produces one or more error messages, use the form f[x_]:=... instead.

To define piecewise-defined functions, we usually use Condition (/;) as
illustrated in the following example. In simple situations, we take advantage
of Piecewise.

enm HE Piecewise - Wolfram Mathematica =
45 (@ et Pecewise »| |5
Piecewise

Phocewioe || (v, comdi}, (v, conds}, ..0]
represents a piecewise function with values val in the regions defined by the conditions cond, .

Piecewise || (valy, comdi}, ..}, val]
uses default value val if nane of the cond, apply. The default for val is .

¥ Basic Examples
Set u2 9 plecewise function with gifferent pieces below ang above 2e70:
Plot[Piecewiso[{{x"2, x< 0}, (=, x> 0}}], {x, -2, 2}]

Find the dertvative of a plecewise fuaction:

DiPiocowise[({x"2, x <0}, {x, 2>0}}], =]
Ix x=<0
1 x>0

Indeterminate True

[ 100 ]

Example 2.2.9 Entering

Clear[f]
f[t_]:=Sin[1/t)/;t> 0

defines f(® = sin(1/0) for ¢ > 0. Entering

f[1/(10Pi)]
0

is evaluated because 1/(10 ) > 0. However, both of the following commands are
returned unevaluated. In the first case, —1 is not greater than 0( f(® is not defined
for ¢ < 0). In the second case, Mathematica does not know the value of a so it
cannot determine if it is or is not greater than 0.

f[-1]
f-1]



Example 2.2.10

2.2 Expressions and Functions: Elementary Algebra

f[a]
fla]

Entering
flt-]1:=-t/;t<0

defines f(®) = —t for t < 0. Now, the domain of f(#) is all real numbers. That is, we

have defined the piecewise-defined function

sin1/8, >0
D= .
J® {—t, t<0

We can now evaluate f(#) for any real number ¢.

f[2/(5Pi)]
]

f[0]
0

f[-10]
10

However, f(a) still returns unevaluated because Mathematica does not know if

a<0orifa>o0.

f[a]
flal

Recursively defined functions are handled in the same way. The following

example shows how to define a periodic function.

Entering

Clear[g]
g[x-]:=x/;0<x<1
glx-]:=1/;1<x<2
g[x-]:=3-x/;2<x<3
g[x-]:=g[x-3)/;x>3

defines the recursively defined function g(x). For 0 < x < 3, g(x) is defined by
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For x > 3, g(x) = g(x — 3). Entering

al7]
]

computes g(7) = g(4) = g(1) = 1. We use Table to create a list of ordered pairs
(x, g(x)) for 25 equally spaced values of x between 0 and 6.

Table[{x, g[x]}, {x, 0, 6, 6/24}]

{005 {7, 7). {z s {3 31 {01 {31},
e {2 {32 {73}, {80}
(i &R e {F 1151}
{(Z 16107 3.{2.:}.{F 1}.{6.0}}

We will discuss additional ways to define, manipulate, and evaluate func-
tions as needed. However, Mathematica’s extensive programming language
allows a great deal of flexibility in defining functions, many of which are
beyond the scope of this text. These powerful techniques are discussed
in detail in texts such as Gaylord, Kamin, and Wellin’s Introduction to
Programming with Matbematica [9], Gray’s Mastering Matbhematica: Pro-
gramming Methods and Applications [12], and Maeder’s The Mathematica
Programmer II and Programming in Matbematica [15, 16].

2.3 GRAPHING FUNCTIONS, EXPRESSIONS, AND

EQUATIONS

One of the best features of Mathematica is its graphics capabilities. In this sec-
tion, we discuss methods of graphing functions, expressions, and equations
and several of the options available to help graph functions.

2.3.1 Functions of a Single Variable
The commands
Plot[f[x], {x,a, b}] and Plot [f[x], {x, a, x1,X2,...,xn, b}]

graph the function y =f(x) on the intervals [a,b] and [a,x;) VU (x,x;)
U...U(x,,b], respectively. Mathematica returns information about the
basic syntax of the Plot command with ?Plot or use the Documentation
Center to obtain detailed information regarding Plot.



Example 2.3.1

Solution

2.3 Graphing Functions, Expressions, and Equations

[z aXa) & Plot - Wolfram Mathematica (=]
45 & ehPion »
Updated in 6
Plot e
FLOt[f s (% Seins Tous}
generates a plot of f as a function of x from L, to k., .
PLOE[ (s far oredo (X Zins Toual]
plots several functions .
¥ Exanries A -
¥ Basic Examples
Piot & function,
= Plot[Sia[=], (=, 0, 6Pi}]
= 1
as [
3 1] 15
03 \
=10
Pt severa! functions:
Plot[{Sin[x], Sin[2x], Sia[3 =]}, {x, O, 2PL}]
ou{t]= 18
as 4
i A WS 'SR L
4 \F g bl oo .
03
v

[ 100% o

Remember that every Mathematica object can be assigned a name, including
graphics. Show([p1,p2,..., pn] displays the graphics p1, p2, ..., pn together.

Graph y =sinx for -7 < x < 277,
Entering
p1 = Plot[Sin[x], {x, - Pi, 2Pi}]

graphs y = sinx for —7 < x < 27 and names the result p1. The plot is shown in
Figure 2.2(a). With

p1b = Plot[Cos[Xx], {x, — 2Pi, 2Pi},
ColorFunction — “ValentineTones”,
PlotStyle — Thickness[.025]]

we create a slightly thicker plot of y =cosx and shade the plot using the
ValentineTones color gradient. See Figure 2.2(b).

Show[p1,p2,...,pn] shows the graphics p1,..., pn. You can also use Show
to rerender graphics. Using Show with the Epilog option together with Inset, we
place a small version of the cosine plot in the sine plot. See Figure 2.2(c).

pic = Show[p1,
Epilog — Inset[p1b, {Pi/2, — 1/2}, Automatic, 5]]
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E o5 4
wilfu bl
4- =

0=

(o

FIGURE 2.2

(@) y =sinx for —m < x < 27. (b) A “reddish” plot of y = cosx for =27 < x < 277.
(c) Combining two graphics with Epilog and Inset

Multiple graphics can be shown in rows, columns, or grids using GraphicsRow,
GraphicsColumn, or GraphicsGrid, respectively. Thus,

Show[GraphicsRow[{p1, p1b, p1c}]]

generates Figure 2.2.

Be careful when graphing functions with discontinuities. Often, Mathe-
matica will catch discontinuities. In other cases, it does not and you might
need to use the Exclusions option to generate a more accurate plot.

Example 2.3.2 Graphs@® for0<t<5 wheres@®=1foro0<t<lands@®=1+s@—-1) forz>1.
Solution After defining s,

s[t_]:=1/;0<t<1
s[t-]:=1 +s[t-1)/;t>1

we use Plot to graph s() for 0 < ¢ <5 in Figure 2.3(a).
p1 = Plot[s[t], {t, 0, 5}, AspectRatio — Automatic]

Of course, Figure 2.3(a) is not completely precise: Vertical lines are never the
graphs of functions. In this case, discontinuities occur at t=1, 2, 3, 4, and 5.
If we were to redraw the figure by hand, we would erase the vertical line segments
and then for emphasis place open dots at (1,1), (2,2), (3,3), (4,4, and (5,5)
and then closed dots at (1,2), (2,3), 3,4, (4,5), and (5,6). In cases like this
in which Plot does not automatically detect discontinuities, you can specify them
with Exclusions. See Figure 2.3(b).

p2 = Plot[s[t], {t, 0, 5}, Exclusions — {1, 2, 3, 4}]
Show[GraphicsRow[{p1, p2}]]
To fine-tune graphics, use the Drawing Tools and Graphics Inspector

palettes, which are accessed under Graphics in the menu. In this case, we add
the closed dots at the left endpoints.
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FIGURE 2.3
(@ s®=1+s@-1), 0<t<5. (b) Catching the discontinuities

p2 =Plot[s[t], (t, 0, 5}, Exclusicns + (1, 2, 3, 4}] ) 20 Drawing (&) 20 Graphics Inspector
- v Coloe
e I —
{ L & Cpaglty —— o
oW -
. | | e

8] feoioe Schamey ® B » Dashing
meom 2 : . \ : L R Arowbeats
E o ——

E R |

ot Entering Options[Plot] lists all Plot options and their default wvalues.

- - The most frequently used options include PlotStyle, DisplayFunction,
insert AspectRatio, PlotRange, PlotLabel, and AxesLabel.

:::: 1. PlotStyle controls the color and thickness of a plot. PlotStyle->
swem T4 GrayLevellw], where 0 < w < 1, instructs Mathematica to generate
B 1 the plot in GraylLevellw]. GraylLevel[0] corresponds to black and
b GrayLevel[1] corresponds to white. Color plots can be generated using

::: RGBColor. RGBColor[1,0,0] corresponds to red, RGBColor[0,1,0] cor-
Pk responds to green, and RGBColor[0,0,1] corresponds to blue. You
LR can also use any of the named colors listed on the Color Schemes
N palette.
Be. e PlotStyle->Dashing[a1,a2, ...,an] indicates that successive segments
| dncar. 1.1 be dashed with repeating lengths of a,, a,, ..., a,. The thick-
_ mer ness of the plot is controlled with PlotStyle->Thickness[w], where
i omed w is the fraction of the total width of the graphic. For a single

plot, the PlotStyle options are combined with PlotStyle->{{option1,
option2, ..., optionn}}.
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2. A plot is not displayed when the option DisplayFunction->
Identity is included or when a semicolon (;) is included at the
end of the command. Including the option DisplayFunction->$
DisplayFunction in Show or Plot commands instructs Mathematica to
display graphics.

3. The ratio of height to width of a plot is controlled by AspectRatio.
The default is 1/GoldenRatio. Generally, a plot is drawn to scale when
the option AspectRatio->Automatic is included in the Plot or Show
command.

4. PlotRange controls the horizontal and vertical axes. PlotRange->{c,d}
specifies that the vertical axis displayed corresponds to the interval
¢ <y < d, whereas PlotRange->{{a,b},{c,d}} specifes that the horizon-
tal axis displayed corresponds to the interval a < x < b and that the
vertical axis displayed corresponds to the interval c <y < d.

5. PlotLabel->"titleofplot" labels the plot titleofplot.

6. AxesLabel->{"xaxislabel","yaxislabel"} labels the x-axis with xaxislabel
and the y-axis with yaxislabel.

Example 2.3.3 Graph y =sinx, y = cosx, and y = tanx together with their inverse functions.

Solution In p2 and p3, we use Plot to graph y = sin”' x and y = x, respectively. Neither plot
is displayed because we include a semicolon at the end of the Plot commands.

Be sure you have p1, p2, and p3 are displayed together with Show in Figure 2.4. The plot is shown
completed the to scale; the graph of y =sinx is in black, y =sin"'x is in gray, and y =x is
previous example dashed.

immediately before
entering the

following commands. 3t .
2r .
it/

- -2 -1 1 2 3
~f —r
. " _2 N
. _3l
FIGURE 2.4

y=sinx, y=sin"'x, and y =x
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p2 = Plot[ArcSin[x], {x, -1, 1}, PlotStyle — GrayLevel[.3]];

p3 = Plot[x, {x, - Pi, 2Pi}, PlotStyle — Dashing[{ . 01}]];

p4 = Show[p1, p2, p3, PlotRange — {{-Pi, Pi}, {- Pi, Pi}}, AspectRatio —»
Automatic]

The command Plot[{f1[x],f2[x],. . .,fn[x]},{x,a,b}] plots f, ), f/,(x), ..., f, () together
for a < x < b. Simple PlotStyle options are incorporated with PlotStyle->{option1,
option2, . . ., optionn}, where optioni corresponds to the plot of f,(x). Multiple
options are incorporated using PlotStyle->{{options1}, {options2}, ..., {optionsn}},
where optionsi are the options corresponding to the plot of f;(x).

In the following, we use Plot to graph y = cosx, y = cos™ " x, and y = x together.
The plot in Figure 2.5 is shown to scale; the graph of y =cosx is in black,
y=cos ' xis in gray, and y = x is dashed.

r4 = Plot[{Cos[x], ArcCos[x], x}, {x, - Pi, Pi},
PlotStyle — {GrayLevel[0],
GrayLevel[.3], Dashing[{ . 01}]},
PlotRange — {- Pi, Pi}, AspectRatio —» Automatic]

We use the same idea to graph y = tanx, y = tan”' x, and y = x in Figure 2.6

q4 = Plot[{Tan[x], ArcTan[x], x}, {x, - Pi, Pi},
PlotStyle — {GrayLevel[0],
GrayLevel[.3], Dashing[{ . 01}1},
PlotRange — {- Pi, Pi}, AspectRatio —» Automatic]

FIGURE 2.5

y=cosx, y=cos ' x, and y = x
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Example 2.3.4

3t

1 E /,/—

I A AR
/ L —1r
T
_af

FIGURE 2.6

y=tanx, y=tan ' x, and y = x

N

FIGURE 2.7
The elementary trigonometric functions and their inverses

Use Show together with GraphicsRow to display graphics in rectangular arrays.
Entering

Show[GraphicsRow[{p4, r4, q4}]1]

shows the three plots p4, r4, and g4 in a row as shown in Figure 2.7.

The previous example illustrates the graphical relationship between a
function and its inverse.

(Inverse Functions). f(x) and g(x) are inverse functions if
S@)) = g(fx) = x.

If f(x) and g(x) are inverse functions, their graphs are symmetric about the line
y =x. The command

Composition[f1,f2,f3,...,fn,x]



Solution

S(x) and g(x) are not
returned because a
semicolon is included
at the end of each
command.

2.3 Graphing Functions, Expressions, and Equations

computes the composition

(fiofro-of,) @ =1 (/i (- (£,))).

For two functions f(x) and g(x), it is usually easiest to compute the composition
J g with f[g[x]] or f[x]//g.
Show that
-1 -2x 4x -1

—4+x and 80 = x+2

SO =

are inverse functions.

After defining fix) and g(x),

— —1-2x.
fix-1= -4+x’
glx-1= 255

we compute and simplify the compositions f(g(x)) and g(f(x)). Because both
results are x, f(x) and g(x) are inverse functions.

flalx]]
Simplify[f[g[x]]]

X

Simplify[g[f[x]]]
X

To see that the graphs of fix) and g(x) are symmetric about the line y = x, we use
Plot to graph fix), gx), and y = x together in Figure 2.8. Because Tooltip is being
applied to the set of functions being plotted, you can identify each curve by sliding
the cursor over the curve: when the cursor is placed over a curve, Mathematica
displays its definition.

Plot[Tooltip[{f[x], g[x], flg[x]]}], {x, - 10,10},
PlotStyle — {GrayLevel[0], GrayLevel[.3],
Dashing[{ . 01}1}, PlotRange — {-10, 10},
AspectRatio —» Automatic]

In the plot, observe that the graphs of f(x) and g(x) are symmetric about the
line y =x. The plot also illustrates that the domain and range of a function
and its inverse are interchanged: f(x) has domain (-oo,4)U (4,00) and range
(—00,-2) U (-2,00); g) has domain (—co, -2) U (-2,00) and range (-oo,4) U
(4, 00).
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Example 2.3.5

Solution

FIGURE 2.8
S in black, g(x) in gray, and y = x dashed

For repeated compositions of a function with itself, Nest[f,x,n] computes the
composition

N J J
R

n times n times

(fofefo---of)@ = (F(f(F)))@® =/"@.

Graph £, £°G0, 12, £°@), £, and £°) if f(x) = sinx for 0 < x < 2.
After defining f(x) = sinx,

f[x_] = Sin[x]
Sin[x]

we graph f() in p1 with Plot
p1 = Plot[f[x], {x, 0, 2Pi}];
and then illustrate the use of Nest by computing fs(x).

Nest[f, x, 5]
Sin[SIN[SIN[SIN[SIN[X]]]]]

Next, we use Table together with Nest to create the list of functions

{7, 200, £2°@), ), £} .



Table[f[i],{i,a,b,istep}]
computes f(7) for i
values from a to b
using increments of

istep.

Remark 2.2
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1.0

-0.5

_1 O -
FIGURE 2.9

F@) in black; the graphs of 7'°), @), £°@), f
lighter—the graph of £°°(x) is the lightest

10 40

@), and F°(x) are successively

Because the resulting output is rather long, we include a semicolon at the end of
the Table command to suppress the resulting output.

toplot = Table[Nest[f, x, n], {n, 10, 50, 10}];

We then graph the functions in toplot on the interval [0, 27] with Plot, applying
the Tooltip function to the list being plotted so they can easily be identified. Last,
we use Show to display p1 and p2 together in Figure 2.9.

p2 = Plot[Tooltip[toplot], {x, 0, 2Pi}];
Show([p1, p2]

In the plot, we see that repeatedly composing sine with itself has a flattening effect
on y = sinx.

The command
ListPlot[{{x1,y1},{x2,y2},.. .,{xn,yn}}]

plots the list of points {(x;,9),(x5,%,), .., (x,.2,)}. The size of
the points in the resulting plot is controlled with the option
PlotStyle->PointSize[w], where w is the fraction of the total width of the
graphic. For two-dimensional graphics, the default value is 0.008.

The command
ListPlot[y1,y2,...,yn]

plots the list of points {(1,7,),(2.5,),..., (n.y,)}-
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Example 2.3.6 Graph y = xz_

CHAPTER 2 Basic Operations on Numbers, Expressions, and Functions

— X2
—4

Solution We use Plot to generate the basic graph of y shown in Figure 2.10(a).

p1 = Plot[Sqrt[9 - x*2]/(x*2-4), {x, -5, 5}]

Observe that the domain of y is [-3, -2) U (-2,2) U (2,3]. A better graph of y is
obtained by plotting y for =3 < x < 3 and shown in Figure 2.10(b). We then use
the PlotRange option to specify that the displayed horizontal axis corresponds to
-7 <x <7 and that the displayed vertical axis corresponds to -7 <y <7. The
graph is drawn to scale because we include the option AspectRatio->Automatic.
In this case, Mathematica does not generate any error messages. Mathematica
uses a point-plotting scheme to generate graphs. Coincidentally, Mathematica does
not sample x = £2 and thus does not generate any error messages.

p2 = Plot[Sqrt[9-x"2)/(x2-4),{x, -5, 5}, PlotRange — {{-7, 7},{- 7, T}},
AspectRatio — Automatic]

To see the endpoints in the plot, we use ListPlot to plot the points (-3,0) and
(3,0). The points are slightly enlarged in Figure 2.10(c) because we increase their
size using PointSize.

a b 6k
4_
4_
2- j 2- k
—4 2 y 4 —6 —4 — 2 4 6
o 2r
4 F
_4_
6 F
Y
1.0F 6t
0.5 M
jz- K
& 1 1 1 1 & el baghi b Do e | Loy X
-3 -2 -1 1 2 3 —6—4—¢_2_ 2 4 6
0.5 (W
4_
. -1.0F d -6 |
FIGURE 2.10

The four plots p1, p2, p3, and p4 combined into a single graphic



Example 2.3.7

Solution

2.3 Graphing Functions, Expressions, and Equations

p3 = ListPlot[{{-3, 0}, {3, 0}}, PlotStyle — PointSize[.02]]

Finally, we use Show to display p2 and p3 together in Figure 2.10(d), where we
have labeled the axes using the AxesLabel option.

p4 = Show[p2, p3, AxesLabel — {“x”, “y”}]

The sequence of plots shown in Figure 2.10, which combines p1, p2, p3, and p4
into a single graphic, is generated using Show together with GraphicsGrid.

Show[GraphicsGrid[{{p1, p2}, {p3, p4}}11

When graphing functions involving odd roots, Mathematica’s results may
be surprising to the beginner. The key is to load the RealOnly package
located at the Wolfram website first or remember that Mathematica follows
the order of operations exactly and understand that without restrictions on

x, Va2 = |x|.

Graph y = x"*@x = 27 @+ DY,
Entering

p1 = Plot[x (1/3)(x-2)* (2/3)(x + 1) (4/3),
{x, -3, 5}, PlotRange — {-4, 4},
AspectRatio —» Automatic]

not does not produce the graph we expect (see Figure 2.11(a)) because many
of us consider y = x"*(x = 2*(x + 1D to be a real-valued function with domain
(—00, 00). Generally, Mathematica does return a real number when computing the
odd root of a negative number. For example, x° = —1 has three solutions:

4r 4 4r
of 2 o
o d 2 4 YAV 4 EPYANY B R
72_ _2:_ _2_
,4_ 74‘_ ,4_
a b c
FIGURE 2.11

Three plots of y = x*(x - 2)%3(x + D¥?
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Solve is discussed in
more detail in the
next section.

N[number] returns an
approximation of
number.

s1 = Solve[x3 + 1==0]

{{x— -1} {x = (="} {x - -(-1°}}
N[s1]
{{x — —1.}, {x — 0.5 + 0.866025}, {x — 0.5-0.866025i} }

When computing an odd root of a negative number, Mathematica has many
choices (as illustrated above) and chooses a root with positive imaginary part—the
result is not a real number.

(=1)N(1/3)//IN

0.5 + 0.866025i
To obtain real values when computing odd roots of negative numbers, first
x/|x|, if x#0, )
let sign(x) = ’ . Sign[x] returns sign(x). Then, for the reduced
0, Tx=0

- "™ if nis odd
sign)|ax| " . See Figure 2.11(b).

n/m

fraction 7 / m with m odd, x™" = {

||, if nis even

p2 = Plot[Sign[x]Abs[x]" (1/3)Abs[x - 2] (2/3)Abs[x + 1] (4/3),
{x, -3, 5}, PlotRange — {-4, 4}, AspectRatio — Automatic]
Alternatively, load the RealOnly package that is located in the Miscellaneous

folder or directory if you have an older version of Mathematica or that can be
downloaded from the Wolfram website if you only have version 6 or later.

enn H Miscellaneous ' RealOnly” - Wolfram Mathematica (=]

|4Sie| [ Compatibility Tutoraly Miscellanecus Real Only |

Upgrading from: M

]
Miscellaneous  RealOnly" ] |
|

Miscellaneous” RealOnly” was available as an add-on package in previous versions of Mathematica and is now
available on the web at library. walfram.com/infocenter/MathSource/6771.

100% »

After the RealOnly package has been loaded, reentering the Plot command
produces the expected graph. See Figure 2.11c.

<< Miscellaneous'RealOnly

p3 = Plot[x” (1/3)(x-2)" (2/3)(x + 1) (4/3),{x, -3, 5},
PlotRange — {- 4, 4}, AspectRatio —» Automatic]

Show[GraphicsRow[{p1, p2, p3}]1]




ParametricPlot has
the same options as
Plot.
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FIGURE 2.12
(@) Contour plot of fix,y), (b) 3D plot of fix,y)

A comprehensive discussion of Mathematica’s extensive graphics capa-
bilities cannot be reasonably covered in a single text, so our approach is to
address issues that might be of interest or present a different point of view
to the novice. In the previous example, we saw that a® +1 =0 has three
solutions, two of which are complex. To visualize this graphically, observe
that the zeros of 2° + 1 = 0 are the level curves of S, =|(x + z‘y)3 +1| Cx,
y real) corresponding to 0. In a plot of f(x, ), the solutions are the zeros.
Soon, we will discuss ContourPlot and Plot3D. For now, we remark that

cp1 = ContourPlot[Abs[(x + Iy)A3 +1],{x, -2, 1},{y, —-3/2,3/2},

Contours — 30, Axes — True]
p13d = Plot3D[Abs[(x + ly)"3 + 1], {x, -2, 1}, {y, -3/2,3/2},

Axes — True, PlotRange — {0, 15}, MeshFunctions - >{#3&}, Mesh — 35]
Show[GraphicsRow[{cp1, p13d}]]

generates several level curves of f(x,y) (Figure 2.12(a)) and a three-
dimensional (3D) plot of f(x, ) (Figure 2.12(b)) that help us see the zeros of
the original equation. In the 3D plot, note how we use the MeshFunctions
option to generate contours.

2.3.2 Parametric and Polar Plots in Two Dimensions

To graph the parametric equations x = x(®), y = y(®), a < t < b, use

ParametricPlot[{x[t], y[t]}, {t, a, b}]
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and to graph the polar function » = (), o < 0 < 3, use

PolarPlot[r[theta], {theta, alpha, beta}].

Example 2.3.8 (The Unit Circle). The unit circle is the set of points (x,) exactly 1 unit from
the origin, (0,0), and, in rectangular coordinates, has equation x° +3* = 1. The
unit circle is the classic example of a relation that is neither a function of x nor a
function of y. The top half of the unit circle is given by y = V1 — »? and the bottom
half is given by y = —V1 — &2.

p1 = Plot[{Sqrt[1 -x"2], -Sqrt[1-x"21}, {x, -1, 1},
PlotRange — {{-3/2, 3/2},{- 3/2, 3/2}},
AspectRatio —» Automatic];

Each point (x,») on the unit circle is a function of the angle, ¢, that subtends
the x-axis, which leads to a parametric representation of the unit circle,

X = Cost, ) ) ’
{ 0 <t < 2, which we graph with ParametricPlot.
y = sint,

p2 = ParametricPlot[{Cos[t], Sin[t]}, {t, 0, 2Pi},
PlotRange — {{-3/2,3/2},{-3/2,3/2}},
AspectRatio — Automatic];

Using the change of variables x = »cos¢ and y = rsin ¢ to convert from rectangular
to polar coordinates, a polar equation for the unit circle is » = 1. We use PolarPlot
to graph r=1.

p3 = PolarPlot[1, {t, 0, 2Pi},
PlotRange — {{-3/2, 3/2},{-3/2, 3/2}},
AspectRatio — Automatic];
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FIGURE 2.13

The unit circle generated with Plot, ParametricPlot, and PolarPlot

We display p1, p2, and p3 side-by-side using Show together with GraphicsRow in
Figure 2.13. Of course, they all look the same.

Show[GraphicsRow[{p1, p2, p3}]]

Example 2.3.9 Graph the parametric equations

X =t+sin2t,
] - 27 < t<2T.
y = t+sin 3,

Solution After defining x and y, we use ParametricPlot to graph the parametric equations

in Figure 2.14(a).

x[t_] = t + Sin[2t];

y[t_] = t + Sin[3t];

p1 = ParametricPlot[{x[t], y[t]}, {t, — 2Pi, 2Pi},
AspectRatio —» Automatic]

In Figure 2.14(b), we illustrate how to use the PlotStyle option to increase the thick-
ness of the plot. Color is introduced using ColorFunction together with ColorData.
We choose to use the SolarColors gradient to produce our plot.

x[t-] = t + Sin[2t];
y[t-] =t + Sin[3t];
p2 = ParametricPlot[{x[t], y[t]}, {t, — 2Pi, 2Pi}, PlotStyle — Thickness[.02],
AspectRatio —» Automatic, ColorFunction — (ColorData
[“SolarColors”][#3]&)]

ParametricPlot can also be used to parametrically plot a region. In Figure 2.14(c),
we plot (Px@®, r’y@) for —2m <t <2mand 0 <r < 2.

x[t_] = t + Sin[2t];

y[t_] = t + Sin[3t];
p3 = ParametricPlot[r 2{x[t], y[t]}, {t, - 2Pi, 2Pi}, {r, 0, 2},
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FIGURE 2.14

(@) x@®,y®), —2m <t < 2, (b) Adding some color and increasing the thickness,
(c) Adding a second parameter

AspectRatio — Automatic, ColorFunction — (ColorData
[“SolarColors”][#3]&)]
Show[GraphicsRow[{p1, p2, p3}]1]

In the following example, the equations involve integrals.

Remark 2.3 Topics from calculus are discussed in Chapter 3. For now, we state that
Integratel[f[x],{x,a,b}] attempts to evaluate j: f(x) dx.

Example 2.3.10 (Cornu Spiral). The Cornu spiral (or clothoid) (see [11] and [20]) has parametric

equations
' 1 ' 1
x=[ sin <—u2> du  and y=J cos (—u2> du.
0 2 0 2

Graph the Cornu spiral.

Solution We begin by defining x and y. Notice that Mathematica can evaluate these integrals,
even though the results are in terms of the FresnelS and FresnelC functions, which
are defined in terms of integrals:

t t

sin (gz,ﬂ) du and FresnelC[t] = J) cos (guz) du.

6

FresnelS[t] = J

0

x[t-] = Integrate[Sin[uA 2/2],{u,0,t}]
/mFresnelS [\/#TT]

y[t_] = Integrate[Cos[u”2/2],{u, 0, }]
/mFresnelC [\/Lﬁ]
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FIGURE 2.15

The Cornu spiral

We use ParametricPlot to graph the Cornu spiral in Figure 2.15. The option
AspectRatio->Automatic instructs Mathematica to generate the plot to scale;
PlotLabel->"Cornu spiral" labels the plot.

ParametricPlot[{x[t], y[t]}, {t, — 10, 10}, AspectRatio — Automatic,
PlotStyle — Thickness[.01], PlotLabel ->“Cornuspiral”,
Frame — True, FrameLabel — {x, y},
ColorFunction — (ColorData[“SouthwestColors”][#1]&)]

Observe that the graph of the polar equation r = f(0), o < 6 < 8 is the same
as the graph of the parametric equations

x = f(0) cos and y = f(0)sin 0, a<0<pB

so both ParametricPlot and PolarPlot can be used to graph polar
equations.

Graph (a) r=sin(86/7), 0 <0 < 14m; (0) r=0 cos6, —197/2 <60 < 197/2; (0)
(“The Butterfly”) r = e>? — 2 cos 46 + sin® (8/12), 0 < 0 < 24 and (d) (“The Lituus”)
¥ =1/0, 0.1 <6 < 107.
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Solution For (a) and (b) we use ParametricPlot. First define » and then use ParametricPlot

to generate the graph of the polar curve. No graphics are displayed because we
place a semicolon at the end of each command.

Clear[r]

r[6_] = Sin[86/7];

pp1 = ParametricPlot[{r[0]Cos[0], r[0]Sin[6]},
{0, 0, 14Pi}, AspectRatio — Automatic];

For (b), we use the option PlotRange->{{-30,30},{-30,30}} to indicate that the
range displayed on both vertical and horizontal axes corresponds to the inter-
val [-30,30]. To help (a) ensure that the resulting graphic appears “smooth,” we
increase the number of points that Mathematica samples when generating the
graph by including the option PlotPoints->200.

Clear[r]
r[0-] = 6Cos[0];
pp2 = ParametricPlot[{r[0]Cos[0], r[0]Sin[0]},
{0, —197/2, 191/2}, PlotRange — {{- 30, 30}, {- 30, 30}},
AspectRatio —» Automatic, PlotPoints — 200];

For (c) and (d), we use PolarPlot. Using standard mathematical notation, we know
that sin’ (6/12) = (sin (6/12))’. However, when defining # with Mathematica, be sure
you use the form Sin(6/12)'5, not Sin'5[6/12], which Mathematica will not interpret
in the way intended.

Clear[r]
r[0_] = Exp[Cos[0]] - 2Cos[40] + Sin[6/12]"5;
pp3 = PolarPlot[r[0], {0, 0, 247}, PlotPoints — 200,
PlotRange — {{-4, 5},{-4.5,4.5}},
AspectRatio — Automatic];
Clear][r]
pp4 = PolarPlot[{Sqrt[1/0], - Sqrt[1/0]}, {0, .1, 107},
AspectRatio —» Automatic, PlotRange — All];

Finally, we use Show together with GraphicsGrid to display all four graphs as a
graphics array in Figure 2.16. pp1 and pp2 are shown in the first row and pp3
and pp4 are shown in the second.

Show[GraphicsGrid[{{pp1, pp2}, {pp3, pp4}]
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FIGURE 2.16
Graphs of four polar equations

2.3.3 Three-Dimensional and Contour Plots: Graphing
Equations

An elementary function of two variables, z = f(x, )) = expression inx andy,
is typically defined using the form

f[x_, y-] = expression in x and y.

For delayed evaluation, use f[x.y.]:=... rather than f[x_.y]=... (immediate
evaluation). Once a function has been defined, a basic graph is generated
with Plot3D:

Plot3D[f[x, y], {x, a, b}, {y, c, d}]

graphs fx,y) fora<x<band c <y <d.

For details regarding Plot3D and its options, enter ?Plot3D or ??Plot3D or
access the Documentation Center to obtain information about the Plot3D
command, as we do here.

Graphs of several level curves of z = f(x,)) are generated with

ContourPlot[f[x, y], {x, a, b}, {y, ¢, d}].
A density plot of z = f(x, ) is generated with
DensityPlot[f[x, 1, {x, a, b}, {y, ¢, d}].
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Documentation Center.
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Solution

To adjust the viewing
angle of three-
dimensional graphics,
select the graphic and
drag to the desired
viewing angle.
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Let flx,») = x%iyz (@) Calculate f(1, -1). (b) Graph f(x,») and several contour

plots of ftx,)) on a region containing (0, 0).
After defining f(x,»), we evaluate f(1,-1) = —1/5.

Clear[f]

f[x-,y-] = xA2y/(xA4 + 4yA 2)
x2y

x4 + 4y2

f[1, 1]
1

5

Next, we use Plot3D to graph flx,y) for —1/2<x<1/2 and -1/2<y <1/2 in
Figure 2.17. We illustrate the use of the Axes, Boxed, PlotPoints, MeshFunctions,
PlotStyle, and ColorFunction options.

p1 = Plot3DI[f[x, y], {x, —1/2,1/2},{y, - 1/2,1/2},
Axes — Automatic, Boxed — False, PlotPoints — 50]

Use MeshFunctions to modify the standard rectangular grid. In Figure 2.17(b), we
use the level curves of the function for the grid.

p2 = Plot3D[f[x, yl, {x, - 1/2,1/2},{y, - 1/2,1/2},
Axes — Automatic, Boxed — False, MeshFunctions —>{#3&},
PlotPoints — 50]

We use the GrayTones color gradient to shade the graph (Figure 2.17(c))

p3 = Plot3DI[f[x, yl, {x, —1/2,1/2},{y, - 1/2,1/2},
Axes — Automatic, Boxed — False, MeshFunctions —->{#3&},
PlotPoints — 50, ColorFunction ->(ColorData[“GrayTones”][#3]&)]

Use Opacity to make a “clear” plot (Figure 2.17(d)). We use Show together with
GraphicsGrid to display all four plots together in Figure 2.17.

p4 = Plot3DI[f[x, yl, {x, —1/2,1/2},{y, - 1/2,1/2},
Axes — Automatic, Boxed — False, MeshFunctions —>{#3&},
PlotPoints — 50, ColorFunction ->(ColorData[“GrayTones”][#3]&),
PlotStyle — Opacity[.3]]
Show[GraphicsGrid[{{p1, p2}, {p3, p4}}1]

Four contour plots are generated with ContourPlot. The second through fourth
illustrate the use of the PlotPoints, Frame, ContourShading, Axes, AxesOrigin,
ColorFunction, and Contours options (see Figure 2.18).

cp1 = ContourPlot[f[x, y], {x, - 1/2,1/2},{y, -1/2,1/2},
PlotPoints — 50]
cp2 = ContourPlot[f[x, y], {x, - 1/2,1/2},{y, - 1/2,1/2},
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FIGURE 2.17

Three-dimensional plot of f(x,y): Upper left is the basic plot generated with Plot3D;
in upper right, we use contour lines to determine the mesh; in lower left, we use
the GrayTones color gradient to shade the plot; in lower right, we create a
transparent plot with Opacity

Axes — Automatic, PlotPoints — 50,
ColorFunction->ColorData[“GrayTones”]]

cp3 = ContourPlot[f[x, y], {x, - 1/2,1/2},{y, - 1/2,1/2},
Axes — Automatic, PlotPoints — 50, Contours — 30,
ContourShading — False, Frame — False,
Axes — Automatic, AxesOrigin — {0, 0}]

cp4 = ContourPlot[f[x, yl, {x, —-1/2,1/2},{y, - 1/2,1/2},
Axes — Automatic, PlotPoints — 50, Contours — 30,
Frame — False, ColorFunction — “CandyColors”,
Axes — Automatic, AxesOrigin — {0, 0}]

Show[GraphicsGrid[{{cp1, cp2},{cp3, cp4}}l]

Figure 2.18 shows the graphics array generated with the previous commands. With
Mathematica 6, if you want to adjust your array, drag and move the objects within
the graphic.
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Show [GraphicsGrid([{{cpl, cp2}, {(cp3, cpi}}]] i

With Mathematica 6, you can adjust the viewing angle of a 3D graphic by
selecting the graphic and dragging it to the desired position.
Manually, use the ViewPoint option.

860 B Interactive 3D Control - Wolfram Mathematica °
|5 IE guide Interactive J0Centrol s |§.
-

Interactive 3D Control

Mathematica provides real-time view control for all 30 graphics, wherever they may appear in a document
Mathematica's sdvanced human interface device systerm alse automatically supports joystick and gamesad 30
graphics control, with special features svallable on the Wolfram Research 2+12 degree-of-freedom gamepad

Drag — interactively rotate a 30 grashic
Shift+Drag — 200m a 3D graghic
Ctrl+Drag — pan & 30 graphic

Gamepad Controls =
© - gwve ind on installed controlier devices

Viewing Geometry Options =
ViewPoint - ViewVertical - ..
SphericalRegion — make a graphic rotatadle without clipping

MOAE ABOUT

* Dosa Visualizaton
« Furczon Visualization L
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FIGURE 2.18

Four contour plots of ftx,y): upper left, the basic plot generated by ContourPlot;
upper right, introduce a coloring function; lower left, eliminate the coloring function
and increase the number of contours; lower right, add color and increase the number

of contours

Figure 2.19 shows four different views of the graph of g(x,)) = xsiny +
ysinx for 0 <x <57 and 0 <y < 57. The options AxesLabel, BoxRatios,

ViewPoint, PlotPoints, Shading, and Mesh are also illustrated.

Clear[g]

glx-,y-] = xSin[y] + y Sin[x];

p1 = Plot3D[g[x, y], {x, 0, 5Pi}, {y, 0, 5Pi},
PlotPoints — 60, AxesLabel — {“x”, “y”, “2”}];

p2 = Plot3D[g[Xx, y], {x, 0, 5Pi}, {y, 0, 5Pi},

PlotPoints — 60, ViewPoint —>{-2.846, —1.813, 0.245},

Boxed — False, BoxRatios — {1, 1, 1},
AxesLabel — {“x”, “y”, “2”}];
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[:NaXa) EE ViewPoint - Wolfram Mathematica =)
450 & et NiewPgint »| |4
- . Updated in 6
ViewPoint pdotedin
ViewPoint

Is an option for Graphics 3D and related functions which gives the point in space from which three-
dimensional objects are to be viewed,

« ViewPoint -> (1, ¥, £} gives the position of the viewpoint relative to the center of the three-dimensicnal box
that containg the objects,

= The view point is glven in b special scaled-cocrdinate system in which the lorgest side of the bounding box has
length 1, The center of the bounding box is taken to have coordinates (0, 0, 0.

« Comman settings for ViewPoint are

1.3, 2.4, 2 Sefault setting
0, -2, cirectly In froat
{0, -2, 2 i tront and up

{0, -2, -2} i front and comn
2., -2, 0 eT-Rand Cormer
{2, -2, 0 fighthand corner
0, 0,2 Sinectly above

« The follawing symbolic forms can also be used:

Avove above, along the positive : drection
Below below, #iong the negative : drection
Front in front, akong the megative § direction
Back at back, akang the positive y direction
Left left, along the negative x drection
Right right, aieng the positve « Girection

= Chaosing a viewPolint farther away from the object reduces the distortion associated with perspective.

T smasheashamahissinen

p3 = Plot3D[g[x, y], {x, 0, 57}, {y, 0, 57},
PlotPoints — 60, ViewPoint — {1.488, - 1.515,2.634},

AxesLabel — {“x”, “y”, “2”}, ColorFunction — (White&)];

p4 = Plot3D[g[x, y],{x, 0, 5Pi}, {y, 0, 5Pi},
PlotPoints — 60, AxesLabel — {“x”, “y”, “z"},

Mesh — False, BoxRatios — {2, 2, 3},
ViewPoint->{-1.736,1.773, —-2.301}];

Show[GraphicsGrid[{{p1, p2}, {p3, p4}}1]

ContourPlot is especially useful when graphing equations. The graph of the
equation f(x,y) = C, where C is a constant, is the same as the contour plot
of z = f(x,)) corresponding to C. That is, the graph of f(x,)) = C is the
same as the level curve of z = f(x,y) corresponding to z = C.

Example 2.3.13 Graph the unit circle, x* +y* = 1.

Solution

We first graph z =" +5° for —4 <x <4 and —4 <y < 4 with Plot3D in Figure

p1 = Plot[{Sqrt[1 -x"2], - Sqrt[1 -x" 21}, {x, -1, 1},

PlotRange — {{-3/2, 3/2},{-3/2,3/2}},
AspectRatio —» Automatic];
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When converting
from rectangular to
polar coordinates,
use x = rcosf and
y=rsiné.

FIGURE 2.19

Four different plots of g(x,)) = xsiny +ysinx for 0 <x <57

The graph of x> +»* = 1 is the graph of z = »” + y° corresponding to z = 1 as well
as the graph of (cost,sin?) for 0 < ¢ < 27. We use ParametricPlot to graph these
parametric equations in Figure 2.20.

p2 = ParametricPlot[{Cos[t], Sin[t]}, {t, 0, 2Pi},
PlotRange — {{-3/2,3/2},{-3/2,3/2}},
AspectRatio — Automatic];

For the unit circle, it is probably easiest to convert to polar coordinates and use
PolarPlot.

p3 = PolarPlot[1, {t, 0, 2Pi},
PlotRange — {{-3/2,3/2},{-3/2,3/2}},
AspectRatio — Automatic];
Show[GraphicsRow[{p1, p2, p3}]1]
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FIGURE 2.20

Three different ways of generating plots of the unit circle—all plots are the same in
the end

Use ContourPlot to graph equations of the form f(x,y) = g(x,y) with
ContourPlotf[x,y]==g[x,y].{x,a,b}L.{y,c,d}].

Example 2.3.14 Graph the equation 3* — 2x* + 2x° —a® =0 for -1.5 <x < 1.5.

Solution

Example 2.3.15

Solution

We define lhseq to be the left-hand side of the equation y* — 2x* +2x° =" = 0
and then use ContourPlot to graph eq for —1.5 < x < 1.5 in Figure 2.21.

Clear[x, y]

lhseq = yA2-xA4 + 2xA6-xA8;

cp1 = ContourPlot[lhseq==0, {x, -2, 2}, {y, -2, 2},
AspectRatio —» Automatic]

cp2 = ContourPlot[lhseq==0, {x, -2, 2}, {y, -2, 2},

AspectRatio —» Automatic, Frame — False,

Axes — Automatic, AxesLabel — {x, y}]

Show[GraphicsRow[{cp1, cp2}]]

Equations can be plotted together, as with the commands Plot and Plot3D,
with

ContourPlot[{eq1, eq2, ..., eqn}, {x, a, b}, {y, c, d}].

Graph the equations x* +3° =1 and 4x” -’ =1 for =15 <x < 1.5.

We use ContourPlot to graph the equations together on the same axes in
Figure 2.22. The graph of x”+7° =1 is the unit circle, whereas the graph of
4x* —)” =1 is a hyperbola.

cp1 = ContourPlot[{x"2 + y*2==1, 4x"2-y 2==1},

{x, -3/2,3/2},{y, —3/2,3/2}, Frame — False,
Axes — Automatic]
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FIGURE 2.21

Two plots of y* = 2x* +2x° =& =0

—1.5}F

FIGURE 2.22

Plots of x* +7° =1 and 4a° =% =1



Example 2.3.16

Also see Example
2.3.19.

Solution

Permutationsilist]
returns a list of all
possible orderings of
the list list.

2.3 Graphing Functions, Expressions, and Equations

(Comic Sections). A conic section is a graph of the equation

Ax* + Bxy + Cy* + Dx + Ey + F = 0.

Except when the conic is degenerate, the conic Ax® + Bxy + Gy’ + Dx+ Ey + F=0
is a (an)

1. Ellipse or circle if B> - 44C < 0;
2. Parabola if B* — 44C = 0; or
3. Hyperbola if B> - 44C > 0.

Graph the conic section ax® +bxy+cy’ =1 for —4<x <4 and for a, b, and ¢
equal to all possible combinations of —1, 1, and 2.

We begin by defining conic to be the equation ax” + bxy+cy2 =1 and then use
Permutations to produce all possible orderings of the list of numbers {-1, 1,2},
naming the resulting output vals.

Clear[a, b, c, x,y, p]
conic = ax2 + bxy + cy” 2==1;
vals = Permutations[{-1,1,2}]
{{-1,1,2},{-1,2,1}, {1, -1,2},
{1,2,-1},{2,-1,1}, {2, 1, -1}}

Next we define the function p. Given a1, b1, and c1, p defines toplot to be the
equation obtained by replacing a, b, and ¢ in conic by a1, b1, and c1, respectively.
Then, toplot is graphed for —4 < x < 4. p returns a graphics object.

Clear[p]
pl{a1-,b1_, c1_}] := Module[{toplot},
toplot = Evaluate[conic/.{a— al,b— b1,c — c1}];
ContourPlot[Evaluate[toplot],
{x, -5, 5},{y, -5, 5}, Frame — False,
Axes — Automatic, Ticks — None]

1

We then use Map to compute p for each ordered triple in vals. The resulting
output, named graphs, is a set of six graphics objects.

graphs = Map|p, vals];

Partition is then used to partition graphs into three element subsets. The resulting
array of graphics objects named toshow is displayed with Show and GraphicsGrid
in Figure 2.23.

Show[GraphicsGrid[Partition[graphs, 3]]]
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FIGURE 2.23
Plots of six conic sections

2.3.4 Parametric Curves and Surfaces in Space
The command
ParametricPlot3D[{x[t], y[t], z[t]}, {t, a, b}]
x =x®,
generates the three-dimensional curve < y =@, a <t<b, and the
z =2z(b),
command
ParametricPlot3D[{x[u, v], y[u, v], z[u, v]}, {u, a, b}, {v, c, d}]
x = xU, V),
plots the surface { y =y(u,v), a<u<b,cLv<d.
z=z(u,v),

Entering Information[ParametricPlot3D] or ??ParametricPlot3D returns a des-
cription of the ParametricPlot3D command along with a list of options and
their current settings.

Example 2.3.17 (Umbilic Torus NC). A parametrization of umbilic torus NC is given by r(s, t) =
x(s,Di+ (s, Dj + z(s, Dk, —m < s <, —m <t <, where

1 1

x= [7+cos (gs— 2t> + 2 cos <§s+t>] sins
1 1

y= [7+COS (gs— 2t> + 2 cos <§s+t>] coss
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and
Al At
z=sin| —-s—2t)+2sin| =s+¢]).
(5e-2) »2sm(55+1)

Solution We define x, y, and z.

Graph the torus.

c=3;

a=1;

X[s—,t-] = (7 + Cos[s/3-2t] + 2Cos[s/3 + t])Sin[s];
y[s—,t-] = (7 + Cos[s/3-2t] + 2Cos[s/3 + t])Cos|s];
z[s_,t_] = Sin[s/3-2t] + 2Sin[s/3 + 1];

r[s—, t-] = {xIs, 1], y[s, t], z[s, t]};

The torus is then graphed with ParametricPlot3D, DensityPlot, and ContourPlot in
Figure 2.24. In the plots, we illustrate the Mesh, MeshFunctions, PlotPoints, and
PlotRange options. All four plots are shown together with Show and GraphicsGrid.
Notice that DensityPlot and ContourPlot yield very similar results: A basic density
plot is like a basic contour plot without the contour lines.

threedp1uta = ParametricPlot3D[r[s, t], {s, - Pi, Pi},
{t, - Pi, Pi}, PlotPoints ->{30, 30},

AspectRatio —>1, AxesLabel —>{“x”, “y”, “z”},
PlotRange —>{{-12,12},{-12,12},{- 3, 3}},
BoxRatios ->{4, 4, 1}, Mesh — False, PlotStyle — Opacity[.9]]

threedp1utb = ParametricPlot3D|[r|[s, t], {s, - Pi, Pi},
{t, - Pi, Pi}, PlotPoints ->{50, 50},

AspectRatio —>1, AxesLabel —>{“x”, “y”, “z”},
PlotRange —>{{- 12,12}, {-12,12},{- 3, 3}},
BoxRatios —>{4, 4, 1},

MeshFunctions —>{#3&}, Mesh — 10]
threedp1utc = DensityPlot[r|s, t], {s, - Pi, Pi},
{t, - Pi, Pi}, PlotPoints —>{100, 100},

AspectRatio —>1,

MeshFunctions ->{#3&}, Mesh — 10]
threedp1utd = ContourPlot[r[s, t], {s, — Pi, Pi},
{t, - Pi, Pi}, PlotPoints —>{100, 100},

AspectRatio —>1,

MeshFunctions ->{#3&}, Mesh — 10]
Show[GraphicsGrid[{{threedp1uta, threedpiutb},
{threedp1utc, threedp1utd}}]]
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;3 -2 -1 0 1 2 3r
FIGURE 2.24

On the top row, two plots of umbilic torus; on the bottom, comparing a density plot
(left) to a contour plot (right)

Example 2.3.18 (Gray’'s Torus Example). A parametrization of an elliptical torus is given by

This example is

explored in detail in x=(@+bcosv)cosu, y=(@a+bcosv)sinu, z=csinv
Sections 8.2 and

11.4 of Gray’s For positive integers p and ¢, the curve with parametrization

Modern Differential
Geomelry of Curves
and Surfaces [11],
an indispensible

x=(a+bcosqt)cospt, y=(a+bcosqt)sinpt, z =csingt

reference for winds around the elliptical torus and is called a torus knot.
those who use Plot the torus if a =8, b=3, and ¢=5 and then graph the torus knots for
Mathematica’s p=2andg=5,p=1and g=10, and p=2 and g = 3.

graphics extensively.
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Solution We begin by defining torus and torusknot.

torus[a_,b_, c_][p-, q-][u—,v_]:=

{(a + b Cos[u])Cos]v], (a + b Cos[u])Sin[v], c Sin[u]}
torusknot[a_, b_, c_][p-, q-][t-] :=

{(a + b Cos[qt])Cos[pt], (a + b Cos[qt])Sin[pt], cSin[qt]}

Next, we use ParametricPlot3D to generate all four graphs

pp1 = ParametricPlot3D[Evaluate[torus[8, 3, 5][2, 5][u, V]],
{u, 0, 2Pi}, {v, 0, 2Pi}, PlotPoints — 60];

pp2 = ParametricPlot3D[Evaluate[torusknot[8, 3, 5][2, 5][t]],
{t, 0, 3Pi}, PlotPoints — 200];

pp3 = ParametricPlot3D[Evaluate[torusknot[8, 3, 5][1, 10][t]],
{t, 0, 3Pi}, PlotPoints — 200];

pp4 = ParametricPlot3D[Evaluate[torusknot[8, 3, 5][2, 3][t]],
{t, 0, 3Pi}, PlotPoints — 200];

and show the result as a graphics array with Show and GraphicsGrid in Figure 2.25.

Show[GraphicsGrid[{{pp1, pp2}, {pp3, pp4}]

FIGURE 2.25

(@) An elliptical torus. (b) This knot is also known as the trefoil knot. (c) The curve
generated by torusknot[8,3,5][2,3][1,10] is not a knot. (d) The torus knot with p =2
and g=3
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Example 2.3.19

Also see Example
2.3.16.

If we take advantage of a few options, such as eliminating the mesh (Mesh->False)
and increasing the opacity (PlotStyle->Opacity[.4]), we can produce a graphic of
the knot on the torus. After using the PlotStyle option together with Opacity, we
produce a nearly transparent torus. Then, each knot is plotted. To ensure smooth
plots, we increase the number of points plotted with PlotPoints and also increase
the thickness of the curve with Thickness.

pp1 = ParametricPlot3D[Evaluate[torus[8, 3, 5][2, 5][u, Vv]],
{u, 0, 2Pi}, {v, 0, 2Pi}, PlotPoints — 60,
Mesh — False, PlotStyle — Opacity[.4],
ColorFunction — “AlpineColors”];

pp2 = ParametricPlot3D[Evaluate[torusknot[8, 3, 5][2, 5][t]],

{t, 0, 3Pi}, PlotPoints — 200, PlotStyle — {{Thickness[.01]}}];
pp3 = ParametricPlot3D[Evaluate[torusknot[8, 3, 5][1, 10][t]],

{t, 0, 3Pi}, PlotPoints — 200, PlotStyle — {{Thickness[.01]}}];
pp4 = ParametricPlot3D[Evaluate[torusknot[8, 3, 5][2, 3][t]],

{t, 0, 3Pi}, PlotPoints — 200, PlotStyle — {{Thickness[.01]}}];

We use Show twice together with GraphicsRow to first display the torus with each
knot and then display all three graphics side-by-side in Figure 2.26.

Show[GraphicsRow[{Show[{pp1, pp2}], Show[{pp1, pp3}], Show[{pp1, pp4}]}]]

(Quadric Surfaces). The quadric surfaces are the three-dimensional objects
corresponding to the conic sections in two dimensions. A quadric surface is
a graph of

A + By + CZ + Dxy + Exz + Fyz + Gx + Hy + Iz + ] = 0,

where A—J are constants.

The intersection of a plane and a quadric surface is a conic section.

Several of the basic quadric surfaces, in standard form, and a parametrization
of the surface are listed in the following table.

FIGURE 2.26

The knots in Figure 2.25 on the torus
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Name Parametric Equations

Ellipsoid

xz y2 zz X =acostcosr,

;+§+§=1 y=bcostsinr, -m/2Zt<7/2, -m<r<mwW
zZ =csint,

X = asectcosr,

x2 yZ ZZ _ ] - <
el ﬁ_c_z_l y=bsectsinr, —m/2<i<w/2, —m<r<m
z =ctant,
Hyperboloid of Two Sheets
) 5 5 X =asect,
x Yy oz
————— =1 y=btantcosr, -w/2<t<m/20r

z=ctantsinr, w/2<t<3mw/2, —-m<r<w

Graph the ellipsoid with equation Lx* + 19° + 2° = 1, the hyperboloid of one sheet

with equation a? + 1y — 2% = 1, and the hyperboloid of two sheets with equation

Lot -y =1
Solution A parametrization of the ellipsoid with equation £a? + 1y% +2% = 1 is given by

X =4costcosr, y=2costsinr, z=sint, -w/2<t<7/2, -wm<r<m,

which is graphed with ParametricPlot3D.

Clear|[x, y, z]

x[t—, r-] = 4Cos[t]Cos|r];

y[t—, r-] = 2Cos[t]Sin[r];

z[t_,r_] = Sin[t];

pp1 = ParametricPlot3D[{x[t, r], y[t, r], z[t, r1}, {t, — Pi/2, Pi/2},
{r, - Pi, Pi}, PlotPoints — 30];

A parametrization of the hyperboloid of one sheet with equation &a” + 1y* — 2* =1
is given by

x=4sectcosr, y=2sectsinr, z=tant, -w/2<t<m7/2, -m<r<.

Because sec t and tan ¢ are undefined if £ = £7/2, we use ParametricPlot3D to graph
these parametric equations on a subinterval of [-7/2, 7/2], [—-7/3, 7/3].

Clear[x,y, z]
x[t_, r_] = 4Secf[t]Coslr];
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y[t—, r_] = 2Sec[t]Sin[r];

z[t_,r_] = Tan[t];

pp2 = ParametricPlot3D[{x[t, r], y[t, r], z[t, r1}, {t, - Pi/3, Pi/3},
{r, - Pi, Pi}, PlotPoints — 30];

pp1 and pp2 are shown together in Figure 2.27 using Show and GraphicsRow.
Show[GraphicsRow[{pp1,pp2}]1]

For (c), we take advantage of the ContourPlot3D function:
ContourPlot3D[f[x, y, z], {x, a, b}, {y, ¢, d}, {z, u, v}]

graphs several level surfaces of w = f(x,y, 2).

We use ContourPlot3D to graph the equation +x* — 1y* — 2% — 1= 0 in Figure
2.28(a), illustrating the use of the PlotPoints, Axes, AxesLabel, and BoxRatios
options. In Figure 2.28(b), several level surfaces are drawn that illustrate the use
of the Opacity function with the ContourStyle and Mesh options.

cp3d1 = ContourPlot3D[x"2/16 -y 2/4-2z"2-1==0,
{x, -10,10},{y, - 8,8},{z, -2,2},
PlotPoints — {8, 8, 8}, Axes — Automatic,
AxesLabel — {“x”, “y”, “z”}, BoxRatios — {2, 1, 1}]

FIGURE 2.27

(a) Plot of £x®+1y? +2% = 1. (b) Plot of La’+1)” -2* =1

FIGURE 2.28

(a) Plot of &x® - 1y? —2* =1 generated with ContourPlot3D. (b) Several level

surfaces of flx,y,2) = %xz - %J’Z -2
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cp3d2 = ContourPlot3D[x"2/16 -y 2/4-z"2-1,
{x, -10,10}, {y, -8, 8},
{z, -2, 2}, PlotPoints — {8, 8, 8}, Axes — Automatic,
AxesLabel — {“x”, “y”, “2”},
BoxRatios — {2, 1, 1}, Mesh — False,
ContourStyle — Opacity[.5]]
Show[GraphicsRow[{cp3d1, cp3d2}]]

ContourPlot3D is especially useful in plotting equations involving three vari-
ables x, y, and z for which it is difficult to solve for one variable as a

function of the other two.

Example 2.3.20 (Cross-Cap). The Cross-Cap has equation
4 (X +)*+ 27 +2)+)° (P +2 - 1) =0.

We ContourPlot3D to generate the plot of the cross-cap shown in Figure 2.29.

ContourPlot3D[4x2(x"2 + y*2 + z"2 + 2) +
yr oy 2 + 2 2-1)==0,{x, -1, 1}, {y, - 1,1},
{z, -1, 1}, Mesh — False, Boxed — False,
Axes — None, ColorFunction — (ColorData[“BrightBands”][#3]&),
ContourStyle — Opacity[.8]]

FIGURE 2.29

The Cross-Cap
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Example 2.3.21 A homotopy from the Roman surface to the Boy surface is given by
If fand g are

functions from X to X, v) = V2 cos(2u) cos’ v+ cosu sin(2v)

Y, a homotopy from ’ 2 — aV2sin(3u) sin(2v)

Jto g is a continuous \/2 sin(2u) cos’ v +sinu sin(2v)
function H from yu,v) = , and
Xx[0,1]to Y 2 — aV2sin(3u) sin(2v)

satistying H(x,0) = 3 cos’ v

zZ(u,v) =

Jx) and H(x, 1) = g(x). 2 — a2 sinGu) sin(2v)

Tables and lists are Here, a = 0 gives the Roman surface and a = 1 gives the Boy surface.

discussed in more To see the homotopy we first define x, y, and z.
detail in Chapters 4
and 5. x[a_][u—, v_] = (Sqrt[2]Cos[2u]Cos[v]"2 + Cos[u]Sin[2v])/

(2-a Sqrt[2]Sin[3u]Sin[2v]);

yla-][u-,v-] = (Sqrt[2]Sin[2u]Cos[v]A2 + Sin[u]Sin[2v])/
(2- a Sqrt[2]Sin[3u]Sin[2v]);

z[a_][u_,v_] = 3Cos[v]"2/
(2 - a Sgrt[2]Sin[3u]Sin[2v]);

We then use Table together with ParametricPlot3D to parametrically plot x, y, and
z, 0 <u < 2w 0<wv <27 for nine equally spaced values of a between 0 and 1.
Note that if the semicolon is omitted at the end of the command, the nine plots
are displayed.

smalltable = Table[ParametricPlot3D[
{x[a][u, v], y[a][u, v], z[][u, v1},
{u, 0, 2Pi}, {v, 0, 2Pi}, Boxed — False, Axes — None,
PlotRange — {{-2,5/2},{- 2, 2},{0, 7/2}}1,
{a,0,1,1/8}];

We then use Partition to partition smalltable into three element subsets. The
resulting 3 x 3 array of graphics is shown as a grid with Show together with

GraphicsGrid in Figure 2.30.
To adjust the viewing

angles of three- Show[GraphicsGrid[Partition[smalltable, 3]]]
dimensional plots,
select the graphic and
drag to the desired
viewing angle.

Another way of seeing the transformation is to use Manipulate. Manipulate is very
powerful.

Infi}= ?Manipulate

of expr with controls added to allow interactive manipulation of the value of .
Manipulatelexpr, (4, Momin, Bumer, da}] allows the value of « to vary between u., and u... In steps du
Manipulatefexpr, (14, tseh Mmins M .1 takes the initial value of ¥ to be ey,
Manipulate]expr, [[u, i, b, -..}] labels the controls for u with .
Manipulatelexpr, [u, (g, u2, | allows « to take on discrete values uy, k3, ...
Manipulate|expr, [, ...}, [v, ...}, ...] provides controls to manipulate each of the w, v, ...
Manipulatefespr, ¢y => [, ...} 6 == [v, ...} -]

links the controls to the specified controllers on an external device. =

1
|
T, [y My Wi }] s aversion
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@ W

FIGURE 2.30
Seeing the Roman surface continuously transform to the Boy surface

In its most basic form, Manipulate[f[x],{x,a,b}] creates an interactive display of fix)
for x values from a to b. Because the previous commands depended only on «,
we combine the commands into a single Manipulate object that depends on a.

Manipulate[
Clear[x, y, z];
x[a_][u—, v_] = (Sqrt[2]Cos[2u]Cos[v]" 2 + Cos[u]Sin[2v]) /
(2-aSqrt[2]Sin[3u]Sin[2V]);
yla-][u-,v-] = (Sqrt[2]Sin[2u]Cos[v]A2 + Sin[u]Sin[2v]) /
(2-aSqrt[2]Sin[3u]Sin[2v]);
z[a_][u-,v_] = 3Cos[v]"2/
(2 - aSqrt[2]Sin[3u]Sin[2v]);
ParametricPlot3D[
{x[a]lu, v], ylellu, v], z[][u, v1},
{u, 0, 2Pi}, {v, 0, 2Pi}, PlotPoints — 50,
Boxed — False, Axes — None,
PlotRange — {{-2.5, 2.5}, {-2.5, 2.5}, {0, 3.5}}],
{a,0,1}]

Several images from the result are shown in Figure 2.31.

Manipulation of graphics is discussed in more detail in Chapter 5. Here, we
simply illustrate a few quick ways to manipulate a basic jpeg that illustrates
a few of the features of Mathematica 6.



92 CHAPTER 2 Basic Operations on Numbers, Expressions, and Functions

Example 2.3.22
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FIGURE 2.31

With Manipulate we can create an animation of the transformation of the Roman
surface to the Boy surface or inspect the plot for various values of «

We use Import to import a few graphics into Mathematica. The four graphs are
displayed in a row using Show and GraphicsRow in Figure 2.32.

p1 = Import[“house1.jpg”];
p2 = Import[“house2.jpg”];
p3 = Import[“county1.jpg”];
p4 = Import[“county2.jpg”];
Show|[GraphicsRow[{p1, p2, p3, p4}1]

The underlying structure of a jpeg is contained in the first element of the first part
of the graphic. Part and manipulation of matrices is discussed in more detail in
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FIGURE 2.32
Importing elementary graphics into Mathematica

FIGURE 2.33

Visualizing data with ArrayPlot may not produce results identical to the original
without additional adjustments

Chapter 5. Regardless, you should be able to import your jpeg into Mathematica
and adjust the following code to achieve your desired results.

With just the basic data, ArrayPlot does not reproduce the imported graphics as
we see in Figure 2.33.

Show[GraphicsRow[
Map[ArrayPlot[Reverse[#[[1, 1]]]1&, {p1, p2, p3, p4}]]]

However, with some manipulation, you can reveal interesting detail. First, we use
ReliefPlot to help us see the terrain of the image.

q1 = Flatten[p1[[1, 1]], 1];
qib = Table[q1[[i, 1]], {i, 1, Length[q1]}];
q1ic = Partition[q1b, Length[p1[[1, 1, 1]]1];

r1 = ReliefPlot[g1c, ColorFunction — “GreenBrownTerrain”]
A different view is obtained by choosing a different ColorFunction.

92 = Flatten[p2[[1, 111, 1];
q2b = Table[q2[[i, 2]], {i, 1, Length[q2]}];
q2c = Partition[g2b, Length[p2[[1, 1, 11]1];

r2 = ReliefPlot[g2c, ColorFunction — “GrayTones”]

ReliefPlot and ArrayPlot return similar graphics. Here are two images of Southeast
Georgia generated with ArrayPlot.
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q3 = Flatten[p3[[1, 11], 1];
q3b = Table[q3[[i, 1], {i, 1, Length[q3]}];
q3c = Partition[q3b, Length[p3I[[1, 1, 111I;

r3 = ArrayPlot[Reverse[q3c], ColorFunction — “FallColors”]
q4 = Flatten[p4[[1, 1]], 1];
q4b = Table[q4][i, 111, {i, 1, Length[q41}];
q4c = Partition[q4b, Length[p4[[1, 1, 1]1]];
r4 = ArrayPlot[Reverse[q4c], ColorFunction — “StarryNightColors”]
All four images are displayed together using Show with GraphicsGrid in Figure 2.34.

Show[GraphicsGrid[{{r1, r2}, {r3, r4}}11

2.3.5 Miscellaneous Comments

Be sure to take Clearly, Mathematica’s graphics capabilities are extensive and volumes
advantage of could be written about them. You can see many commands that we have
MathWorld for a
huge number of
resources related to
graphics and
Mathematica.

FIGURE 2.34
Using ReliefPlot and ArrayPlot to adjust elementary graphics
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2.3 Graphing Functions, Expressions, and Equations

not discussed here by using ? to see those commands that contain the
string Plot.

Inf10]= ? «Plotw 1]
w System’ 3

ArrayPlot ListPlot3D PlotLabel

ContourPlot ListPointPlot3D PlotMarkers

ContourPlot3D ListPolarPlot PlotPoints

DatelListPlot ListSurfacePlot3D PlotRange

DensityPlot LogLinearPlot PlotRangeClipping

GraphPlot LogLogPlot PlotRangePadding

GraphPlot3D LogPlot PlotRegion

LayeredGraphPlot MatrixPlot PlotStyle

ListContourPlot MaxPlotPoints PolarPiot

ListContourPlot3D ParametricPlot RegionPlot

ListDensityPlot ParametricPlot3D RegionPlot3D

ListLinePlot Plot ReliefPiot

ListLogLinearPlot Plot3D RevolutionPiot3D

ListLogLogPlot Plot3Matrix SphericalPlot3D

ListLogPlot PlotDivision TreePlot

ListPiot PlotJoined |

You can obtain detailed information regarding any of these commands from
the Documentation Center by clicking on the command’s name.

For now, we briefly mention a few of the ones not discussed previously.
To plot lists of numbers or lists of ordered pairs, use ListPlot, which is
discussed in Chapter 4. For matrices and other arrays, use MatrixPlot or
ArrayPlot.

(Cellular Automaton). Very loosely speaking, a cellular automaton is a dis-
crete function that assigns values to subsequent rows based on the values of
the cells in the previous row(s). For a concise discussion of cellular automa-
ton, refer to Weisstein,' CellularAutomatan is a powerful command that allows
you to investigate (quite complicated) cellular automaton. In its simplest form,
CellularAutomaton[rule, initialvalues, n] returns the first » generations of the
cellular automaton following the specified rule and having the indicated initial values.

The simplest cellular automaton are called elementary cellular automaton.?
Based on basic counting principals, there are 256 elementary cellular automatons.
They are cataloged by number. With

! Weisstein, Eric W., “Cellular Automaton.” From MathWorld—A Wolfram Web Resource,
http://mathworld.wolfram.com/CellularAutomaton.html.

2 Weisstein, Eric W., “Elementary Cellular Automaton.” From MathWorld—A Wolfram Web
Resource, http://mathworld.wolfram.com/ElementaryCellularAutomaton.html.
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CellularAutomaton[146, {{1}, 0}, 5]
{{0,0,0,0,0,1,0,0,0,0,0},{0,0,0,0,1,0,1,0,0,0,0},
{0,0,0,1,0,0,0,1,0,0,0},{0,0,1,0,1,0,1,0,1,0,0},
{0,1,0,0,0,0,0,0,0,1,0},{1,0,1,0,0,0,0,0,1,0,1}}

we calculate the first five generations of the elementary cellular automaton with a 1
at position 0 on generation 0 using Rule 146. To calculate the first 100 generations,
we use CellularAutomaton[146, 1,0, 100]+. The resulting array is rather large, so
we use ArrayPlot to visualize it in Figure 2.35(a). Using our color scheme, the cells
with value 1 are shaded red and those with O are light green.

al = ArrayPlot[CellularAutomaton[146, {{1}, 0}, 100],
ColorFunction — “NeonColors”, AspectRatio — 1]

In this case, the grid is initially spaced so that positions 1, 11, 21, 31, and 41
have the value 1. The first three generations using Rule 146 are calculated.

CellularAutomaton[146,
{SparseArray[{1 - 1,11 —-51,21 51,31 51,41 - 1}],0}, 3]
{{90,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,
0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0, 0},
{0,0,1,0,1,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,
o,1,0,1,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,1,0,1,0,0},
{0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,
1,0,0,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0, 1,0},
{1,0,1,0,1,0,1,0,0,0,1,0,1,0,1,0,1,0,0,0,1,
o,1,0,1,0,1,0,0,0,1,0,1,0,1,0,1,0,0,0,1,0,1,0,1,0,1}}

How the situation evolves over 100 generations is more easily seen using ArrayPlot.
See Figure 2.35(b).

a2 = ArrayPlot[CellularAutomaton[146,
{SparseArray[{1 - 1,11 —-51,21 -5 1,31 -5 1,41 — 1}],0},100],
ColorFunction — “NeonColors”, AspectRatio — 1]
Show[GraphicsRowl[{a1, a2}]]

Of the 256 elementary cellular automaton, many are equivalent. To see that
some of them are equivalant, we create a plot of the 256 elementary cellular
automaton for 50 generations as done with Rule 146. All 256 plots are shown
on the left in Figure 2.36(a). With Union, we remove and sort the ones that are
identically equal. Those are shown on the right in Figure 2.36(b).

t1 = Table[ArrayPlot[CellularAutomatonli, {{1}, 0}, 5011,
{i, 0, 255}];

t2 = Partition[t1, 16];

p1 = Show[GraphicsGrid[t2]];

t3 = Union[t1];

t4 = Partition[t3, 12];
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FIGURE 2.35
The evolution of two cellular automaton evolving according to Rule 146

g |
4
N = A | ENENENENENA A AL A
TN IAII | ) A A A
B = N S m a |
FIGURE 2.36

(@) The first 50 generations for the 256 elementary cellular automaton. (b) Removal of
the identical ones

P2 = Show[GraphicsGrid[t4]];
Show[GraphicsRow[{p1, p2}]1]

To see the plots together with the rule number, use Table. Each order pair
returned consists of the rule number and the 50 generation plot. To display the
ordered pairs in an organized fashion, we use Grid. Of course, the result is quite
large, so just a portion of the actual grid is displayed in Figure 2.37.

t5 = Table[{i, ArrayPlot[CellularAutomaton(i, {{1}, 0}, 5011},
{i, 0, 255}];

97



98 CHAPTER 2 Basic Operations on Numbers, Expressions, and Functions

Araprios [Gallsiaststonaten] L, {1} 8- 39111

LTINS

FIGURE 2.37
Seeing the automaton together with its rule number

6 = Partition[t5, 16];
Grid[t6]

Note that MatrixPlot and ArrayPlot are discussed in more detail in Chapter 5.

For graphs of the form points or nodes connected by edges (graph the-
ory), you can use GraphPlot to help investigate some problems. For trees,
use TreePlot.

ann N LraphAict - Wofram Matematica o enn M Treefiot - Wollram Mathematxa o

<iib| (@i o » i v (@i e » i

GraphPlot Newin' TreePlot Newins H

it i 5 s g =
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Example 2.3.24 Graceful graphs do not have multiple edges or loops.
We generate O with GraphPlot and display the result in Figure 2.38(a).

gp1 = GraphPlot[{{0—>12,“12"},{12—>1, “11”}, {1 —>0, “1”}, {0 —>9, “9”},
{1->9, “8”},{1->6, “5"},{12->6, “6”},{2 — 12,10},
{0->2,%2”},6->9,9— 10,10 — 6},
VertexLabeling — True, AspectRatio — 1]

C, is shown in Figure 2.38(b).

gp2 = GraphPlot[{0 - 4,4 — 2,2 — 3,3 — 0}, DirectedEdges — True,
VertexLabeling — True, AspectRatio — 1]

9 2

N
VALY,
A

FIGURE 2.38
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FIGURE 2.39

Using TreePlot instead of GraphPlot
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Replacing GraphPlot with TreePlot gives us Figure 2.39.
tp1 = TreePlot[{{0 >12,“12”},{12—>1,“11"}, {1 —>0, “17}, {0 —>9, “9”},
{1->9, “8”},{1—->6,“5"},{12->6, “6”},{2 > 12,“10”},
{0—>2,42"},6->9,9—> 10,10 — 6},
VertexLabeling — True, AspectRatio — 1]
tp2 = TreePlot[{0 — 4,4 — 2,2 — 3, 3 — 0}, DirectedEdges — True,
VertexLabeling — True, AspectRatio — 1]

2.4 SOLVING EQUATIONS

2.4.1 Exact Solutions of Equations

Mathematica can find exact solutions to many equations and systems of
equations, including exact solutions to polynomial equations of degree four
or less. Because a single equals sign “=” is used to name objects and assign
values in Mathematica, equations in Mathematica are of the form

left-hand side==right-hand side.

The “double-equals” sign “==" between the left-hand side and right-hand
side specifies that the object is an equation. For example, to represent
the equation 3x+7 =4 in Mathematica, type 3x+7==4. The command
Solve[lhs==rhs,x] solves the equation lhs = rhs for x. If the only unknown in
the equation |hs = rhs is x and Mathematica does not need to use inverse
functions to solve for x, the command Solve[lhs==rhs] solves the equation
Ihs = rhs for x. Hence, to solve the equation 3x + 7 = 4, both the commands
Solve[3x+7==4] and Solve[3x+7==4, x] return the same result.

anA 5 Sobve - Wolfram Mathematica =

m

Solve




Example 2.4.1

Solution

Lists and tables are
discussed in more
detail in Chapters 4

and 5.

Example 2.4.2

Solution

2.4 Solving Equations 101

Solve the equations 3x+7 =4, &° - D/(x—-D=0and &* +x° +x+1=0.

In each case, we use Solve to solve the indicated equation. Be sure to include the
double equals sign “==" between the left- and right-hand sides of each equation.
Thus, the result of entering

Solve[3x + 7==4]
{{x—-1}}

means that the solution of 3x+7 =4 is x = 1, and the result of entering

x-1"

{{x—-1}}

Solve [XZ-‘ —=o]

2
. -1
means that the solution of d

=0 is x = —1. On the other hand, the equation

X +x° +x+1=0 has two imaginary roots. We see that entering

Solve [x* + x® + x + 1==0]

{{x— -1} {x— -i}, {x—i}}

yields all three solutions. Thus, the solutions of &° +x* +x+1=0 are x= -1 and
x = +i. Remember that the Mathematica symbol | represents the complex number
i =/—1. In general, Mathematica can find the exact solutions of any polynomial
equation of degree four or less.

Observe that the results of a Solve command are a list.
Mathematica can also solve equations involving more than one variable
for one variable (literal equations) in terms of other unknowns.

(a) Solve the equation v = 7°/b for b. (b) Solve the equation &’ + b* = ¢* for a.

These equations involve more than one unknown, so we must specify the variable
for which we are solving in the Solve commands. Thus, entering

Solve[v==Pir’2/h, h]
{th— =}

solves the equation v = /b for b. (Be sure to include a space or * between
and r.) Similarly, entering

Solve[a”2 + b 2==c"2, a]

(o~ ~e) fo- v

solves the equation a® + b* = ¢ for a.
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If Mathematica needs to use inverse functions to solve an equation, you must
be sure to specify the variable(s) for which you want Mathematica to solve.

Example 2.4.3 Find a solution of sin’x — 2sinx — 3 = 0.

Solution When the command Solve[Sin[x]*2-2Sin[x]-3==0] is entered, Mathematica solves
the equation for Sin[x]. However, when the command

Solve[Sin[x] * 2-2Sin[x] - 3==0, x]

is entered, Mathematica attempts to solve the equation for x. In this case,
Mathematica succeeds in finding one solution.

Solve [Sin[x]? - 2Sin[x] - 3==0|

{{Sin[x] = -1}, {Sin[x] — 3}}
In fact, this equation has infinitely many solutions of the form x = %(4k— D,
k=0,£1,+£2,...;sinx =3 has no solutions.

Solve[sin[x]? - 28in[x] -3 == 0, x| 11 ‘

Solve::ifun : |

Inverse functions are being used by Solve, so some solutions may

not be found; use Reduce for complete solution information. = J
rr Ty - i ER | 3
]-;x » 2-, {x > ArcSin[3]}}

The example indicates that it is especially important to be careful when
dealing with equations involving trigonometric functions.

Example 2.4.4 Let fi(h) =sin20 + 2cosh, 0 < 0 < 27. (a) Solve £'(®) = 0. (b) Graph f(H) and f'(®).

Solution After defining f(#), we use D to compute f'(6) and then use Solve to solve £'(6) = 0.

DI[f[x],x] computes Qi .
7Go: DI, 0] f[6_] 7 Sin[20] + 2Cos[0];
computes £ (x). df = f[6]

Topics from calculus 2Cos[260] - 2Sin[6]

are discussed in more

Selve[df == 0, ©
detail in Chapter 3. ] 1

Solve::ifun

. I

Inverse functions are being used by Soive, so some solutions may not be
found; use Reduce for complete solution information. =

1o Ty ot 5711 3

Notice that —#/2 is not between 0 and 2. Moreover, 7/6 and 5m/6 are not the
only solutions of £'(8 = 0 between 0 and 27. Proceeding by hand, we use the
identity cos26 = 1 — 2sin® 6 and factor
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2c0s20 —2sinf =0
1-2sin’0 —sinf =0
2sin*f +sinf-1=0
2sinf — 1)(sinf+1)=0

expression /. x->y so sinf =1/2 or sinf =-1. Because we are assuming that 0 <6 < 2w, we
replaces all obtain the solutions 0 = 7/6, 57/6, or 3w/2. We perform the same steps with
occurrences of x in Mathematica.

expression by y.
P vy s1 = TrigExpand[df]

2Cos[6]? - 2Sin[6] - 2Sin[6]?

s2 = s1/.Cos[0]"2 — 1-Sin[0] 2
- 2Sin[6] - 2Sin[e] + 2 (1-Sin[g]?)

Factor[s2]
—2(1 + Sin[g])(-1 + 2Sin[0))

Finally, we graph £(6) and f'(8) with Plot in Figure 2.40. Note that the plot is drawn
to scale because we include the option AspectRatio->Automatic.

p1 = Plot[{f[6], df}, {0, 0, 277}, AspectRatio — Automatic]

2
1L
1 2 3 5 6

1L
—ol
_af
_4_
FIGURE 2.40

Graphs of £(8) and f'(0)
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Example 2.4.5

Solution

We can also use Solve to find the solutions, if any, of various types of
systems of equations. Entering

Solve[{lhs1==rhs1, Ihs2==rhs2}, {x, y}]
solves a system of two equations for x and y, whereas entering
Solve[{lhs1==rhs1, lhs2==rhs2}]

attempts to solve the system of equations for all unknowns. In general,
Solve can find the solutions to a system of linear equations. In fact, if the
systems to be solved are inconsistent or dependent, Mathematica’s output
indicates so.

Solve each system:

2x — 3y +4z=2 2x =2y —2z=-2
3x—y=4
a {+ , (b) 3x-2y+2z=0 ; (C -x+y+3z=0 ; and
X =
Y x+y—-z=1 -3x+3y-2z=1

—2x+2y—-2z=-2
d) $3x—-2y+2z=2
x+3y-3z=-3

In each case, we use Solve to solve the given system. For (a), the result of
entering

Solve[{3x -y==4, x + y==2}, {X, y}]

{{x=2vy—12}}

means that the solution of 4 >X ¥ =4

x+y=2
point of intersection of the lines with equations 3x —y=4 and x+y=2. See
Figure 2.41(a).

is (x,9) = (3/2,1/2), which is the

cp1 = ContourPlot[{3x -y==4, x + y==2},
{x, -1, 2},{y, -1, 2}, Frame — False,
Axes — Automatic, AxesOrigin — {0, 0},
AxesLabel — {x,y}] .1in

(b) We can verify that the results returned by Mathematica are correct. First, we
name the system of equations sys and then use Solve to solve the system of
equations naming the result sols.

sys = {2x -3y + 4z==2, 3x - 2y + z==0,
X+y- Z==1};
sols = Solve[sys, {x, y, z}]

{x=H%y—282-3}
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. . . X
-1.0 -0.5 05 1.0 /15 20

FIGURE 2.41

(@) Two intersecting lines. (b) Three planes that intersect in a single point. (c) These
three planes have no point in common. (d) The intersection of these three planes
is a line

We verify the result by substituting the values obtained with Solve back into sys
with ReplaceAll (/.).

sys/.sols
{{True, True, True}}

2x -3y +4z=2
means that the solution of ¢ 3x -2y +z=0 is (x,7,2) = (7/10,9/5,3/2), which
X +y —z=1
is the point of intersection of the planes with equations 2x — 3y + 4z = 2, 3x — 2y +
z=0, x+y—-z=1. See Figure 2.41(b).

cp2a = ContourPlot3D[{2x - 3y + 4z==2, 3x -2y + z==0,
X+y- Z==1}, {X, = 35 3}7
{y! = 3! 3}! {Z, = 3! 3}]
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To better see the intersection point, click within the graphic and then drag to an
appropriate viewing angle.

cp2a = ContourPlot3D[{2x-3y+42==2,3x-2y+2==0,
X+Y=-2 == 1}, {X, -3, 3},
{v, -3, 3}, {=z, -3, 3}]

[

(c) When we use Solve to solve this system, Mathematica returns {}, which
indicates that the system has no solution; the system is inconsistent.

Solve[{2x -2y -22==-2, -x + y + 32z==0,
=3x + 3y-2z==1}]
{}

To see that the planes with equations 2x — 2y — 2z = -2, —-x+y+3z=0 and
—3x+ 3y — 2z =1 have no points in common, graph them within Figure 2.41(c).

cp3a = ContourPlot3D[{2x -2y - 2z==-2,
-X +Y+ 3z==0, -3x + 3y-2z==1},{x, -2, 2},
{y’ - 2! 2}! {Z, = 2! 2}]

To better see that the planes do not intersect, we click and drag the graphic to
an appropriate viewing angle.
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cp3a = ContourPlot3D[{2x -2y =22 = =2, 17
~x+y+32=0,-3x+3y-22z=1}, {x, -2, 2},
{y, -2, 2}, (2, -2, 2}]

iffl|

(d) On the other hand, when we use Solve to solve this system, Mathematica's
result indicates that the system has infinitely many solutions. That is, all ordered
triples of the form {(0,z — 1,2)|zreal} are solutions of the system.

Solve[(-2x+2y-22==-2,3x-2y+22==2, 1

X+3y-3z==-3}] ‘
Solve: :avars 311
Equations may not give solutions for all "solve" variables. > ‘
(x>0, y»-1+2}} £

We see that the intersection of the three planes is a line with ContourPlot3D. See
Figure 2.41(d).

cp3a = ContourPlot3D[{2x -2y - 2z==-2,
3x-2y + 2z==2,x + 3y-3z==-3},{x, -2, 2},
{y! -2, 2}! {21 -2, 2}]
Show[GraphicsGrid[{{cp1, cp2a}, {cp3a, cp4a}}]]

We can often use Solve to find solutions of a nonlinear system of equations
as well.
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Example 2.4.6

Solution

Solve the systems

2 2 _ 1,2 1,2 _
a) {4§€ +y2 =4 and (b) {“_’x Ty =l (@, b greater than zero) for x and y.
X +4) =4 Yy =mx

The graphs of the equations are both ellipses. We use ContourPlot to graph
each equation, naming the results cp1 and cp2, respectively, and then use Show
to display both graphs together in Figure 2.42(a). The solutions of the system
correspond to the intersection points of the two graphs. Alternatively, the solutions
of the system correspond to the intersection points of the level curves of f(x,y) =
4x” +y” — 4 and g(x,») = x> + 4)° — 4 corresponding to 0. See Figure 2.42(b).

cp1 = ContourPlot [4x? + y* -4, {x, -3, 3},{y, - 3, 3}, Contours — {0},
ContourShading — False, PlotPoints — 60 ];

cp2 = ContourPlot [x* + 4y* -4, {x, - 3, 3}, {y, - 3, 3}, Contours — {0},
ContourShading — False, PlotPoints — 60 ];

cp3 = Show[cp1, cp2, Frame — False, Axes — Automatic, AxesOrigin — {0, 0}]

cp4 = Plot3D [{4x® + y*-4,x* + 4y*-4},{x, - 10,10},

{y, - 10, 10}, BoxRatios — {1, 1, 1}, MeshFunctions - >{#38&},
ColorFunction — (ColorData[“Rainbow”][#3]&),
PlotStyle — {Opacity[.4], Opacity[.8]} ]
Show[GraphicsRow[{cp3, cp4}]]

Finally, we use Solve to find the solutions of the system.
Solve [{4x® + y*==4,x* + 4y*==4}|
(-t} 5-5)

Voo R

FIGURE 2.42

(a) Graphs of 4x* +* = 4 and a* + 49° = 4. (b) Three-dimensional plots of f(x,7) and
g(x,y) together with their level curves shown as contours
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For (b), we also use Solve to find the solutions of the system. However, because
the unknowns in the equations are a, b, m, x, and y, we must specify that we
want to solve for x and y in the Solve command.

Solve [{:—Z + §==1,y==mx}! {x, y}]

abm ab
Yy———— X —— s
{ { V/ b2+a2m?2 V/ b2+a2m?

abm ab
y— X—>
{ Vo2+a2m2’ v/ b2+a2m?

Although Mathematica can find the exact solution to every polynomial equa-
tion of degree four or less, exact solutions to some equations may not be
meaningful. In those cases, Mathematica can provide approximations of
the exact solutions using either the N[expression] or the expression // N
commands.

Example 2.4.7 Approximate the solutions to the equations (a) x* — 2x* =1 —x; and (b) 1 — &% = &°.

Solution Each of these is a polynomial equation with degree less than five so Solve wil
find the exact solutions of each equation. However, the solutions are quite com-
plicated, so we use N to obtain approximate solutions of each equation. For (a),
entering

N [Solve [x*-2x?==1-x||
{{x—0.182777 - 0.633397}, {x—0.182777 + 0.633397i},
{x——1.71064}, {x—1.34509} }
{{x—0.182777-0.633397},
(x—0.182777 + 0.633397i}, {x— —1.71064}, {x—1.34509} }

first finds the exact solutions of the equation x* — 2x* = 1 — x and then computes
approximations of those solutions. The resulting output is the list of approximate
solutions. For (b), entering

Solve [1-x?==x% x| /N
{{x—0.754878}, {x— —0.877439 + 0.744862i},
{x——0.877439-0.744862i}}
{{x—0.754878}, {x— —0.877439 + 0.744862i},
{x——0.877439-0.744862i}}

first finds the exact solutions of the equation 1-x*=x" and then computes
approximations of those solutions. The resulting output is the list of approximate
solutions.
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Example 2.4.8

Solution

2.4.2 Approximate Solutions of Equations

When solving an equation is either impractical or impossible, Mathemat-
ica provides several functions, including FindRoot, NRoots, and NSolve,
to approximate solutions of equations. NRoots and NSolve numeri-
cally approximate the roots of any polynomial equation. The command
NRoots[poly1{==}poly2, x] approximates the solutions of the polynomial
equation poly1{==}poly2, where both polyl and poly2 are polynomials in
x. The syntax for NSolve is the same as the syntax of NRoots.

FindRoot attempts to approximate a root to an equation provided that a
“reasonable” guess of the root is given. FindRoot works on functions other
than polynomials. The command

FindRoot[lhs==rhs, {X, firstguess}]

searches for a numerical solution to the equation lhs==rhs, starting with
x =firstguess. To locate more than one root, FindRoot must be used sev-
eral times. One way of obtaining firstguess (for real-valued solutions) is to
graph both |hs and rhs with Plot, find the point(s) of intersection, and esti-
mate the x-coordinates of the point(s) of intersection. Generally, NRoots
is easier to use than FindRoot when trying to approximate the roots of a
polynomial.

Approximate the solutions of a° +x* — 4a” + 2x* = 3x = 7 = 0.

Because x” +x* — 4x° +2x* = 3x—7=0 is a polynomial equation, we may use
NRoots to approximate the solutions of the equation. Thus, entering

NRoots [x® + x* -4x® + 2x® - 3x - 7==0, x|
X==—2.74463||x== - 0.880858||x==0.41452 — 1.19996i|[x==0.41452+
1.19996i(|x==1.79645
x==—2.74463||x== - 0.880858|[x==0.41452 — 1.19996i|
x==0.41452 + 1.19996||x==1.79645

approximates the solutions of x° +a’ — 4x” +2x* =3x—7=0. The symbol ||
appearing in the result represents “or.”
We obtain equivalent results with NSolve.

NSolve [x® + x* -4x® + 2x* - 3x - 7==0, x|
[{x——2.74463}, {x——0.880858}, {x—0.41452 1.19996i},
[(x—0.41452 + 1.19996i}, {x—1.79645}}
{{x——2.74463}, {x— —0.880858}, {x—0.41452 — 1.19996i},
(x—0.41452 + 1199961}, {x—1.79645}}

FindRoot may also be used to approximate each root of the equation. However, to
use FindRoot, we must supply an initial approximation of the solution that we wish
to approximate. The real solutions of x° + & — 4x° + 2x* — 3x — 7 = 0 correspond
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FIGURE 2.43

Graph of f(x =0+ — 4+ 207 — 3w =7

to the values of x where the graph of f(x) = & + & — 4x° + 2x” — 3x — 7 intersects
the x-axis. We use Plot to graph f(x) in Figure 2.43.

Plot [x° + x* -4x® + 2x* - 3x-7,{x, -3, 2}]

We see that the graph intersects the x-axis near x= - 2.5, -1, and 1.5. We use
these values as initial approximations of each solution. Thus, entering

FindRoot [x® + x* -4x® + 2x® - 3x - 7==0, {x, - 2.5}|
{x—-2.74463}

approximates the solution near —2.5, entering

FindRoot [x® + x* -4x® + 2x* - 3x - 7==0,{x, - 1}]
{x——0.880858}

approximates the solution near —1, and entering

FindRoot [x® + x* -4x® + 2x* - 3x - 7==0, {x, 2}]
{x—1.79645}

approximates the solution near 1.5. Note that FindRoot may be used to approxi-
mate complex solutions as well. To obtain initial guesses, observe that the solutions
of f(x =0, z=x+1y, x, y real, are the level curves of w = | f(2)| that are points. In
Figure 2.44, we use ContourPlot to graph various level curves of w = |f(x + )|,
-2<x<2,-2<y<2. Inthe plot, observe that the two complex solutions occur
at x +iy=0.5+ 1.24.

flz_] = 2° + 2*-42° + 222 -3z-T7;
ContourPlot[Abs[f[x + ly]], {x, -2, 2}, {y, —-2,2},
ContourShading — False, Contours — 60,



112 CHAPTER 2 Basic Operations on Numbers, Expressions, and Functions

72 =
FIGURE 2.44

Level curves of w=|fx+ip)|, —2<x<2, -2<y<2

PlotPoints — 200, Frame — False, Axes — Automatic,
AxesOrigin — {0, 0}]

Thus, entering

FindRoot[x® + x* - 4x® + 2x? - 3x - 7==0, {X, 0.5 + I}]
{x—0.41452 + 1199961}

approximates the solution near x + #y = 0.5 + 1.24. For polynomials with real coeffi-
cients, complex solutions occur in conjugate pairs so the other complex solution
is approximately 0.41452 — 1.19996;.

Example 2.4.9 Find the first three nonnegative solutions of x = tanx.

Solution We attempt to solve x = tanx with Solve.

Solve[x = Tan[x], x] 3

—

Solve:tdep : The equations appear to involve the

variables to be solved for in an essentially non-algebraic way. »

Solve[x:= Tan[x], x] 3
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FIGURE 2.45
y=xand y =tanx

We next graph y =x and y = tanx together in Figure 2.45.

Plot[Tooltip[{x, Tan[x]}], {x, 0, 4Pi},
PlotRange — {-4Pi, 4Pi}]

Remember that In the graph, we see that x = 0 is a solution. This is confirmed with FindRoot.
vertical lines are never ]

the graphs of FindRoot[x==Tan[x], {x, 0}]

functions. In this case, {x—0.}

they represent the o . L . .
vertical asymptotes at The second solution is near 4, whereas the third solution is near 7. Using FindRoot

odd multiples of 7/2.  together with these initial approximations locates the second two solutions.

FindRoot[x==Tan[x], {x, 4}]
{x—4.49341}
FindRoot[x==Tan[x], {x, 7}]
{x—7.72525}

FindRoot can also be used to approximate solutions to systems of equations.
(Although NRoots can solve a polynomial equation, NRoots cannot be used
to solve a system of polynomial equations.) When approximations of solu-
tions of systems of equations are desired, use either Solve and N together,
when possible, or FindRoot.

X +dxy+y =4

Example 2.4.10 Approximate the solutions to the system of equations 5 5
5x° —4xy+2y" =8

Solution We begin by using ContourPlot to graph each equation in Figure 2.46. From the
resulting graph, we see that x° + 4xy +y° = 4 is a hyperbola, 5x* — 4xy +2y° = 8
is an ellipse, and there are four solutions to the system of equations.
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FIGURE 2.46
Graphs of x* +4xy +9° = 4 and 5x° — 4xp +2)° = 8

cp1 = ContourPlot[x? + 4xy + y? -4==0, {x, -4, 4}, {y, -4, 4},
PlotPoints — 60, ContourShading — False];
cp2 = ContourPlot[5x? - 4xy + 2y? - 8==0, {x, -4, 4},
{y, — 4, 4}, PlotPoints — 60, ContourStyle ->Dashing[{0.01}],
ContourShading — False];
Show[cp1, cp2, Frame — False, Axes — Automatic,
AxesOrigin — {0, 0}]

From the graph we see that possible solutions are (0,2) and (0,-2). In fact,
substituting =0 and y = =2 and x =0 and y = 2 into each equation verifies that
these points are both exact solutions of the equation. The remaining two solutions
are approximated with FindRoot.

FindRoot [{x* + 4xy + y>==4, 5x* - 4xy + 2y*==8},
{x, 1}, {y, 0.25}|

{x—1.39262, y—0.348155}

FindRoot [{x* + 4xy + y?==4, 5x* - 4xy + 2y*==8},
{X, = 1}’ {y! = 025}]

{x——1.39262, y— — 0.348155}




2.5 Exercises

2.5 EXERCISES
1.

N

@ 1AW AW

10.

11.

12.

13.

Evaluate the following:

(a) 432+ 701
(b) 251 x 8197
(0) V116281
(d) V157464
(e) 679/42

® sin(m/12)
(g) cos(117/12)

2+
(h) 5-3i
. Solve &’ — 8x° +19x — 12 = %xz -X - é. Confirm your result graphi-
cally.
. Solve —3x” + 12x — 5 = 2x° — 4x — 3. Confirm your result graphically.
. Find a 10-digit approximation of Euler’s constant, denoted by EulerGamma.
. Use TrigExpand to write sin 5x in terms of sinx and cosx.
. Use ExpToTrig to rewrite e¢* — e,
. Use TrigToExp to rewrite cos it.
. Factor 15x° + 73x" — 621 — 297x” + 2486x + 504 to find the zeros of

this polynomial. Compare these results with those obtained using Solve,
FindRoot, or NRoots.

. Use PowerExpand to simplify Va‘b®c=8. Compare this result with that

obtained using Simplify and explain the difference.

Solve exp(—(x/4)2) cos(x/m) = sin(xa/ 2) + % Confirm your result graph-
ically.

Graph the cross-cap, 4x° (x2 + y2 +2 +z> + y2 <y2 +2° - 1), by graph-
ing it as functions of (a) y and z, (b) x and y, and (¢) x and z.
Determine the partial fraction decomposition of the following.

6x — 18
x2—2x2—8

2x" +x+ 28
b) 4
®) X3 —4x% +16x — 64
175 + 2x
xf+5x2+4

(@

©

-x, x<-1
-1<x<1.
x>1

Let f(x) = Plot f(x) and f'(x) on the interval

sin mx,

1.2
3%

[-5,5].
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14.

15.

16.

17.
18.

19.

20.

21.

22,

23.

Plot cos2x and 2sinx on —m < x < 7. Use FindRoot to determine
where the two curves intersect on [—, 77].

Consider Example 2.3.5 using f(x)=cosx with n=24,...,12.
Describe the graph of f"(x) as n increases.

Graph the tooth surface, which is defined by the equation X+ y4 +
2P+ +DH=0.

Find a 20-digit approximation of Catalan’s constant, denoted by Catalan.
Use ParametricPlot to graph (a) x =2cost, y =3sint, 0 <t <27 and
() x =tcost/2, y=tsint/2, 0 <t < 127

Use PolarPlot to graph (@) » =2cosf, 0 < § < 7 and (b) r = cos 20, 0 <
0 < 2.

Use PolarPlot to investigate the differences in the graph of » = cosn6
and r = sinn6 for n an odd or even integer. Question: What happens
when 7 is a noninteger rational number?

Graph the level curves of the following: (@) f(x,)) = X - yz, (b)
S, ) = sin(xy), and (¢) f(x,») = xCOS).

Graph the function f(x,)) = sin <x2 + y2>. Use the Interactive 3D con-

trol to rotate the graph in order to investigate the level curves of the
function. Compare your findings to those obtained with ContourPlot.
A parametrization (X, Y, Z) of Boy’s surface is given by

X=g/8 Y=g,/8 Z=g/8

where o = 3mf —2A=2D _ 3pef zaxzh
SN ervmmo1 ) BT N\ e Bt )

m —1+ZG ! and g=g 2+g 2+g . The comple
- =, = . X
S ap-1) 2 Lo TS

number z = a + bi satisfies |z| < 1. Plot Boy’s surface. (See Figure 2.47.)

& =1

FIGURE 2.47

Boy’s surface



CHAPTER
Calculus

Chapter 3 introduces Mathematica’s built-in calculus functions. The exam-
ples used to illustrate the various functions are similar to examples typically
seen in a traditional calculus sequence. If you have trouble typing com-
mands correctly, use the buttons on the BasicMathInput palette to help
you create templates in standard mathematical notation that you can
evaluate.

3.1 LIMITS AND CONTINUITY

Remark 3.1

Clear|f] clears all prior
definitions of f, if any.
Clearing function
definitions before
defining new ones

helps eliminate any
possible confusion
and/or ambiguities.

Example 3.1.1

Solution

One of the first topics discussed in calculus is that of limits. Mathematica
can be used to investigate limits graphically and numerically. In addition,
the Mathematica command Limit[f[x], x->a] attempts to compute the limit of
¥ =f(x) as x approaches a, lim__, , f(x), where a can be a finite number, co
(Infinity), or —co (~Infinity). The arrow “->” is obtained by typing a minus
sign “-” followed by a greater than sign “>”.

To define a function of a single variable, f(x) = expressioninx, enter flx] =
expression in x. To generate a basic plot of y = f(x) for a < x < b, enter Plot[f[x],
{x, a, b}].

3.1.1 Using Graphs and Tables to Predict Limits

Use a graph and table of values to investigate lim,_,, Sn; 3 :

We clear all prior definitions of f, define f(x) = (sin 3x) /x, and then graph y = f(x)
on the interval [-r, 7] with Plot.
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RandomReal[{a,b}]
returns a “random”
real number between
a and b. Because we

are generating

“random” numbers,
your results will differ
from those obtained

here.

Mapl[f,{x1,x2,.

. xn}]

returns the list

{F e, f(xy), ..

W f e}

—-05F

FIGURE 3.1

Graph of f(x) = (sin 3x)/x on the interval [—, 7]

Clear]f]
fix_] = 32,
Plot[f[x], {x, -, 7}]

From the graph shown in Figure 3.1, we might, correctly, conclude that

lim,_,, sin3x_ 3. Further evidence that lim,_,, sin 3

= 3 can be obtained by com-
puting thg values of f(x) for values of x “near”xx= 0. In the following, we use
RandomReal to define xvals to be a table of six “random” real numbers. The first
number in xvals is between —1 and 1, the second between —1/10 and 1/10, and
SO on.

xvals = Table [RandomReal [{-10"",10""}],{n, 0, 5}]
0.424046, —0.0850248, . . .

We then use Map to compute the value of f(x) for each x in xvals. We use
Table to display the results in tabular form. Generally, list[[i]] returns the ith ele-
ment of list while Table(f[i],{i,start,finish,stepsize}] computes each value of f()
from start to finish in increments of stepsize. TableForm attempts to display
a table form in a standard format such as the row-and-column format that
follows.

fvals = Maplf, xvals]
{2.25384,2.96757,2.99995, 3., 3., 3.

pairs = Table[{xvals[[il], fvals[[ill}, {i, 1, 6}];
TableForm[pairs]



Example 3.1.2

3.1 Limits and Continuity

0.424046 2.25384
—-0.0850248 2.96757
0.00334803 2.99995

0.0000981987 3.
0.0000376656 3.

—2.914605226592692" -6 3.
sin 3x

From these values, we might again correctly deduce that lim,_,, =3, Of

course, these results do not prove that lim,_,, sin S

=3, but they are helpful in

sin 3x

—0

convincing us that lim,.

For piecewise-defined functions, you can either use Mathematica’s con-
ditional command (/;) to define the piecewise-defined function or use
Piecewise.

2 .
x +x, if x<0

1-x, ifO<x<3

If b(x) = ) , compute the following limits:
2x" —15x+25, if 3<x<5
15— 2x, if x>5

(@) lim,_,, h(x), (b) lim,_; h(x), (C) lim,_,5 h(x).

Solution We use Mathematica's conditional command, /;, to define h. We must use delayed

The plots p1 and p2
are not displayed
because a semicolon is
included at the end of
each Plot command.

evaluation (:=) because h(x) cannot be computed unless Mathematica is given a
particular value of x. The first line of the following defines h(x) to be X +x for
x <0, the second line defines h(x) to be 1 —x for 0 <x <3, and so on. In the
Plot command, {x, -2, 0, 3, 5, 6} instructs Mathematica to graph the function
n [-2,0], then [0, 3], then [3, 5], and finally [5, 6]. Notice that Mathematica acci-
dentally connects (0,0) to (0, 1) and then (5,0) to (5,5). (See Figure 3.2(a)). The
delayed evaluation is also incompatible with Mathematica's Limit function.

Clear[h]

hix_]:=x"2+x/;x<0
h[x_]:=1-x/;0<x<3
h[x-]:=2x"2-15x + 25/;3<x<5
h[x-]:=15-2x/;x > 5

p1 = Plot[h[x], {x, -2, 0, 3, 5, 6}1;

To avoid these problems, we redefine b using Mathematica’s Piecewise function
as follows:

Clear[h]
h[x_] := Piecewise[{{x2 + x, x < 0}, {1-x,0 < x < 3}, {2x"2-15x + 25,
3<=x< 5}, {15-2x,x > 5}}1;
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Noh L N

-2 2 4 6 —2 2 4 6
_ol ol

FIGURE 3.2

(a) Plot does not catch the breaks in the piecewise defined function. (b) If you use
Piecewise, Plot can catch jumps.

p2 = Plot[h[x], {x, -2, 0, 3, 5, 6}, PlotRange — All];
Show[GraphicsRow[{p1, p2}]1]

Notice that when we execute the Plot command, Mathematica “catches” the
breaks between (0,0) and (0, 1) and then (5,0) and (5, 5) shown in Figure 3.2(b).

From Figure 3.2, we see that lim,_,, h(x) does not exist, lim,_,; h(x) = -2, and
lim__ . h(x) does not exist.

x—5

When limits exist, you can often use Limit[f[x], x->a] (where a may be
+Infinity) to compute lim,_, , f(x). Thus, for the previous example we see
that

Limit[h[x],x — 3]

-2

is correct. On the other hand,

Limit[h[x], x — 5]
5

is incorrect. We check by computing the right-hand limit, lim,_,s. h(x),
using the Direction->—1 option in the Limit command and then the left limit,
lim,_,s- h(x), using the Direction->1 in the Limit command.

Limit[h[x], x — 5, Direction — 1]

0

Limit[h[x], x = 5, Direction — -1]
5

We follow the same procedure for x = 0

Limit[h[x], x = O]
]
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Limit[h[x], x — 0, Direction — 1]
0

Limit[h[x], x — 0, Direction —» -1]
1
3.1.2 Computing Limits

Some limits involving rational functions can be computed by factoring the
numerator and denominator.

257 + 25x + 72

Example 3.1.3 Compute hmx_,_9/2 m

2x7 + 25x + 72

72 — 47x — 14x2°
to compute the value of frac1 if x = —9/2 by using ReplaceAll (/.) to evaluate frac1

if x = —=9/2 but see that it is undefined.

Solution We define frac1 to be the rational expression We then attempt

9 -
fracl /. x =+ --—

2

1 3

Power::infy : Infinite expression 0 encountered., =
=3 :indet : q |
Indeterminate expression 0 ComplexInfinity encountered.
Indeterminate kN

Factoring the numerator and denominator with Factor, Numerator, and
Denominator, we see that

2x" + 25x + 72 L x+®2x+9 . x+8
im ——— —— = lim —————— = lim .
x—-9/2 72 — 47x — 14x2  x>-92 (8 -7x)(2x+9) x—-928—7Tx

The fraction (x + 8)/(8 — 7x) is named frac2 and the limit is evaluated by computing
the value of frac2 if x = —=9/2,

Factor[Numerator[frac1]]
Factor[Denominator[frac1]]
(8+x)(9+2x)

-9 +2X)(-8+7x)

frac2 = Cancel[frac1]
—788;7X><

frac2/.x — —g

e
79

or by using the Limit function on the original fraction.

Limit[frac1,x —» -9/2]
7
79
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Example 3.1.4

Solution

We conclude that

257 + 25x + 72 7
lim —— == =
x—-9/272 — 47x — 14x2 79

As stated previously, Limit[f[x], x->a] attempts to compute lim,_,,f(x),
Limit[f[x], x->a,Direction->1] attempts to compute lim,_, - f(x), and Limit[f[x],
x->a, Direction->-1] attempts to compute lim Jf(). Generally, a can be

x—at
a number, *Infinity (£00), or another symbol.
Thus, entering
Limit [ 26-7-20. x, 2]
21x2+14x-35 3
17
56
2
computes lim,_, _, 2272 = 7/79,
. . sz - 7x - 20 . sinx .
Calculate each limit: (a) 11qu_5,3m; (b) lim,_, ; (©) lim,_ o
3
Z\* ) e -1 . o ) 1 1
(1 + ;C) () lim,y S (@) lim, g, e VA and (1) lim, . (ln_x - ﬁ)

In each case, we use Limit to evaluate the indicated limit. Entering

Limit [ 36-7x-20 y _, _5
21x2+14x-35" 3
17
56
2
3x” — 7x — 20

ComputeS limx_,_S/S m = %, and entering
X —

Limit |5, x — o]

computes lim,_,, MY g, Mathematica represents oo by Infinity. Thus, entering
X
Limit[(1 + 2/x)* x, x = Infinity]
eZ

X
computes lim,_, (1 + E) = ¢, Entering
X

Limit[(Exp[3x] - 1)/x,x — 0]
3
e -1
computes lim,_,,

= 3. Entering

Limit[Exp[ - 2x]Sqrt[x], x — Infinity]
0

computes lim,_, e */x =0, and entering



Because Inx is
undefined for x < 0,
a right-hand limit is
mathematically
necessary, even
though Mathematica’s
Limit function
computes the limit
correctly without the
distinction.

Example 3.1.5

Solution

3.1 Limits and Continuity

Limit[1/Log[x]-1/(x-1),x — 1, Direction —» -1]
|

2

computes lim,_,+ (75 - =25) = 1.

3.1.3 One-Sided Limits

As illustrated previously, Mathematica can compute certain one-sided limits.
The command Limit[f[x], x->a, Direction->1] attempts to compute lim,._, ,- f(x),
where as Limit[f[x], x->a, Direction->—1] attempts to compute lim,_, . f(x).

Ix|/2¢; (0) lim, - |al/x; (0) lim,, o e”'; and (d) lim o

x—0~

Compute (a) lim

x—0*

e

Even though lim,_, |x|/x does not exist, lim, . |x|/x =1 and lim,_,- |x|/x = -1,
as we see using Limit together with the Direction->1 and Direction->—1 options,
respectively.

Limit |2, x -, 0, Direction — 1]

Limit [ 226, x 0, Direction — - 1|
-1

1

The Direction->—1 and Direction->1 options are used to calculate the correct
values for (c) and (d), respectively. For (c), we have

Limit [, x — 0, Direction — - 1]
oo

1

Technically, lim,_,e” ” does not exist (see Figure 3.3(a)), so the following is

incorrect.
Limit[Exp[-1/x],x — 0]
0
SF
OF
25F
20F
1.5F
1.0F
0.5F
—4 -2 2 4 2 4
a
FIGURE 3.3

(a) Graph of y = e™"*. (b) Graph of y = e~
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Be careful with regard
to this. For example,
since lim,_,- /X does
not exist, many would
say that f(x) = /x is
right continuous

at x = 0.

Example 3.1.6

Solution

3 Calculus

However, using Limit together with the Direction option gives the correct left and
right limits.

Limit[Exp[-1/x], x = 0, Direction — 1]
%)

Limit[Exp[- 1/x], x — 0, Direction — -1]
0

We confirm these results by graphing y = e with Plot in Figure 3.3(). In (b),

we also show the graph of y = e"”"2 in Figure 3.3(b), which is discussed in the
exercises.

p1 = Plot[Exp[- 1/x],{x, -5, 5}];

p2 = Plot[Exp[- 1/x"2],{x, -5, 5};
Show[GraphicsRow[{p1, p2}]1]

The Limit command together and its options (Direction->1 and Direction->-1)
are “fragile” and should be used with caution because the results are unpre-
dictable. It is wise to check or confirm results using a different technique
for nearly all problems encountered.

3.1.4 Continuity
Definition 1. The function y = f(x) is continuous at x = a if

1. lim,_, ,f(x) exists;
2. f(a) exists; and
3. lim,_,, f(x) =f(a@).

Note that the third item in the definition means that both (1) and
(2) are satisfied. However, if either (1) or (2) is not satisfied, the function is
not continuous at the number in question. The function y = f(x) is continu-
ous on the open interval I if f(x) is continuous at each number a contained in
the interval 1. Loosely speaking, the “standard” set of functions (polynomials,
rational, trigonometric, etc.) are continuous on their domains.

For what value(s) of x, if any, are each of the following functions continu-
ous? (a) f(x) =x" —8x; (0) f(x) =sin2x; (C) f(¥) = (x— D/ +1); and (d) f() =
V= 1D/ + D).

(@) Polynomial functions are continuous for all real numbers. In interval notation,
S is continuous on (—oo, 0o). (b) Because the sine function is continuous for all
real numbers, f(x) = sin2x is continuous for all real numbers. In interval notation,
S is continuous on (oo, 00). (c) The rational function f(x) = (x - D/(x+ 1) is
continuous for all x # —1. In interval notation, f(x) is continuous on (-oco,-1) U
(-1,00). (d) f(x) = /(x = D/(x + 1) is continuous if the radicand is nonnegative. In
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FIGURE 3.4

Polynomials, trigonometric, rational, and root functions are usually continuous on their
domains

interval notation, f(x) is strictly continuous on (—-oo, —1) U (1, 00) but some might
say that f(x) is continuous on (-oo, —1) U [1, 00), where it is understood that f(x) is
right continuous at x = 1. We see this by graphing each function with the following
commands. See Figure 3.4. Note that in p3, the vertical line is not a part of the
graph of the function—it is a vertical asymptote. If you were to redraw the figure
by hand, the vertical line would not be a part of the graph.

p1 = Plot[x"3-8x,{x, -5, 5}];

p2 = Plot[Sin[2x], {x, -5, 5}];

p3 = Plot[((x-1)/(x + 1)), {x, -5, 5}1;

p4 = Plot[Sqrt[(x-1)/(x + 1)],{x, -5, 5}];
Show[GraphicsGrid[{{p1, p2}, {p3, p4}}1]

Computers are finite state machines, so handling “interesting” func-
tions can be problematic, especially when one must distinguish between
rational and irrational numbers. We assume that if x = p/q is a rational
number (p and g integers), p/q is a reduced fraction. One way of tack-
ling these sorts of problems is to view rational numbers as ordered pairs,
{a, b}. If a and b are integers, Mathematica automatically reduces a/b
so Denominator[a/b] or a/b//Denominator returns the denominator of the
reduced fraction; Numerator[a/b] or a/b//Numerator returns the numerator
of the reduced fraction. If you want to see the points (x, f(x)) for which x
is rational, we use ListPlot.
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Example 3.1.7

Solution

Flatten[list,n] flattens
list to level n.

In Mathematica, an
ordered pair (a,b) is
represented by {a, b}.

Let fc) = 1/q, if x = p/q is rational
0, if x is irrational
Create a representative graph of f(x).

You cannot see points: The measure of the rational numbers is 0, and the measure
of the irrational numbers is the continuum, C. A true graph of f(x) would look
like the graph of y = 0. In the context of the example, we want to see how the
graph of f(x) looks for rational values of x. We use a few points to illustrate the
technique by using Table and Flatten to generate a set of ordered pairs.

t1 = Flatten[Table[{n, m}, {n, 1, 5},{m, 1, 5}], 1]
ok {n2h {1,380 {1.4} {1,851, {2, 1}, {2, 2},
{2,3},{2,4},{2,5},{3,1},{3,2}, {3,3},{3,4},{8,5}, {4, 1}
{4,2},{4,3},{4,4},{4,5},{5,1},
{5.2},{5,3},{5,4}.{5,5}}

Next, we defined a function f. Assuming that @ and b are integers, given
an ordered pair {a, b}, f({a,b}) returns the point {a/b, 1/(Reduced denominator
of a/b)}

f[{a-, b_}] :={a/b, 1/(a/b//Denominator)}

We use Map to compute the value of f for each ordered pair in t1. The resulting
list is named t2.

t2 = Maplf, t1]

{1 G s e b 5 21 (0 1)
Sar iz b8 81521

Sab g s {a {21 {330 {11}

$ah (611 {8. 308 a1 (5.2 {11

Notice that t2 contains duplicate entries. We can remove them using Flatten,
but doing so does not affect the plot shown in Figure 3.5(a).

p1 = ListPlot[t2, PlotRange — {{0, 3}, {0, 1}}, AspectRatio — 1];

To generate a “prettier” plot, we repeat the procedure using more points. After
entering each command, the results are not displayed because we include a
semicolon (;) at the end of each. See Figure 3.5(b).

t3 = Flatten[Table[{n, m}, {n, 1, 300}, {m, 1, 200}], 1];
t4 = Maplf, t3];
p2 = ListPlot[t4, PlotRange — {{0, 3}, {0, 1}}, AspectRatio — 1];

This function is interesting because it is continuous at the irrationals and
discontinuous at the rationals.

We can consider other functions in similar contexts. In the following, the
y-coordinate is the numerator rather than the denominator. See Figure 3.5(c).
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FIGURE 3.5

(a) After step 1. (b) After step 2. (c) Examining the numerator rather than the
denominator. (d) The sine of the numerator

Clear[f]

f[{a—, b_}] :={a/b, a/b//Numerator};

t3 = Flatten[Table[{n, m}, {n, 1, 100}, {m, 1, 100}], 11;

t4 = Maplf, t3];

p3 = ListPlot[t4, PlotRange — {{0, 100}, {0, 100}}, AspectRatio — 1];

With Mathematica, we can modify commands to investigate how changing
parameters affect a given situation. In the following, we compute the sine of p if
x = p/q. See Figure 3.5(d).

Clear[f]
f[{a—, b_}] :={a/b, Sin[(a/b//Numerator)]};
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t5 = Flatten[Table[{n, m},{n, 1, 300}, {m, 1, 200}], 1];

t6 = Maplf, t5];

p4 = ListPlot[t6, PlotRange — {{0, 3}, {0, 1}}, AspectRatio — 1];
Show[GraphicsGrid[{{p1, p2}, {p3, p4}}1]

3.2 DIFFERENTIAL CALCULUS

Example 3.2.1

Solution

3.2.1 Definition of the Derivative
Definition 2. The derivative of y = f(x) is

y’ =f’(x) = Z_:); = hmw,

lim b G.D

provided the limit exists.

Assuming that (a, f(a)) and (a + b, f(a + b)) exist, the line with equation
fa+b)-fl@
b o

—a)+f(a) is the secant containing the two points.

Assuming the derivative exists, as b approaches 0, the secants approach
the tangent. Hence, if the limit exists, the derivative gives us the slope of
a function at that particular value of x.

The Limit command can be used along with Simplify to compute the
derivative of a function using the definition of the derivative.

Use the definition of the derivative to compute the derivative of (a) f(x) =x+ 1/x
and (b) g @) = 1//x.

For (a), we first define f, compute the difference quotient, ( fx+h) - f(x)), simplify
the difference quotient with Simplify, and use Limit to calculate the derivative.

fix-] = x+ 1/x;

step1 = (f[x + h]-f[x])/h
step2 = Simplify[step1]
Limit[step2,h — 0]

x(h+X)

-
For (b), we use the same approach as in (a) but use Together rather than Simplify
to reduce the complex fraction.

step1 = (g[x + h]-g[x])/h
step2 = Together[step1]



Example 3.2.2

Solution

Remember that when
a semicolon is placed
at the end of a
command, the
resulting output is not
displayed. The names
of the colors that
Mathematica knows
are listed in the
ColorSchemes
palette followed by
“Known” and then
“System.”

3.2 Differential Calculus

Limit[step2,h — 0]

. 1
\/;(+ h+ X
h
VXx-vh+x

hv/xvh +x
1

T a2

If the derivative of y = f(x) exists at x = a, a geometric interpretation of
f'(a@) is that f'(a) is the slope of the line tangent to the graph of y = f(x)
at the point (a, f(a)).

To motivate the definition of the derivative, many calculus texts choose
a value of x, x =a, and then draw the graph of the secant line passing
through the points (a, f(a)) and (a + b, f(a + b)) for “small” values of b to
show that as b approaches 0, the secant line approaches the tangent line.
An equation of the secant line passing through the points (a, f(a)) and
(a+b, f(a+ b)) is given by

fla+b)—fl@
a+h)—-a

fla+hb)—fla)

x—-a) 5

y-f@= or y=

x—-a)+f(a).

If f(x) = X7 — 4, graph f(x) together with the secant line containing (1, f(1)) and
(1 + b, f(1 + b)) for various values of b.

We begin by considering a particular » value. We choose b = 0.4. We then define
F@) =x"—4x. In p1, we graph f(x) in black on the interval [-1,5], in p2 we
place a blue point at (1, f(1)) and a green point at (1.4, f(1.4), in p3 we graph
the tangent to y = f(x) at (1, f(1) in red, in p4 we graph the secant containing
1, f(D) and (1.4, f(1.49) in purple, and finally we show all four graphics together
with Show in Figure 3.6.

f[x-] = xN2 - ax;

p1 = Plot[f[x], {x, -1, 5}, PlotStyle — Black];

p2 = Graphics[{PointSize[.03], Blue, Point[{1, f[1]}],
Green, Point[{1 + .4, f[1 + .41}1}];

p3 = Plot[f'[1](x - 1) + f[1],{x, -1, 5}, PlotStyle — Red];

p4 = Plot[(f[1 + .4]-f[1])/. 4(x-1) + f[1],{x, -1, 5},
PlotStyle — Purple];

Show(p1, p2, p3, p4, PlotRange — {{-1, 5}, {-6, 6}},
AspectRatio — 1]]

We now generalize the previous set of commands for arbitrary b # 0 values.
g(b) shows plots of y = x* — 4x, the tangent at (1, f(1)), and the secant containing
A, f() and A +hb, A + b)).

Clear[f, g;

f[x-] = xN2-4x;

dg[h_] := Module[{p1, p2, p3, p4},

p1 = Plot[f[x], {x, — 1, 5}, PlotStyle — Black];
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_6 -
FIGURE 3.6

Plots of y = X% — 4x, the tangent at (1, f(1)), and the secant containing (1, f(1)) and
A+b, fA+b)ifbh=04

p2 = Graphics[{PointSize[.03], Blue, Point[{1, f[1]}],
Green, Point[{1 + h, f[1 + h]}1}];
p3 = Plot[f [1](x-1) + f[1],{x, -1, 5}, PlotStyle — Red];
p4 = Plot[(f[1 + h]-f[1])/h(x-1) + f[1],{x, -1, 5},
PlotStyle — Purple];
Show[p1, p2, p3, p4, PlotRange — {{-1, 5},{-6, 6}}, AspectRatio — 1]]

Table[f[x],{x,start,stop,stepsize}] creates a table of f(x) values beginning
with start and ending with stop using increments of stepsize. Given a table,
Partition[table,n] partitions the table into n element subgroups. Thus, if a table, t1,
has nine elements, Partition[t1, 3] creates a 3 x 3 grid; three sets of three elements
each.

Using Table followed by GraphicsGrid, we can create a table of graphics for
various values of h like that shown in Figure 3.7. With Table, the dimensions of the
grid displayed on your computer are based on the size of the active Mathematica
window. To control the dimensions of the grid, we use GraphicsGrid together with
Partition and Show.

t1 = Table[g[k], {k, 1,.0001, - (1-.0001)/8}]
Show[GraphicsGrid[Partition[t1, 3]]]

Do works in the same way as Table. Rather than creating a table (or list), Do
performs the action repeatedly. Thus, you can use Do to create an animation of
the secants approaching the tangent.
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FIGURE 3.7

Plots of y =x” - 4x, the tangent at (1, f(1)), and the secant containing (1, f(1)) and
1 + b, f(1 + b)) for various values of b

Thus, entering computes g(k) and displays the result for 100 equally spaced
values of & starting with 2 =1 and ending with & = 0.0001. To animate the results,
select the graphics as indicated. Go to the Mathematica menu, select Graphics
followed by Rendering and then Animate Selected Graphics

Evaluation Palettes Window Help
New Graphic “l oo
] Drawing Tools SR HE Untitled-4
Graphics Inspector |

Rendering »  Animate Selected Graphics %Y

» | Align Selected Graphics...

Make Standard Size

|
Rerender Graphics
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Keyboard shortcuts
are usually operating
system dependent.

in10¢]= Do[Print[g[k]], {k, 1, .0001, - (1- .0001) /99}] 7

s k|

or use a keyboard shortcut to animate the graphics. After animating the selec-
tion, you can control the animation (speed, direction, and so on) with the buttons
« w1l =it ws s displayed in the lower left-hand corner of the Mathematica
notebook.

With Mathematica 6, you can use Manipulate to help generate animations and
images that you can adjust based on changing parameter values.

To illustrate how to do so, we begin by redefining f and then defining m(a, b).
Given a and b values, m(a, b) plots f(x) for =10 <x <10 (p1), plots a blue
point (a, f(a)) and a green point at (a + b, f(a + b)) (p2), plots f'(@)(x — a) + f(a@)
(the tangent to the graph of f(x) at (a, f(a))) for =1 <x <5 in red (p3), the
secant containing (a, f(@)) and (a + b, f(a + b)) for =10 < x < 10 in purple (p4),
and finally displays all four graphics together with Show. Using PlotRange, we
indicate that the horizontal axis displays x values between —10 and 10, at the
vertical axis displays y values between —10 and 10; AspectRatio->1 means that
the ratio of the lengths of the x to y axes is 1. Thus, the plot scaling is correct.
Note that when we use Module to define m, p1, p2, p3, and p4 are local to the
function m. This means that if you have such objects defined elsewhere in your
Mathematica notebook, those objects are not affected when you compute »z.

Clear[m,f];
fix_] = x"2-4x;
ml[a-, h_] := Module[{p1, p2, p3, p4},
p1 = Plot[f[x], {x, — 10, 10}, PlotStyle — Black];
p2 = Graphics[{PointSize[.03], Blue, Point[{a, f[a]}],
Green, Point[{a + h, f[a + h]}1}];
p3 = Plot[f'[a](x-a) + f[a], {x, — 1, 5}, PlotStyle — Red];
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p4 = Plot[(f[a + h] -f[a])/h(x-a) + f[a], {x, — 10, 10},
PlotStyle — Purple];
Show|[p1, p2, p3, p4, PlotRange — {{-10, 10},{-10, 10}},
AspectRatio — 1]]

Now we use Manipulate to create a “mini” program. The sliders (centered at
a=0 and »=0.5 with a range from —-10 to 10 and -1 to 1, respectively) allow
you to see how changing a and b affects the plot. See Figure 3.8.

Manipulate[m[a, h], {{a, 0}, — 10, 10}, {{h, .5}, -1, 1}]

Figure 3.8 illustrates the special case in which f(x) = x* — 4x. To illustrate the
same concept using a “standard” set of functions (polynomials, rational, root, and
trig), we first define the functions

quad[x_] = (x + 2)*2-2;
cubic[x_] = -1/10x(x2-25);
rational[x_-] = 50/((x + 5)(x-5));
root[x_] = 3Sqrt[x + 5];

sin[x_] = 5Sin[x];

and then we adjust m by defining a few of these “standard” and then defining
the function mmore. mmore performs the same actions as m but does so for the

a M
a D U
3.35 +||R|¥|[—
0 D IHEFE)
" D h UZ
0.71 +||R[¥]||—
05
10 10 F
5 L
1 1 1 1 1 1 /I 1
—-10 -5 5 10 -10 -5 5 10
_5 - 75 -
—10 F —10
FIGURE 3.8

With Manipulate, we can perform animations and see how a function changes
depending on parameter values
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function selected. We then use Manipulate to create an object that shows the
secant (in purple), the tangent (in red) for the selected function, a value, and b
value. See Figure 3.9.

Clear[mmore];
mmorel[f_, a_, h_] := Module[{p1, p2, p3, p4},
p1 = Plot[f[x], {x, — 10, 10}, PlotStyle — Black];
p2 = Graphics[{PointSize[.03], Blue, Point[{a, f[a]}],
Green, Point[{a + h, f[a + h]}1}];
p3 = Plot[f '[a](x-a) + f[a], {x, - 10, 10}, PlotStyle — Red];
p4 = Plot[(f[a + h] -f[a])/h(x -a) + f[a], {x, — 10, 10},
PlotStyle — Purple];
Show[p1, p2, p3, p4, PlotRange — {{- 10,10}, {-10, 10}},
AspectRatio — 1]]

Manipulate[mmorel[f, a, h], {{f, quad},
{quad, cubic, rational, root, sin}},
{{al o}l - 10! 10}’ {{h! 1}! _2’ 2}]

f cubic || rational |f root || sin

f

quad

quad | cubic || rational || root || sin

n . n
J ]
n e
U h
10k {oF
5H 5

-10 -5 5 10 -10 - A 10

FIGURE 3.9

With this Manipulate object, we see how various functions, a values, and b values
affect the secant to y = f(x) passing through (a, f(a)) and (a + b, f(a + b)) and the
tangent to y = f(x) at (a, f(@)




Throughout the text,
input is in bold and
output is not; output
follows input.
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3.2.2 Calculating Derivatives

The functions D and ' are used to differentiate functions. Assuming that
y =f(x) is differentiable,

[y

. D[f[x],x] computes and returns f ") = df/dx,

. f'[x] computes and returns f ") = df/dx,

. f'[x] computes and returns j(z)(x) = dzf (x)/dxz, and

. D[f[x],x,n] computes and returns j(")(x) =d nf ©O)/dx".

. You can use the |, | button located on the BasicMathInput palette

ol W N

to create templatés to compute derivatives.

Figure 3.10 illustrates various ways of computing derivatives using the
" symbol, D, and the J symbol.

Mathematica knows the numerous differentiation rules, including the prod-
uct, quotient, and chain rules. Thus, entering

Clear[f, g]
DIf[xIg[x], x]
gxJf'[x] + fx]g'[X]

shows us that dix(f(x) g =f '(x)g(x) +f (x)g'(x); entering

Together[D[f[x]/g[x], x]]
gixf' X = flx]g’[x]
gix?
DIf[g[x]], x]
shows us that %(f /g =(f '(x)g(x) -f (x)g'(x))/(g(x))z; and entering

Cloar(f, g]
flx ] =x’Exp[-2x];
g[x ] = xArcTan[x];
£ [x]

e x’-2e ®
Dif[x], x]
ei*x!-2e "k
. f[x]
e?"x'-20 7"k
g [x]

x "
—— + ArcTan(x
‘%
blg(x], x]

%

- + ArcTan|x

v
2, g[x]

x

- + ArcTan[x]
v
FIGURE 3.10

You can use ', D, and @ to compute derivatives of functions
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Example 3.2.3

Solution

Map and operations
on lists are discussed
in more detail in
Chapter 4.

Remark 3.2

DIfg[x]], x]
f'[9lxNIg"[X]

shows us that %(f @O = £ (gx)NE ().

4
Compute the first and second derivatives of (a) y = x™ + §x5 - 37, (b) f(x) = 4x° —
§x4 - 10x°, (0) y=Vve*+e 2, and (d) y =1+ 1/x)".
For (a), we use D.

D[x"4 + 4/3x"3-3x"2, {x, 2}]
-6+ 8x+ 12x°

For (b), we first define £ and then use ' together with Factor to calculate and factor
f@o and £’ 0.

fx_] = 4x"5-5/2x"4-10x"3;

Factor[f'[x]]

10x%(1 +X)(-3 + 2X)

Factor[f"[x]]
10x (-6-3x +8x%)

For (c), we use Simplify together with D to calculate and simplify y" and y".

D[Sqrt[Exp[2x] + Exp[ - 2x]], {x, 2}]//Simplify
\/m@ +66™ + %)

(1+ e4><)2

By hand, (d) would require logarithmic differentiation. The second derivative would
be particularly difficult to compute by hand. Mathematica quickly computes and
simplifies each derivative.

Simplify[D[(1 + 1/%)x, x]]
(1+ %)x(—i +(1+xLog[1+ %])
T+x
Simplify[D[(1 + 1/x)x, {x, 2}1]
(1+%)x(—1 +Xx=2x(1+x)Log[1+ 1 ]+x(1 +><)2Log[1 + %]2)

x(1 +x)2

The command Maplf,list] applies the function f to each element of the
list list. Thus, if you are computing the derivatives of a large number of
functions, you can use Map together with D.

A built-in Mathematica function is threadable if f[list] returns the same result as
Maplf,list]. Many familiar functions such as D and Integrate are threadable.
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1

Example 3.2.4 Compute the first and second derivatives of sinx, cosx, tanx, sin™' x, cos™' x,

Solution

and tan™' x.
Notice that lists are contained in braces. Thus, entering

Map[D[#, x]&, {Sin[x], Cos|[x], Tan[x],
ArcSin[x], ArcCos[x], ArcTan[x]}]

Cos[x], -Sin[x], Sec[x]?, —-—, - ——, !
{ X, ~Sinbd, Secl’, A=, - —A=
computes the first derivative of the three trigonometric functions and their inverses.
In this case, we have applied a pure function to the list of trigonometric functions
and their inverses. Given an argument #, D[#,x]& computes the derivative of # with
respect to x. The & symbol is used to mark the end of a pure function. Similarly,
entering

Map[DI[#, {x, 2}]&, {Sin[x], Cos[x], Tan[x],
ArcSin[x], ArcCos[x], ArcTan[x]}]
{—Sin[x],—Cos[x],ZSec[x]QTan[x], LS S — }

G N (I e (O

computes the second derivative of the three trigonometric functions and their
inverses. Because D is threadable, the same results are obtained with the following
commands:

D[{Sin[x], Cos[x], Tan[x],
ArcSin[x], ArcCos[x], ArcTan[x]}, x]

{Cos[x], -Sin[x], Sec[x?, ———, - — !

D[{Sin[x], Cos[x], Tan[x],
ArcSin[x], ArcCos[x], ArcTan[x]}, {x, 2}]
{—Sin[x], —Coslx], 2Sec[x]*Tan[x], (17:2)3/2, 7 X, - }

7)(2)3/2 ' (1 +x2)2

With DynamicModule, we create a simple dynamic that lets you compute the
first and second derivatives of basic functions and plot them on a standard
viewing window, [—- — 5, 5] x [-5, 5]. The layout of Figure 3.11 is primarily
determined by Panel, Column, and Grid.

Panel[DynamicModule[{f = x"2},
Column[{InputField[Dynamic[f]], Grid[{{“FirstDerivative”,
Panel[Dynamic[D[f, x]//Simplify]]},
{“SecondDerivative”, Panel[Dynamic[DI[f, {x, 2}1//Simplify]]}}],
Dynamic[Plot[Evaluate[Tooltip[{f, D[f, x], D[f, {x, 2}1}11,
{x, -5, 5}, PlotRange — {- 5, 5},
AspectRatio —» Automatic]]}]], ImageSize — {300, 300}]
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Example 3.2.5

Solution

o o 3 Cosin]
1ax®

: First Derivative | ~3Sinjx)
First Derhvative .ﬁ-.'-,-', o _
| Second Dernvative | -3 Cosfx]

e 2xf-3447) 4
o i
o | e

FIGURE 3.11

Seeing the relationship between the first and second derivative of a function and the
original function

3.2.3 Implicit Differentiation

If an equation contains two variables, x and y, implicit differentiation can
be carried out by explicitly declaring y to be a function of x, y = y(x), and
using D or by using the Dt command.

Find y' = dy/dx if (a) cos (¢?) =x and (b) In (x/y) + 5xy = 3y.

For (a) we illustrate the use of D. Notice that we are careful to specifically indicate
that y = y(x). First we differentiate with respect to x.

Clear[x,y]
s1 = D[Cos[Exp[xy[x]]]-x, x]
-1-e*M8in [¢¥] (yIx] +xy'[x])

and then we solve the resulting equation for 3’ = dy/dx with Solve.
Solve[s1==0, y'[x]]

- xy[x] xy[X] xyIXlgin | eXVIXI
{1 -l e ) )

For (b), we use Dt. When using Dt, we interpret Dt[x]= 1 and Dtly]=y' = dy/dx.
Thus, entering

s2 = Dt[Log[x/y] + 5xy - 3y]
Dt _ xDtly] )

y y2
X

5yDt[x] - 3Dt[y] + 5xDtly] + y<
s3 = s2/.{Dt[x] — 1, Dt[y] — dydx}

_ dydxx 1
( ¥ +V>y

X

—3dydx + 5dydxx + by +



3.2 Differential Calculus 139
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FIGURE 3.12

On the left, cos () =x for —2 <x <2 and -4 <y < 4; on the right, In (x/y) + 5xy =
3y for 0.01 <x <3 and 0.01 <y < 3.

and solving for dydx with Solve
Solve[s3==0, dydx]
(1+5xy)
{{avox — - o4
) , dy a +5xy)y
h that if 1 = EC AN el i
shows us that if In (x/y) + Sxy = 3y, ¥/ 2= Gw 3y - Dn
To graph each equation, we use ContourPlot. Generally, given an equation of
the form f(x,y) = g(x,y»), the command

ContourPlot[f[x, Y]==g[x5 yl,{x, a, b}, {y, c,d}]

attempts to plot the graph of f(x, ) = g(x,») on the rectangle [a, b] x [c, d]. Using
Show together with GraphicsRow, we show the two graphs side-by-side in
Figure 3.12.

cp1 = ContourPlot[Cos[Exp[xy]]l==X, {x, -2, 2}, {y, —4, 4}, PlotPoints — 120,
Frame — False, Axes — Automatic, AxesOrigin — {0, 0}];
cp2 = ContourPlot[Log[x/y] + 5xy==3y, {x, .01, 3}, {y, .01, 3},
PlotPoints — 120,
Frame — False, Axes — Automatic, AxesOrigin — {0, 0}];
Show[GraphicsRow[{cp1, cp2}]]

3.24 Tangent Lines

If f'(a) exists, a typical interpretation of f "(@) is that f'(a) is the slope of
the line tangent to the graph of y = f(x) at the point (a, f(a)). In this case,
an equation of the tangent is given by

y-f@=f(@x-a) or y=f@x-a)+f(@.
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Example 3.2.6 Find an equation of the line tangent to the graph of f(x) = sinx'? + cos' x at the
point with x-coordinate x = 57/3.

Solution Because we will be graphing a function involving odd roots of negative numbers,
If this package was we begin by loading the RealOnly package contained in the Miscellaneous folder
not included with (or directory). We then define f(x) and compute f'(x).

your version of ) . .
Mathematica, you << Miscellaneous'RealOnly

may want to f[x-] = Sin[x"(1/3)] + Cos[x]" (1/3);
download it from fIx]

1/3
the Wolfram website. Cos[x'] s
3x2/3 3Cos[x]/3

Then, the slope of the line tangent to the graph of f(x) at the point with
x-coordinate x = 57/3 is
f'[5Pi/3]
21/3\/3 318(5m23
f'[5Pi/3]//N
0.440013

while the y-coordinate of the point is

f[5Pi/3]

. 1/3
21‘? +Sin [(%77) ]
f[5Pi/3]//N
1.78001

Thus, an equation of the line tangent to the graph of f(x) at the point with
x-coordinate x = 57/3 is

as shown in Figure 3.13.

p1 = Plot[f[x], {x, 0, 4Pi}, PlotStyle — Black];
p2 = ListPlot[{{5Pi/3, f[5Pi/3]}//N}, PlotStyle — PointSize[.03]];

2.0
15
1.0
05
F 2 4 6 8 10 12

FIGURE 3.13
/

J@) =sinx'? + cos'? x together with its tangent at the point (57/3, f(57/3))
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Solution

By the product and
chain rules, dix(x2 V=
Loy +x’ L) =
2x-y+ X % =

2xy + 57y

Lists are discussed in
more detail in
Chapter 4.
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p3 = Plot[f'[5Pi/3](x - 5Pi/3) + f[5Pi/3], {x, 0, 4Pi},
PlotStyle —->GrayLevel[.6]];

Show[p1, p2, p3, AspectRatio —->Automatic,
DisplayFunction — $DisplayFunction]

Tangent Lines of Implicit Functions

Find equations of the tangent line and normal line to the graph of xzy —y3 =8 at
the point (-3, 1). Find and simplify " = d*y/dx".

We evaluate y' = dy/dx if x=-3 and y = 1 to determine the slope of the tangent
line at the point (-3, 1). Note that we cannot (easily) solve xzy —y5 =8 for y, so
we use implicit differentiation to find y' = dy/dx:

d
= (¥r-2") = —®
2xy+x*) - 3%y =0
P T2
y = X2 = Syz'

eq = XA2y—yA3==8
X’y -y’==8

s1 = Dt[eq]

2xyDt[x] + x*Dt[y] - 3y’ Dt[y]==0
s2 =s1/.Dt[x] - 1

2xy + x2Dt[y] - 3y2Dtfy]==0

s3 = Solve[s2, Dt[y]]

{ow— -2z )

Notice that s3 is a list. The formula for )’ = dy/dx is the second part of the first
part of the first part of s3 and extracted from s3 with
s3[[1,1,2]]

2y
x2 -3y?

We then use ReplaceAll (/.) to find that the slope of the tangent at (-3, 1) is

s3[[1,1,2])/.{x—> -3,y > 1}
1

The slope of the normal is —1/1 = —1. Equations of the tangent and normal are
given by

y—-1=1(x+3) and y—-1=-1(x+3),
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J
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FIGURE 3.14

Graphs of x*y —» = 8 (in black) and the tangent and normal at (=3, 1) (in gray)

respectively. See Figure 3.14.

cp1 = ContourPlot[x"2y -y 3-8, {x, -5, 5}, {y, - 5, 5}, Contours — {0},
ContourShading — False, PlotPoints — 200];
p1 = ListPlot[{{- 3, 1}}, PlotStyle — PointSize[.03]];
p2 = Plot[{(x + 3) + 1, — (x + 3) + 1}, {x, - 5, 5}, PlotStyle — Gray];
Show[cp1, p1, p2, Frame — False, Axes — Automatic,
AxesOrigin — {0, 0}, AspectRatio — Automatic,
DisplayFunction — $DisplayFunction]

To find »" = d*y/dx’, we proceed as follows:

s4 = Dt[s3[[1, 1, 2]]]//Simplify
2(><2 + Syz)(—yDt[x] +xDtly))
(2o
s5 = s4/.Dt[x] — 1/.s3[[1]]//Simplify
6y(><2 —yz)(xz + Syz)
(7o)’

The result means that
. &y 6(x¥y-y") (" +3)7)
Ta (.x2 _ 3)/.2)3

Because x’y — »° = 8, the second derivative is further simplified to
,_dy _48(x"+3y%)
dx? (x2 _ 3)22)5 '
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Solution After defining x and y, we use '

3.2 Differential Calculus

Parametric Equations and Polar Coordinates

For the parametric equations {x = f(),y = g®}, t € I,

Ay _g®
Tdx " dx/dt  f'(D
and
,_dy _ddy d/ddy/dx)
Tdx?  dxdx  dx/dt

If {x =f(®,y = g®} has a tangent line at the point (f(a), g(a)), parametric

equations of the tangent are given by

x=f@+tf'@ and  y=g@ +ig(@.

If f '(a), g'(a) # 0, we can eliminate the parameter from (3.2)

x—f@ y-ga

fl@  g@
_d@
y-g@ = @ NGRTAC

and obtain an equation of the tangent line in point-slope form.

| = Solve[x[a] + tx'[a]==cX, t]
r = Solve[y[a] + ty'[a]==cy, 1]

i)
=)

(The Cycloid). The cycloid has parametric equations

x=t-sint and y=1-cost.

Graph the cycloid together with the line tangent to the graph of the cycloid at the
point (x(a), y(a)) for various values of a between —27 and 4.

dy/dx = (dy/dD/(dx/df) and d*y/dx’.

x[t_] = t-Sin[t];
y[t-] = 1-Cos]t];
dx = x'[t]

dy = y'[t]

dydx = dy/dx
1-Coslt]

Sin[t]

Sinft]
1-Coslt]

to compute dy/dt and dx/dt. We then compute

143
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dypdt = Simplify[D[dydXx, t]]
-1 +1Cos[t]

secondderiv = Simplify[dypdt/dx]
1

(=1 + Cost])?
We then use ParametricPlot to graph the cycloid for —27 < t < 47, naming the
resulting graph p1.

p1 = ParametricPlot[{x[t], y[t]}, {t, — 2Pi, 4Pi},
PlotStyle — {{Black, Thickness[.01]}}];

Next, we use Table to define toplot to be 40 tangent lines (3.2) using equally
spaced values of a between -2 and 4m. We then graph each line toplot and
name the resulting graph p2. Finally, we show p1 and p2 together with the Show
function. The resulting plot is shown to scale because the lengths of the x- and
y-axes are equal and we include the option AspectRatio->1. In the graphs, notice
that on intervals for which dy/dx is defined, dy/dx is a decreasing function and,
consequently, d*y/dx” < 0. (See Figure 3.15.)

toplot = Table[{x[a] + tx[a], y[a] + ty'[al}, {a, — 2Pi, 4Pi, 6Pi/39}];
p2 = ParametricPlot[Evaluate[toplot], {t, - 2, 2}, PlotStyle — Gray];
Show[p1, p2, AspectRatio — 1, PlotRange — {- 3Pi, 3Pi}]

FIGURE 3.15
The cycloid with various tangents
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FIGURE 3.16

Using Manipulate you can animate the tangents

With Manipulate, you can animate the the tangents. (See Figure 3.16.)

Manipulate[x[t_] = t-Sin[t]; y[t-] = 1-Cos][t];
y[t-] = Module[{p1, p2}, p1 = ParametricPlot[{x[t], y[t]}, {t, — 2Pi, 4Pi},
PlotStyle — {{Black, Thickness[.01]}}];

p2 = ParametricPlot[{x[a] + tx'[a], y[a] + ty'[a]}, {t, -2, 2},
PlotStyle — Gray];

Show[p1, p2, AspectRatio — 1, PlotRange — {{- 2Pi, 4Pi}, { - 3Pi, 3Pi}}]l,
{{a, 1}, - 2Pi, 4Pi}]

Example 3.2.9 (Orthogonal Curves). Two lines L, and L, with slopes m, and m,, respectively,
are orthogonal if their slopes are negative reciprocals: m, = —1/m,.
Extended to curves, we say that the curves C, and C, are orthogonal at
a point of intersection if their respective tangent lines to the curves at that point
are orthogonal.
Show that the family of curves with equation x° + 2xy — »* = C is orthogonal to
the family of curves with equation »* + 2xy — x” = C.

Solution We begin by defining eq1 and eg2 to be equations x* + 2xy — * = Cand y* + 2xy —
x* = C, respectively. Then, use Dt to differentiate and Solve to find )’ = dy/dx.
eq1 = x2 + 2xy -y?==c;
eq2 = y? + 2xy - x?==c;
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FIGURE 3.17

x> +2xy —y° =Cand y”° +2xy — x” = C for various values of C

Simplify[Solve[Dt[eq1, x], Dt[y, x]}/.Dt[c, x] — 0]
[ -

Simplify[Solve[Dt[eq2, x], Dt[y, x]}/.Dt[c, x] — 0]
{{owi 23]

Because the derivatives are negative reciprocals, we conclude that the curves are
orthogonal. We confirm this graphically by graphing several members of each family
with ContourPlot and showing the results together. (See Figure 3.17.)

cp1 = ContourPlot[x? + 2xy -y?, {x, -5, 5}, {y, -5, 5},
ContourShading — False];

cp2 = ContourPlot [y? + 2xy -x?,{x, -5, 5}, {y, - 5, 5},
ContourShading — False,
ContourStyle — Dashing[{0.01}]];

Show[cp1, cp2, Frame — False, Axes — Automatic,
AxesOrigin — {0, 0}]

Theorem 1. (The Mean-Value Theorem for Derivatives) If y = f(x)
is continuous on la,b] and differentiable on (a,b), then there is at least
one value of ¢ between a and b for which

SO -f@
a

Py or, equivalently, f® - fl@ =0 - a). 3.3)

fl©=

Example 3.2.10 Find all number(s) ¢ that satisfy the conclusion of the mean-value theorem for
@) =x* - 3x on the interval [0,7/2].
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Solution By the power rule, f'(x) = 2x — 3. The slope of the secant containing (0,£(0)) and
7/2,£(7/2) is

Ja2 -0 1
72-0 2

Solving 2x — 3 = 1/2 for x gives us x = 7/4.

fix_] = x2-3x

—3x+x2

Solve[f' [x]==0, x]

{x—3}

Solvel[f [x]==(f[7/2] - f[0])/(7/2-0)]

{{ix—4h

x = 7/4 satisfies the conclusion of the mean-value theorem for f(x) = x* = 3x on
the interval [0, 7/2], as shown in Figure 3.18.

p1 = Plot[f[x], {x, —1,4}];

p2 = Plot[f[x], {x, 0, 7/2}, PlotStyle — Thickness[.02]];

p3 = ListPlot[{{0, f[01}, {7/4, f[7/41}, {7/2, f[7/2]}},
PlotStyle — PointSize[.05]];

p4 = Plot[{f'[7/4]1(x-7/4) + f[7/4], (f[7/2] - f[0])/(7/2-0)x + f[O]},
{x, —2, 4}, PlotStyle — {Dashing[{ . 01}], Dashing[{ . 02}1}];

Show[p1, p2, p3, p4, DisplayFunction — $DisplayFunction,
AspectRatio — Automatic, PlotRange — {- 3, 3}]

3 L
2F ~
1L e
-2 1 12 4
T At
oL Al
,3’,/’/
FIGURE 3.18

Graphs of f(x) = x> — 3x, the secant containing (0,£(0) and (7/2,£(7/2)), and the
tangent at (7/4,f(7/4))
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3.2.5 The First Derivative Test and Second
Derivative Test

Examples 3.2.11 and 3.2.12 illustrate the following properties of the first
and second derivative.

Theorem 2. Lety =f(x) be continuous on [a,b] and differentiable on
(a, b).

1. Iff'(x) =0 for all x in (a,b), then f(x) is constant on |a,D].
2. Iff'(x) > 0 for all x in (a,b), then f(x) is increasing on [a,b].
3. If f'(x) <0 for all x in (a,b), then f(x) is decreasing on [a, b].

For the second derivative, we have the following theorem.
Theorem 3. Lety =f(x) bave a second derivative on (a,D).

1. If (@) > 0 for all x in (a,b), then the graph of f(x) is concave up
on (a,b).

2. If f”(x) <0 for all x in (a,b), then the graph of f(x) is concave
down on (a,b).

The critical points correspond to those points on the graph of y = f(x)
where the tangent line is horizontal or vertical; the number x = a is a cri-
tical number if f'(@) =0 or f'(x) does not exist if x =a. The inflec-
tion points correspond to those points on the graph of y = f(x) where
the graph of y =f(x) is neither concave up nor concave down. Theo-
rems 2 and 3 help establish the first derivative test and second derivative
test.

Theorem 4. (First Derivative Test) Let x = a be a critical number of
a function y = f(x) continuous on an open interval I containing x = a. If
S0 is differentiable on I, except possibly at x = a, f(a) can be classified
as follows.

1. If ' (%) changes from positive to negative at x = a, then f(a) is a
relative maximum.

2. If f'(x) changes from negative to positive at x = a, then f(a) is a
relative minimum.

Theorem 5. (Second Derivative Test) Let x = a be a critical number
of a function y = f(x) and suppose that f" (x) exists on an open interval
containing x = a.

1. If (@) < 0, then f(a) is a relative maximum.
2. Iff”(a) > 0, then f(a) is a relative minimum.
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Example 3.2.11 Graph f(x) = 3x° — 5x°.
Solution We begin by defining f(x) and then computing and factoring f'(x) and " ().

fix_] = 3x"5-5x"3;
d1 = Factor[f'[x]]
d2 = Factor[f’[x]]
15(=1 +x)x°(1 +X)
30x (-1 +2x°)

By inspection, we see that the critical numbers are x = 0, 1, and —1 while f"(x) = 0
if x=0, 1/V2, or —=1/V2. Of course, these values can also be found with Solve
as done next in cns and ins, respectively.

cns = Solve[d1==0]

ins = Solve[d2==0]

{{X—> —1},{X—> O},{X—> O},{X — 1}}

(oo -2} o 5))
We find the critical and inflection points by using /. (Replace All) to compute f(x)
for each value of x in cns and ins, respectively. The result means that the critical
points are (0, 0), (1, —2) and (-1, 2); the inflection points are (0, 0), (1/vV2, -7V2/8),
and (-1/V2,7v2/8). We also see that £”(0) =0, so Theorem 5 cannot be used
to classify £(0). On the other hand, f"(1) =30 >0, and f"'(-=1) = =30 < 0, so by
Theorem 5, f(1) = -2 is a relative minimum and f(-1) = 2 is a relative maximum.

cps = {x, f[x]}/.cns

{{-1.2}.{0,0},{0,0}, {1, -2}}

'[x)/.cns

{-30,0,0,30}

ips={x,f[x]}/.ins

{oon{-5 5} {5 -5}
We can graphically determine the intervals of increase and decrease by noting that
if £/ >0 (f'@) <0), alf Cl/f @) = a (a|f @l/f @) = —a). Similarly, the intervals
for which the graph is concave up and concave down can be determined by
noting that if () > 0 (f"@) < 0), alf" @\’ @) = a (alf C|/f" ) = —a). We use
Plot to graph |f'Gol/f @) and 2|7 @ol/f" @ (different values are used so we can
differentiate between the two plots) in Figure 3.19.

Plot[{Abs[d1]/d1, 2Abs[d2]/d2}, {x, -2, 2}, PlotRange — {-3, 3}]

From the graph, we see that f'(x) >0 for x in (=oco,-1)U (1, 00), f'(x) <0 for
xin (=1, D, f'()>0 for x in (=1/V2,00U(1/V2,00), and f"(x) <0 for x in
(-0, -1/V2) U (0, 1/V/2). Thus, the graph of fx) is

B increasing and concave down for x in (—oo, —1),

® decreasing and concave down for x in (-1, -1/V2),
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nNo

FIGURE 3.19
Graphs of |f' @|/f o and 2|f" @ol/f (o)

-2 —1 V 2
-2

—4 L

FIGURE 3.20
f@o for -=2<x<2and -4<y<4

B decreasing and concave up for x in (-1/V2,0),
® decreasing and concave down for x in (0,1v/2),
B decreasing and concave up for x in (1/V2,1), and

B increasing and concave up for x in (1, co0).

We also see that f(0) =0 is neither a relative minimum nor maximum. To see
all points of interest, our domain must contain —1 and 1 while our range must
contain —2 and 2. We choose to graph f(x) for -2 < x < 2; we choose the range
displayed to be —4 < y < 4. (See Figure 3.20.)

Plot[f[x], {x, -2, 2}, PlotRange — {~4, 4}]

Remember to be especially careful when working with functions that
involve odd roots.
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Example 3.2.12 Graph f(x) = (x = 207+ D',

Solution We begin by defining f(x) and then computing and simplifying £'¢x) and f"(x)
with * and Simplify.

Clear[f]

fix_] = x-2)*2/3)(x + 1) (1/3);

d1 = Simplify[f'[x]]

d2 = Simplify[f'[x]]

By inspection, we see that the critical numbers are x = 0, 2, and —1. We cannot
use Theorem 5 to classify £(2) and f(~1) because f”(x) is undefined if x =2 or
—1. On the other hand, f"(0) <0, so f(0) = 2*° is a relative maximum. By hand,
we make a sign chart to see that the graph of f(x) is

® increasing and concave up on (—oo, —1),
B increasing and concave down on (-1, 0),
® decreasing and concave down on (0, 2), and
B increasing and concave down on (2, co).

Hence, f(—1) = 0 is neither a relative minimum nor maximum, whereas f(2) =0 is
a relative minimum by Theorem 4. To graph f(x), we load the RealOnly package
and then use Plot to graph f(x) for =2 < x < 3 in Figure 3.21.

<< Miscellaneous'RealOnly’

f[0]
Plot[f[x], {x, -2, 3}]
22/3
1t
- 1 2 3
_1 -
_2 -
FIGURE 3.21

f@o for -=2<x<3
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The previous examples illustrate that if x = @ is a critical number of f(x)
and f'(x) makes a simple change in sign from positive to negative at x = a,
then (a,f(a)) is a relative maximum. If f '(x) makes a simple change in sign
from negative to positive at x = a, then (a,f(a)) is a relative minimum.
Mathematica is especially useful in investigating interesting functions for
which this may not be the case.

Example 3.2.13 Consider

X7 sin” <1> ,X#0
S = x
0,x=0.

x =0 is a critical number because f'(x) does not exist if x = 0. The point (0, 0)
is both a relative and absolute minimum, even though f'(x) does not make a
simple change in sign at x = 0, as illustrated in Figure 3.22.

f[x_] = (xSin [%])2,
f'[x]//Factor

-2Sin [1] (Cos [] -xSin [1])
p1 = Plot[f[x], {x, - 0.1,0.1}];
p2 = Plot [f'[x], {x, -0.1,0.1}];
Show[GraphicsRow[{p1, p2}]]

Notice that the derivative “oscillates” infinitely many times near x =0, so the
first derivative test cannot be used to classify (0, 0).

The functions Maximize and Minimize can be used to assist with
finding extreme values. For a function of a single variable Maximize[f[x], x]
(Minimize[f[x], x]) attempts to find the maximum (minimum) values of f(x);

-0.10 -0.05 0.05 0.10
FIGURE 3.22

S = [xsin (1)]” and /@ for 0.1 <x < 0.1
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Maximizel[f[x],a<=x<=Db,x] (Minimizel[f[x],a<=x<=Db,x]) attempts to find the maxi-
mum (minimum) values of f(x) on [a, b].

Example 3.2.14 Consider f(x) = & (=12x+3x” + 2x°). After defining f(x), we plot f(x) and f'(x)
together in Figure 3.23.

flx_] = 1/10 (- 12x + 3x* + 2x°) ;
Plot[Tooltip[{f[x], f [X}], {x, - 4, 4}, PlotRange — {-4, 4},
AspectRatio —» Automatic]

With Maximize, we see that f(x) does not have a maximum on its domain.
However, when we restrict the interval to -3 < x < 2, Maximize finds the relative
maximum at x = =2.

Maximize[f[x], x] 11
Maximize:natt : The maximum is not attained at any point satisfying the given constraints. 3|
(@, (x-+=}} }.l
Maximize[{£f[x], -3 sx s 2}, x] '_Ti
(20, {x--2}} 3)
Ar
2 -
1 1 1
-4 -2 2 4
_2 -
—4L
FIGURE 3.23

S has one relative maximum and one relative minimum but no absolute extreme
values
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Similarly, with Minimize we see that the f(x) does not have a minimum value
on its domain but find the relative minimum when we restrict the interval to

-3<x<2
Minimize[£f[x], x] 31
Minimize::natt: The minimum is not attained at any point satisfying the given constraints
{-=, (x> -=}} d
Minimize[({£[x], -3 sx s 2}, x] b
{-7, (x> 1}} i)

However, with Solve, we easily find the two zeros of f'(x) that we see in Figure 3.23.
Solve[f' [x]==0, x]
{{x— -2} {x—=1}}

‘When using Maximize or Minimize you should verify your results using
another method.

Example 3.2.15 The function f(x) = x/(x* + 1) is continuous on (-co,co0) and lim,_,,  f(x) = 0.
Thus, f(x) has an absolute minimum and maximum value on its domain. In this

case,

Maximize[x / (x"2+1), x] "j'l
i 2 il
1= (X221} H
\2 )

Minimize[x/ (x"2+1), x] ']'|
r 1 1 1 1‘
4 s (X2 -1}

L2 ‘ )

gives us the absolute maximum and minimum values of f(x) and the x-values
where they occur. On the other hand, f(x) = x* — &% is continuous on (—oo, co) and
lim, ,, . f() =oco. Thus, f(x) has an absolute minimum on its domain. Because
the derivative of a fourth-degree polynomial is a third-degree polynomial, we know
that £'(x) has three zeros, two of which probably correspond to relative minimums.
Because the graph of f(x) is symmetric with respect to the y-axis, we further
suspect that the absolute minimum is obtained twice—at each relative minimum.
Maximize and Minimize give us the following results.

A polynomial of
degree n has n
zeros (counting
multiplicity).

Maximize[x“4-x"2, x] b |
Maximize: natt : The maximum is not attained at any point satisfying the given constraints, a
{= {%--=}} 3

Minimize[x~4-x"2, x] 3j|

(5 b)) 1
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Note that the result returned by Maximize is correct. Similarly, the result returned
by Minimize is correct, but a complete answer would indicate that the absolute
minimum value occurs at both x = —1/v2 and x = 1/V2.

Example 3.2.16 The function f(x) = (x+ 1)°/(x — 2) has a vertical asymptote at x = 2. From the
derivative,
fix_1 = (x + 1) 2/(x-2);
d1 = Simplify[f [x]]
cns = Solve[f'[x]==0]
—5—4x+x2
(-2+x?2
{{X—> —1},{X—> 5}}
f[x]/.cns
{0,12}
we find two critical numbers, one of which is a relative maximum and one is a
relative minimum. See Figure 3.24.

Plot[Tooltip[{fx], f [x]}], {x, -6, 10}]

On the other hand, Maximize and Minimize return confusing results because the
function is undefined if x =2. The function has relative extreme values but not
absolute extreme values.

Maximize[f[x], x] 31i |
Maximize::natt : The maximum is not attained at any point SJ".IS-"\;‘I!]Q the given constraints. a |
(@, (%2} H}i
|
Minimize[f[x], x] 1|
Minimize:-natt: The minimum is not attained at any point satisfying the given constraints. a | |
[-am, {x2}} 31l

30

20

10

1 1
55— 5 10
— 1 O -
—20+
FIGURE 3.24

A function for which a relative minimum has a function value greater than the function
value of a relative maximum
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For periodic functions, such as sine and cosine, Maximize and Minimize
generally do not indicate all extreme values.

Maximize[Sin[x], x]
{1.{x=3}}
Maximize[Cos[x], x]

{1, {x—0}}

3.2.6 Applied Max/Min Problems

Mathematica can be used to assist in solving maximization/minimization
problems encountered in a differential calculus course.

Example 3.2.17 A woman is located on one side of a body of water 4 miles wide. Her position is

Solution

directly across from a point on the other side of the body of water 16 miles from
her house, as shown in the following figure.

C

b o
5
20

If she can move across land at a rate of 10 miles per hour and move over
water at a rate of 6 miles per hour, find the least amount of time for her to reach
her house.

From the figure, we see that the woman will travel from A to B by land and then
from B to D by water. We wish to find the least time for her to complete the trip.

Let x denote the distance BC, where 0 < x < 16. Then, the distance AB is
given by 16 — x and, by the Pythagorean theorem, the distance BD is given by
Vx? + 42, Because rate x time = distance, time = distance /rate. Thus, the time to
travel from 4 to B is 5(16 - x), the time to travel from B to D is { vVx? + 16, and
the total time to complete the trip, as a function of x, is

time(x) = 1—10(16 -x)+ é\/xz +16, 0<x<16.
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3.0

2.8

2.6

2.4

2.2

2.0

0 5 10 15
FIGURE 3.25
Plot of time(x) = {;(16 = x) + § Vx? +16, 0<x <16

We must minimize the function #ime. First, we define time and then verify that time
has a minimum by graphing time on the interval [0, 16] in Figure 3.25.

Clear[time]

time[x_] = 8% + 1V/x2 + 16;

Plot[time[x], {x, 0, 16}, PlotRange — {{0, 16}, {2, 3}}]

Next, we compute the derivative of time and find the values of x for which
the derivative is 0 with Solve. The resulting output is named critnums using
ReplaceAll (\.).

Together [time'[x]]
5x-31/166x2
30V/166x2
critnums = Solve [time'[x]==0]
{{x—3}}

At this point, we can calculate the minimum time by calculating time[3].

time[3]
32
15

Alternatively, we demonstrate how to find the value of time[x] for the value(s) listed
in critnums.

time[x]/.x— 3
32
15

Regardless, we see that the minimum time to complete the trip is 32/15 hours.
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One of the more interesting applied max/min problems is the beam
problem. We present two solutions.

Example 3.2.18 (The Beam Problem). Find the exact length of the longest beam that can be
carried around a corner from a hallway 2 feet wide to a hallway that is 3 feet wide.
(See Figure 3.26.)

Solution \We assume that the beam has negligible thickness. Our first approach is algebraic.
Using Figure 3.26, which is generated with

Graphics primitives fix-1=x+2;
such as Point, Line, p1 = Plot[f[x], {x, 0, 4}, PlotStyle —>Thickness[.01], PlotRange - >{0, 6}];
and Text are discussed 2
in more detail in pz = . .
Cha Graphics[Line[{{1, 0}, {1, f[11}, {4, f[11}, {4, f[41}, {4, f[41},
pter 7. {0, 14T}

{0, 0}, {1, O}1};
p3 = Graphics[{Text[“2”,{. 5, .2}], {Text[“3”, {3.8, 4.5}1}}];
p4 = Graphics[{Dashing[{0.01, 0.01}], Line[{{O, f[01}, {1, f[0O1}}1}];
p5 = Graphics[{Text[“6”,{. 5, 2.25}], Text[“6”, {1.5, 3.25}]}];
p6 = Graphics[{Text[“x”,{. 9, 2.35}], Text[“y”, {2.5, 3.25}1}];
Show[p1, p2, p3, p4, p5, p6, Axes->None]

and the Pythagorean theorem, the total length of the beam is

L=V22+x2+/y?+32

By similar triangles,

FIGURE 3.26
The length of the beam is found using similar triangles




3.2 Differential Calculus

and the length of the beam, L, becomes

L(x) = \/4+x2+\/9+3—6, 0 <x < oo.
X

Observe that the length of the longest beam is obtained by minimizing L. (\Why?)
We ignore negative

and imaginary values Clear[l];
because length must I[x_] = Sqrt[2" 2 + x 2] + Sqrtly2 + 3" 2]/.y ->6/x
be a nonnegative real /9 + 3_;3 V41 x2
number. X
We use two different methods to solve L'(x) = 0. Differentiating
I'[Ix]
36 X

+

,/9+;L§x3 442
Solve [—12\/4 + X2 + x4/ 4;—;‘2==0, x]

{{X N —Qi}, {X _ 2|}’ {X N _22/331/3}’ {X N 22/331/3}}

p1 = x"8(9 + 36/x"2) - 1296(4 + x” 2)//Expand//Factor
9(4+x%) (-12+x%) (12+x%)
and solving L'(x) = 0 gives us

Solve[p1==0, x]

{{X _ —2i}, {X _ 2|}’ {X _ _(_3)1/322/3}’ {X _ (_3)1/322/3}’
{X N _(_2)2/331/3} ’

N [22/331/3]

2.28943

1 [22/331/3]

VO + 82283158 4 \/4 + 22113323

N[%]

7.02348

It follows that the length of the beam is L(27°3"%)=9+3.223.315 +
V4 +2-213.323 = /13 +9.223.3155 1 (.21/3.325 =702, (See Figure 3.27).

Plot[l[x], {x, 0, 20}, PlotRange —>{0, 20}, AspectRatio —->Automatic,
AxesLabel —>{*x”, “y”}]

Our second approach uses right triangle trigonometry. In terms of 6, the length of
the beam is given by

L) =2cscO+3sech, 0<60</2.
Differentiating gives us

L' (0 =—-2cscOcoth +3secHtan .

159
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101

>

0 5 10 15 20
FIGURE 3.27
Graph of L(x)

To avoid typing the 8 symbol, we define L as a function of .

Clear(l]
I[t-] = 2Csc|t] + 3Sec|t]
2Csc[t] + 3Seclt]

We now solve L' (§) = 0. First, multiply through by sin# and then by tan 6.

3secHtanf = 2 csch coth

3

2
tan’ 0 = = cot @
3
2
tan®f = =
3
2
tanf = {/j

In this case, observe that we cannot compute 6 exactly. However, we do not
need to do so. Let 0 <@ <a/2 be the unique solution of tanf = y/2/3. See

Figure 3.28. Using the identity tan® 6 + 1 = sec” 6, we find that sec 6 = /1 + {/4/9.
Similarly, because cot = ¢/3/2 and cot’ 0+ 1 = csc” 0, csc = /3/24/1 + v/4/9.

Hence, the length of the beam is



When you use Tooltip,
scrolling the cursor
over the plot will
identify the plot for
you.
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20

10

—10

720 L
FIGURE 3.28
Graph of L(#) and L'(6)

L(0)=2{/§\/1+</g+3\/1+ {/gz7.02.
2 9 9

Plot[Tooltip[{I[t], I'[t]}], {t, O, Pi/2}, PlotRange —->{- 20, 20},
PlotStyle —>{Black, Gray}]

In the next two examples, the constants do not have specific numerical
values.

Example 3.2.19 Find the volume of the right circular cone of maximum volume that can be inscribed

in a sphere of radius R.

Solution Try to avoid three-dimensional figures unless they are absolutely necessary. For this

problem, a cross section of the situation is sufficient. See Figure 3.29, which is
created with

p1 = ParametricPlot[{Cosl[t], Sin[t]}, {t, 0, 2Pi}];
p2 =
Graphics[
{Line[{{O0, 1}, {Cos[4Pi/3], Sin[4Pi/3]}, {Cos[5Pi/3], Sin[5Pi/3]},
{0, 1}}1, PointSize[.02], Point[{0, 0}],
Line[{{Cos[4Pi/3], Sin[4Pi/3]}, {0, 0}, {0, 1}}1,

Line[{{0, 0}, {0, Sin[4Pi/3]}}1}];

p3 = Graphics[{Text[“R”, {-.256, -.28}], Text[“R”, {-.04, .5}],
Text[“y”, {-.04, -.5}], Text[“x”,{-.2, —.8}1}];

Show[p1, p2, p3, AspectRatio —>Automatic, Ticks —>None, Axes —>None]
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Remember that R is
a constant.

FIGURE 3.29

Cross section of a right circular cone inscribed in a sphere

The volume, V, of a right circular cone with radius » and height b is V = %mfzh.
Using the notation in Figure 3.29, the volume is given by

V= %wxz(R +). G.49

However, by the Pythagorean theorem, x* +* = R* so x° = R* - " and equation
3.4 becomes

V= %”(Rz—yz)(R+y)= %”(R“I?Zy—l?yz—f), 35

s1 = Expand[(r*2-y"2)(r + y)]

P +r2y—ry2—y3
where 0 <y < R. V(p) is continuous on [0, R], so it will have minimum and max-
imum values on this interval. Moreover, the minimum and maximum values occur

either at the endpoints of the interval or at the critical numbers on the interior of
the interval. Differentiating equation (3.5) with respect to y gives us

v lqT(RZ—zR -3?) = 177(13—3 YR + )
ay =3 Y —2yT) = 3 Y. y
s2 = D[s1,y]
r? —2ry—3y?
and we see that dV/dy =0 if y = 1R or y = -R.
Factor[s2]
(r=3y)r+y)
Solve[s2==0, y]
{ty—=-h{y—s}}
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We ignore y = —R because —R is not in the interval [0,R]. Note that V(0) =
V(R) = 0. The maximum volume of the cone is

2 2
V(lR) = 177'- 3—R3 = 3—71R2 = 1.24R3.
3 37 27 81

s3=s1/.y - >r/3//Together
32
27

s3*1/3Pi

327>
81

N[%]
1.241121°

Example 3.2.20 (The Stayed-Wire Problem). Two poles D feet apart with heights I, feet and
L, feet are to be stayed by a wire as shown in Figure 3.30. Find the minimum
amount of wire required to stay the poles, as illustrated in Figure 3.30, which is
generated with

p1 = Graphics][Line[{{0, 0}, {0, 4}, {3.5, 0}, {9, 5.5}, {9, 0}, {0, O}}11;
p2 = Graphics[{Text[“L”,{. 2, 2}], Text[“L,”, {8.8, 2.75}],
Text[“x”,{1.75, .2}], Text[“x”,{1.75, .2}],

L2+ (D —xPP+ Ly L,

FIGURE 3.30
When the wire is stayed to minimize the length, the result is two similar triangles
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Solution

PowerExpand[expr]
expands out all
products and powers
assuming the variables
are real and positive.
That is, with
PowerExpand we
obtain that vx? =x
rather than Va2 = |x].

3 Calculus

Text [“VL42 + x2”,{1.75,2.75}| , Text |“4/(D-x)? + L,2”,{5.5,2.75}] ,
[V

Text[“D -x",{6.5, .2}]}];
Show[p1, p2]

Using the notation in Figure 3.30, the length of the wire, L, is

LX) = \/L12+x2+\/L22+(D—x)2, 0<x<D. GO

In the special case that L, = L,, the length of the wire to stay the beams is mini-
mized when the wire is placed halfway between the two beams, at a distance D/2
from each beam. Thus, we assume that the lengths of the beams are different;
we assume that I, < I,, as illustrated in Figure 3.30. We compute I'(x) and then
solve L'(x) = 0.

Clear(l]

I[x-] = Sart[x2 + 11" 2] + Sqrt[(d-x)"2 + 127 2]

V122 + (d=x2 + V12 + %2

I'[x]//Together

—d\/HZ+><2+><\/I12+><2+><\/d2+I22—2dx+><2

V112 132/ 42 +122 —2dx + X2
1[0)//PowerExpand

o+ Ve +122
I[d]//PowerExpand
Va2 +12 412
Solve[l'[x]==0, x]
{{X - %} : {X - dewz}}
The result indicates that x = L,D/ (L, +L,) minimizes L(x). (Note that we ignore

the other value because L, — L, < 0.) Moreover, the triangles formed by minimizing
L are similar triangles.

11 /(;22) //Simplify
1 +12
d

12 /(d- &) //Simplify

d

3.2.7 Antidifferentiation
Antiderivatives
f(x) is an antiderivative of f(x) if F ") = f(x). The symbol

J S dx
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Solution
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means “find all antiderivatives of f(x).” Because all antiderivatives of a given
function differ by a constant, we usually find an antiderivative, f(x), of f(x)
and then write

If(x)dx: F)+C,

where C represents an arbitrary constant. The command
Integrate[f[x],x]

attempts to find an antiderivative, F(x), of f(x). Instead of using Integrate,
you might prefer to use the Jli button on the BasicMathInput palette to
help you evaluate antiderivatives. Mathematica does not include the “+C”
that we include when writing f [ dx = f(x) + C. In the same way as D can
differentiate many functions, Integrate can antidifferentiate many functions.
However, antidifferentiation is a fundamentally difficult procedure so it is
not difficult to find functions f(x) for which the command Integrate[f[x],x]
returns unevaluated.

) e 1
Evaluate each of the following antiderivatives: (a) j;e"xdx, (b) [x®cosxdx,

2 .
2 > X —x+2 sinx
© [x"V1+x2dx, (d)Ix—3—x2+x—1dx' and (e) | p dx

Entering
Integrate[1/x 2 Exp[1/x], X]
_ek
1/x

shows us that [ Le“dx=—e""+C. To use the [} button, first click on the

X

button, fill in the blanks, and press Enter.

B

J-J..rx':x-p[ux]d.

Jlf:"!xxp[lix]dx | ‘
Jlf:‘zxxp[lfrjdy ‘

ox

Notice that Mathematica does not automatically include the arbitrary constant, C.
When computing several antiderivatives, you can use Map to apply Integrate to a
list of antiderivatives. However, because Integrate is threadable,

Map[Integrate[#, x]&, list]

returns the same result as Integrate[list, x], which we illustrate to compute (b), (c),
and (d).
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Example 3.2.22

Solution

Integrate[{x" 2Cos[x], x 2Sqrt[1 + x"2],

(x*2-x +2)/(x3-x"2 + x-1)},x]

{ZXCOS[X] +(-2+x%)Sin, § <\/1 +x2 (x +2x°) —AroSinh[x]) ,
—ArcTan[x] + Log[-1 + x|}

For (e), we see that there is not a “closed form” antiderivative of j ﬂCdx and the
X
result is given in terms of a definite integral, the sine integral function:
* sint
Si(x) = J —dt.
o ¢
Integrate[Sin[x]/x,x]
Sinintegral[x]

u-Substitutions

Usually, the first antidifferentiation technique discussed is the method of
u-substitution. Suppose that f(x) is an antiderivative of f(x). Given

[f (g@0) &' dlx,
we let u = g(x) so that du = g'(x) dx. Then,
[f(g(x)) g dx = Jf(u) du=F@)+C=F(gw)+C,

where F(x) is an antiderivative of f(x). After mastering u#-substitutions, the
integration by parts formula,

Judvzuv—[udu, G.7D

is introduced.

Evaluate [2"V4* - 1dx.

We use Integrate to evaluate the antiderivative. Notice that the result is very
complicated.

Integrate[2” x Sqrt[4" x-1],x]
(2

(ZW*ZXLOQ[Z]—Log[4]—MHypergeometricZH [1 Log2] Log[81,4x]

2’ Log[4]’ Log[4]
Log[4]) / (x/ —1+ #Log2]Log[1 6])

Proceeding by hand, we let u=2". Then, du=2"1n2dx or, equivalently,

1 x
—du =2 dx
In2
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D[2Ax, x]
2*Log[2]

1
so [2'V4 - ldx= = [ Vu*—1du. We now use Integrate to evaluate
[Vu?z —1du
s1 = Integrate[Sqrt[u”2-1], u]
fuv-1+u?-1Ilog [u+\/—1 +u2]
and then /. (ReplaceAll)/ to replace u with 2.
s1/u—2"x

21/ 21 4 22~ ILog [2x VT zzx]

Clearly, proceeding by hand results in a significantly simpler antiderivative than
using Integrate directly.

As we did with derivatives, with DynamicModule, we create a simple
dynamic that lets you compute the derivative and antiderivative of basic
functions and plot them on a standard viewing window, [— — 5,5] x [-5, 5].
The layout of Figure 3.31 is primarily determined by Panel, Column, and
Grid.

Panel[DynamicModule[{f = x" 2},
Column[{InputField[Dynamic[f]l], Grid[{{“FirstDerivative”,
Panel[Dynamic[D[f, x]//Simplify]]},
{“Antiderivative”,

Panel[Dynamic[Integratel[f, x]//Simplify]1}}1,
Dynamic[Plot[Evaluate[Tooltip[{f, D[f, x],

Integrate[f, x]}11, {x, - 5, 5}, PlotRange — {- 5, 5},

AspectRatio — Automatic]]}]], ImageSize — {300, 300}]

= a 3 Cespx]

First Dertvative ~3Sinx)

Second Derivative | -3 Cosfx)

FIGURE 3.31

Seeing the relationship between the derivative and antiderivative of a function and the
original function
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3.3 INTEGRAL CALCULUS

3.3.1 Area

In integral calculus courses, the definite integral is frequently motivated by
investigating the area under the graph of a positive continuous function
on a closed interval. Let y = f(x) be a nonnegative continuous function
on an interval [a,b] and let n be a positive integer. If we divide [a, b]
into 7n subintervals of equal length and let [xk_l,x,e] denote the kth subin-
terval, the length of each subinterval is (b — a)/n and x, = a + Ieb;—f. The
area bounded by the graphs of y = f(x), x = a, x = b, and the y-axis can be
approximated with the sum

> Fx) , 3.9

where x," € [x,_y,x,]. Typically, we take x," = x,_, =a+ (k- D=2 (the
left endpoint of the kth subinterval), x,” =x,_, =a + Ieb%“ (the right end-
point of the kth subinterval), or x," = 1 (x,_; +X;,) = a + 22k — D24 (the
midpoint of the kth subinterval). For these choices of xk*, (3.8) becomes

b-a - b-
“Zf<a+(k—1) “) 3.9
n ol n
b_“2f<a+kb_“>,and (3.10)
n ol n
b““i +lop-pnh=a G.1D
n k:lf 4 2 n ’ '

respectively. If y = f(x) is increasing on [a,b], (3.9) is an under approx-
imation and (3.10) is an upper approximation: (3.9) corresponds to an
approximation of the area using » inscribed rectangles; (3.10) corresponds
to an approximation of the area using 7z circumscribed rectangles. If y =
f() is decreasing on [a, b], (3.10) is an under approximation and (3.9) is
an upper approximation: (3.10) corresponds to an approximation of the
area using n inscribed rectangles; (3.9) corresponds to an approximation
of the area using 7n circumscribed rectangles.

In the following example, we define the functions leftsumlf[x],a,b,n],
middlesum[f[x],a,b,n], and rightsumlf[x],a,b,n] to compute (3.9), (3.11),
and (3.10), respectively, and leftbox[f[x],a,b,n], middlebox[f[x],a,b,n], and
rightbox[f[x],a,b,n] to generate the corresponding graphs. After you have
defined these functions, you can use them with functions y = f(x) that you
define.
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Remark 3.3 To define a function of a single variable, f(x) = expressioninx, enter

Example 3.3.1

Solution

N[number] returns
a numerical
approximation of
number.

fix_]=expression in x. To generate a basic plot of y =f(x) for a < x < b, enter
Plot[f[x],{x,a,b}].

Let f(x)=9—4x2. Approximate the area bounded by the graph of y=f(),
x =0, x=3/2, and the y-axis using (a) 100 inscribed and (b) 100 circumscribed
rectangles. (c) What is the exact value of the area?

We begin by defining and graphing y = f(x) in Figure 3.32.

fix_] = 9-4x"2;
Plot[f[x], {x, 0, 3/2}]

The first derivative, f'(x) = —8x, is negative on the interval, so f(x) is decreasing
on [0,3/2]. Thus, an approximation of the area using 100 inscribed rectangles is
given by (3.10) whereas an approximation of the area using 100 circumscribed
rectangles is given by (3.9). After definining leftsum, rightsum, and middlesum,
these values are computed using leftsum and rightsum. The use of middlesum is
illustrated as well. Approximations of the sums are obtained with N.

leftsum[f_, a_, b_, n_] := Module[{},

(b-a)/n Sum[f/.x->a + (k- 1)(b-a)/n, {k, 1, n}]];
rightsum[f_, a_, b_, n_] := Module[{},

(b-a)/n Sum[f/.x->a + k(b -a)/n, {k, 1, n}1];
middlesum([f_,a_, b_, n_] := Module[{},

(b-a)/n Sum[f/.x->a + 1/2(2k - 1)(b-a)/n, {k, 1, n}1];

0.2 0.4 0.6 0.8 1.0 1.2 1.4

FIGURE 3.32
f@o for 0 <x<3/2
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1100 = leftsum[f[x], 0, 3/2, 100]
N[%]

r100 = rightsum[f[x], 0, 3/2, 100]
N[%]

m100 = middlesum[f[x], 0, 3/2, 100]
N[%]

362691

40000
9.06728
357291
40000
8.93228

720009
80000

9.00011

Observe that these three values appear to be close to 9. In fact, 9 is the exact
value of the area of the region bounded by y = f(x), x =0, x = 3/2, and the y-
axis. To help us see why this is true, we define leftbox, middlebox, and rightbox
and then use these functions to visualize the situation using » =4, 16, and 32

rectangles in Figure 3.33.
It is not important

that you understand leftbox[f—, a_, b_, n_, opts___] := Module[{z, p1, recs, Is},
the syntax of these z[k_] = a + (b-a)k/n;

three functions at this p1 = Plot[f, {x, a, b}, PlotRange — All,

time. Once you have PlotStyle —>{{Thickness[.01], GrayLevel[.3]}},

entered the code, you
can use them to
visualize the process
for your own
functions, y = f(x).

DisplayFunction —>Identity];
recs = Table[Rectangle[{z[k - 1], 0}, {z[k], f/.x —>z[k - 11}], {k, 1, n}];
Is =
Table[Line[{{z[k - 1], 0}, {z[k - 1], f/.x = z[k - 11},
{z[K], f/.x—> z[k - 1]},
{z[k], 031, {k, 1, n}];
Show[Graphics[{GrayLevel[.8], recs}], Graphics[ls], p1, opts,
Axes —>Automatic, AspectRatio — 1,
DisplayFunction- > $DisplayFunction]]

rightbox[f_,a_, b_, n_, opts___] := Module[{z, p1, recs, Is},
z[k-] = a + (b-a)k/n;
p1 = Plot[f, {x, a, b}, PlotRange — All,
PlotStyle —> {{Thickness|[.01], GrayLevel[.3]}},
DisplayFunction > Identity];
recs = Table[Rectangle[{z[k - 1], 0}, {z[K], f/.x —> z[K]}],
{k, 1,n}];
Is =
Table[Line[{{z[k - 1], 0}, {z[k - 1], f/.x—> z[K]}, {z[Kk], f/.x—> z[K]},
{z[k], 03}, {k, 1, n}];
Show[Graphics[{GrayLevel[.8], recs}], Graphics|ls], p1, opts,
Axes —> Automatic, AspectRatio — 1,
DisplayFunction -> $DisplayFunction]]
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8 8| 8
6F 6 6F
4F 4+ 4k
2 2 2F
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.2 0.4 0.6 08 1.0 1.2 1.4 0.2 0.4 06 0.8 1.0 1.2 1.4 0.2 0.4 0.6 08 1.0 1.2 1.4
T TSg T —>>>
sk <<< sk *\* sk >>>
N Py
6 6 6
4+ 4+ 4k
2k 2 F 2k
1 1 1 1 Al 1 1 1 1 Al 1 1 1 1 Al
02 04 06 0.8 1.0 1.2 14 0.2 04 06 0.8 1.0 1.2 14 02 04 06 08 1.0 12 1.4
“‘< ----..‘~ --_---"-
s H NS sH My 8 H P
<<<<< ‘.\ >>>>
6 H 6 H 6 H
4 H 4 H 4 H
2 H 2 H 2 H
Al Il Al 1 [l 1l Al [l Al

0.2 0.4 06 08 1.0 1.2 1.4 0.2 0.4 06 0.8 1.0 1.2 1.4 0.2 0.4 06 08 1.0 1.2 1.4
FIGURE 3.33
S with 4, 16, and 32 rectangles

middlebox[f_, a_, b_, n_, opts___] := Module[{z, p1, recs, Is},

z[k_] = a + (b-a)k/n;

p1 = Plot[f, {x, a, b}, PlotRange — All,
PlotStyle —> {{Thickness[.01], GrayLevel[.3]}},
DisplayFunction -> Identity];

recs = Table[Rectangle[{z[k - 1], 0}, {z[k], f/.x —> 1/2(z[k - 1] + z[Kk])}],
{k, 1, n}];

Is = Table[Line[{{z[k - 1], 0}, {z[k - 1], f/.x —> 1/2(z[k - 1] + z[K])},

{z[K], f/.x—> 1/2(z[k - 1] + z[K])}, {z[K], O}}], {k, 1, n}];

Show[Graphics[{GrayLevel[.8], recs}], Graphics|ls], p1, opts,
Axes —> Automatic, AspectRatio — 1,
DisplayFunction -> $DisplayFunction]]
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somegraphs = {{leftbox [f[x], 0
middlebox [f[x], 0, £, 4, DisplayFunction — Identity|,
rightbox [f[x], 0, 2,4 DisplayFunction — Identity| },
{leftbox [f[x], 0, 2, 16, DisplayFunction — Identity| ,
middlebox [f[x], 0, 2,16, DisplayFunction — Identity|,
rightbox [f[x], 0, 2 16, DisplayFunction — Identity| },
{leftbox [f[x], 0, 2 2,32, DisplayFunction — Identity] ,
middlebox [f[x], 0, 2,32, DisplayFunction — Identity]|,
rightbox [f[x], 0, £, 32, DisplayFunction — Identity]| }};

Show[GraphicsGrid[somegraphs]]

, 2,4, DisplayFunction — Identity] ,

Notice that as » increases, the under approximations increase while the upper
approximations decrease.

These graphs help convince us that the limit of the sum as n — oo of the
areas of the inscribed and circumscribed rectangles is the same. We compute the
exact value of Eq. (3.9) with leftsum, evaluate and simplify the sum with Simplify,
and compute the limit as n — oo with Limit. We see that the limit is 9.

Is = leftsum[f[x], 0, 3/2, n]
Is2 = Simplify[ls]

Limit[ls2, n —> Infinity]
91 +n)(—-1+4n)

4n2
9 +n)(=1+4n)
4n2

Similar calculations are carried out for (3.10) and again we see that the limit is 9.
We conclude that the exact value of the area is 9.

rs = rightsum[f{x], 0, 3/2, n]
rs2 = Simplify[rs]
Limit[rs2, n—> Infinity]
9(—1+n)(1 +4n)

4n2
9(=1+n)(1 +4n)

4n2

For illustrative purposes, we confirm this result with middlesum.

ms = middlesum([f[x], 0, 3/2, n]
ms2 = Simplify[ms]

Limit[ms2, n—> Infinity]
9(1+8n°)

As llustrated previously, with Manipulate, you can experiment with different
functions and different n values. First, we define a set of “typical” functions.



How does the
Manipulate object
change if you remove
Transpose from the
command?

3.3 Integral Calculus

quad[x_] = 100-x"2;

cubic[x_] = 4/9x"3-49/9x" 2 + 100;
rational[x_] = 100/(x2 + 1);
root[x_] = Sqrt[10-x];

sin[x-] = 75Sin[Pi x/5];

Next, we use Manipulate to create an object that allows us to experiment with how
“typical” functions react to changes in z using left, middle, and right-hand endpoint
approximations for computations of Riemann sums. In the resulting Manipulate
object, n = 4 rectangles is the default; you can choose n-values from 0 to 100.
The value of the corresponding Riemann sum is shown below the graphic. See
Figure 3.34.

Manipulate[Show[GraphicsGrid[{{leftbox[f[x], 0, 10, n],

Graphics[{Inset[leftsum[f[x], 0, 10, n]//N, {0, 0}1}1},
{middlebox[f[x], 0, 10, n],
Graphics[{Inset[middlesum[f[x], 0, 10, n]//N, {0, 0}1}13,

—

quad || cubic | rational root || sin

100 100 100
80 80 80
60 60 60
40 40 40
20 20 20
1 1 1 1 1 1 1 1 1 1 1 1
2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
781.25 671.875 531.25
FIGURE 3.34

With Manipulate, we can investigate Riemann sum approximations and their graphical
representations for various functions
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{rightbox[f[x], 0, 10, n],
Graphics[{Inset[rightsum[f[x], 0, 10,n] / /N, {0, O}1}1}}//
Transposel], {{f, quad}, {quad, cubic, rational, root, sin }},
{{n, 4},0,100, 1}]

3.3.2 The Definite Integral

In integral calculus courses, we formally learn that the definite integral
of the function y = f(x) from x =a to x = b is

b n
J Feodx = lim > 7 () Ax,, (3.12)
a =Y k=1

provided that the limit exists. In equation (3.12), P={a =x, <x, <x, <
... <x, = b} is a partition of [a, ], | P| is the norm of P,

|P| = max{x, —x,_,|k=1,2,...,n},

Axy = X, — Xpo_y, and x," € [x,_1, %]
The Fundamental Theorem of Calculus provides the fundamental
relationship between differentiation and integration.

Theorem 6. (The Fundamental Theorem of Calculus). Suppose that
y =fx) is continuous on |a,D].

1. If f(x) = J;C S dt, then F is an antiderivative of f: F(x) = Jo.

2. If G is any antiderivative of f, then j: S dx = G(b) — G(a).
Mathematica’s Integrate command can compute many definite integrals. The
command

Integratel[f[x],{x,a,b}]

attempts to compute I: S () dx. Because integration is a fundamentally dif-
ficult procedure, it is easy to create integrals for which the exact value
cannot be found explicitly. In those cases, use N to obtain an approxima-
tion of its value or obtain a numerical approximation of the integral directly
with

NIntegrate[f[x],{x,a,b}]

In the same way as you use the I**} button to compute antiderivatives, you

P i
can use the ! button to compute definite integrals. If the result returned
is unevaluated, use N to obtain a numerical approximation of the value of
the integral or use Nintegrate.
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Example 3.3.2 Evaluate (a) [ (x*+1)//Xdx; (D) jo‘/qﬁxcosx2 dx; (© [T e*sin® 2xdx;

0
@ [! \/L%e_xz dx; and (¢) [°, Va du.

Solution We evaluate (a)-(c) directly with Integrate.

See Chapter 2,
Example 2.1.3.

Integrate[(x2 + 1)/Sqrt[x], {x, 1, 4}]
72
5

Integrate[x Cos[x" 2], {x, 0, Sart[Pi/2]}]
3

Integrate[Exp[Zx]Sin[2x]A2,{x,0,Pi}]

1 (=146

For (d), the result returned is in terms of the error function, Erf[x], which is
defined by the integral

P
Erf[x] = TJ e dr.
m Jo

Integrate[2/Sqrt[PilExp[-x"2],{x, 0, 1}]
Erf[1]

We use N to obtain an approximation of the value of the definite integral.

Integrate[2/Sqrt[Pi]Exp[-x"2], {x, 0, 1}]//N
0.842701

(e) Recall that Mathematica does not return a real number when we compute odd
roots of negative numbers, so the following result would be surprising to many
students in an introductory calculus course because it is complex.

Integrate[u” (1/3),{u, -1,0}]
%(_ -1)1/3

Therefore, we load the RealOnly package contained in the Miscellaneous
directory so that Mathematica returns the real-valued third root of u.

<< Miscellaneous'RealOnly’
Integrate[u” (1/3), {u, -1, 0}]
3

Improper integrals are computed using Integrate in the same way as other
definite integrals.
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Example 3.3.3 Evaluate () |

Solution

You do not need to
reload the RealOnly
package if you have
already loaded it
during your current
Mathematica session.

1 Inx o 2 2 o) 1 0 1
—dx; (b — dx; (C —dx; d — dx;
\/‘;x()J‘—oo\/’F_e x()lexz—l ()Jl)x2+‘x4
1 © 1

(e) j; ————dx; and (f) [ ———— dx.

{/(x_S)z xX2+x-06
(@ This is an improper integral because the integrand is discontinuous on the
interval [0, 1] but we see that the improper integral converges to —4.

0

Integrate[Log[x]/Sqrt[x], {x, 0, 1}]
-4

(b) This is an improper integral because the interval of integration is infinite but we
see that the improper integral converges to 2.

Integrate[2/Sqrt[Pi]Exp[- xA 2], {x, —Infinity, Infinity}]
2

(c) This is an improper integral because the integrand is discontinuous on the
interval of integration and because the interval of integration is infinite but we see
that the improper integral converges to /2.

Integrate[1/(x, Sqrt[x2-1]), {x, 1, Infinity}]

2

(d) As with (c), this is an improper integral because the integrand is discontinuous
on the interval of integration and because the interval of integration is infinite but
we see that the improper integral diverges to co.

Integrate[l/ (x"2+x"4), {x, 0, Infinity}] 97 ||
Integrate::idiv : Integral of - does not converge on {0, mj. > 1
x? 4 x4 J
Integrate::idiv : Integral of = = - does not converge on {0, « 1 ‘
x* + x* J
E
Integrate::idiv : Integral of — does not converge on {0, m}. »
x? o+ x* J |
General::stop: §
Purther output of Integrate::idiv will be suppressed during this calculation. = |
1 3
5 ax
o x4 x! _|_

(e) Recall that Mathematica does not return a real number when we compute
odd roots of negative numbers, so the following result would be surprising to
many students in an introductory calculus course because it contains imaginary
numbers.

Integrate[1/(x - 3) (2/3), {x, 2, 4}]
3-3(-1)"

Therefore, we load the RealOnly package contained in the Miscellaneous
directory so that Mathematica returns the real-valued third root of x — 3.
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<< Miscellaneous'RealOnly’
Integrate[1/(x-3)" (2/3), {x, 2, 4}]
6

(f) In this case, Mathematica warns us that the improper integral diverges.

Integrate[l/ (x"2+x~4), (x, 0, Infinity}] 17
Integrate::idiv : Integral of s - does not converge on 1
x® 4t
1 E]
n 1 Integral of - does not converge on {0, m}. = ]
x* . xt =
1
Integrate::idiv : Integral of - - does not converge on
x°+ x
General::stop:
Further output of Integrate::idiv will be suppressed during this calculation.
o 1 3 5
| ox
Jo xaxt |

To help us understand why the improper integral diverges, we note that

! =1 LI and
X+x-6 5\x-2 x+3

J 1 Jl 1 1 1 x =2
—  dxv=|=(— - dx=~In +C
x2+x-06 5\x—-2 x+3 5 x+3

Integrate[1/(x"2 + x-6),x]
1Log[-2 +x]- 1Log[3 +X]

Hence, the integral is improper because the interval of integration is infinite and
because the integrand is discontinuous on the interval of integration so

sl = Integrate[l /(x"2+x-6), {x, -Infinity, Infinity}] 17
1 3
Integrate::idiv : Integral of - does not converge on wy al. J
6+xex®
1 k|
— dx
6+x+x J_

Integrate[l/(x"2+x-6), x]

[— R |

1 1
Log[-2 + x] -SMq:.‘i'x:

5

Integrate[l/ (x*2+x-6), {x, -Infinity, -4}] 3

Log[6] g
5 4

Integrate[l/ (x"2+x-6), {x, -4, -3}]

e

Integrate::idiv : Integral of does not converge on 4, -3}. =
6+ xex?

[ T
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Example 3.3.4

Solution

[ 1 -4 1 -3 1
—  ax=| ——dx+| ———a
J_mx2+x—6 J_mx2+x—6 I_4x2+x—6 .

0 2

1

+ ——dx+ | —— d. 1
I_5x2+x—6 Lx2+x—6 v G139
+IS ! dx+J‘°° ! dx
2 X2 +x -6 3 X2+x-6

Evaluating each of these integrals,

Integrate[l/ (x*2+x-6), {x, -3, 0}]
1
Integrate::idiv : Integral of - does not converge on
6+x+x°

[S— |

o 1

Ji-Bamex?

S

Integrate[l/(x"2+x-6), (x, 0, 2}]

9]
1 3

Integrate::idiv: Integral of does not converge on {0, ]
Basx® J

ra 1 k|

d

Jo ~6+x+ X J
Integrate[l/(x*2+x-6), {x, 2, 3}] j]
l 3

Integrate::idiv : Integral of - does not converge on {2, 3}. = |
Gaxex 1]

o
® |
®

[+

L
s
T—

Integrate[l/ (x“2+x-6), {x, 3, Infinity}]
Log[6]
5

—

we conclude that the improper integral diverges because at least one of the
improper integrals in (3.13) diverges.

In many cases, Mathematica can help illustrate the steps carried out
when computing integrals using standard methods of integration such as
u-substitutions and integration by parts.

501 .
Evaluate (a) [¢ dx and (b) [ xsin 2x dx.
xVinx
3 1 1 3
(@) We let u=Inx. Then, du=1/xdx so [, dx = f? —du = ffu " du,
xvinx u

which we evaluate with Integrate.

Integrate[1/Sqrt[u],{u, 1, 3}]
2 ( 14 \/§)



The new lower limit
of integration is 1
because if x = e,
u=Ine=1. The
new upper limit of
integration is 3
because if x = eS,

u=lne3=3.

3.3 Integral Calculus

To evaluate (b), we let # = x= du = dx and dv = sin2xdx= v = —1 cos 2x.

u=X;

dv = Sin[2x];

du = D[x, x]

v = Integrate[Sin[2x], x]
1

- 3Cos[2X]

The results mean that
/4 1 /4 1 /4
J xsin2xdx = ——xC0s 2x + —J cos 2x dx
0 2 0 2 0

1 /4
=0+—J COSs 2x dx.
2 0

The resulting indefinite integral is evaluated with Integrate.

Integrate[x Sin[2x], x]
— IxCos[2x] + 1Sin[2x]

Alternatively, we can illustrate the integration by parts calculation.

u=X;
dv = Sin[2x];
du = D[x, x]

v = Integrate[Sin[2x], x]
’
- 3Cos[2x]

uv - Integrate[v du, x]
— IxCos[2x] + 1Sin[2x]

We use Integrate to evaluate the definite integral.

Integrate[x Sin[2x], {x, 0, Pi/4}]
1

7

3.3.3 Approximating Definite Integrals

Because integration is a fundamentally difficult procedure, Mathematica is
unable to compute a “closed form” of the value of many definite integrals. In
these cases, numerical integration can be used to obtain an approximation

of the definite integral using N together with Integrate or Nintegrate:
Nintegrate[f[x],{x,a,b}]

attempts to approximate fz £ dx.
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Example 3.3.5

Solution

We use the J’;
button to complete
the Integrate
command.

Example 3.3.6

Solution
We display a portion of
Mathematica’s error
message because it
indicates that Mathema-
tica cannot find all
solutions of the
equation. In this case,
sinx = cosx has
infinitely many solutions.

3 Calculus

3, 2 ,
Evaluate Ioﬁ e cosx’ dx.

In this case, Mathematica is unable to evaluate the integral with Integrate.
i1 = [ 7" Exp[-x?]Cos[x’]dx
1/3
[T eCos [*] dx

An approximation is obtained with N.

NI[i1]
0.701566

Instead of using Integrate followed by N, you can use Nintegrate to numerically
evaluate the integral.

Nintegrate[Exp[ - x?]Cos[x°], {x, 0, ="}
0.701566

returns the same result as that obtained using Integrate followed by N.

In some cases, you may wish to investigate particular numerical methods
that can be used to approximate integrals. To implement numerical meth-
ods such as Simpson’s rule or the trapezoidal rule, redefine the func-
tion leftsum (middlesum or rightsum) discussed previously to perform the
calculation for the desired method.

3.34 Area

Suppose that y = f(x) and y = g(x) are continuous on [a, b] and that f(x) >
g) for a < x < b. The area of the region bounded by the graphs of y =
[, y=gx), x=a,and x =0 is

b
A= J [/ - g@0]dx. (3.14)

Find the area between the graphs of y = sinx and y = cosx on the interval [0, 277].

We graph y = sinx and y = cosx on the interval [0, 27r] in Figure 3.35 with Plot. The
graph of y = cosx is dashed. Observe that including the option Filling->{1->{2}}
fills the region between the two plots.

Plot[{Sin[x], Cos[x]}, {x,0,27}, PlotStyle — {Black, Dashing[{0.01}]},
Filling —» {1 — {2}}, AspectRatio — Automatic]

To find the upper and lower limits of integration, we must solve the equation
sinx = cosx for x.
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10p~~o_
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-05F
-1.0F
FIGURE 3.35

y =sinx and y = cosx on the interval [0, 27].

Solve[5in[x] == Cos [x], x]

sed by Solve, so some solutions may not

olution information. >

For us the solutions of interest are valid for 0 < x < 27, which are x = w/4 and
x = 5m/4. We check that these are valid solutions of sinx = cosx with ==; in each
case the returned result is True.

Sin[7]==Cos[]]
Sin[Z]==Cos [¥]
True

True

Hence, the area of the region between the graphs is given by

577/4 27

[sinx — cosx] dx + J [cosx — sinx] dx. (3.15)

/4
A= J [cosx — sinx] dx+J
57T/4

0 /4

Notice that if we take advantage of symmetry we can simplify (3.15) to

sm/4
A= 2J [sinx — cosx] dx. (3.16)
/4

We evaluate (3.16) with Integrate to see that the area of the region between the
two graphs is 4v/2.

/ f (Cos[x]-Sin[x])dx + [ ? (Sin[x]-Cos|[x])dx + [ 25; (Cos[x] - Sin[x]) dx
4\@ 4 4
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In cases in which we cannot calculate the points of intersection of two
graphs exactly, we can frequently use FindRoot to approximate the points
of intersection.

Example 3.3.7 Let
D@0 = %x* -3+ 110 — 18 + 12x + 1
and
q@x) = —4x> + 28x% — 56x + 32.
Approximate the area of the region bounded by the graphs of y = p(x) and y = g(x).
Solution After defining p and g, we graph them on the interval [-1,5] in Figure 3.36 to

obtain an initial guess of the intersection points of the two graphs.
When you use Tooltip,

you can slide your Clear[p,q]

cursor over a plot and  p[x-] = 2 -3x* + 11x*-18x% + 12x + 1;

the function being qlx_] = -4x® + 28x2 - 56x + 32;

graphed is displayed. Plot[ Tooltip[{p[x], alxI}], {x, - 1, 5}, PlotStyle — {Black, Gray}]

The x-coordinates of the three intersection points are the solutions of the equation
PO = q(x). Although Mathematica can solve this equation exactly, approximate
solutions are more useful for the problem and obtained with NSolve.

Clear[p,q]

plx-] = % =3x* +11x3-18x2 + 12x + 1;

qlx-] = —4x® + 28x% -56x + 32;

Plot[ Tooltip[{p[x], alx1}, {x, — 1, 5}, PlotStyle — {Black, Gray}]

30

20}

10+

720_

FIGURE 3.36
p and g on the interval [-1,5].




Graphically, y is a
function of x,

¥ =y), if the graph
of y = y(x) passes
the vertical line test.
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intpts = NRoots[p[x]==q[x], x]
x==0.772058||x==1.5355-3.57094i||x==1.5355 + 3.57094i||
x==2.29182||x==3.86513

The numbers are extracted from the list with Part ([[...]]). For example, 0.772058
is the second part of the first part of intpts. Counting from left to right, 2.29182 is
the second part of the fourth part of intpts.

x1 = intpts[[1, 2]]
x2 = intpts[[4, 2]]
x3 = intpts][[5, 2]]
0.772058
2.29182

3.86513

Using the roots to the equation p(x) = g(x) and the graph we see that p(x) >
g for 0.772 <x<2.292 and g > px) for 2.292 < x < 3.865. Hence, an
approximation of the area bounded by p and ¢ is given by the sum

3.865

2.292
J [p@) - q(x) dX+J [q@) - p@o| dx.

0.772 2.292
These two integrals are computed with Integrate and Nintegrate. As expected,
the two values are the same.

1’(pIx1 - alx]) dx + | 3(alx] - plx]) dx

12.1951

Nintegrate[p[x] - q[x], {x, x1, x2}] + NIntegrate[q[x] - p[x], {x, x2, x3}]
12.1951

We conclude that the area is approximately 12.195.

Parametric Equations

If the curve, C, defined parametrically by x =x(@), y=y®, a<t<bisa
nonnegative continuous function of x and x(a) < x(b), the area under the
graph of C and above the x-axis is

x(D) b
J ydx:J YO Bdt.

x(a) a

Example 3.3.8 (The Astroid). Find the area enclosed by the astroid x=sin’#, y = cos’s,

0<t<2m.

Solution We begin by defining x and y and then graphing the astroid with ParametricPlot

in Figure 3.37.

x[t-] = Sin[t]"3;
ylt-] = Cos[t]"3;
ParametricPlot[{x[t], y[t]}, {t, 0, 2Pi}, AspectRatio —>Automatic]
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1.01

0.5

—-1.0F
FIGURE 3.37

The astroid x = sin® t,y= cos’ t, 0<t<2m.

Observe that x(0) = 0 and x(7r/2) = 1, and the graph of the astroid in the first quad-
rant is given by x = sin’ £, y = cos’ £, 0 < t < /2. Hence, the area of the astroid in
the first quadrant is given by

/2

/2
J yOX O dt=3 J sin? tcos® ¢ dt

0 0
and the total area is given by

/2 /2
A= 4J YOX @) dt = 12J sin® z cos’ tdt = %77: 1.178,
0 0

which is computed with Integrate and then approximated with N.
area = 4Integrate[y[t]x'[t], {t, O, Pi/2}]
3w

8
N[area]
1.1781




Example 3.3.9

Solution

3.3 Integral Calculus

Polar Coordinates

For problems involving “circular symmetry,” it is often easier to work in
polar coordinates. The relationship between (x,)) in rectangular coordi-
nates and (r, 0) in polar coordinates is given by

x=rcos  y=rsinf

and
? =x% +y? tanH:%.

If » = f(0) is continuous and nonnegative for a < 6 < 3, then the area A
of the region enclosed by the graphs of » = f(6), 6 = «, and 0 = 3 is

1

A= Ejf [£(6)]* a6 = Efrzde.

(Lemniscate of Bernoulli). The lemniscate of Bernoulli is given by
(xz +y2>2 = g (xz _yz)’

where a is a constant. (a) Graph the lemniscate of Bernoulli if @ = 2. (b) Find the
area of the region bounded by the lemniscate of Bernoulli.

This problem is much easier solved in polar coordinates, so we first convert the
equation from rectangular to polar coordinates with ReplaceAll (/.) and then solve
for r with Solve.

lofb = (x2 + y"2)A2==a 2(x*2-y" 2);
topolar = lofb/.{x—>rCos[t], y ->rSin[i]}

(P Cos[t]* + r*Sin[t]*)*==a’ (*Cos[t]* ~r*Sin[t]*)
Solve[topolar, r}//Simplify

{{rHO},{rHO},{rH - a2Cos[2t]},{rH \/aZTS[Z'[]}}

These results indicate that an equation of the lemniscate in polar coordinates is
7* = a* cos26. The graph of the lemniscate is then generated in Figure 3.38 (top)
using PolarPlot. The portion of the lemniscate in quadrant one is obtained by
graphing » = 2cos 26, 0 < 0 < 7/4.

p1 = PolarPlot[{-2Sqrt[Cos[2t]], 2Sqrt[Cos[2t]]}, {t, O, 2Pi}];
p2 = PolarPlot[2Sqrt[Cos[2t]], {t, O, Pi/4}];
Show[GraphicsColumn[{p1, p2}1]

Then, taking advantage of symmetry, the area of the lemniscate is given by

1 /4 /4 /4
A=2-—J ﬂd@:ZJ rzd6=2J a®cos20d = a?,

—Tr/4 0 0
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0.7

0.5
0.4
0.3F
0.2
0.1

o5 10 15 20
FIGURE 3.38

(Top) The lemniscate. (Bottom) The portion of the lemniscate in quadrant 1

which we calculate with Integrate.

Integrate[2a"2 Cos[21], {t, 0, Pi/4}]
2
a

3.3.6 Arc Length

Let y = f(x) be a function for which f’(x) is continuous on an interval
[a, b]. Then the arc length of the graph of y = f(x) from x =a to x = b is
given by

b 2
L=J <d_y> +1dx. (.17

a dx

The resulting definite integrals used for determining arc length are usu-
ally difficult to compute because they involve a radical. In these situations,
Mathematica is helpful with approximating solutions to these types of
problems.



Example 3.3.10

Solution

PowerExpand[expr]
simplifies radicals in
the expression expr
assuming that all
variables are positive.

C is smooth if both
X' (® and y'(®) are
continuous on (a, b)
and not simultane-
ously zero for

t € (a,b).

Example 3.3.11

3.3 Integral Calculus

4
Find the length of the graph of y = % + % from (@) x=1 to x=2 and from
X
b) x=-21t0 x=-1.

With no restrictions on the value of x, Va2 = |x|. Generally, Mathematica does not

automatically algebraically simplify 4/ (dy/dx)2 + 1 because Mathematica does not
know if x is positive or negative.

y[x_1 = x"4/8 + 1/(4x"2);
i1 = Factor[y'[x]"2 + 1]
(1 +x2)2(1 —x2 +x4)2

4x6

i2 = PowerExpand[Sqrt[i1]]
(1+22)(1-x2 +x%)

2x3

6 2 6
) ) 1 x +1 1 1 . ) -
In fact, for (b), x is negative so = u —_x . Mathematica simplifies
2 X0 2 ad
6 2 6

1 x +1 1 1 .

- ( ) _2Et and correctly evaluates the arc length integral (3.17)
2 gl 2 X3

—h

or (a).
Integrate[Sqrt[y'[x]*2 + 1], {x, 1, 2}]
?_(g
For (b), we compute the arc length integral (3.17).

Integrate[Sqrt[y'[x]*2 + 1], {x, -2, - 1}]
33
16

As we expect, both values are the same.

Parametric Equations

If the smooth curve, C, defined parametrically by x = x(®), y = y(®), t € [a, D]
is traversed exactly once as ¢ increases from £ =a to ¢ = b, the arc length

of C is given by
L—r w\' (D) (3.18)
. dt dt ’ '

Find the length of the graph of x = V2%, y =2 — 1¢, —2<r<2.

2

Solution For ilustrative purposes, we graph x = V2#*, y=2t- 1 for -3<1<3 and

-2 <t < 2 (thickened) in Figure 3.39.

x[t_] = t*2Sqrt[2]; y[t_] = 2t-1/2t"3;
p1 = ParametricPlot[{x[t], y[t]}, {t, -3, 3}];
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FIGURE 3.39

— 2 _ 1,3
x=V2t, y=2t-1r

p2 = ParametricPlot[{x[t], y[t]}, {t, — 2, 2}, PlotStyle —>Thickness[.01]];
Show[p1, p2, PlotRange —>All]

Mathematica is able to compute the exact value of the arc length (3.18), although
the result is quite complicated. For length considerations, the result of entering the
i1 command is not displayed here.

Factor[x'[t]"2 + y'[1]* 2]

1(4-4t+31%) (4 +4t+31°)

i1 = Integrate[2 Sqrt[x'[]2 + y'[t] " 2], {t, 0, 2}]
A more meaningful approximation is obtained with N or using Nintegrate.
N[i1]
13.7099 + O.i
Nintegrate[2Sqrt[x'[t]*2 + y'[t]"2],{t, 0, 2}]
13.7099

We conclude that the arc length is approximately 13.71.




Example 3.3.12

Solution

3.3 Integral Calculus

Polar Coordinates

If the smooth polar curve C given by r = f(0), o < 6 < 3 is traversed exactly
once as 6 increases from « to 3, the arc length of C is given by

B 2
L=J (%) +r2df (3.19)

a

Find the length of the graph of =6, 0 < 6 < 107
We begin by defining » and then graphing » with PolarPlot in Figure 3.40.

rit_-]1=t;
PolarPlot[r[t], {t, 0, 10Pi}, AspectRatio —>Automatic]

Using (8.19), the length of the graph of » is given by j;ow V1+60%2d6h. The exact
value is computed with Integrate

ev = Integrate[Sqrt[r'[]" 2 + r[t] 2], {t, 0, 10Pi}]
571+ 10072 + JArcSinh[107]

and then approximated with N.

FIGURE 3.40

r=0for0<0<10m
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Example 3.3.13

Solution

With Mathematica 6,
for three-dimensional
graphics, you can
adjust the viewpoint
by clicking on the
three-dimensional
graphics object and
dragging to the
desired viewing
angle.

N[ev]
495.801

We conclude that the length of the graph is approximately 495.8.

3.3.6 Solids of Revolution
Volume

Let y = f(x) be a nonnegative continuous function on [a, b]. The volume
of the solid of revolution obtained by revolving the region bounded by the
graphs of y = f(x), x = a, x = b, and the x-axis about the x-axis is given by

b
ver| o]’ ax (3.20)

If 0 < a < b, the volume of the solid of revolution obtained by revolving
the region bounded by the graphs of y = f(x), x = a, x = b, and the x-axis
about the y-axis is given by

b
V= 27TJ X f(x)dx. (3.2

a

Let g(x) = asin”x. Find the volume of the solid obtained by revolving the region
bounded by the graphs of y = g(x), x = 0, x = 7, and the x-axis about (a) the x-axis
and (b) the y-axis.

After defining g, we graph g on the interval [0, 7] in Figure 3.41(a).

glx-] = xSin[x]2;
p1 = Plot[g[x], {x, 0, Pi}, AspectRatio —>Automatic];

05 1.0 15 20 25 3.0

a

FIGURE 3.41

(@) gtx) for 0 <x < . (b) gx) revolved about the x-axis. (C) gx) revolved about the
y-axis
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The volume of the solid obtained by revolving the region about the x-axis is given
by (3.20), whereas the volume of the solid obtained by revolving the region about
the y-axis is given by (3.21). These integrals are computed with Integrate and
named xvol and yvol, respectively. We use N to approximate each volume.

xvol = Integrate[Pi g[x]" 2, {x, 0, Pi}]
N[xvol]

a (=156 +877)

9.86295

yvol = Integrate[2 Pi x g[x], {x, 0, Pi}]
N[yvol]

2—377'2 ( -3+ 2772)

27.5349

We can use ParametricPlot3D to visualize the resulting solids by parametrically
graphing the equations given by

X =rCost
y=rsint
z=g(

for » between 0 and 7 and ¢ between —7 and 7 to visualize the graph of the solid
obtained by revolving the region about the y-axis and by parametrically graphing
the equations given by

xX=r
y =g cost
z=gmsint

for » between 0 and 7 and ¢ between —m and 7 to visualize the graph of the
solid obtained by revolving the region about the x-axis. (See Figures 3.41(b) and
3.41(c).) In this case, we identify the z-axis as the y-axis. Notice that we are
simply using polar coordinates for the x- and y-coordinates, and the height above
the x,y-plane is given by z = g(») because r is replacing x in the new coordinate
system.
p2 = ParametricPlot3D[{r, g[r]Coslt], g[r]Sin[t]}, {r, O, Pi},
{t, 0, 2Pi}, PlotPoints —> {30, 30}];
p3 = ParametricPlot3D[{r CosIt], r Sin[t], g[r1}, {r, O, Pi}, {t, O, 2Pi},
PlotPoints —> {30, 30}];

p1, p2, and p3 are shown together side-by-side in Figure 3.41 using Show
together with GraphicsRow.

Show[GraphicsRow[{p1, p2, p3}]1]

‘We now demonstrate a volume problem that requires the method of disks.
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Example 3.3.14

Solution

Let f(x)=e‘(x‘5)zc°s[4(x‘3)]. Approximate the volume of the solid obtained by
revolving the region bounded by the graphs of y = f(x), x=1, x=5, and the
x-axis about the x-axis.

Proceeding as in the previous example, we first define and graph f on the interval
[1,5] in Figure 3.42(a).

f[x_] = Exp[- (x-3)*2Cos[4(x-3)]];
p1 = Plot[f[x], {x, 1, 5}, AspectRatio —>Automatic];

In this case, an approximation is desired so we use Nintegrate to approximate the
integral v = LS T [f(x)]2 dx.

Nintegrate[Pi f[x]" 2, {x, 1, 5}]
16.0762

In the same manner as before, ParametricPlot3D can be used to visualize the
resulting solid by graphing the set of equations given parametrically by

x=r
y = f(r)cost
z= f(r)sint

for r between 1 and 5 and t between O and 2. In this case, polar coordinates
are used in the y, z-plane, with the distance from the x-axis given by f(x). Because
r replaces x in the new coordinate system, f(x) becomes f(r) in these equations.
See Figure 3.42(b).

20+
1.5}
1.0
0.5
2 4 5
a
FIGURE 3.42

(@) f@) for 1 <x <5. (b) f(x) revolved about the x-axis



Example 3.3.15 Let f(x) = exp (-2(x - 2)°) + exp (~(x = 9°) for 0 < x < 6. Find the minimum and

Solution (a) Although Maximize and Minimize cannot find the exact maximum and minimum

NMaximize and
NMinimize work in
the same way as
Maximize and
Minimize but return
approximations
rather than exact
results.

3.3 Integral Calculus

p2 = ParametricPlot3D[{r, f[r]Cosl[t], f[r]Sin[t]}, {r, 1, 5},
{t, 0, 2Pi}, PlotPoints —>{45, 35}];

Show[GraphicsRow[{p1, p2}]1]

When revolving a curve about the j-axis, you can use RevolutionPlot3D

rather than the parametrization given previously.

maximum values of f(x) on [0, 6].

values, using N or NMaximize and NMinimize gives accurate approximations.
fIx_] = Exp[-2(x-2)"2] + Exp[- (x-4)"2];
Maximize[f[x], x]
Maximize [e‘(“‘*x)2 + e‘2(‘2*x’2,x]
Maximize[f[x], x]//N
{1.01903, {x — 2.01962} }
NMaximize[{f[x], 0 < x < 6}, x]
{1.00034, {x — 3.99864}}
Minimize[{f[x], 0 < x < 6}, x]
Minimize [{e‘(“‘*x’z re 229 g <y < 6} ,x]

Minimize[{f[x], 0 < x < 6}, x]//N
{0.495486, {x — 2.92167}}

NMinimize[{f[x], 0 < x < 6}, x]//N
{0.495486, {x — 2.92167}}

We double check these results by graphing f(x) and f'(x) in Figure 3.43 and then

using FindRoot to approximate the critical numbers.

1.0
0.8
0.6
0.4
0.2

FIGURE 3.43

We use the graph of f'(x) to help us estimate the initial values to approximate the
critical numbers with FindRoot
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pf1 = Plot[f[x], {x, 0, 6}]

pf2 = Plot[Tooltip[{f[x], f' [x]}], {x, 0, 6}1
Show[GraphicsRow[{pf1, pf2}1]
Map[FindRoot[f [x]==0, {x, #1}]1&, {2, 3, 4}]

{{x — 2.01962}, {x — 2.92167}, {x — 3.99864}}

(b) Mathematica finds the exact volume of the solids although the results are
expressed in terms of the Error function, Erf.

Integrate[Pi x f[x], {x, 0, 6}]
(=1 +26'° +** —26*° + 26% /7 (AErf[2] + 4Erf[4]

+V2(Erf[2v2] + Erf[4v2])))

Nintegrate[Pi x f[x], {x, 0, 6}]
30.0673

Integrate[Pi f[x]* 2, {x, 0, 6}]
L% (3e¥ (Erfl4] + Erf[8] + V2(Erf[2v2] + Erf[4v/2]))

12873

-ava(Edl ] + )

Nintegrate[Pi f[x]"2, {x, 0, 6}]
7.1682

To visualize the solid revolved about the y-axis, we use RevolutionPlot3D in p1.
We generate the curve in p2, a set of axes, and a representative “slice” of the
curve. See Figure 3.44(a). Next, we show the solid together with a representative
shell. See Figure 3.44(b).

p1 = RevolutionPlot3D[f[x], {x, 1, 5},
BoxRatios — {2, 2, 1}, PlotRange — {{-5, 5}, {- 5, 5}, {0, 5/4}},
Mesh — None, PlotStyle — Opacity[.4],
ColorFunction — “LightTemperatureMap”];
p2 = ParametricPlot3D[{x, 0, Exp[ - 2(x-2)" 2] + Exp[- (x-4)" 2]},
{x, 1,5}, {t, 0, 2Pi},

FIGURE 3.44

(@) The solid. (b) The solid with a “typical” shell. (c) Several shells



3.3 Integral Calculus

PlotStyle — Thickness[.05], BoxRatios — {2, 2, 1},
Axes — Automatic, Boxed — False];
p3 = ParametricPlot3D[{x, 0, 0}, {x, - 5, 5}, {t, 0, 2Pi},
PlotStyle — {Gray, Thickness[.075]}, BoxRatios — {2, 2, 1},
Axes — Automatic, Boxed — False];
p4 = ParametricPlot3D[{0, 0, x}, {x, 0, 5/4}, {t, 0, 2Pi},
PlotStyle — {Gray, Thickness[.1]}, BoxRatios — {2, 2, 1},
Axes — Automatic, Boxed — False];
p5 = Graphics3D[{Gray, Thickness[.01], Line[{{3.6, 0, 0},
{3.6,0, Exp[-2(3.6 -2)"2] + Exp[- (3.6 -4) 2111};
p6 = ParametricPlot3D[{3.6Cos|[t], 3.6Sin[t], z}, {t, 0, 2Pi},
{z,0, Exp[-2(3.6 - 2)" 2] + Exp[ - (3.6 - 4)" 2]}, Mesh — None,
PlotStyle — Opacity[.8], ColorFunction — “TemperatureMap”];
g1 = Show[p1, p2, p3, p4, p5, Boxed — False, Axes — None]
g2 = Show[p1, p2, p3, p4, p5, p6, Boxed — False, Axes — None]

Finally, we show the solid together with several shells in Figure 3.44(c).

p7 = Table[ParametricPlot3D[{sp[[i]]CosIt], sp[[il]Sin[t], z},
{t, 0, 2Pi},
{z,0, Exp[-2(sp[[ill -2)" 2] + Exp[ - (sp[[il] - 4)* 21},
Mesh — None,

PlotStyle — Opacityl[.8],

ColorFunction — “TemperatureMap”], {i, 1, Length[sp]}];
g3 = Show[p1, p2, p3, p4, p5, p7, Boxed — False, Axes — None]
Show[GraphicsRow[{g1, g2, g3}]]

With a Do loop you can generate an animation of the process.

Do[p8 = ParametricPlot3D[{i Cos[t], i Bin[t], =z}, {t, 0, 2Pi},
{z, 0, Exp[-2 (1-2)“2] +Exp[-(i-4)“2]}, Mesh -+ None,
PlotStyle -+ Opacity[.8], ColorFunction + "TemperatureMap”];

Print [Show([pl, p2, p3, p4, p5, p8, Boxed -+ False, Axes + None]],
{i, 1.1, 4.9, 3.8/29}]

-
g
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For revolving f(x) about the x-axis, we proceed in much the same way. First,
we plot f(x) with a set of axes in space.

f[x_] = Exp[-2(x-2)"2] + Exp[- (x-4)"2];
p1 = ParametricPlot3D[{x, 0, f[x]}, {x, 0, 6}, PlotStyle — {Thick, Black},
PlotRange — {{0, 6}, {-3/2, 3/2}, {- 3/2, 3/2}}, BoxRatios — {1, 1, 1}];
p1b = ParametricPlot3D[{x, 0, — f[x]}, {x, O, 6}, PlotStyle — {Thick, Black},
PlotRange — {{0, 6}, {-3/2, 3/2}, {- 3/2, 3/2}}, BoxRatios — {1, 1, 1}];
p2 = ParametricPlot3D[{x, 0, 0}, {x, O, 6}, {t, 0, 2Pi},
PlotStyle — {Gray, Thickness[.075]},
PlotRange — {{0, 6}, {-3/2, 3/2}, {- 3/2, 3/2}}, BoxRatios — {1, 1, 1}];
p3 = ParametricPlot3D[{0, 0, x}, {x, —3/2, 3/2},{t, 0, 2Pi},
PlotStyle — {Gray, Thickness[.1]},
PlotRange — {{0, 6}, {-3/2, 3/2}, { - 3/2, 3/2}}, BoxRatios — {1, 1, 1}];
Show[p1, p1b, p2, p3]

Next, we generate a basic plot of the solid in p4 and then a set of disks inside
the solid in t3d.

p4 = ParametricPlot3D[{r, f[r]ICosl[t], f[r]Sin[t]},
{r, 0,6}, {t, 0, 2Pi}, PlotRange — {{0, 6}, {—3/2, 3/2},{-3/2, 3/2}},
BoxRatios — {1, 1, 1}]
t3d = Table[ParametricPlot3D[{x, rf[x]Cos[t], rf[x]Sin[t]}, {r, 0, 1},
{t, 0, 2Pi}, PlotRange — {{0, 6}, {—3/2, 3/2},{- 3/2, 3/2}},
BoxRatios — {1, 1, 1}, ColorFunction — “TemperatureMap”, Mesh — 5],
{x, 0, 6, 6/14}];

Two variations of the solid are plotted in p5 and p6. In each case, we use
MeshFunctions to have the contour lines (mesh) correspond to f(x) values rather
than the rectangular default mesh. In p6 the solid is made transparent with the
Opacity option.

p5 = ParametricPlot3D[{r, f[r]Coslt], f[r1Sin[t]},
{r, 0, 6}, {t, 0, 2Pi}, PlotRange — {{0, 6}, {-3/2, 3/2},{-3/2, 3/2}},
BoxRatios — {1, 1, 1}, MeshFunctions —>{#1&}, Mesh — 60]
p6 = ParametricPlot3D[{r, f[rICosl[t], f[r]Sin[t]},
{r, 0, 6}, {t, 0, 2Pi}, PlotRange — {{0, 6}, {-3/2, 3/2},
{-3/2,3/2}},
BoxRatios — {1, 1, 1}, MeshFunctions —>{#1&}, Mesh — 25,
PlotStyle — Opacity[.2],
MeshStyle — {Gray, Thick}];
Show[p1, p1b, p2, p3, p6, t3d]

Several combinations of the images are shown in Figures 3.45 and 3.46.
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FIGURE 3.45

(a) Seeing f(x) on the solid. (b) Disks in the solid

FIGURE 3.46

(@) f(» in space. (b) The basic solid. (c) Contours based on f(x) values. (d) Seeing
[ on the solid
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Example 3.3.16

Show[GraphicsRow[{Show[p1, p1b, p2, p3, p6],
Show[p1, p1b, p2, p3, p6, t3d]}1]

Show|[GraphicsGrid[{{Show[p1, p1b, p2, p3], p4},
{p5, Show[p1, p1b, p2, p3, p6]}]

To help identify regions, RegionPlot[constraints,{x,a,b},{y,a,b}] attempts
to shade the region in the rectangle [a,b] x [c,d] that satisfies the con-
straints in constraints.

Let g(x) = Vx, b(x) = x%, and R be the region bounded by the graphs of g(x) and
bh(x). Find the volume of the solid obtained by revolving R about (a) the x-axis and
(b) the y-axis.

Solution We illustrate the use of RegionPlot to help us see R. See Figure 3.47.

g[x-] = Sqrt[x];
h[x-] = x2;
pia = Plot[{Sqrt[x], x" 2}, {x, 0, 2},

PlotRange — {{0, 2}, {0, 2}}, AspectRatio — Automatic]
pib = RegionPIot[x"2 <y < Sqrt[x], {x, 0, 2}, {y, 0, 2}]
Show[{pia, p1b}]
Show[GraphicsRow[{p1a, p1b, Show[{p1a, p1b}]}]]

We plot the solids with ParametricPlot3D and contour lines along the function
values using the MeshFunctions option in Figure 3.48.

p4 = ParametricPlot3D[{{r, g[r]Cos[t], g[rISin[t]},
{r, h[r]Coslt], h[r]Sin[t]}},
{r, 0, 1}, {t, 0, 2Pi}, PlotRange — {{0, 3/2}, { - 5/4, 5/4}, {- 5/4, 5/4}},
BoxRatios — {1, 1, 1}, MeshFunctions —>{#1&}]

2.0 20F T T T 5 20
1.5 1.5¢ 1 15
1.0 1.0F ] 1.0

0.5 05¢ 7 05
0.0 [N O] = B I A 0.0

0.0 05 10 15 20 00 05 1.0 15 20 0.0 05 10 15 20
a b c
FIGURE 3.47

(@) Graphs of f(x) and g@). (b) The region in [0,2] x [0,2] for which &% < y < V/x.
(c) The two plots displayed together
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FIGURE 3.48

(@) The solid formed by revolving R about the x-axis. (b) The solid formed by
revolving R about the y-axis

p5 = ParametricPlot3D[{{rCos[t], rSin[t], g[r]},
{rCoslt], rSin[t], h[r]}},
{r, 0, 1},{t, 0, 2Pi}, PlotRange — {{-5/4,5/4},{-5/4,5/4},{-1/4,9/4}},
BoxRatios — {1, 1, 1}, MeshFunctions —>{#1&}]
Show[GraphicsRow[{p4, p5}]]

The volume of each solid is then found with Integrate and approximated with N.

Integrate[Pi(g[x]*2-h[x]"2), {x, 0, 1}]
C%T

N[%]

0.942478

Integrate[Pix(g[x] - h[x]), {x, 0, 1}]

%

N[%]

0.471239

Surface Area

Let y = f(x) be a nonnegative function for which f '(x) is continuous on an
interval [a,b]. Then the surface area of the solid of revolution obtained
by revolving the region bounded by the graphs of y = f(x), x =a, x =D,
and the x-axis about the x-axis is given by

b
sS4 = ZW-[ FEV 1+ [f @] ax. (3.22)
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Example 3.3.17 (Gabriel's Horn). Gabriel’s horn is the solid of revolution obtained by revolving the
area of the region bounded by y = 1/x and the x-axis for x > 1 about the x-axis. Show
that the surface area of Gabriel's horn is infinite but that its volume is finite.

Solution After defining f(x) = 1/x, we use ParametricPlot3D to visualize a portion of
Gabriel's horn in Figure 3.49.

f[x-] = 1/x;
ParametricPlot3D[{r, f[r]Cosl[t], f[r]Sin[t]}, {r, 1, 10}, {t, O, 2Pi},
PlotPoints —>{40, 40}, ViewPoint —>{- 1.509, - 2.739, 1.294}]

Using Eq. (3.22), the surface area of Gabriel's horn is given by the improper integral

©1 1 L 1
SA=2 —\/1+ —dx=2mlim | —y/1+— dx.
7TJl X xt L—>00L.x‘ x4

step1 = Integrate[2Pi f{[x]Sqrt[1 + f’[x]’\2],{x, 1, capl}]
2
2mrlf [% < 18&(Re[capl] > 0||Im[capl] # 0),
\ /1+$ ( -/ 1+cap\4+capI2ArcSinh[cap\Z])

2\/1 +capl4

! (\@—Arosmhm) +

1+l4
==, {x, 1, capl},

Integrate [

Assumptions —! (% < 188&(Re[capl] > 0||Im[capl] 710))]]

Limit[step1, capl —>Infinity]

oo
On the other hand, using Eqg. (8.20) the volume of Gabriel's horn is given by the
improper integral

oo 1 L 1
x L X

1
which converges to .

05
0.0 1
—05F |-
\\ |
NL—
0
FIGURE 3.49

A portion of Gabriel's horn
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step1 = Integrate[Pi f[x]" 2, {x, 1, capl}]
if [Re[capl] > 0ffimlcapl] #0, 1~ &,
Integrate [2—2 {x, 1, capl}, Assumptions —!(Re[capl] > O||Im[capl] ;ZO)H
Limit[step1, capl —>Infinity]

v

Integrate[Pi f[x]A 2,{x, 1, Infinity}]

a

3.4 SERIES

A sequence {a,,} is
monotonic if {a,} is

increasing (a,,, > a,,
for all n) or
decreasing (a,,,, < a,,

for all n).

Example 3.4.1

Remark 3.4

3.4.1 Introduction to Sequences and Series

Sequences and series are usually discussed in the third quarter or second
semester of introductory calculus courses. Most students find that it is one
of the most difficult topics covered in calculus. A sequence is a function
with domain consisting of the positive integers. The terms of the sequence
{a,} are a,, a,, as, .... The nth term is a,; the (n + Dst term is a,,,,. If
lim,,_,, a, = L, we say that {a,,} converges to L. If {a,,} does not converge,
{a,} diverges. We can sometimes prove that a sequence converges by
applying the following theorem.

Theorem 7. Every bounded monotonic sequence converges.
In particular, Theorem 7 gives us the following special cases.

1. If {a,} has positive terms and is eventually decreasing, {a,}
converges.
2. If {a,} has negative terms and is eventually increasing {a, } converges.

After you have defined a sequence, use Table to compute the first few terms
of the sequence.

1. Table[a[n],{n,1,m}] returns the list {a,, a,, a;, ...
2. Table[a[n],{n,k,m}] returns {a,, a1, Ap,2; - -

-
oy A}

n

0
If a, = 5_' show that lim,,_, a, = 0.
n!

An extensive database of integer sequences can be found at the On Line Encyclopedia
of Integer Sequences,

http://www.research.att.com/~njas/sequences/Seis.html
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Solution We remark that the symbol n! in the denominator of a, represents the

factorial sequence:
n=n-nm-D-n-2)-----2-1.

We begin by defining a,, and then computing the first few terms of the sequence
with Table.

a[n_]:=50"n/n};
afewterms = Table[a[n], {n, 1, 10}]

62500 781250 7812500 195312500 9765625000
{50, 1250, 82500 781250 7812500 | 190812500 9700825000,

61035156250 3051757812500 15258789062500}
63 ! 567 ’ 567

N[afewterms]
{50.,1250.,20833.3,260417.,2.60417 x 106,2.17014 x 107,
1.5501 x 108,9.68812 x 10%,5.38229 x 10°,2.69114 x 10'°}

The first few terms increase in magnitude. In fact, this is further confirmed by
graphing the first few terms of the sequence with ListPlot in Figure 3.50(a). Based
on the graph and the values of the first few terms we might incorrectly conclude
that the sequence diverges.

p1 = ListPlot[afewterms];

n+l

0 a 0
0, =% 30 Because so/m+ D <1 for

n+1 "  a, n+l

n > 49, we conclude that the sequence is decreasing for n > 49. Because it has
positive terms, it is bounded below by 0 so the sequence converges by Theorem 7.
Let L =1lim a, . Then,

n—oo “'n*

However, notice that a

lim a,, , = lim a
n—oo M o n+1 "
L= lim
n—oo 17+ 1
L=0.
1.x10" [ Kt
25x10° F SN
8.x10° | R .
2.x10% | . .
9 [ .
6.x10 . 15x10° F .‘ .
.
9 L
4,X10 1.x10%° F : .
.
2.x10° | 5.x10" F ..° '...
. .l. '.
4 4 4 . 1 1 4 " od? L 1 1 %0n00s
2 4 6 8 10 10 20 30 40 50 60 70
a b

FIGURE 3.50

(a) The first few terms of a,, (o) The first 75 terms of a,,



Example 3.4.2

Solution

3.4 Series

When we graph a larger number of terms, it is clear that the limit is 0. (See Figure
3.50(b).) It is a good exercise to show that for any real value of x, lim,,_, Z— =0.
p2 = ListPlot[Evaluate[ Table[a[k], {k, 1, 75}1]1];
Show[GraphicsRow[{p1, p2}]]
An infinite series is a series of the form
Y a, (3.23)
where {a,} is a sequence. The nth partial sum of (3.23) is
Z =a,+a,+--+a,. 3.249)

Notice that the partial sums of the series (3.23) form a sequence {s,,}.
Hence, we say that the infinite series (3.23) converges to L if the sequence
of partial sums {s,} converges to L and write

Z a, =L.
k=1

The infinite series (3.23) diverges if the sequence of partial sums diverges.
Given the infinite series (3.23),

Sumlalk], {k, 1,n}]

calculates the nth partial sum (3.24). In some cases, if the infinite series
(3.23) converges,

Sumlalk], {k, 1, Infinity}]
can compute the value of the infinite sum. In addition to using Sum to

compute finitie and infinite sums, you can use the | button on the Basic-
MathInput palette to calculate sums. You should think of the Sum function
as a “fragile” command and be certain to carefully examine its results.

Determine whether each series converges or diverges. If the series converges, find
its sum. (@ Y2, -D*; (b) ¥, kzi—l (© X ar.
For (a), we compute the nth partial sum (3.24) in sn with Sum.

sn = Sum[(-1)" (k + 1), {k, 1,n}]

3 (1=(=1")

Notice that the odd partial sums are 1: s,,,, = 1 (D" +1)=1la+D =1,
whereas the even partial sums are 0: s,, =3 ((-D*"*' +1) = -1+ D =0. We
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confirm that the limit of the partial sums does not exist with Limit. Mathematica's
result indicates that it cannot determine the limit. The series diverges.

Limit[sn, n — Infinity]
% (1 _GQiIntervaI[{O,W}])

Similarly, when we attempt to compute the infinite sum with Sum, Mathematica

is able to determine that the partial sums diverge, which means that the infinite
series diverges.

sum[(-1)"(k + 1), {k, 1, Infinity}]
Sum::div : Sum does not converge.))
Zg(_ 1)1+k

For (b), we have a telescoping series. Using partial fractions,

1 1 1 1 1
={l1-=)+|(==-=)+[=-=-=)+
3 2 4 3 5
1 1
+ — +...’
n-1 n+1

we see that the nth partial sum is given by

1 1
+ _——
<n—2 n)

k:

Il
N

We perform the same steps with Mathematica using Sum, Apart, and Limit.
Apart computes the

partial fraction sn = Sum[1/(k-1)-1/(k + 1),{k, 2, n}]
decomposition of a (- 1+n)2+3n)
. . 2n(1+n)
rational expression.
Apart[sn]
s_1__1
2 n  14n

Limit[sn, n - Infinity]

3

2
(0) A series of the form Y52 ar* is called a geometric series. We compute the
nth partial sum of the geometric series with Sum.

sn = Sum[ar’k, {k, 0, n}]
a(-1+r"*")
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When using Limit to determine the limit of s,, as » — oo, we see that Mathematica
returns the limit unevaluated because Mathematica does not know the value of r.

Limit[sn, n — Infinity]

a(—1+r
=14

1+n)

Limit [

,n~>00]

In fact, the geometric series diverges if [r| > 1 and converges if |r| < 1. Observe that
if we simply compute the sum with Sum, Mathematica returns a/(1 — r), which is
correct if || <1 but incorrect if || > 1.

Sum[ar”k, {k, 0, Infinity}]

_a_
1-r

However, the result of entering

Sum[(-5/3)"k, {k, 0, Infinity}]

Sum::div : Sumdoesnotconverge.))

5 (-8)
is correct because the series E,‘;‘;O(—g)k is geometric with |r|=5/3>1 and,
consequently, diverges. Similarly,

Sum[9(1/10)"k, {k, 1, Infinity}]

1

is correct because Y2, 9 (%) is geometric with @ =9/10 and r=1/10 so the

10
series converges to
a 9/10

1—r 1-1/10

3.4.2 Convergence Tests
Frequently used convergence tests are stated in the following theorems.

Theorem 8 (The Divergence Test). Let ZZZI a,, be an infinite series.
If lim,_ o, a, #0, then Yo, a, diverges.

Theorem 9 (The Integral Test). Let Y .-, a, be an infinite series with
Dpositive terms. If [ (x) is a decreasing continuous function for which f(R) =
ay for all k, then Y. a, and ffo S dx either both converge or both
diverge.

Theorem 10 (The Ratio Test). Let Y-, a, be an infinite series with

et — 1 Ay
positive terms and let p = lim,,_, ﬂ; .

1. Ifp<1, X2, a, converges.
2. If p>1, Y2, a, diverges.
3. If p =1, the ratio test is inconclusive.
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Theorem 11 (The Root Test). Let ZZZI a, be an infinite series with
positive terms and let p = lim,,_,  Y/a,,

1. Ifp<1, X2, a, converges.
2. If p>1, X2, a, diverges.
3. If p =1, the root test is inconclusive.

Theorem 12 (The Limit Comparison Test). Let Y ., a, and Y., b,
be infinite series with positive terms and let L = lim,,_, Z—’:. If 0 <L < oo,
then either both series converge or both series diverge.

k

Example 3.4.3 Determine whether each series converges or diverges. (@) Yoo, <1+%> ;
w 1 w k. o &) Y

(b) Zk:llgv (C) Zk:l?' (d) Zk:l@' (e) Zk=l<4k+1> ’ and

© 2vE+1
M Yoy ————
Wk+DRE+1)

Solution (a) Using Limit, we see that the limit of the terms is e # 0 so the series diverges
by the the divergence test, Theorem 8.

Limit[(1 + 1/k)k, k = Infinity]
e

It is a very good exercise to show that the limit of the terms of the series is e by
hand. Let L =lim,_, ., (1 + 1/R)*. Take the logarithm of each side of this equation

and apply L'Hopital's rule:
1 k
InL = lim In <1 + —)
k

k—oo
1
InL = lim kln (1 + —)
k—oo k

(%)
In{1+—
k

InL = lim
k—00 1
k
1 1
1 2
1+ 1L k
InL = lim
k—o00 1
Tk
InL=1.

Exponentiating yields L = ™" = e' = e. (b) A series of the form Y%, kil’ (p>0)is

called a p-series. Let f(x) =x". Then, f(x) is continuous and decreasing for
x>1, f,(k)=k™ and
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r° b e oo, if p<1
X =
. Vp-1D, ifp>1

so the p-series converges if p > 1 and diverges if p < 1. If p = 1, the series Y o, ]%
is called the harmonic series.
s1 = Integrate[x” (- p), {x, 1, Infinity}]
If [Re[p] >1, %w' Integrate [x”, {x, 1, 00}, Assumptions — Re[p] < 1] ]
(©) Let f()=x-37". Then, f(R) =k - 37 and [ is decreasing for x > 1/1n 3.
fix-] = x3" (-x);
Factor[f'[x]]
—-37%(=1 + xLog[3])

Solve[-1 + xLog[3]==0, x]
{x=c=}}

Using Integrate, we see that the improper integral L°° [0 dx converges.

ival = Integratef[f[x], {x, 1, Infinity}]

N[ival]
1+Log|[3]
3Log[3]2

0.579592

Thus, by the integral test, Theorem 9, we conclude that the series
converges. Note that when applying the integral test, if the improper
integral converges, its value is not the value of the sum of the series. In this
case, we see that Mathematica is able to evaluate the sum with Sum and the
series converges to 3/4.

Sum[k3” (- k), {k, 1, Infinity}]

3
(d) If a, contains factorial functions, the ratio test is a good first test to try. After
defining a, we compute

[k + D?
Gy _ o 120+ D]

lim 3
k—o00 ak k—00 (k')
2kR)!
o k+ D -+ 1D 2R
= lim
k—o0 k! - k! QR +2)!
& + 1)  k+D 1

= lim —— = lim ———— = —.
k—oo 2R +2)2R+1) k-0 2QQR+1) 4

Because 1/4 < 1, the series converges by the ratio test. We confirm these results
with Mathematica.
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Remark 3.5 Use FullSimplify instead of Simplify to simplify expressions involving factorials.

a[k_] = (k) 2/(2k)!;
s1 = FullSimplify[a[k + 1]/a[k]]

ik
2+4k

Limit[s1, k — Infinity]

7
We llustrate that we can evaluate the sum using Sum and approximate it with N
as follows.

ev = Sumla[k], {k, 1, Infinity}]

% (9+2v3m)

N[ev]

0.7364

(e) Because

lim 4 kN lim —~ <1
1im = Ii = — R
k—00 4k +1 k-0 4k +1 4

the series converges by the root test.

a[k_] = (k/(4k + 1)k;
Limit[a[k]” (1/k), k = Infinity]
1

7

As with (d), we can approximate the sum with N and Sum.

ev = Sum[ak[k],{k, 1, Infinity}]
2Z (wx)

N[ev]

0.265757

(f) We use the limit comparison test and compare the series to Yoo, ,%,; = Y1
which diverges because it is a p-series with p = 1. Because

2VE+1

(VEe+D(2k+1)
1

0 < lim =1<oo

k—o0 ES
k

and the harmonic series diverges, the series diverges by the limit comparison test.

a[k_] = (2Sqrt[K] + 1)/((Sqrt[K] + 1)(2k + 1));
blk_] = 1/k;

Limit[a[k]/b[k], k — Infinity]

]




Example 3.4.4

Solution

3.4 Series

3.4.3 Alternating Series

An alternating series is a series of the form
Y Da, or (=D, (3.25)
k=1 k=1

where {a,} is a sequence with positive terms.

Theorem 13 (Alternating Series Test). If {a,} is decreasing and
lim,_,, a, = 0, the alternating series (3.25) converges.

The alternating series (3.25) converges absolutely if ;> @, converges.

Theorem 14. If the alternating series (3.25) converges absolutely, it
converges.

If the alternating series (3.25) converges but does not converge absolutely,
we say that it conditionally converges.

Determine whether each series converges or diverges. If the series converges,
k+1

. . . -1
determine whether the convergence is conditional or absolute. (a) Yo, %;

k
ekt DL © ¥, D! (1 + %) .

(b) Zl:il(_l) 4/e(k|)2 ’

(a) Because {1/k} is decreasing and 1/k — 0 as k — oo, the series converges.
The series does not converge absolutely because the harmonic series diverges.
Hence, Yoo, (“;kﬂ, which is called the alternating harmonic series, converges
conditionally. We see that this series converges to In 2 with Sum.

alk_] = (- )Mk + 1)/k;
Sumlal[k], {k, 1, Infinity}]

Log[2]
(b) We test for absolute convergence first using the ratio test. Because
((+D+ 1)
4R+ DN R+2
e D A ey 0t
4k (R1)?

a[k-] = (k + 1)/(4 k(k)"2);
s1 = FullSimplify[a[k + 1)/a[K]]
Limit[s1, k — Infinity]

2+K
4(1+K)2

0

the series converges absolutely by the ratio test. Absolute convergence
implies convergence so the series converges. (c) Because lim,_, (1 + %)k =e,
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lim,_, ,(-1) ,%()k does not exist, so the series diverges by the divergence
test. We confirm that the limit of the terms is not zero with Limit.

R+1 (

sum[(-1)" (k + 1)a[k], {k, 1, Infinity}]

—3+4e'4
4174

alk-] = (- 1) M (k + 1)(1 + 1/k) M k;
Sum[alk], {k, 1, Infinity}]
Sum::div : Sum does not converge.))

TO=0 (1 + )"

Limit[a[k], k — Infinity]
_ eZiIntervaI[{O,‘lT}]

3.44 Power Series

Let x, be a number. A power series in x — x,, is a series of the form

Z”k (x—xo)k. (3.26)
k=0

A fundamental problem is determining the values of x, if any, for which the
power series converges, the interval of convergence.

Theorem 15. For the power series (3.20), exactly one of the following
is true.

1. The power series converges absolutely for all values of x. The
interval of convergence is (—00, 00).

2. There is a positive number r so that the series converges absolutely
if xo —r<x<x,+r. The series may or may not converge at x =
x, —r and x =x,+r. The interval of convergence will be one of
(x0 -7,y + r), [xo -7,y + r), (xo -7,y + r], or [xo -7,y + r].

3. The series converges only if x =x, The interval of convergence
is {xy}.

Example 3.4.5 Determine the interval of convergence for each of the following power series.

-n* 2e+1, R! 2*
Zk =0 Q&+ 1)," Zk =0 1000 — (@ -D%and (c Zk_ \/_(x £H,

Solution (a) We test for absolute convergence first using the ratio test. Because

-D*! 2D
2 ! 1
Qk+DH+1D —lim — 2 _-0<1
k—00 (_1)k k—oo 2(k + 1k + 3)

2k+1

QCk+ 1!




When you use
Tooltip, placing the
cursor over the plot
shows you the
function being
plotted.

3.4 Series

a[x_, k-] = (- 1) k/(2k + 1)!x" (2k + 1);
s1 = FullSimplify[a[x, k + 1)/a[x, k]]
Limit[s1, k — Infinity]

X2
6+10k+4k?

0

for all values of x, we conclude that the series converges absolutely for all values
of x; the interval of convergence is (—o0,00). In fact, we will see later that this
series converges to sinx:

f+1

DM 1, 1l 1
sinx = Z(2k+l)' —x—ax +;x —%x + ...,

which means that the partial sums of the series converge to sinx. Graphically, we
can visualize this by graphing partial sums of the series together with the graph of
» =sinx. Note that the partial sums of a series are a recursively defined function:
s, =8, +a,, s, =a,. We use this observation to define p to be the nth partial sum
of the series. We use the form p[x_,n_]:=p[x,n]=... so that Mathematica remembers
the partial sums computed. That is, once p[x,3] is computed, Mathematica need
not recompute p[x,3] when computing p[Xx, 4]

In Figure 3.51 (top) we graph p, ) =Y,_, (2k+1), together with y = sinx for
n=1, 5, and 10. In the graphs, notice that as » increases, the graphs of p,(x)
more closely resemble the graph of y = sinx.

2k+1

Clear[p]

p[x-, 0] = a[x, 0];

pIx-, n_]:=pIx, n] = p[x,n-1] + a[x, n]
pIx, 2]

3
X=X+

><5

120

p1 = Plot[Tooltip[{Sin[x], p[x, 1], p[x, 5], p[x, 101},

{x, - 2Pi, 2Pi}, PlotRange — {- Pi, Pi}, AspectRatio — Automatic];

We use Manipulate to investigate how n affects the situation with
p2 = Manipulate[Plot[Tooltip[{Sin[x], p[x, n]},
{x, —4Pi, 4Pi}, PlotRange — {- Pi, Pi}, AspectRatio —» Automatic],
{{n, 5}, 1,25, 1}];
Show[GraphicsColumn[{p1, p2}1]
(b) As in (a), we test for absolute convergence first using the ratio test:

(R + DER! ol LN 1)1e+1
. 1000%+! 1 0, ifx=1
lim ; = R+ D|x-1|= .
k—00 R! R o1y 1000 oo, if x # 1.
1000%

a[x_, k_] = k71000 k(x - 1) k;
s1 = FullSimplify[a[x, k + 1]/a[x, k]]
Limit[s1, k — Infinity]
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2

FIGURE 3.51

(Top) ¥ = sinx together with the graphs of p,(x), ps), and p,,x). (Bottom) Using
Manipulate to investigate the situation

(14K)(= 14%)
7000
(=1 +X)oo

Be careful of your interpretation of the result of the Limit command because Mathe-
matica does not consider the case x = 1 separately: If x = 1, the limit is 0. Because
0 < 1, the series converges by the ratio test.

The series converges only if x =1; the interval of convergence is {1}. You
should observe that if you graph several partial sums for “small” values of =, you
might incorrectly conclude that the series converges.

(c) Use the ratio test to check absolute convergence first:

k+1
_(x _ 4)k+l

k
T [ S Py L BN P ]
k—00 2 k—00 k+1
Z_(x— 4k
vk

By the ratio test, the series converges absolutely if 2Jx — 4] < 1. We solve this
inequality for x with Reduce to see that 2|x — 4| < 1 if 7/2 <x < 9/2.

Clear[a, s1, k]
a[x_, k-] = 2 k/Sqrt[K]l(x-4)k;



Example 3.4.6

3.4 Series

s1 = Simplify[Abs[a[x, k + 1]/a[x, k]]]
Limit[s1, k — Infinity]

2Abs [\/g(—zux)]

2Abs[-4 +X]

Reduce[2Abs[x-4] < 1,x]
£ < Relx] < 3&&- 31/-63 + 32Re[x] - 4Re[x]? < Im[x] <

$4/-63 + 32Re[X] - 4Re[x]?

From the output, we see that for real values of x, the inequality is satisfied for 7/2 <
x <9/2. We check x =7/2 and x = 9/2 separately. If x = 7/2, the series becomes
2 D \/L/; which converges conditionally.

Simplify[a[x, k]/.x = 7/2]
(=1F

vk
On the other hand, if x =9/2,

Simplify[a[x, k]/.x — 9/2]
1
=
1
the series is Yo, —, which diverges. We conclude that the interval of convergence
k

is [7/2,9/2).

3.4.5 Taylor and Maclaurin Series

Let y = f(x) be a function with derivatives of all orders at x =x,. The
Taylor series for f(x) about x = x,, is

co &)
Z.f (.X'o) (x_xo)k. (527)

k!
k=0

The Maclaurin series for f(x) is the Taylor series for f(x) about x = 0. If
¥ = f(x) has derivatives up to at least order n at x = x,, the nth degree
Taylor polynomial for f(x) about x = x, is

n f(k) x
JXSEDY (o) (x = 2x0)°. (3.28)

k!
k=0

The nth degree Maclaurin polynomial for f(x) is the nth degree Taylor
polynomial for f(x) about x = 0. Generally, finding Taylor and Maclaurin
series using the definition is a tedious task at best.

Find the first few terms of (a) the Maclaurin series and (b) the Taylor series about
x =m/4 for f(x) = tanx.
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Solution (a) After defining f(x) = tanx, we use Table together with /. and D to compute

Use Short to obtain
an abbreviated result.
Many terms will be
missing, but with
Short, you will see
the beginning and
end of your result.

F®©yk! for k=0,1,....8.

f[x_] = Tan[x];
t1 = Table[{k, D[f[x], {x, k}], DIf[x], {x, k})/.x — 0}, {k, O, 8}];
Short[t1]

{{0, Tan[x], 0}, ((7)). {8, 7936Sec[x|®Tan[x] + ((1)) + ((1))
+128((1))?Tan[x]", 0} }

To see these results in tabular form, enter
t1//TableForm

For length considerations, the resulting output is not shown here. Another way of
approaching the problem is to use Manipulate. See Figures 3.52 and 3.583.
Manipulate[{k, D[f[x], {x, k}I//FullSimplify, D[f[x], {x, k}]/.x — 0,
DIf[x], {x, k}I/.x = 0//N}, {{k, 5}, 0, 25, 1}]

Using the values in the table or from the Manipulate object, we apply the definition
to see that the Maclaurin series is

oo (R)
0
ka =x+ le + ix5 + £x7 + ...
R! 3 15 315

k=0
For (b), we repeat (a) using x = /4 instead of x =0

Manipulate[{k, D[f[x], {x, k})//FullSimplify, D[f[x], {x, k}}/.x — Pi/4,
DIf[x], {x, k})/.x — Pi/4//N}, {{k, 1}, 0, 25, 1}]

and then apply the definition to see that the Taylor series about x = 7/4 is

k———F—
k 8 EDIFEFE]

{5,2(33 —26Cos [2x] + Cos [4x] }Sec{x}®,16,16.}

FIGURE 3.52
With Manipulate, we can adjust the function and function values

h——
< =[] o DI

{1, seclx]?,2,2.}

FIGURE 3.53
We use Manipulate to investigate series for the tangent function




Example 3.4.7

Solution

3.4 Series

oof(k)(xo) & T 7\2 7\3
Z " (2 = 2x,) =1+2(x—Z>+2<x—Z> +§(x—z) +

10 (x 7r>4+ 64 (x 7T>5+ 244 <x 7T>6+

3 4 15 4 45 4
From the series, we can see various Taylor and Maclaurin polynomials. For
example, the third Maclaurin polynomial is

k=0

1 3
P30 =x+=x
; 3
and the fourth degree Taylor polynomial about x = 7/4 is

p4(x)=1+2<x—§)+2<x—g>2+§<x—g>3+§<x—g)4.

The command Series[f[x],{x,x0,n}] computes (3.27) to (at least) order 7 — 1.
Because of the O-term in the result that represents the terms that are omit-
ted from the power series for f(x) expanded about the point x = x,, the
result of entering a Series command is not a function that can be evalu-
ated if x is a particular number. We remove the remainder (O-) term of the
power series Series[f[x],{x,x0,n}] with the command Normal and can then
evaluate the resulting polynomial for particular values of x.

Find the first few terms of the Taylor series for f(x) about x = x,. () f(x) = cosx,
x=0; (0) f) = 1/x", x=1.

Entering
Series[Cos[x], {x, 0,4}]
1-2 4+ 2 4 OKP°
computes the Maclaurin series to order 4. Entering

Series[Cos[x], {x, 0, 14}]
2 4 6 8 XWO >(1 2 X14

L0 + -
24 720 479001600 87178291200

1-% +

X
40320 ~ 3628800

+ +0O[x]"®

computes the Maclaurin series to order 14. In this case, the Maclaurin series
for cosx converges to cosx for all real x. To graphically see this, we define the
function p. Given n, p[n] returns the Maclaurin polynomial of degree n for cosx.

p[n-] :=Series[Cos[x], {x, 0, n}]//Normal
p[3]
We then graph cosx together with the Maclaurin polynomial of degree = = 2, 4, 8,

and 16 on the interval [-3m/2,37/2] in Figure 3.54. Notice that as » increases,
the graph of the Maclaurin polynomial more closely resembles the graph of cosx.
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- EETEEE :
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Sy || ST N
-2 ol
-4 .
FIGURE 3.54

Using Manipulate to investigate graphs of y = cosx together with plots of several of
its Maclaurin polynomials

We would see the same pattern if we increased the length of the interval and the
value of n.

Manipulate[Plot[Evaluate[Tooltip[{Cos[x], p[n]}],
{x, —3Pi/2, 3Pi/2}, PlotRange — {{-3Pi/2, 3Pi/2}, { - 3Pi/2, 3Pi/2}},
AspectRatio —» Automatic],
{{n,4},{2, 4, 8, 16, 32, 64}, ControlType — Setter}]

(b) After defining f(x) = 1/x°, we compute the first 10 terms of the Taylor series
for f(x) about x =1 with Series.

fix_1 = 1/x"2;
p10 = Series[f[x], {x, 1, 10}]
1-2(x—1) + 3(x— 12 =4(x—1)° + 5(x—1)* =6(x—1)° + 7(x=1)° = 8(x - 1)’
+9x=18-10x=1)° + 11(x=1)" + O[x - 1]""
1-2(x=1) + 3(x=1)2 = 4(x=1)® + 5(x— 1)* —=6(x— 1)° + 7(x—1)® = 8(x - 1)’
+9x—1)8-10x-1)° + 11(x=1)"% + O[x—1]"
In this case, the pattern for the series is relatively easy to see: The Taylor series
for f(x) about x =1 is

Z(—l)""(k + D - D~
k=0

This series converges absolutely if

R+1 fe+1

D7 R+2)x-1)
koo | (=DF(e + D(x — DF

=lx-1<1



3.4 Series

or 0<x<2. The series diverges if x=0 and x=2. In this case, the series
converges 1o f(x) on the interval (0, 2).

afx—, k-1 = (- 1) k(k + 1)(x-1)"k;
s1 = FullSimplify[Abs[a[x, k + 1]/a[x, k]]]

(2+K)(=1+x)
Abs [T]

s2 = Limit[s1, k — Infinity]
Abs[-1 + X]

Reduce[s2 < 1,x]
0 < Re[X] < 28&—1/2Re[x] - Re[x]2 < Im[x] < 1/2Re[x] - Re[x]?

To see this, we use Manipulate graph f(x) together with the Taylor polynomial
for f(x) about x =1 of degree n for large n. Regardless of the size of n, the
graphs of f(x) and the Taylor polynomial closely resemble each other on the interval
(0,2) — but not at the endpoints or outside the interval. (See Figure 3.55.)

pIn_] :=Series[f[x], {x, 1, n}]//Normal

Manipulate[Plot[Evaluate[Tooltip[{f[x], p[n]1}],
{x, 0, 3}, PlotRange — {{0, 3}, {- 3/2, 3/2}}, AspectRatio — Automatic],
{{n, 10}, {5, 10, 15, 25, 30, 35, 40, 45, 50, 55, 60}, ControlType — Setter}]

3.4.6 Taylor's Theorem

Taylor’s theorem states the relationship between f(x) and the Taylor series
for f(x) about x = x,,.

n [5]10]15]25]30] 35]40] 45] 50] 5] 0] n [5]10]15]25]30]35]40]45] 50]55] 60]
150 151
1.0F 1.0k
o5l osf
00 05 10 15 20 25 30 00 o5
~o0sf -05F
-10f —1.0F
—q15L —1.5L
FIGURE 3.55

Graphs of f(x) together with the various Taylor polynomials about x = 1
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CHAPTER 3 Calculus

Theorem 16 (Taylor’s Theorem). Let y = f(x) bave (at least) n+ 1
derivatives on an interval I containing x = x,,. Then, for every number
x € I, there is a number z between x and x, so that

SO =D, (0 + R, (),
where D, (x) is given by equation (3.28) and

n+1)
@ n+
u ( - 0) 1

R0 =

(3.29

Use Taylor's theorem to show that

- "
sin = Z(2le+1)v o

Solution Let f(x)=sinx. Then, for each value of x, there is a number z between 0 and

The Maclaurin
polynomial of degree
4 for smx is

4 (0) 4
Zko x —O+x+

0x+‘

1

X +0-x0.

(0) k

+1)
@) n+l
and R,(x) = (n+1)! X

(2) is one of sinz, —sinz, cosz, Of —cCosz,

x SO that sinax = p, @) + R, @), where p, @) = Yr_ L
Regardless of the value of n, £
which are all bounded by 1. Then,

) ~ f(n+1)(z) -
ISIIl.X' —p"(x)| = m‘x
1 n+1
[sinx = p, (0| < m| |

and x"/n! — 0 as n — oo for all real values of x.

You should remember that the number z in R,(x) is guaranteed to exist by
Taylor's theorem. However, from a practical standpoint, you would rarely (if ever)
need to compute the z value for a particular x value.

For illustrative purposes, we show the difficulties. Suppose we wish to approx-
imate sin /180 using the Maclaurin polynomial of degree 4, p(x) =x — }x‘ for

) ) 1
sinx. The fourth remainder is R,(x) = oo coszx .

Clear[f]
f[x-] = Sin[x];
r5 = D[f[z], {z, 5})/5!'x 5

25x°Cos(z]

If x = w/180, there is a number z between 0 and 7/180 so that

T 1 T \°
|7 (50) | = 725 <05 (555)
180 120 180

<t (“ >5~0135x10_1°
~ 120 \ 180 ’ ’

which shows us that the maximum the error can be is % (m) ~0.135 x 107"



3.4 Series

maxerror = N[1/120*(Pi/180)" 5]
1.349601623163255*" — 11

Abstractly, the exact error can be computed. By Taylor's theorem, z satisfies

/(55) =1 (555) + e (55
7 1 1 s 1

Sin — = —m — T + ™ Ccosz
180 180 34992000 22674816000000
1 1 5 1 5 .o
= —7 - T + 7’ COSZ — sin —.
180 34992000 22674816000000 180

We graph the right-hand side of this equation with Plot in Figure 3.56. The exact
value of z is the z-coordinate of the point where the graph intersects the z-axis.

p4 = Series[f[x], {x, 0, 4}]//Normal

X~%

exval = Sin[Pi/180]
pdb = p4/.x — Pi/180
r5b = r5/.x — Pi/180

sin[ )

o _m
180 34992000

0 Cos[z]
22674816000000

toplot = r5b + p4b -exval;
Plot[toplot, {z, 0, Pi/180}]

We can use FindRoot to approximate z, if we increase the number of digits carried
in floating point calculations with WorkingPrecision.

exz = FindRoot[toplot==0, {z, 0, .004}, WorkingPrecision — 32]
{z — 0.0038086149165541606417429516417308}

0.010 0.015

—5.x10"16

—1.x10718|

—1.5xX107 15|

~2.x107185

FIGURE 3.56
Finding z
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Because Mathematica
uses inverse functions
in this calculation, it
issues several warning
messages that we have
omitted for length
considerations.

3 Calculus

Alternatively, we can compute the exact value of z with Solve

cz = Solve[toplot==0, z]
{ {z . ArcCos [648000(—1944OO7T+7T3+34992OOOSin[%])] } ’

5

{z . ArcCos [648000(—1944OO7T+773+34992OOOSin[%])] } }

o
and then approximate the result with N.

N[cz]
{{z — -0.00384232}, {z — 0.00384232} }

3.4.7 Other Series

In calculus, we learn that the power series f(X) = Yoo dp (x—xo)k is
differentiable and integrable on its interval of convergence. However, for
series, that are not power series, this result is not generally true. For
example, in more advanced courses, we learn that the function

J@®=Y % sin (3%x)
k=0

is continuous for all values of x but nowhere differentiable. We can use
Mathematica to help us see why this function is not differentiable. Let

n

1
.00 = Z > sin (3*x) .

k=0

Notice that f,,(x) is defined recursively by f,(x) = sinx and f,,(x) = f,,_;(x) +
1

5 Sin (S"x) We use Mathematica to recursively define f,,(x).

Clear[f]
f[0] = Sin[x];

Sin[akx]
flk-] :=f[k] = f[k-1] + —

We define f, (x) using the form
fln_]:=f[n] = ...

so that Mathematica “remembers” the values it computes. Thus, to com-
pute f[5], Mathematica uses the previously computed values, namely f[4], to
compute f[5]. Note that we can produce the same results by defining f,,(x)
with the command

fin]:==...

However, the disadvantage of defining f, (x) in this manner is that Mathe-
matica does not “remember” the previously computed values and thus takes
longer to compute f,,(x) for larger values of 7.



3.5 Multivariable Calculus

10F 10F
05 05
1 1 1 1 1 1 1 1
2 4 6 8 2 4 6 8
-05F -05F
-1.0F -1.0F
10F 10F
05 0.5
1 1 1 1 1 1 1 1
2 4 6 8 2 4 6 8
-05F -05F
-1.0F -1.0F
FIGURE 3.57

Approximating a function that is continuous everywhere but nowhere differentiable

Next, we use Table to generate f3(x), f5(X), fo(x), and f;,(x).
tograph = Table[f[n],{n, 3, 12, 3}];

We now graph each of these functions and show the results as a graph-
ics array with GraphicsGrid in Figure 3.57. (Note that you do not need to
include the option DisplayFunction->ldentity to suppress the resulting output
unless you forget to include the semicolon at the end of the command.)

graphs = Table[Plot[Evaluate[tograph[[ill], {x, 0, 37},
DisplayFunction — Identity], {i, 1, 4}];

toshow = Partition[graphs, 2];

Show[GraphicsGrid[toshow]]

From these graphs, we see that for large values of n, the graph of f,(x),
although actually smooth, appears “jagged” and thus we might suspect that
S =1lim,_,, £, = ZZZO zl—k sin <3kx) is indeed continuous everywhere

but nowhere differentiable.

3.0 MULTIVARIABLE CALCULUS

Mathematica is useful in investigating functions involving more than one
variable. In particular, the graphical analysis of functions that depend
on two (or more) variables is enhanced with the help of Mathematica’s
graphics capabilities.
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Example 3.5.1

Solution

When you slide the
cursor over the
contours in the
contour plot, the
contour values are
displayed.

3.5.1 Limits of Functions of Two Variables

Mathematica’s graphics and numerical capabilities are helpful in investigat-

ing limits of functions of two variables.

2
RN, X =) .
Show that the limit lim, ,y_.q.0) Py does not exist.

We begin by defining f(x,») = («* = »°)/(x* +»?). Next, we use Plot3D to graph
z= f(x,p) for =1/2 <x < 1/2 and —1/2 < y < 1/2. ContourPlot is used to graph
several level curves on the same rectangle. (See Figure 3.58.) (To define a function
of two variables, f(x,y) = expressioninxandy, enter f[x_y_] = expression in x
and y. Plot3D[f[x,y], {a,x,b}.,{y,c,d}] generates a basic graph of z= f(x,)) for

a<x<band c<y<d)

Clear[f]
fix—,y-1 = (x*2-y*2)/(x"2 + y*2);

p1 = Plot3D[f[x, y], {x, -2, 2}, {y, —2, 2}, PlotPoints — 40];
c1 = ContourPlot[f[x, y], {x, -2, 2}, {y, -2, 2}, ContourShading — False,
Axes — Automatic, AxesOrigin — {0, 0}, PlotPoints — 60, Contours — 20];

Show[GraphicsRow[{p1, c1}]]

From the graph of the level curves, we suspect that the limit does not exist because
we see that near (0,0), z = f(x,)) attains many different values. We obtain further
evidence that the limit does not exist by computing the value of z = f(x, ») for various
points chosen randomly near (0,0). We use Table and RandomReal to generate
10 ordered pairs (xy) for x and y “close to” 0. Because RandomReal is included
in the calculation, your results will almost certainly be different from those here.

2 H T

FIGURE 3.58

(@) Three-dimensional and (b) contour plots of f(x,»)




We choose lines of
the form y = mx
because near (0, 0)
the level curves of
z = f(x,») look like
lines of the form

y = mx.

3.5 Multivariable Calculus

pts = Table[RandomReal[{-10~",10}1, {i, 1, 10}, {2}]
{{0.08560753251471961, - 0.06804168963904592},
{0.004371826092799417, 0.005941850437676466},
{-0.0009189852964073855, 0.00090260881737971},
{-0.00006532557511289984, 0.00006629693177194204},
{-9.419651789936537*"- 6, —1.2215350865693182*" -6},
{-5.743976531479158*"~ 7, 5.766874942905546*" -7},
{-7.626065924242957*"~ 8, 5.4979380353427926*" - 8},
{-8.100264683497016""~ 10, —3.253471996451157*" -9},
{5.270631463415014*"~12, 7.862252513620563*" - 10},
{-3.633733884546907*"~ 11, —3.351445796649152*"~ 11}}

Next, we define a function g that given an ordered pair (x,) ({X,y} in Mathematica),
g((x,») returns the ordered triple (x,y,f(x,)) (X,Y,flx,y] in Mathematica).

glix—, y-}1 = {x,y, flx,yI}

{ov i

We then use Map to apply g to the list pts.
Map[g, pts]//TableForm

0.0856075 -0.0680417 0.225699
0.00437183 0.00594185 -0.297559

-0.000918985 0.000902609 0.0179789
—-0.0000653256 0.0000662969 -0.0147589

-9.419651789936537 * -6 —1.2215350865693182** -6  0.966923
—5.743976531479158' " ~7  5.766874942905546 **~7  —0.00397856
—7.626065924242957 %" -8  5.4979380353427926 **-8  0.316002
-8.100264683497016 " 10 —3.253471996451157 ** -9  -0.883261
5.270631463415014 **~12  7.862252513620563 **~10  —0.99991
~3.633733884546907 "~ 11 —3.351445796649152 **~11  0.0806931

From the third column, we see that z = f(x,y) does not appear to approach any
particular value for points chosen randomly near (0, 0). In fact, along the line y =
mx we see that f(x,3) = f@x,mx) = (1 - m*)/(1+m®). Hence, as (x,y) — (0,0
along y = mx, f(x,)) = fx, mx) — :ZZ . Thus, f(x,y) does not have a limit as
(x,5) = (©,0).

vi = Simplify[f[x, mx]]

y

-m
1+m?2

vi/m—-0
vi/m—-1
vi/.m—-1/2

ol O —
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Example 3.5.2

Solution

In some cases, you can establish that a limit does not exist by converting
¥’y

to polar coordinates. For example in polar coordinates, f(x,)) = s

becomes f(rcosf, rsinf) = 2 cos’ 6 — 1

Simplify[f[rCos][t], rSin[t]]]
Cos[21]

and

‘ l)nn S, —hmf(rcosﬂ rsin 0) -hm2cos 0—-1=2cos’0 —1=cos20
x,y)—(0,0)

depends on 6.

3.5.2 Partial and Directional Derivatives

Partial derivatives of functions of two or more variables are computed with
Mathematica using D. For z = f(x, ),

1. D[f[x,y],x] computes L [.Ce, ),

ax

. DIfx,yly] computes = ﬁl = fy(x, »,
. DIflx,yl,{x,n}] computes ﬁxf ,

. DI[f[x,yl,y,x] computes O,,W; = fxy(x y) and
. DIf[x,yl.{x,n},{y;m}] computes ——-- 5
. You can use the [ J’ button located on the BasicMathInput palette

to create templates to compute partial derivatives.

(=X NNAY L IR NS S )

The calculations are carried out similarly for functions of more than two
variables.

Calculate f.(x,3), £,06,1), fi, 600, f,2(60), fiCe), and f,(x,3) if flx,p) =
sin \/.m .
After defining f(x, ) = sin \/x2 + )2 + 1,

f[x—, y-] = Sin[Sart[x2 + y"2 + 1]];

we illustrate the use of D to compute the partial derivatives. Entering

DIf[x, y], x]
xCos [\/ 14x2 +y2]
V12 +y2
computes f,(x,)). Entering

DIf[x, y], ]



The vectors i and j
are defined by
i=(1,0) and j =(0,1).

Calculus of
vector-valued
functions is discussed
in more detail in
Chapter 5.

Example 3.5.3

Solution

3.5 Multivariable Calculus

yCos[\/W]

computes fy(x, ). Entering
D[f[x, y1, x, yl//Together
_xyCos[\/1+x2+y2] —Xy\/1+x2+y25in [\/1+x2+y2]

(1 +x2+y2)3/2

computes f,.(x,). Entering

DIf[x, yl, y, x]//Together
—xyCos[\/1+><2+y2J —xy\/1+x2+y28in[\/1 +><2+\/2]

(14 +y2)3/2

computes f,,(x,3). Remember that under appropriate assumptions, f,,(x,)) =
e, ). Entering

D[f[x, y], {x, 2}1//Together

COS[\/W] +yZCos[\/1 +><2+y2J -x? \/T +x2+y2Sin[\/1 +x2+y2J

(1922 +y2)3/2

computes f,.(x,). Entering

DIf[x, y], {y, 2}]//Together
Cos[m]+x2605[\/1+x2+y2j —y? \/1 +x2+y28in[\/1+x2+y2j

(1+2+y2 )3/2

computes f,, (x, ).

The directional derivative of z = f(x, ) in the direction of the unit vector
u=cosfi+sinfj is
D, f(x,) = f.(x,)) cos B + f,(x, ) sin b,

provided that f,.(x,y) and fy(x, ) both exist.

If f.(x,») and fy(x, %) both exist, the gradient of f(x,y) is the vector-
valued function

V@) = [l Wi+ £, 05 = (fule, ). f,(x,0)) -

Notice that if u = (cos 6, sin 6),

D, f(x,) = v f(x,)) - (cos,sinb).

Let f(x,9) = 6x"y —3x" —2)°. (a) Find D, f(x,» in the direction of v = (3,4).
(o) Compute D<5/;,4/s>f<% 9+3/3, l). (c) Find an equation of the line tangent

to the graph of 6x2y -3t - 2y3 =0 at the point (% 9+3/3, 1).

After defining f(x,) = 6x’y — 3x* — 2)°, we graph z = f(x,») with Plot3D in
Figure 3.59, illustrating the PlotPoints, PlotRange, and ViewPoint options.
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FIGURE 3.59

F) =6x"y —3x' =2y  for -2<x<2and —2<y<3

flx-,y-]= 6x" 2y - 3xN4- 2yA 3;
Plot3D[f[x, yl, {x, —2, 2}, {y, -2, 3}, PlotPoints — 50,
PlotRange — {{-2, 2},{-2,3},{-2,2}},
BoxRatios — {1, 1, 1}, ViewPoint — {1.887, 2.309, 1.6},
ClippingStyle — None]

(@) A unit vector, u, in the same direction as v is

: : > <3 4>
u= , =(=,=-).
<\/32+42 V32 + 42 55
V={3!4};
u = v/Sqrt[v.v]

{&.3

Then, D, f(x,») = ([, ).f,(x,)) - u, calculated in du.
gradf = {D[f[x! y]! X], D[f[X, y]! y]}
{-12x% + 12xy, 6x° —6y*}

du = Simplify[gradf . u]
-2 (—2¢ +3x°-3xy + 2°)



An equation of the
line L containing
(x0,5,) and
perpendicular to
=(a,b) is
a(x—x,)+
b(y=-y,)=0.

3.5 Multivariable Calculus

(o) D(S/SA/S)f(% 9+3V3, 1) is calculated by evaluating du if x = 24/9 +3/3 and

dui = du/.{x — 1/3Sqrt[9 + 3Sqrt[3]], y — 1}//Simplify

¢ (2v3-3V3+3)

(c) The gradient is evaluated if x = %\/9 +3/3and y=1.
nvec = gradf/.{x — 1/3Sqrt[9 + 3Sqrt[3]], y — 1}//Simplify

{—4\/3+ V3, 2\@}

Generally, v f(x,») is perpendicular to the level curves of z = f(x,»), so

e (2yoeava) = (5 (Svorav) s (Syoeavn)

is perpendicular to f(x,») =0 at the point ( 9+3/3, 1). Thus, an equation of
the line tangent to the graph of f(x,)) = 0 at the point (§ 9+3/3, 1) is

£ (3v) (e 3B o (yorvi) - 1) -,

which we solve for y with Solve. We confirm this result by graphing f(x,» =0
using ContourPlot in conf and then graphing the tangent line in tanplot. tanplot
and conf are shown together with Show in Figure 3.60.

conf = ContourPlot[f[x, y]==0, {x, -2, 2}, {y, -2, 2}, PlotPoints — 60,
ContourShading — False, Frame — False, Axes — Automatic,
AxesOrigin — {0, 0}];
tanline = Solve[nvec|[[1]](x - 1/3Sqrt[9 + 3Sqrt[3]]) + nvec[[2]](y-1)==
vl

(o))

Evaluate[y[x]/.tanline[[1]]]
2+4/3-24/3+v/3x
gy
tanplot = Plot[Evaluate[y/.tanline], {x, -2, 2}];
Show[conf, tanplot, PlotRange — {{-2, 2}, {- 2, 3}}, AspectRatio —»
Automatic]

More generally, we use ContourPlot together with the PlotGradientField function,
which is contained in the VectorFieldPlots package, to illustrate that the gradient
vectors are perpendicular to the level curves of z = f(x,») in Figure 3.61.
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-2

FIGURE 3.60

Level curve of f(x,») together with a tangent line
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00 00 56 0006 06 00 2O 900 20 b0 00 0
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00 0006 000 06 06 30 900 36 00 00 0
"0 00 00 000 06 66 B0 900 9000 00 -
~0 00 00 000 06 06 50 900 06 00 00
o 00 00 00~

-2 -1 | ‘O‘ 1
a
FIGURE 3.61

N

(@) Level curves of z = f(x,y). (b) Gradient field of z = f(x,y). (c) The gradient
together with several level curves
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<< VectorFieldPlots™;

pl = ContourPlot[£[x, y], {x, -2, 2}, {y, -2, 3},
Contours + 15, ContourStyle + Black]

P2 = PlotGradientField [f[x, ¥], [x, -2, 2}, {¥, -2, 3}, PlotPoints -»25] i
show[pl, p2]

Show [GraphicsRow([[pl, p2, Show [{pl, p2}]}]]

Example 3.5.4 Let

Solution

f@y =y - prew’t 10 <—x5 e —y“) et _ Loy
’ 3 5 9 ’

Calculate wf(x,») and then graph v f(x,») together with several level curves of
S,

We begin by defining and graphing z = f(x,») with Plot3D in Figure 3.62(a).

Clear]f]
fIx_,y-] = (y-1)"2Exp[- (x + 1) 2-y"2] -
10/3(-x"5 + 1/5y -y 3)Exp[-x"2-y 2] -
1/9Exp[-x"2-(y + 1) 2];
p1 = Plot3D[f[x, y], {x, -3, 3}, {y, -3, 3},
ViewPoint — {-1.99, 2.033, 1.833},
PlotRange — All];
conf = ContourPlot[f[x, y], {x, -3, 3}, {y, -3, 3},
PlotPoints — 60, Contours — 30, ContourShading — False,
Frame — False, Axes — Automatic,
AxesOrigin — {0, 0}];

In the three-dimensional plot, notice that z appears to have six relative extrema:
three relative maxima and three relative minima. We also graph several level curves
of f(x,y) with ContourPlot and name the resulting graphic conf.

Next we calculate f,(x,)) and f,(x, ) using Simplify and D. The gradient is the
vector-valued function { £,(x,2).£,(x,)).

gradf = {D[f[x, y], x], DIf[x, y], yI}//Simplify

2 2
{ _ %e—ZX—X —(1+y)

(—6”x+96™(1 +X)(=1 +y)* + 3e™#*¥x (-25x° + 10x° -2y + 10y°) ),
_ge—2><—>(2—(1+y)2

9
(—e™(1+y)+96¥ (1-2y* +y°) + &2 (3 + 30x°y—51y* + 30y*) ) }

To graph the gradient, we use PlotGradientField, which is contained in the
VectorFieldPlots package. We use PlotGradientField to graph the gradient, nam-
ing the resulting graphic gradfplot. gradfplot and conf are displayed together using
Show in Figure 3.62(b).
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FIGURE 3.62

(@) fx,p) for -3 <x <3 and -3 <y < 2. (b) Contour plot of f(x,y) along with
several gradient vectors

<< VectorFieldPlots’;
gradfplot = PlotGradientField[f[x, y], {x, -3, 3},
{y! _3! 3}];
Show[GraphicsRow[{p1, Show[conf, gradfplot]}I]

In the result (see Figure 3.62(b)), notice that the gradient is perpendicular to the level
curves; the gradient is pointing in the direction of maximal increase of z = f(x, ).

Classifying Critical Points

Let z = f(x,)) be a real-valued function of two variables with continuous
second-order partial derivatives. A critical point of z = f(x,)) is a point
(xo, yo) in the interior of the domain of z = f(x,)) for which

Jx (xo’yo> =0 and ]3 (xo’yo) =0.
Critical points are classified by the second derivatives (or partials) test.

Theorem 17 (Second Derivatives Test). Let (x,¥,) be a critical point
of a function z = f(x,)) of two variables and let

d=fi (x07y0) Ly (xoayo) - [fxy (x()ay())]z . 3.30)

1. If d>0 and f, (xy,),) >0, then z= f(x,)) bas a relative (or
local) minimum at (x,,y,).

2. If d>0 and [, (xo,),) <O, then z= f(x,)) bas a relative (or
local) maximum at (xo, yo).
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Solution
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3. If d <0, then z = f(x,)) bas a saddle point ar (x,,),).
4. If d=0, no conclusion can be drawn and (xo, yo) is called a
degenerate critical point.

Find the relative maximum, relative minimum, and saddle points of f(x,y) = —2x% +
X'+ 3y -2,
After defining f(x, ), the critical points are found with Solve and named critpts.
f[x-,y-] = -2xM2 4+ xM4 4+ 3y—yA3;
critpts = Solve[{D[f[x, y], x]==0, D[f[x, y], y]==0}, {x, y}]
{{x—-1,y— -1} {x— -1,y—=1}{x—=0,y —» -1},
{x—=0y—-1}{x—=1y— -1} {x—=1,y—1}}

We then define dfxx. Given (x,1,), dfxx (x,,5,) returns the ordered quadruple
X, Vo, €quation (3.30) evaluated at (xq,¥,), and fy, (%, %)

dfxx[x0—, y0_] = {x0, yO,
DIf[x, y], {x, 2}IDIf[x, y1, {v, 2}] - DIf[x, ], x, y]* 2/.
{x = x0, y — y0}, D[f[x, y], {x, 2})/.{x — x0,y — y0}}

{x0,y0, —6 (—4 + 12x0?) yO, —4 + 12x0°}
For example,

dfxx[0, 1]
{0,1,24, -4}

shows us that a relative maximum occurs at (0, 1). We then use /. (ReplaceAll) to
substitute the values in each element of critpts into dfxx.

dfxx[x, y]/.critpts//TableForm

-1 -1 48 8
-1 1 -48 8
0 -1 -24 -4
0 1 24 -4
1 -1 48 8
1 1 -48 8

From the result, we see that (0, 1) results in a relative maximum, (0, —1) results in a
saddle, (1, 1) results in a saddle, (1, —1) results in a relative minimum, (=1, 1) results
in a saddle, and (-1, —1) results in a relative minimum. We confirm these results
graphically with a three-dimensional plot generated with Plot3D and a contour plot
generated with ContourPlot in Figure 3.63.

p1 = Plot3D[f[x, yl, {x, —3/2, 3/2},{y, —3/2, 3/2}, PlotPoints — 40];
p2 = ContourPlot[f[x, y], {x, —3/2, 3/2}, {y, - 3/2,3/2},

PlotPoints — 40, ContourShading — False, Contours — 20];
Show[GraphicsRow[{p1, p2}]]

231
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Example 3.5.6

Solution

~10f ;

71.5;....|....r.‘..i..‘.1....|....-1:
-15-10-05 00 05 1.0 1.5

FIGURE 3.63
(@) Three-dimensional and (b) contour plots of f(x,»)

In the contour plot, notice that near relative extrema, the level curves look like
circles, whereas near saddles they look like hyperbolas.

If the second derivatives test fails, graphical analysis is especially useful.

Find the relative maximum, relative minimum, and saddle points of f(x,)) ="+
2 2 4
Xy +y.

Initially we proceed in the exact same manner as in the previous example: We define
f(x,» and compute the critical points. Several complex solutions are returned,
which we ignore.

fix—,y_] = x*2 + x 2y 2 + yP4;
critpts = Solve[{D[f[x, y], x]==0, D[f[x, y], y]==0}, {x, y}]
{{XH 0,y — O},{X*} —\/E,y — —i},{x—» —\@,y—> i}.

{x—>\/§,y—>—i},{x—>\@,y—>i},{y—>o,x—>0},{y—>o,x—>0}}

We then compute the value of (3.30) at the real critical point, and the value of
Jfx, ) at this critical point.

dfxx[x0—, y0-] = {x0, yO,
DIf[x, v, {x, 2}IDIf[x, y], {y, 2}] - DIf[x, y1, x, y]* 2/.

{x = x0,y — y0}, D[f[x, y], {X, 2}}/{x = x0, y — yO}}
{x0,y0, —16x0%y0” + (2 + 2y0%) (2x0” + 12y0%) , 2 + 2y0°}
dfxx[0, 0]

{0,0,0,2}

The result shows us that the second derivatives test fails at (0, 0).
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p1 = Plot3D[f[x, yl, {x, -1, 1}, {y, — 1, 1}, BoxRatios — Automatic];
p2 = ContourPlot[f[x, yl, {x, -1, 1}, {y, -1, 1}, PlotPoints — 40,
Contours — 20, ContourShading — False];
Show[GraphicsRow[{p1, p2}]]

However, the contour plot of f(x,)) near (0,0) indicates that an extreme value
occurs at (0, 0). The three-dimensional plot shows that (0, 0) is a relative minimum.
(See Figure 3.64.)

Tangent Planes

Let z = f(x,) be a real-valued function of two variables. If both f,, (x,,7,)
and f, (xo, yo) exist, then an equation of the plane tangent to the graph of

z = f(x,p) at the point (x,,,f (%0,¥,)) is given by
S (XOJ’O) (x - xo) +fy (xo’yo) (y _yo) - (z—zo) =0, 3.3D

where z, = f(x,7,). Solving for z yields the function (of two variables)

z=f, (xovyo) (x _xo) +f (-xm)’o) (J’ _J’O) + 2. 3.32)
Symmetric equations of the line perpendicular to the surface z = f(x,)) at

the point (x,,,,%,) are given by

Th_ PN Ith (3.33)

Je (x0,30)  fy (%0,0) -1

FIGURE 3.64

(a) Three-dimensional and (b) contour plots of f(x,»)
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Example 3.5.7

Solution

and parametric equations are

X=X+ [, (xOvyo) t
Y=ot/ (-xmyo) t 33D
z=z,- 1L

The plane tangent to the graph of z = f(x,)) at the point (xq, ¥, f (%0, 7))
is the “best” linear approximation of z = f(x,y) near (x,)) = (xo, yo) in
the same way as the line tangent to the graph of y = f(x) at the point
(20, f(x)) is the “best” linear approximation of y = f(x) near x = x,.

Find an equation of the plane tangent and normal line to the graph of f(x,y») =
4-1(2x" +)%) at the point (1,2,5/2).

We define f(x,») and compute f.(1,2) and 52D,

fix_,y-1=4- 1/4(2xA2 + yA2);
f[1,2]

dx = D[f[x,y], x)/{x—> 1,y — 2}
dy = DIffx, y], y}/{x > 1,y — 2}
3

-1

-1

Using (3.32), an equation of the tangent plane is z = —1(x - 1) — 1(y — 2) + f(1, 2).
Using (3.34), parametric equations of the normal line are x=1-¢ y=2-1t, z=
f(1,2) —t. We confirm the result graphically by graphing f(x,») together with the
tangent plane in p1 using Plot3D. We use ParametricPlot3D to graph the normal
line in p2 and then display p1 and p2 together with Show in Figure 3.65.

p1 = Plot3D[f[x, y], {x, -1, 3}, {y, 0, 4}];

p2 = Plot3D[dx (x-1) + dy (y-2) + f[1, 2], {x, -1, 3}, {y, 0,4}];

p3 = ParametricPlot3D[{1 + dx t,2 + dyt, f[1, 2] - 1}, {t, - 4, 4}];

Show[p1, p2, p3, PlotRange — {{- 1, 3}, {0, 4}, {0, 4}},
BoxRatios — Automatic]

Because z=-1(x- 1D - 1(y - 2)+ f(1,2) is the “best” linear approximation of
f(x,» near (1,2), the graphs are very similar near (1,2) as shown in the three-
dimensional plot. We also expect the level curves of each near (1, 2) to be similar,
which is confirmed with ContourPlot in Figure 3.66.

p4 = ContourPlot[f[x, y], {x, 0.75, 1.25}, {y, 1.75, 2.25}];

p5 = ContourPlot[dx(x-1) + dy(y-2) + f[1, 2], {x,0.75, 1.25},
{y, 1.75,2.25}];

Show[GraphicsRow[{p4, p5}]1]
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FIGURE 3.65
Graph of f(x,») with a tangent plane and normal line

225
21}
20f
1.9}
08 09 10 11 12

FIGURE 3.66
Zooming in near (1,2)

1.8

Lagrange Multipliers

Certain types of optimization problems can be solved using the method of
Lagrange multipliers that is based on the following theorem.
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Theorem 18 (Lagrange’s Theorem). Let z = f(x,)) and z=g(x,y)
be real-valued functions with continuous partial derivatives and let
z = f(x,y) bave an extreme value at a point (xo, yo) on the smooth con-
straint curve g(x,y) = 0. If vg (xo, yo) # 0, then there is a real number A
satisfying

Vf(xovyo) =Aveg (xo’yo) . (3.35)

Graphically, the points (xo, yo) at which the extreme values occur corre-
spond to the points where the level curves of z = f(x,)) are tangent to the

graph of g(x,y) = 0.

Example 3.5.8 Find the maximum and minimum values of f(x,y) = xy subject to the constraint
K+ly =1

Solution For this problem, f(x,») = xy and g(x,3) = 1x* + $»” — 1. Observe that parametric

equations for 1x* + 1y” =1 are x = 2cost, y = 3sint, 0 < ¢ < 2. In Figure 3.67(a),

we use ParametricPlot3D to parametrically graph g(x,)) = 0 and f(x, ) for x- and
y-values on the curve g(x,y) = 0 by graphing

x =2cost x =2cost
y=3sint and y =3sint
z=0 z=x-y=06costsint

for 0 < ¢ <27 Our goal is to find the minimum and maximum values in Figure
3.67(a) and the points at which they occur.

o
T

FIGURE 3.67

(@) fx,» on g(x,» =0. (b) Level curves of f(x,y) together with g(x,») =0
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fIx-,y-1 = xy;

glx-,y-] = x"2/4 + y"2/9-1;

s1 = ParametricPlot3D[{2Cos[t], 3Sin[t], 0}, {t, 0, 2Pi}];

s2 = ParametricPlot3D[{2Cos][t], 3Sin[t], 6Cos[t]Sin[t]}, {t, 0, 2Pi}];
plot1 = Show][s1, s2, BoxRatios — Automatic, PlotRange — All];

To implement the method of Lagrange multipliers, we compute f.(x,3), f,(x,1),
&.(x,3), and g (x,y with D.

fx = DIf[x, y], x]

fy = D[f[X, y], y]

gx = D[glx, y], x]

gy = D[glx,y],y]

o MIx X <

Solve is used to solve the system of equations (3.35):

S, ) = Ag,(x,3)
5,06 = Ag,(x, 1)
8&x,» =0
for &, y, and A.
vals = Solve[{fx==Agx, fy==Agy, g[X, y]==0}, {x, y,A}]

{{A—> -3, x— =2,y — %},{AH -3,Xx— V2,y — —\%},

{/\ — 3, X — —\@,y—> —%},{/\ — 3, X — \/§,y—> %}}
The corresponding values of f(x,) are found using ReplaceAll (/.).
n1 = {x,y, f[x, yl}/.vals//TableForm
-2 -3
-3
3
3

Sl Sl

SERS

Sk

N[n1]

-1.41421 2.12132 -3.
1.41421 -2.12132 -3.
-1.41421 -2.12132 3.
1.41421 212132 3.

We conclude that the maximum value f(x,y) subject to the constraint g(x,y) =0
is 3 and occurs at <\/§ %ﬁ) and (—\/_, —%ﬁ) The minimum value is =3 and
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Example 3.5.9

Solution

occurs at (—\/5, %ﬁ) and (x/f, —%ﬁ) We graph several level curves of f(x,y)
and the graph of g(x,») = 0 with ContourPlot and show the graphs together with
Show. The minimum and maximum values of f(x,)) subject to the constraint
g(x,») = 0 occur at the points where the level curves of f(x,y) are tangent to the
graph of g(x,») = 0 as illustrated in Figure 3.67(b).

<< “VectorFieldPlots™”; gradfplot = PlotGradientField[f[x, y], {x, -3, 3},
{y! _35 3}]!

cp1 = ContourPlot[f[x, y], {x, - 3, 3}, {y, — 3, 3}, Contours —>30,
ContourShading ->False, PlotPoints ->40];

cp2 = ContourPlot[g[x, y]==0, {x, -3, 3}, {y, - 3,3},
ContourStyle ->Thickness[0.01],

ContourShading —>False];
plot2 = Show[cp1, cp2, gradfplot];
Show[GraphicsRow[{plot1, plot2}]]

Observe that the maximum and minimum values occur where the gradient vec-
tors of z = f(x,y) are parallel to the gradient vectors of z = g(x,y) on the equation
g(x,» =0.

3.5.3 Iterated Integrals

The Integrate command, used to compute single integrals, is used to compute
iterated integrals. The command

Integratel[f[x, y], {y, ¢, d}, {x, a, b}]

attempts to compute the iterated integral

d b
J ] S, dxdy. (3.36)

c a

If Mathematica cannot compute the exact value of the integral, it is returned
unevaluated, in which case numerical results may be more useful. The
iterated integral (3.36) is numerically evaluated with the command N or

Nintegrate[f[x, y],{y, ¢, d}, {x, a, b}]

Evaluate each integral: (@) [ [7 (2x° +3x%) dxay; (0) [ [ (3% + ") dxay;
(c) I(?O fgo xye_xz_yz dy dx; and (d) I: L:T e x dy.

(a) First, we compute [[ (2x)° + 3x%y) dxdy with Integrate. Second, we compute
j: [7 (2° +3x7y) dxdy with Integrate.

Integrate[2xy” 2 + 3x" 2y, y, x]
IXPY?(Bx + 2y)



3.5 Multivariable Calculus

Integrate[2xy” 2 + 3x 2y, {y, 2, 4},{x, 1,2}]
98

(b) We llustrate the same commands as in (a), except we are integrating over a
nonrectangular region.

Integrate[3xA2 +y"3,{x,y"2, 2y}]
8y3 + 2y4 _y5 _y6
Integrate[3x”2 + y3,y, {x,y" 2, 2y}]

PR TN
2+ f
Integrate[3x*2 + y* 3,{y, 0,2}, {x, y 2, 2y}]
1664

106

(c) Improper integrals can be handled in the same way as proper integrals.

Integrate[xyExp[-x"2-y"2], x,y]

1
76

X2 y?

Integrate[xyExp[ - x2 -y 2], {x, 0, Infinity}, {y, 0, Infinity}]

7
(d) In this case, Mathematica cannot evaluate the integral exactly so we use
Nintegrate to obtain an approximation.

Integrate[Exp[Sin[xy]l, y, x]

JIeSin[xy]dxdy

Nintegrate[Exp[Sin[xy]l, {v, 0, Pi}, {x, 0, Pi}]

15.5092

Area, Volume, and Surface Area

Typical applications of iterated integrals include determining the area of a
planar region, the volume of a region in three-dimensional space, or the
surface area of a region in three-dimensional space. The area of the planar
region R is given by

A= jJ dA. 3.37)
R

If z = f(x,») has continuous partial derivatives on a closed region R, then
the surface area of the portion of the surface that projects onto R is given by

2 2
SA:JJ \/(07—f> +((9—f> + 1dA. (3.38)
% dx dy

If f(x,y) > g(x,)) on R, the volume of the region between the graphs of
JS(x,») and g(x,p) is

V= ” (@) - gx,p) dA. (3.39)
R

239
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Example 3.5.10 Find the area of the region R bounded by the graphs of y = 2x” and y = 1 +&°.

Solution We begin by graphing y=2x" and y=1+x" with Plot in Figure 3.68. The

x-coordinates of the intersection points are found with Solve.

Plot[Tooltip[{2x"2, 1 + x2}], {x, - 3/2, 3/2}]
Solve[2x*2==1 + x2]

{{x— 11 {x—=1}}
Using (3.37) and taking advantage of symmetry, the area of R is given by

1 (14’
A=JI dA=2J J dy dx,
R 0 Jox?

which we compute with Integrate.

2Integrate[1, {x, 0, 1}, {y, 2xA2, 1+ xA2}]
4
3

We conclude that the area of R is 4/3.

If the problem exhibits “circular symmetry,” changing to polar coordinates
is often useful. If R={(r,|a <r <b,a <6 < B}, then

B b
JJ f(x,y)dA:J Jf(rcose,rsine)rdrde.
R

a Ja

FIGURE 3.68

y=2x"and y=1+x" for =3/2 < x < 3/2
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Example 3.5.11 Find the surface area of the portion of
[, =1/4— x> —y?

that lies above the region R = {(x,») |x* +)* < 1}.

Solution First, observe that the domain of f(x,y) is

{(x,y)‘—yM—yZst\/4—3;2,—2 SySZ}={(r,0)|05r52,0505277}.

Similarly,

R={(x,y) |—\/1—y2 Sx<y1-p%,-1<y< 1}={(r,0)|05rs 1,0 <6 <27}

With this observation, we use ParametricPlot3D to graph f(x,») in p1 and the
portion of the graph of f(x,») above R in p2 and show the two graphs together
with Show. We wish to find the area of the black region in Figure 3.69.

f[x—,y-] = Sqrt[4 - xN2 —yA 2];

p1 = ParametricPlot3D[{r Cosl[t], r Sin[t], f[r Cos|t], r Sin[t]1},{r, 0, 2},
{t, 0, 2Pi}, PlotPoints — 45, ColorFunction — “LightTerrain”];

p2 = ParametricPlot3D[{r Cos[t], r Sin[t], f[r Cosl[t], r Sin[t]]}, {r, 0, 1},

FIGURE 3.69

The portion of the graph of f(x,y) above R
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{t, 0, 2Pi}, PlotPoints — 45, ColorFunction — “DarkTerrain”];
Show[p1, p2, BoxRatios — Automatic]

We compute £,Gx, ), f,(x,3) and \/[fx(x,y)]z + [fy(x,y)]z +1 with D and Simplify.
fx = DIf[x, y], x]
fy = DIf[x,y], y]

- Va-x2-y2
y

Vi@ —y?
s1 = Simplify[Sqrt[1 + fx"2 + fy2]]
2 1

T Tanday?

Then, using (3.38), the surface area is given by

- || \/(&_f) (Z) v
® ox ay

[ 2
- J 2 wm (3.40)
JIr /4 —x2 -2
rl J‘m 2
— = dxdy.

However, notice that in polar coordinates,

-1

R={r,®0<r<1,0<6<2m),

so in polar coordinates the surface area is given by
27 1 2
SA = J J rdrd@,
o Jo V4 -2
s2 = Simplify[s1/.{x = r Cos][t], y — r Sin[t]}]
2./

4-r2

which is much easier to evaluate than (3.40). We evaluate the iterated integral with
Integrate

s3 = Integrate[r s2, {t, 0, 2Pi}, {r, 0, 1}]
-4 ( -2+ \@) .
N[s3]
3.36715
and conclude that the surface area is (8 — 4v/3) m = 3.367.
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Example 3.5.12 Find the volume of the region between the graphs of z=4 — x> —p* and z =2 — x.

Solution We begin by graphing z=4-x"-)" and z=2-x together with Plot3D in
Figure 3.70(a).

p1 = Plot3D[{4-x"2-y"2,2-x},{x, -2,2},{y, -2,2},
PlotRange — {{-2, 2},{-2, 2}, {- 2, 4}}, BoxRatios — Automatic];

The region of integration, R, is determined by graphing 4 —x° -)* =2 -x in
Figure 3.70(b).

p2 = ContourPlot[4-x"2-y*2-(2-x)==0, {x, -2, 2}, {y, -2, 2},
PlotPoints — 50, Frame — False, Axes — Automatic,
AxesOrigin — {0, 0}];
Show[GraphicsRow[{p1, p2}]]

Another way to see the situation illustrated in Figure 3.70 is to use RegionPlot3D,
which works in the same way as RegionPlot but in three dimensions.
Completing the square shows us that

1

FIGURE 3.70

@z=4-a"-p*andz=2-xfor —=2<x<2and -2 <y < 2. (o) Graph of
4-x"-p'=2-x
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RegionPlotiD[2 -x sz <4 -x"2-y*2, (x, -2, 2}, (v, -2, 2}, 7
{z, -4, 4}, PlotPoints -+ 75, Mesh + False]

Thus, using (3.39), the volume of the solid is given by

which we evaluate with Integrate.

i1 = Integrate[(4-x"2-y"2)-(2-x), {y, - 3/2,3/2},
{x, 1/2-1/2Sqrt[9-4y" 2], 1/2 + 1/2Sqrt[9-4y" 2]}]
sl
32
N[i1]
7.95216

We conclude that the volume is 2—;77 = 7.952.

Triple Iterated Integrals

Triple iterated integrals are calculated in the same manner as double iterated
integrals.
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Example 3.5.13 Evaluate

T4 (Y (y+z
J J I (x +22)sinydxdzdy.
(

0 0Jo

Solution Entering

Example 3.5.14

Solution

i1 = Integrate[(x + 22)Sin[y], {y, 0, Pi/4},{z, 0, y}, {x,0,y + z}]
17(384 - 967 - 12772 +77°)
38412
calculates the triple integral exactly with Integrate.
An approximation of the exact value is found with N.
N[i1]
0.157206

We illustrate how triple integrals can be used to find the volume of a solid
when using spherical coordinates.

Find the volume of the torus with equation in spherical coordinates p = sin ¢.

We proceed by graphing the torus with SphericalPlot3D in Figure 3.72 (see
Figure 3.71 for the help feature associated with this command).

SphericalPlot3D[Sin[Phi], {Phi, 0, Pi}, {theta, 0, 2Pi}, PlotPoints — 40]

ann 12 SphericalPiot3D - Wolfram Mathematica =)

[4iin (w8 [resowaman =

SphericalPlot3D

OptericalFl0n300r, (B faey fm by (9 Py B

Ganerstes & 30 pok with 8 spherical radius.r a4 8 furction of spharical cosrdinabes # snd &

SpearicalPlosdn]in, r,

TR Bl s 10 Bt
generates 2 30 spherical plot with

mutiple surfaces.

*n

¥ FeAsieE

¥ Basic Examples (1)

e & 3ohenca) suriace:

(2w, (@, 0, PLY, {8, 0, 3W4})

FIGURE 3.71

Mathematica's help for SphericalPlot3D
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FIGURE 3.72

A graph of the torus

In general, the volume of the solid region D is given by

S

Thus, the volume of the torus is given by the triple iterated integral

2T T
!
0 0

i1= Integrate[rhoA2 Sin[phi], {theta, 0, 2Pi},
{phi, 0, Pi}, {rho, 0, Sin[phi]}]

sin([)
[ p*sin dp de db,

0

2

Z

N[i1]
2.4674

which we evaluate with Integrate. We conclude that the volume of the torus is
1_2

3.6 EXERCISES

1. If $P is compounded z times per year at an annual interest rate of 7,
the value of the account, A4, after ¢ years is given by

o\ nt
a=(1+2)"
n

The formula for continuously compounded interest is obtained by
finding the limit of this expression as £ — oo. Find the limit.
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3.6 Exercises

ax4+bx3+cx2+8, ifx<z
Let f(x) = 3 .
ax’ +bx2+cx+4, if x>z
(a) If z = 2, find a, b, and c so that f(x), f'(x), and f"'(x) are continuous
for all real numbers.
(b) For what values of z, if any, are there no values &, b, and ¢ so that
F@0), f'(), and f"(x) are continuous for all real numbers?

. Use Mathematica to generate a representative plot of each of the fol-

lowing functions. Note: If x = p/q is rational, p/q is assumed to be a
reduced fraction.

Inp, if x = p/q is rational;
@ fay=4 b Y

0, if x is irrational

cos g, if x = p/q is rational;
) fx) = e

0, if x is irrational

1/p, if x = p/q is rational;
© feo= 9 P Er=P

0, if x is irrational

(d) Challenge: Determine the value(s) of x, if any, for which each of
these functions are continuous.

0, ifx=0
79°(0) = 0 for all n. (Refer to Figure 3.3(b).)

e e x £0
. For f(x) = ’ , provide a convincing argument that

. Refer to Example 3.1.2. For what values of x, if any, is the function not

continuous? Not differentiable?

. (a) Find an equation of the line tangent to the graph of f(x) =9 — 47

at the point (1,£(1)). (b) Use Do to generate graphs of y = f(x) and
y =f'(a)x - a) +f(a) for 50 equally spaced values of a between —3
and 3. (c¢) Use Table to create a similar plot for 9 equally spaced values
of a between —3 and 3 and display the result as a graphics array.

. Let f(x) = mx + b and (x,,y,) be a point not on the graph of f(x). Find

the point on the graph of f(x) that is closest to (x,, ).

I = cos(Sx)/(x2 + 1) on [0, 7], find the value(s) of ¢ that satisfies

that conclusion of the mean-value theorem for derivatives. Confirm
your results graphically.

. Sketch f(x) = X —x% In your plot, label relative and absolute extreme

values as well as points of inflection. Tip: A good plot indicates both
the local and the global behavior of the function.

Use Maximize or Minimize to verify each of the results obtained in the
examples in Applied Max/Min Problems, Section 3.2.6.

247
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11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

(@ Find dy/dx if cos(x+siny) =siny. (b) Graph the equation for
—41m < x < 41 and —47 <y < 4. (c) Find a point on the graph at
which there are two tangents and then find equations of both tangents.
(d) Ilustrate that your final result is correct.

Find the ratio of the volume of the right circular cone of largest volume
that can be circumscribed about a sphere of radius R to the volume
of the right circular cone of largest volume that can be inscribed in a
sphere of radius R.

Plot f(x) = x(x — 1)1/ 3(x - 2)2/ ® without loading the RealOnly package.
Calculate and then plot f ') and f ") as well. Hint: Use Abs.
Calculate (a) | 2;2 dx and (b) fxz tan™' xdx. In each case, check

sin“x +
that your answer is correct by computing the antiderivative by hand.

Refer to Figure 3.30. Create a Manipulate object that can be used to
illustrate how the lengths of the stayed wires change as D, L,, and L,
change. Use [0, 100] for each range. For the initial values set D = 50,
L, =20, and L, = 60.

Let f(x) = ax’ +c. For x = x,, let L(x,) denote the line perpendicular
to the tangent at (x,,f(x,)) and let d denote the length of the line
segment formed by the intersection L(x,) and f(x). Find x,, so that d is
minimized. What is the measure of the angle formed by the intersection
of the two lines for which 4 is minimized?

(2) Define functions simpson, which implements Simpson’s rule, and
trapezoid, which implements the trapezoidal rule by adjusting the func-
tion leftsum (middlesum or rightsum) discussed previously to perform

the calculation for the desired method. (b) Let f(x) = g~ P cos(i-3)
(@ Graph y = f(x) on the interval [1,5]. Use (i) Simpson’s rule with
n = 4, (iii) the trapezoidal rule with n = 4, and (iv) the midpoint rule
with 7 = 4 to approximate ff [0 dx.

If peo = 22 = 3x" + 110" - 180 + 12x + 1 and g(x) = —4x” +28x° —
56x + 32, find the solutions of p(x) = g(x) using FindRoot. Challenge:
Use Map together with FindRoot to perform the operation in a single
command.

Let f(x) = exp (—(x - 2)2 Ccos 7Tx> and g(x) = 4 cos(x — 2). (a) Find the
area of the region bounded by the graphs of the two functions. (b) Find
the volume of the solid obtained by revolving the region bounded by
the graphs of the two functions about the x-axis. (¢) Find the volume
of the solid obtained by revolving the region bounded by the graphs of
the two functions about the y-axis. (d) Generate plots illustrating the
area and the two solids. Hint: Use FindRoot.

Let R denote the region in the first quadrant bounded by the graphs
of y= x" and x = y". (a) Find the area of R. (b) Find the volume of the



See Chapter 5 for
more discussion

regarding curvature.

3.6 Exercises

solid obtained by revolving R about the x-axis. (¢) Find the volume of
the solid obtained by revolving R about the y-axis.

21. Calculate (2) [} k27" dk, (b) lim,_, [;' 227 dk, and () [{° k27" dk.
‘50’e

22. Show that Zk | —— converges and find its sum.

23. Find Yo 1x \X/hat is the interval of convergence for this series?
n/2

24. Evaluate Ezl —,~- Confirm your result by showing that the series
converges and finding its sum by hand.

i R

25. (@ Plot (B, a,) for k=1,2,...,2000 if a, = 517 (b) Find Zoo &
Challenge: Prove that the infinite series converges. (c¢) Plot (&, a)

sink
for k=1,2,...,2000 if a, = — (d) Prove that the infinite series
converges. Challenge: Find Zk 1 k2 . (See Figure 3.73(2).)

26. Let f(x) = exp (—(x— 1) x+1D ) (@) Graph f(x) together with its
8th degree Taylor polynomial expanded about x =1 on the interval
[-1.75,1.75]. (b) What is the interval of convergence for the Taylor
series about x =1 for this function? (¢) Can you use a Taylor poly-
nomial expanded about x =1 for this function to approximate f(0)?
Explain. (See Figure 3.73(b).)

27. Find the length of the graph of f(x) = sin(x+xsinx) from x=0 to
X = 2.

28. Determine lim, ¢ ) xy/(x2 + yz). If the limit does not exist, confirm
your results graphically.

29. Minimal surfaces have “zero mean curvature.” Minimal surfaces
that are parametrically defined by x=u, y=v, z=f(u,v) satisfy

o 15;
0003, 72 1.0¢
0002 ;- ~05b
0.001F ° P FY
0.000 F S5 51005 L 05 10

—-0.001 £ —0.5¢

—-0.002F -, -1.0¢}

—-0.003 F - ] —15L

0 500 1000 1500 2000 —20F
a b
FIGURE 3.73

(@ The first 2000 terms of an interesting sequence. (b) What is the radius of the

interval of convergence?

249
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30.

31.

32.

33.

34.
35.

Lagrange’s equation, (1 + fv2 > Suw = 2SS + <1 + fu2> fuor =0. Plot

2 2
S v u?, y=v—%v5+u v,

z=u’ - v%, and show that the equations satisfy Lagrange’s equation.

Let g(x,y) = exp (—é (xz +y2> (coszx + sin2y>>. (@ Graph g(x,»)
using your favorite color scheme from the Color Schemes palette for
—-m<x<mand -7 <y < 7. (b) Compute and simplifyfx,j},fxy,fxx,
and f,, using D and Simplify. (¢) Use Mathematica help to determine
the functionality of Derivative and then use Derivative to recalculate the
partials.

Find and classify the critical points of f(x,)) = 1202 — 300" + 18 +
5x° + SOxyz. Confirm your results with three-dimensional and contour
plots with a gradient plot.

Find equations of the tangent plane and normal line to f(x,)) =
1

4 <x2 +y2 + 1>_ at (1/2,1,f(1/2, 1)). Confirm your results graphically.

(See Figure 3.74(a).)
Find the minimum and maximum values of f(x,)) = X+ 4y3 subject to
X+ 4y2 = 1. Confirm your results graphically. (See Figure 3.74(b).)

Evaluate Ilz f]‘/_yy x)° dy dx.

Enneper’s minimal surface, x =u — %u

Evaluate foﬁ IO‘/TT cos (xz - yz) dy dx. Determine the meaning of the

functions FresnelC and FresnelS.

FIGURE 3.74

(@) Tangent plane. (b) Lagrange multipliers



CHAPTER

Introduction to Lists and Tables

Chapter 4 introduces operations on lists and tables. The examples used to
illustrate the various commands in this chapter are taken from calculus,
business, dynamical systems, and engineering applications.

4.1 LISTS AND LIST OPERATIONS

Table and Manipulate
have nearly identical
syntax. With Manipu-
late, you can create
an interactive dynamic
application; Table
returns nonadjustable
results.

41.1 Defining Lists
A list of n elements is a Mathematica object of the form
list = {a1,a2, a3, ...,an}

The ith element of the list is extracted from list with list[[i]] or Part[list,i].

Elements of a list are separated by commas. Lists are always enclosed
in braces {...} and each element of a list may be (almost any) Mathematica
object—even other lists. Because lists are Mathematica objects, they can be
named. For easy reference, we will usually name lists.

Lists can be defined in a variety of ways: They may be completely typed
in, imported from other programs and text files, or they may be created
with either the Table or Array commands. Given a function f(x) and a
number 7, the command

1. Table[f[i],{i,n}] creates the list {f[1],...,f[n]};
2. Tableff[i],{i,0,n}] creates the list {f[0], ... ,f[n]};
3. Table[f[i],{i,n,m}] creates the list

{f[n], fin + 1], ..., flm - 1], fim]};
4. Table[f[i],{i,imin,imax,istep}] creates the list

{f[imin], flimin + istep], flimin + 2*step], ..., flimax]};

and

251
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5. Array[f,n] creates the list {f[1],...,f[n]}.
In particular,
Table[f[x], {x, a, b, (b—a)/(n-1)}]

returns a list of f(x) values for n equally spaced values of x between
a and b;

Table[{x, f[x]}, {x, a, b, (b -a)/(n-1)}]

returns a list of points (x, f(x)) for n equally spaced values of x between

a and b.
eoe Ht Table - Wolfram Mathematica =
€S| [#%E el Table »]| B

Table Updated in 6

Table [expr, [fn}]
generates a list of i, copies of expr.

Table [expr, (i, lnal]
generates a list of the values of expr when i runs from 1 t0 i,

Table [expr, (i buns fmaxl]
starts with i = is.

Table [expr, (i, lmins boges di}]
uses steps di.

Table [expr, {{, (i1, by ...}}
uses the successive values iy, iz, ....

Table [expr, {i; buss baus}s (Jr Juins Joux} v -]
glves a nested list. The list associated with { is outermost.

¥ EXAMPLES

¥ Basic Examples
A table of the first ten squares:
Inf1]:= Table[i"2, {1, 10}]
1= (1, 4,9, 16, 25, 36, 49, 64, 81, 100}

A table with 1 running from O to 20 in steps of 2:
100% »|

In addition to using Table, lists of numbers can be calculated using
Range:

1. Range[n] generates the list {1,2,...,n};
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2. Range[n1,n2] generates the list {n1,n1+1,...,n2-1,n2}; and
3. Range[n1,n2,nstep] generates the list

{n1,n1 + nstep, n1 + 2*nstep, ..., N2-nstep, n2}

Example 4.1.1 Use Mathematica to generate the list {1,2,3,4,5,6,7,8,9,10}.

Solution Generally, a given list can be constructed in several ways. In fact, each of the
following five commands generates the list {1,2,3,4,5,6,7,8,9,10}.
{1,2,3,4,5,6,7,8,9,10}
{1,2,3,4,5,6,7,8,9,10}
Tableli, {i, 10}]
{1,2,8,4,5,6,7,8,9,10}
Tableli, {i, 1, 10}]
{1,2,3,4,5,6,7,8,9,10}
Table |1, {i, 2,20, 2}|
{1,2,3,4,5,6,7,8,9,10}

Range[10]
{1,2,3,4,5,6,7,8,9,10}

Example 4.1.2 Use Mathematica to define listone to be the list of numbers {1, 3/2, 2, 5/2, 3,
7/2, 4}.

Solution In this case, we generate a list and name the result listone. As in Example 4.1.1,
we illustrate that listone can be created in several ways.
. _ 3 5 7
listone = {1, 512,33, 5,4}
{1, 3,2, 2,3, 5,4}
listone = Table[i, {i, 1,4, 1}]
3 5 7
{1, 55 2, 573, 5,4}
Last, we define i(n) = %n + % and use Array to create the table listone.
ifn]1=2+1;
listone = Arrayl[i, 7]

{1,%,2,8,3,1,4}

Example 4.1.3 Create a list of the first 25 prime numbers. What is the 15th prime number?

Solution The command Prime[n] yields the nth prime number. We use Table to generate a
list of the ordered pairs {n,Prime[n]} for n = 1,2, 3, ..., 25 and name the resulting list
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list. We then use Short to obtain an abbreviated portion of list. Generally, Short
returns the first and last few elements of a list. The number of omitted terms
between the first few and last few is indicated with <<n>>. In this case, we see
that 17 terms are omitted.

list = Table[{n, Prime[n]}, {n, 1, 25}];
Short[list]

{{1.2}.{2,3},{8,5}, {4, 7},
((17)), {22, 79}, {23,83}, {24, 89}, {25,97}}

The ith element of a list list is extracted from list with list[[i]] or Part[list,i]. From
the resulting output, we see that the 15th prime number is 47.

list[[15]]
{15,47}

Part[list, 15]
{15,47}

You can use the Manipulate function in nearly the exact same way as the
Table function. With Manipulate, the result is an interactive dynamic object
that can be saved as an application that can be run outside of Mathematica.
With

Manipulate[{i, 1/2}, {1, 1, 10}] ]]

£
+

{4.22, 2.11}

we let 7 and #/2 vary continuously for 1 <7 < 10. By making the stepsize
be 1, integer values of 7 are only allowed.

Manipulate[{i, 4/2}, (i, 1, 10, 1}] 1

With the following Manipulate command, you can see 7 and the nth prime
number for 1 < n < 1000000.



Example 4.1.4

Solution

Example 4.1.5

4.1 Lists and List Operations

Manipulate[{n, Prime[n]}, {n, 1, 1000000, 1}]

{776836, 11817229}

In addition, we can use Table to generate lists consisting of the same or
similar objects.

(@) Generate a list consisting of five copies of the letter a. (b) Generate a list
consisting of 10 random integers between —10 and 10 and then a list of 10 random
real numbers between —10 and 10.

Entering

Table[a, {5}]
{a,a,a,a,a}

generates a list consisting of five copies of the letter a. For (b), we use the com-
mands Randomlinteger and RandomReal to generate the desired lists. Because
we are using Randominteger and RandomReal, your results will certainly differ
from those obtained here.

Randominteger[{-10, 10}, 10]
{3,-5,5,-8,0,-2,-2,2,7,9}

RandomReal[{-10, 10}, 10]
{-3.42641,4.76027, —3.49249, —9.11795, 3.72502, 7.39518,
-6.84238, -7.85735,4.94279, —9.4021}

As illustrated previously, Manipulate works in much the same way as Table
but allows you to interactively see how adjusting parameters affects a given
situation.

In polar coordinates, the graphs of » =sinnf and » = cosnf are n-leaved roses
if n is odd and 2n-leaved roses if n is even. If n is even, the area of the graph

enclosed by the 2n roses is 4 = 1 3” 7> db = /2. If nis odd, the area of the graph
enclosed by the n roses is 4 = L [27 1 df = /4.

To see this with Mathematica, we can use Table. (See Figure 4.1.) (Note that
Iffcondition,f,g] returns f if condition is True and g if it is not.)

Clear[n, x];
t1 = Table[{

255
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n Area (Sine) Sine Plot Area (Cosine) |
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FIGURE 4.1
You can use Table to see that the area of the roses depends only on whether 7 is
odd or even

If[Mod[n/2,1] === 0, Integrate[Sin[nx]’\Z, {x, 0, 2Pi}}/2,
Integrate[Sin[nx]AZ, {x, 0, Pi}]/2],
PolarPlot[Sin[nx], {x, 0, 2Pi}],

If[Mod[n/2,1] === 0, Integrate[Cos[nx]AZ, {x,0, 2Pi}}/2,
Integrate[Cos[nx]" 2,{x, 0, Pi}]/2],
PolarPlot[Cos[nx], {x, 0, 2Pi}1}, {n, 1, 5}];



4.1 Lists and List Operations

TableForm[t1,
TableHeadings — {Table[n, {n, 1, 5},
{“n”, “Area(Sine)”, “SinePlot”, “Area(Cosine)”, “CosinePlot”}}]

Alternatively, you can use Manipulate. (See Figure 4.2.)

Clear[n, x];
Manipulate[{n,
If[Mod[n/2, 1] === 0, Integrate[Sin[nx]" 2, {x, 0, 2Pi}]/2,
Integrate[Sin[nx]"2, {x, 0, Pi}}/2],
PolarPlot[Sin[nx], {x, 0, 2Pi}],
IffMod[n/2,1] === 0, Integrate[Cos[nx]AZ, {x, 0, 2Pi}1/2,
Integrate[Cos[nx]AZ, {x, 0, Pi}]/2],
PolarPlot[Cos[nx], {x, 0, 2Pi}1}, {{n, 5}, 1, 100, 1}]

n el
=
l,lﬂf\ ’/-}
] — { /
( N 0s /
2SS0 1 e
4 - =k 4 -05 -
05 < _\ 05 2
B : rd A A\
// ,-"ﬁ.'i \_\ \ C, 0.5
L N \J
n  r—
=
n
{a':, i
4
FIGURE 4.2
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With Manipulate you can see that the area alternates from w/2 to w/4 as n

alternates from even to odd
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4.1.2 Plotting Lists of Points

Lists are plotted with ListPlot.

1. ListPlot[{{x1,y1},{x2,y2},....{xn,yn}}] plots the list of points {(x,,y,),
(xz, yz), e (xn, yn)} The size of the points in the resulting plot
is controlled with the option PlotStyle->PointSize[w], where w is
the fraction of the total width of the graphic. For two-dimensional
graphics, the default value is 0.008.

2. ListPlot[{y1,y2,..yn}] plots the list of points {(1,1,),(2,3,),...,

(n.2,)}-

To connect the consecutive points with line segments, use the option

Joined->True.

Example 4.1.6 Entering

When a semicolon is t1 = Table[Sin[n], {n, 1, 1000}];
included at the end ListPlot[t1]
of a command, the

resulting output is
suppressed.

Example 4.1.7

creates a list consisting of sinn for n =1, 2,...,1000 and then graphs the list of
points (n,sinn) for n =1, 2,...,1000. See Figure 4.3.

t1 = Table[Prime[n], {n, 1,25000}];

® e ale ,°®

(The Prime Difference Function and the Prime Number Theorem).
In 11, we use Prime and Table to compute a list of the first 25,000 prime numbers.

o

pe % e o ,° o e o 00 ee 0,0 o

s L. o« o s «c s e v L,
-05 o © e, « s ¢ 0e®0e° % s o8 ° e,

® o eee0,° ° . oo 00 ®
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FIGURE 4.3

o

Plot of (n,sinn) forn =1, 2,...,1000



First[list] returns the
first element of list;
Last[list] returns the
last element of list.

Span is new in
Mathematica 6 but
works in almost the
same way as Take.

Example 4.1.8

4.1 Lists and List Operations

We use Length to verify that t1 has 25,000 elements and Short to see an
abbreviated portion of t1.

Length[t1]

25000

Short[t1]

{2,3,5,7,11,13,17,19, ((24984)), 287047,
287057,287059, 287087, 287093, 287099, 287107, 287117}

You can also use Take to extract elements of lists.

1. Takellist,n] returns the first n elements of list;
2. Takellist,-n] returns the last n elements of list; and
3. Take][list,{n,m}] returns the nth through mth elements of list.

Take[t1, 5]

{2,3,5,7,11}

Take[t1, - 5]

{287087, 287093, 287099, 287107,287117}
Take[t1, {12501, 12505}]

{134059, 134077,134081, 134087, 134089}

Working in almost the same way as Take, Span (;;) selects elements of lists:
list[[n;;m returns the n through mth elements of list.

Here are the first few terms of sequence A073184,' the number of cube free
divisors of n:

ashortlist ={1,2,2,3,2,4,2,3,3,4,2,6,
2! 4,4, 3! 2! 6! 2; 6! 4,4, 2! 6!
3,4,3,6,2,8,2,3,4,4,4};

With ;; (Span), we select the second through eighth elements of ashortlist.

ashortlist[[2;;8]]
{2,2,3,2,4,2,3}

The same results are obtained with Take.

Take[ashortlist, {2, 8}]
{2,2,3,2,4,2,3}

You can count the number of elements of a list with Length.

Length[ashortlist]
35

! Sloane, N. J. A., The On-Line Encyclopedia of Integer Sequences, www.research.att.com/
njas/sequences, 2007.

259



260 CHAPTER 4 Introduction to Lists and Tables

With Tally, we count the number of occurrences of each digit in the list. Thus,

Tally[ashortlist]
{{1,1},{2,11},{3,7},{4,10},{6,5},{8, 1}}

shows us that there are eleven 2's, ten 4's, and so on.

However, you can use Table together with Part ([[...]]) to obtain the same results
as those obtained with Take or Span.

Table[t1[[i]], {i, 1, 5}]

Table[t1[[il], {i, 24996, 25000}]

Table[t1[[il], {i, 12501, 12505}]
{2,3,5,7,11}

{287087, 287093, 287099, 287107, 287117}
{134059, 134077, 134081, 134087, 134089}

In t2, we compute the difference, d,,, between the successive prime numbers in
list[[i]] returns the ith t1. The result is plotted with ListPlot in Figure 4.4.

clement of list so t2 = Table[t1[[i + 111 -t [[ill, {i, 1, Length[t1] - 1}];

list[[i+1]] — list[[i]] Short[t2]

Z‘;f’fnp‘“es glet 1,2,2,4,2,4,2,4,6,2,6,4,2,4,6,6, ((24967)),
crence between 28,14,54,46,8,6,12,4,44,10,2,28,6,6,8, 10}

the (7 + 1)st and 7th .
clements of list. ListPlot[t2, PlotRange — All]

80 . T
60 ° 3 . .o oo o L .éo. .o.o-.o.u e
ADF e S8 e e P et B S sa e e et

G S D G
20
G D D

! 5000 10000 15000 20000 25000
FIGURE 4.4
A plot of the difference, d,,, between successive prime numbers




Remember that p1 is
not displayed because
a semicolon is
included at the end of
the Plot command.

4.1 Lists and List Operations

Let 7(@) denote the number of primes less than n and Li(x) denote the
logarithmic integral:

X

1
Loglntegral[x] = Li(x) = J —dt.
o Int

We use Plot to graph Li(x) for 1 < x < 25,000 in p1.
p1 = Plot[LogIntegral[x], {x, 1, 2500}];

The prime number theorem states that
m(n) ~ Li(n).

(See [20].) In the following, we use Select and Length to define w@).
Select[list,criteria] returns the elements of list for which criteria is true. Note
that #<n is called a pure function: Given an argument #, #<n is true if #<n
and false otherwise. The & symbol marks the end of a pure function. Thus,
given n, Select[t1,#<n&] returns a list of the elements of t1 less than n;
Select[t1,#<n&]//Length returns the number of elements in the list.

smallpi[n_] := Select[t1, # < n&] / /Length
For example,

smallpi[100]
25

shows us that 7(100) = 25. Note that because t1 contains the first 25,000 primes,
smallpi[n] is valid for 1 < n < N, where 7(N) = 25,000. In t3, we compute m(n) for
n=1,2,...,25,000

t3 = Table[smallpi[n], {n, 1, 2500}];

Short[t3]

{0,0,1,2,2,3,3,4,4,4,4,5,5, ((2475)),
367,367,367,367,367,367,367,367,367,367,367,367}

and plot the resulting list with ListPlot.
p2 = ListPlot[t3, PlotStyle — GrayLevel[0.4]]

p1 and p2 are displayed together with Show in Figure 4.5.
Show[p1, p2]

You can iterate recursively with Table. Both

t1 = Table[ali, j], {j, 2, 10, 2}, {i, 1, 5}]

{{a[1,2],a[2, 2], a[3, 2], a[4, 2], a[5, 2]},

{a[1, 4], a2, 4], a[3, 4], a[4, 4], a[5, 41}, {a[1, 6], a[2, 6], a[3, 6], a[4, 6], a[5, 6]},

{a[1, 8],a[2, 8], a[3, 8], a[4, 8], a[5, 8]}, {a[1, 10], a[2, 10], a[3, 10],
a[4,10],a[5,10]} }

Length[t1]

5
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Length[list] returns
the number of
elements in list.

300

200

100

500 1000 1500 2000 2500
FIGURE 4.5
Graphs of Li(x) (in black) and (n) (in gray)

and

t2 = Table[Table[ali, j], {i, 1, 5}1,{j, 2, 10, 2}]
{{a[1,2],a[2,2],a[3, 2], a[4, 2], a[5, 2]}, {a[1, 4], a[2, 4], a[3, 4], a[4, 4], a[5, 4]},
{a[1, 6], a[2, 6], a[3, 6], a4, 6], a[5, 6]}, {a[1, 8], a[2, 8], a[3, 8], a[4, 8], a[5, 8]},
{a[1,10],a[2, 10}, a[3, 10}, a[4, 10], a[5, 10]} }

compute tables of a,,. The outermost iterator is evaluated first: In this case,
i is followed by j as in t1 and the result is a list of lists. To eliminate the
inner lists (that is, the braces), use Flatten. Generally, Flatten[list,n] flattens
list (removes braces) to level n.

Flatten[t1]

{a[1,2],a[2,2],a[3,2],al4,2],a[5, 2], a[1, 4], a[2, 4], a[3, 4], a[4, 4],

alb, 4], a[1, 6], a[2, 6], a[3, 6], a[4, 6], a[5, 6], a[1, 8], a[2, 8], a[3, 8], a[4, 8], a[5, 8],
a[1,10],a[2,10], a[3, 10], a[4, 10], a[5, 10]}

The observation is especially important when graphing lists of points
obtained by iterating Table. For example,

t1 = Table[{Sin[x + y], Cos[x -y}, {x, 1, 5}, {y, 1, 5}]

{{{Sin[2], 1}, {Sin[3] Cos[1]} {Sin[4], Cos[2]}, {Sin[5], Cos[3]}, {Sin[6], Cos[4]} },
{{Sin 3] Cos[1]}, {Sin[4], 1}, {Sin[5] Cos[1]} {Sin[B], Cos[2]}, {Sin[7], Cos[3]}},
{{Sin[4], Cos[2]}, {Sin[5], Cos[1]}, {Sin[6], 1}, {Sin[7], Cos[1]}, {Sin[8], Cos[2]}},
{{Sin[5], Cos[3]}, {Sln[6 ], Cos[2]}, {S|n[7 Cos[1]}, {Sin[8], 1}, {Sin[9], Cos[1]}},
{{Sin[6], Cos[4]}, {Sin[7], Cos[3]}, {Sin[8], Cos[2]},{Sin[9], Cos[1]}, {SIN[10],1} } }
Length[t1]

5
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is not a list of 25 points: t1 is a list of 5 lists each consisting of 5 points. t1
has two levels. For example, the third element of the second level is

t[[3]1]

{{Sin[4], Cos[2]}, {Sin[5], Cos[1]}, {Sin[6], 1}, {Sin[7], Cos[1]}, {Sin[8], Cos[2]}}
and the second element of the third level (or the second part of the third
part) is

HI[s3,2]]

{Sin[5], Cos[1]}

To flatten t2 to level 1, we use Flatten.

t2 = Flatten[t1, 1];

The resulting list of ordered pairs (in Mathematica, {X,y} corresponds to
(x,»)) is not displayed because a semicolon is placed at the end of the
Flatten command. These are plotted with ListPlot in Figure 4.6(a). We also
illustrate the use of the PlotStyle, PlotRange, and AspectRatio options in
the ListPlot command.

Ip1 = ListPlot[t2, PlotStyle — {PointSize[.05], GrayLevel[.5]},
PlotRange — {{-3/2,3/2}, {-3/2,3/2}}, AspectRatio — Automatic];

Increasing the number of points further illustrates the use of Flatten.
Entering

t1 = Table[{Sin[x + y], Cos[x-vl}, {x, 1,125}, {y, 1, 125}];

Length[t1]
125
1.5
0 00 ®
o 051® ® @
-15 —-1.0 -05 05 1.0
o 73.5 L o
o
o —-1.0f o
—-1.5*- .
a b

FIGURE 4.6
(@) and (b)
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Short[list] yields an
abbreviated version
of list.

Remark 4.1

Example 4.1.9

Observe that

Xpi1 =f(xn) can also
be computed with
Xnr1 =fn(x0)~

results in a very long nested list. t1 has 125 elements, each of which has
125 elements.
An abbreviated version is viewed with Short.

Short[t1]
{{{Sin[2], 1}, {Sin[3], Cos[1]}, ((121)),
{Sin[125], Cos[123]}, {Sin[126], Cos[124]} }, ((124))}

After using Flatten, we see with Length and Short that t2 contains 15,625
points,

t2 = Flatten[t1, 1];

Length[t2]

15625

Short[t2]

{{Sin[2], 1}, {Sin[3], Cos[1]}, ((15621)), {Sin[249], Cos[1]}, {Sin[250], 1} }

which are plotted with ListPlot in Figure 4.6(b).

Ip2 = ListPlot[t2, AspectRatio — Automatic];
Show[GraphicsRow[{Ip1, Ip2}]1]
Show[GraphicsRow[{lp1, Ip2}]1]

Mathematica is very flexible and most calculations can be carried out in more than
one way. Depending on how you think, some sequences of calculations may make
more sense to you than others, even if they are less efficient than the most efficient
way to perform the desired calculations. Often, the difference in time required for
Mathematica to perform equivalent—but different—calculations is quite small. For
the beginner, we think it is wisest to work with familiar calculations first and then
efficiency.

(Dynamical Systems). A sequence of the form x,,,, =f(x,) is called a dynami-
cal system.

Sometimes, unusual behavior can be observed when working with dynam-
ical systems. For example, consider the dynamical system with f(x) = x + 2.5x
(1-x and x,=1.2. Note that we define x, using the form x[n]:=x[n]=...
so that Mathematica “remembers” the functional values it computes and thus
avoids recomputing functional values previously computed. This is particularly
advantageous when we compute the value of x,, for large values of n.

Clear[f, x]

f[x-] := x + 2.5x(1 -Xx)
x[n-] := x[n] = f[x[n-1]]
x[0] = 1.2;



4.1 Lists and List Operations

1.2
1.2 sy
e 11F
10 1.0F
09F 09F
08F 08F
o7k 07F o
_mq. 1 1 1 1
y - . ' %0000 10, 150 200
50 100 150 200
a b

FIGURE 4.7

(@ A 2-cycle. (b) A 4-cycle

In Figure 4.7(a), we see that the sequence x,, oscillates between the numbers
0.6 and 1.2. We say that the dynamical system has a 2-cycle because the values
of the sequence oscillate between two numbers.

tb = Table[x[n], {n, 1, 200}]; ListPlot[tb]
In Figure 4.7(b), we see that changing x, from 1.2 to 1.201 results in a 4-cycle.

Clear[f, x]

f[x_] := x + 2.5x(1-x)
x[n-] := x[n] = f[x[n-1]]
x[0] = 1.201;

tb = Table[x[n], {n, 1,200}];
ListPlot[tb]

The calculations indicate that the behavior of the system can change considerably
for small changes in x,. With the following, we adjust the definition of x so that x
depends on x, = ¢: Given ¢, x,.(0) =c.

Clear[f, x]

f[x_] := x + 2.5x(1 -x)

x[c_][n-] := x[c][n] = f[x[c][n-1]]//N
x[c_][0] := c//N;

In tb, we create a list of lists of the form {x (m)|n = 100, ..., 150} for 150 equally
spaced values of ¢ between 0 and 1.5. Observe that Mathematica issues several
error messages. When a Mathematica calculation is larger than the machine's
precision, we obtain an Overflow warning. In numerical calculations, we interpret
Overflow to correspond to oo.

tb = Table[{c, x[c][n]}, {c, 0, 1.5, .01}, {n, 100, 150}];

General::ovfl : Overflow occurred in computation. ))

General::ovfl : Overflow occurred in computation. ))

General::ovfl : Overflow occurred in computation. ))

General::stop : Further output of General::ovfl will be suppressed during this
calculation. ))
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Short[expr] prints an
abbreviated form
of expr.

1.2 v v v v 201
10F . .
151
0.8
0.6 . . . . 1.0
041
05
02
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FIGURE 4.8
(@) and (b)

We ignore the error messages and use Short to view an abbreviated form of tb.

Short[tb]
{{{0.,0.},{0.,0.},{0.,0.}, ((46)),{0.,0.}, {0., 0.}, {0, 0.3}, {(149)), {{(1)) }}

We then use Flatten to convert tb to a list of points that are plotted with ListPlot
in Figure 4.8(a).

tb2 = Flatten[tb, 1];
f1 = ListPlot[tb2];

Another interesting situation occurs if we fix x, and let ¢ vary in f(x) = x + cx(1 — x).
With the following, we set x, =1.2 and adjust the definition of f so that f
depends on ¢ f(x) = x + cx(1 — x).

Clearf[f, x]

flc-][x-] := x + cx(1-x)//N

x[e-][n-] := x[c][n] = f[c][x[c][n-1]1//N
x[c-][0] := 1.2//N;

In tb, we create a list of lists of the form {x.(m|n = 200, ..., 300} for 350 equally
spaced values of ¢ between 0 and 3.5. As before, Mathematica issues several
error messages, which we ignore and which are not displayed here due to length
considerations.

tb = Table[{c, x[c][n]},{c, 0, 3.5, .01}, {n, 200, 300}];
Short[tb]
{{{0.,1.2},{0.,1.2},{0.,1.2}, ((95)), {0., 1.2}, {0., 1.2}, {0., 1.2} }, ((350))}

tb is then converted to a list of points with Flatten and the resulting list is plotted
in Figure 4.8(b) with ListPlot. This plot is called a bifurcation diagram.

tb2 = Flatten[tb, 1];
f2 = ListPlot[tb2, PlotRange — {0, 2}]
Show[GraphicsRow[{f1, f2}]]



A function f is
listable if f[list] and
Mapf,list] return the
same results.

Example 4.1.10

Solution

4.1 Lists and List Operations

As indicated previously, elements of lists can be numbers, ordered pairs,
functions, and even other lists. You can also use Mathematica to mani-
pulate lists in numerous ways. Most important, the Map function is used
to apply a function to a list: Map[f,{x1,x2, ...,xn}] returns the list {f(x)),
Sy, ... f(x,)}. We discuss other operations that can be performed on lists
in the following sections.

(Hermite Polynomials). The Hermite polynomials, H,(x), satisfy the differential
2
equation y" — 2xy’ + 2ny = 0 and the orthogonality relation [ H, ()H,,(x)e™" dx =

3,2 " n!\/m. The Mathematica command HermiteH[n,x] yields the Hermite polyno-
mial H,(x). (@) Create a table of the first five Hermite polynomials. (b) Evaluate each
Hermite polynomial if x = 1. (c) Compute the derivative of each Hermite polynomial
in the table. (d) Compute an antiderivative of each Hermite polynomial in the table.
(e) Graph the five Hermite polynomials on the interval [-1,1]. (f) Verify that H,(x)

satisfies y" —2xy' +2ny =0 forn=1, 2, ...,5 (' denotes d/dx).

We proceed by using HermiteH together with Table to define hermitetable to be
the list consisting of the first five Hermite polynomials.

hermitetable = Table[HermiteH[n, x],{n, 1, 5}]
{2x, =2+ 4, —12x+ 8x%,12-48x* + 16x*, 120x - 160x° + 32x°}

We then use ReplaceAll (->) to evaluate each member of hermitetable if x is
replaced by 1.

hermitetable/.x — 1
{2,2,-4,-20, -8}

Functions such as D and Integrate are listable. Thus, each of the following com-
mands differentiates each element of hermitetable with respect to x. In the second
case, we have used a pure function: Given an argument #, D[#,x]& differentiates
# with respect to x. Use the & symbol to indicate the end of a pure function.

D[hermitetable, x]

{2,8x, —12 + 24x°, —96x + 64x°, 120-480x° + 160x" }
Map[D[#, x]&, hermitetable]

{2,8x, =12+ 24x%, —96x + 64x%,120-480x° + 160x" }

Similarly, we use Integrate to antidifferentiate each member of hermitetable with
respect to x. Remember that Mathematica does not automatically include the “+C”
that we include when we antidifferentiate.

Integrate[hermitetable, x]
{3, —2x+ 2, -6 + 2x¢, 12x-16x + 122,60 —40x* + 5 }

Map[Integrate[#, x]&, hermitetable]
{x2, —OX + % —6x% +2x*, 12x—16x° + % B0x° —40x* + %}
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201

FIGURE 4.9
Graphs of H,(x), H,(x), H;(x), Hy(x), and Hs(x)

To graph the list hermitetable, we use Plot to plot each function in the set
hermitetable on the interval [-2,2] in Figure 4.9. In this case, we specify that
the displayed y-values correspond to the interval [-20,20]. Because we apply
Tooltip to the set of functions being plotted, you can identify each curve by mov-
ing the cursor and placing it over each curve to see which function is being
plotted.

Plot[Tooltip[hermitetable], {x, — 1, 1}, PlotRange — {-20, 20}]

hermitetable[[n]] returns the nth element of hermitetable, which corresponds to
H,(x). Thus,

verifyde =
Table[D[hermitetable[[n]], {x, 2}] - 2x D[hermitetable[[n]], x]+
2n hermitetable[[n]]//Simplify, {n, 1, 5}]
{0,0,0,0,0}
computes and simplifies H," — 2xH, + 2nH, for n=1,2,...,5. We use Table and
Integrate to compute [©_H,(OH,, e dx forn=1,2,...,5and m=1,2,...,5.
verifyortho =

Table[Integrate[hermitetable[[n, 2]]hermitetable[[m, 2]]
Exp[-x"2], {x, - Infinity, Infinity}], {n, 1,5}, {m, 1, 5}]

{{VTE 0,6y/7,0, -120ﬁ}, {0,12y/7,0, - 144/, 0},
{6/m,0,120\/7,0, -2400y/7}, {0, =144/, 0,1728y/,0},
{-120y/m,0, —2400/m, 0, 48000\/7 } }

To view a table in traditional row-and-column form use TableForm, as we do here
illustrating the use of the TableHeadings option.



4.2 Manipulating Lists: More on Part and Map

TableForm[verifyortho,
TableHeadings — {{*m = 1”,“m = 2”,“m = 3”,“m = 4”,“m = 5"},
{“n = 1”’ “n = 2”, “n = 3”, “n = 4”, “n = 5”}}]

n=1 n=2 n=3 n=4 n=>5
m =1 A 0 6y/7 0 1207
m=2 0 127 0 —144y/m 0
m=3 6y 0 120y/7 0 -2400\/7
m =4 0 —144\/7 0 1728\/7 0
m=5 -120y/7 0 —2400\/7 0 48000\/7

Be careful when using TableForm: TableForm][table] is no longer a list and cannot
be manipulated like a list.

4.2 MANIPULATING LISTS: MORE ON PART AND MAP

Often, Mathematica’s output is given to us as a list that we need to use in
subsequent calculations. Elements of a list are extracted with Part ([[...]D:
list[[i]] returns the ith element of list, list[[i,jJ] (or list[[i][[]D returns the jth
element of the ith element of list, and so on.

Example 4.2.1 Let f(x) = 3x" — 8x® — 30x” + 72x. Locate and classify the critical points of y = f(x).

Solution

We begin by clearing all prior definitions of f and then defining f. The critical
numbers are found by solving the equation f'¢x) = 0. The resulting list is named
critnums.

Clear][f]
flx_] = 3x*-8x%-30x2 + 72x;
critnums = Solve[f' [x]==0]

{x— -2} {x=1} {x=3}}

critnums is actually a list of lists. For example, the number -2 is the second part
of the first part of the second part of critnums.

critnumsi[1]]
{x— -2}
critnumsi[1, 1]1]
X— =2
critnumsi[1, 1, 2]]
-2
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‘When you plot lists
of functions and
apply Tooltip to the
list being plotted,
you can identify
each curve by sliding
the cursor over the
curve. When the
cursor is on a curve,
the definition of the
curve being plotted
is displayed.

Similarly, the numbers 1 and 3 are extracted with critnums[[2,1,2]] and
critnums[[3,1,2]], respectively.

critnums][2, 1, 2]]
critnums][3, 1, 2]]
]
3

We locate and classify the points by evaluating f(x) and f"(x) for each of the
numbers in critnums. f[x]/.x->a replaces each occurrence of x in f(x) by a, so
entering

{{x, f[x], ' [x]}}/.critnums
{{-2,-152,180}, {1,37, -72},{3, -27,120}}

replaces each x in the list {x, f(x), f'(x)} by each of the x-values in critnums.

By the second derivative test, we conclude that y = f(x) has relative minima
at the points (-2,-152) and (3, —27), whereas f(x) has a relative maximum at
(1,37). In fact, because lim =00, —152 is the absolute minimum value of

X—£00

f). These results are confirmed by the graph of y = f(x) in Figure 4.10.
Plot[Tooltip[{f[x], f' [x], f'[xI}], {x, —4,4}]

Map is a very powerful and useful function: Maplf,list] creates a list consist-
ing of elements obtained by evaluating f for each element of list, provided
that each member of list is an element of the domain of f. Note that if f is
listable, f[list] produces the same result as Maplf,list].

400

200

—200

FIGURE 4.10
Graph of f(x) = 32" — 8x° — 304° + 72x, £(x), and f(x)




4.2 Manipulating Lists: More on Part and Map

Example 4.2.2 Entering

To determine if f is
listable, enter
Attributesf].

t1 = Table[n, {n, 1, 100}];
t1b = Partition[t1, 10];
TableForm[t1b]
12 3 4 5 6 7 8 9 10
18 19 20
28 29 30
38 39 40
48 49 50
58 59 60
68 69 70
78 79 80
88 89 90
98 99 100

112
21 22
31 32
41 42
51 52
61 62
71 72
81 82
91 92

computes a list of the first 100 integers and names the result t1. To see t1, we
use Partition to partition t1 in 10 element subsets; the results are displayed in a
standard row-and-column form with TableForm. We then define f(x) = x* and use
Map to square each number in t1.

f[x_] =

13 14 15
23 24 25
33 34 35
43 44 45
53 54 55
63 64 65
73 74 75
83 84 85
93 94 95

xA2,

t2 = Maplf, t1];
t2b = Partition[t2, 10];
TableForm[t2b]

1
121
441
961
1681
2601
3721
5041
6561
8281

The same result is accomplished by the pure function that squares its argument.
Note how # denotes the argument of the pure function; the & symbol marks the

4
144
484
1024
1764
2704
3844
5184
6724
8464

9
169
529
1089
1849
2809
3969
5329
6889
8649

16 17
26 27
36 37
46 47
56 57
66 67
76 77
86 87
96 97

16

25

36 49

64

81

196 225 256 289 324 361
676 729 784 841

576
1156
1936
2916
4096
5476
7056
8836

end of the pure function.

625
1225
2025
3025
4225
5625
7225
9025

1296 1369
2116 2209
3136 3249
4356 4489
5776 5929
7396 7569
9216 9409

1444
2304
3364
4624
6084
7744
9604

1521
2401
3481
4761
6241
7921
9801

100
400
900
1600
2500
3600
4900
6400
8100
10000
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Example 4.2.3

t3 = Map[#/ 2&, t1];
t3b = Partition[t3, 10];
TableForm[t3b]
1 4 9 16 25 36 49 64 81 100

121 144 169 196 225 256 289 324 361 400

441 484 529 576 625 676 729 784 841 900

961 1024 1089 1156 1225 1296 1369 1444 1521 1600
1681 1764 1849 1936 2025 2116 2209 2304 2401 2500
2601 2704 2809 2916 3025 3136 3249 3364 3481 3600
3721 3844 3969 4096 4225 4356 4489 4624 4761 4900
5041 5184 5329 5476 5625 5776 5929 6084 6241 6400
6561 6724 6889 7056 7225 7396 7569 7744 7921 8100
8281 8464 8649 8836 9025 9216 9409 9604 9801 10000

On the other hand, entering

t1= Table[{a! b}! {a! 1! 5}! {b! 1! 5}];
Short[t1]
({11 {12}, {185, {1,4},{1.5}}, (4D}

is a list (of length 5) of lists (each of length 5). Use Flatten to obtain a list of 25
points, which we name t2.

t2 = Flatten[t1, 1];
Short[t2]
{11 {123, {1.8},{1,4}1,((17)).{5.2}, {5, 3}, {5, 4}. {5, 5}}

We then use Map to apply f to t2.

fI{x—, y-3 = {{x, vy}, x 2 + y*2);

t3 = Maplf, t2];

Short[t3]

{{{1, 1}, 2}, {{1,2},5}, {{1,3},10}, ((20)), {{5, 4}, 41}, {{5, 5}, 50} }

We accomplish the same result with a pure function. Observe how #[[1]] and #[[2]]
are used to represent the first and second arguments: Given a list of length 2,
the pure function returns the list of ordered pairs consisting of the first element of
the list, the second element of the list (as an ordered pair), and the sum of the
squares of the first and second elements (of the first ordered pair).

t3b = Map[{{#[[11], #[[211}, #[[111" 2 + #[[2]]" 2}&, t2];
Short[t3b]
{{1. 1123 {{1,2}, 5}, {{1,3}, 10}, ((20)), {{5, 4}, 41}, {{5,5}, 50} }

Make a table of the values of the trigonometric functions y = sinx, y = cosx, and
y = tanx for the principal angles.
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Solution We first construct a list of the principal angles, which is accomplished by defining
t1 to be the list consisting of nm/4 for n =0, 1, ...,8 and 12 to be the list consisting
of nm/6 for n=0,1,...,12. The principal angles are obtained by taking the union
of t1 and t2. Union[t1,t2] joins the lists t1 and t2, removes repeated elements,
and sorts the results. If we did not wish to remove repeated elements and sort
the result, the command Join[t1,t2] concatenates the lists t1 and t2.

t1 = Table [%7,{n, 0, 8}|;
t2 = Table [T, {n, 0, 12}];
prinangles = Union[t1, t2]

The BasicMathInput We can also use the symbol U, which is obtained by clicking on the Y button
palette: on the BasicMathlnput palette to represent Union.
O.Basic Mith. . prinangles = t1 ut2
i {0.2,2,2,2,%,32, 52 4,12, 57, 47 37 57 11 U7 o)
Ve | Va
]- S Next, we define f(x) to be the function that returns the ordered quadruple
mdo | m , \
B U (x, sinx, cos x, tanx) and compute the value of f(x) for each number in prinangles
f wdoli  a with Map naming the resulting table prinvalues. prinvalues is not displayed
= because a semicolon is included at the end of the command.
Z::' ﬂ = Clear]f]
(::) - f[x-] = {x, Sin[x], Cos[x], Tan[x]};
ol S prinvalues = Maplf, prinangles];
mle & »
;j:: = Finally, we use TableForm illustrating the use of the TableHeadings option to dis-
= 74 73 £ Y play prinvalues in row-and-column form; the columns are labeled x, sinx, cosx,
——— and tanx.
alviuln
alglvylele TableForm[prinvalues,
zlnlol«[2 TableHeadings — {None, {“x”, “sin(x)”, “cos(x)”, “tan(x)”"}}]
# - £ | 'p" X sin(x) cos(x) tan(x)
=t 2 4 D x 0 O 1 0
= e jus 1 V3 4
¥ lw l'_ﬂ__@ 6 2 2 V3
o m A i
Alzlelela A 1
[l Sl e ] V3 1
5 % = T 7T 2 V3
L EE R R
= &k oA 0  Complexinfinity
2 V3 _1 -3
Remember that the ;T f f
result of using RV R 1 ~1
TableForm is not a st 1 _\3 _1
list, so it cannot be 6 2 2 V3
7 0 -1 0

manipulated like lists.
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Remark 4.2

object=name assigns
the object object the
name name.

We can use Map on
any list, including
lists of functions
and/or other lists.

Example 4.2.4

Solution

m 1 _ 3 4
2 2 V3

Smo _ 1 _ 1 1

4 V2 NA

4 V3 1

T % 3 V3

3%7 -1 0  ComplexInfinity

5 V3 1

T -5 3 -V3

w1 -1

4 V2 V2

Umr 1 VB -1

6 2 2 V3

20 0O 1 0

In the table, note that y = tanx is undefined at odd multiples of 7/2 and
Mathematica appropriately returns ComplexInfinity at those values of x for
which y = tanx is undefined.

The result of using TableForm is not a list (or table) and calculations on it using
commands such as Map cannot be performed. TableForm helps you see results
in a more readable format. To avoid confusion, do not assign the results of using
TableForm any name: Adopting this convention avoids any possible attempted
manipulation of TableForm objects.

Lists of functions are graphed with Plot: Plot[listoffunctions,{x,a,b}]
graphs the list of functions of x, listoffunctions, for a < x < b. If the com-
mand is entered as Plot[Tooltip[listoffunctions],{x,a,b}], you can identify
the curves in the plot by moving the cursor over the curves in the graphic.

(Bessel Functions). The Bessel functions of the first kind, j,(x), are non-
singular solutions of a*y” +xy’ + («* = n*) y = 0. BesselJ[n,X] returns J,(x). Graph
J, @ forn=0,1,2,...,8.

In t1, we use Table and Besseld to create a list of J,(x) for n=0,1,2,...,8.
t1 = Table[BesselJ[n, x], {n, 0, 8}];

We then use Plot to graph each function in t1 in Figure 4.11. You can identify
each curve by sliding the cursor over each.

Plot[Tooltip[t1], {x, 0, 25}]

A different effect is achieved by graphing each function separately. To do so,
we define the function pfunc. Given a function of x, f, pfunclf] plots the func-
tion for 0 < x < 100. The resulting graphic is not displayed because the option
DisplayFunction->Identity is included in the Plot command. We then use Map to
apply pfunc to each element of t1. The result is a list of nine graphics objects,
which we name 2. A good way to display nine graphics is as a 3 x 3 array, so we
use Partition to convert t2 from a list of length 9 to a list of lists, each with length



Think of Flatten and
Partition as inverse
functions.

4.2 Manipulating Lists: More on Part and Map

1.0
0.8
0.6
0.4
0.2

-0.2

_04 -
FIGURE 4.11

Graphs of J,(x) for n=0,1,2,...,8

FIGURE 4.12

In the first row, from left to right, graphs of J,(x), J,(x), and J,(x); in the second row,
from left to right, graphs of J,(x), J4(x), and J5(x); in the third row, from left to right,
graphs of J(x), J5(x), and Jg(x)

3-a 3 x 3 array. Partition[list,n] returns a list of lists obtained by partitioning list
into n-element subsets.

pfunc[f-] := Plot[f, {x, 0, 100}];
t2 = Map[pfunc, t1];
t3 = Partition[t2, 3];

Instead of defining pfunc, you can use a pure function. The following accom-
plishes the same result. We display t3 using Show together with GraphicsGrid in
Figure 4.12.
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t2 = (Plot[#1, {x, 0, 100}, DisplayFunction — Identity]&)/@t1;
t3 = Partition[t2, 3];
Show|[GraphicsGrid[t3]]

Example 4.2.5 (Dynamical Systems). Let f.(x) = x° + ¢ and consider the dynamical system given

Solution

Compare the
approach used
here with the
approach used in
Example 4.1.9.

by x, =0 and x,,, =/, (x,). Generate a bifurcation diagram of f,.

First, recall that Nest[f,x,n] computes the repeated composition f”(x). Then, in
terms of a composition,

X1 =1 ('xn) =fc" ©.

We will compute £.” (0) for various values of ¢ and “large” values of n so we begin
by defining cvals to be a list of 300 equally spaced values of ¢ between -2.5
and 1.

cvals = Table|[c, {c, -2.5,1.,3.5/299}];

We then define f.(x) =x"+c. For a given value of ¢, f[c] is a function of one
variable, x, whereas the form f[c_][x]:=... results in a function of two variables
that we think of as an indexed function that might be represented using traditional
mathematical notation as f,.(x).

Clear[f]
fle_llx-1:=x"2+c

To iterate f, for various values of ¢, we define b. For a given value of ¢, h(c) returns
the list of points {(c.£.' ), (¢.£."" @), ..., (¢.£** ) }.

h[c-] := {Table[{c, Nest[f[c], 0, n]}, {n, 100, 200}]}

We then use Map to apply » to the list cvals. Observe that Mathematica gener-
ates several error messages when numerical precision is exceeded. We choose to
disregard the error messages.

t1 = Map[h, cvals];

t1 is a list (of length 300) of lists (each of length 101). To obtain a list of points (or,
lists of length 2), we use Flatten. The resulting set of points is plotted with ListPlot
in Figure 4.13. Observe that Mathematica again displays several error messages,
which are not displayed here for length considerations, that we ignore: Mathematica
only plots the points with real coordinates and ignores those containing Overflow(].

t2 = Flatten[t1, 2];
ListPlot[t2, AxesLabel — {“c”, “xc(n),n = 100..200”}]




Example 4.2.6

Solution

4.2 Manipulating Lists: More on Part and Map

X (n),n=100..20

FIGURE 4.13
Bifurcation diagram of f,

42.1 More on Graphing Lists: Graphing Lists of Points
Using Graphics Primitives

Include the PlotJoined->True option in a ListPlot command to connect
successive points with line segments.

Using graphics primitives such as Point and Line gives you even more
flexibility. Point[{x,y}] represents a point at (x,)).

Line[{{x1,y1},{x2,y2}, ..., {xn,yn}}]

represents a sequence of points (xy,¥,), (x5,%,), ..., (x,,»,) connected
with line segments. A graphics primitive is declared to be a graphics object
with Graphics: Show[Graphics[Point[x,y]] displaying the point (x,)). The
advantage of using primitives is that each primitive is affected by the
options that directly precede it.

Table 4.1 shows the percentage of the U.S. labor force that belonged to unions
during certain years. Graph the data represented in the table.

We begin by entering the data represented in the table as dataunion:

dataunion = {{30, 11.6}, {35, 13.2}, {40, 26.9}, {45, 35.5},
{50, 31.5}, {55, 33.2}, {60, 31.4}, {65, 28.4}, {70, 27.3},
{75, 25.5}, {80, 21.9}, {85, 18.0}, {90, 16.1}};

the x-coordinate of each point corresponds to the year, where x is the number of
years past 1900, and the y-coordinate of each point corresponds to the percentage
of the U.S. labor force that belonged to unions in the given year. We then use
ListPlot to graph the set of points represented in dataunion in Ip1, Ip2 (illustrating
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Table 4.1 Union membership
as a percentage of the labor

force

Year Percent

1930 11.6

1935 13.2

1940 26.9

1945 35.5

1950 31.5

1955 33.2

1960 31.4

1965 28.4

1970 27.3

1975 25.5

1980 21.9

1985 18.0

1990 16.1

35 - 35 . . 35
30 o 30 c . 30
o5F . osF ° *e 25
20 T2 ¢ 20

1 1 1 1 i 1 1 1 1 1 b4 1 1 1 1 1

1
t'40 50 60 70 80 90 £'4O 50 60 70 80 90 E//4O 50 60 70 80

FIGURE 4.14
Union membership as a percentage of the labor force

the PlotStyle option), and Ip3 (illustrating the PlotJoined option). All three plots are
displayed side-by-side in Figure 4.14 using Show together with GraphicsRow.

Ip1 = ListPlot[dataunion];

Ip2 = ListPlot[dataunion, PlotStyle — PointSize[0.03]];
Ip3 = ListPlot[dataunion, Joined — True];
Show[GraphicsRow[{lp1, Ip2, Ip3}]]

An alternative to using ListPlot is to use Show, Graphics, and Point to view the
data represented in dataunion. In the following command we use Map to apply
the function Point to each pair of data in dataunion. The result is not a graphics
object and cannot be displayed with Show.

datapts1 = Map[Point, dataunion];
Short[datapts1]
{Point[{30, 11.6}], Paint[{35, 13.2}], ({10)), Point[{90, 16.1}]}

Next, we use Show and Graphics to declare the set of points Map[Point,
dataunion] as graphics objects and name the resulting graphics object dp1. The
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Solution
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image is not displayed because a semicolon is included at the end of the com-
mand. The PointSize[.03] command specifies that the points be displayed as filled
circles of radius 0.03% of the displayed graphics object.

dp1 = Show[Graphics[{PointSize[0.03], datapts1},
Axes — Automatic]];

The collection of all commands contained within a Graphics command is contained
in braces {...}. Each graphics primitive is affected by the options such as PointSize,
GrayLevel (or RGBColor) directly preceding it. Thus,

datapts2 = ({GrayLevel[RandomReal[]], Point[#1]}&)/@dataunion;
Short[datapts2]
{{GrayLevel[0.827228], Point[{30, 11.6}]}, ((11)), (1))}

dp2 = Show[Graphics[{PointSize[0.03], datapts2},
Axes — Automatic]];

displays the points in dataunion in various shades of gray in a graphic named
dp2, and

datapts3 = ({PointSize[RandomReal[{*“0.008”, “0.1”}]],
GrayLevel[RandomReal[]], Point[#1]}&)/@dataunion;
dp3 = Show[Graphics[{datapts3}, Axes — Automatic]];

shows the points in dataunion in various sizes and in various shades of gray in a
graphic named dp3. We connect successive points with line segments

connectpts = Graphics[Line[dataunion]];
dp4 = Show[connectpts, dp3, Axes — Automatic];

and show all four plots in Figure 4.15 using Show and GraphicsGrid.

Show|[GraphicsGrid[{{dp1, dp2}, {dp3, dp4}}1]

With the speed of today’s computers and the power of Mathematica, it is
relatively easy to carry out many calculations that required supercomputers
and sophisticated programming experience just a few years ago.

(Julia Sets). Plot Julia sets for f(2) = A cosz if A = .66 and A = .665i.

The sets are visualized by plotting the points (a,b) for which |f"(a + bd)| is not
large in magnitude so we begin by forming our complex grid. Using Table and
Flatten, we define complexpts to be a list of 62,500 points of the form a + bi for
250 equally spaced real values of a between 0 and 8 and 300 equally spaced real
values of b between —4 and 4 and then f(2) = .66i cosz.

complexpts =
Flatten[Table[a + bl, {a, 0., 8., 8/249}, {b, - 4., 4.,6/249}], 1];
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FIGURE 4.15
Union membership as a percentage of the labor force

Clear[f]
f[z_] = .66ICos[z]
0.66iCos[z]

For a given value of ¢ = a + bi, b(¢) returns the ordered triple consisting of the real

part of ¢, the imaginary part of ¢, and the value of £**(.

h[c-] := {Re[c], Im[c], Nest[f, c, 200]}

We then use Map to apply » to complexpts. Observe that Mathematica gener-
ates several error messages. When machine precision is exceeded, we obtain an
Overflow[] error message; numerical result smaller than machine precision results
in an Underflow[] error message. Error messages can be machine specific, so if
you do not get any, do not worry. For length considerations, we do not show any
that we obtained here.

t1 = Map[h, complexpts]//Chop;

We use the error messages to our advantage. In 12, we select those elements of
t1 for which the third coordinate is not Indeterminate, which corresponds to the
ordered triples (a, b,f"(a+bn) for which | f"(a+bd)| is not large in magnitude,
whereas in t12b, we select those elements of t1 for which the third coordinate is
Indeterminate, which corresponds to the ordered triples (a, b,f"(a+ bz)) for which
| f"(a+ b)) is large in magnitude.

t2 = Select[t1, Not[#[[3]] === Indeterminate]&];
t2b = Select[t1, #[[3]] === Indeterminate&];
pti{x-, y-, z-}] := {x, y}

t3 = Map|pt, t2];

t3b = Map[pt, t2b];

which are then graphed with ListPlot and shown side-by-side in Figure 4.16 using
Show and GraphicsRow. As expected, the images are inversions of each other.



We encountered
similar error messages
as before but we have
not included them
due to length
considerations.
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FIGURE 4.16
Julia set for 0.66i cosz
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FIGURE 4.17

Julia set for 0.665i cosz

Ip1 = ListPlot[t3, PlotRange — {{0, 8}, { -4, 4}},
AspectRatio —» Automatic, DisplayFunction — Identity];
Ip2 = ListPlot[t3b, PlotRange — {{0, 8},{-4, 4}},
AspectRatio —» Automatic, DisplayFunction — Identity];
Show[GraphicsRow[{Ip1, Ip2}]]

Changing A from 0.667 to 0.665:¢ results in a surprising difference in the plots. We
proceed as before but increase the number of sample points to 120,000. See
Figure 4.17.

complexpts = Flatten[Table[a + bl, {a, - 2., 2.,4/399}, {b, 0., 2., 2/299}], 1]
Clear[f];

f[z_] = .6651Cos[z]

h[c_] := {Re[c], Im[c], Nest|[f, c, 2001}

t1 = Map[h, complexpts] / /Chop;

t2 = Select[t1, Not[#[[3]] === Indeterminate]&];

t2 = Select[t2, Not[#[[3]] === Overflow[]]1&];
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S .

FIGURE 4.18
Shaded Julia sets for 0.665i cos z

t2b = Select[t1, #[[3]] === Indeterminate&];
pt[{X_, Y-, Z—}] = {X, y}

t3 = Map|[pt, t2];
t3b = Map[pt, t2b];

Ip1 = ListPlot[t3, PlotRange — {{- 2, 2}, {0, 2}}, AspectRatio — Automatic,
DisplayFunction — Identity];

Ip2 = ListPlot[t3b, PlotRange — {{-2, 2}, {0, 2}}, AspectRatio — Automatic,
DisplayFunction — Identity];

Show[GraphicsRow[{Ip1, Ip2}]]

To see detail, we take advantage of pure functions, Map, and graphics primitives
in three different ways. In Figure 4.18, the shading of the point (a4, b) is assigned
according to the distance of £*(a + bi) from the origin. The color black indicates
a distance of zero from the origin; as the distance increases, the shading of the

point becomes lighter.

t2p = Map[{#[[1]], #[[2]], Min[Abs[#[[3]]], 3]}&, t2];
t2p2 = Map[{GrayLevel[#[[3]1/3], Point[{#[[11], #[[2]1}1}&,
t2p];
ip1 = Show[Graphics[t2p2], PlotRange — {{- 2, 2}, {0, 2}},
AspectRatio — 1];

t2p = Map[{#[[1]], #[[2]], Min[Abs[Re[#[[3]]]], -25]}&, t2];
t2p2 = Map[{GrayLevel[#[[3]] / .25], Point[{#[[1]], #[[2]]}]}&,

t2p];
ip2 = Show[Graphics[t2p2], PlotRange — {{- 2, 2}, {0, 2}}, AspectRatio — 1];

t2p = Mapl[{#[[1]], #[[2]], Min[Abs[Im[#[[3]]]], 2.5]}&, t2];

t2p2 = Map[{GrayLevel[#[[3]1/2.5], Point[{#[[11], #[[2]1}]}&,

t2p];

ip3 = Show[Graphics[t2p2], PlotRange — {{- 2, 2}, {0, 2}}, AspectRatio — 1];

Show[GraphicsRow[{jp1, jp2, jp3}1]




4.3 Other Applications

4.2.2 Miscellaneous List Operations
Other List Operations

Some other Mathematica commands used with lists include

1.
2.

3.

Append][list,element], which appends element to list;
AppendTollist,element], which appends element to list and names the
result list;

Dropllist,n], which returns the list obtained by dropping the first n ele-
ments from list;

. Drop]list,-n], which returns the list obtained by dropping the last n ele-

ments of list;

. Dropllist,{n,m}], which returns the list obtained by dropping the #nth

through mth elements of list;

. Dropllist,{n}], which returns the list obtained by dropping the nth

element of list;

. Prepend[list,element], which prepends element to list; and
. PrependTol[list,element], which prepends element to list and names the

result list.

Alternative Way to Evaluate Lists by Functions

Abbreviations of several of the commands discussed in this section are
summarized in the following table:

/@/@ Apply // (function application) {...}
@ Map [[...]] Part

4.3 OTHER APPLICATIONS

We now present several other applications that we find interesting and that
require the manipulation of lists. The examples also illustrate (and combine)
many of the techniques that were demonstrated in the previous chapters.

43.1 Approximating Lists with Functions

Another interesting application of lists is that of curve fitting. The com-
mands

1. Fit[data,functionset,variables] fits the list of data points data using
the functions in functionset by the method of least squares. The
functions in functionset are functions of the variables listed in
variables; and
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2. InterpolatingPolynomial[data,x] fits the list of # data points data with
an n — 1 degree polynomial in the variable x.

Example 4.3.1 Define datalist to be the list of numbers consisting of 1.14479, 1.5767, 2.68572,
2.5199, 3.58019, 3.84176, 4.09957, 5.09166, 5.98085, 6.49449, and 6.12113.
(a) Find a quadratic approximation of the points in datalist. (b) Find a fourth-degree
polynomial approximation of the points in datalist.

Solution The approximating function obtained via the least squares method with Fit is plotted
along with the data points in Figure 4.19. Notice that many of the data points are
not very close to the approximating function. A better approximation is obtained
using a polynomial of higher degree (4).

Clear[datalist]

datalist = {1.14479, 1.5767, 2.68572, 2.5199, 3.58019, 3.84176,
00094.09957,5.09166, 5.98085, 6.49449, 6.12113};

p1 = ListPlot[datalist];

Clearl[y]

y[x_] = Fit[datalist, {1, x, x?}, x]

0.508266 + 0.608688x—0.00519281x>

p2 = Plot[y[x], {x, - 1,11}];

pa = Show[p1, p2];

Clear[y]

y[x_] = Fit[datalist, {1, x, x?, x3, x*}, x]

-0.54133 + 2. 02744x~0.532282x2 + 0.0709201x® - 0.00310985x*

p3 = Plot[y[x], {x, -1, 11}];

pb = Show[p1, p3];

Show|[GraphicsRow[{pa, pb}]]

FIGURE 4.19

(@) The graph of a quadratic fit shown with the data points. (b) The graph of a quartic
fit shown with the data points




Remember that when
a semicolon is placed
at the end of the
command, the
resulting output is
not displayed by
Mathematica.

Example 4.3.2

4.3 Other Applications

Table 4.2 Petroleum products imported to the
United States for certain years

Year Percent Year Percent
1973 34.8105 1983 28.3107
1974 35.381 1984 29.9822
1975 35.8167 1985 27.2542
1976 40.6048 1986 33.407
1977 47.0132 1987 35.4875
1978 42.4577 1988 38.1126
1979 43.1319 1989 41.57
1980 37.3182 1990 42.1533
1981 33.6343 1991 39.5108
1982 28.0988

To check its accuracy, the second approximation is graphed simultaneously
with the data points in Figure 4.19(b).

Next, consider a list of data points made up of ordered pairs.

Table 4.2 shows the average percentage of petroleum products imported to the
United States for certain years. (a) Graph the points corresponding to the data in
the table and connect the consecutive points with line segments. (b) Use Inter-
polatingPolynomial to find a function that approximates the data in the table.
(c) Find a fourth-degree polynomial approximation of the data in the table. (d) Find
a trigonometric approximation of the data in the table.

Solution We begin by defining data to be the set of ordered pairs represented in the table:

The x-coordinate of each point represents the number of years past 1900, and
the y-coordinate represents the percentage of petroleum products imported to the
United States.

data = {{73., 34.8105}, {74., 35.381}, {75., 35.8167},
{76.,40.6048}, {77.,47.0132},{78., 42.4577},
{79.,43.1319},{80., 37.3182}, {81., 33.6343},
{82.,28.0988}, {83., 28.3107}, {84., 29.9822},

{85., 27.2542}, {86., 33.407}, {87., 35.4875},
{88.,38.1126}, {89., 41.57},{90., 42.1533}, {91., 39.5108}};

We use ListPlot to graph the ordered pairs in data. Note that because the option
PlotStyle->PointSize[0.03] is included within the ListPlot command, the points
are larger than they would normally be. We also use ListPlot with the option
PlotJoined->True to graph the set of points data and connect consecutive points
with line segments. Then we use Show to display Ip1 and Ip2 together in
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W 90
FIGURE 4.20

The points in Table 4.2 connected by line segments

Figure 4.20. Note that in the result, the points are easy to distinguish because
of their larger size.

Ip1 = ListPlot[data, PlotStyle — PointSize[0.03]];
Ip2 = ListPlot[data, Joined — True];
Show(ip1, Ip2]

Next, we use InterpolatingPolynomial to find a polynomial approximation, p, of
the data in the table. Note that the result is lengthy, so Short is used to display an
abbreviated form of p. We then graph p and show the graph of p along with the
data in the table for the years corresponding to 1971 to 1993 in Figure 4.21(a).
Although the interpolating polynomial agrees with the data exactly, the interpolating
polynomial oscillates wildly.

p = InterpolatingPolynomial[data, x];

Short[p, 3]

39.5108 + (0.261128 + (0.111875 + (((1)))(=82. + X))(=73. + X))(-=91. + X)
plotp = Plot[p, {x, 71, 93}];

pa = Show[plotp, Ip1, PlotRange — {0, 50}];

To find a polynomial that approximates the data but does not oscillate wildly, we
use Fit. Again, we graph the fit and display the graph of the fit and the data
simultaneously. In this case, the fit does not identically agree with the data but
does not oscillate wildly as illustrated in Figure 4.21(b).

Clear[p]

p = Fit[data, {1, x, x2, x3, x*}, x]

—-198884. + 9597.83x—173.196x% + 1.38539x° —0.00414481x*
plotp = Plot[p, {x, 71, 93}];

pb = Showlplotp, Ip1, PlotRange — {0, 50}]



See texts such as
Abell, Braselton, and
Rafter’s Statistics with
Mathematica [3] for a
more sophisticated
discussion of curve
fitting and related
statistical applications.
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FIGURE 4.21

(@) Although interpolating polynomials agree with the data exactly, they may have
extreme oscillations, even for relatively small data sets. (b) Although the fit does not
agree with the data exactly, the oscillations seen in (a) do not occur. (c) You can use
Fit to approximate data by a variety of functions

In addition to curve fitting with polynomials, Mathematica can also fit the data
with trigonometric functions. In this case, we use Fit to find an approximation of
the data of the form p = ¢, + ¢, sinx + ¢; sin (x/2) + ¢, cosx + ¢; cos (x/2). As in the
previous two cases, we graph the fit and display the graph of the fit and the data
simultaneously; the results are shown in Figure 4.21(c).

Clear[p]

p = Fit[data, {1, Sin[x], Sin[}], Cos[x], Cos[1}, X]

35.4237 + 4.25768Co0s[3] -0.941862Co0s[x] + 6.06609Sin[3] + 0.0272062Sin[x]
plotp = Plot[p, {x, 71, 93}];

pc = Show[plotp, Ip1, PlotRange — {0, 50}];

Show[GraphicsRow[{pa, pb, pc}l]

4.3.2 Introduction to Fourier Series

Many problems in applied mathematics are solved through the use of
Fourier series. Mathematica assists in the computation of these series in sev-
eral ways. Suppose that y = f(x) is defined on —p < x < p. Then the Fourier
series for f(x) is

1 - nx nx
—a, + a, cos — + b, sin —— 4.1
27 2;( P P )
where
1(?
a, = — () dx
o pﬁ_pf
1 (? nwx
a, = — x)cos——dx n=1,2... (4.2)
Pw_pf D
b, =1 Wf(x)sin@dx n=1,2
n p o p ) L

The kth term of the Fourier series (4.1) is

nmx nwx
a, cos — + b, sin —. 4.3)
P D
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Example 4.3.3

Solution

The kth partial sum of the Fourier series (4.1) is

k
1 nmwx nmwx
—a, + a, cos — + b, sin — |. 4.4
2™ Z( p P >

n=1

It is a well-known theorem that if y = f(x) is a periodic function with period
2p and f'(x) is continuous on [—p, p] except at finitely many points, then
at each point x the Fourier series for f(x) converges and

1 +i n7rx+b . nTXx 1 i @ + li @
—a a, cos — sin — ) = = [ lim f(z im f(2) ).
2 0 " D " Y/ 2 z—»x*f z—»x‘f

n=1

In fact, if the series Y, o> (|a,|+|b,|) converges, then the Fourier series
converges uniformly on (-0, 00).

-x, -1<x<0

Letf)=<1,0<x<1 . Compute and graph the first few partial sums of the
fx=2),x>1

Fourier series for f(x).

We begin by clearing all prior definitions of f. We then define the piecewise function
S0 and graph f(x) on the interval [-1,5] in Figure 4.22.

Clear[f]

flx_]:=1/;,0<x<1

f[x-]:= -x/;-1<x<0
f[x_] := f[x-2)/;x > 1

graphf = Plot[f[x], {x, — 1, 5}]

1.0

0.8

-1 1 2 3 4 5

FIGURE 4.22
Plot of a few periods of f(x)
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The Fourier series coefficients are computed with the integral formulas in
equation (4.2). Executing the following commands defines p to be 1, a[0] to be an
approximation of the integral @, = % jf SO dx, a[n] to be an approximation of the
integral a,, = 117 j‘_’pf(x) cos"%‘ dx, and b[n] to be an approximation of the integral
b,=1 f‘_’pf(x) sin 27

T p = dx.
Clear[a, b, fs, L]
L= 1;
Nintegrate [f[x], {x, - L,L}
af0] = [2|_ ]
0.75
aln_]:= Nintegrate [f[x]Co: [T] Ax, - L,L}]
b[n_] = Nintegrate [f[x]Sin ["—f"] ,{x,- L,L}]

L

A table of the coefficients ali] and b[i] for 7 = 1, 2, 3, ..., 10 is generated with Table
and named coeffs. Several error messages (which are not displayed here for length
considerations) are generated because of the discontinuities, but the resulting approx-
imations are satisfactory for our purposes. The elements in the first column of the table
represent the a,'s and those in the second column represents the b,'s. Notice how
the elements of the table are extracted using double brackets with coeffs.

coeffs = Table[{a[i], b[il}, {i, 1, 10}];
TableForm[coeffs]

-0.202642 0.31831
0. 0.159155
-0.0225158 0.106103
0. 0.0795775
—-0.00810569 0.063662
0. 0.0530516
—-0.00413556 0.0454728
0. 0.0397887
-0.00250176 0.0353678

—-1.0668549377257364"*~16 0.031831
The first element of the list is extracted with coeffs[[1]].

coeffs[[1]]
{-0.202642,0.31831}

The first element of the second element of coeffs and the second element
of the third element of coeffs are extracted with coeffs[[2,1]] and coeffs[[3,2]],
respectively.

coeffs[[2, 1]]
0.

coeffs|[[3, 2]]
0.106103
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FIGURE 4.23

The first few terms of a Fourier series for a periodic function plotted with the function

After the coefficients are calculated, the nth partial sum of the Fourier series is
obtained with Sum. The &th term of the Fourier series, a,, cos (kmx) + b, sin (kmx),
is defined in fs. Hence, the nth partial sum of the series is given by

a, + Z [ak cos (Rmx) + b, sin (Ieﬂ'x)] =al0] + Z fs[k, x],
k=1 k=1

which is defined in fourier using Sum. We illustrate the use of fourier by finding
fourier[2,x] and fourier[3,x].

fs[k—, x_] := coeffs[[k, 1]]Cos[kmx] + coeffs[[k, 2]]Sin[krx]
fourier[n_,x_]:=a[0] + ¥ fs[k,x]

fourier[2, x]

0.75-0.202642Cos[mx] + 0.Cos[27X] + 0.31831Sin[wX] + 0.159155Sin[27X]
fourier[3, x]

0.75-0.202642Cos[mx] + 0.Cos[27x] —0.0225158 Cos[37x] + 0.31831Sin[mX]
+0.159155Sin[27X] + 0.106103Sin[37X]

To see how the Fourier series approximates the periodic function, we plot the
function simultaneously with the Fourier approximation for n =2 and n=5. The
results are displayed together using GraphicsArray in Figure 4.23.

graphtwo = Plot[fourier[2, x], {x, — 1, 5}, PlotStyle — GrayLevel[0 . 4]];
bothtwo = Show[graphtwo, graphf];

graphfive = Plot[fourier[5, x], {x, — 1, 5}, PlotStyle — GrayLevel[0 . 4]];
bothfive = Show[graphfive, graphf];

Show[GraphicsRow[{bothtwo, bothfive}]]

Application: The One-Dimensional Heat Equation

A typical problem in applied mathematics that involves the use of Fourier
series is that of the one-dimensional heat equation. The boundary value



Example 4.3.4

Solution

4.3 Other Applications

problem that describes the temperature in a uniform rod with insulated
surface is

kaz_u =2 O<x<a,t>0
Ox? at’ ’ ’
u(,H = T,, t>0, 4.5)
w(a,p) = T, t>0,and
u(x,0) = fix),0<x<a.

In this case, the rod has “fixed end temperatures” at x =0, and x = a and
S0 is the initial temperature distribution. The solution to the problem is

u(e,t) = Ty + é (T, - T,) x+ Zl b, sin (A,x) e")"sz’, 4.6)
\—,_J n=

v(x)

where
2 a
A, =nm/a and b, = - J (f&x) = v()) sin %C dx,
0

and is obtained through separation of variables techniques. The coefficient
b,, in the solution equation (4.6) is the Fourier series coefficient b,, of the
function f(x) — v(x), where v(x) is the steady-state temperature.

Ju  ou
—=—,0<x<1,2>0,
Sol dx2 ot
OV€ 9 140, = 10, u(1, = 10, t > 0,

u(x,0) = 10 + 20 sin”® mx.

In this case, a=1 and & =1. The fixed end temperatures are T, = T, = 10, and
the initial heat distribution is fix) = 10 + 20 sin® mx. The steady-state temperature is
v(x) = 10. The function f(x) is defined and plotted in Figure 4.24. Also, the steady-
state temperature, v(x), and the eigenvalue are defined. Finally, Integrate is used
to define a function that will be used to calculate the coefficients of the solution.

Clearlf]

f[x_]:= 10 + 20Sin[wx]?

Plot[f[x]; {x, 0, 1}, PlotRange — {0, 30}]
v[x_]:=10

lambdal[n_]:= "7

b[n_]:=b[n] = Ig(f[x] v[x])Sin{[% }]dx

Notice that b[n] is defined using the form b[n]:=b[n]=... so that Mathematica
“remembers” the values of b[n] computed and thus avoids recomputing previously
computed values. In the following table, we compute exact and approximate values
of b[1],...,b[10].
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0.0 0i2 0.4 0.6 0.8 1.0
FIGURE 4.24

Graph of fix) = 10 + 20sin” 7x

Table[{n, b[n], b[n]//N}, {n, 1, 10}}//TableForm

122 25.869
2 0 0.

3 & 987725
4 0 0.

5 &2 835767
6 O 0.

7 2 155214
8 O 0.

9 -52 106519
10 0 0.

Let S, =b,,sin (A,,x) ™" Then, the desired solution, u(x, ), is given by

u(x, D) = v(x) + Z S,

m=1

Let uCe,t,m) =v@)+ Y, _,S,. Notice that wuCx,f,n) =u(x,t,n-1)+S,. Conse-
quently, approximations of the solution to the heat equation are obtained recursively
taking advantage of Mathematica's ability to compute recursively. The solution is
first defined for n =1 by u[x,t,1]. Subsequent partial sums, u[x,t,n], are obtained
by adding the nth term of the series, §,, to u[x,t,n-1].

u[x_, t_, 1]:= v[x] + b[1]Sin[lambda[1]x]Exp[ - lambda[1]*t]
u[x_, t_, n_]:= u[x, t, n - 1] + b[n]Sin[lambda[n]x]Exp[ - lambda[n]?t]
By defining the solution in this manner, a table can be created that includes the

partial sums of the solution. In the following table, we compute the first, fourth,
and seventh partial sums of the solution to the problem.

Table[u[x, t,n],{n, 1,7, 3}];



4.3 Other Applications

To generate graphics that can be animated, we use a Do loop. The 10th partial
sum of the solution is plotted for £=0 to t=1 using a step-size in t of 1/24.
Remember that u[x,t,n] is determined with a Table command, so Evaluate must
be used in the Do command so that Mathematica first computes the solution #
and then evaluates u at the particular values of x. Otherwise, u is recalculated for
each value of x. The plots of the solution obtained can be animated as indicated
in the following screen shot.

Do[Print[Plot[Evaluate[u[x, t, 10]], {x, 0, 1}, PlotRange — {0, 60}1],
{t,0,1, .11

Alternatively, we may generate several graphics and display the resulting set of
graphics as a GraphicsArray. We plot the 10th partial sum of the solution for
t=0 to t=1 using a step-size of 1/15. The resulting 16 graphs are named
graphs, which are then partitioned into four element subsets with Partition and
named toshow. We then use Show and GraphicsGrid to display toshow in
Figure 4.25.

Do[?r.{nt[Plot[svalunte[u[x, t, 10]]1, {x, 0, 1}, PlotRange + {0, 60}]],

ORI}

60

oo 02 04 06 0% 1o

graphs = Table[Plot[Evaluate[u[x, t, 10]], {x, 0, 1}, Ticks — None,
PlotRange — {0, 60}, DisplayFunction — Identity], {t, 0, 1, 11—5}];

toshow = Partition[graphs, 4];

Show[GraphicsGrid[toshow]]

Fourier series and generalized Fourier series arise in too many applications
to list. Examples using them illustrate Mathematica’s power to manipulate
lists, symbolics, and graphics.
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For a classic ap-
proach to the subject,
see Graff’s Wave
Motion in Elastic
Solids, [10].
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O\

-

FIGURE 4.25
Temperature distribution in a uniform rod with insulated surface

Application: The Wave Equation on a Circular Plate

The vibrations of a circular plate satistfy the equation

2
D wr, 0,0+ pba%’;e’t) =q(r,0,D,

“7n
where v4w = v2 v2 w and v2 is the Laplacian in polar coordinates,

which is defined by

10> 9 19 16

210 ri 4 —— = — f—— + ———
ar 2902 2 ror 12 00%

v_

ror

wl

Assuming no forcing so that g(r,0,5)=0 and w6, = W(r, e ™,
equation (4.7) can be written as

viwer, 0 - Biwr, 0) = 0, B = w?pb/D. 4.8

For a clamped plate, the boundary conditions are W(a, 0) = dW(a, 6)/dr = 0,
and after much work (see [10]) the normal modes are found to be

n (Bnma) sin nG
an(i", 0) = ]n (Bnmr) - Wln (Bnmr) <COS 1’16) . “.9
In equation (4.9, B,,, = A,,,/a, where A, is the mth solution of
L0, (o) = J,(0L,' () = 0, (4.10)



See Example 4.2.4.

Example 4.3.5

Solution

4.3 Other Applications
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FIGURE 4.26

Plot of I,(x)],,'x) = J,()I, () for n =0 and 1 in the first row and =2 and 3 in the
second row

where J,(x) is the Bessel function of the first kind of order n and I,,(x)
is the modified Bessel function of the first kind of order #, related to
J2 @0 by "1, = J,Gx).

The Mathematica command Bessell[n,x] returns 7,,(x).

Graph the first few normal modes of the clamped circular plate.

We must determine the value of A, for several values of » and m, so we begin by
defining egn[n][x] to be I,(x)J, x) - J,,@OI, (). The mth solution of equation (4.10)
corresponds to the mth zero of the graph of egn[n][x], so we graph eqn[n][x] for
n=0, 1, 2, and 3 with Plot in Figure 4.26.

eqn[n_][x-]:=Bessell[n, x]D[BesselJ[n, x], x] - BesselJ[n, x]D[Bessell[n, x], x]

The result of the Table and Plot command is a list of length four, which is verified
with Length[p1].

p1 = Table[Plot[Evaluate[eqn[n][x]], {x, 0, 25}, PlotRange — {- 10, 10}], {n, 0, 3}];

SO we use Partition to create a 2 x 2 array of graphics that is displayed using
Show and GraphicsGrid.

p2 = Show[GraphicsGrid[Partition[p1, 2]1]
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We use the graphs in
Figure 4.26 to obtain
initial approximations
of each solution.

To determine 4A,,,, we use FindRoot. Recall that to use FindRoot to solve an
equation, an initial approximation of the solution must be given. For example,

101 = FindRoot[eqn[0][x] == 0, {x, 3.04}]
{x — 3.19622}

approximates A, the first solution of equation (4.10) if #» = 0. However, the result
of FindRoot is a list. The specific value of the solution is the second part of the
first part of the list, lambda01, extracted from the list with Part ([[...]]).

101[[1, 2]]
3.19622

Thus,

A0s = Map[FindRoot[eqn[0][x] == O, {x, #}][[1, 2]1&,
{3.04,6.2,9.36,12.5, 15.7}]
{3.19622, 6.30644, 9.4395, 12.5771,15.7164}

approximates the first five solutions of equation (4.10) if » = 0 and then returns the
specific value of each solution. We use the same steps to approximate the first
five solutions of equation (4.10) if » =1, 2, and 3.

A1s = Map[FindRoot[eqn[1][x] == 0, {x, #}][[1, 2]]1&,
{4.59,7.75,10.9,14.1,17.2}]

{4.6109, 7.79927,10.9581, 14.1086, 17.2557}

A2s = Map[FindRoot[eqn[2][x] == 0, {x, #}][[1, 2]1&,
{5.78,9.19,12.4,15.5,18.7}]

{5.90568,9.19688, 12.4022,15.5795, 18.744}

A3s = Map[FindRoot[eqn[3][x] == 0, {x, #}][[1, 2]]1&,
{7.14,10.5,13.8,17,20.2}]

{7.14353,10.5367, 13.7951, 17.0053, 20.1923}

All four lists are combined together in As.

As = {AOs,A1s,A2s,A3s};
Short[As]
{{8.19622,6.30644, ({(18)), 12.5771,15.7164}, ({(2)), {{(1))}}

For n=0, 1, 2, and 3 and m =1, 2, 3, 4, and 5, A, is the mth part of the
(n + st part of As.

Observe that the value of a does not affect the shape of the graphs of the
normal modes, so we use a = 1 and then define g,,,,,.

a=1;
BIn—,m_]:=As[[n + 1,m]}/a
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ws is defined to be the sine part of equation (4.9)

ws[n_, m_][r-, 6-]:=
(BesselJ[n, B[n, m]r] - BesselJ[n, B[n, m]a]/Bessell[n, B[n, m]a]
Bessell[n, B[n, m]r])Sin[né]

and wc to be the cosine part.

wceln_, m_][r-,0-]:=
(Besseld[n, B[n, m]r] - BesselJ[n, B[n, m]a]/Bessell[n, B[n, m]a]
Bessell[n, B[n, m]r])Cos[néd]

We use ParametricPlot3D to plot ws and wc. For example,

ParametricPlot3D[{rCos[0], rSin[6], ws[3, 4][r, 61}, {r, O, 1}, {0, - Pi, Pi},
PlotPoints — 60]

graphs the sine part of W;,(r, 6) shown in Figure 4.27. We use Table together with
ParametricPlot3D followed by Show and GraphicsGrid to graph the sine part of
W,,@ 60 for =0, 1, 2, and 3 and m =1, 2, 3, and 4 shown in Figure 4.28.

ms = Table[ParametricPlot3D[{rCos|[#6], rSin[6], ws[n, m][r, 61},
{r,0,1},{0, - Pi, Pi},
DisplayFunction — Identity, PlotPoints — 30, BoxRatios — {1, 1, 1}],
{n,0,3},{m, 1,4}];
Show[GraphicsGrid[ms]]

FIGURE 4.27

The sine part of W, (r, 0)



298 CHAPTER 4 Introduction to Lists and Tables

FIGURE 4.28

The sine part of W, (,0): n=0inrow 1, n=1inrow 2, n=2inrow 3, and n=3
in row 4 (m =1 to 4 from left to right in each row)

|dentical steps are followed to graph the cosine part shown in Figure 4.29.

mc = Table[ParametricPlot3D[{rCos[6], rSin[6], wc[n, m][r, 61},
{r,0,1},{0, - Pi, Pi},
DisplayFunction — Identity, PlotPoints — 30, BoxRatios — {1, 1, 1}],
{n, 0, 3},{m, 1,4}];
Show[GraphicsGrid[mc]]




See references such as
Barnsley’s Fractals
Everywbere [4] or
Devaney and Keen’s
Chaos and

Fractals [6] for
detailed discussions
regarding many of the
topics briefly des-
cribed in this section.

f00 = % + ¢ is the
special case of p =2
for f, () =a" +c.

4.3 Other Applications

FIGURE 4.29

The cosine part of W, (,0): n=0inrow 1, =1 inrow 2, n=2 in row 3, and
n=3inrow 4 (m=1 to 4 from left to right in each row)

4.3.3 The Mandelbrot Set and Julia Sets

In Examples 4.1.9, 4.2.5, and 4.2.7 we illustrated several techniques for
plotting bifurcation diagrams and Julia sets.

Let f.(x) =x*+c. In Example 4.2.5, we generated the c-values when
plotting the bifurcation diagram of f,. Depending on how you think, some
approaches may be easier to understand than others. With the exception
of very serious calculations, the differences in the time needed to carry
out the computations may be minimal, so we encourage you to follow the
approach that you understand. Learn new techniques as needed.
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Example 4.3.6 (Dynamical Systems). For example, entering

Compare the approach Clear]f, h]

here with the flc_lx-]:=x" 2 + c//N;
approach used in
Example 4.2.5. defines f.(x) = X’ +¢, SO

Nest[f[-1], x, 3]

2
-1+ (—1.+ (—1.+x2)2>
computes f_,*() = (f_, of_, of.,)@) and

Table[Nest[f[1/4], 0, n], {n, 101, 200}]//Short
{0.490693, 0.490779, ((96)), 0.495148,0.495171}

returns a list offm"(O) for n = 101,102, ...,200. Thus,

Igtable = Table[{c, Nest[f[c], 0, n]},
{c, -2,1/4,9/(4 =« 299)}, {n, 101, 200}];
Length[lgtable]

300

returns a list of lists of £."(0) for n = 101, 102, ..., 200 for 300 equally spaced values
of ¢ between -2 and 1. The list Igtable is converted to a list of points with Flatten
and plotted with ListPlot. See Figure 4.30 and compare this result to the result
obtained in Example 4.2.5.

toplot = Flatten[igtable, 1];
ListPlot[toplot]

For a given complex number ¢, the Julia set, J., of f.(x) =x>+c is the set of

complex numbers, z = a + bi, a,b real, for which the sequence z, f.(2) = 2+,
2 -

FIGURE 4.30
Another bifurcation diagram for f,




We use the notation
f" () to represent the
composition

(fofo-uof)(x),
~—

n

Example 4.3.7

Solution
As before, all error

messages have been
deleted.

You do not need to
redefine f.(x) if you
have already defined it
during your current
Mathematica session.
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(@)= (¥ +c)2 +¢, ..., f."@, ..., does not tend to oo as n — co:

]C={z€C|z,zz+c(zz+c)2+c,...—/»oo}.

Using a dynamical system, setting z = z, and computing z,,, = /. (z,) for large n
can help us determine if z is an element of J.. In terms of a composition, computing
J1."(@ for large n can help us determine if z is an element of J..

(Julia Sets). Plot the Julia set of f.(x) = X* +cif c=-0.122561 + 0.7448624.

After defining f.(x) = x* + ¢, we use Table together with Nest to compute ordered
triples of the form (x,, o 12256150 7448621 @ + D) for 150 equally spaced values
of x between —-3/2 and 3/2 and 150 equally spaced values of y between -3/2
and 3/2.

Clear[f, h]

fle_lx_]:=x" 2+ c//N;

g1 = Table[{x, y, Nest[f[-0 . 12256117 + .744861771], x + ly, 200]},
{x, -3/2,3/2,3/149},{y, —3/2, 3/2,3/149}];

g2 = Flatten[g1, 1];

We remove those elements of g2 for which the third coordinate is Overflow[ | with
Select,

g3 = Select[g2, Not[#[[3]] === Overflow[ 11&];
extract a list of the first two coordinates, (x,y), from the elements of g3,

94 = Map[{#[[1]], #[[2]1}&, g3];
and plot the resulting list of points in Figure 4.31 using ListPlot.

Ip1 = ListPlot[g4, PlotRange — {{-3/2, 3/2}, { - 3/2, 3/2}},
AxesLabel — {“x”, “y”}, AspectRatio — Automatic]

We can invert the image as well with the following commands. In the end result,
we show the Julia set and its inverted image in Figure 4.32

g3b = Select[g2, #[[3]]===Overflow[ ]1&];

g4b = Mapl[{#[[1]], #[[2]1}&, g3b];

Ip2 = ListPlot[g4b, PlotRange — {{-3/2, 3/2},{-3/2, 3/2}},

AxesLabel — {“x”, “y”}, AspectRatio —» Automatic,
DisplayFunction — Identity];

j1 = Show[GraphicsRow[{Ip1, Ip2}]1]

301
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outf18e]=_,'s

FIGURE 4.31
Filled Julia set for f,

Outl190F __

FIGURE 4.32
Filled Julia set for f. on the left; the inverted set on the right

Of course, one can consider functions other than f.(x) = x* + ¢ as well as
rearrange the order in which we carry out the computations. You have
even greater control over your graphics if you use graphics primitives such
as Point.
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Example 4.3.8 (Julia Sets). Plot the Julia set for £.(2) = 2° — ¢z if ¢ = 0.737369 + 0.67549i.

Solution We initially proceed as in Example 4.3.7.

As before, all error Clear[f, h]
messages have been flc_][x-]1:=x A 2_cx//N:
deleted. :

g1 = Table[{x, y, Nest[f[0 . 737369 + 0 . 675491], x + ly, 2001},
{x, -3/2,3/2,3/149},{y, —3/2, 3/2,3/149}];

g2 = Flatten[g1, 1];

g3 = Select[g2, Not[#[[3]] === Overflow[]]1&];

After removing the points that result in an Overflow[ ] error message, we code the
remaining ones according to their distance from the origin.

h[{x-,y-, z_}]:={x, y, Min[Abs[z], 0.5]}
94 = Map[h, g3];

g5 = Table[{PointSize[0.005], GrayLevel[g4[[i, 3]1/0.5],
Point[{g4([i, 111, g4([i, 211}1}, {i, 1, Length[g41}];

The results are shown in Figure 4.33.

Ip1 = ListPlot[g4, PlotRange — {{-3/2, 3/2},{-3/2, 3/2}},
AxesLabel — {“x”, “y”}, AspectRatio — Automatic]
Show[Graphics[g5], PlotRange - >{{-1.2,1.75},{-0.7,1.4}},

AspectRatio —» Automatic]

FIGURE 4.33
(@ The Julia set. (b) The lightest points (a, b) are the ones for which

200 ,
Jo.737360940.675401 (@ | s the largest
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Example 4.3.9 (The Ikeda Map). The lkeda map is defined by

F(x,7) = (y+B (xcost—ysin7) B (xsinT+ycosT)), “4.11D)

where 7=p—a/(1+x°+)%). If =09, u =04, and a = 4.0, plot the basins of
attraction for F if y=0.92 and y = 1.0.

Solution The basins of attraction for F are the set of points (x,») for which ||F"(x,)|| - oo

as n — 00.

After defining £[y][x,y] to be equation (4.11) and then B =0.9, u=0.4, and
a = 4.0, we use Table followed by Flatten to define pts to be the list of 40,000
ordered pairs (x,y) for 200 equally spaced values of x between —2.3 and 1.3 and
200 equally spaced values of y between —-2.8 and 0.8.

fly-li{x—, y-}:={y + BxCos[u-a/(1 + x* 2 +y " 2)] -y
Sin[p-a/(1 +x"2+y" 2))),B(xSin[u-a/(1 +x*2+y  2)] +y
Cos[u-a/(1+x2+y 2)I)}
B=0.9;u=04a=40;
pts = Flatten[ Table[{x, y}, {x, - 2.3, 1.3, 3.6/199}, {y, —2.8, 0.8, 3.6/199}], 1];

In 11, we use Map to compute (x,y, F ,,**(x,7)) for each (x,») in pts. In pts2, we

use the graphics primitive Point and shade the points according to the maximum
value of ||F**(x, )| —those (x,») for which F**(x,) is closest to the origin are
200

darkest; the point (x,») is shaded lighter as the distance of F~"(x,y) from the
origin increases. (See Figure 4.34(a).)

11 = Map[{#[[1]], #[[2]], Nest[f[.92], {#[[1]], #[[2]]}, 200]}&, pts];

gl{x-, y-, z-}1:={x,y, Sart[z[[11] * 2 + z[[2]] * 2]}

12 = Map|g, I1];

maxl2 = Tablel[l2[[i, 3]], {i, 1, Length[12]}]//Max

4.33321

pts2 = Table[{GrayLevel[I2[[i, 3]1/(maxI2)], Point[{I2[[i, 111, 12[Li, 21131},
{i, 1, Length[I2]}];

ik1 = Show[Graphics[pts2], AspectRatio — 1];

For v =1.0, we proceed in the same way. The final results are shown in Figure
4.34(b).

11 = Map[{#[[1]], #[[2]], Nest[f[1.0], {#[[1]], #[[2]]}, 200]}&, pts];

12 = Maplg, I1];

maxI2 = Table[I2[[i, 3]], {i, 1, Length[I12]}]//Max

4.48421

pts2 = Table[{GrayLevel[l2[[i, 3]1/maxI2], Point[{I2[[i, 11], 12[[i, 2]1}1},
{i, 1, Length[I2]}];

ik2 = Show[Graphics[pts2], AspectRatio — 1]

Show[GraphicsRowl[{ik1, ik2}]]
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FIGURE 4.34

Basins of attraction for F if (@) y=0.92 and (b) y=1.0

The Mandelbrot set, M, is the set of complex numbers, z = a + bi,a,b
2
real, for which the sequence z,f.(2)=2"+z.f. (f.®)= <z2 +z> +

Z, .o (@), ..., does not tend to 0o as n — 00:
M= {ze Clz, 2% +z (& +z)2+z,... N oo}.

Using a dynamical system, setting z =z, and computing z,,,; = f, (zn) for
large n can help us determine if z is an element of M. In terms of a com-
PR . n . . .
position, computing f, (2) for large n can help us determine if z is an

element of M.

Example 4.3.10 (Mandelbrot Set). Plot the Mandelbrot set.

Solution We proceed as in Example 4.3.7 except that instead of iterating f.(z) for fixed c,
we iterate f,(2).
As before, all error

Clear[f, h]
messages have been A
deleted. flc_][x-]:=x" 2+ c//N;

g1 = Table[{x, y, Nest[f[x + ly], x + ly, 200]},
As with the previous {x, -3/2,1,5/(2 « 149)}, {y, -1, 1, 2/149}];
examples, all g2 = Flatten[g1, 1];
Overflow[...] messages Take[g2, 5]
have been deleted. g3 = Select[g2, Not[#[[3]]===Overflow[ J]&];

g4 = Mapl[{#[[1]], #[[2]1}&, g3];
The following gives us the image in Figure 4.35(a).

Ip1 = ListPlot[g4, PlotRange — {{-3/2,1},{-1, 1}}, Axes — None,
AspectRatio — Automatic, PlotStyle — PointSize[.005]];
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a b
FIGURE 4.35

Two different views of the Mandelbrot set: in (a), the black points (a, b) are the points
for which £,,,,”**(a + bi) is finite; in (0), the black points (a,b) are the ones for which
S Ca + bi) is not finite

To invert the image, we use the following to obtain the result in Figure 4.35(b).

g3b = Select[g2, #[[3]]===Overflow[ ]1&];
g4b = Map[{#[[1]], #[[2]]}&, g3b];
Ip2 = ListPlot[g4b, PlotRange — {{-3/2,1},{-1,1}},
Axes — None, AspectRatio — Automatic, PlotStyle — PointSize[.005]];
m1 = Show[GraphicsRow[{Ip1, Ip2}]]

In Example 4.3.10, the Mandelbrot set is obtained (or, more precisely,
approximated) by repeatedly composing f,(z) for a grid of z-values and
then deleting those for which the values exceed machine precision. Those
values greater than $MaxNumber result in an Overflow[ ] message; computa-
tions with Overflow[ ] result in an Indeterminate message.

We can generalize by considering exponents other than 2 by letting
Jpe =x? +c. The generalized Mandelbrot set, M,, is the set of com-
plex numbers, z=a+bi,a,b real, for which the sequence z, fpz(z) =
zp+z,fpyz (f,-@) = (< +z)p+z, cfp @, ..., does not tend to oo as
n — 0o:

M, = {ze Clz, 2 +=z (z1’+z)p+z,... - oo}.

Using a dynamical system, setting z = z, and computing z,,., = f, (zn) for
large 7 can help us determine if z is an element of M,. In terms of a
composition, computing ];,"(z) for large n can help us determine if z is an
clement of M,,.



Example 4.3.11
As with the previous
examples, all error
messages have been
omitted.

Example 4.3.12
As before, all error
messages have been
deleted.

4.3 Other Applications

(Generalized Mandelbrot Set). After defining Joe =x" + ¢, we use Table, Abs,
and Nest to compute a list of ordered triples of the form (x,y, | £, .. " +8)])
for p-values from 1.625 to 2.625 spaced by equal values of 1/8 and 200 values of
x(y) values equally spaced between —2 and 2, resulting in 40,000 sample points
of the form x + #y.

Clear[f, p]
flp—, c_I[x_]:=x" p + c//N;
gl =
Map[Table[{x, y, Abs[Nest[f[2, x + ly], x + ly, #]]}//N,
{x, -1.5,1.,5/(2 « 199)}, {y, - 1., 1.,2/199}]&, {5, 10, 15, 25, 50, 100}];
g2 = Map[Flatten[#, 1]1&, g1];

Next, we extract those points for which the third coordinate is Indeterminate
with Select; ordered pairs of the first two coordinates are obtained in g4. The
resulting list of points is plotted with ListPlot in Figure 4.36.

g3 = Table[Select[g2[[i]], Not[#[[3]]===Overflow[]]1&], {i, 1, Length[g2]}];
h[{X_, Y- Z-}]::{X, y}!
g4 = Maplh, g3,{2}];
t1 = Table[ListPlot[g4[[i]], PlotRange — {{- g, 1}4L,{-1,1}},

AspectRatio —» Automatic, DisplayFunction — Identity], {i, 1, 6}];
Show[GraphicsGrid[Partition[t1, 3]]]

More detail is observed if you use the graphics primitive Point as shown
in Figure 4.37. In this case, those points (x,3) for which |f,..,'" x+#)| is
small are shaded according to a darker GrayLevel than those points for which

100 . .
[fpassy @ +)| is large.

h2[{x_, y—, z_}]:={GrayLevel[Min[{z, 1}]], Point[{x, y}1};

95 = Map[h2, g3, {2}];

t1 = Table[Show[Graphics[g5[[i]l], PlotRange — {{- g, 1}, {-1,1}},
AspectRatio —» Automatic, DisplayFunction — Identity], {i, 1, 6}1;

Show[GraphicsGrid[Partition[t1, 3]]]

Throughout these examples, we have typically computed the iteration f"(2)
for “large” m, such as values of n between 100 and 200. To indicate why
we have selected those values of n, we revisit the Mandelbrot set plotted
in Example 4.3.10.

(Mandelbrot Set). We proceed in essentially the same way as in the previous
examples. After defining f, . = 2+,

Clear[f, p]
flp-, c-][x-]:=x A p + c//N;

307
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FIGURE 4.36
The generalized Mandelbrot set for nine equally spaced values of p between 1.625

and 2.625

we use Table followed by Map to create a nested list. For each n =5, 10, 15, 25,
50, and 100, a nested list is formed for 200 equally spaced values of y between -1
and 1 and then 200 equally spaced values of x between —1.5 and 1. At the bottom
level of each nested list, the elements are of the form (x,y, | Sy @+ 19D ).

g1=
Map[Table[{x, y, Abs[Nest[f[2, x + ly], x + ly, #]]}//N,
{x, -1.5,1.,5/(2 « 199)}, {y, - 1., 1.,2/199}]&,
{5, 10, 15, 25, 50, 100}];
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FIGURE 4.37
The generalized Mandelbrot set for nine equally spaced values of p between 1.625
and 2.625—the points (x,7) for which |];,1x+iy1°°(x+ z‘y)| is large are shaded lighter

than those for which fp,x+,.y1°°(x+ iy)| is small

For each value of n, the corresponding list of ordered triples (x,y, |f; oy
(x+1y)|) is obtained using Flatten.

g2 = Map[Flatten[#, 1]&, g1];

We then remove those points for which the third coordinate, | fzywy"(x+ ) |
is Overflow[] (corresponding to oo),

g3 = Table[Select[g2[[i]], Not[#[[3]]===Overflow[]]&], {i, 1, Length[g2]}];
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Fundamentally, we
generated the pre-
vious plots by
exceeding
Mathematica’s
numerical precision.

FIGURE 4.38

Without shading the points, the effects of iteration are difficult to see until the number
of iterations is “large”

extract (x,») from the remaining ordered triples,

h[{X_, Y- Z_}] = {x! y};
g4 = Map[h, g3,{2}];

and graph the resulting sets of points using ListPlot in Figure 4.38. As shown
in Figure 4.38, we see that Mathematica's numerical precision (and consequently
decent plots) is obtained when n =50 or n = 100.

t1 = Table[ListPlot[g4[[i]], PlotRange — {{ - g, 14L,{-1,1},
AspectRatio —» Automatic, DisplayFunction — Identity], {i, 1, 6}];
Show[GraphicsGrid[Partition[t1, 3]]]

If instead, we use graphics primitives such as Point and then shade each point
(x,9) according to |f; ;" + ) |, detail emerges quickly, as shown in Figure 4.39.

h2[{x_,y-, z_}]:={GrayLevel[Min[{z, 1}]], Point[{x, y}I};
g5 = Map[h2, g3, {2}];
t1 = Table[Show[Graphics[g5[[i]]], PlotRange — {{- g, 1},{-1,1}},
AspectRatio — Automatic, DisplayFunction — Identity], {i, 1, 6}];
Show|[GraphicsGrid[Partition[t1, 3]]]

Thus, Figures 4.38 and 4.39 indicate that for examples such as these illus-
trated here, similar results could have been accomplished using far smaller
values of n than n = 100 or n = 200. With fast machines, the differences
in the time needed to perform the calculations is minimal; 7 = 100 and
n = 200 appear to be a “safe” large value of n for well-studied examples
such as these.



4.4 Exercises

FIGURE 4.39

Using graphics primitives and shading, we see that we can use a relatively small
number of iterations to visualize the Mandelbrot set

44 EXERCISES

[y

. Use Mathematica help to determine the functionality of Chop.
. Define zeros to be the list of numbers 2.4048, 5.5201, 8.6537, 11.792,

14.931, 18.071, 21.212, 24.352. Use [[...]], Part, First, Last, and/or Take
to extract the following from the list zeros. (a) The first and last
elements, (b) the fourth through sixth elements, (¢) the first three
elements, and the last two elements. (d) Use Position to determine if
and/or where 18.071 occurs in the list.

. The Fibonacci sequence is defined by f, =1, f; = 1, and f,, = f,,_; +

fnu—2. (@ Define a Fibonacci function f,, = f(n) that “remembers” the
values computed. (b) Use your Fibonacci function to compute the
first 15 values of the Fibonacci sequence. (¢) Check that your results
are correct by using Table and Fibonacci to compute the first 15 values
of the Fibonacci sequence.

. (Mathematics of Finance)

(a) (Compound Interest) A common problem in economics is the
determination of the amount of interest earned from an invest-
ment. If P dollars are invested for ¢ years at an annual interest rate
of r% compounded m times per year, the compound amount,
A(®), at time ¢ is given by

A(t)=P<1+ %)m

311



312

CHAPTER 4 Introduction to Lists and Tables

(b)

©

@

(e)

If P dollars are invested for ¢ years at an annual interest rate
of % compounded continuously, the compound amount, A(¥), at
time ¢ is given by A(®) = Pe"".

Suppose $12,500 is invested at an annual rate of 7% com-
pounded daily. How much money has accumulated and how
much interest has been earned at the end of each 5-year period
for t=0, 5, 10, 15, 20, 25, 30? How much money has accumu-
lated if interest is compounded continuously instead of daily?
Suppose $10,000 is invested at an interest rate of 12% com-
pounded daily. Create a table consisting of the total value of the
investment and the interest earned at the end of 0, 5, 10, 15, 20,
and 25 years.

What is the total value and interest earned on an investment
of $15,000 invested at an interest rate of 15% compounded daily
at the end of 0, 10, 20, and 30 years?

(Future Value) If R dollars are deposited at the end of each per-
iod for n periods in an annuity that earns interest at a rate of j %
per period, the future value of the annuity is

a+pn"-1
r .

Define a function future that calculates the future value of an
annuity. Compute the future value of an annuity where $250 is
deposited at the end of each month for 60 months at a rate of 7%
per year. Make a table of the future values of the annuity where
$150 is deposited at the end of each month for 12¢ months at a
rate of 8% per year for t=1,5,9,13,...,21,25.

(Annuity Due) If R dollars are deposited at the beginning of
each period for n periods with an interest rate of j % per period,
the annuity due is

Sfuture =R

7+1
- [M _ l] |

J
Define a function due that computes the annuity due. Use due to
(a) compute the annuity due of $500 deposited at the beginning
of each month at an annual rate of 12% compounded monthly for
3 years, and (b) calculate the annuity due of $100k deposited at
the beginning of each month at an annual rate of 9% compounded
monthly for 10 years for k=1, 2, 3, ..., 10.

Compare the annuity due on a $100k monthly investment at
an annual rate of 8% compounded monthly for #=5, 10, 15, 20
and k=1, 2, 3, 4, 5.
(Present Value) Another type of problem deals with determining
the amount of money that must be invested in order to ensure a
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particular return on the investment over a certain period of time.
The present value, P, of an annuity of n payments of R dol-
lars each at the end of consecutive interest periods with interest
compounded at a rate of j % per period is

1-Q+p™"
7 .

P=R

Define a function present to compute the present value of
an annuity. () Find the amount of money that would have to
be invested at 7 1/2% compounded annually to provide an ordi-
nary annuity income of $45,000 per year for 40 years; and (b)
find the amount of money that would have to be invested at 8%
compounded annually to provide an ordinary annuity income of
$20, 000 + $5000% per year for 35 years for k=0, 1, 2, 3, 4, and
5 years.

(f) (Deferred Annuities) The present value of a deferred annuity
of R dollars per period for n periods deferred for & periods with
an interest rate of j per period is

1-A+p™ ™ 1-a+p™*

P, =R
“ J J

Define a function def[r,n,k,j] to compute the value of a
deferred annuity where r equals the amount of the deferred annu-
ity, n equals the number of years in which the annuity is received,
k equals the number of years in which the lump sum investment
is made, and j equals the rate of interest. Use def to compute
the lump sum that would have to be invested for 30 years at a
rate of 15% compounded annually to provide an ordinary annu-
ity income of $35,000 per year for 35 years. How much money
would have to be invested at the ages of 25, 35, 45, 55, and 65
at a rate of 8 1/2% compounded annually to provide an ordinary
annuity income of $30,000 per year for 40 years beginning at
age 65?7

(g) (Amortization) A loan is amortized if both the principal and
interest are paid by a sequence of equal periodic payments. A
loan of P dollars at interest rate j per period may be amortized in
n equal periodic payments of R dollars made at the end of each
period, where

By
R= ———.
1-A+p™T"
‘What is the monthly payment necessary to amortize a loan of

$75,000 with an interest rate of 9.5% compounded monthly over
20 years?
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)

@

G)

(€3]

@

(m)

‘What is the monthly payment necessary to amortize a loan of
$80,000 at an annual rate of j% in 20 years for j = 8, 8.5, 9, 9.5,
10, and 10.5?

In many cases, the amount paid toward the principal of the loan
and the total amount that remains to be paid after a certain
payment need to be computed.

What is the unpaid balance of the principal at the end of the
fifth year of a loan of $60,000 with an annual interest rate of 8%
scheduled to be amortized with monthly payments over a period
of 10 years? What is the total interest paid immediately after the
60th payment?

What is the total interest paid on a loan of $60,000 with an inter-
est rate of 8% compounded monthly amortized over a period of
10 years (120 months) immediately after the 60th payment?
What is the monthly payment necessary to amortize a loan of
$45,000 with an interest rate of 7% compounded monthly over a
period of 15 years (180 months)? What is the total principal and
interest paid after 0, 3, 6, 9, 12, and 15 years?

Suppose that a loan of $45,000 with interest rate of 7% com-
pounded monthly is amortized over a period of 15 years (180
months). What is the principal and interest paid during each of
the first 5 years of the loan?

Challenge: Suppose a retiree has $1,200,000. If she can invest
this sum at 7%, compounded annually, what level payment can
she withdraw annually for a period of 40 years?

Challenge: Suppose an investor begins investing at a rate of d
dollars per year at an annual rate of j%. Each year the investor
increases the amount invested by 7 %. How much has the investor
accumulated after m years?

Another interesting investment problem is discussed in the fol-
lowing exercise. In this case, Mathematica is useful in solving a
recurrence equation that occurs in the problem. The command

RSolve[{equations},a[n],n]

attempts to solve the recurrence equations equations for the
variable a[n] with no dependence on afj], j < n — 1.

I am 50 years old and I have $500,000 that I can invest at
a rate of 7% annually. Furthermore, I wish to receive a payment
of $50,000 the first year. Future annual payments should include
cost-of-living adjustments at a rate of 3% annually. Is $500,000
enough to guarantee this amount of annual income if I live to be
80 years old?
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(n) A 30-year mortgage of $80,000 with an annual interest rate
of 8.125% requires monthly payments of approximately $600
($7200 annually) to amortize the loan in 30 years. However, using
annuitytable, show that if the amount of the payments is increased
by 3% each year, the 30-year mortgage is amortized in 17 years.

5. Define list to be a list of the first 100 positive integers. (a) Find
the sum of the first 100 positive integers using Apply together with
Plus. (b) Find the product of the first 100 positive integers using
Apply and Product. (¢) Describe the functionality of Apply. What is an
abbreviated form?

6. Use RealDigits to find the first 101 digits in the decimal expansion
of 7. Use Table together with Count to determine the number of
occurrences of each digit (0, 1, 2, 3, 4, 5, 6, 7, 8, and 9). Challenge:
Repeat the exercise for a greater number of digits. Can you make
a reasonable conclusion about the occurrence of each digit in the
decimal expansion of 7?

7. Recall that a sequence of the form x,,.; =f (xn) is called a dynamical
system.

(a) Using f(x) = x° with x, = a, determine if x,,,, = f(x,,) has a limit
if a=1,a=1.05, and a = 0.95.

This dynamical system is said to have a fixed point at x if

S = x.

To find the fixed points x,,,; = f (xn) with f(x) = x*, we solve

x* = x or x* = x = 0 with solutions and x = 0 and x = 1. In simple
terms, a fixed point is called stable if a sequence that starts close
to the fixed point has the fixed point as a limit. Otherwise, the
fixed point is called unstable.

(b) Would you classify x = 1 as stable or unstable? Would you classify
x = 0 as stable or unstable? Briefly explain.

() Consider x,,,; =f(x,) with fx) = 2x(1 - x).

i. Find the two fixed points.

ii. Let x; = 0.25. Does the sequence x,,.; =f (xn) converge in
this case? If so, what is the limit?

iii. Let x; = 0.75. Does the sequence x,,, =f(x,) converge in
this case? If so, what is the limit?

iv. Select any value of x; between 0 and 1. Does this choice
affect the limit?

v. Classify the two fixed points as stable or unstable.

(d) Sometimes, unusual behavior can be observed when working
with dynamical systems. For example, consider the dynamical
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(e)

®

@

system with f(x) = x + 2.5x(1 — x) and x; = 1.2. We see that the
sequence oscillates between 0.6 and 1.2. We say that the dynam-
ical system has a 2-cycle because the values of the sequence
oscillate between two numbers.

Describe the behavior of x,,, =f(x,) if fix) =x+ 2.5x(1 - x)
and x; = 1.201. Do you see a cycle? If so, how many numbers.
What are these numbers? Does a small change in the initial value
of the sequence affect the resulting values of the sequence based
on the results of this problem and the previous example?
Describe the behavior of x,,., =f (xn) if ) =x+2.5x(1 — x)
and x; = 1.3. Do you see a cycle? If so, how many numbers.
What are these numbers?

Describe the behavior of x,,; =f(x,) if fx) =x+ 2.5x(1 - x)
and x; = 1.2. If the values do not seem to approach a single value
or a cycle of several values, we say that the dynamical system is
chaotic. Does this system appear to be chaotic?

In addition to your explanations, turn in the graphs obtained
with plot for each problem.

8. Plot the Julia set for f(z) = .36€°. Hint: Use the rectangle a + bi for
0<a<5and -25<b<25.



CHAPTER

Matrices and Vectors: Topics
from Linear Algebra and
Vector Calculus

Chapter 5 discusses operations on matrices and vectors, including topics
from linear algebra, linear programming, and vector calculus.

5.1 NESTED LISTS: INTRODUCTION TO MATRICES,
VECTORS, AND MATRIX OPERATIONS

5.1.1 Defining Nested Lists, Matrices, and Vectors

In Mathematica, a matrix is a list of lists where each list represents a row
of the matrix. Therefore, the 7 x n matrix

ay Gy a3 Aip

Ay Ay Ayt Ay,
A=| 91 43 43 Az

a . a,, d - a

mn

is entered with
A={{a11,a12,...,a1n},{a21,a22,...,a2n},...,{am1,am2,...amn}}
For example, to use Mathematica to define m to be the matrix A =

a,, a
1"12 ) " enter the command
dy Ay

m = {{a11, a12},{a21, a22}}

The command m=Array[a,{2,2}] produces a result equivalent to this. Once
a matrix A has been entered, it can be viewed in the traditional
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As when using
TableForm, the result
of using MatrixForm
is no longer a list
that can be
manipulated using
Mathematica
commands. Use
MatrixForm to

view a matrix in
traditional
row-and-column
form. Do not attempt
to perform matrix
operations on a
MatrixForm object.

row-and-column form using the command MatrixForm[A]. You can quickly

construct 2 x 2 matrices by clicking on the '’ I button from the Basic-
MathInput palette, which is accessed by going to Palettes followed by
BasicMathInput.

Alternatively, you can construct matrices of any dimension by going to
the Mathematica menu under Input and selecting Create Table/Matrix/
Palette...

Input from Above 8L
Output from Above {+3L

Cell with Same Style A

Special Character...

Color...
Typesetting >
Horizontal Lines > New...
File Path...

Add Row St
Picture > Add Column ~,
File...

: Make Spanning
Automatic Numbering...

Page Break

The resulting pop-up window allows you to create tables, matrices, and
palettes. To create a matrix, select Matrix, enter the number of rows and
columns of the matrix, and select any other options. Pressing the OK button
places the desired matrix at the position of the cursor in the Mathematica
notebook.

Create:

@ Table (Grid[...]) Number of rows: [:]

© Matrix (List of lists) Number of columns: 3

Options:
] Draw lines between rows O Fill with: 0
["] Draw lines between columns
[ Draw frame

® (Canee) @D

1 Fill diagonal: 1
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ay Gy dg
. . , : by by, by b
Example 5.1.1 Use Mathematica to define the matrices | a,, a,, a,; | and ( 1oz s “).
bZl b22 b23 b24

dsy Az Az

Solution In this case, both Table[a;;, {i, 1, 3},{j, 1,3}] and Arrayl[a,{3,3}] produce equivalent
results when we define matrixa to be the matrix

app Ay Ay
Ay Gy Ay | -
Az dz ds

The commands MatrixForm or TableForm are used to display the results in
traditional matrix form.

Clear[a, b, matrixa, matrixb]
matrixa = Table[a; ;, {i, 1, 3}, {j, 1,3}

{{a11,a12,a13}, {221,822, 823}, {a31,a32,833}}

MatrixForm[matrixa]

a1 a2 a3
ap1 22 A3
az1 ag2 aAzas

matrixa = Array|[a, {3, 3}]
{{al1, 1], a[1,2], a[1, 3]},
{al2,1], a[2,2], a[2, 3]}, {a[3, 1], a3, 2], a[3,3]}}

MatrixForm[matrixa]
a[1, 1] a[1,2] a[t, 3]
al2,1] a2,2] a[2, 3]
a3, 1] a[3,2] a[3, 3]

We may also use Mathematica to define non-square matrices.

matrixb = Arrayl[b, {2, 4}]
{{b[1,1], b[1,2], b[1, 3], b[1,4]},{b[2, 1], b[2,2], b[2,3], b[2, 4]} }

MatrixForm[matrixb]

(b[1,1] b[1,2] b[1,3] b[1,4]
b2, 1] b[2,2] b[2, 3] b[2,4])

Equivalent results would have been obtained by entering Table[bu,{i,1,2}, {j,1,4}].
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Example 5.1.2

Solution

More generally, the commands Tablel[f[i, j],{i, imax},{j, jmax}] and Array [f, {imax,
jmax}] yield nested lists corresponding to the imax x jmax matrix

LD /1,2 - f1,jmax)
©o.n 2,2 - f2,jmax)

f(im;ax, D f(iméx, 2) f(imax.,jmax)

Table[f[i,j],{i,imin,imax,istep},{j,jmin,jmax,jstep}] returns the list of lists
{{f[imin, jmin], flimin, jmin + jstep].. . ., flimin, jmax]},
{f[imin + istep, jmin],...,f[imin + istep, jmax]},
.. - {flimax, jmin].. .. flimax, jmax]}}
and the command
Table[f[i, j, k, . . . 1,{i, imin, imax, istep}, {j, jmin, jmax, jstep},
{k, kmin, kmax, kstep},...]

calculates a nested list; the list associated with 7 is outermost. If istep is
omitted, the step size is one.

Define C to be the 3 x 4 matrix (c;), where c,, the entry in the ith row and jth

column of C, is the numerical value of cos (;* - #°) sin (i* - /).

After clearing all prior definitions of ¢, if any, we define c[i,j] to be the numerical
value of cos (2 = #*) sin (i* —j°) and then use Array to compute the 3 x 4 matrix
matrixc.

Clear[c,matrixc]
c[i-,j-] = N[Cos[j? - i#ISin[i® - j’]]
Cos[i® - 1.1 Sin[i® - 1.1

matrixc = Array|c, {3, 4}]

{{0., 0.139708, 0.143952, 0.494016},
{-0.139708, 0., 0.272011, 0.452789},
{-0.143952, -0.272011, 0., —0.495304}}

MatrixForm[matrixc]
0. 0.139708 0.143952 0.494016
(—0.139708 0. 0.272011 0.452789 )
-0.143952 -0.272011 0. —-0.495304

100
Example 5.1.3 Define the matrix I, = (0 1 0).

001
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Solution The matrix I, is the 3 x 3 identity matrix. Generally, the » x n matrix with 1’s

With Mathematica,
you do not need to
distinguish between
row and column
vectors. Provided that
computations are
well-defined,
Mathematica carries
them out correctly.
Mathematica warns of
any ambiguities when
they (rarely) occur.

Example 5.1.4

on the diagonal and 0’s elsewhere is the n x n identity matrix. The command
IdentityMatrix[n] returns the n x n identity matrix.

IdentityMatrix[3]
{{1,0,0}, {0,1,0}, {0,0,1}}

The same result is obtained by going to Insert under the Mathematica menu and
selecting Table/Matrix/ followed by New. . .. We then check Matrix, Fill with: 0
and Fill diagonal: 1.

Create:
) Table (Grid]...))
@ Matrix (List of lists)

Number of rows: 3

Number of columns: 3

Options:
__ Draw lines between rows  Fill with: 0
| Draw lines between columns
| Draw frame # Fill diagonal: 1

Pressing the OK button inserts the 3 x 3 identity matrix at the location of the
Cursor.

100

010

001

{{1,0,0},{0,1,0},{0,0,1}}

In Mathematica, a vector is a list of numbers and, thus, is entered in
the same manner as lists. For example, to use Mathematica to define the
row vector vectorv to be (vl v, v3), enter vectorv={v1,v2,v3}. Similarly, to
1
define the column vector vectorv to be | v,
U3

, enter vectorv={v1,v2,v3} or

vectorv={{v1},{v2},{v3}}.

Generally, with Mathematica you do not need to distinguish between row
and column vectors: Mathematica usually performs computations with
vectors and matrices correctly as long as the computations are well-defined.

-4

-5 |, vectorv to be the vector (v, v, vy v,) and zerovec
2

to be the vector (0 0 0 0 0).

Define the vector w =

321
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Solution

Example 5.1.5

To define w, we enter

w={-4,-5,2}
{-4,-52}

or

w = {{-4},{-5}, {2}

MatrixForm[w]

(%)

To define vectorv, we use Array.

vectorv = Array[v, 4]
{v1], vi2], Vi3], vi4l}

Equivalent results would have been obtained by entering Table|v;,{i,1,4}]. To define
zerovec, we use Table.

zerovec = Table[0, {5}]
{0,0,0,0,0}

The same result is obtained by going to Insert under the Mathematica menu and
selecting Table/Matrix to create the zero vector.

(00000
{{0,0,0,0,0}}

5.1.2 Extracting Elements of Matrices

For the 2 x 2 matrix m={{a;,8;,},{ay1,8,,}} defined previously, m[[1]]
yields the first element of matrix m which is the list {a,,,a,} or the first
row of m; m[[2,1]] yields the first element of the second element of matrix
m which is a, ;. In general, if m is an ¢ x j matrix, m[[i,j]] or Part[m,i,j] returns
the unique element in the ith row and jth column of m. Specifically, m[[i,j]]
yields the jth part of the ith part of m; list[[i]] or Partlist,i] yields the 7th
part of list; list[[i,j]] or Part[list,i,j] yields the jth part of the ith part of list,
and so on.

10 -6 -9
Define mb to be the matrix ( 6 -5 —7). (@) Extract the third row of mb.
-10 9 12

(b) Extract the element in the first row and third column of mb. (c) Display mb in
traditional matrix form.
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Solution We begin by defining mb. mbl[i,j]] yields the (unique) number in the ith row and
J th column of mb. Observe how various components of mb (rows and elements)
can be extracted and how mb is placed in MatrixForm.

mb = {{10! _6! _9}!{6, _51 _7}a{_10! 9! 12}};

MatrixForm[mb]

10 -6 -9
6 -5 -7

-10 9 12

mb[[3]]

{-10,9,12}

mb[[1, 3]]

-9

If m is a matrix, the 7/th row of m is extracted with m[[i]]. The command
Transpose[m] yields the transpose of the matrix m, the matrix obtained by
interchanging the rows and columns of m. We extract columns of m by
computing Transpose[m] and then using Part to extract rows from the trans-
pose. Namely, if m is a matrix, Transpose[m][[i]] extracts the 7th row from
the transpose of m which is the same as the /th column of m.

Alternatively, if A is n x m (rows x columns), the ith column of A is
the vector that consists of the 7th part of each row of the matrix, so given
an i-value Table[A[[j,i]].{j,1,n}] returns the 7ith column of A.

0 -2 2
Example 5.1.6 Extract the second and third columns from A = (—1 1 -3
2 -4 1

Solution We first define matrixa and then use Transpose to compute the transpose of
matrixa, naming the result ta, and then displaying ta in MatrixForm.

matrixa = {{0! = 2! 2}! {_ 1 ’ 1’ _3}a {2a _4s 1}};
MatrixForm[matrixa]

0-2 2
-1 1 -3
2 -4 1

ta = Transpose[matrixa]
MatrixForm[ta]

{{0,-1,2},{-2,1, -4},{2, -3,1}}
0-1 2

-2 1 -4
2 -3 1

323
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Next, we extract the second column of matrixa using Transpose together with
Part ([[...]]). Because we have already defined ta to be the transpose of matrixa,
entering ta[[2]] would produce the same result.

Transpose[matrixa][[2]]

{-2,1,-4}
To extract the third column, we take advantage of the fact that we have

already defined ta to be the transpose of matrixa. Entering Transpose[matrixa][[3]]
produces the same result.

ta[[3]]
{2,-3,1}
You can also use Take to extract elements of lists and matrices. Entering

Take[matrixa, 2]
Take[matrixa, 2]//MatrixForm

{{0,-2,2},{-1,1, -3}}
0-2 2
(277 35)

returns the first two rows of matrixa because the first two parts of matrixa are the
lists corresponding to those rows. Similarly,

Take[matrixa, {2}]
Take[matrixa, {2}]//MatrixForm

{-1.1.-3}}
(-11 -3)

returns the second row, whereas

Take[matrixa, {2, 3}]
Take[matrixa, {2, 3}]//MatrixForm

{{-1.1,-3},{2, -4,1}}
-1 1 -3
( 2 -4 1)

returns the second and third rows.

The example illustrates that Take[list,n] returns the first #» elements of
list; Take[list,{n}] returns the nth element of list; Takeflist,{n1,n2,...}] returns
the n,st, n,nd,... elements of list; and so on.



Example 5.1.7

Solution

5.1 Matrices, Vectors, and Matrix Operations

5.1.3 Basic Computations with Matrices

Mathematica performs all of the usual operations on matrices. Matrix
addition (A + B), scalar multiplication (#A), matrix multiplication (when
defined) (AB), and combinations of these operations are all possible. The
transpose of A, A’ is obtained by interchanging the rows and columns
of A and is computed with the command Transpose[A]. If A is a square
matrix, the determinant of A is obtained with Det[A].

If A and B are n x n matrices satisfying AB = BA =1, where I is the
n x n matrix with 1’s on the diagonal and 0’s elsewhere (the 7 x n identity
matrix), B is called the inverse of A and is denoted by A~ If the inverse
of a matrix A exists, the inverse is found with Inverse[A]. Thus, assuming

that <? Z) has an inverse (ad — bc # 0), the inverse is

Inversel{{a, b}, {c, d}}]

{{ —bg+ad’ - —ngrad} ' {_ —bcc+ad' —b§+ad}}
3 -4 5 10 -6 -9
letA=|8 0 -3]|]andB= 6 -5 -7 |. Compute (a) A +B; (b) B — 4A;
5 2 1 -10 9 12

(c) the inverse of AB; (d) the transpose of (A - 2B)B; and (e) det A = |A].

We enter ma (corresponding to A) and mb (corresponding to B) as nested lists,
where each element corresponds to a row of the matrix. We suppress the output
by ending each command with a semicolon.

ma = {{3! _4! 5}! {8! 0, _3}! {5! 2, 1}};
mb = {{10! _6! _9}!{6! _5! _7}!{_10s 9! 12}};

Entering

ma + mb//MatrixForm

13 -10 -4
14 -5 -10
-5 11 13
adds matrix ma to mb and expresses the result in traditional matrix form.

Entering

mb - 4ma//MatrixForm

-2 10 -29
-26 -5 5
-30 1 8
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subtracts four times matrix ma from mb and expresses the result in traditional
matrix form. Entering

Inverse[ma - mb]//MatrixForm
59 83 _ 167
380 190 380
_28 _@ 9719
570 95 570

49 18 187
T4 1 T T4
Matrix products, computes the inverse of the matrix product AB. Similarly, entering

when defined, are

computed by placing Transpose[(ma-2mb) - mb]//MatrixForm

a period () between -352 -90 384
the matrices being 269 73 =277
multiplied. Note that 373 98 -389

a period is also used )
to compute the dot computes the transpose of (A — 2B) B, and entering
product of two Det[ma]

vectors, when the dot 190

product is defined.

computes the determinant of A.

-1 -5 -5 -4 _i "i
Example 5.1.8 Compute ABand BAifA=|-3 5 3 -2]andB= i 4
-4 4 2 -3 5 3

Solution Because A is a 3 x 4 matrix and B is a 4 x 2 matrix, AB is defined and is a 3 x 2

matrix. We define matrixa and matrixb with the following commands.
Remember that you

can also define -1 -5-5-4

matrices by going to matrixa=| -3 5 3 -2 |;

Insert under the -4 4 2 -3

Mathematica menu

and selecting 1 -2

Table/Matrix. After . -4 3.

entering the desired matrixb = 4 -4 |’

number of rows and -5 -3

columns and pressing . . ‘ ]

the OK button, a We then compute the product, naming the result ab, and display ab in MatrixForm.

matrix template is

ab = matrixa.matrixb;
placed at the location

MatrixForm[ab]
of the cursor that you
can fill in. 19 19
-1 15

3 21
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5.1 Matrices, Vectors, and Matrix Operations

However, the matrix product BA is not defined and Mathematica produces error
messages when we attempt to compute it.

-1 -5 -5 -4 3
matrixa= (-3 5 3 -2]:
-4 4 2 -3 |
1 -2 9
T Tl BN
matrixb=lg4 -a|?
-5 -3 |
ab =matrixa.matrixb; 1
MatrixForm[ab]
19 19
115
3 21 |

matrixb.matrixa

Dot:idotsh : Tensors {{l, -2}, {-4, 3}, {4, -4}, {-5, -3}}
and {{-1, -5, -5, -4}, {-3,65,3, -2}, {-4,4,2, -3}}
have incompatible shapes. >>

({1, -2}, (-4, 3}, {4, -4}, {-5, -3}}-

bl Ll s L4

{{-1, -5, -5, -4}, {-3,5, 3, -2}, {-4, 4,2, -3}}

Special attention must be given to the notation that must be used in
taking the product of a square matrix with itself. The following exam-
ple illustrates how Mathematica interprets the expression (matrixb)*n. The
command (matrixb)An raises each element of the matrix matrixb to the
nth power. The command MatrixPower is used to compute powers of
matrices.

-23 4 0
-20 1 3 2 3
Let B = 14 -6 5| (@) Compute B” and B”. (b) Cube each entry of B.
48 11 -4

Solution After defining B, we compute B”. The same results would have been obtained by

entering MatrixPower[matrixb,2].

matrixb = {{-2,3,4,0},{-2,0,1,3},{-1,4, -6,5},
{4! 8! 1 1! _4}};
MatrixForm[matrixb . matrixb]

-6 10 =29 29
1522 19 -7
20 13 91 -38
-51 24 -86 95
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The cofactor
matrix, A, of A is
the matrix obtained
by replacing each
element of A by its
cofactor.

Example 5.1.10

Solution

Next, we use MatrixPower to compute B>. The same results would be obtained
by entering matrixb.matrixb.matrixb.

MatrixForm[MatrixPower[matrixb, 3]]

137 98 479 231
-121 65 -109 189
-309 120 -871 646

520 263 1381 -738

Last, we cube each entry of B with A,

MatrixForm[matrixb®]

-8 27 64 0
-8 O 127
-1 64 -216 125
64 512 1331 -64

If |A| # 0, the inverse of A can be computed using the formula

1
A= —A“ G.D
|Al

where A? is the transpose of the cofactor matrix.

If A has an inverse, reducing the matrix (A[D to reduced row echelon
form results in (I|A_1). This method is often easier to implement than (5.1).

2 -2 1
Calculate A™' if A = ( 0 -2 2).

-2 -1 -1

100
After defining A and I=]0 1 0), we compute |A| =12, so A™" exists.
001

capa ={{2, -2,1},{0, -2,2},{-2, -1, -1}}
i3 = IdentityMatrix[3]

{{2,-2,1},{0, -2,2},{-2, -1, -1}}
{{1,0,0},{0,1,0},{0,0,1}}

Det[capa]
12

Join[a,b,n] concatenates lists a and b at level n. For matrices the level one
objects (capa[[i]]) are the rows; the level two objects (capa(i,j]l) are the entries.

Thus, Join[capa,i3] returns the matrix <?> whereas Join[capa,i3,2] forms the

matrix (A|D.
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ai3 = Join[capa, i3, 2]
{{2,-2,1,1,0,0},{0, -2,2,0,1,0},
{-2,-1,-1,0,0,1}}

MatrixForm[ai3]
2 -2 1100
0-2 2010
-2 -1 -1001
RowReduce[A] We then use RowReduce to reduce (A[D) to row echelon form.
reduces A to . B
reduced rrai3 = RowReduce[ai3]
row echelon {{1.0,0,{,-7.-%}, {0.1,0,-3,0,-3}.{0,0,1, -3, 3, -3}}
fi .
orm MatrixForm[rrai3]
100 3 -3 -4
010-{ 0-1
001 -4 4 -

1/3 -1/4 -1/6
The result indicates that A™ = | =1/3 0 -1/3].

-1/3 1/2 -1/3

5.14 Basic Computations with Vectors
Basic Operations on Vectors

Computations with vectors are performed in the same way as computations
with matrices.

Example 5.1.11 Letv = and w = . (8) Calculate v — 2w and v - w. (b) Find a unit vector

- N o

3
0
4

N

-2
with the same direction as v and a unit vector with the same direction as w.

Solution We begin by defining v and w and then compute v — 2w and v - w.

v={0,5,1,2}
W= {3! o’ 4! _2};
v -2w
{-6,5,-7,6}

V-w
0
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Uy
U,
The norm of the vectorv=1| | is
vn
[Vl =4/?+ 03+ +0v2 = Vv V.

The command Norm][v] returns the norm of the vector v.
If & is a scalar, the direction of kv is the same as the direction of v. Thus, if v

1
is a nonzero vector, the vector —Iv has the same direction as v and because
v

1
— || =1, —v is a unit vector. First, we compute |[v| with Norm.

v =
M vl || ||

1 1

We then compute HV calling the result uv, and ﬂw The results correspond
\% W

to unit vectors with the same direction as v and w, respectively.

Norm[v]

V30

uv = ——

Norm[v]

(oe55)
Norm[uv]
1

—_—w
Norm[w]

{ioi _L}
VB VB VR

©

Basic Operations on Vectors in 3-Space
Vector calculus is

discussed in
Section 5.5.

We review the elementary properties of vectors in 3-space. Let
U= (U, Uy, us) = wi+u,j+uk

and
v =(v,,0,,05) =i+ 0,j +v3k
be vectors in space.

1. u and v are equal if and only if their components are equal:

U=V S U =v,U, =0, and u; = v;.



In space, the
standard unit
vectors are
i=(1,0,0),
j=(0,1,0), and

k = (0,0, 1). With the
exception of the
cross product,

the vector operations
discussed here are
performed in the
same way for vectors
in the plane as they
are in space. In the
plane, the

standard unit
vectors are i = (1,0)
and j = (0, 1).

A unit vector is a
vector with length 1.

5.1 Matrices, Vectors, and Matrix Operations

. The length (or norm) of u is

lull = \/u7 + 25 + w3,

. If ¢ is a scalar (number),

cu = (cuy, cl,, Cits) .

. The sum of u and v is defined to be the vector

U+ V= (U + v, Uy + 0y, Uy +03).

. If u # 0, a unit vector with the same direction as u is

1 1
— u=

B (ul’ uz’ u3> :
[l \ s + s+ us

. u and v are parallel if there is a scalar ¢ so that u = ¢v.
. The dot product of u and v is

UV =u v, + U, + Uy,

If 6 is the angle between u and v,

u-v

cosf) = ————.
[all vl

Consequently, u and v are orthogonal if u-v = 0.

. The cross product of u and v is

i j k
uxvs=|u u, i
v, v, U3

= (ty05 — w30,) 1 = (10,05 — uzv,) j + (1,0, — w,0,) k.

You should verify that u-(u x v) =0 and v - (u x v) = 0. Hence, u x

v is orthogonal to both u and v.

Topics from linear algebra (including determinants) are discussed in more
detail in the next sections. For now, we illustrate several of the basic
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operations listed previously: u.v and Dot[u,v] compute u-v; Cross[u,v]
computes u X v.

Example 5.1.12 Let u=(3,4,1) and v = (-4, 3, -2). Calculate (a) u-v, (b) uxv, () |[ul, and (d)
[Ivll. (e) Find the angle between u and v. (f) Find unit vectors with the same
direction as u, v, and u x v.

Solution We begin by defining u=(3,4,1) and v =(-4,3,-2). Notice that to define
u = (u, u,, u;) with Mathematica, we use the form

Similarly, to define u = {u1,u2,us}

u = (uy, u,), We use e jllustrate the use of Dot and Cross to calculate (a)—(d).
the form u={ul,u2}.
u={3,4,1}%

v={-4,3,-2}
udv = Dot[u, v]
-2

u-v

-2

ucv = Cross[u, v]
{-11,2,25}
nu = Norm[u]
V26

nv = Sqrt[v-v]
V29

We use the formula 6 = cos™ (m) to find the angle 6 between u and v.

ArcCos[u-v/(nunv)]

N[%]
ArcCos [— £/ 3%]
1.6437

Unit vectors with the same direction as u, v, and u x v are found next.

normu = u/nu
normv = v/nv

{L o./2 ;}
vae N T %

{_L 8 _L}
V%' V28! V%

nucrossv = ucv/Norm[ucv]

_LE\/E
5v3’ 5 6
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FIGURE 5.1
Orthogonal vectors

We can graphically confirm that these three vectors are orthogonal by graphing all
three vectors with the ListVectorFieldPlot3D function, which is contained in the
VectorFieldPlots package. After loading the ListVectorFieldPlot3D package, the
command

ListVectorFieldPlot3D[listofvectors]

graphs the list of vectors listofvectors. Each element of listofvectors is of the form
{{u1,u2,u},{v1,v2,v3}}, where (u,, u,, u;) and (v,, v,, v;) are the initial and terminal
points of each vector. We show the vectors in Figure 5.1.

Needs[“VectorFieldPlots”]
ListVectorFieldPlot3D[{{{0, 0, 0}, normu},
{{0, 0, 0}, normv}, {{0, 0, 0}, nucrossv}},
VectorHeads — True]

In the plot, the vectors do appear to be orthogonal as expected.

With the exception of the cross product, the calculations described
previously can also be performed on vectors in the plane.
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Example 5.1.13 If u and v are nonzero vectors, the projection of u onto v is
proj, u o
Ju=—v.
vl

Find proj,u if u=(-1,4) and v = (2,06).
Solution First, we define u=(-1,4) and v = (2,6) and then compute proj, u.

u= {_11 4};
V= {2! 6};
projvu = u-vv/v-v
(4,2
10’ 10
Next, we graph u, v, and proj,u together using Arrow, Show, and GraphicsRow
in Figure 5.2.

?Arrow 3

Info3403594915-4587150

Arrowl((x1, 1}, [x2, ¥2}1] is a graphics

primitive which represents an arrow from (x;, y;) to (x2, »,).
Arrow](pt;, pta), 5] represents an arrow with its ends set

back from pt; and pt, by a distance s.
Arrow{(pty, ptal, (51, 52]] sets back by s, from pyy and s; from pry. =

p1 = Show[Graphics[{Arrowheads[Medium], Arrow[{{0, 0}, u}],
Arrow[{{0, 0}, v}],
Thickness[.05], Arrow[{{0, 0}, projvu}l}l,
Axes — Automatic, AspectRatio —» Automatic];

p2 = Show[Graphics[{Arrowheads[Medium], Arrow[{{0, 0}, u}],

-1.0 0.51.01.52.0 -1.0 0.51.01.52.0

FIGURE 5.2
Projection of a vector
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FIGURE 5.3
Using Manipulate to visualize the projection of one vector onto another

Arrow[{{0, 0}, v}],
Thickness[.03], Arrow[{{0, 0}, projvu}], GrayLevel[.4],
Arrowheads|[Large], Arrow[{projvu, u}]}],
Axes — Automatic, AspectRatio —» Automatic];
Show[GraphicsRow[{p1, p2}]]

In the graph, notice that u = proj,u + (u - projvu) and the vector u - proj,u is
perpendicular to v.

With the following, we use Manipulate to generalize the example. See
Figure 5.3.

Clear[u, v, projvu, p1, p2];
Manipulate[
projvu = u.vv/v.v;
Show|[Graphics[{Arrowheads[Medium], Arrow[{{0, 0}, u}],
Arrow[{{0, 0}, v}],
Thickness[.005], Arrow[{{0, 0}, projvu}], GrayLevel[.4],
Arrowheads|[Large], Arrow[{projvu, u}]}l,
Axes — Automatic, PlotRange — {{- 3, 3}, {0, 6}},
AspectRatio — Automatic, Ticks — None], {{u, {- 2, 3}}, Locator},
{{v,{2, 5}}, Locator}]

If you only need to display a two-dimensional array in row-and-column
form, it is easier to use Grid rather than Table together with TableForm or
MatrixForm.
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StringTake[string,n]
returns the first n
characters of the
string string.

@06 ¥Gnd- Wolfram Mathemat =N
i (@i [etcne 6 B
Grid New in6
Grid[[(expry;, expryy, ...}, (epry , exprsy, uly e}l

Is an object that formats with the egpr, arranged in a two-dimensional grid.

» [Mone inFormaTIoN |

¥ EXAMPLES

¥ Basic Examples (1
Display elenents ina grid
wii)- Geld({{a, b, €}, (=, v, 2]}]

abe
afll= y oy g
Pt 2 frame Bround every lement
i1~ Geid[{{a, b, €}, {=, y"2, 2°3}]}, Frame = All]
o RS
Use Text to format grid elements as text:
i3]~ Text[Grid[[("first®, “second”}, {“third", “fourts®}}]]
- fint second
Gl i foanh
» Scope a
» Options v
100w

For a list of all the options associated with Grid, enter Options[Grid].

Options(Grid] 3]

{Alignment -+ [Center, Baseline}, Background -+ Rone,
Baselinerosition - Automatic, Basestyle - {},
DefaultBagestyle - Grid, DefaultElesent 0

Dividers -» None, Frame -» None, FrameStyle -+ Automatic,
ItemSize -+ Automatic, ItemStyle -+ None, Spacings -» Automatic)

Thus,
pO0 = Grid[{{a, b, c}, {d, e}, {f}}, Frame — All]

creates a basic grid. The first row consists of the entries a, b, and c; the
second row d and e; and the third row f. See Figure 5.4.

You can create quite complex arrays with Grid. For example, elements
of grids can be any Mathematica object, including grids.

In the following, we use ExampleData to generate several typical Math-
ematica objects.

p1 = ExampleData[{*“Aeriallmage”, “Earth”}];

p2 = StringTake[ExampleData[{“Text”, “GettysburgAddress™}], 100];
p3 = ExampleData[{“Geometry3D”, “KleinBottle”}];

p4 = ExampleData[{“Texture”, “Bubbles3”}]; .1in
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FIGURE 5.4
A basic grid

ol vGeid[{{xys, Gridl{{pl. p3h, (30, P41HI1, dney-u, P14, Frame <ail]

&

PR "&‘sﬁ?ﬁ 7]

=
£

miy-w

FIGURE 5.5
Very basic grids can appear to be quite complicated

Using our first grid, the previous data, and a few more strings, we create
a more sophisticated grid in Figure 5.5.

g1 = Grid[{{xyx, Grid[{{p1, p2}, {p3, p4}}1}, {x + y -2, p0}}, Frame — AlI]

5.2 LINEAR SYSTEMS OF EQUATIONS

5.2.1 Calculating Solutions of Linear Systems of
Equations
To solve the system of linear equations Ax = b, where A is the coefficient

matrix, b is the known vector, and x is the unknown vector, we often
proceed as follows: If A~ exists, then AA™'x = A'bsox=A""b.
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Example 5.2.1

Solution

Mathematica offers several commands for solving systems of linear equa-
tions, however, that do not depend on the computation of the inverse of
A. The command

Solve[{eqgn1, eqn2, ...,eqnm}, {vari,var2, ..., varn}]

solves an m x n system of linear equations (zz equations and » unknown
variables). Note that both the equations and the variables are entered as
lists. If one wishes to solve for all variables that appear in a system, the com-
mand Solve[{egn1, eqn2, ..., eqgnn}] attempts to solve eqni, eqn2,...,eqnn for
all variables that appear in them. (Remember that a double equals sign (==
must be placed between the left- and right-hand sides of each equation.)

3 02 X 3
Solve the matrix equaton | =3 2 2 ||y |=|-1].
z 4

2-33
x 3 02\ /3
The solution is given by |y | =| -3 2 2 -1 |. We proceed by defining
z 2 -33 4

matrixa and b and then using Inverse to calculate Inverse[matrixa].b, naming the
resulting output {x,y,z}.

matrixa = {{3! 0’ 2}’ {_ 3! 2’ 2}’ {2’ = 3! 3}}’

b= {31 -1 ’ 4};

{x,y, z} = Inverse[matrixa].b

8 _7 15
23"~ 23° 23

We verify that the result is the desired solution by calculating matrixa.{x,y,z}.

3
Because the result of this procedure is | —1 |, we conclude that the solution

4
x 13/23
to the system is (y) = —7/25).
z 15/23

matrixa.{x, y, z}
{3, -1,4}

We note that this matrix equation is equivalent to the system of equations
3x+2z=3
-3x+2y+2z=-1,
2x -3y +3z=4

which we are able to solve with Solve. (Note that Thread[{f1,2,...} = {g1,92, ...}]
returns the system of equations {f1==g1, f2==g2, ...}.)
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Clear[x,y, z]
sys = Thread[matrixa . {x,y, z}=={3, - 1,4}]

{8x +2z==8, —-3x + 2y + 2z==-1,2x -3y + 3z==4}
Solve[sys]

{x=B82-By- -5}

In addition to using Solve to solve a system of linear equations, the
command

LinearSolve[A,b]

calculates the solution vector x of the system Ax = b. LinearSolve generally
solves a system more quickly than does Solve, as we see from the comments
in the Documentation Center.

enn L - Wolfram i (=]
L a L refLinearSabee »| I
LinearSolve

LinearSolve[m, &
finds an x which solves the matrix equation m.x <« b.

Linsarsolve [m]
generates a LinearsolveFunction|...] which can be applied repeatedly to different b.

b [Mone inrormaTIoN |

¥ EXAMPLES

¥ Basic Examples
i1}~ Limearsolve[{{a, b}, {c, d}}, (x, ¥}]
;de-by ex-ay,

outfi)= | A }
‘-be+ad beo-ad

With ne right=hand sice, 8 LinearSolveFusction i§ returnod
1= Lincarsolve[{ {1, 2}, {3, 4}}]

ouifi]- LinearsolveFusction[{2. 2}, <>

{p- LIS, 611

. El
{-4, 2}
t 2!

i)~ LimearSolve[{{1, 2}, {3, 4}}, (5, 6]]

X=2y+z=-4
Example 5.2.2 Solve the system < 3x+2y—z=8 for x, , and z.
-x+3y+52=0
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Solution

Example 5.2.3

In this case, entering either
Solve[{x -2y + z==-4,3x + 2y -z==8, —x + 3y + 5z==0}]
or
Solve[{x-2y + z,3x + 2y -2z, —-x + 3y + 5z}=={-4, 8, 0}]
gives the same result.

Solve[{x-2y + z==-4,3x + 2y-2z==8, —x + 3y + 5z==0},{x, y, z}]
{{x—=1y—2,z— -1}}
Another way to solve systems of equations is based on the matrix form of the

system of equations, Ax = b. This system of equations is equivalent to the matrix
equation

1 -2 1\ [x —4
3 2-1]|y]|=| 8
-1 3 z 0

The matrix of coefficients in the previous example is entered as matrixa along
with the vector of right-hand side values vectorb. After defining the vector of
variables, vectorx, the system Ax =b is solved explicitly with the command
Solve.

matrixa = {{1 ’ _2! 1}! {35 2! - 1}5 {_ 1 ’ 35 5}};
vectorb = {-4,8,0};

vectorx = {x1,y1,z1};
Solve[matrixa.vectorx==vectorb, vectorx]
{{x1 = 1,y1 =-2,z1 - -1}}

LinearSolve[matrixa, vectorb]
{1,2, -1}

2x —4y+z=-1

Solve the system < 3x+y —2z=3 . Verify that the result returned satisfies the
—-Sx+y-2z=4

system.

Solution To solve the system using Solve, we define egs to be the set of three equations

to be solved and vars to be the variables x, y, and z and then use Solve to solve
the set of equations eqgs for the variables in vars. The resulting output is named
sols.

eqs = {2x-4y + z==-1,3x + y—22z==3, - 5x + y—2z==4}; vars = {X,y, z};
sols = Solve[eqs, vars]
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N b 1)

To verify that the result given in sols is the desired solution, we replace each
occurrence of x, p, and z in egs by the values found in sols using ReplaceAll
(/.). Because the result indicates each of the three equations is satisfied, we
conclude that the values given in sols are the components of the desired
solution.

eqs/.sols
{{True, True, True}}

To solve the system using LinearSolve, we note that the system is equivalent

2 -4 1 x -1
to the matrix equation 3 1 =2||y]= 3 |, define matrixa and vectorb,
-5 1 -2 z 4

and use LinearSolve to solve this matrix equation.

matrixa = {{2! _4! 1}! {3! 15 _2}! {_55 1! _2}};
vectorb ={-1,3,4};
solvector = LinearSolve[matrixa, vectorb]

To verify that the results are correct, we compute matrixa.solvector. Because the

-1 x -1/8
resultis | 3 |, we conclude that the solution to the systemis | y | = | —15/36
4 z -51/28

matrixa.solvector
{-1,3,4}

The command LinearSolve[A] returns a function that when given a vector b solves
the equation Ax = b: LinearSolve[A][b] returns x.

LinearSolve[matrixa]

LinearSolveFunction[{3, 3}, <>]

LinearSolve[matrixa][{-1, 3, 4}]

{_l 15
8" 56’ 28

Enter indexed variables such xy, x,,..., x,, as x[1],x[2],..., x[n]. If you
need to include the entire list, Table[x[i],{i,1,n}] usually produces the desired
result(s).
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Example 5.2.4 Solve the system of equations

40 + 55, — 5x5 — 8x4 — 2x5 =5

72y + 206, — 1005 — x4 — Ox5 = —4

6, + 2x, + 10x; — 10x, + 7x5 = —7.

—8x, —x, —4x; +3x5 =5

8x, — 7x, — 305 + 10x, + 5x5 = 7
Solution We solve the system in two ways. First, we use Solve to solve the system. Note
that in this case, we enter the equations in the form

set of left—hand sides==set of right—hand sides

Solve[{4x[1] + 5x[2] - 5x[3] - 8x[4] - 2x[5],
7x[1] + 2x[2] - 10x[3] — x[4] - 6x[5],
6x[1] + 2x[2] + 10x[3] - 10x[4] + 7x[5],
- 8x[1] - x[2] - 4x[3] + 3x[5],
8x[1]-7x[2] - 3x[3] + 10x[4] + 5x[5]}==(5, -4, -7,5,7}]

38523 49327

{{X - %’XZ] - 1;313;4%[3] - _%'Xw o5 X8l = o5 }}

We also use LinearSolve after defining matrixa and t2. As expected, in each case,
the results are the same.

Clear[matrixa]

matrixa = {{4, 5, -5, -8, -2},{7,2, -10, -1, -6},{6,2,10, -10, 7},
{-8,-1,-4,0,3}{8, -7, -3,10,5}};

t2={5,-4,-7,5,7}

LinearSolve[matrixa, t2]

1245 113174 _ 7457 38523 49327
6626' "9939 ’ ~ 9939’ 6626 ' 9939

2.2 Gauss-Jordan Elimination

Given the matrix equation Ax = b, where

ap Gy ot Ay X1 b,
dy Ay Ay, X3 b,

A = . . . , x=| .1, and b= . |,
A1 Az " Ay Xn bm

the m x n matrix A is called the coefficient matrix for the matrix
equation Ax = b, and the m x (n + 1) matrix

ay ayp - a4y, by
Ay Ay v Ay, b

a Az " Ay bm

ml
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is called the augmented (or associated) matrix for the matrix equation.
We may enter the augmented matrix associated with a linear system of equa-
tions directly or we can use commands such as Join to help us construct the
augmented matrix. For example, if A and B are rectangular matrices that

have the same number of columns, Join[A,B] returns <g> On the other

hand, if A and B are rectangular matrices that have the same number of
rows, Join[A,B,2] returns the concatenated matrix (A B).

—2x+y-2x=4
Example 5.2.56 Solve the system { 2x — 4y — 2z = -4  using Gauss-Jordan elimination.
x—4y-2z=3

Solution The system is equivalent to the matrix equation

-2 1 =2 X 4
2 -4 =2|[y]|=|-4
1 -4 -2 z 3

The augmented matrix associated with this system is

-2 1 =2
2 -4 ,
1 -4

4
-2 -4
-2 3

which we construct using the command Join.

matrixa = {{ - 2, 1; - 2}, {2! - 4! - 2}5 {1 [ 45 - 2}};
b = {{4},{- 4}, {3}%

augm = Join[matrixa, b, 2];
MatrixForm[augm]

-2 1 -2 4
2 -4 -2 -4
1 -4 -2 3

We calculate the solution by row-reducing augm using RowReduce. Generally,
RowReduce[A] reduces A to reduced row echelon form.

RowReduce[augm]//MatrixForm

100 -7
010 -4
001 3

From this result, we see that the solution is
X -7
yl=1-4

z 3
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We verify this by replacing each occurrence of x, y, and z on the left-hand side
of the equations by -7, —4, and 3, respectively, and noting that the components
of the result are equal to the right-hand side of each equation.

Clear|[x, y, z]
{-2x +y-2z,2x-4y-22z,x-4y-2z}/{x —» -7,y—> -4,z—> 3}
{4, -4,3}

In the following example, we carry out the steps of the row reduction
process.

Example 5.2.6 Solve

Solution

-3x+2y—-2z=-10
3x—-y+2z=7
2x—y+2z=0.
-3 2 -2 -10
The associated matrix is A = 3 -1 2 7|, defined in capa and then

2 -1 1 6
displayed in traditional row-and-column form with MatrixForm.

Clear[capa]
capa = {{_3! 25 _25 _10}1{31 _1’25 7}5{25 _15 116}};
MatrixForm[capal]

-3 2 -2 -10
3 -1 2 7
2 -1 1 6

We eliminate methodically. First, we multiply row 1 by —1/3 so that the first entry
in the first column is 1.

capa = {-1/3capal[1]], capal[[2]], capa[[3]]}
{{1,-2,2,2},{38,-1,2,7},{2, -1,1,6}}

We now eliminate below. First, we multiply row 1 by —3 and add it to row 2 and
then we multiply row 1 by -2 and add it to row 3.

capa = {capa|[[1]], —3capal[1]] + capal[[2]],
—2capa([[1]] + capal[3]]}
{11,-2.2,12),{0,1,0, -8}, {0, 3, -1, ~2}}
Observe that the first nonzero entry in the second row is 1. We eliminate below
this entry by adding —1/3 times row 2 to row 3.

capa = {capal[[1]], capa[[2]],
-1/3capal[[2]] + capa[[3]]}
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{{1.-5.5.%).{0.1,0,-8},{0,0, - 3. 3}}

We multiply the third row by —3 so that the first nonzero entry is 1.
capa = {capal[1]], capal[2]], - 3capal[3]]}
{{1.-5.5.91{0,1,0,-8},{0,0,1, - 1}}

This matrix is equivalent to the system

2 2 1
x—§y+§z=?
y=-3
z=-1,

which shows us that the solution is x =2, y = -3, z=-1.
Working backwards confirms this. Multiplying row 2 by 2/3 and adding to row
1 and then multiplying row 3 by —2/3 and adding to row 1 results in

capa = {2/3capal[2]] + capal[1]], capa[[2]],
capal[3]I}

capa = {-2/3capa|[[3]] + capal[1]], capa[[2]],
capa[[3]]}

MatrixForm[capa]

{{1,0,2,3}.{0,1,0,-3},{0,0,1, -1}}
{{1,0,0,2},{0,1,0, -3},{0,0,1, - 1}}

which is equivalent to the system x =2, y = -3, z=-1.
Equivalent results are obtained with RowReduce.

capa = {{_33 2! _2’ - 10}’{3! _13 2! 7}!{2! _1’ 1; 6}};
capa = RowReduce[capal]
MatrixForm[capa]

{{1,0,0,2},{0,1,0,-3},{0,0,1, =1}}

100 2
010 -3
001 -1

Finally, we confirm the result directly with Solve.

Solve[{-3x + 2y -2z==-10,
3x-y + 22==7,2x -y + z==6}]

{{X—»Z,yﬂ -3,z — —1}}
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Example 5.2.7 Solve

=3x, + 2x, + 5x; = =12
3x;, — X, —4x;=9

2x) —x, —3x3=7.

-3 2 5 -12
Solution The associated matrix is A = 3 -1 =4 9 |, which is reduced to row echelon
2 -1 -3 7

form with RowReduce.

capa = {{_3! 2! 5’ _12}!{3! _1! _4! 9}! {2! _1! _3s 7}};
rrcapa = RowReduce[capa];

MatrixForm[rrcapa]
10 -1 2
o1 1 -3
00 O O

The result shows that the original system is equivalent to

Xy =Xy =2 X, =2+
or
Xy +x; =3 Xy ==3—x;

S0 x; is free. That is, for any real number ¢, a solution to the system is

x 2+t 2 1
x, |=|-3-¢t]=|-3]|+¢t]| -1
X3 t 0 1

The system has infinitely many solutions.
Equivalent results are obtained with Solve.

Inf15)= Solve[{-3x1+2x2+5x3 = -12, Ixl-x2-4x3=9, |
2x1-x2-3x3=7}] |
Solve::svars : Equations may not give solutions for all “solve® variables. = § |

ouftsl= {(x1->2+%x3, x2-3-x3}} 3 |

Example 5.2.8 Solve

=3x, +2x, +5x; = —14
3x; —x, — 4y =11

2x, — X, — 3x; = 8.
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-3 2 5 -14
Solution The associated matrix is A = 3 -1 -4 11|, which is reduced to row
2 -1 -3 8

echelon form with RowReduce.

Clear[x]
capa = {{_3! 2! 5! _14}!{3! _1! _41 11}’ {2’ _1, _3! 8}};
rrcapa = RowReduce[capal;

MatrixForm|[rrcapa]
10-10
01 10
00 O

The result shows that the original system is equivalent to

X, —x; =0
X, +x; =0
0=1.

Of course, 0 is not equal to 1: The last equation is false. The system has no
solutions.

We check the calculation with Solve. In this case, the results indicate that
Solve cannot find any solutions to the system.

Solve[{-3x[1] + 2x[2] + 5x[3]==-14,
3x[1]-x[2] - 4x[3]==11, 2x[1] - x[2] - 3x[3]==8}]
{}

Generally, if Mathematica returns nothing, the result means either that there is no
solution or that Mathematica cannot solve the problem. In such a situation, we
must always check using another method.

Example 5.2.9 The nullspace of A is the set of solutions to the system of equations Ax = 0.
3 21 1 -2
3 31 2 -1
Find the nullspace of A = 2 21 1 -1
-1 -1 0 -1 O
5 42 2 -3

Solution Observe that row reducing (A]0) is equivalent to row reducing A. After defining
A, we use RowReduce to row reduce A.

capa ={{3!251!1’ _2}!{3!3,1!21 _1}5
{2s2!1!1! _1}!{_1! _1!0! _1!0}’
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{51 4’ 25 21 - 3}};
RowReduce[capa]//MatrixForm

100 0 -1
010 1 1
001 -1 -1
000 0 O
000 0 O

The result indicates that the solutions of Ax =0 are

X, t 0 1
X, -s—1 -1 -1
X=|x3|=| s+t | =s 1|+t 1],
X4 s 1 0
Xs t 0 1

where s and ¢ are any real numbers. The dimension of the nullspace, the nullity,
is 2; a basis for the nullspace is

O === O
—_— O =

You can use the command NullSpace[A] to find a basis of the nullspace of a
matrix A directly.

NullSpace[capal]
{{1,-1,1,0,1},{0, -1,1,1,0}}
A is singular because |A| = 0.

Det[capal]
0

Do not use LinearSolve on singular matrices,
because the results returned may not be (completely) correct.
Don't use LincarSolve on non-singular matrices: il |

LinearSolve[capa]

is singular so a factorization will not be saved.

LinearSolveFunction[{5, 5}, <>]

Det[capa]
0

|
LinearSolve:singl 3
The matrix (3, 2,1, 1,-2}, {3, 3, L, 2, -1} (2,2, 1, 1, -1}, (-1, -, O, -1, O}, (5, 4, 2, 2, -3}}
3|
(o, 0,0, 0,0} ]J

3

3
LinearSolve[capa, {0, 0, 0, 0, 0}] 37|

3
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LinearSolve[capa, {0, 0, 0, 0, 0}]
{0,0,0,0,0}

5.3 SELECTED TOPICS FROM LINEAR ALGEBRA

Example 5.3.1

Solution

5.3.1 Fundamental Subspaces Associated with
Matrices

Let A = (a,) be an n x m matrix with entry a; in the ith row and jth
column. The row space of A, row(A), is the spanning set of the rows of
A; the column space of A, col(A), is the spanning set of the columns
of A. If A is any matrix, then the dimension of the column space of A
is equal to the dimension of the row space of A. The dimension of the
row space (column space) of a matrix A is called the rank of A. The
nullspace of A is the set of solutions to the system of equations Ax = 0.
The nullspace of A is a subspace and its dimension is called the nullity
of A. The rank of A is equal to the number of nonzero rows in the row
echelon form of A, and the nullity of A is equal to the number of zero
rows in the row echelon form of A. Thus, if A is a square matrix, the
sum of the rank of A and the nullity of A is equal to the number of rows
(columns) of A.

1. NullSpace[A] returns a list of vectors that form a basis for the nullspace
(or kernel) of the matrix A.
2. RowReduce[A] yields the reduced row echelon form of the matrix A.

Place the matrix

-1 -1 2 0 -1
-2 2 0 0 -2
A= 2-1-1 0 1
-1 -1 1 2 2
1 -2 2-2 0

in reduced row echelon form. What is the rank of A? Find a basis for the nullspace
of A.

We begin by defining the matrix matrixa. Then, RowReduce is used to place
matrixa in reduced row echelon form.
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Example 5.3.2

Solution

capa ={{_1’ _1’210’ _1}!{_2’25050’ _2}5
{2! _1! _150!1}!{_15 _151!252}1

{1,-2,2,-2,0}};
RowReduce[capa]//MatrixForm
100 -20
010-20
001 -20
000 01
000 0O

Because the row-reduced form of matrixa contains four nonzero rows, the rank of
A is 4 and thus the nullity is 1. We obtain a basis for the nullspace with NullSpace.

NullSpace[capal]
{{2,2,2,1,0}}

As expected, because the nullity is 1, a basis for the nullspace contains one
vector.

Find a basis for the column space of

1 -22 1-=-2
1 12 -2-=-2
B= 1 00 2 -1
0 00-2 0
-2 10 1 2

A basis for the column space of B is the same as a basis for the row space of
the transpose of B. We begin by defining matrixb and then using Transpose to
compute the transpose of matrixb, naming the resulting output tb.

matrixb = {{1, -2,2,1, -2},{1,1,2, -2, -2},
{1,0,0,2, -1},{0,0,0, -2,0},
{-2,1,0,1,2}};
tb = Transpose[matrixb]
{{1,1,1,0, -2},{-2,1,0,0,1},
{2,2,0,0,0},{1,-2,2,-2,1},{-2, -2, -1,0,2}}

Next, we use RowReduce to row reduce tb and name the result rrtb. A basis for
the column space consists of the first four elements of rrtb. We also use Transpose
to show that the first four elements of rrtb are the same as the first four columns
of the transpose of rrtb. Thus, the jth column of a matrix A can be extracted from
A with Transpose [A][[j]].

rrtb = RowReduce[tb];
Transpose][rrtb]//MatrixForm
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10 0 00
01 0 00
00 1 00
00 0 10
-1 1 -2-30

We extract the first four elements of rrtb with Take. The results correspond to a
basis for the column space of B.

Take[rrtb, 4]
{{1,0,0,0,-1},{0,1,0,0,1},{0,0,1,0, -2},{0,0,0, 1, -3}}

5.3.2 The Gram-Schmidt Process

A set of vectors {v, v,,..., v, } is orthonormal means that ||v,| =1 for
all values of 7 and v,-v; =0 for 7 #j. Given a set of linearly indepen-
dent vectors S = {vy, V,,..., v,}, the set of all linear combinations of the

elements of S, V =spans, is a vector space. Note that if S is an orthonor-
mal set and u € span§, then u= (u-v,) v+ (u-v,) vy +--+ (u-v,) v,.
Thus, we may easily express u as a linear combination of the vectors in
S. Consequently, if we are given any vector space, V, it is frequently con-
venient to be able to find an orthonormal basis of V. We may use the
Gram—Schmidt process to find an orthonormal basis of the vector space

V=span {v,, V,,..., V,}.

We summarize the algorithm of the Gram-Schmidt process so that
given a set of n linearly independent vectors S = {v,, v,,..., vn}, where
V=span {vy, V,,..., Vv, }, we can construct a set of orthonormal vectors
{uy, u,,..., u,} so that V=span{u,, u,,..., u,}.

1
1. Let u; = —v;
[l

2. Compute projy, v, = (u1 -vz) u;, V; = Proj, ,v,, and let

1 .
u, = . <v2 - prol{ul}v2> .
| Vy = P10y 1 V2
Then, span {u;, u,} = span {v,,v,} and span {u;, u,, v3,..., v, } =
span {vy, vi,..., v, };

3. Generally, for 3 <7 < n, compute

PIOj(y, uy,. o, Vi = (w-v)u + (uy-v) w4+ (u v ugy,
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Vi = PrOjpy u,

,,,,,

1
u = ] (pl‘ ]{ul,uz ..... un}vz>
pro]{ul u,,..., un}vl
Then, span {u;, u,, ..., u,} =span {vy, v,, ..., v;} and
span {u;, Uy, ..., W, Vi, ..., V,} =span {vy, v,, vy, ..., v, };

and
4. Because span {u;, u,, ..., u,} =span {vy, v,, ..., v,,} and {u,, u,,

...,u,} is an orthonormal set, {u,, u,, ..., u,} is an orthonormal

basis of V.

The Gram-Schmidt procedure is well-suited to computer arithmetic. The
following code performs each step of the Gram-Schmidt process on a set
of n linearly independent vectors {v,, vy,..., v,,}. At the completion of
each step of the procedure, gramschmidt[vecs] prints the list of vectors
corresponding to {u;, u,,..., U, V..., v,} and returns the list of vec-
tors {u;, u,,..., u,}. Note how comments are inserted into the code using

..
gramschmidt[vecs_] := Module[{n, proj, u, capw},
(*n represents the number of vectors in
the Iistvecs*)
n = Length[vecs];
(*proj[v, capw] computes the projection
of v onto capw?*)
proj[v—, capw_] :=
Frerstiezpu] capwi[il].v capwilill;

u[1] — vecs[[1]] ;
4/ vecs[[1]].vecs[[1]]
capw = {};

u[i-] := u[i] = Module[{stepone},

stepone = vecs|[i]] - proj[vecs][il], capw];

Together [—Ste’m“e
\/ stepone.stepone
Do[
ulil;

AppendTo[capw, u[i]l;

Print[Join[capw, Drop[vecs, illl, {i, 1, n - 1}];
u[n];

AppendTo[capw, u[n]]]
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-2 0 1
Example 5.3.3 Use the Gram-Schmidt process to transform the basis § = -11,1-11].| 3
-2 2 -2

of R? into an orthonormal basis.

Solution We proceed by defining v1, v2, and v3 to be the vectors in the basis § and using
gramschmidt[{v1,v2,v3}] to find an orthonormal basis.

v ={_2’ _1’ _2};

v2={0, -1,2}
v3={1,3, -2}
gramschmidt[{v1 v2,v3}]
{{-5 -3 -51{0,-1,2},{1,3,-2}}
{{—g’—%:—é}‘{ 3 —5.55{1.8,-2}}
{-5-3-5h{-3-558{-55:1

On the first line of output, the result {u,, v,,v,} is given; {u;,u,,v;} appears on
the second line; {u,, u,, u;} follows on the third.

Example 5.3.4 Compute an orthonormal basis for the subspace of R* spanned by the vectors

2 -4 1
4 1 4 . .
4l 3 | and il Also, verify that the basis vectors are orthogonal and
1 2 -1
have norm 1.

Solution With gramschmidt, we compute the orthonormal basis vectors. Note that Mathe-
matica names oset the last result returned by gramschmidt. The orthogonality of
these vectors is then verified. Notice that Together is used to simplify the result in
the case of oset[[2]].0set[[3]]. The norm of each vector is then found to be 1.

oset = gramschmidt[{{2,4,4,1},{-4,1, -3,2},{1,4,4, - 1}}]

601/ ks T, - 22— 44 16909},{1,4,4,—1}}

- 29 8 4] 2
{ 60 16909’ /33818’ /33818’ 44 16909}’

_ 449 268 156 _ 798
934565’ /934565 /934565 934565
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The three vectors are extracted with oset using oset[[1]], oset[[2]], and
oset[[3]].

oset[[1]].oset[[2]]
oset[[1]].oset[[3]]
oset[[2]].oset[[3]]
0
0
0

Sqrt[oset[[1]].0set[[1]]]
Sqrt[oset[[2]].0set[[2]]]
Sqrt[oset[[3]].oset[[3]]]
1
’
’

Mathematica contains functions that perform most of the operations
discussed here.

1. Orthogonalize[{v1,Vv2, ...},Method->GramSchmidt] returns an ortho-
normal set of vectors given the set of vectors {v,v,,...,V,}.
Note that this command does not illustrate each step of the
Gram-Schmidt procedure as the gramschmidt function defined

previously.
. 1 .
2. Normalize[v] returns nv given the nonzero vector v.
v
3. Projection[v1,v2] returns the projection of v, onto v,: proj, v, =
Vi'Vp
2
[[v-ll
Thus,
orthogonalize[{{2, 4, 4, 1}, (-4, 1, -3, 2}, {1, 4, 4, -1}}, 1
Method -+ "GramSchmidt”"]
rro2 4 4 1,
‘{ - ’ = ’ r- ’ - [ r
Yar o V31 V3 3T
[ 2 93 55 [ 2
r o r - r 44 - ¥
; / 16909 © /33818 /33818 V 16909
{ 449 268 156 798
- . ; ’ - ’ = '
/934565 /934565 /934565 /934565 ** ]
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returns an orthonormal basis for the subspace of R spanned by the vectors

2 -4 1
4 1 4
il 23| and 4l The command
1 2 -1

Normalize[{2, 4,4, 1}]

{LLLW_}

2
4
finds a unit vector with the same direction as the vector v = 4l Entering
1
Projection[{2,4,4,1},{-4,1, -3,2}]
8 _7 7 _14
157 157 5 15
2 -4
o 4 1
finds the projection of v = 4 ontow = | 3
1 2

5.3.3 Linear Transformations

A function 7: R” — R" is a linear transformation means that 7 satis-
fies the properties T(u+ v) = T'(w) + T'(v) and T(cw) = ¢T' (u) for all vectors
u and v in R” and all real numbers c. Let 7: R” — R™ be a linear trans-
formation and suppose T(el) =vy, T(ez) =Vy, ..., T(en) =v,, where
{e1,e,,...,e,} represents the standard basis of R” and v, v,,..., v, are
(column) vectors in R”. The associated matrix of T is the m x n matrix
A= (Vl v, vn):

X, X, Xy
X, Xy X3
fx=| |, rTeo=T|| ||=Ax=(v, v, - v,)| .
X, X X,

n

Moreover, if A is any m x n matrix, then A is the associated matrix of the
linear transformation defined by 7'(x) = Ax. In fact, a linear transformation
T is completely determined by its action on any basis.

The kernel of the linear transformation 7, ker (7)), is the set of all vec-
tors x in R” such that T(x) = 0: ker(7) = {x € R"|T'(x) = 0}. The kernel
of T is a subspace of R”. Because T'(x) = Ax for all x in R", ker(I) =
{x € R"|T(x) =0} = {x € R"|Ax = 0} so the kernel of T is the same as the
nullspace of A.
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Example 5.3.6 Let T:R’— R> be the linear transformation defined by 7T(x)=

0 -3 -1 -3 -1
(—3 3 -3 -3 —1) x. (a) Calculate a basis for the kernel of the linear trans-
2 2-1 1 2

4 1
2 2
formation. (b) Determine which of the vectors 0| and | -1 ] is in the
0 -2
-6 3

kernel of T.
0-3 -1 -3 -1
Solution We begin by defining matrixa to be the matrix A = (—3 3 -3 -3 -1] and
2 2-1 1 2
then defining t. A basis for the kernel of T'is the same as a basis for the nullspace
of A found with NullSpace.

Clear([t, x, matrixa]

matrixa = {0, -3, -1, -3, -1},{-3,3, -3, -3, -1},
{2,2,-1,1,2}};

t[x-] = matrixa.x;

NullSpace[matrixa]

{{-2,-1,0,0,3},{-6,-8,-15,13,0} }

4
2
Because 0 | is a linear combination of the vectors that form a basis for the
0
-6
4 1
2 2
kernel, 0 | is in the kernel, whereas | —1 | is not. These results are verified by

0 -2
-6 3
evaluating t for each vector.
t[{4a 2’ 0’ 0, _6}]
{0,0,0}
t[{1a 2’ _1! _2! 3}]
{-2,9,11}

Application: Rotations

2

rand ¢ given by = 1/x,2 +x,2 and ¢ = tan”' (x,/x,) so that x; = rcos ¢

x ,
Let x = <x1> be a vector in R* and 6 an angle. Then, there are numbers
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o _(x;\ _ [rcos¢
and x, = rsin¢. When we rotate x = <x2> = <rsin ¢> through the angle

rcos (0 + o)
rsin (6 + )
tities sin (0 + d)) =sinf cos¢ £ sin¢p cosf and cos (0 + d)) =cosfcos¢d F
sin 6 sin ¢, we rewrite

,_(rcos(0+¢)\ _ (rcos@cos —rsinfsind) _ (cos —sinb) (rcos¢
= rsin (0 +¢) )~ \rsinfcosdp +rsinpcos® )~ \sinf cos® ) \ rsing
_[cosf —sinf\ [x,
" \sin® cosf ) \x, /"

Thus, the vector x' is obtained from x by computing (

6, we obtain the vector X' = ( > Using the trigonometric iden-

cosf —sin6
sinf cos6 ’

Generally, if 0 represents an angle, the linear transformation 7': R* — R’

cosf —sinf
defined by T(x) = <sin 0 cosf
the angle 0. We write code to rotate a polygon through an angle 6. The
procedure rotate uses a list of n points and the rotation matrix defined in
r to produce a new list of points that are joined using the Line graphics
directive. Entering

> x is called the rotation of R* through

Line[{{x1,y1},{x2,y2},.. ., {xn,yn}}]

represents the graphics primitive for a line in two dimensions that connects
the points listed in {{x1,y1}, {x2,y2}, ..., {xn,yn}}. Entering

Show|[Graphics[Line[{{x1,y1},{x2,y2},. .., {xn,yn}}]]]

displays the line. This rotation can be determined for one value of 6. How-
ever, a more interesting result is obtained by creating a list of rotations for
a sequence of angles and then displaying the graphics objects. This is done
for 6 = 0 to 6 = 7/2 using increments of 77/16. Hence, a list of nine graphs
is given for the square with vertices (-1,1), (1,1), (1,-1), and (-1,-1)
and displayed in Figure 5.6.

_ (Cos[6] -Sin[6] .
ro-1= (Sin[o] Cos[B])’

rotate[pts_, angle_] := Module[{newpts},
newpts = Table[r[angle].pts][[il], {i, 1, Length[pts]}];
newpts = AppendTo[newpts, newpts[[1]]];
figure = Line[newpts];
Show[Graphics[figure], AspectRatio — 1,
PlotRange — {{-1.5,1.5},{-1.5,1.5}},
DisplayFunction — Identity]]

357



358

CHAPTER 5 Matrices and Vectors

Example 5.3.6

FIGURE 5.6
A rotated square

graphs = Table[rotate[{{-1, 1}, {1, 1}, {1, -1}, {-1, - 1}}, 1],
{t,0, 7, £}]; array = Partition[graphs, 3];
Show|[GraphicsGrid[array]]

5.3.4 Eigenvalues and Eigenvectors

Let A be an n x n matrix. A is an eigenvalue of A if there is a nonzero
vector, v, called an eigenvector, satisfying Av = Av. We find the eigen-
values of A by solving the characteristic polynomial |[A — AI| = 0 for A.
Once we find the eigenvalues, the corresponding eigenvectors are found
by solving (A — ADv =0 for v.

If A is n x n, Eigenvalues[A] finds the eigenvalues of A, Eigenvectors[A]
finds the eigenvectors, and Eigensystem[A] finds the eigenvalues and corre-
sponding eigenvectors. CharacteristicPolynomial[A,lambda] finds the charac-
teristic polynomial of A as a function of A.

Find the eigenvalues and corresponding eigenvectors for each of the following

011
matrices: (a) A = ("5 2), ©) A = <1 '1>, © A= (1 0 1), and (d) A =

2 -3 1 3 110
-1/4 2
-8 -1/4/)°
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Solution (a) We begin by finding the eigenvalues. Solving

|A - AT| =

-3-A 2
2 -3-A

‘=/\2+6/\+5=0

givesus A, =-5and A, = -1.
Observe that the same results are obtained using CharacteristicPolynomial
and Eigenvalues.

capa = {{_3! 2}! {2! _3}};
CharacteristicPolynomial[capa, A]
5+ 6 +A2

e1 = Eigenvalues[capa]

{-5 -1}

1

We now find the corresponding eigenvectors. Let v, = (j > be an eigenvector

1
corresponding to A;; then

- (-0
(G2)G)-=()

(6)-0)

That is, x; +y, =0 or x, = —y,. Hence, for any value of y, #0,

X N _1)
VvV, = = =
' <y1) ( y1> yl( 1
is an eigenvector corresponding to A,. Of course, this represents infinitely many

vectors. However, they are all linearly dependent. Choosing y, =1 yields v, =

<_1>. Note that you might have chosen y, = -1 and obtained v, =< 1).

which row reduces to

1 -1
However, both of our results are “correct” because these vectors are linearly
dependent.

Similarly, letting v, = CZ) be an eigenvector corresponding to A,, we solve
2

(A - /\ZI) v, =0:
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Thus, x, —y, =0 or x, =y,. Hence, for any value of y, #0,
—(*2) = (V2 = 1
V2 <J’2> (3’2) Iz <1>

is an eigenvector corresponding to A,. Choosing y, =1 vyields v, = (i) We
confirm these results using RowReduce.

i2 = IdentityMatrix[2];

evl = capa-e1[[1]]i2

{{2.2},{2,2}}

RowReduce[ev1]

{{1.1}.{0,0}}

ev2 = capa-e1[[2]]i2;

RowReduce[ev2]

{{1,-1}3.{0,0}}
We obtain the same results using Eigenvectors and Eigensystem.

Eigenvectors[capa]
Eigensystem[capa]
{-1.11{1.1}}

-5 11 {{-1. 11 {1.1}}}

(b) In this case, we see that A =2 has multiplicity 2. There is only one linearly

. . -1 )
independent eigenvector, v = ( 1), corresponding to A.

capa = {{1, -1},{1,3}};
Factor[CharacteristicPolynomial[capa,A]]
Eigenvectors[capa]

Eigensystem[capa]

(=2 +2)?

{{-1.1},{0,0}}

{{2,2},{{-1,1}.{0,0}}}

1
(c) The eigenvalue A, = 2 has corresponding eigenvector v, = | 1 |. The eigen-

1
value A, ; = —1 has multiplicity 2. In this case, there are two linearly independent
-1 -1
eigenvectors corresponding to this eigenvalue: v, =| 0| and v, = 1
1 0

capa ={{0,1,1},{1,0,1},{1,1,0}};
Factor[CharacteristicPolynomial[capa, A]]
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Eigenvectors[capa]

Eigensystem[capa]

—(=2+A)(1+A)?
{{1,1,1},{-1,0,1},{-1,1,0}}

{{2, -1, -1}, {{1,1,1},{-1,0,1},{-1,1,0}}}

(d) In this case, the eigenvalues A, , = —% + 47 are complex conjugates. We see
0

that the eigenvectors v, , = <2

) + <(1)> i are complex conjugates as well.
capa = {{-1/4,2},{-8, -1/4}};
Factor[CharacteristicPolynomial[capa, A],

Gaussianintegers — True]
Eigenvectors[capa]
Eigensystem[capa]

(1= 160) + 4A)(1 + 160) + 41)
(AR
{=F+ 4~ =4 (-3 11 (3111

5.3.5b Jordan Canonical Form

1,j=i+1

Let N, = ("z]) = =t . represent a R x k matrix with the indi-
0, otherwise

cated elements. The & x & Jordan block matrix is given by B(A) = AI +

N,, where A is a constant:

010--0 A10--0

001--0 OA1--0

N,=]::1: : and BA)=AI+N, = ; :

000 -1 0001

000--0 000 - A
Ai=j

Hence, BQ)) can be defined as B = (b;) =< 1,j=i+1 . A Jordan

0, otherwise
matrix has the form

B 0 - 0
0 B,A) - 0
J= . . . )
o 0 - B

where the entries Bj(/\), j=1,2, ..., nrepresent Jordan block matrices.
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Example 5.3.7

Solution

Suppose that A is an n x n matrix. Then there is an invertible 7 x n
matrix C such that C"'AC =J , where J is a Jordan matrix with the
eigenvalues of A as diagonal elements. The matrix J is called the Jordan
canonical form of J. The command

JordanDecomposition[m]

yields a list of matrices {s,j} such that m = s.j.Inverse[s] and j is the Jordan
canonical form of the matrix m.

For a given matrix A, the unique monic polynomial g of least degree
satisfying g (A) = 0 is called the minimal polynomial of A. Let p denote
the characteristic polynomial of A. Because p(A) =0, it follows that g
divides p. We can use the Jordan canonical form of a matrix to determine
its minimal polynomial.

29 -9
Find the Jordan canonical form, J,, of A = (0 8 —6).
09 -7

After defining matrixa, we use JordanDecomposition to find the Jordan canonical
form of a and name the resulting output ja.

matrixa = {{2, 9, -9}, {0, 8, -6},{0,9, -7}};

ja = JordanDecomposition[matrixa]

{{{8,0,1},{2,1,0},{3,1,0}},
{{-1,0,0},{0,2,0},{0,0,2}}}

The Jordan matrix corresponds to the second element of ja extracted with ja[[2]]
and displayed in MatrixForm.

ia[[2]]//MatrixForm

-100
020
002

We also verify that the matrices ja[[1]] and ja[[2]] satisfy
matrixa = ja[[1]].ja[[2]].Inverse[ja[[1]]].

jall[1]1.jal[2]].Inverse[ja[[1]]]
{{2,9,-9},{0,8, -6},{0,9, - 7}}

Next, we use CharacteristicPolynomial to find the characteristic polynomial of
matrixa and then verify that matrixa satisfies its characteristic polynomial.

p = CharacteristicPolynomial[matrixa, x]
-4 43 -x8
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—4ldentityMatrix[3] + 3MatrixPower[matrixa, 2] -
MatrixPower[matrixa, 3]
{{0,0,0},{0,0,0},{0,0,0}}

From the Jordan form, we see that the minimal polynomial of A is (x+ 1D(x — 2).
We define the minimal polynomial to be g and then verify that matrixa satisfies its
minimal polynomial.

q = Expand[(x + 1)(x-2)]
—2-x+x2

-2 IdentityMatrix[3] - matrixa + MatrixPower[matrixa, 2]
{{0,0,0},{0,0,0},{0,0,0}}

As expected, q divides p.

Cancel[p/q]
2-X
3 8 6 -1
-3 2 0 3 ) . - .
If A= 3 -3 -1 -3 | find the characteristic and minimal polynomials of A.
4 8 6 -2

As in the previous example, we first define matrixa and then use
JordanDecomposition to find the Jordan canonical form of A.

matrixa = {{31 8s 6! _1}!{_3! 2! 0! 3}! {3! _3! _1! _3}!
{4, 8, 6, - 2}}; ja = JordanDecomposition[matrixa]
{{{3,-1,1,0},{-1,-1,0, 1},
{0,2,0, —%}, {4,0,1,0}},
{{-1,0,0,0},{0, -1,0,0},{0,0,2,1},{0,0,0,2} }}

The Jordan canonical form of A is the second element of ja, extracted with ja[[2]]
and displayed in MatrixForm.

ja[[2])//MatrixForm
-1 000
0-100
0O 021
0O 002

From this result, we see that the minimal polynomial of A is (x+ Dex — 2)%
We define q to be the minimal polynomial of A and then verify that matrixa
satisfies q.
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g = Expand[(x-2)2(x + 1)]
4-32 +x3

4 ldentityMatrix[4] - 3MatrixPower[matrixa, 2] +
MatrixPower[matrixa, 3]
{{0,0,0,0},{0,0,0,0}, {0,0,0,0},{0,0,0,0} }

The characteristic polynomial is obtained next and named p. As expected, q divides
p, verified with Cancel.

p = CharacteristicPolynomial[matrixa, x]
4+ 4x-3x%-2x3 + x*

Cancel[p/q]
1+X

5.3.6 The QR Method

The conjugate transpose (or Hermitian adjoint matrix) of the m x n
complex matrix A which is denoted by A" is the transpose of the complex
conjugate of A. Symbolically, we have A* = (A)’. A complex matrix A is
unitary if A" = A", Given a matrix A, there is a unitary matrix Q and an
upper triangular matrix R such that A = QR. The product matrix QR is
called the QR factorization of A. The command

QRDecomposition[N[m]]

determines the QR decomposition of the matrix m by returning the list
{a,r}, where q is an orthogonal matrix, r is an upper triangular matrix, and
m=Transpose[q].r.

4 -1 1
Example 5.3.9 Find the QR factorization of the matrix A = (—1 4 1).
1 14

Solution We define matrixa and then use QRDecomposition to find the QR decomposition
of matrixa, naming the resulting output grm.

matrixa = {{4, -1,1},{-1,4,1},{1,1,4}};
qrm = QRDecomposition[N[matrixal]]
{{{-0.942809, 0.235702, —0.235702},
{-0.142134, -0.92387, —-0.355335},
{-0.301511, -0.301511,0.904534} },
{{-4.24264,1.64992, —1.64992},
{0., —3.90868, —2.48734},{0.,0.,3.01511}}}

The first matrix in grm is extracted with grm[[1]] and the second with grm[[2]].



Example 5.3.10

5.3 Selected Topics from Linear Algebra

qrm[[1]]//MatrixForm

-0.942809 0.235702 -0.235702
-0.142134 -0.92387 -0.355335
-0.301511 -0.301511 0.904534

qrm[[2]]//MatrixForm
—4.24264 1.64992 -1.64992
0. —3.90868 -2.48734
0. 0. 3.01511

We verify that the results returned are the QR decomposition of A.

Transpose[qrm[[1]]].qrm[[2]]//MatrixForm
4. -1, 1.
-1. 4. 1.
1. 1. 4.

One of the most efficient and most widely used methods for numerically
calculating the eigenvalues of a matrix is the QR method. Given a matrix A,
there is a Hermitian matrix Q and an upper triangular matrix R such that
A = QR. If we define a sequence of matrices A, = A, factored as A, =
QR; A, =RQ,, factored as A, = R,Q,; A; = R,Q,, factored as A, =
R;Qj;; and in general, A, =R,,,Q,,,, k=1, 2, ..., then the sequence
{A,} converges to a triangular matrix with the eigenvalues of A along the
diagonal or to a nearly triangular matrix from which the eigenvalues of A
can be calculated rather easily.

4 -1 1
Consider the 3 x 3 matrix A = (—1 4 1). Approximate the eigenvalues of A
1 1 4

with the QR method.

Solution We define the sequence a and gr recursively. We define a using the form

aln_] := a[n] = ... and gr using the form qgr[n_] := gr[n] = ... so that Mathe-
matica “remembers” the values of a and gr computed, and thus Mathematica
avoids recomputing values previously computed. This is of particular advantage
when computing a[n] and gr[n] for large values of .

matrixa = {4, -1,1},{-1,4,1},{1,1,4}};
a[1] = N[matrixa];
qr[1] = QRDecomposition[a[1]];

a[n_] := a[n] = qr[n-1][[2]]. Transpose[qr[n - 1][[1]]];
qr[n-] := qr[n] = QRDecomposition[a[n]];
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We illustrate a[n] and gr[n] by computing qr[9] and a[10]. Note that computing
a[10] requires the computation of gr[9]. From the results, we suspect that the
eigenvalues of A are 5 and 2.

qr[9];
a[10]//MatrixForm
5. —1.7853841942690367** -7 —0.000556091
—1.7853841949997794™*" -7 5. —-0.000963178
—0.000556091 —0.000963178 2.

Next, we compute a[n] for n =5, 10, and 15, displaying the result in TableForm.
We obtain further evidence that the eigenvalues of A are 5 and 2.

Table[a[n]//MatrixForm, {n, 5, 15, 5}]//TableForm
4.99902 -0.001701 0.0542614
-0.001701 499706 0.0939219
0.0542614 0.0939219 2.00393

5. -1.7853841942690367™*" — 7 —0.000556091
—-1.7853841949997794" — 7 5. —-0.000963178
—-0.000556091 —-0.000963178 2.

5. -1.872117829091164 " - 11 5.694375936943897*" -6
-1.8721251221839952"" — 11 5. 9.862948440894718*" -6
5.69437593740387" " -6 9.862948440910032™*" -6 2.

We verify that the eigenvalues of A are indeed 5 and 2 with Eigenvalues.

Eigenvalues[matrixa]
{5,5,2}

54 MAXIMA AND MINIMA USING LINEAR PROGRAMMING

54.1 The Standard Form of a Linear Programming
Problem

We call the linear programming problem of the following form the stan-
dard form of the linear programming problem:

Minimize Z = ¢,x; + X, ++++ + €, X,
\ J

X, subject to the restrictions

~
function

apx, +a;px, +---+a,x, <b
Ay X) + dpXs + 0+ dy, X, < b,
5.2

Ay Xy + Xy + 000t dy, X, < bm

and x; >20,x,2>0,...,x, > 0.

y ANy =



Example 5.4.1

Solution

5.4 Maxima and Minima Using Linear Programming

The command

Minimize[{function, inequalities}, {variables}]
solves the standard form of the linear programming problem. Similarly, the
command

Maximize[{function, inequalities}, {variables}]

solves the linear programming problem: Maximize Z = ¢;x; + ¢,x, + -+ C,X,,,
o J/

~~
function

subject to the restrictions

ax, +ap;px, +--+a;x, <b;

n =

Ay Xy + Ay, + -+ ayx, < b,

A1 Xy + AppXy + 00+ A, Xy, < bm

and x; > 0,x, >0,...,x, > 0.

Maximize Z (x;,2,,x;) = 4x; — 3x, + 2x; subject to the constraints 3x; — 5x, +
2x; <600, x; — X, +2x; < 10, x; +x, —x; < 20, and x;, x,, x; all nonnegative.

In order to solve a linear programming problem with Mathematica, the variables
{x1,x2,x3} and objective function z[x1,x2,x3] are first defined. In an effort to limit
the amount of typing required to complete the problem, the set of inequalities is
assigned the name ineqgs while the set of variables is called vars. The symbol
“<=", obtained by typing the “<” key and then the “=" key, represents “less than
or equal to” and is used in inegs. Hence, the maximization problem is solved with
the command

Maximize[{z[x1, x2, x3], ineqs}, vars].

Clear[x1, x2, x3, z, ineqgs, vars]

vars = {x1,x2, x3};

z[x1-,x2_, x3_] = 4x1-3x2 + 2x3;

inegs = {3x1-5x2 + x3 <60, x1-x2 + 2x3 <10, x1 + x2-x3 < 20,
x1>0,x2>0,x3 >0}

Maximize[{z[x1, x2, x3], ineqgs}, vars]

{45, {X1 — 15,x2 — 5,x3 — O}}

The solution gives the maximum value of z subject to the given constraints as well
as the values of x1, x2, and x3 that maximize z. Thus, we see that the maximum
value of Z is 45 if x; = 15, x, =5, and x; = 0.
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Example 5.4.2

Solution

Example 5.4.3

Solution

We demonstrate the use of Minimize in the following example.

Minimize Z(x,y,2) = 4x — 3y + 2z subject to the constraints 3x — 5y +z < 60,
X—-y+22<10, x+y -2z < 20, and x, y, z all nonnegative.

After clearing all previously used names of functions and variable values, the vari-
ables, objective function, and set of constraints for this problem are defined and
entered as they were in the first example. By using Minimize, the minimum value
of the objective function is obtained as well as the variable values that give this
minimum.

Clear[x1, x2, x3, z, inegs, vars]

vars = {x1,x2, x3};

z[x1-,x2_, x3_] = 4x1-3x2 + 2x3;

ineqs = {3x1-5x2 + x3 <60,x1-x2 + 2x3 <10, x1 + x2-x3 < 20,
x1>0,x2>0,x3 >0}

Minimize[{z[x1, x2, x3], ineqgs}, vars]

{-90, {x1 — 0,x2 — 50,x3 — 30}}

We conclude that the minimum value is =90 and occurs if x;, =0, x, =50, and
x3 = 30.

5.4.72 The Dual Problem

Given the standard form of the linear programming problem in equations
(5.4.1), the dual problem is as follows: “Maximize Y = ZZI by, subject
to the constraints Zzl agy; < ¢ forj=1,2,...,nandy; >0 fori=1, 2,
.., m.” Similarly, for the problem, “Maximize Z= Y ¢;x; subject to the
constraints 2;1:1 agx; <b;fori=1,2,...,mand x; 20 forj=1, 2, ...,
n,” the dual problem is as follows: “Minimize Y= )" by, subject to the
constraints ZZI agy; 2 ¢ forj=1,2,...,nand y, >0fori=1,2,...,m.”

Maximize Z = 6x + 8y subject to the constraints 5x+ 2y <20, x+2y <10, x > 0,
and y > 0. State the dual problem and find its solution.

First, the original (or primal) problem is solved. The objective function for this
problem is represented by zx. Finally, the set of inequalities for the primal is defined
to be inegsx. Using the command

Maximize[{zx, ineqgsx}, {x[1], x[2]}]
the maximum value of zx is found to be 45.

Clear[zx, zy, x, y, valsx, valsy, ineqsx, ineqsy]
zx = 6x[1] + 8x[2];
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ineqgsx = {5x[1] + 2x[2] < 20, x[1] + 2x[2] < 10, x[1] >0,
x[2] = 0};
Maximize[{zx, ineqgsx}, {x[1], x[2]}]

{45, {x[1] — 3.x2] — 2}}

Because in this problem we have ¢, =6, ¢, =8, b, =20, and b, = 10, the dual
problem is as follows: Minimize Z = 20y, + 10y, subject to the constraints 5y, +
Y, 26, 2y, +2y,>8, y, 20, and y, > 0. The dual is solved in a similar manner
by defining the objective function zy and the collection of inequalities inegsy. The
minimum value obtained by zy subject to the constraints inegsy is 45, which agrees
with the result of the primal and is found with

Minimize[{zy, ineqsy}, {y[1], y[2]}]

zy = 20y[1] + 10y[2];

ineqsy = {5y[1] + y[2] > 6, 2y[1] + 2y[2] > 8,
y[1] 2 0,y[2] > O}

Minimize[{zy, ineqgsy}, {y[1], Y[2]}]

{45, {y[1] — 3.vy[2] — 5}}

Of course, linear programming models can involve numerous variables.
Consider the following: Given the standard form linear programming prob-

X1 b,
X3 b,
lem in equations (5.4.1), let x=| " |, b=| " | c=(¢ ¢, = ¢,),
xn bm
ap adyp Gy
) dy Gy " Ay
and A denote the m x n matrix A = . . . . Then the stan-
A1 Az " Ay

dard form of the linear programming problem is equivalent to finding the
vector x that maximizes Z = c-x subject to the restrictions Ax > b and
x,20,x,20,...,x,>0. The dual problem is “Minimize ¥ =y - b where
y= (yl Yy e ym) subject to the restrictions yA < c (componentwise) and
220,9,20,...,9, 20"

The command

LinearProgramming|c, A, b]

finds the vector x that minimizes the quantity Z=c.x subject to the restric-
tions A.x>=b and x>=0. LinearProgramming does not yield the minimum
value of Z as did Minimize and Maximize, and the value must be determined
from the resulting vector.
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Example 5.4.4 Maximize Z=5x, — 7x, + 7x; + 5x; + 6x5 subject to the constraints 2x; + 3ux, +

Solution

30y + 2, + 2x5 > 10, 6x, + 5x, + 4x5 + X, + 4x5 > 30, —3x, — 2x, — 3x; — 4x; > 5,
-x, —x, —x; = —10, and x, > 0 for i =1, 2, 3, 4, and 5. State the dual problem.
What is its solution?

10
Xy 30
For this problem, x=|x], b= s e (5 -7 75 6), and
" ~10
Xs
2 3 3 22
6 5 4 14 ! ,
A = 3 -2 -3 40| First, the vectors ¢ and b are entered and then matrix

-1 -1 0-10
A is entered and named matrixa.

Clear[matrixa, x, y, ¢, b]

c={5,-7,7,5,6}b ={10,30, -5, -10};

matrixa = {2, 3, 3,2, 2},{6,5,4, 1,4},
{-3,-2,-3,-4,0},{-1,-1,0,-1,0}};

Next, we use Array[x,5] to create the list of five elements {x[1], x[2], ..., x[56]} named
xvec. The command Table[x[i], {i,1,5}] returns the same list. These variables must
be defined before attempting to solve this linear programming problem.

xvec = Array[x, 5]
{x[11, x(2], x[3], x[4], x[5]}

After entering the objective function coefficients with the vector ¢, the matrix of
coefficients from the inequalities with matrixa, and the right-hand side values found
in b, the problem is solved with

LinearProgramming[c, matrixa, b]

The solution is called xvec. Hence, the maximum value of the objective function
is obtained by evaluating the objective function at the variable values that yield a
maximum. Because these values are found in xvec, the maximum is determined
with the dot product of the vector ¢ and the vector xvec. (Recall that this product
is entered as c.xvec.) This value is found to be 35/4.

xvec = LinearProgramming[c, matrixa, b]
{0,%,0,0,%}

c.Xxvec

35
P

Because the dual of the problem is “Minimize the number Y=y.b subject to the

restrictions y.A<c and y>0,” we use Mathematica to calculate y.b and y.A. A list
of the dual variables {y[1],y[2],y[3],y[4]} is created with Array[y,4]. This list includes
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four elements because there are four constraints in the original problem. The objec-
tive function of the dual problem is therefore found with yvec.b, and the left-hand
sides of the set of inequalities are given with yvec.matrixa.

yvec = Arrayl[y, 4]

{v[1] vl2], i3], yI41}

yvec.b

10y[1] + 30y[2] — 5y[3] — 10y[4]
yvec.matrixa

{2y[1] + 6y[2] — 3y[3] — y[4],
3y[1] +5y[2] — 2y[3] — y[4],

3y[1] + 4y[2] — 3y[3],
2y[1] +vy[2] — 4y[3] — y[4],
2y[1] + 4y[2]}

Hence, we may state the dual problem as follows:

Minimize Y = 10y, + 30y, — 5y, — 10y, subject to the constraints

2y, +6y, = 3y; —y; <5
W +5, =23~y < -7
3y, +4y, =3y, <7

2y 4y, — 43—y <5
2y, +4y, <6

and y; >0 fori=1, 2, 3, and 4.

Application: A Transportation Problem

A certain company has two factories, F1 and F2, each producing two prod-
ucts, P1 and P2, that are to be shipped to three distribution centers, D1,
D2, and D3. The following table illustrates the cost associated with ship-
ping each product from the factory to the distribution center, the minimum
number of each product each distribution center needs, and the maximum
output of each factory. How much of each product should be shipped
from each plant to each distribution center to minimize the total shipping
costs?

Let x, denote the number of units of P1 shipped from F1 to D1; x, the number
of units of P2 shipped from F1 to D1; x, the number of units of P1 shipped from
F1 to D2; x4 the number of units of P2 shipped from F1 to D2; x5 the number
of units of P1 shipped from F1 to DS; x, the number of units of P2 shipped from
F1 to D3; x, the number of units of P1 shipped from F2 to D1; xg the number
of units of P2 shipped from F2 to D1; x, the number of units of P1 shipped from
F2 to D2; x,, the number of units of P2 shipped from F2 to D2; x,, the number
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F1/P1 F1/P2 F2/P1 F2/P2 Minimum

D1/P1 $0.75 $0.80 500
D1/P2 $0.50 $0.40 400
D2/P1 $1.00 $0.90 300
D2/P2 $0.75 $1.20 500
D3/P1 $0.90 $0.85 700
D3/P2 $0.80 $0.95 300
Maximum output 1000 400 800 900

of units of P1 shipped from F2 to D3; and x;, the number of units of P2 shipped
from F2 to D3.
Then, it is necessary to minimize the number

Z=.75x, +.5%, + x5 +.75x, + .9x5 + .8x5 + .8x

+ .4xg + .9xy + 1.2, + .85x, +.95x,,

subject to the constraints x; + x5 + x5 < 1000, x, +x; +x, < 400, X, + Xy +x;; <
800, xg+xjy+x, <900, x; +x, =500, x5 +x5 =500, x5+, =700, x,+x5 >
400, x; +x;, =500, x4+x;, > 300, and x; nonnegative for i=1, 2, ..., 12. In
order to solve this linear programming problem, the objective function which com-
putes the total cost, the 12 variables, and the set of inequalities must be entered.
The coefficients of the objective function are given in the vector c. Using the com-
mand Array[x,12] illustrated in the previous example to define the list of 12 variables
{x[1],x[2], ..., x[12]}, the objective function is given by the product z=xvec.c, where
xvec is the name assigned to the list of variables.

Clear[xvec, z, constraints, vars, c]

¢ ={0.75,0.5,1,0.75,0.9,0.8,0.8,0.4,0.9, 1.2,
0.85, 0.95};

xvec = Array[x, 12]

{x[11, x[2], x[3], x[4], x[5], x[6],
x[7], x[8], x[9], x[10], x[11], x[12]}

Z = Xvec.c
0.75x[1] + 0.5x[2] + x[3] + 0.75x[4] +

0.9x[5] + 0.8x[6] + 0.8x[7] + 0.4x[8] +
0.9x[9] + 1.2x[10] + 0.85x[11] + 0.95x[12]
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The set of constraints are then entered and named constraints for easier use.
Therefore, the minimum cost and the value of each variable that yields this minimum
cost are found with the command

Minimize[{z,constraints},xvec]

constraints = {x[1] + x[3] + x[5] < 1000, x[2] + x[4] + x[6] < 400,
x[7] + x[9] + x[11] < 800, x[8] + x[10] + x[12] < 900,
x[1] + x[7] > 500, x[3] + x[9] = 300, x[5] + x[11] > 700,
x[2] + x[8] > 400, x[4] + x[10] > 500, x[6] + x[12] > 300,
x[1] = 0,x[2] > 0, x[3] = O, x[4] = O,
x[5] = 0, x[6] > 0, x[7] = O, x[8] > O,
x[9] >0, x[10] > 0, x[11] > 0, x[12] > O};
values = Minimize[{z, constraints}, xvec]
{2115., {x[1] — 500., x[2] — 0., x[3] — 0., x[4] — 400.,
x[5] — 200., x[6] — 0., x[7] — 0., x[8] — 400.,
x[9] — 300., x[10] — 100.,x[11] — 500.,x[12] — 300.}}

Notice that values is a list consisting of two elements: the minimum
value of the cost function, 2115, and the list of the variable values
{x[1]->500, x[2]->0, ...}. Hence, the minimum cost is obtained with the command
values[[1]] and the list of variable values that yield the minimum cost is extracted
with values[[2]].

values[[1]]
2115.
values[[2]]
{x[1] — 500.,x[2] — 0., x[3] — 0., x[4] — 400.,
x[5] — 200., x[6] — 0., x[7] — 0., x[8] — 400.,
x[9] — 300., x[10] — 100.,x[11] — 500., x[12] — 300.}

Using these extraction techniques, the number of units produced by each factory
can be computed. Because x; denotes the number of units of P1 shipped from
F1 to D1, x; the number of units of P1 shipped from F1 to D2, and x5 the number
of units of P1 shipped from F1 to D3, the total number of units of Product 1
produced by Factory 1 is given by the command x[1]+ x[3] + x[5] /. values[[2]],
which evaluates this sum at the values of x[1], x[3], and x[5] given in the list
values|[[2]].

x[1] + x[3] + x[5])/.values[[2]]
700.

Also, the number of units of Products 1 and 2 received by each distribution center
can be computed. The command x[3] + x[9] //values|[[2]] gives the total amount of
P1 received at D2 because x[3]=amount of P1 received by D2 from F1 and x[9] =
amount of P1 received by D2 from F2. Notice that this amount is the minimum
number of units (300) of P1 requested by D2.
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x[3] + x[9]/.values|[[2]]
300.

The number of units of each product that each factory produces can be calculated,
and the amount of P1 and P2 received at each distribution center is calculated in

a similar manner.

{x[1] + x[3] + x[5], x[2] + x[4] + x[6], x[7] + x[9] + x[11],
x[8] + x[10] + x[12], x[1] + x[7], x[3] + x[9],

x[5] + x[11], x[2] + x[8],

x[4] + x[10], x[6] + x[12]}/.values[[2]]1//

TableForm
700.
400.
800.
800.
500.
300.
700.
400.
500.
300.

From these results, we see that F1 produces 700 units of P1, F1 produces 400
units of P2, F2 produces 800 units of P1, F2 produces 800 units of P2, and
each distribution center receives exactly the minimum number of each product it

requests.

5.5 SELECTED TOPICS FROM VECTOR CALCULUS

5.5.1 Vector-Valued Functions

Basic operations on
two- and
three-dimensional
vectors are discussed

in Section 5.1.4. Plane curves:

Space curves:
Parametric surfaces:
Vector fields in the plane:

Vector fields in space:

r(® = xMi + y®j
r(®) = xMi+y®j + z(Ok
r(s, ) = x(s, Di + y(s, Dj + z(s, Dk
F(x,p) = PCx, )i+ Q(x,))j
Fx,y,2) = P(x,y, i

+ O(x, p,2)j + R(x,y, 2k

We now turn our attention to vector-valued functions. In particular, we
consider vector-valued functions of the following forms.

5.3
6.9
5.5
(5.6)

G.7D



In 2-space, i=<1,0 >
and j=<0,1>. In
3-space, i =<1,0,0 >,
j=<0,1,0>, and
k=<0,0,1>.

It is a good exercise
to show that the
curvature of a circle
of radius r is 1/r.

Example 5.5.1

Solution

5.5 Selected Topics from Vector Calculus

For the vector-valued functions (5.3) and (5.4), differentiation and inte-
gration are carried out term-by-term, provided that all the terms are
differentiable and integrable. Suppose that C is a smooth curve defined
by r(®,a <t<b.

U . U t
1. If r'(®) # 0, the unit tangent vector, T(?), is T®) = ”1" El;”
rl
2. If T'® #0, the principal unit normal vector, N(), is N@® =
T'®
IT" @l

3. The arc length function, s@), is s@®) = I; It @)|| du. In particular,

the length of C on the interval [a, ] is j: I’ @) at.
4. The curvature, k, of C is

_T®l _a®m-N@ _[f'oxx"o|

ol volp [l ol
where v(®) = r'(®) and a@®) =" (®.

)

(Folium of Descartes). Consider the folium of Descartes,
3at . 3ar .

1 J
1+8 1+8

for t# -1, if a=1. (@) Find r'®, r"®, and [r@®dr. (0) Find T and N@.
(c) Find the curvature, k. (d) Find the length of the loop of the folium.

r(®) =

(a) After defining r@),

rit_]1={3at/(1 +t"3),3at"2/(1 +t" 3)};
a=1;

we compute r'(® and [r@dr with ', "' and Integrate, respectively. We name r'(»)
dr, r'® dr2, and [r@®dr ir.

dr = Simplify[r'[t]]
dr2 = Simplify[r’[t]]
ir = Integrate[r[t], t]

{3—6t3 _3t(—2+t3)}
(87" (1+1)?
182(-2+1%) 6(1-713 +16)
(1) 7 (+w)

r - 1+2t
{3 <%—%Log[1 +1] + tLog [1 —t+t2]>

Log [1+1°] }
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(b) Mathematica does not automatically make assumptions regarding the value of
¢, so it does not algebraically simplify ||r'@®)|| as we might typically do unless we
use PowerExpand

PowerExpand
[Sqrt[x2]] returns x. nr = PowerExpand[Sqrt[dr.dr]//Simplify]
3114412 - 43 — 4154416418
(1413)

The unit tangent vector, T(®), is formed in ut.

ut = dr/nr//Simplify

1-2t3
V1442 45 a5 4 416 418

_ t(-2+1%)
V1442 - 43— 415 1 416 + 18
We perform the same steps to compute the unit normal vector, N(). In particular,
note that dutb = || T'@®)||.

dut = D[ut, t]//Simplify
at(-2-8% +1%)
(14412483 - 415 + 416 4 18)%%
2-6t0 —4t°
(1+412 - 483 — 415 + 416 +18)>"?
duta = dut . dut//Simplify

a1+88)°
(14412 - 480 — 4t54410418)°

dutb = PowerExpand[Sqrt[duta]]
2(1+8)°
T+aZ — 48 — 454416488

nt = dut/dutb//Simplify
{ t(-2+t%)
V14412~ 413 — 454416418
1-2t3 }
V 1+42 — 413 - 4154416418

T
(c) We use the formula k = |||| ((t))|||| to determine the curvature in curvature.
rl
curvature = Simplify[dutb/nr]

2(1+8)"
3(1+412 - 4t3 - 415+416+18)

3/2
We graphically illustrate the unit tangent and normal vectors at r(1) = (3/2, 3/2).
First, we compute the unit tangent and normal vectors if ¢t = 1 using /. (ReplaceAll).

uti = ut/t -1
nt1 =nt/t->1
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{-# %)
V2' V2
(%)
V2l V2
We then compute the curvature if =1 in smallk. The center of the osculating
circle at r(1) is found in x0 and yO0.

sl

The radius of the

osculating circle is smallk = curvature/.t — 1
1/k; the position N[smallk]
Vect?r of the center is x0 = (r[t] + 1/ curvaturent/.t — 1)[[1]]
r+-N yO0 = (r[t] + 1/ curvaturent/.t — 1)[[2]]
K 8v2
3
3.77124

Graphics[Circle[{x0, y0}, 21
r]] is a two-dimensional ;?

graphics object that
represents a circle of
radius » centered at
the point (x,,y,). Use
Show to display the
graph. p1 = ParametricPlot[r[t], {t, - 100, 100},

PlotRange — {{-2, 3}, {-2, 3}}, AspectRatio — 1];

-
ol

We now graph r( with ParametricPlot. The unit tangent and normal vectors at
r(1) are graphed with Arrow in a1 and a2. The osculating circle at r(1) is graphed
with Circle in c1. All four graphs are displayed together with Show in Figure 5.7.

_2 L
FIGURE 5.7
The folium with an osculating circle
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p2 = Graphics[{Circle[{x0, y0}, 1/smallk],
Arrow[{r[1], r[1] + ut1}], Arrow[{r[1], r[1] + nt1}]}];
Show[p1, p2]

(d) The loop is formed by graphing r() for ¢ > 0. Hence, the length of the loop is
given by the improper integral j;” [[®|| at, which we compute with Nintegrate.

Nintegrate[nr.{t,0,Infinity}]
4.91749

In the example, we computed the curvature at ¢ = 1. Of course, we could choose
other ¢ values. With Manipulate,

Manipulate[

rit_]={3t/(1 +t" 3),3t"2/(1 + t"3)};

dr = Simplify[r'[t]];

dr2 = Simplify[r"[t]];

ir = Integrate[r[t], t];

nr = PowerExpand[Sqrt[dr . dr]//Simplify];

ut = dr/nr//Simplify;

dut = D[ut, t]//Simplify;

duta = dut.dut//Simplify;

dutb = PowerExpand[Sqrt[duta]];

nt = dut/dutb//Simplify;

curvature = Simplify[dutb/nr];

utl = ut/.t - ty;

nt1 = nt/.t - to;

smallk = curvature/.t - tg;

x0 = (r[t] + 1/curvaturent/.t — to) [[1]];

y0 = (r[t] + 1/curvaturent/.t — t,) [[2]];

p1 = ParametricPlot[r[t], {t, - 10, 10},
PlotRange — {{-2, 3}, {-2, 3}}, AspectRatio — 1, PlotPoints — 200];

p2 = Graphics[{Circle[{x0, y0}, 1/smallk],
Arrow[{r[tc], r[to] + ut1}], Arrow[{r[t,], r[to] + nt1}1}];

Show[p1, p2], {{t,, 1}, -5, 10}]

we can see the osculating circle at various values of y, # —1. See Figure 5.8(a).
Of course, this particular choice of using the folium to illustrate the procedure
could be modified as well. With

Manipulate[

folium[t_] = {3t/(1 + t*3), 3t 2/(1 + t"3)};
cycloid[t _] = {1/(2Pi)(t - Sin[t]), (1 - Cos[t])/(2Pi)};
rose[t -] = {3/2Cos[2t]Cos][t], 3/2Cos[2t]Sin[t]};
squiggle[t -] = {Cos[t] - Sin[2t], Sin[2t] + Cos[51]};
cornu[t _] = {2.5FresnelC[t], 2.5FresnelS[t]};
lissajous[t _] = {2Cos][t], Sin[2t]};
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1y U r  folium

t 0

[}
1

FIGURE 5.8

(@) Using Manipulate to see the osculating circle at various values of ¢,. (b) The
osculating circle for various r(») and ¢,

evolute[t ] = {Cos[t]"3, 2Sin[t]3};
dr = Simplify[r'[t]];
dr2 = Simplify[r"[t]];
ir = Integrate[r[t], t];
nr = PowerExpand[Sqrt[dr . dr]//Simplify];
ut = dr/nr//Simplify;
dut = D[ut, t]//Simplify;
duta = dut . dut//Simplify;
dutb = PowerExpand[Sqrt[duta]];
nt = dut/dutb//Simplify;
curvature = Simplify[dutb/nr];
utl = ut/.t - t;
nt1 = nt/.t - to;
smallk = curvature/.t — tg;
x0 = (r[t] + 1/curvaturent/.t — t,) [[1]];
y0 = (r[t] + 1/curvaturent/.t — t;) [[2]];
p1 = ParametricPlot[r[t], {t, - 10, 10},
PlotRange — {{-3, 3}, {-3, 3}}, AspectRatio — 1, PlotPoints — 200];
p2 = Graphics[{Circle[{x0, y0}, 1/smallk],
Arrow [{r [to] , r [to] + ut1}], Arrow [{r [to], r [to] + nt1}]1}1;
Show[p1, p2], {{r, folium},
{folium, cycloid, rose, squiggle, cornu, lissajous, evolute}},
{{to, 3/2}, -5,10}]
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we allow not only ¢, but also r(#) to vary. Note that the resulting Manipulate object
is quite slow on all except the fastest computers. See Figure 5.8(b).

Recall that the gradient of z = f(x,)) is the vector-valued function f(x,») =
(f ., x, ). Similarly, we define the gradient of w = fix,y,2) to be

d
0,2 = ([0, 2, [,060,2), [.06,,2) = —1+—fJ+_fk 5.8

A vector field F is conservative if there is a function f, called a potential
function, satisfying w7f=F. In the special case that F(x,)) = P(x, i+ O, »)j,
F is conservative if and only if

JP _ 9Q
dy ~ ox’

The divergence of the vector field F(x, y,2) = P(x,y, i + Q(x, y, 2)j + R(x,y, 2k is
the scalar field
. P 99
F=v-F=— .
div v P P + ot 6.9
The Div command, which is contained in the VectorAnalysis package, can be

used to find the divergence of a vector field:
Div[{P(x,y,2),Q(x,y,2),R(x,y,z)},Cartesian[x,y,z]]

computes the divergence of F(x,y,2) = P(x,p,2)i+ Q(x,y,2)j + R(x,y,2k. The
laplacian of the scalar field w = f(x, y, 2) is defined to be

div(vf) = v (/) =v2f=a—+—+—=Af. (5.10)

In the same way that Div computes the divergence of a vector field, Laplacian,
which is also contained in the VectorAnalysis package, computes the laplacian of
a scalar field.

The curl of the vector field F(x,y,2) = P(x,y,2)i + Q(x,y,2)j + R(x,y, 2k is

curlFex,p,2) = v x F(x,y,2)

i j Kk
_ J A d
- Ix dy Jz

P(x,y,2) Ox,7,2) R(x,y,2)
= <%—@> <%—£>j+<@—£>k. (5.11D)
dy oz Jax  Jz ax oy

If F(x,p,2) = P(x,y,2Di+ Q(x,p,2)j + R(x,y,2)k, F is conservative if and only if
curl F(x, y,2) = 0, in which case F is said to be irrotational.
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Example 5.5.2 Determine if
F(x,p) = (1 - 2x2)ye"x2"y2i + (1 - 2y2) xe"xz"yzj
is conservative. If F is conservative, find a potential function for F'.

Solution We define P(x,y) = (1 - 2x%) ye™* 7" and Qex, y) = (1-2%) xe™ ™" Then we use
D and Simplify to see that P,(x,) = Q. (x, ). Hence, F is conservative.
pIx -,y -1 = (1-2x"2)y Exp[-x"2-y"2];
alx -,y -1 = (1-2y"2)x Exp[-x"2-y"2];
Simplify[D[p[x, y1, vl
Simplify[D[q[x, y], x]]
e (=1+2x%) (-1 +2y%)
e’ (=1+28) (-1 +2y)
We use Integrate to find f satisfying 7f = F.
i1 = Integrate[p[x, y], x] + g[y]
e 7 xy+glyl
Solve[D[i1, yl==qlx, y], 9'[v]]
{{g'vl — O}}

Therefore, g(») = C, where C is an arbitrary constant. Letting € =0 gives us the
following potential function.

=i1/.g[y]- >0
e’xzfyzxy
Remember that the vectors F are perpendicular to the level curves of f. To see

this, we normalize F in uv.

uv = {p[x, y]! q[x, y]}/
Sart[{p[x, y], Q[X, yl} . {p[x, y1, alx, yI}}//Simplify

"
\/ -2(x®4y )(y2+4x4y2+x2(1 - 8y2+4y%))
e~ X —V2( X — 2xy’ ) }

\/ e 2(242) (v2+4x%y2+x2(1-8y2+4y*))

We then graph several level curves of fin cp1 and cp2 with ContourPlot and sev-
eral vectors of uv with VectorFieldPlot, which is contained in the VectorFieldPlots
package, in fp. We show the graphs together with Show in Figure 5.9.

<<“VectorFieldPlots™”
cp1 = ContourPlot[f, {x, - £, 3},{y, - £, £}, Contours — 15,
ContourShading — False, PlotPoints — 60];
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1.5 1.5

1.0 1.0

0.5 0.5E\

0.0 0.0

-0.5 -0.5

-1.0 -1.0

—-1.5 1 1 ] 1 —-1.5 -X N ; =
-15-10 -05 00 05 1.0 15 -15-1.0 -05 00 05 1.0 15
FIGURE 5.9

Two different views illustrating that the vectors F are perpendicular to the level curves
of f

cp2 = ContourPlot[f, {x, - £, 3},{y, - 3, £}, Contours — 20,
PlotPoints — 60];

fp = VectorFieldPlot[uv, {x, - 3/2, 3/2},{y, —3/2, 3/2}];

Show[GraphicsRow[{Show][cp1, fp], Show[cp2, fp]}]]

Note that we can use GradientFieldPlot3D, which is contained in the
VectorFieldPlots package, to graph several vectors of yf. However, the vectors
are scaled and it can be difficult to see that the vectors are perpendicular to the
level curves of f. The advantage of proceeding this way is that by graphing unit
vectors, it is easier to see that the vectors are perpendicular to the level curves of
fin the resulting plot.

Example 5.5.3 (a) Show that

F(x,y,2) = -10x)%i + (32° — 10x°y) j + 9p2°k

is irrotational. (b) Find f satisfying 7/ = F. (c) Compute div F and v°f.

Solution (a) After defining F(x,y,2), we use Curl, which is contained in the VectorAnalysis

package, to see that curl F(x,y,2) = 0.

Needs[“VectorAnalysis™]
Clear[f, x,y, z]
fix_,y_,z_] = {-10xy"2,3z"3-10x" 2y, 9yz" 2}

{—10xy?, —10x°y + 32°, 9yz® }
Curl[f[x,y, z]]
{0,0,0}
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(b) We then use Integrate to find w = fix, y, 2) satisfying wf=F.

i1 = Integrate[f[x, y, zI[[1]], x] + 9y, z]
-5x%y? +gly, 2]

i2 = D[i1,y]
-10x%y + 9"y, 7]

Solve[i2==f[x, y, 2][[2]], g" "Ly, ]]
{{9"ly, 21 - 32°} }

i3 = Integrate[3z" 3, y] + h[z]
3yZ® + h[z]
i4 = i1/.gly, z] ->i3
—-5x%y? + 3yZ® + h[Z]
Solve[DIi4, z]==f[x, y, Z][[3]]]
{{n'[z] — 0}}
With b() = € and € =0, we have fix, y,2) = —5x°y" + 3p2°.

If = -5x%y? + 3yz°;

v/ is orthogonal to the level surfaces of f. To illustrate this, we use ContourPlot3D
to graph several level surfaces of w = fix,y,2) for —10 < x <10, —10 <y < 10,
and -10 < z < 10 in pf. We then use GradientFieldPlot3D, which is contained in
the VectorFieldPlots package, to graph several vectors in the gradient field of f
over the same domain in gradf. The two plots are shown together with Show in
Figure 5.10. In the plot, notice that the vectors appear to be perpendicular to the

surface.

pf1=ContourPlot3D][If ==-5, {x,-10,10}, {y,-10,10},
{z,-10,10}, PlotPoints — 40];
pf2=ContourPlot3D[If ==10,{x,-10,10}, {y,-10,10},
{z,-10,10}, PlotPoints — 40, Mesh — None,
ContourStyle — Directive[Red,Opacity[0.8],
Specularity[White,10]]];
pf3=ContourPlot3D[If==100, {x,-10,10}, {y,-10,10},
{z,-10,10}, Mesh — None,
ContourStyle — Directive[Red,Opacity[0.5]],
PlotPoints — 40];

pf4=ContourPlot3DIlIf, {x,-10,10}, {y,-10,10}, {z,-10,10},

PlotPoints — 50, Mesh — None,
ContourStyle — Directive[Purple,Opacity[0.3],
Specularity[White,30]]];
Needs[“VectorFieldPlots™”]
gf = GradientFieldPlot3DJ[If, {x, -10, 10}, {y, -10,10},
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FIGURE 5.10

vf is orthogonal to the level surfaces of f

{z, -10, 10}, PlotPoints — 15];
Show[GraphicsGrid[{{Show[pf1, gf], Show[pf2, gf]},
{Show[pf3, gf], Show[pf4, gfI}}l]

For (c), we take advantage of Div and Laplacian. As expected, the results are the
same.

5.5.2 Line Integrals

If F is continuous on the smooth curve C with parametrization r@), a <t < b, the
line integral of F on C is
b

J F.dr =J F-r'@adt. (5.12)
C

If F is conservative and C is piecewise smooth, line integrals can be evaluated
using the fundamental theorem of line integrals.

Theorem 19 (Fundamental Theorem of Line Integrals). If F is conservative
and the curve C defined by r(?), a <t < b is piecewise smootbh,

J F.dr=f@®)-f@@y, 5.13)
C

where F = yf.



Example 5.5.4 Find [ F-dr, where F(x,)) = (e —ye™ )i+ (e —xe”)j and C is defined by
r(®) = costi+InQt/m) j, mw/2 <t < 4.

Solution We see that F is conservative with D and find that fix,y) = xe™ +ye™ satisfies
v/ =F with Integrate.

We assume that the
symbol ¢ means to
evaluate the integral in
the positive (or
counterclockwise)
direction.

5.5 Selected Topics from Vector Calculus

fix -,y -1 ={Exp[-y] -y Exp[-x],Exp[-x]-x Exp[-yl};
r[t_] ={Cosl[t],Log[2t/Pi]};

DIf[x,y][[11].y}//Simplify

DIf[x,y1[[2]1],x]//Simplify

X _ e—y
- e*y

—-e”

_e’X

If = Integrate[f[x,y]1[[1]],x]
e Yx+e™*y

Hence, using (5.13),

. _ =1p=In8
LF~dr = (xe™ +ye x)];:o;:t: T e 8

xr[t ] = Coslt];
yr[t -] =Log[2t/Pi];
{xr[Pi/2], yr[Pi/2]}
{xr[4Pi], yr[4Pi]}
{0,0}

{1,Logl8]}

Simplify[lf/.{x->1, y—>Log[8]}]
N[%]

1 T Log(8]

8 e

0.889984

If C is a piecewise smooth simple closed curve and P(x,y) and Q(x,))
have continuous partial derivatives, Green’s theorem relates the line integral
. (PCx,p) dx + Qx,p) dy) to a double integral.

Theorem 1 (Green’s Theorem). Let C be a piecewise smooth simple closed
curve in the plane and R the region bounded by C. If P(x,y) and Q(x,)) bave
continuous partial derivatives on R,

_ 9 _p
<J>C (Px,p)dx + Qx, ) dy) = ”R < — (9y> dA.

385



386 CHAPTER 5 Matrices and Vectors

Example 5.5.5 Evaluate

4) (e = siny) dx + (cosx —e™) dy,
C

where C is the boundary of the region between y = x* and x = y”.

Solution After defining P(x,y) = e™ —siny and Q(x,y) = cosx —e™, we use Plot to deter-
mine the region R bounded by C in Figure 5.11.

pIx -,y -] = Exp[-x] -Sin[y];
qlx -,y -1= Cos[x] -Exp[-y];
Plot[{x"2, Sqrt[x]}, {x, 0, 1.1},
PlotStyle —>{GrayLevel[0],GrayLevel[.3]},
AspectRatio ->Automatic]

1.2

1.0

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8 1.0
FIGURE 5.11

y=x"andy=x 0<x<1
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Using equation (5.14),

_ _ aQ P
X g _e”? = e 22
i (7 = siny) dx + (cosx —e™) dy , L (&x &y) dA

= I (cosy — sinx) dA
JJIR
1 v
= J (cosy —sinx) dydx,

Jo Jx2

dqdp = Simplify[D[q[x, y], x] - D[p[x, y], y]]
Cosly]-Sin[x]

which we evaluate with Integrate.

Integrate[dqdp, {x, 0, 1}, {y, x"* 2, Sqrt[x]}]

N[%]
i <—4—\/27 (FresneIC [\/g] + FresnelS [\/g]) + 88in[1]>
0.151091

Notice that the result is given in terms of the FresnelS and FresnelC functions,
which are defined by

FresnelS[x] = J

0

sin (gtz) dt and FresnelC[x] =J
0

cos (gl‘z) dt.

A more meaningful approximation is obtained with N. We conclude that

L VA
J J (cosy—sinx) dydx = 0.151.

0 Ja2

5.5.3 Surface Integrals

Let S be the graph of z = f(x,y) (¥ = b(x,2), x = k(y,2)) and let R)‘y R

Xz Ryz) be
the projection of § onto the xy (xz, y2) plane. Then,

H gx,y,2)dS = g(x,y,foc,y))\/ [fie]* + [ +1da  (5.15
S JJIR

IRy,

= g(x,h(x,z),z)\/ [b.x, 2] + [, 2]  +1d4  (5.16)

Bz

=|| g(k2..2) \/[ky(y,z)]z + [k(3,2]  +1d4.  (5.17)

JR),

If § is defined parametrically by

r(s, b = x(s,Di + y(s, D + 2(5, Dk, (5,0 €R,
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the formula

JI g(x,y,2)dS = JJ g@(s, D) |ry x r|| dA, (5.18)
s R

where

_ox, dy, &zk ox, dy, dz

=— — d =—i+ + —
5= st T s s me L= T

)

is also useful.

Theorem 2 (The Divergence Theorem). Let Q be any domain with the prop-
erty that each line through any interior point of the domain cuts the boundary
in exactly two points, and such that the boundary S is a piecewise smooth closed,
oriented surface with unit normal n. If ¥ is a vector field that bas continuous
For our purposes, a  partial derivatives on Q, then
surface is oriented

if it has two distinct m v -Fav= J” divF dv = ” F-nds. (5.19)
sides. 0 0 s

In (5.19), HSF -ndS is called the outward flux of the vector field F across the
surface S. If § is a portion of the level curve g(x,y) = C for some g, then a unit
normal vector n may be taken to be either

vg ve
n=—— or n - .
vl | vll

If § is defined parametrically by

r(s, b = x(s,Di +y(s, Dj + 2(5, Dk, (5,0 €R,

r Xr
a unit normal vector to the surface is n = ﬁ and (5.19) becomes Hs F.-ndS=
I'S X I't

[[.F-(r; xr,) dA.

Example 5.5.6 Find the outward flux of the vector field
Fx,y,2) = (xz+xp2%) i+ (xy +2°p2) j+ (2 +20°2) k

through the surface of the cube cut from the first octant by the planes x =1, y =1,
and z=1.

Solution By the divergence theorem,

” F-ndA:”J v-Fav.
cube surface cube interior



Div is contained in
the VectorAnalysis
package. You do not
need to reload the
VectorAnalysis
package if you have
already loaded it
during your current
Mathematica session.

Example 5.5.7

Solution
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Hence, without the divergence theorem, calculating the outward flux would require
six separate integrals, corresponding to the six faces of the cube. After defining
F, we compute vy - F with Div.

Needs[“VectorAnalysis™]

fIx_,y—,z_] = {xz + xyz 2, xy + x"2yz, yz + xy 2z};
divf = Div[f[x, y, z], Cartesian[x, y, z]]

X+Y+ XY + 2+ X2+ Yz

The outward flux is then given by

1 ¢l el
”J v~FdV=J I J v -Fdzdydx =2,
cube interior 0Jo Jo

which we compute with Integrate.

Integrate[divf, {z, 0, 1},{y, 0, 1}, {x, 0, 1}]
2

Theorem 3 (Stokes’ Theorem). Let S be an oriented surface with finite sur-
face area, unit normal n, and boundary C. Let F be a continuous vector field
defined on S such that the components of ¥ bave continuous partial derivatives
at each nonboundary point of S. Then,

ﬂg F.dr = JJ curl F-nds. (5.20)
i )

N

In other words, the surface integral of the normal component of the curl of F
taken over S equals the line integral of the tangential component of the field taken
over C. In particular, if F = PCx,y, 21 + Q(x, 9, 2)j + R(x,y, 2k, then

J (PCx, y, D)dx + QCx, y, 2)dy + R(x,y, 2dz) = ” curl F-nds.
C N

Verify Stokes' theorem for the vector field
F,y,2)=(*-p)i+ ()* -2)j+ (x+2*)k

and § the portion of the paraboloid z = fix,3) = 9 — (& +%), z > 0.

After loading the VectorAnalysis package, we define F and f. The curl of F is
computed with Curl in curlF.

Needs[“VectorAnalysis™]

capfx—-,y-,z_] = {xA2—y, yA2—z, X+ zA2};
fix—,y-1=9-(x"2+y"2);

curlcapf = Curl[capf[x, y, z], Cartesian[x, y, z]]
{1,-1,1}
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In this example, R,
the projection of
f(x,y) onto the
xy-plane, is the region
bounded by the graph
of the circle

X+ y2 =9.

Next, we define the function h(x,y,2) = z — fix,)). A normal vector to the surface
is given by wh. A unit normal vector, n, is then given by n = Vo which is

. | v nll
computed in un.

hix-,y-,z_] =z-f[x,y]

normtosurf = Grad[h[x, y, z], Cartesian[x, y, z]]
—9+x2+y? 4z

{2x,2y,1}

un = Simplify[normtosurf/Sqrt[normtosurf . normtosurf]]

2x 2y 1
\/1 +4x2 +4y2 ' \/1 +4x2 +4y2 ' \/1 +4x2 +4y2
The dot product curl F-n is computed in g.
g = Simplify[curlcapf . un]
1+2x—2y
\/ 1+4x2 +4y2

Using the surface integral evaluation formula (5.15),

” curl F-nds = JJ g (x,0./x, ) \/[fx(x,y)]z + [, 0] + 1d4
N R

J?’ J T ( )\/[ ]2 [ ]2
x,9,f(x,9) x(x, )] /( , ) 1

-3 _\/9_7g .,y Sy f) X, dy dx

=9,

which we compute with Integrate.

tointegrate =

Simplify[(g/.z->f[x, y]) *

Sart[DIf[x, y], X" 2 + D[f[x, y],y1"2 + 11]
1+ 2x-2y

i1 = Integrate[tointegrate, {x, -3, 3},
{v, -Sart[9 x2], Sqrt[o-x"2]}]

91

To verify Stokes' theorem, we must compute the associated line integral. Notice
that the boundary of z = fix,1) = 9 — (" +3°), z =0, is the circle x” +»* = 9 with
parametrization x =3cost, y=3sint, z=0, 0 <t < 2w This parametrization is
substituted into F(x,y,2) and named pvf.

pvf = capf[3Cos]t], 3Sin[t], 0]

{9Cos][t]? - 3Sin|[t], 9Sin[t]?, 3Cos]t]}



See “When is a surface
not orientable?” by
Braselton, Abell, and
Braselton [5] for a
detailed discussion
regarding the
examples in this
section.
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To evaluate the line integral along the circle, we next define the parametrization of
the circle and calculate dr. The dot product of pvf and dr represents the integrand
of the line integral.

r[t -] = {3Cosl[t], 3Sin[t], 0};
dr=r[t

{-83Sin[t], 3Cost], 0}
tointegrate = pvf. dr;

As before with x and y, we instruct Mathematica to assume that ¢ is real, compute
the dot product of pvf and dr, and evaluate the line integral with Integrate.

Integrate[tointegrate, {t, 0, 2Pi}]
9

As expected, the result is 9.

554 A Note on Nonorientability

Suppose that § is the surface determined by

r(s, ) = x(s, DI+ (s, Dj + 2(s, Dk, (5,D €R

and let
x %
ryxr, _ ry xr, i 5.21)
[l > x| [l > x|
where
0. J 0. J I
rS——xl 2 +—k and rt——xi+—y —Zk,
0. 0. 0. at ot at

if ||r, x r,]| #0. If n is defined, n is orthogonal (or perpendicular) to S. We state
three familiar definitions of orientable.

B S is orientable if S has a unit normal vector field, n, that varies continuously
between any two points (xo, yo,zo) and (x], y],zl) on S. (See [7])

B § is orientable if S has a continuous unit normal vector field, n. (See [7]
and [19].)

B § js orientable if a unit vector n can be defined at every nonboundary
point of S in such a way that the normal vectors vary continuously over the
surface S. (See [14].)

A path is order preserving if our chosen orientation is preserved as we move
along the path.
Thus, a surface such as a torus is orientable.
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Example 5.5.8 (The Torus). Using the standard parametrization of the torus,
ParametricPlot3D to plot the torus if c=3 and @ =1 in Figure 5.12.

Also see

Example 2.3.18. Clear]r, c,a, x,y, z,r]
c=3;
a=1;

X[s -, t-] = (c + aCos[s])Cos|t];
y[s -, t-] = (c + aCos[s])Sin[t];
z[s —,t -] = aSin[s];
r[s -, t_] = {x[s, t], y[s, 1], 2[s, t]};
threedp1t = ParametricPlot3D[r[s, t], {s, - Pi, Pi},
{t, - Pi, Pi}, PlotPoints ->{30, 30}, AspectRatio ->1,
PlotRange ->{{-4,4},{-4,4},{-1,1}},
BoxRatios ->{4, 4, 1}, AxesLabel - >{*x”, “y”, “z”},

we use

ColorFunction — “FruitPunchColors”, PlotStyle — Opacity[.3]]

) J
To plot a normal vector field on the torus, we compute 3—r(s, D,
'S

rs = D[r[s, t], s]
{-Coslt]Sin[s], —Sin[s]Sin[t], Cos[s]}

FIGURE 5.12

A torus
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d
and —r(s, D).
&t( )

rt = D[r[s, t], 1]
{-(3 + Cosls])Sin[t], (3 + Cosls])Cosl[t], 0}

J J . )
The cross product ﬂ—r(s, b x 7 is formed in rscrossrt.
)

rscrossrt = Cross|rs, rt]//Simplify
{-Cosls](3 + Cosl[s])Coslt],
—Cosls](3 + Cos[s])Sin[t], — (3 + Cos[s])Sin[s]}
Sqrt[rscrossrt . rscrossrt]//FullSimplify
(3 + Cos[s])?

Using equation (5.24), we define un: Given s and ¢, un[s,t] returns a unit normal
to the torus.

Clear[un]
un[s_,t_] =
—rscrossrt/Sqrt[rscrossrt.
rscrossrt]//PowerExpand//FullSimplify

Cosls](3 + Cosls])Coslt]
(3 + Cosls])?

Cosls](3 + Cosl[s])Sin[t] (3 + Cos|s])Sin[s]
V/(@B+Coss)2 * /(3+Cosls)?

Map[PowerExpand, un[s, t]]
{Cosl[s]Coslt], Cos[s]Sin[t], Sin[s]}
ris, 1]
{(3 + Cos[s])Cosl[t],

(3 + Cosls])Sin[t], Sin[s]}
un[s, t]

Cosls](3 + Cosls])Coslt]
3+Cosls)2

Cos[s](3 + Cos[s])Sin[t] (3 + Cosls])Sin[s]
\/(B+Coss)2 ’ +/(3+Cosls)?

To plot the normal vector field on the torus, we take advantage of the command

ListVectorFieldPlot3D, which is contained in the VectorFieldPlots package. See
Figure 5.13.

<<“VectorFieldPlots™”
Clear[vecs]
vecs = Flatten[Table[{r[s, t], un[s, t]},
{s, - Pi, Pi, 2Pi/14}, {t, - Pi, Pi, 2Pi/29}], 1];
pp2 = ListVectorFieldPlot3D[vecs, VectorHeads — True]
Show[threedp1t, pp2, AspectRatio->1,
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FIGURE 5.13

Unit normal vector field on a torus

PlotRange ->{{- 5, 5}, {- 5, 5}, {-2, 2}},
BoxRatios ->{4, 4, 1}, AxesLabel ->{“x”, “y”, “z”}]

We use Show (illustrating the use of the ViewPoint option) together with
GraphicsArray to see the vector field on the torus together from various angles in
Figure 5.14. Regardless of the viewing angle, the figure looks the same; the torus
is orientable.

g1 = Show[threedp1t, pp2, AspectRatio->1,
PlotRange ->{{- 5, 5},{-5, 5},{-2, 2}},
BoxRatios ->{4, 4, 1}, AxesLabel ->{“x”, “y”, “z2”},
ViewPoint->{2.729, -0.000, 2.000}];
g2 = Show[threedp1t, pp2, AspectRatio->1,
PlotRange ->{{- 5, 5},{-5, 5},{-2, 2}},
BoxRatios ->{4, 4, 1}, AxesLabel ->{*x”, “y”, “z”},
ViewPoint->{1.365, —2.364, 2.000}];
g3 = Show[threedp1t, pp2, AspectRatio ->1,
PlotRange ->{{-5, 5}, {- 5, 5},{-2, 2}},
BoxRatios ->{4, 4, 1}, AxesLabel ->{*x”, “y”, “z”},
ViewPoint->{-1.365, —2.364, 2.000}];
g4 = Show[threedp1t, pp2, AspectRatio->1,
PlotRange ->{{- 5, 5}, {- 5, 5},{-2, 2}},
BoxRatios ->{4, 4, 1}, AxesLabel - >{*x”, “y”, “z”},
ViewPoint->{-2.729, 0.000, 2.000}];
g5 = Show[threedp1t, pp2, AspectRatio->1,
PlotRange ->{{-5, 5},{-5, 5}, {- 2, 2}},
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FIGURE 5.14

The torus is orientable
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BoxRatios ->{4, 4, 1}, AxesLabel - >{“x”, “y”, “z"},
ViewPoint->{-1.365, 2.364, 2.000}];
g6 = Show[threedp1t, pp2, AspectRatio->1,
PlotRange ->{{- 5, 5},{-5, 5},{-2, 2}},
BoxRatios ->{4, 4, 1}, AxesLabel ->{*x”, “y”, “z”},
ViewPoint->{1.365, 2.364, 2.000}];
Show[GraphicsGrid[{{g1, g2}, {g3, g4}, {g5, g6}}1]

If a 2-manifold, S, has an order reversing path (or not order preserving path),
S is nonorientable (or not orientable).

Determining whether a given surface § is orientable or not may be a difficult
problem.

Example 5.5.9 (The Mobius Strip). The Mobius strip is frequently cited as an example of a
nonorientable surface with boundary: It has one side and is physically easy to
construct by hand by half twisting and taping (or pasting) together the ends of a
piece of paper (for example, see [5], [7], [14], and [19]). A parametrization of the
Mobius strip is r(s, D) = x(s, i+ y(s, Dj + 2(s, Dk, =1 < s < 1, —7 < t < 7, wWhere

1 1
x= [c+scos <§t>] cost, y= [c+scos(§t>] sin#, and

z =ssin (%t), (5.22)

and we assume that ¢ > 1. In Figure 5.15, we graph the Mobius strip using ¢ = 3.

c=3;

X[s -, t-] = (c + sCos[t/2])Cos][t];

y[s -, t -] = (c + sCos[t/2])Sin[t];

z[s —,t -] = sSin[t/2];

r[s -, t_] = {x[s, t], y[s, 1], 2[s, t]};

threedp1 = ParametricPlot3DJr[s, t],{s, -1, 1},

{t, - Pi, Pi}, PlotPoints —->{30, 30},

AspectRatio ->1, PlotRange —
{{-4,4},{-4,4},{-1, 1}}, BoxRatios ->{4, 4, 1},
AxesLabel ->{*x”, “y”, “2”}, ColorFunction — “NeonColors”,
Mesh — False, PlotStyle — Opacity[.8]]

Although it is relatively easy to see in the plot that the Mobius strip has only one
side, the fact that a unit vector, n, normal to the Mobius strip at a point P reverses
its direction as n moves around the strip to P is not obvious to the novice.

With Mathematica, we compute |jr; x r,|| and n = =<t

lles x| *

rs = DJ[r[s,t],s]
{Cos [$] Coslt], Cos [$] Sin(t], Sin [3] }
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FIGURE 5.15

Parametric plot of equations (5.22) if ¢ =3

rt = D[r[s, 1], t]
{ - 2sCosft]Sin [§] — (3 +sCos [5]) Sin[t],
(8+5Cos [3]) Coslt] — $sSin [5] Sin(t],
38Cos [3]}
rscrossrt = Cross|rs, rt]//Simplify
{1 (—sCos [§] + 6Coslt]+
sCos [£])Sin [3] .
1 (—s —6Cos [5] — 2sCoslt]+
6Cos [$] +sCos[21])
Cos [5] (8+sCos [5])}
Sqrt[rscrossrt . rscrossrt]//FullSimplify
\/9 + %2 1+ 6sCos [L] + 1s2Cost]

Clear[un]

un[s_,t] =
rscrossrt/Sqrt[rscrossrt . rscrossrt]//FullSimplify
sSint] - Coslt](6Sin[ £ ] + sSint])

{ \/36 +8s2+24sCos[ § ] + 252 Coslt] ’
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3Cos| §]-8Cos[ ] +s(Coslt] + Sin[t]?)
\/86 +3s2 + 24sCos[ §] + 2s2Coslt] ’

s +6Cos[ § ] +sCoslt]
1/36+352 + 245Cos[ 1] + 262Coslt]

Consider the path € given by r(0,#, —7 < t < 7 that begins and ends at (-3, 0, 0).
On ¢, n(0,d is given by

un[0, t]
{-Coslt]Sin [3] . & (-3Cos [5] +3Cos [Z]) ., Cos [5] }
At t = -, n(0, -m = (1,0,0), whereas at ¢t =, n(0, m) = (-1,0,0).

r[0, - Pi]
[0, Pi]

{-3,0,0}
{+3,0,0}

As n moves along C from r(0, —m) to r(0,m), the orientation of n reverses, as
shown in Figure 5.16.

1 = Table[r[0, t], {t, - Pi, Pi, 2Pi/179}];
threedp2 = Show[Graphics3D[{Thickness[.02],
GrayLevell[.6], Line[l1]}], Axes —>Automatic,
PlotRange ->{{-4,4},{-4,4},{-1,1}},
BoxRatios ->{4, 4, 1}, AspectRatio ->1];
<< “VectorFieldPlots™;

FIGURE 5.16

Parametric plot of equations (5.22) if c=3
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vecs = Table[{r[0, t], un[0, 1]}, {t, -, m, 22}];
pp2 = ListVectorFieldPlot3D[vecs, VectorHeads — Truel];
Show[threedp2, pp2, ViewPoint —»
{-2.093, 2.124, 1.600}, AxesLabel —>{“x”, “y”, “z”},
Boxed ->False, DisplayFunction ->$DisplayFunction]

Several different views of Figure 5.16 on the Mobius strip shown in Figure 5.15
are shown in Figure 5.17. C is an orientation reversing path and we can conclude
An animation is that the Mobius strip is not orientable.

particularly striking. g1 = Show[threedp1, threedp2, pp2,

ViewPoint->{2.729, - 0.000, 2.000},
AxesLabel ->{“x”, “y”, “2”}, Boxed —>False];
g2 = Show[threedp1, threedp2, pp2,
ViewPoint->{1.365, —2.364,2.000},
AxesLabel ->{“x”, “y”, “2”}, Boxed —>False];
g3 = Show[threedp1, threedp2, pp2,
ViewPoint->{-1.365, —2.364,2.000},
AxesLabel ->{“x”, “y”, “2”}, Boxed —>False];
g4 = Show[threedp1, threedp2, pp2,
ViewPoint->{-2.729, 0.000, 2.000},
AxesLabel ->{“x”, “y”, “2”}, Boxed —>False];
g5 = Show[threedp1, threedp2, pp2,
ViewPoint->{-1.365, 2.364, 2.000},
AxesLabel ->{“x”, “y”, “2”}, Boxed —>False];
g6 = Show[threedp1, threedp2, pp2,
ViewPoint->{1.365, 2.364, 2.000},
AxesLabel ->{“x”, “y”, “z2”}, Boxed —>False];
Show[GraphicsGrid[{{g1, g2}, {g3, g4}, {g5, g6}}11

Example 5.5.10 The Klein bottle is an interesting surface with neither an inside nor an outside,
which indicates to us that it is not orientable. In Figure 5.18(a) we show the “usual”
immersion of the Klein bottle. Although the Klein bottle does not intersect itself, it is
not possible to visualize it in Euclidean 3-space without it doing so. Visualizations
of 2-manifolds such as the Klein bottle's “usual” rendering in Euclidean 3-space
are called immersions. (See [11] for a nontechnical discussion of immersions.)

r = 4(1-1/2Cosl[u]);

x1[u_,v_] = 6(1 + Sin[u])Cos[u] + rCos[u]Cos][v];

x2[u -, v -] = 6(1 + Sin[u])Cos[u] + rCos[v + Pi];

yi[u -, v_] = 16Sin[u] + rSin[u]Cos[v];

y2[u —,v -] = 16Sin[u];

z[u_,v_] = rSin[v];

kb1a = ParametricPlot3D[{x1[s, t], y1[s, t], z[s, t]},
{s, 0, Pi}, {t, 0, 2Pi}, PlotPoints - >{30, 30},
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FIGURE 5.17

Different views of a Mobius strip with an orientation reversing path

AspectRatio ->1, AxesLabel ->{“x”, “y”, “z”},
Mesh — False, PlotStyle — Opacity[.8]];
kb1b = ParametricPlot3D[{x1[s, t], y1[s, t], z[s, t]},
{s, Pi, 2Pi}, {t, 0, 2Pi}, PlotPoints —>{30, 30},
AspectRatio ->1, AxesLabel ->{“x”, “y”, “2”},
Mesh — False, PlotStyle — Opacity[.8]]
kb1 = Show[kb1a, kb1b, PlotRange — {{- 20, 20}, { - 20, 20}, {- 20, 20}}]
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FIGURE 5.18

Two different immersions of the Klein bottle: (a) the “usual” immersion; (b) the figure-8
immersion

Figure 5.18(b) shows the figure-8 immersion of the Klein bottle. Notice that it
is not easy to see that the Klein bottle has neither an inside nor an outside in
Figure 5.14.

a=3;

x[u —,v_] = (a + Cos[u/2]Sin[v] - Sin[u/2]Sin[2v])Cos[u];
y[u_,v_] = (a + Cos[u/2]Sin[v] - Sin[u/2]Sin[2v])Sin[u];
z[u _, v _] = Sin[u/2]Sin[v] + Cos[u/2]Sin[2v];

rfu -, v_] = {x[u, v], ylu, v], z[u, vl};

ParametricPlot3D[r[t, 1], {t, 0, 2Pi}]

kb2 = ParametricPlot3D[r[s, t], {s, — Pi, Pi}, {t, — Pi, Pi},
PlotPoints —->{30, 30}, AspectRatio ->1,
AxesLabel ->{“x”, “y”, “z”},
PlotRange ->{{-6, 6}, {-6, 6}, { - 2, 2}}, BoxRatios ->{4, 4, 1},
ColorFunction — “SunsetColors”, Mesh — False,
PlotStyle — Opacity[.4]]
Show[GraphicsRow[{kb1, kb2}]]

In fact, to many readers it may not be clear whether the Klein bottle is orientable or
nonorientable, especially when we compare the graph to the graphs of the Mobius
strip and torus in the previous examples.

A parametrization of the figure-8 immersion of the Klein bottle (see [20Q]) is
r(s, D) =x(s, Di + (s, Dj + 2(s, Dk, —m < s <7, —mw < t < 7, Where

1 1
X = [C + Ccos (55) sin £ — sin <§S> sin Zt] CoS s,

1 1
y= [c + cos (Es) sinf — sin <§s> sin 2t] sins, (5.23)
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and

1 1
z = sin (Es> sin £ + cos <§s) sin 2¢.

The plot in Figure 5.18(b) uses equation (5.23) if ¢ = 3.
Using (5.21), let

o ryxr,
[leg > x|
Let C be the path given by
r@t, D) =x@,Di+yE, Dj+z@, Dk, -w<t<wT (5.24)

that begins and ends at r(—m, —m) = r(m, m) = (-3,0,0) and where the compo-
nents are given by (5.23). The components of r and n are computed with
Mathematica. The final calculations are quite lengthy, so we suppress the output
of the last few by placing a semicolon (;) at the end of those commands.

rs = D[r[s, t], s]//Simplify
{ - 2Cos[s](Sin[$]Sin[t] + Cos[£]Sin[2t]) +
Sin[s](-3—Cos[£]Sin[t] + Sin[§]Sin[2t)),
- 1Sin[s](Sin[£]Sin[t] + Cos[£]Sin[2t]) +
Cosls](3 + Cos[£]Sin[t] — Sin[£]Sin[21]),
$(Cos[2]-2Cos[t]Sin[])Sin[t]}

rt = D[r[s, t], t]//Simplify
{Cos[s](Cos[5]Cos[t] - 2Cos[2t]Sin[5]),
(Cos[5]Coslt] - 2Cos[2t]Sin[5])Sin[s],
2Cos[5]Cos[21] + Coslt]Sin[5]}

rscrossrt = Cross|rs, rt];

normcross = Sqrt[rscrossrt . rscrossrt];

Clear[un]

un[s_,t.] = —rscrossrt/ Sqrt[rscrossrt. rscrossrt];

At t=-m, n(-m, —-m) = <‘[,0 2 > whereas at t=7r, n(m, 7 = <—%,0,—%> S0
as n moves along C from r(-m, —m) to r(m, ), the orientation of n reverses.
Several different views of the orientation reversing path on the Klein bottle shown
in Figure 5.18(b) are shown in Figure 5.19.

1 = Table[r[s, s], {s, — Pi, Pi, 2Pi/179}];
threedp2 = Show[Graphics3D[{Thickness[.02],
GrayLevel[.6], Line[l1]}], Axes —->Automatic,
PlotRange ->{{-4,4},{-4,4},{-4,4}},
BoxRatios ->{4, 4, 1}, AspectRatio ->1];
<< “VectorFieldPlots'”;
vecs = Table[{r[s, s], un[s, sl}, {s, -, T, 2= 5 =1;
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FIGURE 5.19

Different views of the figure-8 immersion of the Klein bottle with an orientation
reversing path
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These concepts are
presented beautifully

and extensively for the

Mathematica user in
Modern Differential
Geometry of Curves
and Surfaces with
Mathematica, third
edition, by Alfred
Gray, Elsa Abbena,
and Simon Salamon.
Our treatment just
touches on a few of
the topics discussed
by Gray et al and
updates some of
their wonderful and
elegant work to
Mathematica 6.

pp2 = ListVectorFieldPlot3D[vecs, VectorHeads — True];
pp3 = Show[threedp2, pp2,
AxesLabel ->{“x”, “y”, “z”},
Boxed ->False, PlotRange — {{- 5, 5},
{_ 5’ 5}’ {_ 5; 5}}]
g1 = Show[kb2, threedp2, pp2, AspectRatio->1,
PlotRange ->{{- 6, 6},{-6,6},{-2, 2}},
BoxRatios ->{4, 4, 1}, AxesLabel ->{“x”, “y”, “z2”},
ViewPoint->{2.729, - 0.000, 2.000}]
g2 = Show[kb2, threedp2, pp2,
AspectRatio->1,
PlotRange ->{{- 6, 6},{-6,6},{-2, 2}},
BoxRatios ->{4, 4, 1},
AxesLabel ->{“x”, “y”, “z”},
ViewPoint->{1.365, —2.364, 2.000}]
g3 = Show[kb2, threedp2, pp2, AspectRatio->1,
PlotRange ->{{- 6, 6},{-6, 6},{-6, 6}},
BoxRatios ->{4, 4, 1}, AxesLabel ->{“x”, “y”, “z”},
ViewPoint->{-1.365, —2.364, 2.000}]
g4 = Show[kb2, threedp2, pp2, AspectRatio ->1,
PlotRange ->{{- 6, 6},{-6, 6},{-6, 6}},
BoxRatios ->{4, 4, 1}, AxesLabel ->{*x”, “y”, “z”},
ViewPoint->{-2.729, 0.000, 2.000}]
g5 = Show[threedp1t, pp2, AspectRatio ->1,
PlotRange ->{{-6, 6}, {-6, 6},{- 6, 6}},
BoxRatios ->{4, 4, 1}, AxesLabel ->{*x”, “y”, “z”},
ViewPoint->{-1.365, 2.364, 2.000}]
g6 = Show[kb2, pp3, AspectRatio->1,
PlotRange ->{{-6, 6},{-6, 6}, {-2, 2}},
BoxRatios ->{4, 4, 1}, AxesLabel - >{*x”, “y”, “z”},
ViewPoint->{1.365, 2.364, 2.000}]
Show[GraphicsGrid[{{g1, g2}, {g3, g4}, {g5, g6}}1]

C is an orientation reversing path and we can conclude that the Klein bottle is not
orientable.

5.56.5 More on Tangents, Normals, and Curvature in R?

Previously, we discussed the unit tangent and normal vectors and curva-
ture for a vector-valued function vy : (a,b) — R*. These concepts can be
extended to curves and surfaces in space.

For v:(a,b) — 7{3, the Frenet frame field is the ordered triple
{T,N,B}, where T is the unit tangent vector field, N is the unit



For many good
reasons, sometimes

the “Frenet formulas”

are also called the
“Frenet-Serret
formulas.”
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normal vector field, and B is the unit binormal vector field. Each
of these vectors has norm 1 and each is orthogonal to the other (the dot
product of one with another is 0) and the Frenet formulas are satisfied:
T' = kN, N' = —«T + 7B, B’ = —7N. 7 is the torsion of the curve v; k is
the curvature. For the curve y: (a,b) — 733, formulas for these quantities
are given by

!

T-Y  N=BxT, B=_ XY
I Iy <yl
_ ||7/ x 'y”” _ y/ x y// X ,ym (525)
vk Iy x y|P

We adjust Gray’s routines slightly for Mathematica 6. Here is the unit
tangent vector:

tangent[y _][t_]:=D[y[tt], tt]/FullSimplify[Norm[D[+[tt], tt]],
Assumptions — tt € Reals]/.tt > t

Similarly, the binormal is defined with

binormal[y _][t_]:=FullSimplify[
Cross[D[y[tt], tt], D[y[tt], {tt, 2}111/
FullSimplify[Norm[Cross[D[y[tt], tt], D[[tt], {tt, 2}111,
Assumptions — tt € Reals]/.tt > t

so the unit normal is defined with
normal[y _][t _]:=Cross[binormal[y][t], tangent[y][t]];

Notice how we use Assumptions to instruct Mathematica to assume that the
domain of vy consists of real numbers. In the same manner, we define the
curvature and torsion.

curve2[y _][t _]:=Simplify[Norm[Cross[D[[tt], tt],
DyItt], {tt, 2}11)/
Norm[D[ytt], tt]]* 3,
Assumptions — tt € Reals]/.tt - t;

torsion2[y _][t _]:=Simplify[Cross[D[+]tt], tt],
D[yitt], {tt, 2}]] . D[v[tt], {tt, 3})/
Norm[Cross[D[v{tt], tt], D[y[tt], {tt, 2}]11" 2,
Assumptions — tt € Reals]/.tt > t;

In even the simplest situations, these calculations are quite complicated.
Graphically seeing the results may be more meaningful that the explicit
formulas.
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FIGURE 5.20

The curvature and torsion for a spherical spiral

Consider the spherical spiral given by () = (8 cos 3¢ cos 2t, 8 sin 3¢ cos 2¢, 8 sin 2).
The curvature and torsion for the curve are graphed with Plot and shown in
Figure 5.20.

<< VectorFieldPlots’;

y[t -] = {8Cos[3t]Cos[2t], 8Sin[3t]Cos[2t], 8Sin[2t]}

{8Cos[2t]Cos[3t], 8Cos[2t]Sin[3t], 8Sin[2t]}

Plot[Tooltip[{curve2[y][t], torsion2[y][t]}], {t, O, 2Pi},
PlotStyle — {Black, Gray}]

We now compute T, B, and N. For length considerations, we display an
abbreviated portion of B with Short.

tangent[y][t]
binormal[y][t]

normal[y][t]//Short

)

—16Cos[3t]Sin[2t] — 24Cos[2t]Sin[3t]
44/34 +18Cos[4t]

24Cos[2{]Cos[3] - 16Sin[2(Sin[3]
44/34 +18Cos[4]

4Cos[2t]
34 +18Cos[4t]

2(-3Sin[t] + 34Sin[31] + 15Sin[7t)
/21886 + 12456C0s[4t] + 810Cos(8t]

2(3Coslt] + 34Cos[3t] + 15Cos[7t])
\/ 21886 + 12456Cos[4t] + 810Cos|[8t] ’

6(21 + 5Cosl[41])
\/21 886 + 12456Cos[4t] + 810Cos[8t]
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(o s .y |

34+ 18Cos[{{1))]

It is difficult to see how these complicated formulas relate to this spherical spiral. To
help us understand what they mean, we first plot the spiral with ParametricPlot3D.
See Figure 5.21(a).

p1 = ParametricPlot3D[y[1], {t, 0, 2Pi},
PlotRange — {{- 8.5, 8.5}, {- 8.5, 8.5}, {- 8.5, 8.5}},
PlotStyle — {{Gray, Thick}}]

Next, we use Table to compute lists of two ordered triples. For each list,
the first ordered triple consists of y(#» and the second the value of T(y®)
BOy®), N(y@®)). These ordered triples that correspond to vectors are plotted
with ListVectorFieldPlot3D, which is contained in the VectorFieldPlots package,
in Figure 5.21(b).

ts = Table[{y[t], tangent[y][t]}//N, {t, O, 2Pi, 2Pi/99}];
bs = Table[{y[t], binormal[vy][t]}//N, {t, 0, 2Pi, 2Pi/99}];
ns = Table[{y[t], normal[v][t]}//N, {t, 0, 2Pi, 2Pi/99}];

ysplot = ListVectorFieldPlot3D[ts, VectorHeads — True];

bsplot = ListVectorFieldPlot3D[bs, VectorHeads — True];
nsplot = ListVectorFieldPlot3D[ns, VectorHeads — True];
p2 = Show[ysplot, bsplot, nsplot]

For a good view of p1 and p2, display them together with Show. See
Figure 5.21(c).

Show([p1, p2]Show[GraphicsRow[{p1, p2, Show[p1, p2]}]

The previous example illustrates that capturing the depth of three-
dimensional curves by projections into two dimensions can be difficult.
Sometimes taking advantage of three-dimensional surface plots can help.

FIGURE 5.21

(@) The spherical spiral. (b) Various T, N, and B for the spherical spiral. (c) The
spherical spiral with various T, N, and B shown together
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For a basic space curve, tubecurve places a “tube” of radius  around the
space curve.

Clear[tubecurve]
tubecurve[y _][r _][t -, 6 -] = y[t] +
r(Cos[f#lnormal[y][t] + Sin[#]binormal[y][t])

Yyt Y, o/ltxy s
' (COS[G] Nomly Bxy [~ NomyEl * Norm[y’[ﬂXv”[ﬂ]) A

The results displayed 10 illustrate the utility, we redefine torusknot that was presented in

in the text are in Chapter 2.
black-and-white and
do not reflect the
stunning color images
generated by these
commands.

torusknot[a_,b_,c_][p-,q-][t-]:=
{(a+ b Cos[qt])Cos[pt], (a + b Cos[qt])Sin[pt],
c Sin[qt]}

Example 5.5.12 For the knot torusknot}[8,3,5][2,5] we plot the curvature and torsion with
Plot.

torsion2 [torusknot[8, 3, 5][2, 5])[t]}], (&, 0, 3Pi},

Plot[Tooltip[{curve2[toruskaot (8, 3, 5]([2, 5]]([t],
PlotStyle + {Black, Gray}] ]

03f ,

o3fF

04l

FIGURE 5.22

(@) A basic plot of a curve in 3-space. (b) Placing a “tube” around the curve
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We generate a basic plot of this torus knot in 3-space with ParametricPlot3D.
See Figure 5.22(a).

ParametricPlot3D[torusknot[8, 3, 5][2, 5][t], {t, O, 3Pi}]
Using tubeplot, we place a “tube” around the knot. See Figure 5.22(b).

p1 = ParametricPlot3D[tubecurve[torusknot[8, 3, 5][2, 5]]1[1 - 3I[t, 6],
{t, 0, 2Pi}, {0, 0, 2Pi}, Mesh — False, PlotStyle — Opacity[.5],
PlotPoints — {40, 40}]

A more interesting graphic is obtained by placing a transparent tube around the curve

plb = P ricPlot3D[ vel (8, 3, s1(2, 511 (1) ([t, @),
{t, 0, 2Pi}, {5, 0, 2 Pi}, Mesh + False, PlotStyle + Opacity[.25],
PlotPoints -+ (40, 40}]

and then creating a thicker version of the curve.

p2 =F ricPlot3D[ 8, 3, s1(2, 51[t], {t, 0, 3Pi}, ]
PlotStyle + {Thick, Black}]

As before, we use tangent, normal, and binormal to create a vector field on the
curve.
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ts = Table[{torusknot[8, 3, 5][2, 5] [t],

tangent [torusknot [8, 3, 5] [2, 5]]([t]}// N, (£, 0, 3P4, 3PL/99}];
bs = Table [ {torusknot[8, 3, 5][2, 5] [t],

binormal [torusknot (8, 3, 5]([2, 5]][t]} // N, {t, 0, 3Pi, 3P4 /99}];
ns = Table[{torusknot[8, 3, 5][2, 5] [t],

normal [torusknot[8, 3, 5](2, 5]]([t]} // N, (t, 0, 3P4, 3PL/99}];

ysplot = ListVectorFieldPlotiD[ts, VectorEcads -+ True];
bsplot = ListVectorFieldPlot3D[bs, VectorHeads -+ True];
nsplot = ListVectorFieldPlot3D[ns, VectorHeads - True];
p3 = Show|[ysplot, bsplot, nsplot]

A striking graph is generated by showing the three graphs together.

Show[p2, plb, p3]




Example 5.5.13
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FIGURE 5.23

(@) A “tubed” knot. (b) A thick knot. (c) A knot within a tube around it. (d) A knot
within a tube illustrating the Frenet field

Alternatively, display the results as an array with GraphicsGrid. See
Figure 5.23.

Show|[GraphicsGrid([({{pl, p2}, (Show[p2, plb], Show([p2, plb, p3]}}]1] ‘||

The Trefoil knot is the special case of torusknot[8,3,5][2,3]][t]. We use Plot to
graph its curvature and torsion in Figure 5.24. Because we have used Tooltip, you
can identify each plot by moving the cursor over the curve in Figure 5.24.

Plot[Tooltip[{curve2[torusknot[8, 3, 5][2, 3]1[t],
torsion2[torusknot[8, 3, 5][2, 3]1[t]}], {t, 0, 2Pi}, PlotRange — All]

Next, we generate a thickened version of the Trefoil knot.

p1 = ParametricPlot3D[torusknot[8, 3, 5][2, 3][t], {t, 0, 2Pi},
PlotStyle — {Black, Thick}]

Three different tube plots of the Trefoil knot are generated. In p2, the result is a
basic plot. In p2b, the plot is shaded accoring to the Rainbow color gradient.

411
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FIGURE 5.24
The curvature and torsion for the Trefoil knot

FIGURE 5.25

(@) The Trefoil knot with a tube around it. (b) Changing the color of the tube.
(c) Coloring the knot according to its curvature

In p2c, the plot is shaded according to the knots curvature. The knot together
with the three surfaces are shown in Figure 5.25.

p2 = ParametricPlot3D[tubecurve[torusknot[8, 3, 5][2, 3]1[1.3][t, 6],
{t, 0, 2Pi}, {0, 0, 2Pi}, Mesh — False, PlotStyle — Opacity[.5],
PlotPoints — {40, 40}]
p2b = ParametricPlot3D[tubecurve[torusknot[8, 3, 5][2, 3]1[1.3][t, 61,
{t, 0, 2Pi}, {0, 0, 2Pi}, Mesh — False, PlotStyle — Opacity|[.5],
PlotPoints — {40, 40}, ColorFunction ->ColorData[“Rainbow”]]
p2c = ParametricPlot3D[tubecurve[torusknot[8, 3, 5][2, 3]][1.3][t, 6],
{t, 0, 2Pi}, {0, 0, 2Pi}, Mesh — False, PlotStyle — Opacity[.5],
PlotPoints — {40, 40}, ColorFunction —»
(ColorData[“BrightBands”][curve2[torusknot[8, 3, 5][2, 3]][#1]1&)]
ba1 = Show|[p2, p1, Boxed — False, Axes — None]
ba2 = Show|[p2b, p1, Boxed — False, Axes — None]
ba3 = Show|[p2c, p1, Boxed — False, Axes — None]
Show[GraphicsRow[{ba1, ba2, ba3}]]



5.5 Selected Topics from Vector Calculus

For surfaces in R’ , extending and stating these definitions pre-
cisely becomes even more complicated. First, define the vector triple

X1 1 Z1
product (xyz), where x=|x, |, y=|», |, and z=| 2, |, by (xy2) =
X3 J3 %3

X Xy Xy
Y1 V2 Y3 |- We assume that y = y(u,v) is a vector-valued function with
2z, Zp 2

: : : 7 ” . 2 .
domain contained in a “nice” region U C R” and range in R>. The
Gaussian curvature, £, and the mean curvature, H, under reasonable
conditions, are given by the formulas

YauYuYo) Yo Yu¥e) = (Vs Vu¥s)

2
(el = (v, 0,)°)
and (5.26)
(Yaa YY) WVl = 2 (VoY Yo) (Vs Vo) + (Voo Yu¥o) 1Vl

3/2
2 (e = (v 7.)°)

H =

For the parametrically defined surface 7y = y(u,v), the unit normal

x
field, U, is U= 2«20
17 % .|
explicitly computing U, £, and ‘H are almost always so complicated that

they are impossible to understand.

After defining vtp to return the vector triple product of three vectors,
we define gaussianc and meanc to compute £ and H for a parametrically
defined surface y(u, v) = (x(u, V), y(us, V), 2(14, V).

Observe that the expressions that result from

vip[x .,y -, z _J:=Det[{{x[[1]], x[[2]], x[[3]1},
{y[[111, yI[211, yI[311}, {z[[11], z[[2]], z[[3]1}}]

gaussianc[y_-][u_,v_]:=
Module[{lu, lv, vtp},
vtp[x _,y -, z _]:=Det[{{x[[1]], x[[2]], x[[3]1},
{yI[[111, yI[211, yI[311}, {zI[111, z[[2]], z[[3]11}1;
(vtp[D[yllu, Iv], {lu, 2], D[y[lu, Iv], lu], D[y[lu, Iv], v]]
vitp[D[yllu, Iv1, {lv, 2}], D[y[lu, Iv], lu], D[y[lu, Iv], Iv]] -
vitp[D[¥[lu, Iv], lu, Ivl, D[y[lu, Iv], lu], D[y{lu, Iv], Iv]] A2/
(Norm[D[y[lu, Iv], Iu]] * 2Norm[D[{lu, Iv], W] * 2-
(DIyllu, Iv], u] . D[yflu, V], v]) A 2) A 2/.
{lu - u, Iv - v}//PowerExpand//Simplify
1
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meanc[y_]Jlu_,v_]:=
Module[{lu, lv, vtp},
vitp[x -,y -, z _]:=Det[{{x[[1]], x[[2]], x[[3]1},
{yl[111, y[[21], yL[311}, {z[[ 111, z[[2]], z[[3]1}});
(vtp[D[y[lu, Iv], {lu, 2}], D[y[lu, Iv], lu], D[y[lu, Iv], Iv]]
Norm[D[y[lu, Iv], Iv]] Ao_
2vip[D[y[lu, Iv], lu, Iv], D[¥[lu, Iv], lu], D[y[lu, Iv], Iv]]
(D[y[lu, Iv], u] . D[y[lu, Iv], IV]) +
vitp[D[yllu, V], {Iv, 2}, D[y{lu, Iv], lu], D[y[lu, Iv], V1]
Norm[D[y{lu, Iv], lu]] * 2) /
(2(Norm[D[y[lu, Iv], Iu]] * 2Norm[D[y{lu, Iv], W]]  2-
(DLy[lu, Iv], lu] . D[y[lu, Iv], W) A 2) A (3/2))/.
{lu - u, Iv - v}//PowerExpand//Simplify
1

Example 5.5.14 We illustrate the commands with the torus, first discussed in Chapter 2, and
ParametricPlot3D. For convenience, we redefine torus.

torus[fa_,b_,c-][p -, q-][u-,v-]:={(a + bCos[u])
Cosl|v], (a + b Cos[u])Sin[v], ¢ Sin[u]}

In pp1, we generate a basic plot of the torus. The shading is changed in pp2. In
pp3 the surface is shaded according to its Gaussian curvature, whereas in pp4
the surface is shaded according to its mean curvature. All four plots are shown
together in Figure 5.26.

pp1 = ParametricPlot3D[Evaluate[torus|[8, 3, 5][2, 5][u, v]], {u, 0, 2Pi},
{v, 0, 2Pi}, PlotPoints — 60]

pp2 = ParametricPlot3D[torus[8, 3, 5][2, 5][u, v],

{u, 0, 2Pi}, {v, 0, 2Pi}, Mesh — False, PlotStyle — Opacity[.75],

PlotPoints — {25, 25}, ColorFunction —»

ColorData[“MintColors™]]

pp3 = ParametricPlot3D[torus[8, 3, 5][2, 5][u, v],

{u, 0, 2Pi}, {v, 0, 2Pi}, Mesh — False, PlotStyle — Opacity|[.5],

PlotPoints — {25, 25}, ColorFunction —»

(ColorData[“MintColors”][gaussianc[torus[8, 3, 5][2, 5]]
[#1,#2]//N//Chop]l&)]

pp4 = ParametricPlot3D[torus[8, 3, 5][2, 5][u, v],

{u, 0, 2Pi}, {v, 0, 2Pi}, Mesh — False, PlotStyle — Opacity[.5],
PlotPoints — {25, 25}, ColorFunction —
(ColorData[“MintColors”][meanc[torus[8, 3, 5][2, 5]]

[#1, #2]//N//Chop]&)]
Show[GraphicsGrid[{{pp1, pp2}, {PP3, pp4}]
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FIGURE 5.26

(@) A basic torus. (b) Changing the coloring of the torus. (c) Shading according to
Gaussian curvature. (d) Shading according to mean curvature

5.6 MATRICES AND GRAPHICS

Mathematica contains several functions that allow you to represent matrices
graphically. These commands are analogous to the corresponding ones for
dealing with lists (such as ListPlot) or functions (such as Plot, Plot3D, and
ContourPlot).

1. MatrixPlot[A] generates a grid with the same dimensions as A. The
cells are shaded according to the entries of A. The default is in color.

2. ArrayPlot[A] generates a grid with the same dimensions as A. The cells
are shaded according to the entries of A. The default is in black and
white.

3. ListContourPlot[A] generates a contour plot using the entries of A as
the height values.

4. ReliefPlot[A] generates a relief plot using the entries of A as the height
values.

415
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Because the figures in Observe that ArrayPlot and MatrixPlot are virtually interchangeable. How-
the text are in black ever, the entries of ArrayPlot need not be numbers. If Mathematica cannot
and white, refer to the determine how to shade a cell, the default is to shade it in a dark maroon
CD that accompanies  color. Although these functions generate graphics that depend on the
the text to see the entries of the matrix, loosely speaking we will use phrases such as “we
images in color. use MatrixPlot to plot A” and “we use ArrayPlot to graph A” to describe
the graphic that results from applying one of these functions to an array.

1 0.3 1
For example, consider the arrays A=| 4 5 .1 |,B=]| 0
1

230
co( (1oo) (010)Y
(3 .4.5) (1 .2.3)

In the first command, Mathematica shades all the cells according to
its GrayLevel value. However, in the second and third commands, Math-
ematica cannot shade the cells in the second row and all the cells,
respectively, because ordered triples cannot be evaluated by GraylLevel.
However, RGBColor evaluates ordered triples so Mathematica shades the
cells in Figure 5.27(c) according to their RGBColor value.

(S

0|, and
3

ap1 = ArrayPlot[{{1, 0, .3}, {.4, .5, .1},{.2, .3, 0}}];
ap2 = ArrayPlot[{{1, 0}, {{.3, .4, .5},{.1, .2, .3}}}];
ap3 = ArrayPlot[{{{1, 0, 0}, {0, 1, 0}},{{.3, .4, .5},
{1,.2,.3}}};
ap4 = ArrayPlot[{{{1, 0, 0}, {0, 1, 0}}, {{.3, .4, .5},
{1,.2, .3},
ColorFunction - RGBColor];

Show[GraphicsRow[{ap1, ap2, ap3, ap4}]]

MatrixPlot is unable to graphically represent B or C. However, coloring
is automatic with MatrixPlot. See Figure 5.28.

" il

FIGURE 5.27

(@) Mathematica shades all cells according to their heights. (b) Mathematica does not
know how to shade the cells in the second row. (c) Mathematica cannot shade any
of the cells. (d) Mathematica shades all four cells using RGBColor




In these calculations,
11 is a 256 x 256 array
for which each entry
is an ordered triple. In
the first t1, the
ordered triple has the
form (r,g,0), in the
second the form
(r,0,b), and so on.

5.6 Matrices and Graphics

1 2 3
1 - -
2 - . |
3 - -
i 2 5
FIGURE 5.28
By default, MatrixPlot uses a color scheme. Use ColorFunction to change the

colors

100 200 100 200

. 100 100 WOO| 100 ¢ 100 100
° [0}
Q o | o
[}
200 200 | 200 200 200
100 200 100 200 100 200
green blue blue
FIGURE 5.29

A comparison of how red, green, and blue affect RGBColor[r,g,b]

mp1 = MatrixPlot[{{1, 0, .3},{.4, .5, .1},{.2, .3, 0}}];

mp2 = MatrixPlot[{{1, 0, .3}, {.4, .5, .1},{.2, .3, 0}},
ColorFunction — “PlumColors”];

Show[GraphicsRow[{mp1, mp2}]]

If you need to adjust the color of a graphic, usually you can use the

ColorSchemes palette to select an appropriate gradient or color function.
In other situations, you might wish to create your own using Blend. To use
Blend, you might need to know how various RGBColors or CMYKColors vary
as the variables affecting the color change.

ArrayPlot can help us see the variability in the colors. With the following,

we see how RGBColor[r,g,b] affects color for b =0, g =0, and then r = 0.
The results are shown together in Figure 5.29. The figure can help us select
appropriate values to generate our own color blending function using Blend
rather than relying on Mathematica’s built-in color schemes and gradients.

t1 = Table[{r, g, 0}//N, {r, 0, 255}, {g, 0, 255}];
redgreen = ArrayPlot[t1, Axes — Automatic, AxesOrigin — {0, 0},
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FrameTicks — Automatic, FrameLabel — {red, green},
LabelStyle - Medium, ColorFunction - RGBColor];
t2 = Table[{r, 0, b}//N, {r, 0, 255}, {b, 0, 255}];
redblue = ArrayPlot[t2, Axes — Automatic, AxesOrigin — {0, 0},
FrameTicks — Automatic, FrameLabel — {red, blue},
LabelStyle - Medium, ColorFunction - RGBColor];
t2 = Table[{0, g, b}//N, {g, 0, 255}, {b, 0, 255}];
greenblue = ArrayPlot[t2, Axes — Automatic, AxesOrigin — {0, 0},
FrameTicks — Automatic, FrameLabel — {green, blue},
LabelStyle - Medium, ColorFunction — RGBColor];
s1 = Show[GraphicsRow[{redgreen, redblue, greenblue}]]

‘We modify the calculation slightly to see how CMYKColor varies as we
adjust two parameters. Keep in mind that each t2 is a 256 x 256 array.
Each entry of t2 is an ordered quadruple, which is illustrated in the first
calculation, in which we use Part to take the fifth element of the eighth

part of t2. (See Figure 5.30.)

t2 = Table[{c, m, 0, 0}//N, {c, 0, 255}, {m, 0, 255}];

t2[[8, 5]]
{7.,4.,0.,0.}

cmplot = ArrayPlot[t2, Axes — Automatic, AxesOrigin — {0, 0},

FrameTicks — Automatic, FrameLabel — {c, m},

LabelStyle - Medium, ColorFunction - CMYKColor];
t2 = Table[{c, 0, y, 0}//N, {c, 0, 255}, {y, 0, 255}];

100 200
o 100 100
200 | 200
100 200
m
100 200
£ 100 100
200 | J 200
100 200
y
FIGURE 5.30

100 200
100 ‘ 100
200 200
100 200
y
100 200
100 —I 100
200 J 200
100 200
k

100 200
100 100
200 200
100 200
K
100 200
100 100
200 __JZOO
100 200
k

A comparison of how ¢, m, y, and & affect CMYKColor[c,m,y,k]
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cyplot = ArrayPlot[t2, Axes — Automatic, AxesOrigin — {0, 0},
FrameTicks — Automatic, FrameLabel — {c, y},
LabelStyle —» Medium, ColorFunction - CMYKColor];
t2 = Table[{c, 0, 0, k}//N, {c, 0, 255}, {k, 0, 255}];
ckplot = ArrayPlot[t2, Axes — Automatic, AxesOrigin — {0, 0},
FrameTicks — Automatic, FrameLabel — {c, k},
LabelStyle - Medium, ColorFunction - CMYKColor];
t2 = Table[{0, m, y, 0}//N, {m, 0, 255}, {y, 0, 255}];
myplot = ArrayPlot[t2, Axes — Automatic, AxesOrigin — {0, 0},
FrameTicks — Automatic, FrameLabel — {m, y},
LabelStyle - Medium, ColorFunction - CMYKColor];
t2 = Table[{0, m, 0, k}//N, {m, 0, 255}, {k, 0, 255}];
mkplot = ArrayPlot[t2, Axes — Automatic, AxesOrigin — {0, 0},
FrameTicks — Automatic, FrameLabel — {m, k},
LabelStyle - Medium, ColorFunction - CMYKColor];
t2 = Table[{0, 0, y, k}//N, {y, 0, 255}, {k, 0, 255}];
ykplot = ArrayPlot[t2, Axes — Automatic, AxesOrigin — {0, 0},
FrameTicks — Automatic, FrameLabel — {y, k},
LabelStyle - Medium, ColorFunction - CMYKColor];
Show[GraphicsGrid[{{cmplot, cyplot, ckplot}, {myplot, mkplot, ykplot}}]]

You can load files into Mathematica with Import. Generally, the underly-
ing structure of the loaded file is relatively easy to understand. Be careful
when you import data into Mathematica. We recommend that you use
ExampleData to investigate your routines before finalizing them. Although
importing external files into Mathematica is easy, understanding the under-
lying structure of the imported data may take some time but may be
necessary to produce the results you desire.

We illustrate a few of the subtle differences that can be encountered
with several color and black-and-white gifs and jpegs.

Using Import, we import a graphic of the primary author into Math-
ematica. The result is shown in Figure 5.31(a).

p1 = Import[“marthaO1sa . gif”]

With Length, we see that p1 has four elements. We can examine the entries
with Part.

Length[p1]
4

With p1[[1]], we select the first part of p1. When large output is the result
of a calculation, Mathematica warns you before displaying it. (Note that
Short[p1[[1]]] returns a similar result.)
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pL[[1]]

A very large output was generated. Here is a sample of it

Raster||<<l>}, {{0, 0}, {216, 288} }, ColorFunctionScaling - False,
ColorFunction -» (RGBColor @® { (0.121569, 0.0627451, 0.0627451, 1.},
«254>, {0.737255, 0.533333, 0.392157, 1.}}[=1] &

| Show Less ) ( Show More ) ( Show Full Output ) ( Set Size Limit... )

The result helps us understand the structure of p1 and p1[[1]], which is

another list. The second element of p1 tells us the size of the image.

pill2]]
ImageSize — {216,288}

The third and fourth elements tell us how the image is to be plotted—its

plot range and background.
p1ll31]
PlotRange — {{0,216}, {0,288}}
p1[[4]]

Background — None

The data determining the image is contained in p1[[1,1]], which is a 288 x

216 matrix. To see so, first enter p1[[1,1]]

pl([4]] 17|
Background -» None 11
pL[1, 1]]

A very large output was generated. Here Is a sample of it

((show Less ) ((show More ) ( Show Full Output ) ( Set Size Limit... )

and then click on Show More twice.
To determine the dimensions of the matrix use Length.

We now use ArrayPlot to graph p1[[1,1]]. ArrayPlot goes from up (first row)
to down (last row), so our initial image (Figure 5.31(b)) is a reverse of the

original.

gla = ArrayPlot[p1[[1, 1]]]

We use Reverse to correct the situation (Figure 5.31(c)). Generally,
Reverse[{al, a2, ...,an}] returns the list {an,...,a2,al}; the reverse of the

original list.

g1b = ArrayPlot[Reverse[p1[[1, 11111
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pL{[1, 1]] 3
A very large output was generated. Here is a sample of it:

f{1,1,1,1,11,1,1,1,1,1,1,1,1,1,1,1,1,1,11,1,131,1,1,1,1,1,1,1,1,1,
1, 1,2, 2, 58, 58, 58, 120, 120, 120, 172, 172, 136, 136, 59, 59, 59, 59, 59,
59, 59, 136, 256, 136, 136, 136, 179, 172, 172, 176, 132, 10, 7, 45, 193, 132,
170, 125, 132, 42, 24, 7, 168, 168, 165, 165, 191, 210, 163, 57, 147, 144, 138,
6, 175, 175, 175, 6, 133, 191, 191, 145, 147, 57, 147, 191, 191, 151, 191, 191,
145, 193, 170, 176, 132, 165, 165, 6, 6, 139, 139, 189, 145, 145, 145, 145, 8,
8, 8,8, 8, 8, 8, 8, 57, 191, 191, 191, 191, 191, 191, 191, 191, 191, 191, 191,
155, 155, 76, 151, 62, 62, 94, 175, 6, 154, 147, 147, 191, 138, 165, 165, 165,
7, 165, 165, 134, 120, 172, 179, 136, 136, 136, 136, 178, 178, 183, 178, 178,
202, 136, 136, 172, 172, 172, 173, 134,58, 58,58, 2, 3,1,1, 1, 1,1, 1, 1,
S VA T S A N O DR Ul DR R TR O A TR WA U5 TR, T DS DR O WA PR 0 O DA 4
<«286>>, (3,3,3,3,3,3,3,3,3,3, 22,24, 22, 3, 22, 22, 3, 22, 36, 3,
22, 22, 24, 24, 24, 22, 3, 22, 39, 39, 24, 24, 12, 24, 24, 24, 39, 7, 39, 39,
12, 24, 7,39, 24, 24, 7, 24, 24,7, 24, 39, 7, 24,7, 24, 24, 24, 24, 7,7,
24, 7,7,7,10,7,7,24, 7,28, 7,28,7,7,7,7, 24, 24, 10, 41,7, 7, 10,
28, 7,7, 7,7, 7,7,7,28,28,28,7,7,7,7, 7,387,707, 7,7,7,
7, 7,9,9,9,3,9,28,3,9,9,3,9,9,3,3,3, 3,28, 3,3, 30, 30, 30,
30, 3, 3, 30, 30, 30, 3, 30, 30, 30, 30, 30, 30, 30, 30, 32, 30, 32, 32, 3,
3,3,3,3,3,3,3,3,3,3,3,21,21,21,21,21, 21,21, 21,21,21,21,
21, 21, 21, 21,21,21,21,21, 21, 21, 21, 21, 21, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16, 16, 1, 1,1, 1, 1,16,1,1,1,1, 1,1, 1}}

(‘show Less ) ((Show More ) (Show Full Output ) ((Set Size Limit... )

Length[pl([1, 1]]] ]
Length[pl([1, 1, 1]]]

288 3
216 3

Now that we have oriented the image in the way we want, we appy a color
function to it by applying one of the built-in color gradients to the list. We
choose Pastel.

g2a = ArrayPlot[Reverse[p1[[1, 1]]], ColorFunction — “Pastel”]

The results are shown side-by-side in Figure 5.31. Printed on a color printer,
the results are amazing.

Show[GraphicsRow[{p1, g1a, g1b, g2a}]]

FIGURE 5.31

(a) The original. (o) Applying ArrayPlot to the original data points. (c) Reorienting the
image. (d) Applying a color function to the data points
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FIGURE 5.32

Use Inset to place one graphic within another

Now that we understand how to manipulate the gif image, we can be cre-
ative. In the following, the image is scaled so that the width of the image
is 70 pixels (because of ImageSize->70). We then display the small image
with another graphic. Using Inset, we put Martha next to a sine graph that
is plotted using the same coloring gradient. See Figure 5.32.

g1 = ArrayPlot[p1[[1, 1]], ColorFunction — “BrightBands”,
ImageSize — 70];
p2 = Plot[Sin[x], {x, 0, 2Pi}, Epilog —>Inset[g1, {3Pi/2, 1/2}],
ColorFunction — “BrightBands”, PlotStyle — Thickness[.05]]

An alternative way to visualize the data is to use ListContourPlot. To
ensure that the aspect ratio of the original image is preserved, include
the AspectRatio->Automatic option in the ListContourPlot command. (See
Figure 5.33)

glp1 = ListContourPlot[p1[[1, 1]], AspectRatio — Automatic];

g1p2 = ListContourPlot[p1[[1, 1]],ColorFunction —» “Pastel”,
AspectRatio —» Automatic]

g1p3 = ListContourPlot[p1[[1, 1]],ColorFunction —» “GrayTones”,
AspectRatio — Automatic]

Show[GraphicsRow[{glp1, g1p2, g1p3}]]

The underlying format of each structure (jpeg, gif, etc.) is different. With

p1 = Import[“jim01a.jpg”];
Length[p1]

3
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FIGURE 5.33

Using ListContourPlot rather than ArrayPlot

we import a jpeg of the second author of the text into Mathematica and
name the result p1. Length shows us that p1 is a list with three elements.

(See Figure 5.34)
The first part of p1, obtained with p1[[1]], is quite long.

pi[[1]]

A very large output was generated. Here Is a sample of it

Raster

{ecl>>}, ({0, O}, (216, 288}}, (0, 255}, ColorFunction -» RGEColor

| Show Less ) [ Show More y1 Show Full Qutput | | Set Size

Limit...

By clicking on Show More we see that p1[[1]] is an array of ordered triples.

P1[[1]]

A very large output was generated. Here is a sample of it

Raster|
({54,
(54,
(63,
(65,
(62,
(62,
(64,
(76,

113, 109}, (52, 111, 107}, (49, 108, 104}

96, 95}, (59, 103, 102}, {61, 110, 107},

120, 114}, (61, 116, 111}, (62, 118, 115}
121, 118}, (62, 114, 112}, (52, 102, 101}
117, 114}, (59, 115, 112}, (63, 123, 115}
121, 115}, (64, 120, 111}, (67, 116, 112}
112, 112}, (65, 116, 117}, (65, 115, 112},
103, 94}, (80, 96, 83}, (104, ll0, 98],

, {55, 110, 107}, {61, 105, 104}
{59, 116, 110}, {62, 119, 113},
. (63, 119, 116}, {58, 117, 113}
+ (59, 110, 111}, {61, 112, 113}
¢ w17l , (60, 121, 114},

« (73, 115, 113}, {70, 111, 113}
(68, 114, 111}, {75, 112, 104}

(142, 138, 127}, {167, 163, 160},

{218, 227, 236}, (213, 232, 247}, {135, 164, 182}, (78, 114, 126},

(64,

106, 105}, (65, 108, 101}}, <«<286>>, <<

13 }), <«<2m, <«lsn]

'_Show Less_' | Show More A Show Full Output !__‘.'vet Size Limit... )

The other parts of p1 are not as long. They specify the style of the image.

p1l[1,2]]

{{0,0}, {216,288} }

p1[[1,3]]
{0,255}

p1[[1,4]]

'
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a
FIGURE 5.34

(@) An upside down scary Jim. (b) Correct side up but still scary. (c) Color applied but
a bit less scary

ColorFunction — RGBColor

p1li2]]
ImageSize — {216,288}

p1l[3]]
PlotRange — {{0, 216}, {0, 288}}

For the color jpeg, the first element of the first component is the data array
that determines the image.

Short[p1[[1,1]1]
{{{54,113,109}, {52, 111,107}, {49, 108, 104}, {55,110, 107},
((209Y), {78,114, 126}, {64, 106, 105}, {65, 108, 101} }, ((287))}

However, as before, the image generated with ArrayPlot is upside down—
and the coloring is off.

j1a = ArrayPlot[p1[[1, 1]1]

To invert the image, we use Reverse. As stated previously, Reversellist]
reverses the entries of list.

j1b = ArrayPlot[Reverse[p1[[1, 1]11]
To correct the color, we tell Mathematica to use the RGBColor function.

j1c = ArrayPlot[Reverse[p1[[1, 1]]], ColorFunction - RGBColor]
Show[GraphicsRowl[{ j1a, j1b,j1c}]]

To apply your own color function, you need to manipulate the data. For
this image, viewing it as a matrix, it has 288 rows and 216 columns.
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Length[p1[[1,1]1]
288
Length[p1[[1,1,1]1]
216

Each entry of the matrix p1[[1,1]] is an ordered triple. To apply a color
function to the ordered triple, we can proceed in a variety of ways. One
approach is to convert the matrix to a list of ordered triples.

p2 = Flatten[p1[[1, 111, 1];

Short[p2]

{{54,113,109}, {52, 111,107}, {49, 108,104}, {55,110, 107},
((62200)), {63, 67,96}, {41,465, 74}, {40,45,74},{37,42,71}}

p2 is a list of ordered triples. Our function, b, adds the last two elements of
each triple and divides by two. We apply » to p2 with Map and name the
result p3. We convert p3 back to a 288 x 216 array using Partition. We use
ArrayPlot to visualize the result. In this case, the gray level used to shade
each cell is scaled by the corresponding entry of p4.

hi{x-,y—,z_}1 = (y +2)/2;

p3 = Map[h, p2];

p4 = Partition[p3, 216];

j2a = ArrayPlot[Reverse[p4]];

The builtin color gradients (refer to the ColorSchemes palette) are
functions of a single variable. Thus,

j2b = ArrayPlot[Reverse[p4],ColorFunction — “SolarColors”]
applies the SolarColors function to the array (Figure 5.35(b)) whereas,
i2c = ArrayPlot[Reverse[p4],ColorFunction —» “DarkBands”]
applies DarkBands to the array (Figure 5.35(c)).
Show[GraphicsRowl[{j2a, j2b, j2c}]]

The structure of a black-and-white jpeg differs from that of a color one. To
see so, we import a very old picture of the second author of this text, and
name the result p1. With Length, we see that p1 has three parts

Length[p1]
3
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FIGURE 5.35
Manipulating a color jpeg with ColorFunction

pl = Import[“littlejim.ipg"]; ]
Show[pl, ImageSize -+ Small]

p1[[1]] is also a list.

pL[[1, 1]] 7]

A very large output was g d. Here is a ple of it:

{(244, 193, 189, 174, 182, 173, 182, 173, 171, 164, 169, 169, 162, 169,
174, 160, 166, 168, 164, 176, 174, 171, 157, 160, 169, 156, 161,
176, 155, 160, 165, 162, 162, <«<362> , 66, 62, 61, 62, 66, 77, 82,
85, 100, 108, 110, 128, 139, 149, 150, 151, 153, 157, 162, 162, 160,
137, 149, 124, 50, 88, 109, 132, 144, 155, 183, 197, 207}, <<599: }

((show Less ) (‘Show More ) ('Show Full Qutput ) ((Set Size Limit... )

The data defining the graphic is contained in the list p1[[1,1]], which is a
600 x 428 array/matrix. The other parts of p1 describe the remaining parts
of the graphic.
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FIGURE 5.36
Using ListContourPlot along with various options to graphically represent a matrix

pil(1,1]]

pill2]]

ImageSize — {428,600}

p1li3]]

PlotRange — {{0, 428}, {0,600} }

In Figure 5.36, we illustrate the use of ListContourPlot along with various
options.

g1 = ListContourPlot[p1[[1, 1]], AspectRatio — Automatic]
g2 = ListContourPlot[p1[[1, 11],
AspectRatio » Automatic,ColorFunction —» “ThermometerColors”]
g3 = ListContourPlot[p1[[1, 1]], AspectRatio — Automatic,
ColorFunction - “DarkBands”]
g4 = ListContourPlot[p1[[1, 1]], AspectRatio — Automatic,
ColorFunction —» “SolarColors™]
Show[GraphicsGrid[{{g1, 92}, {93, g4}}1]1

Figure 5.37 shows variations obtained with ReliefPlot and ListContourPlot.

g2 = ReliefPlot[p1[[1, 1]], AspectRatio — Automatic,
ColorFunction - “GrayTones”,FrameTicks —» None];

g3 = ListContourPlot[p1[[1, 1]], AspectRatio — Automatic,
ColorFunction —» “GrayTones”,FrameTicks —» None];

g4 = ListContourPlot[p1[[1, 1]], AspectRatio — Automatic,

ContourStyle — Black, ContourShading — False,

FrameTicks — None];

Show[GraphicsRow[{g2, g3, g4}1]

ReliefPlot can help add insight to images, especially when they have geo-
graphical or biological meaning. For example, this jpeg shows the beginning
of a biological process of a cell.

p1 = Import[“071105fertx2c.jpg”];
Show[p1, ImageSize — Small]
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FIGURE 5.37
Manipulating an image with ListContourPlot and ReliefPlot

pl = Import["071105fertx2ec.ipg"]; '
Show[pl, ImageSize -» Small]

With Length, we see that p1[[1,1]] is a 500 x 400 array.

Length[p1[[1,1]]]
500
Length[p1[[1,1,1]1]
400

Viewing p1[[1,1]] as a 500 x 400 array, each entry is 1 x 3 array/vector. To
easily apply a function, f, that assigns a number to each ordered triple, we
use Flatten to convert the nested list/array p1[[1,1]] to a list of ordered triples
in p2.

p2 = Flatten[p1[[1, 111, 1];

Short[p2]

Length[p2]

{{194,215,158}, {189, 208, 144},
((199996)), {137, 66, 46}, {139, 68,48} }

200000
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FIGURE 5.38

Using ReliefPlot, ListContourPlot, and ListDensityPlot along with various options to
graphically represent a matrix

To apply our own color function to this data set, we convert the ordered
triples to some other form. For illustrative purposes, we convert each
ordered triple (x,y,2) in p2 to the number x + yz. The result is converted
back to a 500 x 400 array, with Partition in p3.

fly _1:=y[[11] + yI[21 " 2

p3 = Partition[Maplf, p2], 400];
Length[p3]

500

We then use ReliefPlot, ListContourPlot, and ListDensityPlot along with
various options to graph the result in Figure 5.38.

g1 = ReliefPlot[p3, AspectRatio — Automatic,
ColorFunction — “DarkRainbow”];
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g2 = ReliefPlot[p3, AspectRatio — Automatic,
ColorFunction —» “NeonColors”,Ticks — None,
Axes — None, FrameTicks — None]
g3 = ListContourPlot[p3, AspectRatio — Automatic,
ColorFunction — “NeonColors”,Ticks — None,
Axes — None, FrameTicks — None]
g4 = ListDensityPlot[p3, AspectRatio — Automatic,
ColorFunction — “NeonColors”, Ticks — None,
Axes — None, FrameTicks — None]

6.7 EXERCISES

1. Solve =3y —z—-3w=-1, -3x+3y-3z-3w=-1, 2x+2y—-z+ w=2.
2. Find the eigenvalues and eigenvectors of each matrix. Verify that your
0 4 3 5 -4
results are correct. (a) B = < ), M®MA=]-5 6 3|,and (©
2 =2
-3 2 =2
5 23 1 -4/3 -4 -4/3
0o -1/6 -2 -1/6 7  23/6
-1/2 -1/4 5/2 -1/4 1 3/4
4 172 0 1/2 -3 -1/2
0o -1 0 0 4 1
-1 1/6 -1 1/6 2 19/6
numerical results (use N) may be more meaningful than the exact
ones.
3. For each of the following matrices, find the eigenvalues, eigenvectors,
characteristic polynomial, and minimal polynomial:

A= Comment: In some cases,

(=10 0 0 -3 -2 -2 —4
0-1 0 0 2 1 2 4
@A=| o g_1 o ®B=| 5 5 1 4|

\ 0o 0 0-1 1 -1 -1 -3
3 -1 5 -5 3 0 1 -1
(-6 -9 10 -15 [-1-1 01
@C=| ¢ g_11 15| @d@D=1 5 1 |
8 10 —14 19 0 1 0-1

4. Let J,(A) denote the 7n x n matrix with A’s down the diagonal,

0’s below, and 1’s to the right of each A (for example, J;(\) =
Al1O0

OA 1], andletd = <
00A

J,AD O

0 Jm(A2)> denote the (12 + m) x (n +m)
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matrix with “blocks” J, and J,, and O’s elsewhere (for example,

A, 100 0
0A, 0 0 O

<J2((;\1) Jg\)>= 0 0 A, 1 O |). Find the eigenvalues, eigen-
3V2 0 0 0A, 1
000 0A,

vectors, characteristic polynomial, and minimal polynomial of J. Illus-
trate your results with examples.

. Find the unit normals to w = cos(4x” + 9y2). Illustrate the result graph-

ically.

. Evaluate gSC <eﬁ + x) dx + (Zy + Cosx) dy, where C is the boundary of

the region between y = x% and x = yz.

. Find the outward flux of the vector field

F(x,y,2) = (xp + x%pz) i+ (pz +20°2) j + (xz + xp2°) k

through the surface of the cube cut from the first octant by the planes
x=2,y=2,and z = 2.

. Verify Stokes’ theorem for the vector field

Fx,p,2)= (" —z)i+ (x+2%)j+ (x* -p)k

and S the portion of the paraboloid z = f(x,)) = 4 — (x2 + yz), z>0.

. The Fibonacci numbers satisfy the recurrence relation F, =F,_, +

F,_,, where F| = F, = 1. Provide a convincing argument that
Fn+1 Fn+2 Fn+k
Fn+k+1 Fn+le+2 ce Fn+2/e
Fn+k(k—1)+1 Fn+k(k—1)+2 s Fn+k2

Suggestion. Use Fibonacci.
The Boy surface has parametrization

\/Ecos2 tCcos2s + cosssin 2t

x(s, D) =
2 — V2sin3ssin 2t
ﬁ cos® £ cos 2s + cos s sin 2¢
yGs,D =
2 - \/§sin 3ssin 2t
3cos ¢
z(s, D) =

2 - \/isin 3ssin 2t
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FIGURE 5.39

On the left, umbilic torus; on the right Boy surface

11.

12.

and the umbilic torus has parametrization

x(s, 1) = (7 + cos(s/3 — 20) + 2cos(s/3 + D) sins
Y@, 0 = (7 + cos(s/3 — 20) + 2 cos(s/3 + 1)) cos s
z(s, ) = sin(s/3 — 2f) + 2sin(s/3 + ).

See Figure 5.39. Determine if either of these surfaces is orientable.

Using 0’s for dots and 1’s for dashes and omitting spaces and punctu-
ation, the following phrases are translated to Morse code as follows:
“S.0.§” becomes 0, 0, 0, 1, 1, 1, 0, 0, 0; “Save our souls” becomes 0, 0,
0,010,0,0,1,0,1,1,1,0,0,1,0,1,0,0,0,0, 1, 1, 1, 0, O,
, 0, 0, 0; “Mathematica is terrific” becomes 1, 1, 0, 1, 1, O,

1,0,1,1,0,0,1,0,1,0,0,1,0,0,0,0,0, 1, 0,0, 1, 0, 0,
1,0,0,0,1, 0, 1, 0; “Can I borrow the car” becomes 1
0,1,0,0,0,1,1,1,0,1,0,0,1,0,1,1, 1, 0, 1,
,0,1,0,0,1, 0, 1, 0; “Are aliens on earth” becomes

1,01,00,0,0,0,1,0,0,0,0,1, 1,1, 1, 0, 0, O,
, 0, 0; and “Work harder” becomes 0, 1, 1, 1, 1, 1, 0, 1, O,
1,0,1,0,0,0,0,0,1,0, 1,0, 1, 0, 0, 0, 0, 1, 0. Represent this array
graphically using (at least) three different methods. Challenge: Write a
function symboltomorse that converts strings of letters to Morse code.
Translate your favorite five quotes into Morse code and represent the
result graphically.

» YUy Ay

1,0,1
0,0,0
1,0,0
0,1,0
1,1,0

0,1

1,0

) ’

0

) )

) )

k] )

) bl >

—o o000 0
oRroRrO-O

1, 0,0
0,0, 1
0,0,0
,1,0,0

) ’

A given curvature function determines a plane curve: The curve C
parametrized by arc length with curvature k(s) has parametrization
r(s) = (x(s), ¥(s)), where

dx/ds = cos 0

dy/ds = sin 6

dl/ds = k

x(a) = ¢, y(@a) =d, 6(0) =0,

627
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You can often use NDSolve to solve system (5.27). Plot the curve
C for which k() =e*+¢é’ for -5<s<5 if x0)= Y(0) =60(0) =0.
Hint:

Inj4]= Clear[curvek, x];

curvek[k_, ss_: (s, =15, 15}, opts___] :=

Module[{numsol},
numsol = NDSolve [(x ' [s8] == Cos[&[s]], y'[s] = Sin[e6[s8]], @' [8] =k,

x[0] =0, y[0] =0, 8[0] = 0}, (x[s], yY[s8],©([8]}, s5];
ParametricPlot [Evaluate[(x[s], y(8])} /. numsol], ss, opts,
AspectRatio -+ Automatic]
]

Repeat the exercise given the following curvature functions (all for
—40 < s £ 40): k() =s+sins, k() =5/,(), k) =5/,(), k() =s sin
sin(s), k(s) = s sin” sin(s), and k(s) = s sinsin(s)|. See Figure 5.40.

13. Consider placing a tube around a curve (refer to tubeplot) but letting
the radius change:

1.0
05 @
1 1 1
-1.0 .5 05 1.0
051
-1.0

5F
4 F
3F

L
2F -3
1F

1 1 1 1
-15-1.0-05 0.5 1.0 1.5

FIGURE 5.40
You can generate stunning curves by specifying a curvature function
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seashell[y ][r ][t 6 ]:=v[t] +
rt(Cos[f]normal[y][t] + Sin[f]binormal[y][t])

(@) Use seashell with y(® = (t,t cos2t,t sin2f) to create Figure 5.41.
(b) Illustrate the curve with its Frenet frame field.

FIGURE 5.41

(@ A winding curve. (b) A seashell. (c) A winding curve in a seashell



CHAPTER

Applications Related to Ordinary

For more detailed
discussions regarding
Mathematica and
differential equations,
see references such as
Abell and Braselton’s
Differential Equations
with Mathematica [1].

and Partial Differential
Equations

Chapter 6 discusses Mathematica’s differential equations commands. The
examples used to illustrate the various commands are similar to examples
routinely done in a one- or two-semester differential equations course.

6.1 FIRST-ORDER DIFFERENTIAL EQUATIONS

Remark 6.1

6.1.1 Separable Equations

Because they are solved by integrating, separable differential equations
are usually the first introduced in the introductory differential equations
course.

Definition 1 (Separable Differential Equation). A differential equa-
tion of the form

S dy =g®at 6.D

is called a first-order separable differential equation.

We solve separable differential equations by integrating.

The command

DSolvely'[t]==f[t, y[t]], y[t], t]
attempts to solve y' = dy/dt = f(t,y) for y.

435
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ana |& DSobve - Wolfram Mathematica = ]
400 |8 el Dishe »| |6
P p— ol o s | s
DSolve

Ralva e, ¥, 1)
suives a defferenial equation far the fundtion ¥, with mdependent variatle r.

DEoLve [ [agh. oas ooba TR B b 2]
salves a kst of differentiad equations.

cBalva (s, ¥, (3, 3, )]
solves o partial differential cquation.

v

[ monE wronmATION

¥ EXAMBLES

¥ Basic Examples (7]
Sabve o dFerellal equatin:
il DSolvaly' [x] + y[x] = aBialz], yisl, &)
[ 1 1
oaptle {{ylx =+ e *€(1] « S a (-Conlx) « sialx)) }}
Indude & boundary condition;
inf2) = DSolve[{y ' [x] +¥[x] waBiaix], ¥[0] =0}, ¥[x], &]

I 1 1 k

oare {{yix] ==z a0 (-1 o*conlx] - " slalx]) }} |
Gt 8 "prn function® sstion far 1

inf1}+ DBoLval(y ' [x] +¥[x] = aBAa{x], Y0] = 0], ¥, x]

i 1 1
marne v -gunlc"l."ton[lxl. -~agtf-1ee"conixl - ¢ siaixiil}}

Example 6.1.1 Solve each of the following equations: (a) y' —y*sint=0; (b) y = ay( ! >

K, a >0 constant.
Solution (a) The equation is separable so we separate and then integrate:
1
de =sintdt
r |
de = | sintdt
1
——=-cost+C
y

1
ry= cost+C’
We check our result with DSolve.

sola = DSolve[y'[t] - y[t] 2Sin[t]==0, y[t], t]
{vt0 ~ —oriesm )

Observe that the result is given as a list. The formula for the solution is the second
part of the first part of the first part of sola.

sola[[1,1,2]]



expression /. x->y
replaces all
occurrences of x in
expression by y.
Table[alk],{k,n,m}]
generates the list a,,,
Ao Oy Ay
To graph the list of
functions {list} for
a < x < b, enter
Plot[list,{x,a,b}].

6.1 First-Order Differential Equations

FIGURE 6.1

Several solutions of y' — y*sinz =0

We then graph the solution for various values of C with Plot in Figure 6.1.

toplota = Table[solal[[1, 1, 2]]/.C[1] - -i,{i, 2, 10}]

1 1 1 1 1 1 1 1 1
{2 +Coslt]* 3+ Coslt]* 4 + Coslt] > 5+ Coslt]* 6 + Coslt]* 7 + Cos|t]* 8+ Cos[t]* 9+ Cos[t]* 10 + Coslt] }

Plot[Tooltip[toplota], {t, 0, 2Pi}, PlotRange — {0, 1},
AxesOrigin — {0, 0}]

(b) After separating variables, we use partial fractions to integrate:

1
/ 1= —
y ay( KJ’)

dy =dt

1
ay (1- %)

1(1 1 )
=+ —)=ar
al\y K-y

1
=~ (Inp|-In|K-y|) =C, +¢
Yy

——— =Ce™
K-y
_ CKe"
V= Cen =1

We check the calculations with Mathematica. First, we use Apart to find the partial

fraction decomposition of — I\
ay <1 - I—(y)
s1 = Apart[1/(ay(1-1/ky)),y]

1 1

ya ~ mk+yja

437
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Then, we use Integrate to check the integration.

s2 = Integrate[s1, y]

K ( Loghy] __ Log[—k+y1)
ka ka

Last, we use Solve to solve L (In|y| - In|K - y|) = ¢ for y.

Solve[s2==c + t,y]
ca + ta
{r- ===l

We can use DSolve to find a general solution of the equation

solb = DSolve[y'[t]l==ay[t](1 - 1/ky[t]), y[t], t]
eta +kC[1]
{w- e

as well as find the solution that satisfies the initial condition y(0) = y,, although
Mathematica generates several error messages because inverse functions are
being used so the resulting solution set may not be complete.

solc = DSolve[{y'[t]l==ay[t](1 - 1/ky[t]), y[0]==yO0}, V[t], t]

Solve::ifun : Inverse functions are being used by Solve, so some solutions may not
be found; use Reduce for complete solution information.))

1] — elakyO
y k -0+ e®y0

The equation )" =ay(1-1y) is called the logistic equation (or Verhulst
equation) and is used to model the size of a population that is not allowed to
grow in an unbounded manner. Assuming that y(0) > 0, then all solutions of the
equation have the property that lim,_, y(® = K.

To see this, we set « = K =1 and use VectorFieldPlot, which is contained in
the VectorFieldPlots package, to graph the direction field associated with the
equation in Figure 6.2.

Needs[“VectorFieldPlots™]
pvf1 = Show[VectorFieldPlot[{1, y(1 -y)}, {t, 0, 5}, {y, 0, 5/2},
ScaleFunction — (1&)], Axes — Automatic, AxesOrigin — {0, 0}];

The property is more easily seen when we graph various solutions along with the
direction field as done next in Figure 6.2.

toplot = Table[solc[[1, 1, 2])/{a = 1,k = 1,y0 — i/5},{i, 1, 12}];

sols = Plot[toplot, {t, 0, 5}, PlotStyle — GrayLevel[0], PlotRange — All];
pvf2 = Show[pvf1, sols];

Show[GraphicsColumn[{pvf1, pvf2}]]
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(Top) A typical direction field for the logistic equation. (Bottom) A typical direction field
for the logistic equation along with several solutions
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When Mathematica encounters inverse functions, it might choose the
incorrect branch to form a continuous solution to an initial-value problem.

Example 6.1.2 Solve dy/dt = sint cosy, y(1) = 3.

Solution When we use DSolve to solve the equation and the initial-value problem, Mathe-
matica warns us that inverse functions are being used.

sol = DSolve[y " [t] = 8in[t] Cos([y[t]]., Y[t]., ]

‘r 1 3
f1¥[t] -+ 2 ArcTan|Tanh : cl1 2Cos[t] 3]

soll = DSolve[{y ' [t] = Sin[t] Cos[y[t]], ¥[1] =3}, y[t], t] 11|

Solveifun: In snction

p 1 3 & 3
{4y[t] -+ 2 ArcTan|Tanh p 2 (2 ArcTanh Tan 3 + Cos[l 2Cos[t] bE |

From the direction field, we see that the solution satisfying y(1) = 3 is continuous
for (at least) 0 < ¢ < 47. However, the explicit solution returned by DSolve is not
the solution that is continuous on [0, 47]. See Figure 6.3(a).

Needs[“VectorFieldPlots™]
pvf1 = Show[VectorFieldPlot[{1, Sin[t]Cos[yl}, {t, 0, 4Pi}, {y, — 2Pi, 2Pi},
ScaleFunction — (1&), PlotPoints — 25], Axes — Automatic,
AxesOrigin — {0, 0}];
psol1 = Plot[y[t]/.sol1, {t, 0, 4Pi},
PlotStyle — {{GrayLevel[.5], Thickness[.01]}}];
discont = Show[pvfi, psol1]

To see the continuous solution, we use NDSolve to generate a numerical
solution to the initial value problem. If possible,

NDSolve is discussed NDSolve[{y'[t]==f[t,y[t]].y[t0]=yO0},y[t].{t,a,b}]

in more detail later in - 5tempts to numerically solve y' = (), ) =y, for a < t < b.
the chapter.
sol2 = NDSolve[{y'[t]==Sin[t]Cos[y[t]], y[1]==3}, y[t], {t, 0, 4Pi}]

{{ylt] — InterpolatingFunction[{{0., 12.5664}}, <>|[t]} }

In Figure 6.3(b), we see that the result returned by NDSolve is continuous on
[0, 477].

psol2 = Plot[y[t]/.so0l2, {t, 0, 4Pi},
PlotStyle — {{GrayLevel[.5], Thickness[.01]}}];
cont = Show[pvf1, psol2]
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Visualizing how changing ¢, and y, affects the solution that satisfies y(z,) =y,

With Manipulate, you can see how varying the initial conditions affects the solution.
See Figure 6.4. When you drag the locator points, the solution changes accordingly.

Manipulate[

sol1 = NDSolve[{y'[t]==Sin[t]Cos[y[t]], y[ptI[1, 111]==ptI[1, 2]1},

y[t], {t, 0, 4Pi}];
psol1 = Plot[y[t)/.sol1, {t, 0, 4Pi},

PlotStyle — {{GrayLevel[.7], Thickness[.01]}}];
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sol2 = NDSolve[{y'[t]==Sin[t]Cosly[t]], y[pt[[2, 1]]]==ptI[2, 2]]},
yIt], {t, 0, 4Pi}];
psol2 = Plot[y[t]/.sol2, {t, 0, 4Pi},
PlotStyle — {{GrayLevel[.7], Dashing[{0.02}], Thickness[.01]}}];
sol3 = NDSolve[{y'[t]==Sin[t]Cos[yIt]], y[ptII3, 111]==ptII3, 211}, yIt],
{t, 0, 4Pi}];
psol3 = Plot[y[t]/.sol3, {t, 0, 4Pi},
PlotStyle — {{GrayLevel[.4], Thickness[.01]}}];
initialpt = Graphics[Point[{pt}], PlotRange — {{0, 4Pi}, { - 2Pi, 2Pi}}];
Show[pvf1, psoli, psol2, psol3, initialpt, Axes — Automatic,
PlotRange — {{0, 4Pi}, { - 2Pi, 2Pi}}, AspectRatio — Automatic],
{pt, {{0, 0}, {2Pi, Pi}, {2Pi, - Pi}}}, Locator}
1

6.1.2 Linear Equations

Definition 2 (First-Order Linear Equation). A differential equation
of the form

d
a(t);’; +agty =[O, ©2)

where a,(t) is not identically the zero function, is a first-order linear
differential equation.

Assuming that a,(®) is not identically the zero function, dividing equa-
tion (6.2) by a,(®) gives us the standard form of the first-order linear
equation:

ay

il Dy = adb). 6.

Ji +p@®y = q9® 6.3

If g(®) is identically the zero function, we say that the equation is homoge-
neous. The corresponding homogeneous equation of equation (6.3) is

dy
- TPy =0. 6.9
Observe that equation (6.4) is separable:
dy B
2 PPy =0
1
—dy = -p® dt
by ly = =D

In|y|= —Jp(t)dt+C

y = Ce~ lPodr,



A particular solution
is a specific solution
to the equation that
does not contain any
arbitrary constants.

Y, is a solution to
the corresponding
homogeneous
equation, so

Yy +D®Y, =0.

6.1 First-Order Differential Equations

Notice that any constant multiple of a solution to a linear homogeneous
equation is also a solution. Now suppose that y is any solution of
equation (6.3) and Yp is a particular solution of equation (6.3). Then,

0 =3,) +p® (v -,) =y +p@y - (v, + p@)W,)
=q® - q® = 0.
Thus, y -y, is a solution to the corresponding homogeneous equation of
equation (6.3). Hence,
¥ _yp = Ce™ [p@at
- [pwar

y=Ce
V=Vt Vp

+.y])

where y, = Ce” Ip O That is, a general solution of equation (6.3) is y =

Yy +Y,, Where y, is a particular solution to the nonhomogeneous equation
and y, is a general solution to the corresponding homogeneous equation.
Thus, to solve equation (6.3), we need to first find a general solution
to the corresponding homogeneous equation, y,, which we can accom-
plish through separation of variables, and then find a particular solution,
Yy, tO the nonhomogeneous equation.

If y, is a solution to the corresponding homogeneous equation of
equation (6.3), then for any constant C, Cy,, is also a solution to the cor-
responding homogeneous equation. Therefore, it is impossible to find a
particular solution to equation (6.3) of this form. Instead, we search for
a particular solution of the form y, = u(f)y,, where u(®) is not a constant
function. Assuming that a particular solution, ¥y, to equation (6.3) has the
form y, = u(t)y,, differentiating gives us yp' =u'y, +uy,’ and substituting
into equation (6.3) results in

V' +p@y, =uwy, +uy, +pdOuy, = .
Because uyh' +pOuy, =u [yh' +p(t)yh] =u-0 =0, we obtain
uy, =q®
u' = yihq(t)
u' = elPOUg(p)
u= J el PO G(p dr
o)

¥ = udy, = Ce” 110" [ el g at.
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Because we can include an arbitrary constant of integration when evalua-

ting fejp (t)dtq(t) dt, it follows that we can write a general solution of
equation (6.3) as

y=e lpO@ J- el PO gip d. 6.5)
Alternatively, multiplying equation (6.3) by the integrating factor w() =

el PO gives us the same result:

d
ol Pwat 73; + pDel POy = gepel PO

dit <efp<t>dty> = g(Del PO

ejp(t)dty — J q® el POt gy

y=e [pO@ Jq(l‘)eI pDd gy

Thus, first-order linear equations can always be solved, although the
resulting integrals may be difficult or impossible to evaluate exactly.

Mathematica is able to solve the general form of the first-order equation,
the initial-value problem y' + p()y = (@), y(0) = y,,

psolve[y’ [t] + p[t] ¥[t] = q[t], ¥[t], t] 3
ylt] -» o PRI IR oy
ofpimiaiianiey (Fo Fpmizi axisl grera 1) axyz

bsolve[{y ' [t] +p[t] y[t] = q[t], ¥[0] = ¥0}, ¥[t], t]

]

""y.t._c._px:'ur.‘.::"pz:'ne-.
e sivad (O (ki TR
y0 o ol piaiiaiar [To T pmian wial g e 1211 axi2]
[Oopixiayaxie) [©-[F . prxia)) axga) G
off Sl qlK[2]] dK[2

as well as the corresponding homogeneous equation,

psolve[y' [t] + p(t] y[t] = 0, y[t], &] 1]

Fr , o 11 k|
[fy1e] » oF-PrIIOnS 6111} :|M

it] « [T -pIRiL] | mIs

yol} 1

although the results contain unevaluated integrals.



Example 6.1.3

Example 6.1.4

Solution

dy/dt =k (y - y;)
models Newtons law
of cooling: The rate

at which the
temperature, y(#),
changes in a
heating/cooling body
is proportional to the
difference between
the temperature of the
body and the constant
temperature, y,, of the
surroundings.

This will turn out to
be a lucky guess. If
there is not a solution
of this form, we
would not find one of
this form.

6.1 First-Order Differential Equations

(Exponential Growth). Let y = y(®» denote the size of a population at time ¢. If
» grows at a rate proportional to the amount present, y satisfies

dy

= = 6.6

2= ©6.6)
where « is the growth constant. If y(0)=y,, using equation (6.5) results in

y =y,e". We use DSolve to confirm this result.

DSolve[{y'[t]==a yt], y[0]==y0}, yIt], t]
{{vtl — e*y0}}

Solve each of the following equations: (a) dy/dt =k (y - y,), y(0) =y,, k and y,
constant; (b) y' — 2ty =t (C) ty’ — y = 4t cos 4t — sin 4.

(@) By hand, we rewrite the equation and obtain 3’ — ky = —ky,. A general solution
of the corresponding homogeneous equation ' — ky = 0 is y, = €. Because & and
—ky, are constants, we suppose that a particular solution of the nonhomogeneous
equation, y,, has the form y, = 4, where 4 is a constant.

Assuming that y, =4, we have yl’, =0, and substitution into the nonhomo-
geneous equation gives us

¥, — Ry, =—-KA =Ry, so A=y,

Thus, a general solution is y =y, +y, = ce” +,. Applying the initial condition
P(0) =y, results in y =y, + ¥, — ys)em.

We obtain the same result with DSolve. We graph the solution satisfying
2(0) =75 assuming that £ = —1/2 and y, = 300 in Figure 6.5. Notice that y® — y,
as t — oo.

sola = DSolve[{y'[t]==k(y[t] - ys), y[0]==y0}, yIi], t]
{{yltl — &y0 +ys—€"ys}}
Plot[y[t]/.sola/{k —» -1/2,ys — 300, y0 — 75}, {t, 0, 10}]
(b) The equation is in standard form and we identify p(#) = —2¢. Then, the integrating
2
factor is u(®) = e/?®% = ¢™". Multiplying the equation by the integrating factor, (),

results in
—lz / —tz d —[2 —tz
e (y-2tp=te or —(ye ):te .
dt
2 2 2
Integrating gives us ye™ =-1e™" +Cory=-1+cCe". We confirm the result with
DSolve.

DSolvely'[t] - 2ty[t]==t, y[t], t]
{{vo— -3 +e"cr}}
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300

250

200

150

FIGURE 6.5
The temperature of the body approaches the temperature of its surroundings

(¢) In standard form, the equation is y' — y/t = (4t cos 4t — sin 46)/t sO p(t) = —1/t.
The integrating factor is u(® = e/?®% = ™" = 1/¢, and multiplying the equation by
the integrating factor and then integrating gives us

1dy 1 1 .
i t_zy = t—2(4tcos4t— sin 4¢)
d (1 1
= <;y> = t—2(4tcos4t— sin 4%)
1 sin4t+C
7T
y =sindt+ Ct,

) 1
where we use the Integrate function to evaluate Jt—2(4tcos4t—sin4t)dt=

sin 4¢
t

Integrate[(4tCos[4t] - Sin[4t])/t" 2,1]
Sinj4t]
t

+ C.

We confirm this result with DSolve.

sol = DSolvely'[t] - y[t]/t==
(4tCos[4t] - Sin[4t])/t, y[t], t]
{{ylt] — tC[1] + Sin[4t]}}

In the general solution, observe that every solution satisfies y(0) = 0. That is, the
initial-value problem

dy 1 1

w P

has infinitely many solutions. We see this in the plot of several solutions that is
generated with Plot in Figure 6.6.

(4t cos4t —sin4p), p(0)=0
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Every solution satisfies y(0) =0

toplot = Table[sol/.C[1] — i, {i, -5, 5}];
Plot[y[t)/.toplot, {t, — 2Pi, 2Pi}, PlotRange — {- 2Pi, 2Pi},
PlotStyle — GrayLevel[0], AspectRatio — Automatic]

Application: Free-Falling Bodies

The motion of objects can be determined through the solution of first-order
initial-value problems. We begin by explaining some of the theory that is
needed to set up the differential equation that models the situation.

Newton’s Second Law of Motion: The rate at which the momentum
of a body changes with respect to time is equal to the resultant force
acting on the bod).

Because the body’s momentum is defined as the product of its mass and
velocity, this statement is modeled as

d (mv) = F,
dt o

where m and v represent the body’s mass and velocity, respectively, and
F is the sum of the forces (the resultant force) acting on the body. Because
m is constant, differentiation leads to the well-known equation
dv _
- =
If the body is subjected only to the force due to gravity, then its velocity is
determined by solving the differential equation
dv dv

m— =m, or — =g,
ar - "8 a8

F.
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Example 6.1.5

where g = ?52ft/s2 (English system) and g = 9.8m/s2 (metric system). This
differential equation is applicable only when the resistive force due to
the medium (such as air resistance) is ignored. If this offsetting resistance
is considered, we must discuss all of the forces acting on the object.
Mathematically, we write the equation as

d
m;l; = Z (forces acting on the object),

where the direction of motion is taken to be the positive direction. Because
air resistance acts against the object as it falls and g acts in the same
direction of the motion, we state the differential equation in the form

dv

mdv—mg+(F) or =
a —-F, e

-F,,
a mg — I'p

where Fy represents this resistive force. Note that down is assumed to be
the positive direction. The resistive force is typically proportional to the
body’s velocity, v, or the square of its velocity, v”. Hence, the differential
equation is linear or nonlinear based on the resistance of the medium taken
into account.

An object of mass m =1 is dropped from a height of 50 feet above the surface
of a small pond. While the object is in the air, the force due to air resistance
is v. However, when the object is in the pond, it is subjected to a buoyancy force
equivalent to 6v. Determine how much time is required for the object to reach a
depth of 25 feet in the pond.

Solution This problem must be broken into two parts: an initial-value problem for the object

above the pond and an initial-value problem for the object below the surface of
the pond. The initial-value problem above the pond’s surface is found to be

dv/dt =32 —v

v(0) =0.
However, to define the initial-value problem to find the velocity of the object beneath
the pond’s surface, the velocity of the object when it reaches the surface must be
known. Hence, the velocity of the object above the surface must be determined by

solving the initial-value problem above. The equation dv/dt =32 — v is separable
and solved with DSolve in d1.

Clear[v,y]
d1 = DSolve[{v'[t]==32 - v[t], v[0]==0}, v[t], 1]
{vit] — 327" (-1 +€")}}

In order to find the velocity when the object hits the pond’s surface, we must
know the time at which the distance traveled by the object (or the displacement
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FIGURE 6.7

(@) The object has traveled 50 feet when t=2.5. (b) After approximately 4 seconds,
the object is 25 feet below the surface of the pond

of the object) is 50. Thus, we must find the displacement function, which is done
by integrating the velocity function obtaining s(® = 32e™ + 32t — 32.

p1 = DSolve[{y'[t]==v[t]/.d1, y[0]==0}, y[t], t]
{{yitl — 32¢7" (1-€'+€'1)}}

The displacement function is graphed with Plot in Figure 6.7(a). The value of ¢
at which the object has traveled 50 feet is needed. This time appears to be
approximately 2.5 seconds.

Plot[{y[t]/.p1, 50}, {t, 0, 5}]

A more accurate value of the time at which the object hits the surface is
found using FindRoot. In this case, we obtain t = 2.47864. The velocity at this
time is then determined by substitution into the velocity function resulting in
v(2.47864) = 29.3166. Note that this value is the initial velocity of the object when
it hits the surface of the pond.

t1 = FindRoot[Evaluate[y[t]/.p1]==50, {t, 2.5}]
{t — 2.47864}

vl =di1/.t1

{{v[2.47864] — 29.3166}}

Thus, the initial-value problem that determines the velocity of the object beneath
the surface of the pond is given by

dv/dt = 32 — 6v
2(0) = 29.3166.

The solution of this initial-value problem is v(®) = 1;(’ +23.9833¢”, and integrating

to obtain the displacement function (the initial displacement is 0) we obtain s@) =
3.99722 — 3.99722¢™ + 8¢, These steps are carried out in d2 and p2.
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Example 6.1.6

Solution

d2 = DSolve[{v'[t]==32 - 6v[t], v[0]==v1[[1, 1, 2]]}, v[t], 1]
{{vlt] — e~ (23.9832 + 5.33333¢%) } }

p2 = DSolve[{y'[t]==v[t]/.d2, y[0]==0}, y[t], t]

{{ylt] — e7®'(-3.99721 + 3.99721e"" + 5.33333e"'t) } }

This displacement function is then plotted in Figure 6.7(b) to determine when the
object is 25 feet beneath the surface of the pond. This time appears to be near 4
seconds.

Plot[{y[t])/.p2, 25}, {t, 0, 5}]

A more accurate approximation of the time at which the object is 25 feet beneath
the pond’s surface is obtained with FindRoot. In this case, we obtain ¢ = 3.93802.
Finally, the time required for the object to reach the pond’s surface is added to the
time needed for it to travel 25 feet beneath the surface to see that approximately
6.41667 seconds are required for the object to travel from a height of 50 feet
above the pond to a depth of 25 feet below the surface.

t2 = FindRoot[Evaluate[y[t]/.p2]==25, {t, 4}]
{t — 3.93802}

t1[[1, 211 + t2[[1, 2]]

6.41667

6.1.3 Nonlinear Equations

Mathematica can solve a variety of nonlinear first-order equations that are
typically encountered in the introductory differential equations course.

Solve each: (a) (cosx+2xe’)dx+ (siny+x’e” —1)dy=0; () (»°+2xy)
dx — xzdy =0.
(@) Notice that (cosx+2xe”)dx+ (siny+a’e” —1)dy=0 can be written as

dy/dx = — (cosx + 2xe”)/(sinx +x’e” — 1). The equation is an example of an exact
equation. A theorem tells us that the equation

M(x,y)dx + N(x,)dy = 0

is exact if and only if dM/dy = IN/ox.

m = Cos[x] + 2x Expl[y];

n = Sin[y] + x2 Exp[y]-1;
D[m, y]

D[n, x]

2e¥x

2e¥x
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We solve exact equations by integrating. Let F(x,y) = C satisfy (y cosx + 2xe”)
dx + (siny +a’e” = 1) dy = 0. Then,

F(x,y) = I (cosx + 2xe”) dx = sinx + x’e” + g(9),

where g(y) is a function of y.

f1 = Integrate[m, x]
e¥x? + Sin[x]
We next find that g'(y») = siny — 1 s0 g(») = — cosy — y. Hence, a general solution
of the equation is
sinx +x?e” — cosy —y = C.

f2 = D[f1,y]

e¥x?

f3 = Solve[f2 + c==n, c]
{{c — —1+Sin}y]}}
Integrate[f3[[1, 1, 2]], y]
—y — Cosly]

We confirm this result with DSolve. Notice that Mathematica warns us that
it cannot solve for y explicitly and returns the same implicit solution obtained
by us.

mf = m/.y - y[x];
nf = n/.y - y[x];
sol = DSolve[mf + nfy'[x]==0, y[x], x]
Solve::tdep : The equations appear to involve the variables to be solved for in
an essentially non-algebraic way.))
Solve [e"x? - Cosly[x]] + Sin[x] — y[xI==C[1], y[X]]

Graphs of several solutions using the values of C generated in cvals are graphed
with ContourPlot in Figure 6.8.

sol2 = sol[[1, 1])/.y[x] = ¥
e¥x? —y—Cosly] + Sin[x]

cvals = Table[sol2/.{x —» -3Pi/2,y — i}, {i, 0, 6Pi, 6Pi/24}];
ContourPlot[sol2, {x, — 3Pi, 3Pi}, {y, 0, 6Pi}, Contours — cvals,
ContourShading — False, Axes — Automatic, Frame — False,
AxesOrigin — {0, 0}, ContourStyle — GrayLevel[0]]

(b) We can write (y* +2xy) dx — x’dy =0 as dy/dx = (y* + 2xy)/x*. A first-order
equation is homogeneous if it can be written in the form dy/dx = F (y/x). Homo-
geneous equations are reduced to separable equations with either the substitution
9 = ux or x = vy. In this case, we have that dy/dx = (y/x)° + 2(y/x), so the equation
is homogeneous.
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FIGURE 6.8

(a) Graphs of several solutions of (cosx + 2xe”) dx + (siny+x2e3’ - 1) dy =0. (b)

Graphs of several solutions of (yz + 2xy> dx - x*dy =0

Let y = ux. Then, dy = udx + xdu. Substituting into (yz +200p) dx — Xdy=0
and separating gives us
(y2 + 2xy) dx — x*dy =0
(5% + 2ux?) dx — x*(u dx + x du) = 0
(e + 2u) dx — (udx +xdu) = 0
(e + u) dx = xdu
1 1
——du = —dx.
um+1) X
Integrating the left- and right-hand sides of this equation with Integrate,
Integrate[1/(u(u + 1)), u]
Log[u]-Log[1 + u]
Integrate[1/x, x]
Log[x]
exponentiating, resubstituting « = y/x, and solving for y gives us

Inju| -In|u+1|=Inx]+C

]

=Cx
u+1
Y
X
=Cx
J—/+1
X
X’
y

T1-ox
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sol1 = Solve[(y/x)/(y/x + 1)==cX, y]
2
y--=5

We confirm this result with DSolve and then graph several solutions with Plot in
Figure 6.8(b).

sol2 = DSolve[y[x]" 2 + 2x y[x] - x 2 y'[x]==0, y[x], X]

{0 = o

toplot = Table[sol2[[1, 1, 2]])/.C[1] =i, {i, — 5, 5}];
Plot[Tooltip[toplot], {x, - 5, 5}, PlotRange — {-5, 5},
AspectRatio — Automatic]

6.1.4 Numerical Methods
If numerical results are desired, use NDSolve:
NDSolve[{y'[t]==ft, y[t]], y[t0]==YyO0}, y[t], {t, a, b}]

attempts to generate a numerical solution of dy/dt = f(t,y), y (to) =9, valid
fora<t<b.

8oe [£ NDSolve - Wolfram Mathematica o
4B [@E retwDsoe »| @
NDSolve Updated in 6

KDEOLVE [eqne, ¥y (X Keur Kesc]]
finds a numarical soluticn to the ordinary difforential equations agns for tha function y with the independant
wariable x in the range L, to .

NDSalve [mms, ¥, (T Smar Tmahe (Fe bmine bl |
finds & numerical solution to the partial differential equations egns.

HDSOLve [egnss (¥iv ¥ar ool o (X Negms Kaml]
fings numerical salutions for the functions ¥,

¥ EXAMPLES

¥ Basic Examples
Sotve a first-order ordinary diferential equation.
= 8= wpSolvel(y' [2] == y(x] Coslx ¢ ¥[=]1, ¥[0] == 1}, ¥, {x, 0, 30}]

owrij= [ [y -+ InterpolatingPunction[[[0., 30,3}, <=1}}

Use the solution in @ plet:

- Plot[Evaluate[y(x] /. 8], (x, 0, 30}, PlotRange - All]
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Example 6.1.7 Consider dy/dt= (£ -y*)siny, p(0)=-1. (a) Determine p(1). (b) Graph y®,

-1<t<10.

Solution We first remark that DSolve can neither exactly solve the differential equation y’ =

Example 6.1.8

Remark 6.2

(£ =) siny nor find the solution that satisfies y(0) = —1.

sol = DSolve(y’ [t] = (£72 - y[t] “2) Sin[y[t]], ¥[t], £] 3]
Solve:tdep: The equations appear to involve the variables to be solved for in an essentially non-algebraic way. == ’ |
DSolve(y' [t] = Sin[y[t]] (t? -y[t]?), yIt], t] '|
sol = DSolve[(y ' [t] = (£*2-y[t] “2) 8in[y[t]], ¥[0] = -1}, y[t], ¢] 3]

Solve::tdep : The equations appear to involve the variables to be solved for in an essentially non-algebraic way. » i | |

psolve[{y [t] = Sin[y[t]] (t7-y[t]®), ¥[0] = -1}, y[t], t] I‘

However, we obtain a numerical solution valid for 0 < # < 1000 using the NDSolve
function.

sol = NDSolve[{y [t]==(t"2- y[t]* 2)Sin[y[t]], y[0]==- 1}, yIt],
{t1 -1 ’ 10}]
{{ylt] — InterpolatingFunction[{{-1.,10.}}, <>][t]}}

Entering sol /.t->1 evaluates the numerical solution if ¢ = 1.

sol/.t—1
{{y[1] — -0.766013}}

The result means that y(1)= - 0.766. We use the Plot command to graph the
solution for 0 < ¢ < 10 in Figure 6.9.

Plot[y[t]/.sol, {t, -1, 10}]

(Logistic Equation with Predation). Incorporating predation into the logistic

, 1 . d 1 .
equation, y' = ay <1 - }y), results in ;J; =ay <1 - I_<y> — P(y), where P(y) is
a function of y describing the rate of predation. A typical choice for P is P(y) =
@)’/ +y) because P(0) =0 and P is bounded above: lim,_, P(y) < co.

1—00

Of course, if lim,_,, y(® = Y, then lim,_,, P() = aY’/(b* + Y*). Generally, however,
lim, ., P(») # a because lim, ¥ < K # co, for some K > 0, in the predation
situation.

Ifa=1,a=5,and b =2, graph the direction field associated with the equation
as well as various solutions if (a) K =19 and (b) K = 20.
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FIGURE 6.9

Graph of the solution to ) = (t2 —y2> siny, p(0) = -1

. ) dy 1 Syz
Solution (a) We define eqgn[k] to be =7 <1 Ky) T
Needs[“VectorFieldPlots™]
eqn[k_] = y'[t]==y[t](1 - y[t}/k) - 5y[t] * 2/(4 + y[t] * 2);

We use VectorPlotField to graph the direction field in Figure 6.10(@) and then
the direction field along with the solutions that satisfy y(0) = 0.5, »(0) = 0.2, and
2(0) = 4 in Figure 6.10(b).

pvf19 = Show[VectorFieldPlot[{1, y(1-1/19y) -5y 2/(4 + y*2)},{t, 0, 10},
{y, 0, 6}, ScaleFunction — (1&), PlotPoints — 25],
Axes — Automatic, AxesOrigin — {0, 0}];
numsols = Map[NDSolve[{eqn[19], y[0]==#}, y[t], {t, O, 10}]&,
{0.5,2,4}];
solplot = Plot[y[t]/.numsols, {t, 0, 10}, PlotRange — All,
PlotStyle — {{GrayLevel[.4], Thickness[.01]}}];
Show[GraphicsRow[{pvf19, Show[pvf19, solplot]}]]

In the plot, notice that all nontrivial solutions appear to approach an equilibrium
solution. We determine the equilibrium solution by solving 3’ = 0

eqn[19][2]]
u Sy[t]
(1 - %> -2
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FIGURE 6.10

(a) Direction field and (b) direction field with three solutions

FIGURE 6.11

(a) Direction field and (b) direction field with several solutions

Solve[eqn[19.][[2]]==0, y[t]]

{{vlt]

> 0.}, {ylt]-> 0.923351}, {y[t] = 9.03832 — 0.785875 I},

{ylt]-> 9.03832 + 0.785875 1} }}

to see that it is y = 0.923.

(b) We carry out similar steps for (b). First, we graph the direction field with

PlotVectorField in Figure 6.11(a).

Show[VectorFieldPlot[{1, y(1-1/20y) -5y 2/(4 + y2)},{t,0, 10},

{y, 0, 20}, ScaleFunction — (1&), PlotPoints — 25],

pvf20

’ 0}’

Axes — Automatic, AxesOrigin — {0
AspectRatio — 1/GoldenRatio];

We then use Map together with NDSolve to numerically find the solution satisfying

.,40 and name the resulting list numsols. The functions

0.54, fori=1, 2,..
contained in numsols are graphed with Plot in solplot.

2y

{t, 0, 10}]&,

yltl,

==#}’

y[0]

numsols = Map[NDSolve[{eqn[20]

Table[0.5i, {i, 1, 40}1];
solplot = Plot[y[t]/.numsols, {t, 0, 10}, PlotRange — All,

PlotStyle — {{GrayLevel[.4], Thickness[.005]}}];
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Last, we display the direction field along with the solution graphs in solplot using
Show in Figure 6.11(b).

Show[GraphicsRow[{pvf20, Show[pvf20, solplot]}]]

Notice that there are three nontrivial equilibrium solutions that are found by solving
y' =0.

Solve[eqn[20.][[2]]==0, y[t], t]
{{ylt] — 0.}, {y[t] — 0.926741}, {y[t] — 7.38645}, {y[t] — 11.6868}}

In this case, y = 0.926 and y = 11.687 are stable, whereas y = 7.386 is unstable.

6.2 SECOND-ORDER LINEAR EQUATIONS

We now present a concise discussion of second-order linear equations,
which are extensively discussed in the introductory differential equations
course.

6.2.1 Basic Theory

The general form of the second-order linear equation is
d’y dy
az(t)ﬁ + al(t)a +a,®y =f®, ©.7D
where a,(®) is not identically the zero function.

The standard form of the second-order linear equation (6.7) is

2

dy
dr?
The corresponding homogeneous equation of equation (6.8) is

d
+ p(t);yt + gty = fD). 68

2

day
dr?
A general solution of equation (6.9) is y = ¢, ¥, + ¢, ¥,, where

d
+p<t)§t +q(ty =0. 6.9

1. y, and y, are solutions of equation (6.9), and
2. y, and y, are linearly independent.

If y, and y, are solutions of equation (6.9), then y, and y, are linearly
independent if and only if the Wronskian,

Y )2

! ’
1 2

W ({1.02}) = =y, = 'Y (6.10)

is not the zero function. If y; and y, are linearly independent solutions of
equation (6.9), we call the set S = {y,,7,} a fundamental set of solutions
for equation (6.9).
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A particular solution,
Vps is a solution that

Let ¥y be a general solution of equation (6.8) and ¥, be a particular
solution of equation (6.8). It follows that y — Y, is a solution of equation

does not contain any (6.9),s50y — Yy =Yy, Where y, is a general solution of equation (6.9). Hence,

arbitrary constants.

Y=Y, +y, That is, to solve the nonhomogeneous equation, we need a
general solution, y,, of the corresponding homogeneous equation and a
particular solution, y,,, of the nonhomogeneous equation.

6.2.2 Constant Coefficients

Suppose that the coefficient functions of equation (6.7) are constants:
a,D=a, a®) =0, and a,(®) =c, and that f(#) is identically the zero
function. In this case, equation (6.7) becomes

ay" +by +cy=0. 6.11D)

Now suppose that y = ekt, k constant, is a solution of equation (6.11). Then,
3 = ke and y"" = k*¢". Substitution into equation (6.11) then gives us

ay”" + by + cy = ak’e” + bke® + ce”'
= e (ak’ + bk +c) = 0.
Because e # 0, the solutions of equation (6.11) are determined by the

solutions of
ak®> +bk +c=0, 6.12)

called the characteristic equation of equation (6.11).
Theorem 1. Let k, and k, be the solutions of equation (6.12).

1. If ky # k, are real and distinct, two linearly independent solutions
of equation (6.11) are y, = ' and V) = ekzt; a general solution of
equation (6.11) is

— Rt Rl
y=c e + e

2. If ky = k,, two linearly independent solutions of equation (6.11) are
"= ' and V= tek"; a general solution of equation (6.11) is

y =c e + ot

3. If Ry, =axPi, B#0, two linearly independent solutions of equa-
tion (6.11) are y, = e cos Bt and Yy = e sinpt; a general solution of
equation (6.11) is

¥y =e" (c, cosBr+c,sin i) .
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Solution
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Solve each of the following equations: (a) 6y +y =2y =0; (b) y"+2) +y=0;
(€) 16" +8y + 145y =0.

(@) The characteristic equation is 6k* +k -2 =Bk +2)2k - 1) =0 with solutions
k=-2/3 and k = 1/2. We check with either Factor or Solve.

Factor[6k"2 + k-2]
(=1 +2K)(2 + 3K)
Solve[6k’2 + k-2==0]

{{k= -5} {k=2})

Then, a fundamental set of solutions is {e™*"*, ¢”*

} and a general solution is

— ¢ o2 /2
y=ce +c,e’".

Of course, we obtain the same result with DSolve.

Clear[y]
DSolve[6y"[] + y'[t] - 2y[t]==0, y[t], t]
{{ylt] — e~?"C1] + e"*C[2]} }

(o) The characteristic equation is &* +2k+1 = (k+ 1)* = 0 with solution & = —1,
which has multiplicity two, so a fundamental set of solutions is {e™, 7™} and a
general solution is

_ -t —t
y=ce +cle .

We check the calculation in the same way as in (a).

Factor[k2 + 2k + 1]

Solve[k2 + 2k + 1==0]
DSolve[y"[t] + 2y'[t] + y[t]==0, y[t], ]
(1 +k?

{{k— -1} {k——1}}

{{ylt] — e"'C[1] + e 'tC[2]}}

(c) The characteristic equation is 16%k> + 8% + 145 = 0 with solutions Ry, = —% +

34, so a fundamental set of solutions is {e"“

solution is

cos3t, e "4 sin St} and a general

y=e""(c,cos3r+c,sin3t).
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The calculation is verified in the same way as in (a) and (b).
Factor[16k” 2 + 8k + 145, GaussianIntegers — True]
(1 =12i) + 4k)(1 + 12i) + 4k)
Solve[16k”" 2 + 8k + 145==0]
({k— -1-8) fk— -1 +a})
DSolve[16y"[t] + 8y'[t] + 145y[t]==0, y[1], t]
{{ylt] — e""*C[2]Cos[3t] + e~"*C[1]Sin[31]} }

d’y dy dy
Example 6.2.2 Solve 64— + 16— + 1025y =0, (0) = 1, —(0) = 3.
p olve 64— + 16— + 1025y =0, @ =1, = (O =3
Solution A general solution of 64" + 16y’ + 1025y =0 is y = e””* (¢, sin 4 + ¢, cos 4t).

gensol = DSolve[64y"[t] + 16y’[t] + 1025y[t]==0, y[t], t]
{{ylt] — e""8C[2]Cos[4t] + e~"*C[1]Sin[41]} }

Applying (0) = 1 shows us that ¢, = 1.

el = gensol[[1,1,2]})/.t—>0
Cl2]

Computing y'

D[y[t]/.gensol[[1]], t]
4e~"8C[1]Cos[4t] - g6 ""°C[2]Cos[4t] - fe~"4C[1]Sin[4t] - 4e~"°C[2]Sin[41]

and then »'(0), shows us that —4c, - ¢, = 3.

e2 = D[y[t)/.gensol[[1]],t)/.t -0
4C[1]- 42

Solving for ¢, and ¢, with Solve shows us that ¢; = =25/32 and ¢, = 1.

cvals = Solve[{e1==1, e2==3}]
{{0[1] — @,C[Z] — 1}}

—1/8 (

Thus, y=e > sin 4% + Cos4t) which we graph with Plot in Figure 6.12.

sol = y[t)/. gensol[[1]]/ cvals[[1]]
e~ "8Cos[4t] + Ze"8Sin[41]
Plot[sol, {t, 0, 8P|}]
We verify the calculation with DSolve.

DSoIve[{64y”[t] + 16y’'[t] + 1025y[t]==0, y[0]==1, y'[0]==3}, y[t], t]
{{ylt] — e "¥(32Cos[41] + 25Sin[4t) } }
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The solution to the initial-value problem tends to 0 as t — oo

Application: Harmonic Motion

Suppose that a mass is attached to an elastic spring that is suspended from
a rigid support such as a ceiling. According to Hooke’s law, the spring
exerts a restoring force in the upward direction that is proportional to the
displacement of the spring.

Hooke’s Law: F = ks, where k >0 is the constant of proportionality
or spring constant, and s is the displacement of the spring.

Using Hooke’s law and assuming that x(#) represents the displacement of
the mass from the equilibrium position at time £, we obtain the initial-value

problem
2

mdx+kx—0 x(0) =« dx(O)‘ﬁ
dr v T ar T

Note that the initial conditions give the initial displacement and velocity,
respectively. This differential equation disregards all retarding forces acting
on the motion of the mass and a more realistic model that takes these
forces into account is needed. Studies in mechanics reveal that resistive
forces due to damping are proportional to a power of the velocity of the
motion. Hence, Fyp = adx/dt or F, = a (dx/dt)3 , Where a > 0, are typically
used to represent the damping force. Then, we have the following initial-
value problem assuming that Fy = a dx/dt:

T e a® o x=a, Zoy=p
dar dt - T ar T

461
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Problems of this type are characterized by the value of a’ - dmk as
follows:

1. @’ - 4mk > 0. This situation is said to be overdamped because the
damping coefficient a is large in comparison to the spring constant k.

2. a° —4mk =0. This situation is described as critically damped
because the resulting motion is oscillatory with a slight decrease in
the damping coefficient a.

3. a° — 4mk < 0. This situation is called underdamped because the
damping coefficient a is small in comparison with the spring con-
stant &.

Example 6.2.3 Classify the following differential equations as overdamped, underdamped, or crit-
ically damped. Also, solve the corresponding initial-value problem using the given
initial conditions and investigate the behavior of the solutions.

2

d x dx ) dx
- — 41 = tt = na — =1;
(a) T +8dt + 16x = 0 subject to x(0) = 0 and dt(o) ;
d*x  _dx dx
b) — — +4x = 0 subject to x(0) =1 and — () = 1; and
()dt2+5dt+ up) x(0) dt()
d*x  dx . dx
- — 1 = 1t = na — =1.
(©) T + - + 16x = 0 subject to x(0) = 0 and p (V)

Solution For (a), we identify m =1, a=8, and & = 16 so that a® — 4mk = 0, which means
that the differential equation x” + 8x" + 16x = 0 is critically damped. After defining
del, we solve the equation subject to the initial conditions and name the resulting
output sol1. We then graph the solution shown in Figure 6.13(a).

Clear[de1, x, t]

de1 = x"[t] + 8X'[t] + 16x[t]==0;

sol1 = DSolve [{de1, x[0]==0, x'[0]==1}, x[t], 1]
{{xttl — e~ "t}}

p1 = Plot[sol1[[1, 1, 2]], {t, 0, 4}]

For (b), we proceed in the same manner. We identify m =1, a=5, and k=4
so that a® — 4mk = 9 and the equation x” + 5x" + 4x = 0 is overdamped. We then

0.08 1.0 0.20
08 0.15
0.06 0.10

0.6
0.04 0.4 0.05 1 A 1 L
0.02 0.2 -0.05 R
I L L 1 l L L 1 -0.10

FIGURE 6.13
(@) Critically damped motion. (b) Overdamped motion. (c) Underdamped motion
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define de2 to be the equation and the solution to the initial-value problem obtained
with DSolve, sol2, and then graph x(#) on the interval [0, 4] in Figure 6.13(b).

Clear[de2, x, ]

de2 = x"[t] + 5X'[t] + 4x[t]==0;

sol2 = DSolve [{de2, x[0]==1, x'[0]==1}, x[t], t]
{{xit] — Je " (-2+5e™)}}

p2 = Plot[sol2[[1, 1, 2]], {t, 0, 4}]

For (c), we proceed in the same manner as in (a) and (b) to show that the equation
is underdamped because the value of ¢” — 4mk is —63. See Figure 6.13(c).

You can also use Manipulate to help you visualize harmonic motion. With

Manipulate[
sol = DSolve[{mx"[t] + ax'[t] + kx[t]==0, x[0]==0, x'[0]==1}, x[t], t];
Plot[x[t])/.sol, {t, 0, 5}, PlotRange — {-1/2, 1/2}, AspectRatio — 1],
{{m, 1}, 0, 5}, {{a, 8}, 0, 15, 1}, {{k, 16}, 0, 20, 1}]

we generate a Manipulate object that lets us investigate harmonic motion
for various values of m, a, and k if the initial position is zero (x(0) = 0)
and the initial velocity is one '(0) = 1). See Figure 6.14. (Note that m is
centered at 1, @ at 8, and k& at 16.)

m D m =D

a D a{]

K 0 k ¢
0.4+ 0.4 |
0.2} 02k

S | I AWAWAWAWAWAW)
IR | RVAVAVAVAVAYE

-02F —02F
-04 -04
FIGURE 6.14

Using Manipulate to investigate harmonic motion
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Example 6.2.4

Solution

No element of F, is
contained in § and
no element of F, is
contained in S.

We do not use capital
letters so as to avoid
any confusion with
built-in Mathematica
commands.

6.2.3 Undetermined Coefficients

If equation (6.7) has constant coefficients and f(#) is a product of terms
t", e"t, a constant, cos Bt, and/or sin 3¢, B constant, undetermined coef-
ficients can often be used to find a particular solution of equation (6.7).
The key to implementing the method is to judiciously choose the correct
form of y,,.

Assume that a general solution, y,, of the corresponding homogeneous
equation has been found and that each term of f(¢¥) has the form

t"e“cosfBt  or  t"e*sinft.
For each term of f(#), write down the associated set
F={t"e" cos Bt,t"e" sin Br, """ e cos Br, """ sin B, ..., e cos Bt, e sin Bz, |.

If any element of F is a solution to the corresponding homogeneous equa-
tion, multiply each element of F by #”, where m is the smallest positive
integer so that none of the elements of #"F are solutions to the corre-
sponding homogeneous equation. A particular solution will be a linear
combination of the functions in all the F’s.

-
Solve 4d—t32} —y=t-2-5cost—e "

The corresponding homogeneous equation is 4y” —y = 0 with general solution

-2 12
Yp=ce e,

DSolve[4y"[t] - y[t]==0, y[t], t]
{{yltl — e”*Cl1] +e~"*C[2]} }

A fundamental set of solutions for the corresponding homogeneous equation is
s={e™* ¢"*}. The associated set of functions for £ — 2 is F, = {1, #}, the associated
set of functions for —5 cost is F, = {cos¢,sint}, and the associated set of functions
for —e™* is F; = {e™*}. Note that e™”* is an element of § so we multiply F; by ¢
resulting in tF; = {te'”z}. Then, we search for a particular solution of the form

¥, =A+Bt+Ccost+Dsint + Ete™”?,

where A, B, C, D, and E are constants to be determined.

yp[t-] = a + bt + c Cos|[t] + d Sin[t] + et Exp[-1/2]
a+bt+ee ¥?t+cCos[t] + d Sin[t]

Computing y, and y,
dyp =yp'[t]
b+ee ?-lee "t +dCosft]-cSin[t]

d2yp=yp"[t]
-—ee "+ lee "t-cCoslft]-d Sinft]
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and substituting into the nonhomogeneous equation results in

—A - Bt-5Ccost—5Dsint — 4Ee™"* =t — 2 - 5cost — e "%

eqn = 4yp”[t] - yp[t]l==t-2-5Cos[t] - Exp[-1/2]
-a-bt-ee”"’t-cCost]-dSin[t] + 4 (—ee™"* + $ee~"*t—cCos[t] - dSin[t]) ==
—2 —e "2 4+t—5Coslt]

Equating coefficients results in
-A=-2 -B=1 -5C=-5 -5D=0 —-4E = -1

S0A=2,B=-1,C=1,D=0, and E = 1/4.

cvals = Solve[{-a==-2, ~b==1, -5¢==-5, -5d==0, -4e==-1}]
{{fa=2b—-1,c—1,d—-0e— ]—1}}

, is then given by y, =2 - t+cost+ 1te™?

yp[tl/.cvals[[1]]
2-t+1e "t + Coslt]

and a general solution is given by

1/ —1/2

—t/2 1/2 1

Y=Y, tY,=ce " +ce +2—t+cost+Zte
Note that —A4 — Bt — S5Ccost — 5Dsint — 4Ee”"* =t — 2 = Scost — e " is true for all
values of ¢. Evaluating for five different values of ¢ gives us five equations that we

then solve for 4, B, C, D, and E, resulting in the same solutions as already obtained.

el =eqn/.t—0

—a-c+4(-c-e)==-8

e2=eqn/.t—1;

e3 =eqn/.t— 2;

e4d=eqn/t—3;

e5=eqn/.t—4;

Solve[{el, e2, 3, e4, e5}]//Simplify
{{b—-1,d—-0a—2c—1e— %}}

Last, we check our calculation with DSolve and Simplify.

DSolve[4y"[t] - y[t]==t - 2-5Cos[t] - Exp[-1/2], y[t], t]//Simplify
{{ylt] — $e72 (1-4e"(-2 + 1) + t + 4€'C[1] + 4C[2] + 4e"*Coslt]) } }
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Example 6.2.5 Solve y" + 4y = cos 2¢, (0) = 0, y'(0) = 0.

Solution A general solution of the corresponding homogeneous equation is y, = ¢, cos 2t +c,
sin2¢. For this equation, F = {cos2t,sin 2t}. Because elements of F are solutions
to the corresponding homogeneous equation, we multiply each element of F by ¢
resulting in ¢F = {¢cos 2¢, ¢sin 2t}. Therefore, we assume that a particular solution
has the form

W= At cos 2t + Bt sin 2t,

where A and B are constants to be determined. Proceeding in the same manner
as before, we compute y), and y,

yp[t-] = atCos[2t] + b tSin[2t]

yp'[t]

yp"[1]

atCos|2t] + bt Sin[21]

aCos|2t] + 2b tCos[2t] + b Sin[2t] —2at Sin[21]
4b Cos[2t] - 4at Cos[2t] —4a Sin[2t] — 4bt Sin[21]

and then substitute into the nonhomogeneous equation.
eqn = yp"[t] + 4yp[t]==Cos[21]
4b Cos[2t] —4at Cos[2t] —4a Sin[2t] —4b t Sin[2t] + 4(at Cos[21] + bt Sin[2t])
==Cos[2]
Equating coefficients readily yields A = 0 and B = 1/4. Alternatively, remember that
—4A sin 2t + 4B cos 2t = cos 2t is true for all values of ¢. Evaluating for two values of

t and then solving for A4 and B gives the same result.

el =eqn/t—>0

e2=eqn/t—>1
cvals = Solve[{e1, e2}]
4b==1

—4aCos[2] + 4b Cos[2] - 4a Sin[2] - 4b Sin[2] + 4(a Cos[2] + b Sin[2])==Cos[2]
{{ta=0b—3}}

It follows that y, = {#sin2z and y = ¢, cos 2t + ¢, sin 2t + ;sin 2¢.

yp[t)/.cvals[[1]]

1tSin[2t]

y[t-] = c1Cos[2t] + c2Sin[2t] + 1/4tSin[2t]
c1 Cos[2t] + c2 Sin[2t] + 3t Sin[2t]
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| AAAA | . .
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The forcing function causes the solution to become unbounded as ¢ — oo

Applying the initial conditions after finding y’

Y[t

2c2 Cos[2t] + $tCos[2t] + 1Sin[2t] - 2¢1Sin[21]
cvals = Solve[{y[0]==0, y'[0]==0}]

{{01 —0,c2 — O}}

results in y = %tsinZt, which we graph with Plot in Figure 6.15.

y[t)/.cvals[[1]]
11Sin[21]
Plot[y[t]/.cvals, {t, 0, 16Pi}]

We verify the calculation with DSolve.

Clear[y]

DSolve[{y"[t] + 4y[t]==Cos|[2t], y[0]==0, y'[0]==0},
y[t], t)//Simplify

{{ylt] — FtSin2t]} }

Use Manipulate to help you see how changing parameter values and
equations affect a system. With

Manipulate[

sol1 = DSolve[{mx"[t] + ax'[t] + kx[t]==I"Cos[wt], x[0]==0, x'[0]==0}, x[t], t];

sol2 = NDSolve[{mx"[t] + ax'[t] + k Sin[x[t]]=="Cos[wt], x[0]==0, x'[0]==0},
x[t], {t, 0, 50}1;
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FIGURE 6.16

Comparing solutions of nonlinear initial-value problems to their corresponding linear
approximations

p1 = Plot[x[t])/.sol1, {t, 0, 50}, PlotRange — {- 5, 5}, AspectRatio — 1];

p2 = Plot[x[t])/.sol2, {t, 0, 50}, PlotRange — {- 5, 5}, AspectRatio — 1];

Show[GraphicsRow[{p1, p2}]], {{m, 1}, 0, 5}, {{a, 0}, 0, 15, 1}, {{k, 4}, 0, 20, 1},
{{w,2},0,20,1},{{I",1},0,10,1}]

we can compare the solution of mx" +ax +kx =T coswt, x(0)=0,
x'(0) = 0 to the solution of mx" + ax’ + ksinx = ' cos wt, x(0) = 0, x'(0) = 0
for various values of m, a, k, w, and I'. See Figure 6.16.

Example 6.2.6 (Hearing Beats and Resonance). In order to hear beats and resonance, we

solve the initial-value problem
x" +w’x=FcosBt, x(0)=a, x'(0)=4, (6.13)

for each of the following parameter values: (a) > = 6000°, B = 5991.62, F = 2; and
(b) w* = 6000°, B = 6000, F = 2.

First, we define the function sol which, when given the parameters, solves the
initial-value problem (6.13).

Clear[x, t,f, sol]

sol[w—, B—, f_]:=DSolve[{

X"[t] + 0" 2x[t]==fCos][ Bt], x[0]==0, x'[0]==0},
x[t], t][1, 1, 2]]
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Thus, our solution for (a) is obtained by entering

a = sol[6000, 5991.62, 2]

~0.0000199025C0s[6000.1] + 0.0000198886C0s[8.38t]Cos[6000.1] +
1.389859474088294™*"— 8Cos[6000.1Cos[11991.6t] +
0.0000198886Sin[8.381]Sin[6000. 1] +
1.389859474088294™*"— 8Sin[6000. {}Sin[11991.61]

To hear the function we use Play in the same way that we use Plot to see
functions.

anM I Play - Wolfram Mathematica =2
Aciw @i retfay i

|

(|

me M

p|ay Updated in |

|

|

PLaY [f s [l toins bl ] |

creates an objpect that plays as & sound whose amplitude is given by f a5 a function of time  in secands (]

between L, and L. |

I

(]

. |

(|

|

I |

L& |

(|

1

¥ Basic Examples w

Play a “miccie A” sine wave for 1 second

fipe PlaylBiniéd0=2 Pit], (&, 0, 1}]

¥ Scopo

» Generalizations & Extensions
» Options

» Applications

» Propartios & Relations

» Possible Issues

¥ SEE ALEO

ListPlav - EmitSound - Beeo - SamoledScundFunction - Plot - Animate
1100 e

The values of a correspond to the amplitude of the sound as a function of
time. See Figure 6.17(a).

Play[a, {t, 0, 6}]

Similarly, the solution for (b) is obtained by entering

b = sol[6000.,6000., 2]//Chop

—2.777"*"~8 Cos[B000.1+2.777"*"~ 8 Cos[B000.1°+
0.000166667 t SIN[6000.1]+1.3889™*" — 8 SIn[B000.1] Sin[12000.1]

We hear resonance with Play. See Figure 6.17(b).

Playlb, {t, 0, 6}]
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A particular solution,
Y, is a solution that
does not contain any
arbitrary constants.

Observe that it is
pointless to search
for solutions of the
form y, = ¢\, + 6,5,
where ¢, and c, are
constants, because for
every choice of ¢,
and ¢,, ¢y, + ¢,

is a solution to the
corresponding
homogeneous
equation.

=] 6s8000Hz [ »|[m] 6s | 8000 Hz

FIGURE 6.17
Hearing and seeing beats and resonance: (a) Beats (b) Resonance

6.2.4 Variation of Parameters

Let S = {y,,7,} be a fundamental set of solutions for equation (6.9). To solve
the nonhomogeneous equation (6.8), we need to find a particular solution,
¥, of equation (6.8). We search for a particular solution of the form

Vp =, OY, D + u, DY, @), 6.19)
where #, and u, are functions of ¢. Differentiating equation (6.14) gives us

r_ ’ ’ ’ ’
Vp SUL YUY FUY, U Y,

Assuming that
iy +y,u, =0 6.15)

results in yp' =u,y,' +u,y, . Computing the second derivative then yields
J’p” =w'y) +uy" 'y, +uy

Substituting y,, y,’, and y,” into equation (6.8) and using the facts that

Uy (yln +py, + qyl) =0 and u, (3’2” +py, + qyz) =0

(because y, and yp, are solutions to the corresponding homogeneous
equation) results in
2
dy,
dr?

dy
+P(t)7: +q®y, = w'y +up" + 'y, +u3," + p@® (w1 +uyp,)
+q® (”13’1 + ”2)’2)
= 'u + 0w = fO. (6.16)

Observe that equation (6.15) and equation (6.16) form a system of two
linear equations in the unknowns #,” and u,':

' +y,u, =0
y'u +y,'uy = f®. 6.17)
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Solution

Absolute value is

not needed in the
antiderivatives because
we are restricting the
domain to 0 < t < /6
and cost > 0 on this
interval.

The negative sign in
the output does not
affect the result
because C[1] is
arbitrary.
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Applying Cramer’s Rule gives us

0 yzl J/ll 0
t 13 Df
o = GRS B O/ O, u = J® _Nhro 6.18)
yll J"zl L4 yll J’zl L4CY
VAN V1 2
where W(S) is the Wronskian, W(§) = )Jj L ))}/2, . After integrating to obtain
1 2

u, and u,, we form y, and then a general solution, y =y, +,,.

Solve y" + 9y = sec3t, p(0) =0, »'(0) =0, 0 < t < 7/6.

The corresponding homogeneous equation is 3" + 9y = 0 with general solution y,, =
¢, cos 3t + ¢, sin3t. Then, a fundamental set of solutions is § = {cos 3¢, sin 3¢} and
W(S) = 3, as we see using Det, and Simplify.

fs = {Cos[3t], Sin[3t]};

wm = {fs, D[fs, t]};

wm//MatrixForm

wd = Det[wm]//Simplify
Cos[3t]  Sin[3t]

< —3Sin[3t] 3Cos[3t] )

3

We use equation (6.18) to find #, = § Incos 3¢ and u, = 3t.

1
3
ul = Integrate[ - Sin[3t]Sec[3t]/3, t]

u2 = Integrate[Cos[3t]Sec[3t]/3, 1]

$Logl[Cos[3t]]

I+

It follows that a particular solution of the nonhomogeneous equation is y, =
1 1 . . . .

5 cos3tIncos3t+ srsin3r and a general solution is y =y, +y,=c cos3t+
¢, 8in 3t + § cos 3¢ Incos 3t + Ssin 3t.

yp = u1Cos[3t] + u2Sin[3t]
$Cos[3t]Log[Cos[3t]] + $tSin[31]

Identical results are obtained using DSolve.
DSolvely"[t] + 9y[t]==Sec[3t], y[t], t]

{{ylf] — C[1]Cos[31] + CI2ISin3{]+
5(Cos[3t]Log[Cos[3t]] + 3tSin[3t) } }
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FIGURE 6.18
The domain of the solution is 0 < ¢ < 7/6

Applying the initial conditions gives us ¢; = ¢, = 0, so we conclude that the solution
to the initial-value problem is y = § cos 3¢ In cos 3¢ + 3 sin 3.

sol = DSolve[{y”[t] + 9y[t]==Sec[31], y[0]==0, y'[0]==0}, y[t], 1]
{{ylt] — §(Cos[3t]Log[Cos[3t]] + 3tSin[3t]) } }

We graph the solution with Plot in Figure 6.18.
Plot[y[t)/.sol, {t, 0, Pi/6}]

6.3 HIGHER-ORDER LINEAR EQUATIONS
6.3.1 Basic Theory

The standard form of the nth-order linear equation is

n n-1

d’y d
dt @ ar

d
st al(t)% +ay Dy =fO. 6.19)

The corresponding homogeneous equation of equation (6.19) is

n n—l

d Y,
arn ‘(t)

dy
T T+ ay @By = 0. (6.20)
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Lety,,%,, -..,), be n solutions of equation (6.20). The set S = {y1, 5, ..., ¥, }
is linearly independent if and only if the Wronskian,
nooor 0 P
yl” yzll ysll ynll
yl yZ y’a yn
WS =| 7P 5P 5@ ® 6.21)
yl(n—l) yz(n—l) ys(n—l) . yn(n—l)

is not identically the zero function. S is linearly dependent if S is not
linearly independent.

If y,,95, ..., are n linearly independent solutions of equation (6.20),
we say that S ={y,,7,,....¥,} is a fundamental set for equation (6.20),
and a general solution of equation (6.20) is y = ¢; Y, + C, ¥, + 3 Y5 + - +

A general solution of equation (6.19) is y =y, +y,, where y, is a
general solution of the corresponding homogeneous equation and y,, is a
particular solution of equation (6.19).

6.3.2 Constant Coefficients

If

dn dn—l
Y va, =2
dr” =1

dy
+ ~-+a15+a0y=0

has real constant coefficients, we assume that y = ¢ and find that % satisfies
the characteristic equation

R"+a, k"' +---+ak+a,=0. 6.22)
If a solution & of equation (6.22) has multiplicity mz, m linearly independent
solutions corresponding to k& are

kt
L

kt m—1
e ...t

Rkt

e e

If a solution & =« + Bi, B # 0, of equation (6.22) has multiplicity m, 2m
linearly independent solutions corresponding to & = a + §i (and & = a — 37)
are

e™ cos Bt, e sin Bt, te™ cos Bt, te* sin Bt, ..., "' e cos Bt, "' e sin Bt.

"

Example 6.3.1 Solve 12y

-5)" -6y -y=0.

Solution The characteristic equation is

12k° = 5k* =6k = 1= (k — DBk +1) (4 +1) =0

473
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Factor[expression]
attempts to factor
expression.

Example 6.3.2

Solution

Enter ?Solve to obtain
basic help regarding
the Solve function.

with solutions &, = —=1/3, k, = —1/4, and &; = 1.

Factor[12k" 3- 5k 2-6k-1]
(=1 +K)(1 +3K)(1 +4k)

17 —t/4

Thus, three linearly independent solutions of the equation are y, = e” 3 y,=e
and y, = ¢'; a general solution is y = ¢,e™ + c,e™* + ¢,¢’. We check with DSolve.

Clear[y]

DSolve[12y”’[t] - 5y”[t] - 6y'[t] - y[t]==0, y[t], t]
{{yltl — e""*C[1] + &~"°C[2] + €'C[3]}}

Solve y"" +4y" =0, (O =0, y' (O =1, ") = -1.

The characteristic equation is R+ 4k = Ie(le2 +4) =0 with solutions %, =0 and
k,, = +2i that are found with Solve.

Solve[k”3 + 4k==0]
{{k = 0}, {k — —2i}, {k — 2i}}

Three linearly independent solutions of the equation are y, =1, y, = cos2t, and
5 =sin2t. A general solution is y = ¢, + ¢, sin 2¢ + ¢; cos 2t.

gensol = DSolve[y”’[t] + 4y'[t]==0, y[1], 1]
{{y[t] — C[3]- C[2]Cos[2] + %C[1]Sin[2t]}}

Application of the initial conditions shows us that ¢, = —=1/4, ¢, = 1/2, and ¢; = 1/4,
so the solution to the initial-value problem is y = -1 + 1 sin2¢ + % cos 2¢. We verify
the computation with DSolve and graph the result with Plot in Figure 6.19.

el =y[t)/.gensol[[1]}/.t—> 0
-

e2 = D[y[t]/.gensol[[1]], t]/.t - O

e3 = D[y[t]/.gensol[[1]], {t, 2}]/.t > O
Cl]

2C[2]

cvals = Solve[{e1==0, e2==1, e3==-1}]

{{0[1] —1,C[2] — —%,C[S] — —%}}

Clear[y]

partsol = DSolve[{y”’[t] + 4y'[t]==0, y[0]==0,
y'[0]==1,y”[0]==-1}, y[t], 1]

{{y[t] — }(—1 + Cos[2t] + 2Sin[2t])}}

Plot[y[t)/.partsol, {t, 0, 2Pi}, AspectRatio — Automatic]



Example 6.3.3

6.3 Higher-Order Linear Equations 475
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FIGURE 6.19

Graph of y = =4 + 1 sin2s+ X cos 2t

-2t/3 -2t/3 2 =2t/3

Find a differential equation with general solution y = c,e +c,te +cte +

. . 2 2 .
c;Ccost+ Cs SIN t+cgtcost + C7tSIIl t+cgt” cost+ C9t sin z.

Solution A linear homogeneous differential equation with constant coefficients that has this

general solution has fundamental set of solutions
§={eP e Pe™? cost,sint, tcost, rsint, i cost, i sint} .

Hence, in the characteristic equation & = —2/3 has multiplicity 3, whereas & = +i
has multiplicity 3. The characteristic equation is

2\’ 13 170 62
27(k+= ) R=-DP’R+0P =R +2k° + —k" + —R° + 7R° + —&*
< 3>( DD 3077 9
, 26, 4 8
+5R” + —R + R+ —,

9 3727

where we use Mathematica to compute the multiplication with Expand.

Expand[27(k + 2/3)"3(k"2 + 1) 3]
8 + 36k + 78Kk% + 135K® + 186k* + 189K°+
170k® + 117k + 54k8 + 27k°

Thus, a differential equation obtained after dividing by 27 with the indicated general
solution is

d9y+2fy+13d7y+170fy+ d5y+62d4y

dar B 3 dr 27 d° a9 dp
&y 26d’y 4dy 8

+5_y+ _y+ _y ——

_ —_ + :O
ar 9 ar " 3ar " 27

6.3.3 Undetermined Coefficients

For higher-order linear equations with constant coefficients, the method of
undetermined coefficients is the same as for second-order equations dis-
cussed in Section 6.2.3, provided that the forcing function involves the
terms discussed in Section 6.2.3.
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Example 6.3.4

2

d3y 2 dzy 145 dy dy dy
Sove — + - — + — — = _l, 0O=1 —0)=2, —O) = -1.
ac 3 T o w me YOk G @=2 5O
Solution The corresponding homogeneous equation, y™ + 2y + 42y = 0, has general solu-

Remark 6.3

tion y, = ¢, + (c, sin4t + c; cos4t) ™ and a fundamental set of solutions for the
corresponding homogeneous equation is § = {l,e"” 3 cos4t, e sin 4t}.

DSolvely”[t] + 2/3y"[t] + 145/9y’[t]==0,
ylil, t]
_ 38 o3

{{y[t] — C[38]-
(12C[1] + C[2]))Cos[4t] + (C[1] - 12C[2])Sin[4t])} }

For e™, the associated set of functions is F = {e™}. Because no element of F is an
element of §, we assume that y, =Ae™’, where 4 is a constant to be determined.
After defining y,, we compute the necessary derivatives

Clear[yp]

yp[t_] = aExp[-1];
yp'[t]

yp"[t]

yp"'[t]

—ae™!

ae™!

—ae™!

and substitute into the nonhomogeneous equation.

eqn = yp"'[t] + 2/3yp”[t] + 145/9yp’[t]==Exp[-t]

_ 18 gp-t__p-t
5 ae ==€

=-2¢"and a

Equating coefficients and solving for 4 gives us 4 = —9/148 s0 y, e

general solution is y =y, +y,,.

SolveAlways[equation,variable] attempts to solve an equation so that it is true for
all values of variable.

SolveAlways[eqn, t]
{a—-%})

We verify the result with DSolve.

gensol = DSolve[y'[t] + 2/3y"[t] +
145/9y'[t]==Exp[ - t], y[t], t]//FullSimplify
{y[t] - - 9197’8‘ +C[3]- 26 3((12C[1] + C[2])Cos[4]+

(C[1]-12C[2)Sin[4t])} }
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[SERNINEN

F

FIGURE 6.20
The solution of the equation that satisfies y(0) = 1, »'(0) = 2, and y"(0) = -1

To obtain a real-valued solution, we use ComplexExpand. If you are using a ver-
sion of Mathematica older than version 6, you might receive a complex valued
function rather than the real-valued function that we obtained. In those cases,
ComplexExpand can help you rewrite your complex solution as a real-valued
solution.

To apply the initial conditions, we compute y(0) = 1, y'(0) = 2, and »"(0) = -1
and solve for ¢, ¢,, and c¢;. The solution of the initial-value problem is obtained by
substituting these values into the general solution, and then we graph the result
with Plot in Figure 6.20.

initsol = DSolve[{y'[t] + 2/3y"[t] +
145/9y'[t]==Exp[ -1], y[0]==1, y'[0]==2, y"[0]==-1},
y[t], t}//FullSimplify

e~ '( —2610 + 46472¢" + 2Y3(~942Cos[4t] + 207298in[4t]})
ylt] — 72920

Plot[y[t]/.initsol, {t, 0, 2Pi}, AspectRatio — Automatic]

Example 6.3.5 Solve
dsy 7d7y 73 d(’y 229 dsy 801 d“y
— - —— =+ — — + — —
dar8  2dt7 2 drs 2 dr 2 dtt

d’y d’y dy
976% + 1168% + 640% + 128y = te™' +sin4t +t.

Solution Solving the characteristic equation

Solve[k"8 + 7/2k7 + 73/2k 6 + 229/2k 5 +
801/2k4 + 976k” 3 + 1168k 2 + 640k + 128==0]

{{k— -1} {k— -1} {k— -1}, {k— -1},
{k—> —4i},{k—> —4i},{k—>4i},{k—>4i}}

shows us that the solutions are &, = —1/2, k, = —1 with multiplicity 3, and &; 4 =
+4i, each with multiplicity 2. A fundamental set of solutions for the corresponding
homogeneous equation is

S={e? e te” e, cosdt, tcos 4t, sin 4, rsin 4t} .
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A general solution of the corresponding homogeneous equation is

Yy =@+ (e + eyt + o) e + (c5 + ¢t sindr + (g + cgt) cos 4t.

gensol = DSolve[D[y[t], {t, 8}] + 7/2D[y[t], {t, 7}] +
73/2D[y[t], {t, 6}] + 229/2D[y[t], {t, 5}] +
801/2D[y[t], {t, 4}] + 976y’ '[t] + 1168y"[t] +
640y'[t] + 128y[t]==0, y[t], t]

{{ylt] — e""2C[5] + e~'C[6] + & 'tC[7] + &~ 't°C[8]+
C[1]Cos[4t] +tC[2]Cos[41] + C[3]Sin[4t] + tC[4]Sin[41]} }

The associated set of functions for re™ is F, = {e™',te”'}. We multiply F, by

', where n is the smallest nonnegative integer so that no element of /'F, is

an element of §5: £F, = {e™',f'e™"}. The associated set of functions for sin 4t is

F, = {cos 4t,sin 4¢}. We multiply F, by ¢, where = is the smallest nonnegative inte-

ger so that no element of 'F, is an element of S: £°F, = {#* cos4t, #* sin4t}. The

associated set of functions for ¢ is F; = {1,#}. No element of F; is an element of S.
Thus, we search for a particular solution of the form

y, = A Pe” + Ayrte™ + A1 cos AL+ AL sin 4t + As + Agt,

where the A, are constants to be determined.
After defining Vs

yplt_] = a[11t" 3Exp[-1] + a[2]t*4Exp[-1] +
a[3]t" 2Cos[4t] + a[4]t" 2Sin[4t] + a[5] + a[6]t;

we substitute into the nonhomogeneous equation, naming the result egn. At this
point we can either equate coefficients and solve for 4, or use the fact that egn
is true for all values of ¢.

eqn = D[yp[t], {t, 8}] + 7/2D[yplIt], {t, 7}] +
73/2D[ypl[t], {t, 6}] + 229/2D[yp[t], {t, 5}] +
801/2D[ypl[t], {t, 4}] + 976yp’'[t] + 1168yp"[t] +
640yp’[t] + 128yp[t]==tExp[-1] + Sin[4t] + t//Simplify
o' (-867a[1] + 7752a[2] - 3468ta[2] + 128¢'a[5]+
640e'a[6] + 128e'ta[6] — 64e'(3692a[3] — 428a[4])Cos[41] -
64e'(4284[3] + 3693[4])8in[4t]) ==t + "'t + Sin[4]

We substitute in six values of ¢
sysofeqs = Table[eqn/.t = n//N,{n, 0, 5}];
and then solve for A4,.

coeffs = Solve[sysofeqs, {a[1.], a[2.], a[3.], a[4.], a[5.], a[6.]}]
{{a[1.] — -0.00257819, a[2.] — —0.000288351, a[3.] — —0.0000209413,
af4.] — —0.0000180545, a[5.] — —0.0390625, a[6.] — 0.0078125}}
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¥, is obtained by substituting the values for 4, into y, and a general solution is
y=y,+y, DSolve is able to find an exact solution.

gensol = DSolve[D[y[t], {t, 8}1 + 7/2D[y[t], {t, 7}] +
73/2D[y[t], {t, 6}]1 + 229/2DI[y[t], {t, 5}] +
801/2D[y[t], {t, 4}] + 976y"'[t] + 1168y"[t] +
640y'[t] + 128y[t]==tExp[-t] + Sin[41] + t, y[t], t]//Simplify

{Vtl = so7zramstmmamonn®
(4394000 (724127076!(5 + 1) + 92688264966"2C[5] - 32(35097672+

746776t° + 83521t* — 289650828C[6] - 204t(- 86016 + 1419857C[7]) -
3468t%(- 1270 + 83521C[8))) ) -

204€' (—9041976373 + 4180789600t — 199643253056000C[1] -

4420t(— 1568449 + 45168156800C[2]))Cos[4t] -

51e' (-138794625331 + 14417863200t” — 798573012224000C[3] -

2263040t(20406 + 352876225C[4]))Sin[4t])} }

Variation of Parameters
In the same way as with second-order equations, we assume that a par-

ticular solution of the nth-order linear equation (6.19) has the form Vp =

u, (DY, + uy,(y, + -+ u, Oy, where S ={y,, ¥,,...,»,} is a fundamental
set of solutions to the corresponding homogeneous equation (6.20). With
the assumptions

i l ! !
Yy =Ny AUy e+ Yu, =0

"o_ o0 o0 [
Yy =Y Uy Y Uy ety u, =0

: (6.23)
yp(n_l) =y1(n_2)”1, +y2(n_2)”z’ +-- +yn(n_2)un, =0,
we obtain the equation
1w+, w49, P, = f0. 6.29)

Equations (6.23) and (6.24) form a system of 7 linear equations in the
unknowns u,’, 1, ..., un'. Applying Cramer’s rule,
O]
U, = ——,
WS
where W(S) is given by equation (6.21) and W) is the determinant of the
matrix obtained by replacing the ith column of

6.25)

J’ll J’zr J’n’ 0
N Y2 co n 0
. . . by .

n-1) n-1) (n-1) .
1 Y R (3]
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Example 6.3.6 Solve y® + 4y = sec2z.

Solution A general solution of the corresponding homogeneous equation is y, =c, +
¢, cos2t+cysin2t; a fundamental set is §={1,cos2t, sin2t} with Wronskian

W(S) = 8.

yh = DSolvely”'[t] + 4y'[t]==0, y[t], t]
{{yltl — C[3]-3C[2]Cos[21] + sC[1]Sin[21]} }

s = {1, Cos[2t], Sin[2t]};
ws = {s, D[s, 1], D[s, {t, 2}]]};
MatrixForm[ws]

1

Cosl21] Sin[2t]

0 -2Sin[2t] 2Cos[2t]
0 —4Cos[2t] —4Sin[2t]

dws = Simplify[Det[ws]]

8

Using variation of parameters to find a particular solution of the nonhomogeneous
equation, we let y; =1, y, = cos2t, and y, = sin2¢ and assume that a particular
solution has the form y, = u,y, + u,y, + usy;. Using the variation of parameters
formula, we obtain

, 1

Ml = §

, 1

uz = g

and

, 1

M5 = g
where we

0 cos 2t sin 2¢ 1
0 -2sin2¢t 2cos2t|=-sec2t SO u; = 3 In|sec 2¢ + tan 21,
sec2t —4cos2t —4sin2t

1 0 sin 2¢

1
0 O 2cos2t | =—--= SO u2=—zt,
0 sec2t —4sin2t

1 cos2t 0 1 1
0 -2sin2t O |=--tan2t SO u,= 3 In|cos 24|,
0 —4cos2t sec?2t

use Det and Integrate to evaluate the determinants and integrals. In

the case of u,, the output given by Mathematica looks different than the result we
obtained by hand, but differentiating the difference between the two results yields
0, so the results obtained by hand and with Mathematica are the same.

u1p = 1/8Det[{{0, Cos[2t], Sin[2t]}, {0, — 2Sin[2t], 2Cos[21]},

{Sec|2t], —-4Cos[2t], —4Sin[2t]}}1//Simplify

1Sec(2t]

ul = Integrate[u1p, t]
TArcTanh[Tant]]

s1 = D[u1-1/8Log[Sec[2t] + Tan[2t]], ]

Seclt]?

_ 2Secl2t]” +2Sec[2Tan[21]

4(1 _ Tan[t]z) 8(Sec(2t] + Tan[2t])
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Simplify[s1]
0

u2p = 1/8Det[{{1, 0, Sin[2t]}, {0, 0, 2Cos|[2t]},
{0, Secl2t], —4Sin[2t]}1//Simplify

1

7

u2 = Integrate[u2p, t]
t

7

u3p = 1/8Det[{{1, Cos[2t], 0}, {0, — 2Sin[2t], O},
{0, —-4Cos[2t], Sec[2t]}}1//Simplify

- 1Tan[2t]

u3 = Integrate[u3p, t]

FLog[Cos[2t]]

Thus, a particular solution of the nonhomogeneous equation is
11 | sec 2¢ + tan 2¢| 1t 2t+1l | cos 2t sin 2t
= —Inj|sec an — —1COS — In|Ccos Sin
=3 4 8
and a general solution is y =y, +y,. We verify that the calculations using DSolve
return an equivalent solution.

gensol = DSolve[y"[t] + 4y’[t]==Sec[2t], y[t], t]//Simplify
{{ylt] — 3(@ArcTanh[Tanft]] + 8C[3] -
8C[2]Cos[t]* - 2tCos(2t] + 4C[1]Sin[2t] + Log[Cos[2t]|Sin[2t]) } }

6.3.4 Laplace Transform Methods

The method of Laplace transforms can be useful when the forcing function
is piecewise-defined or periodic.

Definition 3 (Laplace Transform and Inverse Laplace Transform).
Let y = f(®) be a function defined on the interval [0,00). The Laplace
transform is the function (of s)

Fs) = L{f®) = J e'f @ dt, (6.26)

0

Dprovided the improper integral exists. f(t) is the inverse Laplace trans-
Jorm of F(s) means that L{f(D)} = F(s) and we write L' {F®} =f®.

1. LaplaceTransform[f[t],t,s] computes L {f(H} = F(s).

2. InverselLaplaceTransform[F[s],t,s] computes Lt {F®} =f®.
0,t<0

3. UnitStepl[t] returns UQ@) =
plt] ® 1 t30.
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Example 6.3.7

Solution

Typically, when we use Laplace transforms to solve a differential equation
for a function y(¥), we will compute the Laplace transform of each term
of the differential equation, solve the resulting algebraic equation for the
Laplace transform of y(@®), L {y(®} = Y(s), and, finally, determine y(#) by
computing the inverse Laplace transform of Y(s), L' {Y®} =y®.

1,0<t<1

and f@®) =1 - 2) if
L1<t<2 J®=/G )

Let y = f(®» be defined recursively by f(® = {

t>2. Solve y" +4y" + 20y =f(®.
We begin by defining and graphing y = f(® for 0 <t <5 in Figure 6.21.

Clear[f, g, u,y1,y2, sol]

flt_]:=1/;,0<t < 1

flt-]:=-1/;1<t<2

flit_]:=f[t-2]/;t > 2

Plot[f[t], {t, 0, 5}, Ticks — {Automatic,{-2, -1,0,1,2}},
PlotRange — {-2, 2}]

We then define |hs to be the left-hand side of the equation y” + 4y’ + 20y = f(®),

Clear[y, x, lhs, stepone, steptwo]
Ihs = y"[t] + 4y'[t] + 20y[t];

_2 L
FIGURE 6.21
Plot of f(» for0<t<5
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and compute the Laplace transform of lhs with LaplaceTransform, naming the
result stepone.

stepone = LaplaceTransform[lhs, t, s]
20LaplaceTransform[y[t], t, s] + s’LaplaceTransform[y]t], t, s] +

(4(s LaplaceTransformly[t], t, s] - y[0]) - sy[0] = y'[O]
Let Ir denote the Laplace transform of the right-hand side of the equation, f(®. We

now solve the equation 20ly + 4s|y+s2Iy—4y(0) - sp(0) — y'(0) = Ir for ly and name
the resulting output steptwo.

steptwo = Solve[stepone==Ir, LaplaceTransform][y[t], t, s]]

{ {LaplaceTransform[y[t], t, 5] — A0+ 0+y0) } }

20+ 4s + 82

stepthree = ExpandNumerator[steptwol[1, 1, 2]], 1r]
Ir + 4y[0] + sy[0] + y'[0]
20 + 4s + 82
To find p(#), we must compute the inverse Laplace transform of L {y(®}; the formula
for which is explicitly obtained from steptwo with steptwo[[1,1,2]]. First, we rewrite :
L{y®}. Then,

_ L{f®) 40 +s9(0) +)'(0)
_ 1
=L {sz+4s+20+ §2+4s+20

o { L{Fw) }+L—1 {4y(0)+sy(0)+ y’(O)}

s2 +4s+ 20 s2 +4s+ 20

Completing the square yields s* + 4s + 20 = (s + 2)* + 16. Because

b —
Lt {m } = e sinbt and Lt { %} = e cos bt,

the inverse Laplace transform of

49(0) + sy(0) +'(0) _ 0y—S*2 7'(0) +2)(0) 4
s2 +4s+20 BEANE SR 4 (s+2)2+42

7' (0) + 2y(0) o

P(O)e ™ cos 4t + y

sin 4%,

which is defined as yp,®. We perform these steps with Mathematica
49(0) +5y(0) +5'(0) }

by first using InverseLaplaceTransform to calculate £7'
s2+4s+ 20

naming the result stepfour.

- - Y
stepfour = InverseLaplaceTransform [— —HO-50l-y 10 o t]
20 +4s +s2

- 2172 (=2 + 4i)y[0] + (2 + 4i)e®"y[0] - y'[0] + €®'y'[0])

483
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To see that this is a real-valued function, we use ComplexExpand together with
Simplify.

stepfive = ComplexExpand[stepfour]//Simplify
1e7? (4Cos[4tly[0] + Sin[41] (2y[0] + y'[0]))

If the result in stepfive is given in terms of real and imaginary parts of »(0) and
9'(0), because y'(0) is assumed to be a real number, the imaginary part of »'(0)
is 0; the real part of 3'(0) is »'(0).

y1[t_] = stepfive/.{Im[y’'[0]] = 0, Re[y’[0]] — y'[0]}//Simplify
167 (4Cos[4tly[0] + Sin[41] (2y[0] + y'[0]))

L{fE
To compute the inverse Laplace transform of — A0k we begin by computing

s2+4s+20’

1,t>
Ir=L{f®}. Let U, = { T d. Then, U,® = U — @) = UnitStep][t-a].
0,t<a
- . 1,0<¢t<1 )
The periodic function f(@ = { and f(O =f@—-2) if t>2 can be
-1,1<t<2

written in terms of step functions as
F® = Uy® = 2U, (D + 2U, (D — 2Us @) + 2U (D — ...
=U®D -2U@E - D +2UE-2) - 2UE - 3) +2UE -4 — ...
=UD +2 Z(—l)”l,{(t - n).
n=1
The Laplace transform of U, = U@ — a) is ée"‘” and the Laplace transform of
JOU,® =fOUE - a) is e F(s), where F(s) is the Laplace transform of f(). Then,

1 2 2 2
Ir=——Ze*+Ze>—-Ze>4...
N N N
1
== (1-2e"+2e> -2 +..)
N
and
Ir 1 ‘
- = (1-2e"+2e7> —2e™ +.-+)
s2+45+20 5 (s +4s+20)
1 o e—ns
= 42 (D)
s (s +4s+20) ; s (s? +4s+20)
1 1 1 1 1 I
Because =- : L ———= =l z¢
S2+45+20  4(s+22+42 s(s2+4s+20)} h3

sin 4a da, computed and defined to be the function g(.

glt-] = [ | Exp[-2¢]Sin[4a] da
+ (2-e7* (2Cos[4t] + Sin[4t]))
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Alternatively, we can use InverseLaplaceTransform to obtain the same result.

- + .
g[t-] = InverseLaplaceTransform [s(s2+4s+20),s, t] //ExpToTrig//
Simplify
%(4 + (2Cos[4t] + Sin[4t])(—2Cosh[2t] + 2Sinh[21]))

—ns

Then, £ 2(—1)”8— =2(-1D"gt - mUE - n) and the inverse
s (sz + 45 + 20)

Laplace transform of

—ns

; +zi(_1)"e—
s(s2 +4s+20) s(s2 +4s+20)

n=1

2,0 =g +2 Y (= 1)"g(t = UL = ).

n=1
[t then follows that

MOENAORNAO)

YO+ 2O ot iz 4+ 2 D (- 1'gt = U - ),

n=1

= p(0)e™% cos 4t +

2 2

where g = 5 — € " cos 4t — e ! sin 4.

To graph the solution for various initial conditions on the interval [0,5], we
define y,(®H =g® + 2 Zzzl(—l)"g(t - U@ - n), sol, and inits. (Note that we can
graph the solution for various initial conditions on the interval [0,2] by defining

P, =g +2 3" (—D"g(t - mUE — n).)

y2[t_l:=g[t] + 2 ¥°_ (-1)"g[t-n]UnitStep[t-n]
Clear[sol]

sol[t_]:=y1[t] + y2[t]

inits = {-1/2,0,1/2};

We then create a table of graphs of sol[t] on the interval [0, 5] corresponding to
replacing 1(0) and »'(0) by the values —1/2, 0, and 1/2 and then displaying the
resulting graphics array in Figure 6.22.

graphs = Table[Plot[sol[t]/.{y[0] — inits[[i]], y'[0] — inits[[j]]},

{t, 0, 5}, DisplayFunction — Identity], {i, 1, 3}, {i, 1, 3}];
Show[GraphicsGrid[graphs]]
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m-[\l L 0-1'A N 01_&. Do

-01f -01f
-02f -02f
-03k -03F

0.06F 0.06F
0,04 F /\ /\ f 0.04 /\ /\ f 0.05 A /\ /\
0.02F 0.02
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
;/ 11 2f 3| 4] s = 1| 2 3| 4] 5 1\ 2/ 3\ 4/ 5
—0.04 —0.04F —0.05 F
—0.06F —0.06F

_01F
—-0.2F
—03H

0.25F 0.25F 0.25F
0.20F 0.20F 0.20F
0.15F 0.15F 0.15F
0.10F 0.10F 0.10F
005 3 N 1 1 1 1 005 3 1 1 1 1 1 005 3 1 1 m 1 1
= U\ 2/ 3 \y 5 = U\ 2/ 3\ 4 5 = U2/ 3\ 4 5
FIGURE 6.22

Solutions to a differential equation with a piecewise-defined periodic forcing function

Application: The Convolution Theorem

Sometimes we are required to determine the inverse Laplace transform of a
product of two functions. Just as in differential and integral calculus when
the derivative and integral of a product of two functions did not produce
the product of the derivatives and integrals, respectively, neither does the
inverse Laplace transform of the product yield the product of the inverse
Laplace transforms. The convolution theorem tells us how to compute the
inverse Laplace transform of a product of two functions.

Theorem 2 (The Convolution Theorem). Suppose that f(t) and g(t)
are piecewise continuous on [0,00) and both are of exponential order.
Furtbermore, suppose that the Laplace transform of f () is F(s) and that
of g is G(s). Then,

t
LTYHF®GE} = LT {L{(f+g) ®}} = J f@ - vgwav. 6.27)
0

Note that (fxg)® = jé [ —1g)dv is called the convolution
integral.

Example 6.3.8 (L-R-C Circuits). The initial-value problem used to determine the charge g on
the capacitor in an L-R-C circuit is

Q0 d0 1, B ao . _
L—S+R—+20=/®, Q®=0, —=0)=0,



Solution

We use lowercase
letters to avoid any
possible ambiguity
with built-in
Mathematica
functions, such as
E and I
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where L denotes inductance, dQ/dt = I, I(¥) current, R resistance, C capacitance,
and E() voltage supply. Because dQydt =1, this differential equation can be
represented as

di 1(

L— +RI+ — | I(w)du = EQ®).

dt Clo

Note also that the initial condition Q(0) = 0 is satisfied because Q(0) = %fg I(w)

du = 0. The condition dQ/dt(0) = 0 is replaced by I(0) = 0. (a) Solve this integro-

differential equation, an equation that involves a derivative as well as an integral of

the unknown function, by using the convolution theorem. (b) Consider this example
. sint, 0 <t < m/2 ,

with constant values L=C=R=1 and EQ@®) = . Determine I1()

0, t> /2
and graph the solution.

We proceed as in the case of a differential equation by taking the Laplace transform
of both sides of the equation. The convolution theorem, equation (6.27), is used
in determining the Laplace transform of the integral with

L {Jll(u)du} = L{1+I®} = L{1} L{®) = %/.'_{I(t)}.

0

Therefore, application of the Laplace transform yields

LsL {I()) — LIO) + RLAID} + é%z; (I = L{E®) .

Because 1(0) = 0, we have LsL{I(®)} + RL{I®)} + é%ﬁ {®} = L{E®}. Simplifying
, ) CsL{E®D)}

and solving for L{K®} results in L{I(®} = e T RGOS 11
Clear]i]

LaplaceTransform[li'[t] + ri[t], t, s]

r LaplaceTransformli[t], t, s] +

I(=i[O] + s LaplaceTransform(i[t], t, s])

Solve [I slapi + rlapi + %::Iape, Iapi]

R clapes
{{Iapl T Trcrsrols? }}

CsL{E®)}
LCs? + RCs + 1
denote L{I(»} and lape to denote L{E®}. For (b), we note that E@) =

sint, 0 < t<7/2
0,t> /2
and plot the forcing function E@ on the interval [0, 7] in Figure 6.23(a).

so that 1(t)=£'1{ } In the Solve command we use lapi to

can be written as E@) = sin# (U® — U@ - /2)). We define
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10p 05
0.8F 0.4
0.3
04F 0.1
02¢ ~0.1
1 1 1 1 1 1 —-0.2
05 10 15 20 25 30
a
FIGURE 6.23

(@) Plot of E® = sint(Ll(t) - U@ - 77/2)). (b) I(®» (in black) and E@ (in gray)

elt_]:=Sin[t] (UnitSteplt] - UnitStep [t- 1])
p1 = Plot[e[t], {t, 0, }]

Next, we compute the Laplace transform of L {E®} with LaplaceTransform. We
call this result Icape.

Icape = LaplaceTransform[e[t], t, s]

1 _e 2s
1+82 1+82

Using the general formula obtained for the Laplace transform of I(#), we note
that the denominator of this expression is given by s* + s+ 1, which is entered as
denom. Hence, the Laplace transform of I(#), called Icapi, is given by the ratio
slcape/denom.

denom =s?+s+1;
Icapi = slcape/denom;
Icapi = Simplify[lcapi]
s-e %552
1+5+282 +85 +g4

We determine I(#) with InverseLaplaceTransform. Note that HeavisideTheta[x] is
0, ifx<O
defined by Ax) = e
1, fx>0
i[t-] = InverseLaplaceTransform[lcapi, s, t]
Sin[t]-HeavisideTheta [ - 5 + 1]
(- 30 (3Cos [ 4 VB(m—29)] + v3Sin [1v/3(m-29)] ) + Sinft) -
2e™"2sin[ 2]
V3
This solution is plotted in p2 (in black) and displayed with the forcing function
(in gray) in Figure 6.23(b). Notice the effect that the forcing function has on the
solution to the differential equation.
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p2 = Plot[i[t], {t, 0, 10}, DisplayFunction — Identity];
Show[p1, p2, PlotRange — All, DisplayFunction — $DisplayFunction]
Show[GraphicsRow[{p1, p2}]]

In this case, we see that we can use DSolve to solve the initial-value problem
Q"+Q0 +0=E®», Q0)=0, QW0=0

as well. However, the result is very lengthy, so only a portion is displayed here
using Short.

sol = DSolve [{q"[t] + q'[t] + q[t]==e[t], q[0]==0, q'[0]==0}, q[t], t] ;
Short[sol]

{q[t] — («1»—(2) +UnitStep [Z -] ( 1)))}}

We see that this result is a real-valued function using ComplexExpand followed
by Simplify.
q[t-] = ComplexExpand|[sol[[1, 1, 2]]11//Simplify
le el (3603 [@] + \/§<—2e”/48in [ V3(m- 2t] +Sin [%] )) 2t>a
let (—Se‘Cos[t] +/et (3005 [@] +4/3Sin [%] )) 0<t<

3

3
We use this result to graph Q@) and I = Q'(® in Figure 6.24.

Plot[{q[t], a'[t]}, {t, 0, 10},
PlotStyle — {GrayLevel[0], GrayLevel[0.5]}]

0.4

0.2

-0.2

FIGURE 6.24

Q@ (in black) and 1(®) = Q'(® (in gray)
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Example 6.3.9

Solution

Application: The Dirac Delta Function

Let & (t - to) denote the (generalized) function with the two properties

1. 8(r—1,) =0if r#¢, and

2. [0 5(t—ty) dt=1
which is called the Dirac delta function and is quite useful in the
definition of impulse forcing functions that arise in some differential equa-

tions. The Laplace transform of & (t - to) is L {6 (t - to)} =e™". The
Mathematica function DiracDelta represents the & distribution.

LaplaceTransform[DiracDelta[t-10], t, s]
e~ *®HeavisideTheta]t0]

X' +x +x=80+UE- 27
Solve , .
x(0)=0,x0)=0

We define eq to be the equation x” +x' +x=38@® + U - 2m) and then use
LaplaceTransform to compute the Laplace transform of eq, naming the resulting
output leq. The symbol LaplaceTransform [x[t],t,s] represents the Laplace trans-
form of x[t]. We then apply the initial conditions x(0) = 0 and x'(0) = 0 to leq and
name the resulting output ics.

Clear[x, eq]

eq = x"[t] + X'[t] + x[t]==DiracDelta[t] + UnitStep[t - 2m7];

leq = LaplaceTransform[eq, t, s]

LaplaceTransform[x[t], t, s] + s LaplaceTransform|x[t], t, s] +
s?LaplaceTransform[x]t], t, s] — x[0] — sx[0] — X'[0]==1 +

e—27s

S
ics = leq/.{x[0] — 0, x'[0] — O}
LaplaceTransform[x[t], t, s] + s LaplaceTransform[x[t], t, s] +

s®LaplaceTransformix[t], t, s}==1 + &

S

Next, we use Solve to solve the equation ics for the Laplace transform of x().
The expression for the Laplace transform is extracted from lapx with lapx[[1,1,2]].

lapx = Solvel[ics, LaplaceTransform[x[t], t, s]]
e” 2773(

1+ ez'”ss)
{ { LaplaceTransform[x[t], t, s] — e } }

To find x(#), we must compute the inverse Laplace transform of the Laplace trans-
form of L {x(®} obtained in lapx. We use InverselLaplaceTransform to compute
the inverse Laplace transform of lapx[[1,1,2]] and name the resulting function x[t].

x[t-] = InverseLaplaceTransform[lapx[[1, 1, 2]], s, ]
2625 2|

—= + HeavisideTheta[ - 27 + 1]
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(3-e”-% (3003 [;\/é(—zmt)] +1/3Sin [%J@(—zﬂt)] ))
If necessary, to see that this is a real-valued function, we use ComplexExpand
followed by Simplify. If needed, we see that the result is a real-valued function
using ComplexExpand followed by Simplify.
x[t_] = ComplexExpand[x[t]]//Simplify
le™t (2\/@\/@Sin [@] + e"’HeavisideTheta[ - 277 + ]

(361/2—36”003 [%ﬁ(—2w+t)] -/3e7Sin [%\/@(—2W+t)]) >

We use Plot to graph the solution on the interval [0, 87] in Figure 6.25.
Plot[x[t], {t, 0, 87}]

Finally, we note that DSolve is able to solve the initial-value problem directly as
well. The result is very lengthy, so only an abbreviated portion is displayed here
using Short.

Clear[x]

sol = DSolve[{x"[t] + X[t] + x[t]==DiracDelta[t] + UnitStep[t-21r],
x[0]==0, x'[0]==0}, x[t], t];

Short[sol, 2]

e 2 (1)
{ {Xm " 3(cos[VanT +snlNT) |

2msin G|y
(— ﬁ[ . ﬁ(jjf;)»)«ss» (1) }}

1.0f

0.8
0.6
0.4

0.2

NEP 10 15 20 25

FIGURE 6.25
Plot of x(® on the interval [0, 8]
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6.3.5 Nonlinear Higher-Order Equations

Generally, rigorous results regarding nonlinear equations are very difficult
to obtain. In some cases, analysis is best carried out numerically and/or
graphically. In other situations, rewriting the equation as a system can be
of benefit, which is discussed in the next section. (See Examples 6.4.5,
6.4.6, and 6.4.8)

6.4 SYSTEMS OF EQUATIONS

A particular
solution to a
system of ordinary
differential equations
is a set of functions
that satisfy the
system but do not
contain any arbitrary
constants. That is, a
particular solution to
a system is a set of
specific functions,
containing no
arbitrary constants,
that satisfy the
system.

6.4.1 Linear Systems

We now consider first-order linear systems of differential equations:

X' = A®OX +FQ®), (6.28)
where
x](t) all(t) alz(t) dln(t) fl(t)
x,(D) a, @ a® ... a,,® L®
X®= . , A= . . . , and F@® = .
x,(® a,® a,® ... a,,® (D
Homogeneous Linear Systems
The corresponding homogeneous system of equation (6.28) is
X' = AX. 629

In the same way as with the previously discussed linear equations, a
general solution of equation (6.28) is X = X, + X,, where X, is a gen-
eral solution of equation (6.29) and X, is a particular solution of the
nonhomogeneous system equation (6.28).

If®,, ®,, ..., D, are n linearly independent solutions of equation (6.29),
a general solution of equation (6.29) is
¢
©
X=¢® +c,0,++¢,®,=(®, @, - D,)| . |=C,
cn
where
1
€

and
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® is called a fundamental matrix for equation (6.29). If ® is a fundamen-
tal matrix for equation (6.29), ® = A® or ® — A® = 0.

A(» constant

Suppose that A(#¥) = A has constant real entries. Let A be an eigenvalue of
A with corresponding eigenvector v. Then, vé' is a solution of X' = AX.

If A=a+pBi, B#0, is an eigenvalue of A and has corresponding
eigenvector v = a+ bi, two linearly independent solutions of X' = AX
are

e*' (acos Bt — b sin Bt) and e (asinfBr+bcospt). (6.30)

Example 6.4.1 Solve each of the following systems:

-1/2 - =1 dxjdt = —1x+2
(a)X'=< vz ”3>x; 0 %7 ;g { BE T
-173 -1/2 Y =-ix dy/dt = -8x — 1y.

Solution (a) With Eigensystem, we see that the eigenvalues and eigenvectors of A =

-1/2 -1/3 -1 1
(_1/3 _1/2> are A, =-1/6 and A,=-5/6 and v, = ( 1) and v, = <1)

respectively.

capa ={{-1/2, -1/3},{-1/3, -1/2}};
Eigensystem[capa]

{-8 —sh {1, 1L {-1.1}}}

Then X, = <_11) e and X, = (1) ¢’ are two linearly independent solutions

—t/6  _-5t/6
. . - C
of the system, so a general solution is X = < _1/6 _;,,(,> ( 1); a fundamental
e e [

—-t/6  _-5t/6
. —e e
matrixis @ = .6 s |-
e e

We use DSolve to find a general solution of the system by entering

Clear[x, y]
gensol = DSolve[{x'[t]==- 1/2x[t] - 1/3y[t],
y'[t]==-1/3x[t] - 1/2yI[t]}, {x[t], [}, t]
{{x[t] _ %e—St/G (1 N e2t/3) Cl1]- %e-a/e (_1 n e2v3) crl,
Vi) — — %e—St/B (_1 + 621/3) C[1] + %6—51/6 (1 + e21/3) 0[2]}}

We graph the direction field with VectorFieldPlot, which is contained in the
VectorFieldPlots, in Figure 6.26.
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FIGURE 6.26
Direction field for X' = AX

Remark 6.4 After you have loaded the VectorFieldPlots package,
VectorFieldPlot[{f[x, y], g[x, I}, {x, a, b}, {y, ¢, d}]

generates a basic direction field for the system {x' = f(x,1), ¥’ = glx, )} for a <
x<band c<y<d.

<< “VectorFieldPlots™
pvf = Show[VectorFieldPlot[{-1/2x-1/3y, —1/3x-1/2y},
{x, -1, 1},{y, -1, 1}, ScaleFunction — (1&)],
Axes — Automatic]

Several solutions are also graphed with ParametricPlot and shown together with
the direction field in Figure 6.27. To do so, we first solve the system if x(0) = x,
and y(0) = y,,.
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Direction field for X' = AX along with various solution curves

initsol = DSolve[{x'[t]==-1/2x[t] - 1/3y[t],
y'[t]==-1/3x[t] - 1/2y[t], x[0]==x0, y[0]==yO0}, {x[t], y[t]}, t]

{{xt] — $e7°"® (x0 +e**x0 + y0-e°°y0),
yltl — — 367 (-x0 + €*x0-y0-€°"%y0) } }

Given an ordered pair, solplot parametrically graphs the solution satisfying x(0) = x;

and p(0) =y, for 0 < ¢ < 15.

solplot[pair_]:=
ParametricPlot[
Evaluate[{x[t], y[t]}/.initsol/.{x0 — pair[[1]], yO — pair[[2]]}],
{t, 0, 15}, PlotStyle — {{Black, Thickness[.005]}}]
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We then define a list of ordered pairs with Table followed by Flatten

Clearli, j]
orderedpairs = Flatten[Table[{i, j}, {i, -1, 1, 1/4},{j, -1, 1, 1/4}], 1];
Short[orderedpairs]

{-1 - =1 =20 (=0 =2 e {12} {120 {1, 1)
and use Map to apply solplot to orderedpairs.

toshow = Map[solplot, orderedpairs];

The resulting list of graphics objects is displayed together with Show. See
Figure 6.27.

Show[toshow, pvf, PlotRange — {{-1,1},{-1,1}}]

. ) . , 0o 1/2
(b) In matrix form the system is equivalent to the system X' = ( 18 (/) )X

As in (a), we use Eigensystem to see that the eigenvalues and eigenvectors of

A= 0 12 are A, =0x3%iand v, = Do)
-1/8 0 ’ ’ 0 1/2

capa = {0, 1/2},{-1/8,0}};
Eigensystem[capa]

({4, -5V, {({-2, 1}, {2, 11}

. . . 1
Two linearly independent solutions are then X, = (0) cos 1t — (1?2> sin 1# =

cos iz 1 0 sin 1t
LY ) and X, = sin 1¢ + cos jt = 4, ), and a general
—5sin 3t 0 1/2 cos 3t

2

1
2
1 L1
o cosit sinlr c
solutonis X =¢, X, +,X, = | .4, | % ') orx=c cosit+c,sinit
-3 Sin Zt ECOS Zt C,

and y = —¢, 1 sin 1# + 1c, cos 12
As before, we use DSolve to find a general solution.
Clear[x,y]
gensol = DSolve[{x'[t]==1/2y[t], y'[t]==- 1/8X[t]},
{x[t], [}, 1]
{{xlt] — C[1]Cos [5] +2C[2]Sin [1] ,

ylt] — Cl21Cos [§] - SCl1ISin [£] }}

Initial-value problems for systems are solved in the same way as for other
equations. For example, entering

partsol = DSolve[{x'[t]==1/2y[t], y'[t]==- 1/8X[1],
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x[0]==1, y[0]==-1},
(X[, yItT}, 1]
{{xlt] — Cos [£]-2Sin [1] ,ylt] — § (-2Cos [{]-Sin [{])}}

finds the solution that satisfies x(0) =1 and »(0) = -1.

Pa

We graph x@ and yp(@® together as well as parametrically with Plot and
rametricPlot, respectively, in Figure 6.28.

p1 = Plot[{x[t], y[t]}/.partsol, {t, 0, 8Pi}];

p2 = ParametricPlot[{x[t], y[t]}/.partsol, {t, 0, 8Pi},
AspectRatio —» Automatic];

Show[GraphicsRow[{p1, p2}]]

We can also use VectorFieldPlot and ParametricPlot to graph the direction
field and/or various solutions as we do next with Manipulate. In this case,
Manipulate is used to graph the solution passing through the locator point. As
you move the point with the cursor, the corresponding solution is plotted. See

Fig

ure 6.29.

Clear[pvf, sol, p1];
Manipulate[
<< “VectorFieldPlots™”;
Module[{pvf, sol, p1},
pvf = Show[VectorFieldPlot[{1/2y, - 1/8x},
{x, -2, 2},{y, -1, 1}, ScaleFunction — (1&)],
Axes — Automatic];
sol = DSolve[{x'[t]==1/2y[t], y'[t]==- 1/8X[1],
x[0]==pt[[1]], y[O]==pt[[2]]},
{x[t], y[tI} t1;
p1 = ParametricPlot[{x[t], y[t]}/.sol, {t, 0, 8Pi},
PlotStyle — Thickness[.01]];
Show[p1, pvf, PlotRange — {{- 2, 2},{-1, 1}},
AspectRatio — 1]], {{pt, {1, .5}}, Locator}]

FIGURE 6.28

(@) Graph of x(» and y(®. (b) Parametric plot of x(# versus y(®



498 CHAPTER 6 Differential Equations

////;,.10“\\\\\\ /////,10-‘\\\\\\
////,,,_,_,“\\\\\ /////,,}‘\\\\\\
R N S R SN,
Iy RN - NINNIN R NN
[/ CIIINM D A2 S AR

S Iy ) T
L NN %xxﬁ(('\\\\f”
’ . * Ny
AT ISR/ VAN N\ /
VA Tyl AN [ S

St N "y
AN L2000 N AN v
\\\\\‘*‘*‘—/,//// AN v sy
\\\\\\\-,,,//// ANRANINES v
\\\\\\710__,_,,//// AN NS P
FIGURE 6.29

With Manipulate, notice that all nontrivial solutions are periodic

. . , , 12
(c) In matrix form, the system is equivalent to the system X =< é )X.

1

. . . -2z 2
The eigenvalues and corresponding eigenvectors of A = ( g 1> are found to
—° 73

beA,,=-1+4iand v , = (2) + ((1)> i with Eigensystem.

capa = {{-1/4,2},{-8, -1/4}};
Eigensystem[capa]

{-z+d—a-4} {{-21} {z1}}}
A general solution is then

X=X, +,X,

=ce <<(1)> cos 4t — ((2)> sin 4t> +ce <<(1)) sin 4¢ + <(2)> cos 4t>

_ ot cos 4t + sinds \| _ ori [ €08 4 sindt \ (¢
=€ |9\ —2sindt ) T2\ 2c0s4t ) | T —-2sin4t 2cos4t) \c,

or x=e"* (¢, cos4t +c,sin4t) and y = e (2¢, cos 4t — 2¢, sin4t). We confirm
this result using DSolve.
gensol = DSolve[{x'[t]==- 1/4x[{] + 2y[t],
Y [t]==-8x[t] - 1/4y[t]}, {x[t], y[t]}, 1]
{{xt] — e~"*C[1]Cos[41] + ze~"*C[2]Sin[4t],

yltl — e""C[2]Cos[4t] -2e~"*C[1]Sin[4t] } }
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FIGURE 6.30
Various solutions and direction field associated with the system

We use VectorFieldPlot and ParametricPlot to graph the direction field associated
with the system along with various solutions in Figure 6.30.

Clear[x, y]
initsol = DSolve[{x'[t]==-1/4x[t] + 2y][t],
y'[t]==-8x[t] - 1/4y[t], x[0]==x0, y[0]==y0},
{x[t], y[t1}, 1]
{{x[t] — $e~"*(2x0Cos[4t] + yOSin[4t)),
ylt] — e~ "*(yOCos[4t] - 2x0Sin[4t)) } }

t1 = Table[ParametricPlot[{x[t], y[t]}/.initsol/.
{x0 - 1,y0 — i}, {t, 0, 15}, PlotStyle — Gray],
{i, -1,1,2/8}];
pvf = Show[VectorFieldPlot[{- 1/4x + 2y, —-8x-1/4y},
{x, -1,1},{y, -1, 1}, ScaleFunction — (1&)],
Axes — Automatic];
Show[t1, pvf, PlotRange — {{-1,1},{-1,1}},
AspectRatio — Automatic]
Last, we illustrate how to solve an initial-value problem and graph the resulting solu-
tions by finding the solution that satisfies the initial conditions x(0) = 100 and »(0) = 10
and then graphing the results with Plot and ParametricPlot in Figure 6.31.
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FIGURE 6.31

(@) Graph of x(®» and y(@. (b) Parametric plot of x(@® versus y@® (for help with Show
and GraphicsRow use the Documentation Center)

Clear[x,y]
partsol = DSolve[{x'[t]==-1/4x[t] + 2y[t],
y'[t]==-8x[t] - 1/4y][t], x[0]==100, y[0]==10},
{x[t], ytl}, 1]
{{xlt] — 5e~"*(20Cos[41] + Sin[41]), y[t] — 10e~"*(Cos[4t] - 20Sin[4t]) } }
p1 = Plot[{x[t], y[t]}/.partsol, {t, 0, 20}, PlotRange — All];
p2 = ParametricPlot[{x[t], y[t]}/.partsol, {t, 0, 20},

AspectRatio — Automatic];
Show[GraphicsRow[{p1, p2}1]

Application: The Double Pendulum

The motion of a double pendulum is modeled by the system of differential
equations

a’e, a’e,
— + mzlllzﬁ +(my+m,) 1,0, =0
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Solution

The Laplace
transform of y = f(®
is F(s) = L{f®) =

I e ar.
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using the approximation sinf =6 for small displacements. 0, represents
the displacement of the upper pendulum and 6, that of the lower pen-
dulum. Also, m; and m, represent the mass attached to the upper and
lower pendulums, respectively, whereas the length of each is given by /;
and Z,.

Suppose that m, =3, m, =1, and each pendulum has length 16. If ,(0) =1,
6,/(0)=0, 0,(0) = -1, and 6,'(0) = 0, solve the double pendulum problem using
g =32. Plot the solution.

In this case, the system to be solved is

a0 a0
4.16°—L +16°—2+4-16-320, =0
dr dr !
a0 a0
2 2 2 1
16ﬁ+16ﬁ+163202=0)

which we simplify to obtain

da’e, do,

— L4+ —_24+80,=0

dr? dr?
e, d’e,
—2+—L429,=0.
ar. =~ ar

In the following code, we let x(® and y(@® represent 6,(¥) and 6,(), respectively.
First, we use DSolve to solve the initial-value problem.

sol = DSolve[{4x"[t] + y"[t] + 8x[t]==0, x"[t] + y"[t] + 2y[t]==0,
x[0]==1, x'[0]==1, y[0]==0, y'[0]==- 1}, {xIt], y[t]}, 1]
{{x1— & (4Cosi21] + 4Cos | Z | + 3Sinf2 + V3Sin [ ] ),
yi) = § (~4Cos[24 + 4Cos | Z|-3sin2y + v3sin [ 2] ) } |
To solve the initial-value problem using traditional methods, we use the method of
Laplace transforms. To do so, we define sys to be the system of equations and
use LaplaceTransform to compute the Laplace transform of each equation.

step1 = LaplaceTransform[sys,t, s]

{8LaplaceTransform([x[t], t, s] +

s?LaplaceTransform[yft], t, s] - sy[0] +
4 (s’LaplaceTransform[x[t], t, s]—sx[0] - X'[0]) —y'[0]==O0,
s?LaplaceTransform[x[t], t, s] +
2l aplaceTransform(y[t], t, s] +
s?LaplaceTransformly[t], t, s] - sx[0] -
sy[0]-x[0]-y'[0]==0}
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annm 2 LaplaceTransform - Wolfram Mathematica

Ak (@8 apaceTanstom

Q, Search for all pages containing LaplaceTransform.

LaplaceTransform

LaplaceTranatorn egr, I, 4
gives the Laplace transfoem of expr,

LaplaceTransform(egr, (f, b, -.1s (51, 820
gives the multdimensions! Laplace transform of expr.

> [
¥ Ganees
¥ Basic Examples
infi)- LaplaceTransformlt® 4 Sinft], €, 8]

(1108 .50t

Leat)t

31+ taplaceTransfors|E” {-t), &, 8]
1
1«n
It LaplaceTrans form{BeavisideThota[t - 1] &, t, ]
oetiles)

11~ Laplacevransfora(f ' [t], t, 8]

= £{0] + a” LaplaceTranafornif[t], t, 8] - £ [0

[ 100% »

Next, we apply the initial conditions and solve the resulting system of equations
for L{6,(®} = X(s) and L{6,(O} = Y(s).

step2 = step1/.{x[0] -> 1, x'[0] —> 1, y[0] -> 0, y'[0] —> -1}
{1 + 8LaplaceTransform[x[t], t, ] +
4 (—1 —s + s?LaplaceTransform[x[t], t, s]) +
s?LaplaceTransform[y(t], t, s]==0,
—s + s?LaplaceTransform[x[t], 1, s] +
2L aplaceTransformly(t], t, s] +
s?LaplaceTransform[y[t], t, s]==0}

step3 =
Solve[step2, {LaplaceTransform[x[t], t, s],
LaplaceTransform[y[t], t, s]}]

-6-8s-3s®-3s°
{ { LapIaCeTranSform[X[t], 1, S] = T T 5rieiaed

—8s+35%
LaplaceTransform|y[t], t, s] — — m }}
InverselLaplaceTransform is then used to find 6,(® and 6,(».

f@® is the inverse

Laplace transform x[t-] = InverseLaplaceTransform [— %ﬁi‘sﬁé, s, t]
of F(s) if Lif(D} =

F(s); we write 3 (4Cos[2t] +4Cos [\2/—%] +3Sin[2t] + v/3Sin [j—%])
LTYE®) = fO.
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—8s +3s?
—==_s,t
16+16s2+3s4”

3 (~4cosf2] + 4Cos [j—‘é]—SSin[Z[] +v/3Sin [3—%] )

These two functions are graphed together in Figure 6.32(a) and parametrically in
Figure 6.32(b).

p1 = Plot[{x[t], y[t]}, {t, 0, 20},

PlotStyle —> {GrayLevel[0], GrayLevel[0.5]}]
p2 = ParametricPlot[{x[t], y[t]}, {t, O, 20},

PlotRange —> {{-5/2, 5/2},{-5/2, 5/2}}, AspectRatio — 1]
Show[GraphicsRow[{p1, p2}]]

y[t_] = InverseLaplaceTransform [—

We can illustrate the motion of the pendulum as follows. First, we define the
function pen2.

Clear[pen2]
pen2[t_, leni_, len2_]:=Module[{pt1, pt2},

pt1 = {Ien1 Cos |2 + x[t]], len1 Sin [T + x[t]] };
pt2 = {Ien1 Cos |2 + x[t]] +len2Cos [3F +y[t]|,
len1Sin [3F + x[t]] + len2Sin [3F + y[t]| };

Show|[Graphics[{Line[{{0, 0}, pt1}], PointSize[.05], Point[pt1],
Line[{pt1, pt2}], PointSize[.05], Point[pt2]}], Axes — Automatic,
Ticks — None, AxesStyle — GrayLevel[.5],
PlotRange — {{-32, 32}, {- 34, 0}},
DisplayFunction — Identity]]

Next, we define tvals to be a list of 16 evenly spaced numbers between 0 and
10. Map is then used to apply pen2 to the list of numbers in tvals. The resulting

ol
T N

FIGURE 6.32
(@ 6, (in black) and 0,® (in gray) as functions of ¢. (b) Parametric plot of 6,
versus 0,()

—

|
—
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FIGURE 6.33
The double pendulum for 16 equally spaced values of ¢ between 0 and 10

set of graphics is partitioned into four element subsets and displayed using Show
and GraphicsGrid in Figure 6.33.

tvals = Table [t, {1,0,10, 12} |;
graphs = Map[pen2[#, 16, 16]&, tvals];
toshow = Partition[graphs, 4];

Show[GraphicsGrid[toshow]]

If the option DisplayFunction->ldentity is omitted from the definition of pen2, we
can use a Do loop together with Print to generate a set of graphics that can then
be animated.

Clear[pen2]
pen2[t_, len1i_, len2_]:=Module[{pt1, pt2},

pt1 = {Ien1Cos [3F +x[t]] , len1Sin [T + x[t]] };

pt2 = {Ien1Cos [ + x[t]] +len2Cos [¥ +y[t]] ,
len1Sin [2F + x[t]] + len2Sin [ + y[t]] };

Show|[Graphics[{Line[{{0, 0}, pt1}], PointSize[.05], Point[pt1],
Line[{pt1, pt2}], PointSize[.05], Point[pt2]}], Axes — Automatic,
Ticks — None, AxesStyle — GrayLevel[.5],

PlotRange — {{-32, 32}, {-34, 0}}1]

We show one frame from the animation that results from the Do loop

Do [Print[pen2[t, 16,16]], {t,0,10, 2 }]

in the following screen shot.
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Cloar[pen2]
pen2(t_, leal_, lenZ ] x=mu1u[1p::. pti},

Show [Graphics [{Line[({0, 0}, pt1}], PointSize[.05],
Point(ptl], Line[(ptl, pt2}], PointSize[.05],
Point[pt2]} ], Axes -+ Automatic, Ticks -+ None,

AxesStyle - GrayLevel[.5], PlotRange - {{-32, 32}, (-34, 0}}]

nu{pnut[pnuu:, 16, 1611, {c, o, 10, :‘_:}]

Alternatively, you can use Manipulate

Clear[pen2]
Manipulate[

x[t-] = %<4Cos[2t] +4Cos [%] +3Sin[2t] + V/3Sin [%] );

ylt-] = %(—4605[2t] +4Cos [%]—3Sin[2t] +V/3sin [% );

pen2[t_, leni_, len2_]:=Module[{pt1, pt2},
pt1 = {len1Cos [¥ + x[t]], len1Sin[ 2T + x[t]]};

pt2 = {Ien1 Cos [T + x[t]] + len2Cos [¥ + y[t]] ,
len1Sin [3F + x[t]] + len2Sin [3F + y[t]] };

Show[Graphics[{Line[{{0, 0}, pt1}], PointSize[.05], Point[pt1],
Line[{pt1, pt2}], PointSize[.05], Point[pt2]}], Axes — Automatic,
Ticks — None, AxesStyle — GrayLevel[.5], AspectRatio — 1,
PlotRange — {{-32, 32}, {- 34, 0}}1];
pen2[t, 16, 16], {{t, 0}, 0, 6}]

to generate a nearly identical animation as shown in Figure 6.34.

6.4.2 Nonhomogeneous Linear Systems

Generally, the method of undetermined coefficients is difficult to imple-
ment for nonhomogeneous linear systems because the choice for the
particular solution must be very carefully made. Variation of parameters
is implemented in much the same way as for first-order linear equations.
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FIGURE 6.34
Two frames from a Manipulate animation of a double pendulum

Let X, be a general solution to the corresponding homogeneous sys-
tem of equation (6.28), X a general solution of equation (6.28), and X,
a particular solution of equation (6.28). It then follows that X — X, is
a solution to the corresponding homogeneous system so X - X, =X,
and, consequently, X =X, +X,. A particular solution of equation (6.28)
is found in much the same way as with first-order linear equations. Let ®
be a fundamental matrix for the corresponding homogeneous system. We
assume that a particular solution has the form X, = ®U(®). Differentiating
X, gives us

X, =®'U+PU".
Substituting into equation (6.28) results in

PU+PU = APU+F

PdU =F
U=0"'F
U=J®_]th,

where we have used the fact that ®'U - AQPU = (&' - A®) U =0. It
follows that

X, = q>J<I>‘1th. 63D
A general solution is then
X=X,+X,

=(I>C+¢J¢_1th
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- (c +J<I>_1th> - <I>J<I)_1th,

where we have incorporated the constant vector C into the indefinite
integral [®'F ar.

Example 6.4.3 Solve the initial-value problem
(1 -1 _ tcos 3t (1
X' = (10 —1) X <tsint+ tcos3t)’ X = <—1>'

Remark 6.5 In traditional form, the system is equivalent to

X =x-y—tcos3t
y' =10x -y — tsint — tcos 3t,

x(0) =1, y(0) = -1.

1 -1

Solution The corresponding homogeneous system is X = (10 .

>X,,. The eigenval-

. . 1 -1
ues and corresponding eigenvectors of A = <10 1> are A, ==+3i and v,, =

1 =3\ . .
(10) + < o )z, respectively.

capa = {{1, -1},{10, -1}};

Eigensystem[capa]

(18,3 ({5 + 5.1 {6 - . 1)))

sin 3¢ Ccos 3¢

A fundamental matrix is ® = ( . .
sin3¢ — 3 cos 3t cos 3t + 3sin 3¢

> with inverse @' =

$cos3t+sin3t —1cos3t
—3sin3t+cos3t 1sin3t )

fm = {Sin[3t], Sin[3t] - 3Cos[31]}, {Cos[3t], Cos[3t] + 3Sin[3t]}};
fminv = Inverse[fm]//Simplify

{{3Cos[3t] + Sin[3t], Cos[3t] - $Sin[3t]} , { - 3Cos[31], 3Sin[31] } }
We now compute ®'F(

ft = {-tCos[3t], —tSin[t] -tCos[3t]};
step1 = fminv.ft
{(~tCos[3t]-tSin[t]) (Cos[3t] - 3 Sin[3t]) —

tCos[3t] ($Cos[3t] + Sin[3t]) ,
1Cos[3t]? + 1(~tCos[3t] ~tSin[t)Sin[31]}

and [®'F@ar.
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step2 = Integrate[step1, 1]

{-£ + L Cos[21] - 1tCos[21] - 55 Cos[4t] + 1tCos[4t] -
=;Cos[6t] + $5tCos[6t] + §Sin[2t] + 5tSin[2t] -
L Sin[4t] - LtSin[4t] - -1 Sin[6t] - JtSin[6t],

£ — J-Cos[2t] + =Cos[4t] + 5= Cos[6t] + 25 tCos[6t] -

LtSin[2t] + LtSin[4t] - 7= Sin[6t] + =tSin[6t]}

A general solution of the nonhomogeneous system is then @ (jCD_lF(t) dr+ C).
Simplify[fm . step2]
{525(27Cos[t] -
4((1 + 6t + 18t)Cos|[3t] + 27tSin[t] + (- 1 + 6t + 18t?)Sin[3t])),
5 (—36tCos[t] - 4(1 - 6t + 18t*)Cos[3t] -
45Sin[t] - 4Sin[3t] - 24tSin[3t] + 72t2Sin[3t])}
It is easiest to use DSolve to solve the initial-value problem directly as we do next.
check = DSolve[{x'[t]==x[t] - y[t] - tCos[31], y'[t]==
10x[t] - y[t] - tSin[t] - tCos[3t], x[0]==1, y[0]==-1},
{x[t], [}, t]
{0 — 555
(301Cos[3t] - 72t2Cos|[3t] - 12Cos[2t|Cos|[3t]
+ 3Cos[3t]Cos[4t] — 4Cos[3t]Cos|6t] — 24tCos[3t]Sin[21]
+ 192Sin[3t] + 24tCos[2t]Sin[3t] — 12tCos[4t]Sin[3t]
+ 24tCos[6t]Sin[3t] — 12Sin[2t]Sin[3t] + 12tCos[3t]Sin[41]
+ 3Sin[3t]Sin[4t] — 24tCos[3t]Sin[6t] — 4Sin[3t]Sin[6t]),
yltl — 55(—275Cos[3t] - 72t*Cos[3t]
—12Co0s[2t]Cos[3t] - 72tCos[2t]Cos[3t]
+ 3Cos[3t]Cos[4t] + 36tCos|[3t]Cos[4t] - 4Cos[3t]Cos[6t]
- 72tCos|[3t]Cos[6t] + 36Cos[3t]Sin[2t] - 24tCos[3t]Sin[2t]
+ 1095Sin[3t] - 216t2Sin[3t] - 36Cos[2t]Sin[3t]
+ 24tCos[2t]Sin[3t] + 9Cos[4t]Sin[3t] - 12tCos[4t]Sin[3t]
—12Cos[6t]Sin[3t] + 24tCos[6t]Sin[3t] — 12Sin[2t]Sin[3t]
—72tSin[2t]Sin[3t] — 9Cos[3t]Sin[4t] + 12tCos[3t]Sin[4t]
+ 3Sin[3t]Sin[41] + 36tSin[3t]Sin[4t] + 12Cos[3t]Sin[6t]
- 24tCos[3t]Sin[6t] - 4Sin[3t]Sin[6t] — 72tSin[3t]Sin[6t]) } }
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FIGURE 6.35
(@) Graph of x(®» (in black) and y(@® (in gray). (b) Parametric plot of x(® versus y(®

The solutions are graphed with Plot and ParametricPlot in Figure 6.35.

p1 = Plot[{x[t], y[t]}/.check, {t, 0, 87}, PlotRange — All];

p2 = ParametricPlot[Evaluate[{x[t], y[t]}/.check], {t, 0, 8},
AspectRatio — Automatic];

Show[GraphicsRow[{p1, p2}]]

In the case that A is constant, X' = AX is called an autonomous sys-
tem and the only equilibrium (rest point) solution is the zero solution:
X = 0. The stability of the solution is determined by the eigenvalues of A.
If all the eigenvalues of A have negative real part, then X = 0 is globally
asymptotically stable because lim, ,, X(#) = O for all solutions. If not all
the eigenvalues of A have negative real part, then X = 0 is unstable.
ab
cd
cx + dy, the stability of (0, 0) is easily seen by examining the direction field

For the 2 x 2 system, X' = X or, equivalently, X' = ax + by, ' =
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Example 6.4.4

for the system. If all vectors lead to the origin, it is stable; if they do not,
it is not.

The eigenvalues of <_g ﬁ) are A, = i (—u + Va? - 4b2>. (See the exercises.)
Thus, (0,0) is globally asymptotically stable for the system X' = (_Z ﬁ ) X.

With Manipulate, you can investigate the various situations. In the following,
we can vary a« and B and then plot the solution passing through each locator
point. Several results are shown in Figure 6.36.

Manipulate[

Needs[“VectorFieldPlots™];

sol1 = DSolve[{x'[t]==-ax[t] + ByIt], y'[t]==- Bx[t],
x[0]==init1[[1]], y[0]==init1[[2]1}, {x[t], y[t]}, t];

sol2 = DSolve[{x'[t]==-ax[t] + BYIt], y'[t]== - Bx[t], x[0]==init2[[1]],
y[0]==init2[[2]]}, {x[t], y[t]}, t];

psol1 = ParametricPlot[{x[t], y[t]}/.sol1, {t, — 20, 20},
PlotStyle — {{GrayLevel[.3], Thickness[.01]}}, PlotPoints — 200];

psol2 = ParametricPlot[{x[t], y[t]}/.sol2, {t, - 20, 20},
PlotStyle — {{GrayLevel[.6], Thickness[.01]}}, PlotPoints — 200];

p1 = Show[{VectorFieldPlot[{-ax + By, -Bx},{x, -1,1},{y, - 1,1},
ScaleFunction — (1&)], psol1, psol2},

Axes — Automatic, AxesOrigin — {0, 0}, PlotRange — {{-1,1},{-1, 1}},
AspectRatio —» Automatic],

{{a, 1}, -2.5,5}, {{B, 2}, - 2. 5, 5}, {{init1,{.5, .5}}, Locator},
{{init2,{-.5, - .5}}, Locator}]

FIGURE 6.36

As we vary a and B and change the initial conditions, the system behaves differently.
(@) A stable spiral. (b) A center. (c) An unstable spiral
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6.4.3 Nonlinear Systems

Nonlinear systems of differential equations arise in numerous situations.
Rigorous analysis of the behavior of solutions to nonlinear systems is usually
very difficult, if not impossible.

To generate numerical solutions of equations, use NDSolve.

anM 2 NDSolve - Wolfram Mathematica (&= ]
< (@ red NDSokee »| B
NDSolve Updpialing

HOSOlve [ans, ¥r (K Sems Ko
finds a rumerical salution 1o the erdinary dfferential equations sgur for the function y with the independent
varisble 1 in the range L., 10 L.,

MOEOLve [Agar, ¥, (£ Tens sl {6 fmme o
finds a numerical solution to the partial differential equations egar

WDSolve [egar, (94 Yau o) ¢ (55 Kems Sonmr
finds numerical solutions for the functions

» [won

¥ ExaseEs

¥ Basic Examples
Sarve 3 SDaepes SRORATY SR SGUMTISA
1)~ % u MDSolve [y’ [2] == y[x] Coslx s y[x]], ¥[0] == 1}, ¥, (x, O, 30}]

1= (¥ +InterpolatingFunction| | (8., 30. 4}, <=1}

Use e salution i 8 st
13- Plot[Evalusta(y[z] /. a], {x, 0, 30}, PlotRange -« AL1]
o)

of

i A
L A
[\
|

I T T T
1008 »

Example 6.4.5 (Van der Pol's equation). Van der Pol’s equation, x"+p (x> -1)2 +x=0
Also see Example can be written as the system

6.4.8. )
X =y

y=-x-p(¥=1)y. 632)

If w=2/3, 2(0)=1, and y(0) =0, (a) find x(1) and p(1). (b) Graph the solution that
satisfies these initial conditions.

Solution We use NDSolve together to solve equation (6.32) with u = 2/3 subject to x(0) = 1
and »(0) = 0. We name the resulting numerical solution numsol.
numsol = NDSolve[{x'[t]==y[t], V' [t]== - x[t] - 2/3(x[t]* 2 - 1)y[t], x[0]==1,
y[0]==0}, {x[t], y[t]}, {t, 0, 30}]
{{x[t] — InterpolatingFunction[{{0., 30.}}, <>]t],
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We evaluate numsol if t = 1 to see that x(1) = 0.5128 and y(1) = —0.9692.
y[t] — InterpolatingFunction[{{0., 30.}}, <>][t]} }

{x[t], y[t]}/.numsol/.t->1

{{0.512848, -0.969204} }

Plot, ParametricPlot, and ParametricPlot3D are used to graph x( and
p(@® together in Figure 6.37(a); a three-dimensional plot, (&, x(®,y®), is shown
in Figure 6.37(b); a parametric plot is shown in Figure 6.37(c); and the limit

2 éll : ; 1IO
7'1 -
_2 -
1? |
FIGURE 6.37

(@) x® and y@®. (b) A three-dimensional plot. () x(@ versus yp(@®. (d) x@® versus y@
for 20 <t < 30

1Y
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cycle is shown more clearly in Figure 6.37(d) by graphing the solution for
20 <t < 30.

p1 = Plot[Evaluate[{x[t], y[t]}/.numsol], {t, 0, 15}];
p2 = ParametricPlot3D[Evaluate[{t, x[t], y[t]}/.numsol], {t, 0, 15}];
p3 = ParametricPlot[Evaluate[{x[t], y[t]}/.numsol], {t, 0, 15},
AspectRatio — Automatic];
p4 = ParametricPlot[Evaluate[{x[t], y[t]}/.numsol], {t, 20, 30},
AspectRatio —» Automatic];
Show[GraphicsGrid[{{p1, p2}, {p3, p4}}1]
To consider other u values, decide on a wu range, combine the previous
To avoid conflicts with commands, replace 2/3 with u, and use Manipulate. See Figure 6.38.
the variables in the

Manipulate, consider Manipulate[ A

quitting Mathematica, numsol = NDSolve[{x'[t]==y[t], y'[t]==— x[t] - n(x[t] " 2 - 1)y[t],

restarting, and x[0]==1, y[0]==0}, {x[t], y[t}, {t, O, 30}];

then entering the p1 = Plot[Evaluate[{x[t], y[t]}/.numsol], {t, 0, 15},

Manipulate command PlotRange — All, AspectRatio — 1];

in a new notebook. p2 = ParametricPlot3D[Evaluate[{t, x[t], y[t]}/.numsol], {t, 0, 15},
BoxRatios — {4, 1, 1}];

p3 = ParametricPlot[Evaluate[{x[t], y[t]}/.numsol], {t, 0, 15},
AspectRatio — 1, PlotRange — All];

p4 = ParametricPlot[Evaluate[{x[t], y[t]}/.numsol], {t, 20, 30},
AspectRatio — 1, PlotRange — All];

Show[GraphicsGrid[{{p1, p2}, {p3, p4}11, {{u, 1}, 0, 3}]

FIGURE 6.38
Plots of solutions of Van der Pol’s equation for various values of u
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Linearization

An autonomous
system does not
explicitly depend on ,
the independent X =fi (xl,xz,...,xn)
variable, . That is, if x' =f (xl,xz,,.,,xn)
you write the system :

omitting all arguments,

the independent x, = [ (%, %5,...,%,) .
variable (typically )
does not appear.

Consider the autonomous system of the form

6.33)

An equilibrium (or rest) point, E = (x,",x,",...,x,"), of equation (6.33)
is a solution of the system

S (2, %5,..0x,) =
Ve (.x‘l,xz,...,xn) =

: (6.39
I (xl,xz,...,xn) =0.

The Jacobian of equation (6.33) is

o an
J (‘xl’xb---,xn) — ’7’.‘1 ‘73.‘2 03.‘”
ax; ax, T ox,

The rest point, E, is locally stable if and only if all the eigenvalues of J(E)
have negative real part. If E is not locally stable, E is unstable.

Example 6.4.6 (Duffing’s Equation). Consider the forced pendulum equation with damping,

Establishing global x" +kx' + wsinx = FQ®). (6.35)
stability of an
equilibrium point

X Recall the Maclaurin series for sinx: sinx=x— 12’ + 1’ — 1x" +.... Using
for a nonlinear system 3! 51 7

L sinx = x, equation (6.35) reduces to the linear equation x” + kx' + wx = F().
is significantly more : o . 1.3 S
On the other hand, using the approximation sinx=x — ¢x°, we obtain x” +

difficult than , 3 C - 3 i
establishing global kx +w (x - éx ) = F(®. Adjusting the coefficients of x and x” and assuming that

stability of an F(H) = Fcoswt gives us Duffing’s equation:

equilibrium point

(E = (0,0)) for a linear x" +kx' +cx+€x’ = Fcos wt, (6.36)
autonomous system.

where k and ¢ are positive constants.
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Let y=x". Then, y =&" = Fcoswt — kx' — cx — €x’ = Fcos ot — ky — cx — €x°
and we can write equation (6.36) as the system

x'=y
y' = Fcoswt — Ry — cx — €x°. 6.37)

Assuming that F = 0 results in the autonomous system
x'=y
y' = —cx —ex® - ky. 6.38)
The rest points of system equation (6.38) are found by solving
x'=0
y' = —cx—€ex® —ky,=0,
resulting in E, = (0, 0).
Solve[{y==0, - cx - ex”3-ky==0}, {x, y}]
{{y—>0,x—>0},{y—>0,x—> —‘\/—‘/g},{yao,x—> ‘\/—‘[g}}
We find the Jacobian of equation (6.38) in s1, evaluate the Jacobian at E,,
s1={{0,1},{-c-3ex"2, -K}};
s2 =s1/.x->0
{{0. 1}, {-c. -k}}
and then compute the eigenvalues with Eigenvalues.

s3 = Eigenvalues[s2]
{;(_k-m),;(_mm)}

Because & and c¢ are positive, k* — 4c < k&, so the real part of each eigenvalue
is always negative if &% — 4c # 0. Thus, E, is locally stable.
For the autonomous system

x' = ()
y' =g, (6.39)
Bendixson’s theorem states that if £.(x,)) + 8, is a continuous function that

is either always positive or always negative in a particular region R of the plane,
then system (6.39) has no limit cycles in R. For equation (6.38), we have

— (y) + % (—cx— €x’ - ky) = -k,

which is always negative. Hence, equation (6.38) has no limit cycles and it follows
that E, is globally, asymptotically stable.
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D[y, x] + D[-cx-ex3-ky, y]
-k

We use VectorFieldPlot and ParametricPlot to illustrate two situations that
occur. In Figure 6.39(a), we use c=1, €=1/2, and k=3. In this case, E, is a
stable node. On the other hand, in Figure 6.39(b), we use ¢=10, € = 1/2, and
k =3. In this case, E, is a stable spiral.

Needs[“VectorFieldPlots™];
pvf1 = VectorFieldPlots VectorFieldPlot [{y, -X- % -3y}, {x, -2.5, 2.5},

{y, —2.5,2.5}];
numgraphlinit_, c_, opts___]:=Module[{numsol},
numsol = NDSolve[{x'[t]==y[t], ¥ [t]== - cx[t] - 1/2x[t] * 3 - 3y[t],
x[0]==init[[1]], y[0]==init[[2]]}, {x[t], y[t]}, {t, O, 10}];
ParametricPlot[Evaluate[{x[t], y[t]}/.numsol], {t, O, 10},
opts, DisplayFunction->ldentity]]
i1 = Table[numgraph[{2.5, i}, 1], {i, - 2.5, 2.5, 1/2}];
i2 = Table[numgraph[{-2.5, i}, 11, {i, - 2.5, 2.5, 1/2}];
i3 = Table[numgraph[{i, 2.5}, 1], {i, — 2.5, 2.5, 1/2}];
i4 = Table[numgraphl[{i, - 2.5}, 1], {i, - 2.5, 2.5, 1/2}];
c1 = Showl[i1,i2,i3, i4, pvf1, PlotRange — {{- 2.5, 2.5}, {- 2.5, 2.5}},
AspectRatio —» Automatic]

pvf2 = VectorFieldPlots VectorFieldPlot [{ y, —10x- % - 3y}, {x, —-2.5,2.5},

{y! _2-55 25}]!
i1 = Table[numgraph[{2.5, i}, 10], {i, - 2.5, 2.5, 1/2}];

o e NERVRERY \
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¢ 0} \ \
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\\ «\ \ ¥

-
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—F “
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< & L3 ] -

FIGURE 6.39
(@) The origin is a stable node. (b) The origin is a stable spiral
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i2 = Table[numgraph[{- 2.5, i}, 10], {i, - 2.5, 2.5, 1/2}];

i3 = Table[numgraph[{i, 2.5}, 10], {i, - 2.5, 2.5, 1/2}];

i4 = Table[numgraph[{i, - 2.5}, 10], {i, - 2.5, 2.5, 1/2}];

c2 = Showl[i1,i2,i3, i4, pvf2, PlotRange — {{- 2.5, 2.5}, {- 2.5, 2.5}},
AspectRatio — Automatic]

Show[GraphicsRow[{c1, c2}]]

To experiment with different parameter values, use Manipulate. In the following,
we investigate how varying ¢ from 0 to 10 affects the solutions of Duffing’s equation.
See Figure 6.40.

Clear[pvf,i1,i2,i3, i4];

Manipulate[

Needs[“VectorFieldPlots™];

numgraphlinit_, c_, opts___]:=Module[{numsol},

numsol = NDSolve[{x'[t]==y[t], y'[t]== - cx[t] - 1/2x[t] * 3 - 3y[],
x[0]==init[[1]], y[0]==init[[2]]}, {x[t], y[t]}, {t, O, 10}];

ParametricPlot[Evaluate[{x[t], y[t]}/.numsol], {t, O, 10},
opts, DisplayFunction->ldentity]];

pvf = VectorFieldPlots VectorFieldPlot [{y, -CcX~— % —3y},{x, -2.5,2.5},

{y, —2.5,2.5}];
i1 = Table[numgraph[{2.5, i}, c], {i, —2.5,2.5, 1/2}];
i2 = Table[numgraph[{-2.5, i}, c], {i, - 2.5, 2.5, 1/2}];
i3 = Table[numgraphl[{i, 2.5}, c], {i, — 2.5, 2.5, 1/2}];
i4 = Table[numgraph[{i, - 2.5}, c], {i, — 2.5, 2.5, 1/2}];

c =D c D
1 EDTHERIE] 8.

FIGURE 6.40
Allowing ¢ to vary in Duffing’s equation
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Showl[i1, i2, i3, i4, pvf, PlotRange — {{- 2.5, 2.5}, {- 2.5, 2.5}},
AspectRatio — Automatic], {{c, 1}, 0, 10}]

Example 6.4.7 (Predator-Prey). One form of the predator—prey is

There are many ax _ ax — by
other predator-prey dt

models. @y _ diey — ¢y
dt ’

where a, b, ¢, and d are positive constants. x represents the size of the prey
population at time ¢, whereas y represents the size of the predator population
at time ¢. We use Solve to calculate the rest points. In this case, there is one
boundary rest point, E, = (0,0), and one interior rest point, E, = (c/d, a/b).

rps = Solve[{ax - bxy==0, dxy - cy==0}, {x, y}]
{x=0y—=0h{x=5v—3§}}
The Jacobian is then found using D.

jac = {{D[ax —bxy, x], D[ax - bxy, y1}, {D[dxy - cy, x], D[dxy - cy, y1}};
MatrixForm[jac]

a—by —bx
dy —c+dx
E, is unstable because one eigenvalue of J(&,) is positive. For the linearized
system, E, is a center because the eigenvalues of J(E)) are complex conjugates.

Eigenvaluesl[jac/.rps[[2]]]
{-IVaVz,ivava)

In fact, E, is a center for the nonlinear system as illustrated in Figure 6.41,
where we have used a =1, b =2, ¢=2, and d = 1. Notice that there are multiple
limit cycles around E, = (1/2,1/2).

Needs[“VectorFieldPlots™];
pvf = VectorFieldPlot[{x - 2xy, 2xy -y}, {x, 0, 2},
{y, 0, 2}, PlotPoints — 30];
numgraph[init_, opts___]:=Module[{numsol},
numsol = NDSolve[{x'[t]l==x[t] - 2x[t]y[t], y'[t]==2x[t]y[t] - y[t],
x[0]==init[[1]], y[0]==init[[2]]}, {x[t], y[t]}, {t, O, 50}];
ParametricPlot[Evaluate[{x[t], y[t]}/.numsol], {t, 0, 10},
PlotStyle — {{Thickness[.01]}},
opts]]
i1 = Table[numgraph[{i, i}1, {i, 3/20, 1/2, 1/20}];
Showl[i1, pvf, DisplayFunction->$DisplayFunction, PlotRange->{{0, 2}, {0, 2}},
AspectRatio->Automatic]
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Multiple limit cycles about the interior rest point

As illustrated previously, if you want to play around with the system, use
Manipulate. In this case, we allow a, b, ¢, and d to vary. The solution plotted

is the one that passes through the locator point. See Figure 6.42.

Manipulate[
Needs[“VectorFieldPlots™];
pvf = VectorFieldPlot[{ax - bxy, dxy - cy}, {x, 0, 5},
{y, 0, 5}, PlotPoints — 20];
numsol = NDSolve[{x'[t]==ax[t] - bx[tly[t], y' [t]==dx[t]y[t] - cy[t],
x[0]==init[[1]], y[0]==init[[2]]}, {x[t], y[t]} {t, O, 25}];
p1 = ParametricPlot[Evaluate[{x[t], y[t]}/.numsol], {t, 0, 25},
PlotStyle — {{Thickness[.011}}];
Show[p1, pvf, PlotRange->{{0, 5}, {0, 5}}, AspectRatio — 1,
AxesOrigin — {0, 0}],
{{a, 1}, 0,5}, {{b, 2}, 0, 5}, {{c, 1}, 0, 5}, {{d, 2}, 0, 5},
{{init, {1, 1}}, Locator}]
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Multiple limit cycles about the interior rest point

In this model, a stable interior rest state is not possible.
The complexity of the behavior of solutions to the system increases based on
the assumptions made. Typical assumptions include adding satiation terms for the
predator () and/or limiting the growth of the prey (x). The standard predator—prey

equations of Kolmogorov type,
, < 1 ) mxy
x'=ax|(1-=x) -
K

a+x
, ( mx )
- —S N
Y y a+x

incorporate both of these assumptions.

(6.40)

We use Solve to find the three rest points of system (6.40). Let E, = (0,0) and
E, = (k,0) denote the two boundary rest points, and let E, represent the interior

rest point.

rps = Solve[{ax(1 - 1/kx) - mxy/(a + x)==0, y(mx/(a + x) - s)==0}, {x, y}]

s1 = {{D[ax(1 - 1/kx) - mxy/(a + x), x], D[ax(1 - 1/kx) - mxy/(a + x), y1I},

k(m —s)2

{oc=0y—0nty—0xig, {y - Bmreele

The Jacobian, J, is calculated next in s1.

{Dly(mx/(a + x) - s), x], Dly(mx/(a + x) - s), yI}};
MatrixForm[s1]

)

as
—m+s
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mxy My xer _X —mx
< (a+x)2 a+x K + (1 k) « a+x >

(— X +ﬂ)y -s+

(a+x)2 a+x a+x

Because J(&,) has one positive eigenvalue, E, is unstable.
e0 = s1/.rps[[1]];

MatrixForm[e0]
eigs0 = Eigenvalues[e0]

(5 %)

0 -s

{-s.a}

The stability of E, is determined by the sign of m — s — am/(a + k).
el = s1/.rps[[2]];

MatrixForm[e1]
eigs1 = Eigenvalues[e1]

km

<—a k—m)
_m_
0 a+k S

aKTk =S, _a}

The eigenvalues of J(E,) are quite complicated.

e2 = s1/.rps[[3]];
MatrixForm[e2]
eigs2 = Eigenvalues[e2]

asa ams(akm - a’s— aks)a m(akm - a’s— aks)a < 44 _as ) ams
KHEmes) - km-sR(-megfa- -7 kim-sP(a- =) K(=m+s) (-mssfa- =)
akm - a?s — aks ams m o
( ) (fm+s)(af%)2+a’ —mrs el ams
k(m -s)2 (-mes)(a- —2)
2
{ —2(7Km12+kms) (amSa -kmsa + as’a + ks?a—+/ ( (-amsa + kmsa —as’a —ks’a))

1

-4 (-km? + kms) (-km®sa + ams®a + 2kms®a—as’a—ks’a))), e

(amSa—kmSa +as’a + ksPa + / ((—amSa + kmSa—aSZa—kSZa)Z
—4 (—km?® + kms) (—km?sa + ams®a + 2kms”a —as’a—ks’e))) }

Instead of using the eigenvalues, we compute the characteristic polynomial of
J(ED, pN) = cZ/\2 +¢,A + ¢y, and examine the coefficients. Notice that ¢, is always
positive.

cpe2 = CharacteristicPolynomial[e2,A]//Simplify

asa(m(-s+A) + (s + A)+k(m - s)(-sals+A)+m(se + )tz))
km(m - s)
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c0 = cpe2/.A->0//Simplify

s(k(m—s)-as)a
km

c1 = Coefficient[cpe2,A]//Simplify

s(k(—m + s)+a(m + s))a
km(m - s)

¢2 = Coefficient[cpe2, A 2]//Simplify
1

On the other hand, ¢, and m — s — am/(a + k) have the same sign because

c0/eigs1[[1]1//Simplify

(a+Ksar
km

is always positive. In particular, if m —s — am/(a + k) <0, E, is stable. Because c,
is negative, by Descartes' rule of signs, it follows that p(A) will have one positive
root and hence E, will be unstable.

On the other hand, if m — s — am/(a + k) > 0 so that E, is unstable, E, may be
either stable or unstable. To illustrate these two possibilities, let « = K=m =1 and
a =1/10. We recalculate.

a=1k=1,m=1;a=1/10;
rps = Solve[{ax(1 - 1/kx) - mxy/(a + x)==0, y(mx/(a + x) - s)==0}, {x, y}]
{i=0y =0ty = 0x— 11 {y — G x = — g |

s1 = {{D[ax(1 - 1/kx) - mxy/(a + x), x], D[ax(1 - 1/kx) - mxy/(a + x), y1},
{D[y(mx/(a + x) - s), x], D[y(mx/(a + x) - s), yI}};

MatrixForm[s1]
1-2x4+ XY X
(%OJ'X)Z %oer %O+><

(g s
e2 = s1/.rps[[3]];
cpe2 = CharacteristicPolynomial[e2, A]//Simplify
- 115% +8%(21 - 112) - 10A%+5( - 10+ 9A + 10A?)
10(-1+5s)
c0 = cpe2/.A->0//Simplify
1152

S~ 4o

c1 = Coefficient[cpe2,A]//Simplify

(9 - 11s)s
10(-1+s)

c2 = Coefficient[cpe2, A 2]//Simplify
]

Using Reduce, we see that
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1. ¢,, ¢;, and ¢, are positive if 9/11 <s < 10/11, and
2. ¢, and ¢, are positive and ¢, is negative if 0 <s < 9/11.

Reduce[c0 > 0&&c1 > 0, s]
2<s< P

Reduce[c0 > 0&&c1 < 0, s]
O<s<

In the first situation, E, is stable; in the second, E, is unstable.

Using s = 19/22, we graph the direction field associated with the system as well
as various solutions in Figure 6.43(a). In the plot, notice that all nontrivial solutions
approach E, =(0.63,0.27); E, is stable—a situation that cannot occur with the
standard predator—prey equations.

rps/.s->19/22//N
{{x—0,y—0.}{y—0,x—1.}{y — 0.268889,x — 0.633333}}

Needs[“VectorFieldPlots™]

Clear[pvf, numgraph, i1, i2]

pf = VectorFieldPlot [ {ax (1- %) - T2,y (2% - 2 },{x,0, 1},
{y, 0, 1}, PlotPoints — 30 ];

numgraphlinit_, s_, opts_]:=Module[{numsol},

numsol = NDSolve[{x'[t]==ax[t](1 - 1/kx[t]) - mx[t]ly[t]/(a + x[t]),

y'[tl==y[tl(mx[t)/(a + x[t]) - s), x[0]==init[[1]], y[0]==init[[2]]},

{x[t], y[t1}, {t, 0, 50}];

ParametricPlot[Evaluate[{x[t], y[t]}/.numsol], {t, 0, 50},
PlotStyle — Thickness[.01], opts]]

i1 = Table[numgraph[{1, i}, 19/22], {i, 0, 1, 1/10}];

i2 = Table[numgraphl[{i, 1}, 19/22], {i, 0, 1, 1/10}];

Showl[i1, i2, pvf, PlotRange-> {{0, 1}, {0, 1}}, AspectRatio->Automatic]

04 06 08 10

FIGURE 6.43

(@) s =19/22. (b) s =8/11. (c) A better view of the limit cycle without the direction field
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On the other hand, using s = 8/11 (so that E, is unstable) in Figure 6.43(b), we see
that all nontrivial solutions appear to approach a limit cycle.

rps/.s->8/11//N
{{x—0,y—0.}{y—0,x— 1.}, {y — 0.268889,x — 0.266667}}

i1 = Table[numgraph[{1, i}, 8/11],{i, 0, 1, 1/10}];
i2 = Table[numgraphl[{i, 1}, 8/11], {i, 0, 1, 1/10}];
p1 = Showl[i1, i2, pvf, PlotRange-> {{0, 1}, {0, 1}}, AspectRatio->Automatic]

The limit cycle is shown more clearly in Figure 6.43(c).

numgraph[{. 759, .262}, 8/11, PlotRange->{{0, 1}, {0, 1}},
AspectRatio->Automatic]

As we have seen in similar situations, these commands can be collected into a
single Manipulate command to investigate the situation. See Figure 6.44.

Clear[pvf, numgraph, i1, i2, a, k, m]

Manipulate[

Needs[“VectorFieldPlots™];

pvf = VectorFieldPlot [{ax (1-%) - 22,y (2 -s) },{x,0, 1},
{y 0, 1}, PlotPoints — 20] ;

numgraph[init_, s_]:=Module[{numsol},

out[s]= out[g]=

LRl S S N WL L Y

L A I Y A R

l 1
0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 6.44

Using Manipulate to investigate the standard predator—prey equations of Komogorov
type




Example 6.4.8

Also see Example

6.4.5.

Solution

6.4 Systems of Equations

numsol = NDSolve[{x'[t]==ax[t](1 - 1/kx[t]) - mx[t]ly[t]/(a + x[t]),
y'[tl==y[tl(mx[t})/(a + x[t]) - s), x[0]==init[[1]],
y[0]==init[[2]]},
{xIt], y[tl}, {t, 0, 50}];
ParametricPlot[Evaluate[{x[t], y[t]}/.numsol], {t, O, 50},
PlotPoints — 200,
PlotStyle — Thickness[.01]]];
i1 = Table[numgraph[{1, i}, s],{i, 0, 1, 1/10}];
i2 = Table[numgraph([{i, 1}, s],{i, 0, 1, 1/10}];
Showl[i1, i2, pvf, PlotRange-> {{0, 1}, {0, 1}}, AspectRatio->Automatic],
{{a, 1}, 0, 5}, {{k, 1}, 0, 5}, {{m, 1}, 0, 5}, {{a, 1/10}, 0, 1},
{{s, 8/11},0,5}]

(Van der Pol’s equation). In Example 6.4.5, we saw that Van der Pol’s equa-
x' =y
V=u(l-o")y-x
Classify the equilibrium points, use NDSolve to approximate the solutions to this
nonlinear system, and plot the phase plane.

tion, & + u (x* - 1) &’ +x = 0, is equivalent to the system {

y=0
p(l-a)y-x=0
equation, we see that y = 0. Then, substitution of y = 0 into the second equation
yields x = 0. Therefore, the only equilibrium point is (0, 0). The Jacobian matrix for
this system is

We find the equilibrium points by solving { . From the first

0 1
I = <—1 - 2uxy —p (xz - 1)) ’

The eigenvalues of J(0,0) are A, , = % (M +\/pu? - 4).

Clear[f, g]

fix-,y-1=y;

glx-,y-1= -x-p (2-1)y;

jac = ( DIf[x,yl,x] DIf[x,y],y] ) )
D[g[x,y],x] DIg[x,yl,yl/’

jac/{x->0,y->0}//Eigenvalues

(2 (ova530) 2 (w vi57))
Notice that if w >2, then both eigenvalues are positive and real. Hence, we
classify (0,0) as an unstable node. On the other hand, if 0 <u <2, then the
eigenvalues are a complex conjugate pair with a positive real part. Hence, (0, 0)

is an unstable spiral. (We omit the case u =2 because the eigenvalues are
repeated.)
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We now show several curves in the phase plane that begin at various points
for various values of u. First, we define the function sol, which given u, x,, and
Yo, 9enerates a numerical solution to the initial-value problem

.X" =y
Ye=p(l-a")y-x
x(0) = x,,90) =y,

and then parametrically graphs the result for 0 < ¢ < 20.

Clear[sol]
sol[u—, {x0_,y0_}, opts_]:=
Module[{eqone, eqtwo, solt}, eqone = x'[t]==y[1];
eqtwo = y'[t]==x (1 -x[t]?) y[t] - x[t];
solt = NDSolve[{eqone, eqtwo, x[0]==x0, y[0]==y0}, {x[t], y[t1},
{t, 0, 20}];
ParametricPlot[{x[t], y[t]}/.solt, {t, 0, 20}, opts]]

We then use Table and Union to generate a list of ordered pairs initconds that
will correspond to the initial conditions in the initial-value problem.

initconds1 = Table[{0.1Cos][t], 0.1Sin[t]}, {t, 0, 2, 27/9}];

initconds2 = Table[{-5, i}, {i, - 5, 5, 10/9}];

initconds3 = Table[{5, i}, {i, - 5, 5, 10/9}];

initconds4 = Table[{i, 5}, {i, -5, 5, 10/9}];

initconds5 = Table[{i, - 5}, {i, - 5, 5, 10/9}];

initconds = initconds1 v initconds2 u initconds3 u initconds4 u initconds5;

Last, we use Map to apply sol to the list of ordered pairs in initconds for u = 1/2.

somegraphs1 = Map[sol[1/2, #, DisplayFunction->ldentity]&, initconds];
phase1 = Show[somegraphs1, PlotRange — {{-5, 5}, {- 5, 5}},
AspectRatio — 1, Ticks — {{-4,4},{-4,4}}]

Similarly, we use Map to apply sol to the list of ordered pairs in initconds for
w=1, 3/2, and 3.

somegraphs2 = Map[sol[1, #, DisplayFunction->ldentity]&, initconds];

phase2 = Show[somegraphs2, PlotRange — {{-5, 5}, {- 5, 5}},
AspectRatio — 1, Ticks — {{-4, 4}, {-4, 4}}]

somegraphs3 = Map[sol[3/2, #, DisplayFunction->ldentity]&, initconds];

phase3 = Show[somegraphs3, PlotRange — {{-5, 5}, {-5, 5}},
AspectRatio — 1, Ticks = {{-4,4},{-4,4}}]

somegraphs4 = Map[sol[3, #, DisplayFunction->ldentity]&, initconds];

phase4 = Show[somegraphs3, PlotRange — {{-5, 5},{-5, 5}},
AspectRatio — 1, Ticks —» {{-4,4},{-4,4}}]
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FIGURE 6.45
Solutions to the Van der Pol equation for various values of u

All four graphs are shown together in Figure 6.45. In each figure, we see that all
of the curves approach a curve called a limit cycle. Physically, the fact that the
system has a limit cycle indicates that for all oscillations, the motion eventually
becomes periodic, which is represented by a closed curve in the phase plane.

Show[GraphicsGrid[{{phase1, phase2}, {phase3, phase4}}]]

On the other hand, in Figure 6.46 we graph the solutions that satisfy the initial
conditions x(0) =1 and »(0) = 0 parametrically and individually for various values
of w. Notice that for small values of u the system more closely approximates that
of the harmonic oscillator because the damping coefficient is small. The curves are
more circular than those for larger values of w.
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FIGURE 6.46

The solutions to the Van der Pol equation satisfying x(0) = 1 and »(0) = 0 individually
(> in black and y in gray) for various values of u
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Clear[x, y, 1, s]
graph[u_]:=Module[{numsol, pp, pxy},
numsol = NDSolve[{x'[t]==y[t], y' [t]==p(1 - x[t]?)y[t] - x[t],
x[0]==1, y[0]==0}, {xI[1], y[t]}, {t, O, 20}];
pp = ParametricPlot[{x[t], y[t]}/.numsol, {t, 0, 20},
PlotRange — {{-5, 5}, {-5, 5}}, AspectRatio — 1,
Ticks — {{-4, 4},{- 4, 4}}, DisplayFunction — Identity];
pxy = Plot[Evaluate[{x[t], y[t]}/.numsol], {t, 0, 20},
PlotStyle — {GrayLevel[0], GrayLevel[“0.5”]}, PlotRange — {- 5, 5},
AspectRatio — 1, Ticks — {{5, 10, 15}, {- 4, 4}},
DisplayFunction — Identity];
GraphicsRow[{pxy, pp}]
graphs = Table[graph[i],{i,0 . 25, 3,2 . 75/9}];
toshow = Partition[graphs, 2];
Show[GraphicsGrid[toshow]]

An alternative to comparing the graphics together is to use Manipulate to
create an animation of how the w values affect the solutions of the equation. See
Figure 6.47.

Manipulate[
sol[u—, {x0_,y0_}, opts_]:=
Module[{eqone, eqtwo, solt}, eqone = x'[t]==y[t];
eqtwo = y'[t]==p(1 - x[t]*)y[t] - x[t];
solt = NDSolve[{eqone, eqtwo, x[0]==x0, y[0]==y0}, {x[t], y[t]}, {t, 0, 20}];

M

8]
3
out[1]= ﬂ

~
T

I
N
™

FIGURE 6.47
Varying w in the Van der Pol equation with Manipulate
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Example 6.4.9

Solution

See texts such as
Jordan and Smith’s
Nonlinear Ordinary
Differential
Equations [23] for
discussions of ways
to analyze systems
such as the Rossler
attractor and the
Lorenz equations.

ParametricPlot[{x[t], y[t]}/.solt, {t, 0, 20}, PlotPoints — 200]];
initconds1 = Table[{0.1Cos][t], 0.1Sin[t]}, {t, 0, 27, 277/9}];
initconds2 = Table[{-5, i}, {i, - 5, 5, 10/9}];
initconds3 = Table[{5, i}, {i, - 5, 5, 10/9}];
initconds4 = Table[{i, 5}, {i, -5, 5, 10/9}];
initconds5 = Table[{i, - 5}, {i, - 5, 5, 10/9}];
initconds = initconds1 v initconds2 v initconds3 v initconds4 U initconds>5;
somegraphs1 = Map[sol[u, #, DisplayFunction->ldentity] &, initconds];
phase1 = Show[somegraphs1, PlotRange — {{-5, 5}, {- 5, 5}},

AspectRatio — 1, Ticks — {{-4, 4}, {- 4, 4}}], {{u, 3}, 0, 6}]

Although linearization can help you determine local behavior near rest
points, the long-term behavior of solutions to nonlinear systems can be
quite complicated, even for deceptively simple looking systems.

(Lorenz Equations). The Lorenz equations are

dx/dt = a(y — x)
dy/dt =bx —y —xz
dz/dt = xy — cz

Graph the solutions to the Lorenz equations if a =7, b=27.2, and ¢ =3 if the
initial conditions are x(0) = 3, (0) = 4, and z(0) = 2.

So that you can experiment with different parameters and initial conditions, we use
Manipulate to solve the Lorenz system using initial conditions x(0) = x,, ¥(0) = y,,
and z(0) = z, for 950 < ¢ < 1000; generate parametric plots of x versus y, y versus
z, x Versus z, and x versus y versus z; and display the four resulting plots as a
graphics array.

Because the behavior of solutions can be quite intricate, we include the option
MaxSteps->Infinity in the NDSolve command to help Mathematica capture the
oscillatory behavior in the long-term solution. See Figure 6.48.

On the other hand, if you define lorenzsol separately,

Clear[x, y, z, lorenzsol]
lorenzsol[a_, b_, c_][{x0—, y0—, z0_}, ts_:{t, 0, 1000},
opts_]:=Module[{numsol},
numsol =
NDSolve[{x'[t]==-ax[t] + ay[t],
Yy [t]==bx[t] - y[t] - x[t]z[t],
2'[t]==x[t]y[t] - cz[t], x[0]==xO,
y[0]==y0, z[0]==20}, {x[t], y[t], z[t]},
ts, MaxSteps — Infinity]
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The Lorenz Equations ]|

Manipulate|
Clear([x, y, z, lorenzsol];
lorenzsol(a_, b_, c_]1[{x0_, yO_, =0_}, ts_: (£, 0, 1000},
opts___] := Module [ {numsol},
numsol =
NDSolve [(x'[t] = -ax[t] + ay[t],
y'[t] =bx[t] -y[t] -x[t] z[t],
z'[t] =x[t] y[t] - cz[t], x[0] =x,,
Y[0] = yo, 2[0] = 2o}, (x[t], ¥[t], 2[t]},
ts, MaxSteps -+ Infinity]];
nl = lorenzsol[a, b, c] [{Xo, Yo, Zo}]}
pla = ParametricPlot[Evaluate[{x[t], y[t]} /. nl],
{t, 900, 950}, PlotPoints -+ 1000, AspectRatio -1,
AxesLabel - {"x", "y"}];
plb = ParametricPlot[Evaluate[{x[t], =[t]} /. nl],
{t, 900, 950}, PlotPoints - 1000, AspectRatio -+ 1,
AxesLabel + ("x", "z"}];
ple = ParametricPlot[Evaluate([(y[t], z[t]} /. nl],
{t, 900, 950}, PlotPoints - 1000, AspectRatio + 1,
AxesLabel » {"y", "z"}1;
pld = ParametricPlot3D([
Evaluate[{x[t], y[t], =[t]} /. n1], {t, 950, 1000},
PlotPoints -+ 3000, BoxRatios » {1, 1, 1},
AxesLabel -+ {"x", "y", "z"}1;
Show [GraphicsGrid[{{pla, plb}, (ple, pld}}]1], {{a, 7}, 5, 9},
{{b, 27.2}, 25, 30}, ({e, 3}, 1, 5}, {{®a, 3}, O, 5}, {{vo, 4}, O, 5},
({20, 2}, 0, 5}]
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out[1]=

FIGURE 6.48
Comparing a chaotic solution to a non-chaotic solution with Manipulate

we can then use lorenzplot to generate a numerical solution for our parameter
values and initial conditions.

n2 = lorenzsol[7,27.2, 3][{3, 4, 2}];
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FIGURE 6.49

(@) Plots of x(® (in black), @ (in gray), and z@® (dashed) for 0 < ¢ < 25. (b) Plots of
x(® (in black), y(® (in gray), and z( (dashed) for 950 < ¢ < 1000

We generate a short-term plot of the solution in Figure 6.49(a) and a long-term
plot in Figure 6.49(b).

pp1 = Plot[Evaluate[{x[t], y[t], z[t]}/.n2], {t, O, 25},
PlotStyle — {GrayLevel[0], GrayLevel[.3], Dashing[{0.01}1},
PlotPoints — 1000];

pp2 = Plot[Evaluate[{x[t], y[t], z[t]}/.n2], {t, 950, 1000},
PlotStyle — {GrayLevel[0], GrayLevel[.3], Dashing[{0.01}1},
PlotPoints — 1000];

Show[GraphicsRow[{pp1, pp2}1]

6.5 SOME PARTIAL DIFFERENTIAL EQUATIONS

6.5.1 The One-Dimensional Wave Equation

Suppose that we pluck a string (such as a guitar or violin string) of length
P and constant mass density that is fixed at each end. A question that we
might ask is: What is the position of the string at a particular instance
of time? We answer this question by modeling the physical situation with
a partial differential equation, namely the wave equation in one spatial
variable:

P _

CoET e or cu, = u, 6.41)

In equation (6.41), &= T/p, where T is the tension of the string and p is the
constant mass of the string per unit length. The solution u(x, f) represents
the displacement of the string from the x-axis at time £. To determine u, we
must describe the boundary and initial conditions that model the physical
situation. At the ends of the string, the displacement from the x-axis is fixed at
zero, so we use the homogeneous boundary conditions #(0, ) = u(p,) =0
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for £ > 0. The motion of the string also depends on the displacement and
the velocity at each point of the string at ¢ = 0. If the initial displacement is
given by f(x) and the initial velocity by g(x), we have the initial conditions
u(x, 0) = f(x) and u,(x,0) = g(x) for 0 < x < p. Therefore, we determine the
displacement of the string with the initial boundary value problem

2 *u B i u

dx2 92’
u0,D=u@,)=0,t>0

ulx,0) = f(x), u,(x,0) = gx), 0 <x <p.

0<x<p, t>0
(6.42)

This problem is solved through separation of variables by assuming that
u(x, H) = X()T(®). Substitution into equation (6.41) yields

c2X"T=XT" or X = r = -A,

X T

so we obtain the two second-order ordinary differential equations X" +
AX =0and T” + ¢>AT = 0. At this point, we solve the equation that involves
the homogeneous boundary conditions. The boundary conditions in terms
of u(x, t) = X(x)IT(@®) are u(0, ) = X(O)T(®) =0 and u(p,t) = X(P)T(®) = 0, so
we have X(0) = 0 and X(®) = 0. Therefore, we determine X(x) by solving
the eigenvalue problem

X"+AX=0,0<x<p
X)) = X(®) = 0.

The eigenvalues of this problem are A, = (nﬂ'/p)z, n =1,3,... with corre-
sponding eigenfunctions X,,(x) = sin (nﬂ'x/p)z, n =1,3,.... Next, we solve
the equation T + ¢°A,, T = 0. A general solution is

Tt Tt
T, = a, cos <C\/)\nt) + b, sin <C\//\nt) =a, cos cnp + b, sin cnp ,

where the coefficients a,, and b, must be determined. Putting this infor-
mation together, we obtain

cnTrt . cnmt\ | nwx
u,(x, 0=\ a,cos + b, sin —— | sin —,
D D D

so by the principle of superposition, we have

- cnrt . enmt\ | nmx
u(x,t):Z a,, cos b +bnsmT smT.

n=1

Applying the initial displacement #(x, 0) = f(x) yields

ux, 0= Y a,sin "%C =[G,

n=1
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so a,, is the Fourier sine series coefficient for f(x), which is given by

2 . nmx
a, = — f(x)sde.x, n=12,....
)

"Dl
In order to determine b,,, we must use the initial velocity. Therefore, we
compute
du b cna | cnTrt cnar cnmt\ | nmx
— @, D) = -a,—— sin —— + b,—— cos —— | sin —
dt b b D

n=1

Then,

du ~ . CnT nmx
—@,0) =) b,— sin — = g(x
5 @0 21, — 5 S8
sob, CI"T’T represents the Fourier sine series coefficient for g(x), which means
that
4

P nwx
b = — X) sin dx, n=1,2,...
" chrLg() p

U, =u,, 0<x<1,t>0
Example 6.5.1 Solve < w(0,H=u(1,H=0,t>0

u(x,0) =sinmx, u,(x,0)=3x+1,0<x<1.
Solution The initial displacement and velocity functions are defined first.

f[x_] = Sin[mx];

g[x-]1=3x+1;
Next, the functions to determine the coefficients a,, and b,, in the series approxi-
mation of the solution u(x, t) are defined. Here, p=c=1.

a; = 2](1)f[x]Sin[11'x] dx

1

an_ = 2[;f[x]Sin[m'rx]dx

2Sin[nr]
N2

2[ 2olx]Sin[nmx]dx
= nm

bn_

2n7 — 8n7rCos[nr]+6Sin[n7r]
373

//Simplify

Because n represents an integer, these results indicate that a,, = 0 for all # > 2,
which we confirm with Simplify together with the Assumptions by instructing
Mathematica to assume that = is an integer.

Simplify [%, Assumptions — Element[n, Integers]]
0



Notice that we define
uapprox[n] so that
Mathematica
“remembers” the
terms uapprox that are
computed. That is,
Mathematica does not
need to recompute
uapprox[n—1] to
compute uapprox[n]
provided that
uapprox[n—1] has
already been
computed.
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. - 2nm - 8nmrCos[nm]+6Sin[nr]
Simplify [ - ,

Assumptions — Element[n, Integers]]

2-g(-1)"
n2r2

We use Table to calculate the first 10 values of b,,.

Table[{n, bn, bn//N}, {n, 1, 10}] //TableForm

L 1.01321
2 -;% -0.151982
3 &% 0112579
4 -5% -0.0379954
5 & 00405285
6 -5 -0.0168869
7 2% 00206778
8 -5 —0.00949886
9 % 0.0125088
10 - -0.00607927

The function u defined next computes the nth term in the series expansion. Thus,
uapprox determines the approximation of order & by summing the first & terms of
the expansion, as illustrated with approx[10].

Clear[u, uapprox]

u[n_] = b,Sin[nmrt]Sin[nrx];
uapprox[k-]:=uapprox[k] = uapprox[k - 1] + u[k];
uapprox[0] = Cos[wt]Sin[mx];

uapprox[10]

COS[’TTt]Siﬂ[WX] + 1OSin[m]ZSin[m<] _ 38in[2m]S;n[277x]+
T 2T

10SinBmYSInBm _ SSinf4mtiSinfdmx]

972 872
2Sin[57rt]Sin[57rx] _ Sin[67t]Sin[677X]
- +
572 672
10Sin[77rt]Sin[77rx] _ 3Sin[87rt]Sin[877X] +
49772 32772
10Sin[97rtISin[97rx] _ 3Sin[107rtISin[107rX]
8172 5072

To illustrate the motion of the string, we graph uapprox[10], the 10th partial sum
of the series, on the interval [0, 1] for 16 equally spaced values of ¢ between 0
and 2 in Figure 6.50.

somegraphs = Table[Plot[Evaluate[uapprox[10]], {x, 0, 1},
DisplayFunction — Identity, PlotRange — {- 3, £},
Ticks — {{0, 1}, {-1,1}}1,{t,0, 2, %}] ;

toshow = Partition[somegraphs, 4];

Show[GraphicsGrid[toshow]]
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1 1 1 1
1 1 1 1
-1 -1 —1r -1
1+ 1 1 1
1 1 1
1 1 1 1
-1r -1 -1 -1
1 1 1 1
| 1 1 1
1 1 1 1
-1r -1 —1r -1
1+ 1 1 1
1 1 1
1 1 1 1
—-1r -1F —1r —-1F
FIGURE 6.50

The motion of the string for 16 equally spaced values of ¢ between 0 and 2

If instead we wished to see the motion of the string, we can use a Do loop
together with Print to generate many graphs and animate the result. We show a
frame from the resulting animation.

Dol[Plot[Evaluate[uapprox[10]], {x, 0, 1},
PlotRange — {-3/2, 3/2}, Ticks — {{0, 1}, {-1, 1}}1//
Print, {t,0,2, 2}|;

h[?ln:[waluaen[unppmlm] 1. (x, 0,1}, 1 m
PlotRange + {-3/2, 3/2}, Ticks + ({0, 1}, {-1, 1}}] //

Print, {L. o, 2, :—’}1:

Finally, we remark that DSolve can find D’Alembert’s solution to the wave
equation.

Clear[u, c]
DSO'VE[CAZ Dlu[x, ], {x, 2}]==D[ulx, 1], {t, 2}],
ulx, t, {x, t}]



a, represents the nth
zero of the Bessel
function of the first
kind of order zero.

6.5 Some Partial Differential Equations 537

{{u[x,t] — C[1] [t—{—fx] +C[2] |[t+ @] }}
DSolve [czﬂ{x,z}u[x, t]==(9{t,2}u[x, t], u[x, t1, {x, t}]

{ (o -] o[ 2] )

6.5.2 The Two-Dimensional Wave Equation

One of the more interesting problems involving two spatial dimensions (x
and y) is the wave equation. The two-dimensional wave equation in a cir-
cular region that is radially symmetric (not dependent on 6) with boundary
and initial conditions is expressed in polar coordinates as

2 &2u+l¢9u _du 0<r<p, t>0
¢ a?  rdr) or’ P,
u(p,H) =0, |u0,H| <co, >0

J
u(r,0) = f(), &—L:(r, 0) =g, 0 <7< p.

Notice that the boundary condition u#(p, #) = 0 indicates that u is fixed at
zero around the boundary; the condition [¢(0,#)| < oo indicates that the
solution is bounded at the center of the circular region. Like the wave
equation discussed previously, this problem is typically solved through sepa-
ration of variables by assuming a solution of the form u(r, ) = F(NG(®).
Applying separation of variables yields the solution

[ee]
u(r,H = Z (4, cosck,t + B, sinck,t) J, (k,r),

n=1

where A, =ca,/p, and the coefficients 4, and B, are found through
application of the initial displacement and velocity functions. With

u(r,00 = Y A, J, (k,r) =/

n=1

and the orthogonality conditions of the Bessel functions, we find that

O, (k,r)dr,n=1,2, ...

n

_ lerf@J, (R,r) dr ) 2 r
Jor Jo (kyr)|*ar [, (e,)] Jo

Similarly, because

(o]
f;—l:(r, 0) = Z (—ck,A,, sinck,t + ck,B, cosck,t) ], (k,r),

n=1
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we have
(o]
U (r,0) = ) ck, B, Jo (k,r) = g
n=1
Therefore,
P k d P
- [o 78T, (R,,7) 2” - 2 . J 18]y (k,r) dr,n=1,2,....
ck, [ r ]y (k)] ar ck, ], (a,)] Jo

As a practical matter, in nearly all cases, these formulas are difficult to
evaluate.

Example 6.5.2
Fu lou_du
ar: v or  ar’
Solve € u(1,5 = 0, |u(0,| < 0, t >0
3
u(@r,0) =r@r -1, a—LtL(r, 0)=sinmr, 0 <r<1.

0<r<1,t>0

Solution Inthiscase, p = 1,f() = r(r — 1), and g(») = sin 7rr. The command BesselJZero[n,k]
represents the kth zero of the Bessel function J,(x). To obtain an approximation of
the number, use N.

anm & BessellZero - Wolfram Mathematica =
45| @i retBesseliler »| g

|

|

|}

BessellZero Newins  f|

|

|

Bessolaterols, L ]

represents the &™ zero of the Bessel function Jylx). |

|

Bessolizesols, &, & I

represents the A7 zero greater than x. :

|

|

* |}

1]

|

1

w/

¥ Basic Exsmples
Evaluste numericaty
NiBessalizers(o, 1]]

1~ 2.40083

Evaluste symasseaty
11~ Bessell[0, Besselizere[0, 1]]
1= 0

» Scope

» Generalizations & Extensions
» Applications

* Propertios & Relations

¥ SEE w50

Beasell - BesselVZers - AiryAiZero - FindRoot
11008 v
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an_:=Evaluate[BesselJZero[0, n]//N]

Next, we define the constants p and ¢ and the functions f(*) =»(@ - 1), g@) =
sinzr, and &, = a,,/p.

c=1;

p=1;
flr-]1=r(r-1);
glr_] = Sin[mrl;

Kn_:=kn = ‘%";

The formulas for the coefficients 4,, and B,, are then defined so that an approxi-
mate solution may be determined. (We use lowercase letters to avoid any possible
ambiguity with built-in Mathematica functions.) Note that we use Nintegrate to
approximate the coefficients and avoid the difficulties in integration associated with
the presence of the Bessel function of order zero.

an_:=an = (2NiIntegrate [rf[r]Besseld [0, k,r],{r, 0, p}]) /
BesselJ [1,an] %;

bn_:=bn = (2NIntegrate [rg[r]Besseld [0, knr], {r, O, p}]) /
(cknBesseld [1,an]?)

We now compute the first 10 values of 4,, and B,,. Because a and b are defined
using the form a,:=a,=... and b, :=b,=..., Mathematica remembers these values
for later use.

Table [{n, an, bn}, {n, 1, 10}] //TableForm

1 -0.323503 0.52118

2 0.208466 -0.145776
3 0.00763767 -0.0134216
4 0.0383536 -0.00832269
5 0.00534454 -0.00250503
6 0.0150378 -0.00208315
7 0.00334937 -0.000882012
8 0.00786698 -0.000814719
9 0.00225748 -0.000410202
10 0.00479521 -0.000399219

The nth term of the series solution is defined in u. Then, an approximate solution
is obtained in uapprox by summing the first 10 terms of u.

u[n_, r_, t_]:=(anCos [cknt] + b,Sin [cknt]) BesselJ [0, knI];
uapproxr_,t_]1= ¥'° uln,r,t];

We graph uapprox for several values of ¢ in Figure 6.51.

somegraphs =
Table[ParametricPlot3D[{rCos[0], rSin[6], uapprox[r, ]},

539
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FIGURE 6.51

The drumhead for nine equally spaced values of ¢ between 0 and 1.5

{r,0, 1}, {0, — w, 7}, Boxed — False,
PlotRange — {-1.25, 1.25}, BoxRatios — {1, 1, 1},
Ticks - {{-1,1},{-1,1},{-1,1}1,{,0,1.5, 22}] ;
toshow = Partition[somegraphs, 3];
Show[GraphicsGrid[toshow]]

In order to actually watch the drumhead move, we can use a Do loop to generate
several graphs and animate the result. Be aware, however, that generating many
three-dimensional graphics and then animating the results uses a great deal of
memory and can take considerable time, even on a relatively powerful computer.
We show one frame from the animation that results from the following Do loop.

Do[ParametricPlot3D[{rCos[6], rSin[6], uapprox][r, t]},
{r,0, 1}, {0, — w, 7}, Boxed — False,
PlotRange — {-1.25, 1.25}, BoxRatios — {1, 1, 1},
Ticks - {{-1,1},{-1, 1}, {—1, 1}}1//Print,
{t,0,1.5, 12} ;

715

If the displacement of the drumhead is not radially symmetric, the prob-
lem that describes the displacement of a circular membrane in its general
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no[?armtnc?].otinl{: Cos[&], r Bin[&], vapprox([r, t]},
{r, 0, 1}, {5, -m, n}, Boxed -+ False,
PlotRange - {-1.25, 1.25]}, BoxRatios -» {1, 1, 1},
Ticks -+ {{-1, 1}, {-1, 1}, (-1, 1}}] // Print,

{£ 0, 1.5, Ll?’}]:

case is

,[(Fu 1du 1 9%u i u
c O<r<p, -m<O<m t>0

vt rae ) ae

u(p,0,H=0, |[u©,0,p|<oco, —-m<O<m >0
Ju Ju (6.43)
b= -7, 0, — H=—(@r —-mD,0 t>0
u(r, T, ) = u(r, —m, 1), ao(mr,) ao(r, mD,0<r<p,t>

u@r,0,0) =1, 0, %(r, T,0=g0r0,0<r<p, —m<0 <.

Using separation of variables and assuming that «(#, 0, ) = R@®OHOT(®), we
obtain that a general solution is given by

u(r, 0,0 = Z g, Jo (or) cos (Ag,ct) + Z T s (A un?) cOs (m0) cos (A,,,,,ct)

n m,n

+ z BpunTm (A ) sin (m) cos (A,,,,ct) + ZAO,JO (Ao,r) sin (Ay,ct)

mn

+ ZAmn]m (A7) cos (mB) sin (A,,,,ct)

+ Z BT (A7) sin (m) sin (A,,,,ct),

mn

where J,, represents the mth Bessel function of the first kind, «,,,, denotes
the nth zero of the Bessel function y =J,(x), and A,,, =«,,,/p. The

541
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coefficients are given by the following formulas:

_ gw Jgf(r, DI (/\Onr) rdrdf
T a7 o o) rar
_ 57 J3 1@ 0], (A1) cos (mB) rardd
i 12 U o) ratr

TP F @, 0], (At sin (m) rdr df
T A U Ao [ rar
110 8@ 0], (Ag,r) rdrad
" 2N J2 [y (o)
_ P g0, (Ayur) cOS (mB) rdr df
) U )P rar
_ E# 10 8,0, (A,,,r) sin (m8) rdr d6
el U ) rar

on

mn

mn

mn

mn

Example 6.5.3

fmz(f_mzﬂ_u 1(9_>f9_
or:  rdr  r? 96? or?

O<r<l, —m<O<mt>0

u(1,0,H =0, [u0,6,p|<co, —-m<H <, >0

)

Solve < H= _t‘?_” t=‘9_” -, b
u(r, m, 0 = u(r, —m,b), (99(7,77,) (90(7’ T, ).

O<r<1l,t>0
u(r,0,0) = cos (mr/2)sin 0,

u
\{?—t(f",’TT,O) =@ —-1Dcos(m0/2),0<r<1, -wm<O<m

Solution To calculate the coefficients, we will need to have approximations of the zeros of
the Bessel functions, so we use BesseldZero together with N and Evaluate to
define «,,, to be an approximation of the nth zero of y =J,,(x). We illustrate the
use of a,,, by using it to compute the first five zeros of y = J,(x).

@m_, N_:=amn = Evaluate[BesselJZero[m, n]//N]
Table [ao,,{n, 1,5}

{2.40483, 5.52008, 8.65373, 11.7915, 14.9309}

The appropriate parameter values as well as the initial condition functions are
defined as follows. Notice that the functions describing the initial displacement
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and velocity are defined as the product of functions. This enables the subsequent
calculations to be carried out using Nintegrate.

Clear|a, f,f1,12,g1, 92, A, c, g, capa, capb, b]
¢ =10;

p=1;

fi[r_] = Cos [T];

f2[6_] = Sin[6];

flr—, 0_]1:=f[r, 6] = f1[r1f2[6];

gifr_]=r-1;

g2[6-]-Cos [Z];

glr—, 6-]:=glr, 6] = g1[rlg2[6];

The coefficients a,,, are determined with the function a.

Clear[a]
a[n_]:=a[n] =
N[
(Nintegrate [f1[r]BesselJ [0, aonr] . {1, 0, p}]
Nintegrate[f2[t], {t, 0, 27}])/
(2wNIntegrate [rBesseld [0, agnr] %,{r,0,0}])] 5

Hence, as represents a table of the first five values of a,,,. Chop is used to round
off very small numbers to zero.

as = Table[a[n]//Chop,{n, 1, 5}]
{0.0,0,0,0}

Because the denominator of each integral formula used to find «,,, and b,,, is
the same, the function bjmn which computes this value is defined next. A table of
nine values of this coefficient is then determined.

bjmn[m_, n_]:=
bjmn[m, n] = N [Nintegrate [rBesseld [m, am,qr]12,{r, 0, p}]|
Table[Chop[bjmn[m, n]], {m, 1, 3},{n, 1,3}]

{{0.0811076, 0.0450347,0.0311763},
{0.0576874,0.0368243,0.0270149},
{0.0444835,0.0311044,0.0238229} }

We also note that in evaluating the numerators of «,,, and b,,, we must compute
18 1, ], (a,,,r) dr. This integral is defined in fbjmn and the corresponding values
are found forn =1, 2, 3 and m =1, 2, 3.

Clear[fbjmn]
fbjmn[m_, n_]:=fbjmn[m, n] =
N [NIntegrate [f1[r]Besseld [m, am,nr]r, {r, 0, p}11

543
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Table[Chop[fbjmn[m, n]], {m, 1, 3},{n, 1, 3}]
{{0.103574,0.020514,0.0103984},
{0.0790948, 0.0275564, 0.0150381},
{0.0628926, 0.0290764,0.0171999} }

The formula to compute «,,, is then defined and uses the information calculated
in fbjmn and bjmn. As in the previous calculation, the coefficient values for n = 1,
2, 3 and m =1, 2, 3 are determined.

a[m_,n_]:=
a[m,n] =
N[(fojmn[m, n]NIntegrate[f2[t]Cos[mt], {t, 0, 277}])/
(wbjmn[m, n])];
Table[Chop[a[m, n]], {m, 1,3}, {n, 1, 3}]

{{0,0,0},{0,0,0}, {0,0,0}}
A similar formula is then defined for the computation of b,,,,.

b[m_,n_]:=b[m, n] =
N[(fbjmn[m, n]NIntegrate[f2[t]Sin[mt], {t, 0, 27}])/
(wbjmn[m, n])];

Table[Chop[b[m, n]],{m, 1,3},{n, 1, 3}]

{{1.277,0.455514,0.333537}, {0, 0,0}, {0, 0,0} }

Note that defining the coefficients in this manner a[m_,n_]:= a[m,n]=... and
b[m_,n_]:=b[m,n]=... so that Mathematica “remembers” previously computed val-
ues, which reduces computation time. The values of A4,, are found similarly to
those of a,,. After defining the function capa to calculate these coefficients, a
table of values is then found.

capa[n_]:=capaln] =
N [(NIntegrate [g1[r]BesselJ [0, aqqr] 1, {r, 0, p}|
Nintegrate[g2][t], {t, 0, 27r}])/
(2wcaonNintegrate [rBesseld [0, agnr] %,{r,0,p}])] ;
Table[Chop[capa[n]],{n, 1, 6}]

{0.00142231, 0.0000542518, 0.0000267596, 6.41976423481 5093 " -6,
4.958428464118819™" -6, 1.8858472721004333 "~ 6}

The value of the integral of the component of g, g1, which depends on r and the
appropriate Bessel functions, is defined as gbjmn.

gbjmn[m_, n_]:=gbjmn[m, n] = Nintegrate[g1[r]*
Besseld [m, amnr]r,{r, 0, p}1 //N
Table[gbjmn[m, n]//Chop,{m, 1,3},{n, 1, 3}]

{{-0.0743906,-0.019491,-0.00989293},
{-0.0554379,-0.0227976,-0.013039},
{-0.0433614,-0.0226777,-0.0141684}}
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Then, 4,,, is found by taking the product of integrals, gbjmn depending on » and
one depending on 6. A table of coefficient values is generated in this case as well.

capa[m_, n_]:=capa[m, n] =
N[(gbjmn[m, n]NIntegrate[g2[t]Cos[mt], {t, 0, 27}])/
(wam,ncbjmn[m, n])];
Table[Chop[capa[m, n]],{m, 1,3},{n, 1, 3}]

{{0.0035096,0.000904517,0.000457326},
{-0.00262692, -0.00103252, —0.000583116},
{-0.000503187,-0.000246002, -0.000150499} }

Similarly, the B,,, are determined.

capb[m_, n_]:=capb[m, n] =
N[(gbjmn[m, n]NIntegrate[g2[t]Sin[mt], {t, 0, 27}])/
(wam,ncbjmn[m, n])];
Table[Chop[capb[m, n]],{m, 1, 3},{n, 1, 3}]

{{0.00987945, 0.00254619, 0.00128736},
{-0.0147894, —0.00581305, —0.00328291},
{-0.00424938, —0.00207747, —0.00127095} }

Now that the necessary coefficients have been found, we construct an approxi-
mate solution to the wave equation by using our results. In the following, term1
represents those terms of the expansion involving a,,,, term2 those terms involving
a,,,, term3 those involving b,,,, term4 those involving 4,,,, term5 those involving
4,,,, and term6 those involving B,,,,,.

mn’

Clear[term1, term2, term3, term4, term5, term6]
term1[r_,t_,n_}-a[n]BesselJ [0, agnr| Cos [aonct];
term2[r_,t_, 60—, m_,n_}=

a[m, n]BesselJ [m, am,nr] Cos[mA]Cos [amnct];
term3[r_,t_,6_,m_,n_}=

b[m, n]Besseld [M, am,nr] Sin[m#]Cos [amnct];
termd[r_, t_, n_}=capa[n]BesselJ [0, aoqr| Sin [aonct];
term5[r_,t_,0_,m_,n_}=

capa[m, n]Besseld [M, am,nr] Cos[mO]Sin [amnct];
term6[r_,t_,6_,m_,n_}=

capb[m, n]BesselJ [m, amnr] Sin[m0]Sin [am,ct];

Therefore, our approximate solution is given as the sum of these terms as
computed in u.

Clear[u]
ulr_,t_,th_}=Y°_ termifr,t,n]+ X2 ¥°  term2[r,t,th,m,n]
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+X°2 33 term3[r,t,th,m,n]+ ¥°_ termd]r,t,n]
+X° 3% terms[r,t,th,m,n]+ ¥’  ¥° term6[r,t,th,m,n];
uc = Compile[{r, t, th}, u[r, t, th]]

CompiledFunction[{r, t, th}, ur, t, th], -CompiledCode-]

The solution is compiled in uc. The command Compile is used to compile func-
tions. Compile returns a CompiledFunction that represents the compiled code.
Generally, compiled functions take less time to perform computations than uncom-
piled functions, although compiled functions can only be evaluated for numerical
arguments.

Next, we define the function tplot, which uses ParametricPlot3D to produce
the graph of the solution for a particular value of ¢. Note that the x and y
coordinates are given in terms of polar coordinates.

Clear[tplot]

tplot[t_}2ParametricPlot3D[{rCos[6], rSin[6], uc[r, t, 61},
{r,0,1},{6, — m, w}, PlotPoints — {20, 20},
BoxRatios — {1, 1, 1}, Axes — False, Boxed — False]

A table of nine plots for nine equally spaced values of ¢ from t=0 to ¢ =1 using
increments of 1/8 is then generated. This table of graphs is displayed as a graphics
array in Figure 6.52.

FIGURE 6.52
The drumhead for nine equally spaced values of ¢ from t=0to t=1
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Solution

6.5 Some Partial Differential Equations

somegraphs = Table [tplot[t], {t,0, 1, }}| ;
toshow = Partition[somegraphs, 3];
Show[GraphicsGrid[toshow]]

Of course, we can generate many graphs with a Do loop and animate the result
as in the previous example. Be aware, however, that generating many three-
dimensional graphics and then animating the results uses a great deal of memory
and can take considerable time, even on a relatively powerful computer.

6.5.3 Other Partial Differential Equations

A partial differential equation of the form
G )&—u+b( )&_u_o( )) 6.49
ax,y, u) - x,p,u i cCx,y, U 6.

is called a first-order, quasilinear partial differential equation. In the
case in which c(x, y, %) = 0, equation (6.44) is homogeneous; if a and b
are independent of #, equation (6.44) is almost linear; and when c(x, y, ©)
can be written in the form c(x,y, u) = d(x, Y)u + s(x,)), equation (6.44) is
linear. Quasilinear partial differential equations can frequently be solved
using the method of characteristics.

Use the method of -characteristics to solve the initial-value problem
{—Sxtux+u,=xt

u(x,0) = x.

For this problem, the characteristic system is

dx/dr = —3xt, x(0,8) =s
ot/dr =1, #0,8)=0
u/dr = xt, u(0,8) =s.

We begin by using DSolve to solve dt/dr = 1, #0,s) =0

d1 = DSolve[{D[t[r], r]==1, t[0]==0}, t[r], r]
{H{t — r}}

and obtain ¢ =r. Thus, dx/dr = —=3xr, x(0,s) = s, which we solve next

d2 = DSolve[{D[x[r], rl==-3x[r]r, x[0]==s}, x[r], r]

(R

-32/2 -37%/2

and obtain x = se . Substituting » = ¢ and x = se into du/or = xt, u(0,s) =
s and using DSolve to solve the resulting equation yields the following result,
named d3.
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d3 = DSolve [{D[u[r], r]l==E 'Tsr, u[0]==s}, u[r], ]

(L ie% (1000%)s )}

To find u(x, H, we must solve the system of equations

t=r
2
- 2
x = se 3r7/

2.2 242
for » and s. Substituting » =z into x = se™ /> and solving for s yields s = xe*/2.

Thus, the solution is given by replacing the values obtained previously in the solu-
tion obtained in d3. We do this below by using ReplaceAll (/.) to replace each
occurrence of r and s in d3[[1,1,2]], the solution obtained in d3, by the values

r=tand s = xe’ /2 The resulting output represents the solution to the initial-value
problem.

d3[[1, 1, 2])/{r- >t,s- >x Exp[3/2t"2]}//Simplify

5| —1+4e7 |x

In this example, DSolve can also solve this first-order partial differential equation.
Next, we use DSolve to find a general solution of —3xtu, +u, = xt and name
the resulting output gensol.
gensol = DSolve[ - 3xtD[u[x, t], x] + D[u[x, t], t]==xt,
u[x, t], {x t}]
{{ulx.1] = 3 (=x+3C[1] [{ (3t° + 2Log[x])] ) } }

The output

Cl1] |- % ~Logix]
represents an arbitrary function o ; # —Inx. The explicit solution is extracted
from gensol with gensol[[1,1,2]], the same way that results are extracted from the
output of DSolve commands involving ordinary differential equations.

gensol[[1,1,2]]
3 (=x+3C[1] [§ (3t° +2Log[x])] )

To find the solution that satisfies u(x,0) = x, we replace each occurrence of ¢ in
the solution by 0.

gensol[[1, 1, 2])/.t- >0
5 (-x+3crm | =g])

Thus, we must find a function f(x) so that

—%x +fdnx) =x

fdnx) = %x



6.5 Some Partial Differential Equations

Certainly f( = %e_t satisfies the previous criteria. We define f(®) = ge” and then
compute f(Inx) to verify that fdnx) = 2.

Clear[f]
f[t_] = 4Exp[-1]/3;
f[-Log[x]]

A
3

Thus, the solution to the initial-value problem is given by —3x +f(=3F - Inx),
which is computed and named sol. Of course, the result returned is the same as
that obtained previously.

sol = Simplify [-§ +f [— % - Log[x]”
1 32
sl -1+4e7 )x
Last, we use Plot3D to graph sol on the rectangle [0, 20] x [-2, 2] in Figure 6.53.

Plot3D[sol, {x, 0, 20}, {t, — 2, 2}, PlotRange — {0, 30},
PlotPoints — 30, ClippingStyle — None]

FIGURE 6.53

Plot of u(x,t) = %x(4e3t2/2 - 1)
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6.6 EXERCISES

1.

(@ Solve (1 + y2> 9y =ycosx. (b) Explain the functionality of

ProductLog. (c¢) Show that an implicit solution of the equation is %y2+
In|y| = sinx + C. (d) Use ContourPlot to graph various solutions on the
rectangle [0, 10] x [0, 10].

. Solve xyy’' = y2 - x and graph several integral curves of the equation.

(See Figure 6.54(a).)

. Solve (=1 +ye” +ycosxy)dx + (1 +xe” +xcosxy)dy =0 and graph

several integral curves of the equation. (See Figure 6.54(b).)

. Solve y’ = sin(2x — ), »(0) = 0.5. What is the value of y(1)? Graph for

0<x<15.

. Graph the solution ofy' =sin(#), y(0) =jon [0,7] forj=0.5,1,...,2.5.
. Create a Manipulate object that lets you compare the solution of x” +

ax +sinx =0 to X' +ax +x=0.

. Solve each of the following differential equations or initial-value prob-

lems by hand and then verify your results with Mathematica.

@ 2" +5)/ +5y=0, () =0, y'(0) = 1/2
) »" +4) +13y = rcos’ 3t

3k 3F T T T T T 54
2F 2F :
.
1F 1F x:-:
| | | | 1 1 OF _;
)2l sl als]e ik E
_1F :
F \\ Z
2 -3k L L \“ il L { |"
_3F -3-2-1 0 1 2 3
a b
3.0
2.5
2.0
1.5
1.0
1 1 1 1 1 1 1 I 1 1 1 1 !
2 4 6 8 10 12 14 1.2 3 4 5 6 7
c d

FIGURE 6.54

(@) Integral curves of xyy = y* —x”. (b) Integral curves of (=1 +ye¥ +y cosxy)
dx + (1 +xe” +xcosxy)dy = 0. (c) The solution of an initial-value problem.
(d) Solutions to several initial-value problems
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11.

12.

6.6 Exercises

@y -2+y= élnr
@ £y" +165" +791 +125p =0

. Two lines, /; and /,, with slopes m; and m,, respectively, are ortho-

gonal (or perpendicular) if their slopes satisfy the relationship m, =
—1/m,. Two curves, C; and C,, are orthogonal (or perpendicular)
at a point if their respective tangent lines to the curves at that point
are perpendicular. Now we want to determine the set of orthogonal
curves to a given family of curves. We refer to this set of orthogonal
curves as the family of orthogonal trajectories. Suppose that a fam-
ily of curves is defined as F(x,y) = C and that the slope of the tangent
line at any point on these curves is dy/dx = f(x, ). Then, the slope of
the tangent line on the orthogonal trajectory is dy/dx = —1/f(x,)) so
the family of orthogonal trajectories is found by solving the first-order
equation dy/dx = =1/f(x, ).

(a) Determine the family of orthogonal trajectories to the family
of curves y = cx’. Confirm your result graphically by graphing
members of both families of curves on the same axes.

(b) Determine the orthogonal trajectories of the family of curves given
by y2 - 2cx=c". Graph several members of both families of curves
on the same set of axes. Why are these two families of curves said
to be self-orthogonal?

. If we are given a family of curves that satisfies the differential equation

dy/dx = f(x,y) and we want to find a family of curves that inter-
sects this family at a constant angle 6, we must solve the differential
equation

dy  f(x,))£tan6
dx ~ 1Ff(x,p)tanf’

Find a family of curves that intersects the family of curves X+ yz =c at
an angle of 7/6. Confirm your result graphically by graphing members
of both families of curves on the same axes.

Find a linear differential equation with general solution y = ¢, cost +
c,sint + et/S(c5 COS 2t + ¢4 sin 2¢) + %tsin t.

Solve each system and graph various solutions together with the direc-
tion field: (@) X' = (_01 _01) X, ® X' = (_01 (1)> X, and (©) x' =
-5x 43,y = =2x— 10y

Solve x' — y= e_t, y' + 5x + 2y = sin 3¢, x(0) = x,, y(0) = y,. Parametri-
cally graph the solution for (x,,y,) = (¢,/), where i,j take on four
equally spaced values between —1 and 1.
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Sources: Herbert W.
Hethcote, “Three
basic epidemiological
models,” Applied
Matbhematical
Ecology, edited by
Simon A. Levin,
Thomas G. Hallan, and
Louis J. Gross,
Springer-Verlag (1989),
pp. 119-143; Roy M.
Anderson and Robert
M. May, “Directly
transmitted infectious
diseases: Control by
vaccination,” Science,
Volume 215, (February
26, 1982), pp.
1053-1060; and J. D.
Murray, Mathematical
Biology, Springer-
Verlag (1990), pp.
611-618.

13. Solve X' = <

14.

CHAPTER 6 Differential Equations

—a B
-B 0

X if the eigenvalues of the coefficient matrix are

(a) real and distinct, (b) real and equal, and (c¢) complex conjugates.
Hint: Both DSolve and Assumptions might be helpful.

Under certain assumptions, the FitzHugh—Nagumo equation that
arises in the study of the impulses in a nerve fiber can be written
as the system of ordinary differential equations

avidE=w

AW/dE = FV)+ R — uW

dR/dE = 2 R -V - a)

V(O) = vy, W(O) = W,, R(O) = R,

where F(V) = %VS — V. (@) Graph the solution to the FitzHugh-Nagumo
equation that satisfies the initial conditions V(0) =1, W(0) =0, and
R(0)=1if €e=0.08 a=0.7, b=0, and u = 1. (b) Graph the solution
that satisfies the initial conditions V(0) = 1, W(0) = 0.5, and R(0) = 0.5
ife=0.08,a=0.7,b=0.8, and u = 0.6.

15. (Controlling the Spread of a Disease).

If a person becomes immune to a disease after recovering from
it and births and deaths in the population are not taken into
account, then the percentage (or proportion) of persons suscep-
tible to becoming infected with the disease, S(¥), the percentage of
people in the population infected with the disease, I(¥), and the
percentage of the population recovered and immune to the disease,
R(®), can be modeled by the system

S = -ASI
I ,= ASI = yI 645
R =yl

S0 =S8,, 10 =1,, RO =0

Because S@) + I(H) + R(®) = 1, once we know S and I(¥), we can
compute R(¥) with R(®) = 1 — S — I(®). This model is called an SIR
model without vital dynamics because once a person has had the
disease, the person becomes immune to the disease, and because
births and deaths are not taken into consideration. This model might
be used to model diseases that are epidemic to a population—
those diseases that persist in a population for short periods of time
(less than 1 year). Such diseases typically include influenza, measles,
rubella, and chickenpox.

If Sy <vy/A, I'(0)=ASyl, — VI, < )\%’10 - vl, = 0. Thus, the rate of
infection immediately begins to decrease; the disease dies out. On
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the other hand, if Sy > y/A, 1 "(0) >ASyl, — vl, >0, so the rate of
infection first increases; an epidemic results.

Although we cannot find explicit formulas for S, 7, and R as functions

of £, we can, for example, solve for 7 in terms of §.

ar  AS—pI P
Solve th tion — =———=—-1+ =, p=y/A.
olve the equation — i 5P Y/

When diseases persist in a population for long periods of time, births
and deaths must be taken into consideration. If a person becomes
immune to a disease after recovering from it and births and deaths in
the population are taken into account, then the percentage of per-
sons susceptible to becoming infected with the disease, $(¥), and the
percentage of people in the population infected with the disease,
I(®), can be modeled by the system

S'=-ASI[+pu— S
I' =ASI—yl—ul .
S0) =S, I(0) =1,

This model is called an SIR model with vital dynamics because
once a person has had the disease, the person becomes immune to
the disease, and because births and deaths are taken into considera-
tion. This model might be used to model diseases that are endemic
to a population—those diseases that persist in a population for long
periods of time (10 or 20 years). Smallpox is an example of a disease
that was endemic until it was eliminated in 1977.

Find and classify the equilibrium points of this system.

Because S + I(H) + R(¥) = 1, it follows that S&) + I(t) < 1. The fol-
lowing table shows the average infectious period, 1/v, vy, and typical
contact numbers, o, for several diseases during certain epidemics.

Disease 1/y Y o

Measles 6.5 0.153846 | 14.9667
Chickenpox | 10.5 | 0.0952381 11.3

Mumps 19 | 0.0526316 8.1
Scarlet fever | 17.5 | 0.0571429 85

Let us assume that the average lifetime, 1/u, is 70 years so that
®=0.0142857.

For each of the diseases listed in the previous table, we use the
formula o = A/(y + w) to calculate the daily contact rate A.
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Disease A

Measles 2.51638
Chickenpox | 1.23762

Mumps 0.54203
Scarlet fever | 0.607143

Diseases such as those listed here can be controlled once an
effective and inexpensive vaccine has been developed. Since it is vir-
tually impossible to vaccinate everybody against a disease, we want
to know what percentage of a population needs to be vaccinated to
eliminate a disease. A population of people has herd immunity to
a disease if enough people are immune to the disease so that if it
is introduced into the population, it will not spread throughout the
population. In order to have herd immunity, an infected person must
infect less than one uninfected person during the time the person
is infectious. Thus, we must have

oS<1.

Since 7+ S+ R =1, when I =0 we have that $ =1 — R and, conse-
quently, herd immunity is achieved when

c1-R<1
o-0R<1
-OR<1-0
o-1 1
R> =1-—.
g T

(c) For each of the diseases listed previously, create a table that esti-

mates the minimum percentage of a population that needs to be
vaccinated to achieve herd immunity.

(d) Using the values in the previous tables, for each disease graph the

See texts such as
Jordan and Smith’s

Nonlinear Ordinary 16.

Differential Equations
[23] for discussions of
ways to analyze
systems such as the
Rossler attractor and
the Lorenz equations.

S=8¢
direction field and several solutions ; I(ff)) parametrically.

The ROssler attractor is the system
X ==-y-z

Y =x+ay
2 =bx—-cz+xz

Observe that this system is nonlinear because of the product of the
x and z terms in the 2’ equation.
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If a=04, b=0.3, x,=1, y, =04, and z(0) = 0.7, how does the
value of ¢ affect solutions to the initial-value problem

X=-y-z

Yy =x+ay

2 =bx—cz+xz

x(0) = x,, y(0) = y,, 2(0) =z,

Suggestion: Use Manipulate.

Challenge: Using the linear approximation sinf = 6 for small dis-
placements, derive the equations for a triple pendulum if theta,
represents the displacement of the upper pendulum (with mass
m, and length [,), theta, represents the displacement of the upper
pendulum (with mass m, and length [,), and theta; represents the
displacement of the upper pendulum (with mass 7, and length ;).
Using g = 32, illustrate the solution graphically if m, =3, m, = 2,
and my =1, 1, =16, , =8, I; =16, 6,(0) =0, 6,(0) = 1, ,(0) = 0,
65(0) = 0, 65(0) = 0, and 65(0) = —1.
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DensityPlot, 71-72
Derivatives
antiderivatives, 164-166
calculation, 135-138
definition, 128-134
first derivative test, 148-156
mean-value theorem, 146-147
multivariable partial and
directional derivatives, 224-233
second derivative test, 148-156
Det, 471
Differential equations
first-order differential equations
linear differential equations,
442-450
nonlinear differential equations,
450-453
numerical solutions, 453-457
separable differential equations,
435-442
nth-order differential equations
constant coefficients, 473-475
Laplace transform, 481-491
nonlinear higher-order
equations, 492
theory, 472-473
undetermined coefficients,
475-481
partial differential equations
first-order quasilinear partial
differential equation, 547-549
one-dimensional wave
equation, 532-537
two-dimensional wave
equation, 537-547
second-order differential
equations
constant coefficients, 458-464
theory, 457-458
undetermined coefficients,
464-470
variation of parameters,
470-472
systems of differential equations
homogeneous linear systems,
492-505
nonhomogeneous linear
systems, 505-532
Differentiation, see also Derivatives
antidifferentiation
antiderivatives, 164-166
u-substitution, 166-167
implicit differentiation, 138-139

maximization/minimization
problems, 156-164
tangent lines, 139-147
Dirac delta function, 490
Direction, 120, 122-124
Direction field, 17
Directional derivative, 225-229
Directory, 14
Disease control, 552
DisplayFunction, 56, 142
Div, 380
Divergence
sequence, 201
series, 203-204, 209
test, 205
vector field, 380
Divergence theorem, 388-389
Do, 195, 293, 504, 536, 540, 547
Documentation Center, 2-3, 11,
24-28, 52, 71-72, 95, 339
Dot product, 331
Double pendulum, 500-505, 555
Drawing Tools, 6, 54
Drop, 283
DSolve, 16-17, 435-436, 440-441,
445-4406, 448-451, 453, 459-460,
464-465, 471, 474, 476, 478,
481, 489, 495-496, 498-499,
501, 508, 537, 547-548, 552
Dt, 138
Dual problem, 368-369
Duffing’s equation, 614-515
Dynamical system, 264-266, 276,
300-301, 315-316
Dynamic[x], 45, 167

E

e, 35

Eigenvalues, 358-361, 366, 430,
518, 521

Eigenvectors, 358-361, 430

Eigenystem, 360-361, 493, 496,
498, 507

Elementary cellular automaton, 95

Ellipse, 81

Ellipsoid, 87

Elliptical torus, 84-86

Endemic disease, 553

Enneper’s minimal surface, 250

Enter, 5, 26, 32

Epidemic, 552

Equation solutions

approximate solutions, 110-114
exact solutions, 100-109

Equilibrium point, 514

EulerGamma, 34, 115

Evaluate, 542

Exact differential equation, 450-451

Exact solutions, 100-109
ExampleData, 419
ExpandDenominator[fraction], 43
Expand[expression], 39, 41,
162, 363
ExpandNumerator[fraction], 43,
483
Exponential growth, 445
Expressions
algebraic operations, 39-44
defining and evaluating, 47-52
naming and evaluating, 44-46
ExpToTrig, 115
Exp[x], 35-36

F
Factor, 459-460, 476
Factor[expression], 39-41, 103,
121, 136, 162, 207, 360-361
Factorial sequence, 202
Falling bodies, 447-448
Family of orthogonal trajectories,
551
Fibonacci numbers, 431
Fibonacci sequence, 311
Filling, 180
Finance, 311-315
FindRoot, 110-116, 193, 219, 248,
296, 449-450
First derivative test, 148-156
First Five Minutes with
Mathematica, 25
firstguess, 110
First-order differential equations
linear differential equations,
442-450
nonlinear differential equations,
450-453
numerical solutions, 453-457
separable differential equations,
435-442
First-order quasilinear partial
differential equation, 547-549
Fit, 283-284, 286-287
FitzZHugh-Nagumo equation, 552
Fixed point, 315
Flatten, 126, 262-264, 266, 272,
279, 304, 425, 428, 496
Fobonacci number, 49
Folium of descartes, 375-380
Fourier series
defining, 287
kth partial sum, 288
kth term, 287
one-dimensional heat equation,
290-294
partial sums, 288-290



wave equation on circular plate,

294-299

Fraction, 46

Frame, 73-74

Frenet formulas, 405

Frenet frame field, 404

FresnelC, 250, 387

FresnelS, 250, 387

FullSimplify, 208, 217

Fundamental matrix, 493

Fundamental set, 457, 473

Fundamental theorem of calculus,
174

Fundamental theorem of line
integrals, 384

Future value, 312

fvals, 118

flx_], 47, 50-51, 147, 169

G
Gabriel’s horn, 200-201
Gaussian curvature, 413-414
Gauss—Jordan elimination, 342-349
General form
second-order linear differential
equation, 457
General solution, 473, 492
Generalized Mandelbrot set,
306-307
Globally asymptotically stable
solution, 509
Go, 25
GoldenRatio, 34
Graceful graph, 98
Gradient, 225, 380
GradientFieldPlot3D, 382-383
Gram-Schmidt process, 351-355
Graphics, 6, 54, 131, 278-279, 377
GraphicsArray, 293
GraphicsGrid, 70, 73, 81, 90, 293,
297, 411
Graphics Inspector, 54
GraphicsRow, 86, 88, 130, 139,
278, 280, 304, 334, 421
Graphing
cellular automaton, 95-100
functions of single variable, 52-65
parametric and polar plots, 65-70
parametric curves and surfaces
in space, 82-94
three-dimensional and contour
plots, 71-82
GraphPlot, 98-99
graphs, 81
GrayLevel, 57, 279, 416
Gray’s torus, 84-86
GrayTones, 73-74
Green’s theorem, 385

Grid, 137, 167, 335-337
Growth constant, 445

H
Harmonic motion, 461-463
Harmonic series, 207
Hearing beats and resonance,
468-469
Help, 24
Help Browser, 40
Herd immunity, 554
Hermite polynomial, 267-269
Hermitian adjoint matrix, 364
Homogeneous linear differential
equation, 442-443
Homogeneous linear systems
differential equations, 492-505
Homogeneous nonlinear differential
equation, 451
Homogeneous nth-order linear
differential equation, 472
Homotopy, 90
Hooke’s Law, 461
Hyperbola, 79, 81
Hyperboloid
one sheet, 87
two sheets, 87

I
|dentity matrix, 321
IE, 34
ihseq, 79
lkeda map, 304-305
ImageSize, 427
Implicit differentiation, 138-139
Implicit functions
tangent lines, 141-142
Import, 92, 419
Indeterminate coordinate, 280
Infinite series, 203
Infinity, 34, 117, 122
-Infinity, 117
Inflection points, 148
Information, 82
Input, 318
InputForm, 10, 38
Insert, 321
Inset, 422
Integrals
arc length, 186-190
area, 168-174, 180-186
definite integral, 174-180
iterated integrals, 238-246
solids of revolution, 190-201
vector calculus
line integrals, 384-387
surface integrals, 387-391
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Integrate, 68, 165-167, 174-179,
181, 183-184, 186-188, 191,
194, 199, 201, 238-239, 242,
244, 267, 291, 375, 383, 385,
389-391, 437, 446, 451-452, 481

Integration by parts formula, 166

Integrating factor, 444

InterpolatingPolynomial, 286

Interval of convergence, 210

Inverse, 325-326, 338

Inverse functions, 58

Inverse Laplace transform, 481, 485

InverseLaplaceTransform, 481,
483, 485, 488, 490, 502-503

Irrotational vector field, 380

lterated integrals, 238-246

J

Jacobian, 514, 520

Join, 328-329, 343
JordanDecomposition, 362-363
Jordan matrix, 361-362

Julia set, 279-282, 299-303, 316

K
Kernel
linear transformation, 355
Klein bottle
orientability, 399-404
Kolmogorov predator-prey
equations, 520

L
Lagrange multiplier, 235, 237
Lagrange’s equation, 250
Lagrange’s theorem, 236
Laplace transform, 481-491
LaplaceTransform, 481, 483,
487-488, 490, 501-502
Laplacian in polar coordinates, 294
Laplacian of scalar field, 380
leftbox, 168, 170
leftsum, 168-170, 172, 180, 248
Lemniscate of Bernoulli, 185-186
Length, 259, 262, 264, 300, 419,
425, 428
Limit, 46, 117, 119-123, 128-129,
201, 204-206, 208-210
Limit comparison test, 206
Limits
computation, 121-123
continuity, 124-128
functions of two variables,
222-224
graphs and tables in prediction,
117-121
one-sided limits, 123-124
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Line, 158, 277, 357

Linear differential equations, 442-450

Linear programming
dual problem, 368-371
stand form of problem, 366-368
transportation example, 371-374
Linear systems of equations
Gauss—Jordan elimination,
342-349
solutions, 337-342
Linear transformations, 355-358
Linearly independent differential
equations, 457, 473
LinearProgramming, 369-370
LinearSolve, 339-342
Line integrals, 384-387
List, 101, 141
curve fitting, 283-287
defining, 251-257
graphing, 277-282
manipulation, 269-277
miscellaneous operations, 283
nested list, see Matrix; Vector
plotting lists of points, 258-269
list, 118, 135, 254, 259-260, 269,
315, 322
ListContour, 415
ListContourPlot, 422-423, 427-430
ListDensityPlot, 429-430
ListPlot, 61-63, 125-126, 202, 258,
263-264, 266, 278, 280-281,
285-286, 300, 415
ListVectorFieldPlot3D, 333
Locally stable rest point, 514
Logarithmic integral, 261
Logistic equation, 438
Logistic equation with predation,
454-457
Log[x], 35-36
Lorenz equations, 530-532
L-R-C circuit, 486-487

M

Mandelbrot set, 299, 305-311

Manipulate, 6-7, 90-92, 132-134,
145, 172-173, 214, 216-217,
248, 251, 257, 335, 378-379,
441, 463, 467, 497-498,
505-506, 510, 513, 519, 524,
529-530, 550, 555

Map, 49, 81, 118, 126, 136-137,
165, 223-224, 248, 267,
270-272, 274-276, 278,
280-282, 304, 308-309, 393,
456, 496, 504, 526

Mathematica

information and help resources,

1-2, 17-27

launching, 3-4
package loading, 13-17
syntax rules, 13
user characteristics, 1
version differences, 2-3
MathSource, 13-14
MathWorld, 14, 18, 29, 94
Matrix
computations, 325-329
defining, 317-321
element extraction, 322-324
fundamental subspaces, 349-350
graphical representation, 415-430
Jordan matrix, 361-362
Matrix, 318, 321

MatrixForm, 319-320, 323-329, 335,
343-346, 365-366, 480, 521-522

MatrixPlot, 98, 415-417
MatrixPower, 327

Maximization/minimization problems,

156-164
Maximize, 152-156, 193, 247,
369-370
Mclaurin polynomial, 213, 215
Mclaurin series, 213-215
Mean curvature, 413
Mean-value theorem
derivatives, 146-147
Mesh, 76-77, 194
MeshFunctions, 65, 83, 196
middlebox, 168, 171, 173

middlesum, 168-170, 172-173, 180,

248
Minimal surface, 249-250
Minimize, 152-156, 193, 247,
367-369, 373
Miscellaneous, 15
Mobius strip
orientability, 396-399
Module, 132
Monotonic sequence, 201
More Information, 19
Multivariable calculus
iterated integrals, 238-246
limits of functions of two
variables, 222-224
partial and directional derivatives,
224-233

N

Names["form"], 21

NDSolve, 433, 440, 453-454, 511,
525, 530

Nest, 60, 276, 300-301

Nested list, see Matrix; Vector

Newton’s Second Law, 447-448

Nintegrate, 174, 179-180, 183, 188,

192, 194, 238-239, 378, 543

NMaximize, 193
NMinimize, 193
Nonhomogeneous linear systems
differential equations, 505-532

Nonlinear differential equations,

450-453
Nonlinear higher-order differential

equations, 492
Norm

integral, 174

Normal modes, 294
Normalize, 354-355
Norml[v], 330
NRoots, 110, 113, 183
NSolve, 110, 182
Nullity, 348-349
Nullspace, 347-350, 356
Numerator[fraction], 43, 121, 125
Numerical calculations, 31-34
N[%], 199
N[area], 184
N[expression], 109, 113, 159, 207
N[number], 33, 35-36, 538

(0]

Object, 17

On Line Encyclopedia of Integer
Sequences, 201

One-dimensional heat equation,
290-294

One-dimensional wave equation,
532-537

One-sided limits, 123-124

Opacity, 73-74, 86

Options, 17

Options[object], 17-18

Order preserving path, 391

Orientable surface, 391-404

Oriented surface, 388

Orthogonal curves, 145-146

Orthogonal lines, 551

Orthogonalize, 354

Orthonormal vectors, 351

OutputForm, 10

Outward flux

vector field, 388-389
Overdamped, 462
Overflow error, 280, 305-306

P

Packagename, 14
Packages, 13

Palettes, 11, 22, 44, 318
Panel, 137, 167
Parabola, 81

Parallel vectors, 331



Parametric equations
arc length, 187
area, 183
tangent lines, 143-145
ParametricPlot, 20-21, 65-67,
69-70, 78, 116, 144-145, 161,
183, 188, 377, 494, 497, 509,
512-513, 516, 522
ParametricPlot3D, 82, 87-88, 90,
191, 196, 198-200, 234,
236-237, 241, 297, 512-513, 546
Part, 254, 322, 418-419
Partial derivative, 224-225
Partial differential equations
first-order quasilinear partial
differential equation, 547-549
one-dimensional wave equation,
532-537
two-dimensional wave equation,
537-547
Particular solution, 443, 492
Partition, 90, 130, 271-272,
275-276, 293, 429, 504
Pendulum equation with damping,
514
Permutations, 81
T, 35
Piecewise, 119
Play, 49
Plot, 5, 14, 21, 52-54, 57, 62, 64,
79, 103, 120, 149-150, 156, 180,
240, 261, 268, 274, 415,
449-450, 472, 477, 489, 512-513
Plot3D, 8, 65, 71, 77, 79, 222, 226,
229, 234, 243, 415, 549
PlotGradientField, 227, 229
PlotJoined, 278, 285
PlotLabel, 56, 69, 73
PlotPoints, 70, 73, 76-77, 88, 112,
200
PlotRange, 56-57, 62, 70, 83, 132,
149, 196, 226, 377, 394, 396
PlotStyle, 7, 14, 55, 57, 67, 69, 73,
86, 144, 195-196, 278, 285
PlotVectorField, 456
Plus, 315
Point, 158, 277, 279, 302
PointSize, 62, 280, 285
PolarPlot, 65-66, 69-70, 78, 116,
185, 189
Potential function, 380
Power series, 210-213
PowerExpand, 41-42, 115, 164,
187, 376
Predator-prey equations, 518-525
Prepend, 283
PrependTo, 283
Present value, 312-13

Prime, 253, 258
Prime number theorem, 261
Principal unit normal vector, 375
Product, 315
Projection

vectors, 334, 354-355

Q

QEDecomposition, 364-365
Quadric surface, 86-89
Quit, 11

Quit[ 1, 11

R

Randominteger, 255

RandomReal, 49, 118, 222-223, 255

Range, 252-253

Rank, 349

Ratio test, 205, 210

RealDigits, 315

RealOnly, 15-16, 28, 34, 63-64,
140, 151, 175-177, 248

Reduce, 213, 217, 522

RegionPlot, 198, 243

RegionPlot3D, 243

Relative maximum, 148, 230-232

Relative minimum, 148, 230-232

ReliefPlot, 93, 415, 427-430

Rendering, 131

ReplaceAll, 46, 106, 121, 149, 185,
376

Rest point, 514

Return, 5

RevolutionPlot3D, 194

RGBColor, 279, 416-417, 424

Right continuous, 124

rightbox, 168, 170

rightsum, 168-170, 172, 174, 180,
248

Roman surface, 90-92

Root test, 206

Rossler attractor, 554-555

Row space, 349

RowReduce, 329, 343, 346-350

RSolve, 314

S
Saddle point, 231-232
Save, 11

seashell, 434
Second derivative test, 148-156, 230
Second-order differential equations
constant coefficients, 458-464
theory, 457-458
undetermined coefficients,
464-470
variation of parameters, 470-472
Sec[x], 35
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Self-orthogonal curves, 551
Separable differential equations,
435-442
Sequence, 201-202
Series, 215-217
Series
alternating series, 209-210
convergence tests, 205-207
harmonic series, 207
infinite series, 203
Mclaurin series, 213-215
power series, 210-213
Taylor series, 213-217
Taylor’s theorem, 217-220
Shading, 76-77
Short, 259, 264, 266, 296, 428
Show, 53-54, 57-58, 63, 70, 73, 86,
88, 92-94, 130, 185, 278-281,
293, 297, 334-335, 357-358, 527
Show Changes, 19
Show More, 420, 423
Sign[x], 64
Simplify, 32, 37-38, 40-42, 59, 128,
136, 146, 164, 213, 223, 229,
242, 375-376, 381, 385, 387,
471, 478, 480-481, 484-485,
488, 491, 508, 522, 534, 535
Sine integral function, 166
Sinh[x], 35
Sin[x], 35
SIR model
with vital dynamics, 553
without vital dynamics, 552-553
Slope field, 17
Smooth curve, 187-189
SolarColors, 425
Solids of revolution
surface area, 199-201
volume, 190-199
Solve, 100-103, 106, 108-109, 112,
138-139, 147, 149, 154, 157,
207, 237, 240, 338-340, 346-347
Solve, 437, 451, 453, 457, 459-460,
476-477, 487, 490, 515, 520,
522
SolveAlways, 476
SphericalPlot3D, 245-246
Stable fixed point, 315
Standard form
first-order linear differential
equation, 442
nth-order linear differential
equation, 472
second-order linear differential
equation, 457
StandardForm, 10-11
Standard unit vectors, 331
Startup Palette, 64
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Stayed-wire problem, 163-164
Steady-state temperature, 291
Stokes’ theorem, 389
Sum, 204-205, 207, 209-210
Surface area
iterated integrals, 239, 241-242
solids of revolution, 199-201
Surface integrals, 387-391
Surface orientability, 391-404
Syntax rules, 13
Systems of differential equations
homogeneous linear systems,
492-505
nonhomogeneous linear systems,
505-532

T

Table, 48-49, 52, 60-61, 90, 97,
118, 126, 130, 195-196, 202,
272-273, 214, 222-223,
251-253, 255, 257, 260, 262,
265, 267-268, 279, 292-293,
298, 301, 304, 308-310,
319-320, 323, 485, 496,
516-517, 526, 535, 539, 544-545

TableForm, 268-269, 271-274, 289,
292, 335

TableHeadings, 268-269, 273

Take, 259, 324, 351

Talley, 260

Tangent lines, 139-147

Tangent plane, 233-234

Tanh[x], 35

Tan[x], 35

Taylor polynomial, 213, 215

Taylor series, 213-217

Taylor’s theorem, 217-220

Text, 158, 163-164

Thickness, 86

Thread, 338-339, 348-349

Threadable functions, 136

time, 157

Together[expression], 40-41, 157,
353
Tooltip, 61, 161, 182, 211, 270
Tooth surface, 116
toplot, 61, 81, 144, 219, 300
Torsion, 405
Torus
curvature, 414-415
knot, 84-85, 408-409
orientability, 392-398
volume by iterated integral,
245-246
toshow, 293
TraditionalForm, 10, 38-39
Transpose, 323-324, 350, 365
trapezoid, 248
TreeForm, 39
TreePlot, 98-100
Trefoil knot, 411-414
TrigExpand, 37, 103, 115
TrigReduce, 37
TrigToExp, 38
Triple iterated integrals, 244-246
tubeplot, 409
Two-dimensional wave equation,
537-547

U
Umbilic torus, 82-83, 432
Underdamped, 462
Underflow error, 280
Undetermined coefficients
nth-order differential equations,
475-481
second-order differential
equations, 464-470
Union, 96, 526
Unit binormal vector field, 405
Unit circle, 66, 77-79
Unit normal field, 413
Unit normal vector field, 404-405
Unit tangent vector, 375
Unit tangent vector field, 404-407

Unitary matrix, 364
Unstable fixed point, 315
Unstable node, 525
Unstable rest point, 514
Unstable spiral, 525
u-substitution, 166-167

Vv
Van der Pol's equation, 511,
525-530
Vector
calculus
line integrals, 384-387
nonorientability, 391-404
surface integrals, 387-391
tangents, normals, and
curvature in R*, 404-415
vector-valued functions,
374-384
computations
basic operations, 329-330
projection, 334-337
vectors in 3-space, 330-333
defining, 321-322
Vector triple product, 413
VectorAnalysis, 380, 382, 389
VectorFieldPlot, 381, 438, 494,
516-519
VectorFieldPlots, 15-17, 28, 227,
229-230, 381-383, 393
Verhuist equation, 438
$VersionNumber, 2
VertexLabeling, 100
ViewPoint, 76-77
Volume
iterated integrals, 239, 243-244
solids of revolution, 190-199

w

Wave equation on circular plate,
294-299

Wronskian, 457, 473, 480
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