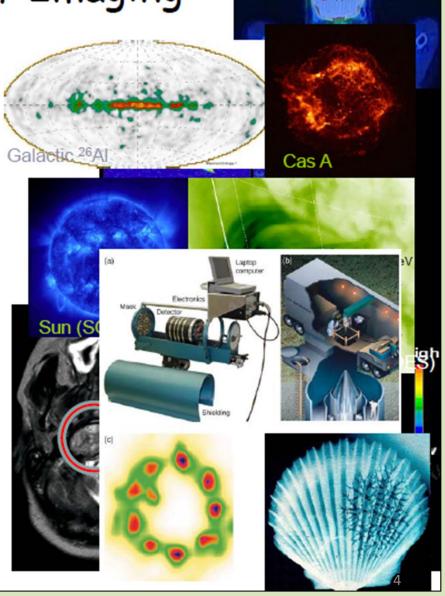
# University of Tripoli Department of Nuclear Engineering NE 639

THE PHYSICS OF RADIONUCLIDE IMAGING

#### Lecture 1

Course Introduction/General Introduction to Medical Imaging

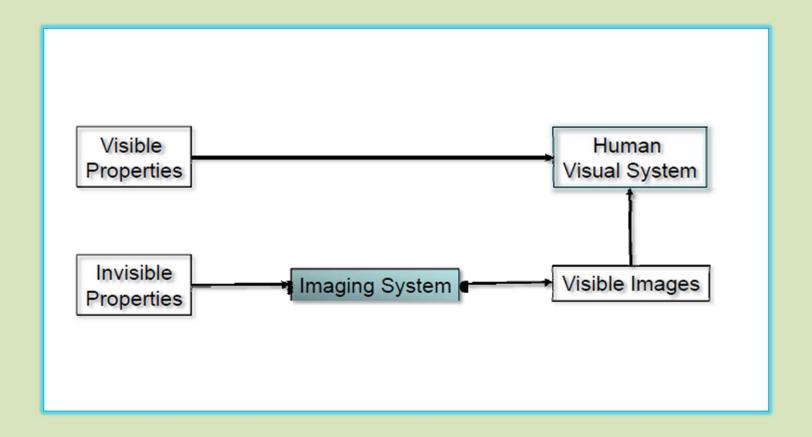

## Objective of Imaging

- ✓ Non-invasive way of looking at and into objects.
- Measure location, shape and extension of objects ("imaging")



"We've given you a brain scan and we can't find anything." Objective of Imaging

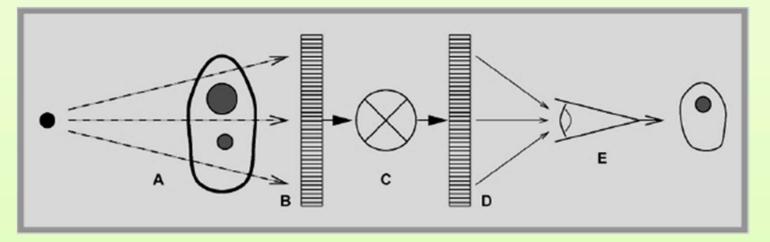
- Medical
  - Diagnostics
  - Monitor Therapy
  - Pharmaceutical development
  - Understanding of disease processes
- Biology
- Astrophysics
- Homeland Security
- Non-destructive assessment




## Why so many Imaging Concepts & Modalities?

➤ Bio-Medical Imaging:

Different modalities are based on different physical interactions of energy with biological tissue thus providing measurements of different physical properties of biological structures

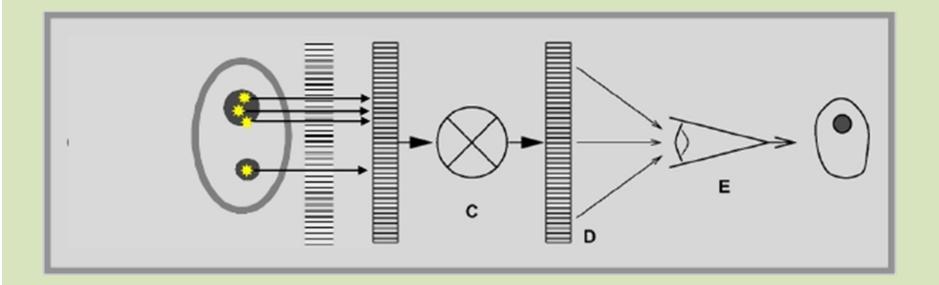

### Imaging Systems as Visual Mapping Devices



#### General Models

Radiographic Imaging: (Transmission Imaging Model)

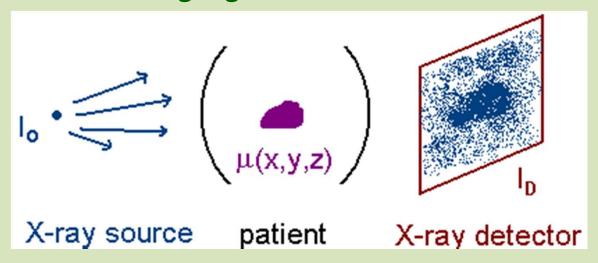
Subject contrast (A) recorded by the detector (B) is transformed (C) to display values presented (D) for the human visual system (E) and interpretation.




#### Radioisotope Imaging:

The detector records the radioactivity distribution by using a multi-hole collimator.

#### Radioisotope Imaging: (Emission Imaging)


The detector records the radioactivity distribution by using a multihole collimator.



## Overview on Imaging Modalities

- Radiography
- Mammography
- Computed Tomography
- Nuclear Medicine Planar imaging
- Single Photon Emission Computed Tomography
- Positron Emission Tomography
- Magnetic Resonance Imaging

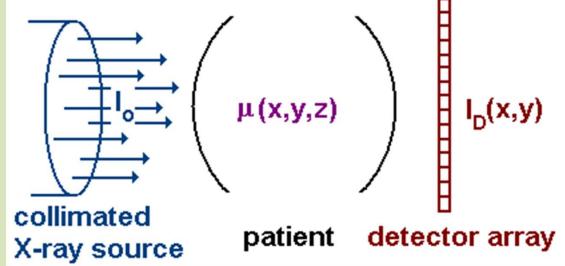
#### Transmission imaging



attenuation coefficient

$$\mu(x, y, z) = f(electron density, z)$$

$$I_d = I_o e^{-\int \mu(x,y,z) dl}$$
 Measures line integrals of attenuation


Film shows intensity as a negative (dark areas, high x-ray detection

**Disadvantage**: Depth information lost

Advantage: Cheap, simple

#### Computerized Tomography (CT)





Result:  $I_D(x,y) \propto \mu(x,y)$ 

1972 Hounsfield announces findings at British Institute of Radiology 1979 Hounsfield, Cormack receive Nobel Prize in Medicine (CT images computed to actually display attenuation coefficient  $\mu(x,y)$ )

#### **Important Precursors:**

1917 Radon: Characterized an image by its projections

1961 Oldendorf: Rotated patient instead of gantry

## Radiography

- 1st medical imaging technology; Made possible by "discovery" of X-rays by Wilhelm Roentgen November 8, 1895.
- Roentgen made first radiographic images of human anatomy.
- Defined the field of radiology.
- Object-specific attenuation (or transmission) leads to measurable image contrast
- Requires external X-ray source, producing homogeneous distribution
- Detectors to measure heterogeneous distribution behind object that can be photographic film (screen-film radiography) or electronic detector system (i.e. digital radiography).






Radiographic images are useful for a wide range of indications, including the diagnosis of broken bones, lung cancer, cardiovascular disorders, etc.

## Mammography

- Radiography of the breast (therefore transmission projection imaging)
- Mainly soft tissue therefore low X-ray energies
- Specifically designed X-ray systems (Source, detector, arrangement)
- Used to screen asymptomatic women for breast cancer (screening mammography) and in case of symptoms such as lumps (diagnostic mammography)



## Computed Tomography (CT)

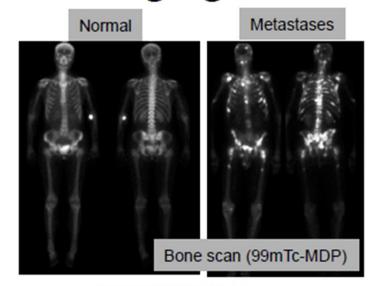
- Tomography:(Tomo=slice/section; Graph=picture/presentation)
- Used in many technical and scientific areas
- Computed tomography implies X-ray transmission computed tomography
- Many 2D radiographs taken from large number of angles enable synthesized 3D images
- Developed in the 60's, available clinically in the 70's due to advances in computer processing power
- The advantage of a tomographic over a projection image is its ability to display the anatomy in a slice of tissue without over- or underlying structures.

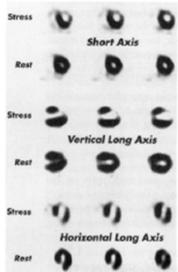


(Ruptured disk adjacent to vertebral column

## Nuclear Medicine Imaging - I.

#### Emission imaging


- In contrast to transmission imaging, emission imaging relies on the emission of specific (radioactive) tracers that are given to a patient.
- Enables functional imaging rather than anatomical imaging


#### Planar imaging

 2D projection of radioactivity distribution

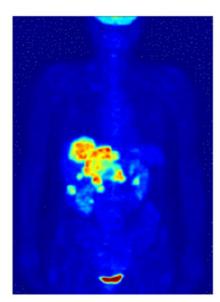
#### Single-Photon Emission Computed Tomography (SPECT)

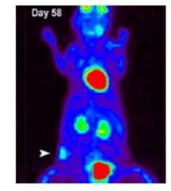
- Tomographic counterpart of planar imaging (as radiography and CT)
- Same radioactive isotopes and labels are being used as in planar imaging





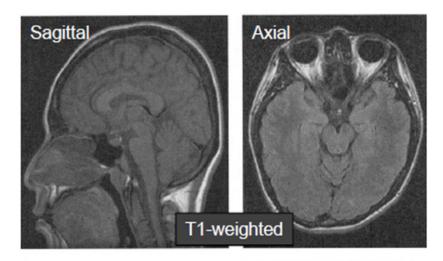
Myocardial perfusion stress test utilizing 201TI

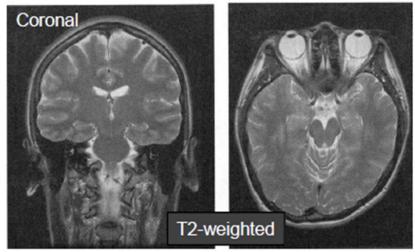

OZM 15


## Nuclear Medicine Imaging - II.

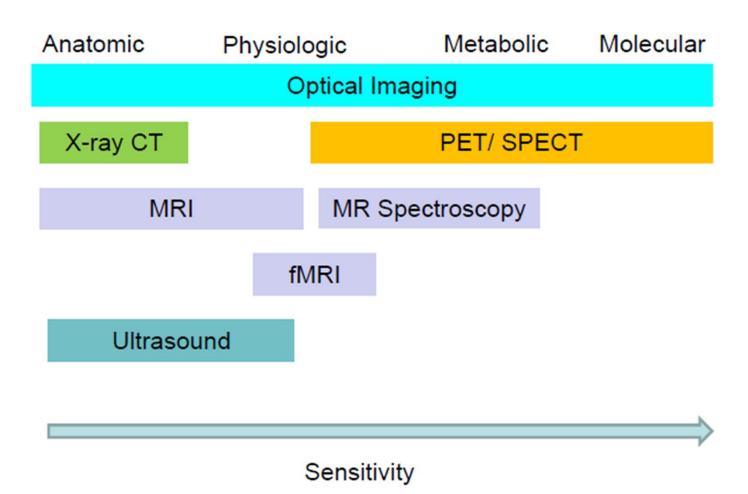
- Positron Emission Tomography (PET)
  - Radioisotopes that decay by  $\beta^+$  decay (such as  $^{18}$ F or  $^{15}O$ ) emit a positron that annihilates with 2 characteristic 511 keV photons emitted in (almost) opposite directions.
  - Currently provides higher sensitivity (efficiency and resolution) than SPECT
  - Many emitters are physiologically relevant (C, O, F (substitute for hydroxyl)) and can be incorporated in many biochemicals
  - Most important radiopharmaceutical is <sup>18</sup>FDG (Fluorodeoxyglucose) which is concentrated in tissues of high glucose metabolism such as primary tumors and their metastases.
  - Very high sensitivity to sub-picomolar concentrations




Malignant Melanoma. 18F deoxyglucose makes extensive metastastic disease visible.







## Magnetic Resonance Imaging

- MRI relies on nuclear magnetic resonance properties of the proton (mainly) using strong magnetic fields
- The proton has a magnetic moment and when placed in a strong magnetic field (e.g. 1.5 T) the proton will absorb radio and wave energy at the resonance frequency of 63 MHz
- The re-emission time or relaxation time depends on magnetic properties of close environment.
- By slightly changing the magnetic field strength in patient, the resonance frequency changes and magnetic properties can be determined positiondependently enabling 3D imaging (and tomography)
- Due to different magnetic properties of tissue such as fat, white and gray matter in the brain, cancer, etc., high sensitivity to anatomical variations.





## Sensitivity



## Image Properties

#### Contrast

- Difference in gray scale of the image
- ·X-ray:
  - Difference in X-ray attenuation in tissue
- Nuclear Medicine:
  - Difference in tracer concentration (depending on specificity/ uptake of radiopharmaceutical)
- · MRI:
  - Difference in proton density and relaxation time (decay time of excited configuration)

#### Resolution

 Smallest object that a system can resolve

## Limiting Spatial Resolution

| Modality                                   | ∆ (mm)    | Comments                                                                     |
|--------------------------------------------|-----------|------------------------------------------------------------------------------|
| Screen film radiography                    | 0.08      | Limited by focal spot and detector resolution                                |
| Digital radiography                        | 0.17      | Limited by size of detector elements                                         |
| Fluoroscopy                                | 0.125     | Limited by detector and focal spot                                           |
| Screen film mammography                    | 0.03      | Highest resolution modality in radiology                                     |
| Digital mammography                        | 0.05-0.10 | Limited by size of detector elements                                         |
| Computed tomography                        | 0.4       | About ½-mm pixels                                                            |
| Nuclear medicine planar imaging            | 7         | Spatial resolution degrades substantially with distance from detector        |
| Single photon emission computed tomography | 7         | Spatial resolution worst toward the center of<br>cross-sectional image slice |
| Positron emission tomography               | 5         | Better spatial resolution than with the other nuclear imaging modalities     |
| Magnetic resonance imaging                 | 1.0       | Resolution can improve at higher magnetic fields                             |
| Ultrasound imaging (5 MHz)                 | 0.3       | Limited by wavelength of sound                                               |

