COMPUTATIONAL NUCLEAR

02 03

00 0.

NGINEERING AND
RADIOLOGICAL SCIENCE

USING PYTHON
Ryan G. McClarren

~03 -02 =011

COMPUTATIONAL NUCLEAR
ENGINEERING AND RADIOLOGICAL
SCIENCE USING PYTHON™

COMPUTATIONAL
NUCLEAR
ENGINEERING AND
RADIOLOGICAL
SCIENCE USING
PYTHON™

Ryan G. McCLARREN

rtment of Aerospace and Mechanical Engineering
University of Notre Dame, Notre Dame, IN, USA

Academic Press is an imprint of Elsevier

125 London Wall, London EC2Y 5AS, United Kingdom

525 B Street, Suite 1800, San Diego, CA 92101-4495, United States

50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States

The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom

Copyright © 2018 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, or any information storage and retrieval system, without permission in writing from
the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our
arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be
found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as
may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our
understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any
information, methods, compounds, or experiments described herein. In using such information or methods they should be
mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any
injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or
operation of any methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

ISBN: 978-0-12-812253-2

For information on all Academic Press publications
visit our website at https:/ /www.elsevier.com/books-and-journals

a Working together
—4AM8 o grow libraries in
asviek | BookAld Jeveloping countries

www.elsevier.com ¢ www.bookaid.org

Publisher: Joe Hayton

Acquisition Editor: Joe Hayton

Editorial Project Manager: Kattie Washington
Production Project Manager: Sruthi Satheesh
Designer: Victoria Pearson

Typeset by VIeX

http://www.elsevier.com/permissions
https://www.elsevier.com/books-and-journals

This book is for my wife, Katie. With tolerance and
patience, she has supported and encouraged me.

Contents

About the Author xiii
Preface xv
Acknowledgment xvii

|

INTRODUCTION TO PYTHON
FOR SCIENTIFIC COMPUTING

1.1

1.2

1.3
1.4
1.5
1.6

24

1. Getting Started in Python

Why Python? 4
1.1.1. Cemments 9
1.1.2, Errors 6
1.1.3. Indentation 7
Numeric Variables 8
1.2.1. Integers 8
1.2.2. Floating Point Numbers 8
1.2.3. Complex Numbers 10
Strings and Overloading 11
Inpur 14
Branching (If Sratements) 14
lteratien 16
The Great Beyond 17
Further Reading 18
Problems 18
Short Exercises 18
Programming Projects 19

2. Digging Deeper Into Python

A First Numerical Program 21
ForLoops 24

3 Lists and Tuples 29

2.3.1. Lists 29

2.3.2. Tuples 31

Floats and Numerical Precision 33
Further Reading 34

Preblems 34

vii

Short Exercises 34
Programming Projects 35

3. Functions, Scoping, Recursion, and
Other Miscellany

3.1 Funcrions 37
3.1.1. Calling Functions and Befault
Arguments 41
3.1.2. Return Values 41
3.2 Docstrings and Help 42
3.3 Scope 44
3.4 Recursien 45
3.5 Modules 47
3.6 Files 49
Problems 50
Short Exercises S0
Programming Projects 51

4. NumPy and Marplotlib

4.1 NumPy Armays 54
4.1.1. Creating Arrays in Neat Ways 55
4.1.2. @perations on Arrays. 58
41.3. Universal Functions 60
4.1.4. Copying Atrays and Scope 61
4.1.5. Indexing, Slicing, and lterating 63
4.1.6. NumPy and Complex Numbers 65
4.2 Matplotlib Basics 65
4.21. Customizing Plots 66
Further Reading 69
Problems 69
Short Exercises 69
Programming Projects 70

5. Dicrionaries and Functions as Arguments

5.1 Dictionaries 75
5.2 Funcriens Passed te Funcriens 84

viii

5.3

6.1
6.2
6.3
6.4

CONTENTS

Lambda Functions 88
Problems 91

Short Exercises 91
Programming Projects 91

6. Testing and Debugging

Testing Yeur Cede 93

Debugging 66
Assertions 99
Error Handling 101
Further Reading 106

106

Short Exercises

Problems
106

Programming Projects 106

11

7.1
72
7.3
.4
7.5

8.

a1

8.2

8.3

NUMERICAL METHODS

7. Gaussian Elimination

A Motivating Example 109

A Function for Solving 3 x 3 Systems 112

Gaussian Elimination fer a General System 115
Round off and Piveting 118
Time to Solution for Gaussian Elimination 124

Furcher Reading 127
Problems 127

Short Exercises 127
Programming Projects

127

LU Factorization and Banded Matrices

LU Factorization 132

8.1.1. Forward and Backward
Substitution 135

LU With Pivoting, and Other Supposedly

Fun Things 137

Banded und Symmetric Matrices

Further Reading 142

142

Short Exercises 142

Programming Projects

140

Problems

143

9. Trerative Methods for Linear Systems

9.1 Jacobi lreration 146
9.1.1. Convergence of the Jacobi
Method 151
9.1.2. Time to Solurion for Jacobi
Method 152
9.2 A Faster Jacobi Method 154
9.3 Gauss-Seidel 156
9.3.1. Convergence of Gauss-Seidel 158
9.3.2. Time to Solution for Gauss-Seidel
9.4 Successive Qver-Relaxatien 160
9.4.1. Convergence of SOR - 162
9.4.2. Time ro Solution for SOR 162
9.5 Conjugate Gradient 163
9.5.1. Convergenceof CG 166
9.5.2. Time to Solution fer CG 167
9.6 Taking Advantage of Tri-diagonal Form 168
Further Reading 170
Problems 170

170
Programming Projects

Short Exercises

170

10. Interpelation

10.1
10.2

174

Lagrange Polynomials

Polynomials
176
10.2.1. Efficiency of Lagrange
Polynomials 180

10.2.2. The Runge Phenomencn
Coubic Spline Interpolation 182
Coda 189
Further Reading
190

Short Exercises

181
10.3

190
Problems
190
Programming Projeces 191

11. Curve Fitting

11.1 194

L1.1.1. Least-Squares Regression

Multiple Linear Regression 198

11.2.1. Example From Qutside of
Engineering 199

11.2.2. Adding Mere Variables

11.3 “Nenlinear” Models 206

Fitting a Simple Line
197
11.2

202

159

11.4

12.

—_—

12.2
12.3

13.1
132
13.3
13.4
13.5

14.1
14.2
14.3
144
14.5
14.6
14.7

CONTENTS

Exponential Models: The Logarithmic
Transtorm 208
11.4.1. Power Law Medels 210
Coda 212
Further Reading 212
Problems 212

Programming Projects 212 15.1

12. Closed Root Finding Methods

Risection 216

12.1.1. Critical Radius of a Sphere 218
False Position (Regula Falsi) 219
Ridder's Method 223

Coda 226

Further Reading 227

227

Short Exercises

Problems
227
Programming Projects

227

13. @pen Root Finding Methods

Newten’s Method 230

[nexact Newton 234

Secant Method 236

Slow Convergence 238

Newton’s Mechod for Systems of Equations 242

13.5.1. Rectangular Parallelepiped
(Shoebox) Reactor Example

Ceda 247

Problems

243

247
Short Exercises 247
Programming Projects

247

14. Finite Difference Derivative
Approximations

Taylor Series and Big-O Notation 252
Forward and Backward Difference Formulas
Higher-Order Approximations 255
Comparison of the Approximations
Second Derivatives 257
Richardson Extrapolation

254
256

258
Complex Step Approximations
Coda 264

Further Reading 264

265

262

Problems

15.2
153

16.1

16.2

17.1
17.2
17.3

174
17.5

17.6

X

205

Programming Projects

Shert Exercises
265

15. Numerical Integration With
Newton—Cotes Formulas

Newton—Cotes Formulas 268
15.1.1. The Midpoint Rule 268
15.1.2. The Trapezoid Rule 269
Simpson’s Rule 274
Romberg Integration
Coda 284

Further Reading 284
Problems 284

Short Exercises

277

284

Programming Projects 284
16. Gauss Quadrature and

Multi-dimensional Integrals

Gauss Quadrature Rules 287

16.1.1. Where Did These Points Come
From? 288

16.1.2. Code for Gauss—Legendre
Quadracure 290

Multi-dimensional Integrals 294
Ceda 297
Problems 298

Short Exercises 298

298

Programming Projects

17. Initial Value Problems

302
305

Forward Euler
Backward Euler

Crank—Nicolson (Trapezoid Rule) 308
17.3.1. Comparison of the Methods 310
Stabilicy 311

Fourth-Order Runge—Kurta Method 313
17.5.1. Stability for RK4 314

Systems of Differential Equations 315
17.6.1. Stability for Systems 320

17.6.2. Crank—Nicolson for Systems 321
17.6.3. RK4 for Systems 323
Point-Reactor Kinetics Equations 324

17.7.1. Rod-Drop 325

17.7.2. Linear Reactivity Ramp 327
Coda 329
Further Reading 329
Problems 329
Short Exercises 329
Programming Projects

330

18. One-Greup Diffusion Equation

18.1 Discretizing the Steady-Stare Biffusion
Equation 335
18.1.1. The Diffusion Operator in Bifferent
Geometries 336
18.1.2. Toterface Wiffusion Coefficient 338
18.1.3 Boundary Conditions 338
18.2 Pythen Cede for the Diffusion Equation 340
18.3 A Test Problem for Each Geometry 343
18.3.1. Reed’s Problem 345
Coda 348
Problems 348
Programming Projects 348

19. One-Group k-Eigenvalue Problems

19.1 Nuclear System Criticalicy 352
19.2 Inverse Power Method 353

19.3 Function for Inverse Power [teration 355

19.4 Solving |-D Biffusion Eigenvalue Problems 356

19.4.1. Heterogeneous Problems 360
Coda 362
Preblems 362

Prograinming Projects

362

20. Two-Group k-Eigenvalue Problems

20.1 Two-Group Criricality Problems 365
20.2 Generalized Eigenvalue Problem 367
20.3 Inverse Power Method for the Two Group
Problem 368
203.1. Inverse Pewer [teration Functien 369
20.4 Solving |-D, Two-Group Diffusion
Eigenvalue Problems 371
20.5 Twe-Group Reflected Reacter 375
Coda 377
Problems 378
Programming Projects

378

CONTENTS

11

MONTE CARLO METHODS

21. Introduction to Monte Carlo Methods

21.1 Analog Physics 382
21.2 Prebability Preliminaries 382
21.3 The Exponenrial Distriburion 383
21.4 A First Monte Carlo Program 385
21.5 Isetropic Neutrons oo a Slab 388
21.6 A First Mente Catlo Shielding Calculation 391
21.7 Tracking ina Sphere 394
21.8 A Real Shielding Problem 397
21.9 Rejection Sampling 399
21.10 Looking Up Energies 400
21.11 Elastic Scartering 401
21.12 Lead Shielding of Reactor Algorithm and
Code 401
Coda 404
Further Reading 404
Problems 403
Shorr Exercises 405
Programming Projects 406

22. Monte Carlo Variance Reduction and
Scalar Flux Estimation

22.1 Implicit Capture and Particle Weights 408
22.1.1. A Figure of Merit 411
22.2 Estimating Scalar Flux 412
22.2.1. Collision Estimators 412
22.2.2. Track-Length Estimators 414
22.2.3. Geometric Dependence of the
FOM 4l6
22.3 Stratified Sampling 417
22.4 Complete Monte Carlo Code for Slabs 421
Coda 423
Problems 423
Short Exercises 423

Programming Projects 423

23. Monte Carlo Eigenvalue Calculations

23.1 Fissien Cycles 425

23.2 Fission Matrix Methods 430

Coda

435

Problems 435

Programming Projects

435

CONTENTS

Bibliography 437
Index 439

xi

About the Author

Ryan G. McClarren first tried to use com-
puters to solve scientific problems in mid-
dle school when he thought his self-taught
BASIC programming skills might make his al-
gebra homework easier. Currently, he is As-
sociate Professor of Aerospace and Mechan-
ical Engineering at the University of Notre
Dame. He obtained his Ph.D. (nuclear engi-
neering and radiological sciences) from the
University of Michigan. He is an active re-
searcher in numerical methods for radiation
transport problems and uncertainty quan-
tification. Prior to joining Notre Dame, he
was Assistant Professor of Nuclear Engineer-
ing in the Dwight Look College of Engi-
neering at Texas A&M University, and was

a scientist at Los Alamos National Labora-
tory in the Computational Physics and Meth-
ods Group (CCS-2). He is the author of over
40 publications appearing in peer-reviewed
journals, including the Journal of Compu-
tational Physics, Nuclear Science and Engi-
neering, Physics of Plasmas, and the Journal
of Computational and Theoretical Transport.
He also has extensive experience in applied
data science and has consulted for a vari-
ety of large firms applying computational
science to problems in the retail, banking,
and entertainment spaces. He lives in Indi-
ana with his wife, Katie and their four chil-
dren: Beatrix, Flannery, Lowry, and Cormac.

xiii

Preface

This book is intended to serve two pur-
poses: one to introduce students in nuclear
and radiological engineering to Python and
to use Python as a pedagogical tool for nu-
merical methods relevant to their studies.
The audience for this book is intended to
be junior and senior undergraduate students.
Most of the material is, however, suitable
for sophomore students if appropriate back-
ground is provided for the nuclear reactor
and radiation physics. The book arose out of
a set of lecture notes for a course at Texas
A&M University that was for juniors who
had previously taken a course in nuclear re-
actor theory.

The first part of the book serves as the
introduction to Python 3 and the relevant
libraries for scientific computing (namely
NumPy and Matplotlib). The use of the li-
brary SciPy is scrupulously minimized. This
is not because the library is not useful (I find
it particularly useful). Rather, learning the
numerical methods needed for engineering
problems would be minimized if students
had such methods delivered on an Argen-
tine platter. Additionally, this book does
not cover object-oriented programming with
Python. While this will be a useful skill for
those students that will develop engineering
software as a career, there is simply not room
to do it justice in a single text.

The second part of the text introduces tra-
ditional engineering numerical methods and
applies them to engineering problems rel-
evant to the audience. On the whole, the
applications do not assume a great deal
of nuclear or radiological engineering back-
ground. The exception is chapters 18-20,

where some knowledge of diffusion theory
for neutral particles is assumed. Neverthe-
less, references to the relevant background
are given.

The final part of the text covers the impor-
tant topic of Monte Carlo methods for parti-
cle transport, in particular neutron transport.
The discussion mentions neutrons specifi-
cally, but of the techniques directly apply
to gamma or x-ray transport, the eigenvalue
discussion in Chapter 23 notwithstanding.
For the Monte Carlo chapters, the discus-
sion walks a fine line between demonstrating
the full power of Monte Carlo methods and
minimizing the length of code listings. The
idea is to show the reader how complications
could be added to Monte Carlo codes, with-
out having each code have the totality of the
functionality discussed.

This book adopts the philosophy that all
the elements of the text should, where pos-
sible, be included in the flow of the discus-
sion and not to treat figures and code listings
as floating objects that can appear far from
where they are mentioned. Additionally, in
the early chapters, the code to generate the
figures is included to demonstrate how one
makes such figures using Python.

The exercises in this book have been cho-
sen to demonstrate the features of the nu-
merical methods or Python code features dis-
cussed. The solutions are intended to include
a large amount of discussion and critical
analysis of the results. This is especially true
for the programming projects. Ideally, the so-
lutions provided by students for these prob-
lems are mini-lab reports, because in these

). 4%

xvi PREFACE

problems, the students are performing nu-
merical experiments.

Finally, this book seeks to serve the needs
of students by making Python a tool for
them to use to solve engineering problems.
Many of problems are designed to teach a
student how to set up a problem and then
solve it with a known algorithm. The pri-
mary goal is to know how to apply the
method. My view is that a deep understand-
ing of numerical techniques is preferable,
but not de rigeur for contemporary students.

Those students who do go on to be com-
putational scientists will deepen their un-
derstanding in additional courses and read-
ing. I fully realize that this point of view
is not universally adopted. I only point out
that using calculators without understand-
ing the circuit boards inside did not make
previous generations of students lesser scien-
tists.

My ultimate goal is that this book gen-
erates excitement in students for computa-
tional science.

Ryan G. McClarren
April 27,2017

Acknowledgment

This text would not be possible with-
out the many students who asked ques-
tions, pointed out mistakes, or told me what
I said that did not make sense during lec-
tures or after reading my notes. In particu-
lar I want to thank Patrick Behne for catch-
ing many errors in a very early draft of
my notes, and Logan Harbour for helping
with the solutions to almost of the prob-
lems herein. I would also like to thank

Dr. Jean Ragusa for allowing me to present
a modified version of some of his problems
from when he taught a course using For-
tran.

I would also like to acknowledge the great
technology of Jupyter notebooks for creating
a means to express code in such a way as
to interweave it with the reasoning behind
it. I only hope that I could do the medium
justice.

Ryan G. McClarren
April 27,2017

xvii

PARTI

INTRODUCTION TO PYTHON
FOR SCIENTIFIC COMPUTING

CHAPTER

1

Getting Started in Python

OUTLINE

1.1 Why Python? 4 1.3 Strings and Overloading 11
1.1.1 Comments 5 1.4 Input 14
1.1.2 Errors 6 1.5 Branching (If Statements) 14
1.1.3 Indentation 7 1.6 Iteration 16

1.2 Numeric Variables 8 The Great Beyond 17
1.2.1 Integers 8 Further Reading 18
1.2.2 Floating Point Numbers 8 Problems 18

1.2.2.1 Built-in Short Exercises 18
Mathematical Programming Projects 19

Functions 9 1. Harriot’s Method for
1.2.3 Complex Numbers 10 Solving Cubics 19

You can be shaped, or you can be broken. There is not much in between. Try to learn. Be coachable.
Try to learn from everybody, especially those who fail. This is hard. ... How promising you are as a
Student of the Game is a function of what you can pay attention to without running away.

David Foster Wallace, Infinite Jest

CHAPTER POINTS

e Python is a computer programming e Branching executes different parts of a
language that we can use to solve code depending on conditions the
engineering problems. programmer defines.

e One stores information in variables and e Iteration execute the same block of code
can make computations and comparisons repeatedly under controlled conditions.

with those variables.

Computational Nuclear Engineering and Radiological Science Using Python 3

DOI: 10.1016/B978-0-12-812253-2.00002-9 Copyright © 2018 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-812253-2.00002-9

4 1. GETTING STARTED IN PYTHON

1.1 WHY PYTHON?

In our study of computational nuclear engineering we are going to use Python, specifically
version 3 of Python. Python is a powerful and widely accepted programming language that
can do just about anything lower-level programming languages like Fortran, C, and C++ can.
By learning to program in Python, you will learn the skills you need to program in any other
computer language with relative ease.

While this book uses Python to explore computational nuclear engineering, it is not an
exhaustive description of the Python language and how to use it. We will cover the topics
needed for our computer simulation and numerical methods only. As a general computer pro-
gramming language, Python can be used to analyze large data sets, write computer games,
control devices, etc. The techniques we cover, and the approach we use to tackle problems
using a computer will be applicable to these other fields as well.

The best way to start to learn a programming language is to actually use it to solve a
problem. In almost any computer language the first thing you do is create a program called
“Hello world!”, where you make the computer say, in text, “Hello World!” (That is, after
installing a way to write and run programs in the language. When installing Python on a
machine, install Python 3 if you want to repeat the examples in this book. For those new to
coding, a Python distribution such as Anaconda might be the easiest installation to begin
with.) In Python you simply start a Python session and type:

In [1]: print("Hello World!")

Hello World!

This is the first command we will learn in Python, the print command:

BOX 1.1 PYTHON PRINCIPLE

The print command takes a comma- ters contained inside either single quotes or
separated list of objects to print to the screen. double quotes. When printing to the screen,
Most commonly these are strings of charac- each object is separated by a space by default.

The code to type in to your Python interpreter is the part that follows In [1]: and the
output is directly below it separate by a blank line. We could have it print any string of
characters. The string of characters could be something simple such as

In [2]: print("Saw ’em off")

Saw “em off

to more exotic characters:

In [3]: print("Segren Kierkegaard and Jean-Fracgois Lyotard")

Sgren Kierkegaard and Jean-Fracois Lyotard

1.1. WHY PYTHON? 5

Note how Python supports the unicode character set so that we can get those fancy char-
acters. Actually typing those characters in from a standard US keyboard is trickier, but if you
do manage to input them, Python can handle it (I used copy and paste).

These results were obtained by running the code in interactive mode via a Jupyter note-
book, which means the result of each line is displayed when I enter the line, and the result of
the last line of input is printed to the screen. It is more common to put your code into a sepa-
rate file and then execute it. These files can be executed either on the command line by typing
python codename.py where “codename.py” is the name of your file, or by running it in
an integrated development environment, such as IDLE or Spyder.

1.1.1 Comments
A comment is an annotation in your code to

¢ inform the reader, often yourself, of what a particular piece of code is trying to do,
e indicate the designed output, result, etc. of a part of the code, and
* make the code more readable.

A comment can be anything to tell you or another reader of the source code what is go-
ing on in the code. Comments can also be useful to remind you to come back and clean up
an ugly part of the code, or explain to your future self why the code is written in such a
way.

Comments are your friend. They can be time consuming to add, but never have I
looked back at old code and regretted adding them. Any code you write that other people
might read should be well commented. This includes code you may write for a course on
Python.

You use the pound (aka hashtag) # to comment out the rest of a line: everything that follows
the # is ignored by Python. Therefore, you can put little notes to yourself or others about what
is going on in the code.

In [4]: #This next line should compute 949 + 19 = 100
print(9x9 + 19)

#You can also make comments inside a line
print(9x9 f+ 19)

100
81

1224

There are also ways to make multiline comments by using a triple quote

In [5]: ”’The beginning of a multiline comment.
This comment will be followed by meaningless
code. Enjoy 7’
print("I am the very model of a modern major general.")

I am the very model of a modern major general.

6 1. GETTING STARTED IN PYTHON

BOX 1.2 PYTHON PRINCIPLE

A single line comment is everything on a comment. Whatever is inside a commented
line after a pound (or hashtag) character, #. block of code is ignored by the Python inter-
Multiple lines can be commented by using preter.
triple quote at the start and at the end of the

Later we will discuss some standard formats for comments at the beginning of a function.
For now we will use comments as needed to illustrate what particular snippets of code are
doing.

1.1.2 Errors

In any code you write longer than a few lines, you will make a mistake. In the par-
lance of our times these errors are called bugs. Now there are good bugs and bad bugs.
(The term bug for an error or defect goes back to at least Thomas Edison in 1878 de-
scribing an error in an invention. The most celebrated use of the word was from Grace
Hopper regarding an instance in 1947 when a moth lodged itself inside one of the compo-
nents of the room-sized computers of the day, and caused a malfunction.) The good bugs
get caught by Python and it will complain when it finds them. The bad bugs are insidi-
ous little beings that make your code do the wrong thing, without you knowing it. Good
bugs are easier to find because Python will alert you to the error. Bad bugs can exist in a
code for a long time (decades even) before being unearthed. Yes, decades: Microsoft Win-
dows reportedly had a 17-year-old bug (http:/ /www.computerworld.com/article /2523045 /
malware-vulnerabilities /microsoft-confirms-17-year-old-windows-bug.html).

Even experienced programmers write code with bugs. There are many different proce-
dures to try to rid a code of bugs, but even the most sophisticated software quality assurance
techniques will not catch every one.

We will now look at a good bug and a bad bug in the following code:

In [6]: #This is a good bug because the Python interpreter complains
9%9 +

File "<iPython-input-8-64b47963658c>", line 2
9%9 +

SyntaxError: invalid syntax

Notice that Python printed a whole host of mumbo jumbo to the screen, but if you look at
it closely it tells you what exactly went wrong: in line 2 of the code, there was a plus sign
without anything on the right of it. This bug is good because the code didn’t run and you
know to go back in and fix it.

http://www.computerworld.com/article/2523045/malware-vulnerabilities/microsoft-confirms-17-year-old-windows-bug.html
http://www.computerworld.com/article/2523045/malware-vulnerabilities/microsoft-confirms-17-year-old-windows-bug.html

1.1. WHY PYTHON? 7

A bad bug does the wrong thing, at least according to what you want it to do, and the user
and the person writing the code may be none the wiser, as in this example:

In [71: #This is a bad error because
#it doesn’t do what you might think
#Say you want to compute (3 + 5)"2 = 82 = 64,
f#but you actually input
print(3 + 5xx2)
#You don’t get the correct answer,
and no one tells you that you’'re wrong.

28

This is an example of the power and feebleness of computers. A computer can do anything
you tell it to, but it does not necessarily do what you want it to. Always keep this in mind:
just because the computer did something, that does not mean it did what you wanted.

Later, we will talk in more detail about bugs, finding bugs (called debugging), and testing
of code.

BOX 1.3 LESSON LEARNED

All codes that are longer than a few lines or that those bugs are ever encountered in the
have bugs. This does not mean that those typical usage of the code. The bugs are there,
bugs meaningfully affect the program output, however.

1.1.3 Indentation

Python is, by design, very picky about how you lay out your code. It requires that code
blocks be properly indented. We will discuss what code blocks are later, but your code needs
to be properly aligned to work.

In [8]: #If I improperly indent, my code won’t work
print("Not indented")
print("indented, but it shouldn’t be")

File "<iPython-input-15-0b1b509e390c>", Tine 3
print("indented, but it shouldn’t be")

IndentationError: unexpected indent

Notice that none of the code executed because of the indentation error. In Python when
you indent something it tells the interpreter that the indented code is part of a code block
that is executed differently than other levels of indentation. Only at certain times can one
indent and it make sense. This sounds pretty abstract and nebulous right now, but it should
become clear as we go through further examples.

8 1. GETTING STARTED IN PYTHON

1.2 NUMERIC VARIABLES

Almost every code needs to store information at some point in its execution. When this
information is stored by a program in the computers memory, we call the identifier or name
of the information a variable. Information, or data, is stored in variables using the equals sign.
There are different types of variables for different types of data and we will discuss several
of them here. Variable type means what type of information the variable stores. A simple
example is storing a number versus text.

We will discuss numeric variables, i.e., variables that store a number, first. Later we will
discuss how to store text and more exotic variables.

BOX 1.4 PYTHON PRINCIPLE

A Python expression of the form sion evaluates to. The type of a variable in-

dicates what kind of data the variable holds.

variable_name = expression The type function will identify a variable’s
type:

will store in a variable named
“variable_name” the value that expres - type(variable_name)

1.2.1 Integers

Integers are whole numbers, including the negatives. They never have a fractional, or dec-
imal, part and should only be used for data that is a count.

In [9]: {fassign the value 2 to x

X =2
print(x*2)
ffcheck that x is an integer
print(type(x))
4
int

The function type (x) returns the name of the type of the variable x. Notice that Python
abbreviates the term integer to “int”.

Integers are useful for things that can be counted: perhaps the number of times we execute
a loop, the number of elements of a vector, or the number of students in a class.

1.2.2 Floating Point Numbers

Floating point numbers are numbers that do have a fractional part. Most numbers in engi-
neering calculations are floating point types.

In [10]:4#Now make some other floating point variables
y =4.2

1.2. NUMERIC VARIABLES 9

print("x =",x)

print(type(y))

#fnote that exponentiation is #*
z = (x / y)*=*3

print("(2 / 4.2)x*3 =",2)

X =2
<class “float’>
(2 / 4.2)**3 = 0.10797969981643449

The way that floating point numbers are represented on a computer has only a finite pre-
cision: there are only a finite number of bytes in the computer memory to hold the digits in
the number. That means we cannot represent a number exactly in many cases. In fact floating
point numbers are actually rational numbers (fractions) in the computer’s internal workings.
We will see later an example of how floating point accuracy can make a difference in a calcu-
lation.

1.2.2.1 Built-in Mathematical Functions

Having the ability to store floating point numbers and manipulate them with simple alge-
bra would be of limited use to us without some common mathematical functions that we use
repeatedly in engineering calculations. For instance, every time we wanted to evaluate the
cosine function, we would have to program some approximation to the function, perhaps a
Taylor series about a known value. Thankfully, almost every common mathematical function
you might need is already built-in with Python. To use these functions you have to import
the math functions using the command import.

BOX 1.5 PYTHON PRINCIPLE

In a code where you will be doing numer- math.[function]
ical calculations it is useful to start the code where [function] is the name of the func-
with import math to make a the wide range
of common mathematical functions available

by typing

tion.

In the code below, I set it up so that to use a math function you use the syntax
math.[function] where [function] is the name of the function you want to call.

See https:/ /docs.Python.org/3.4/library/math.html for the complete list of built-in math-
ematical functions.

The following code snipped uses the built-in Python function for computing the cosine of
the number.

In [11]:import math
jftake cosine of a number close to pi
theta = 3.14159
trig_variable = math.cos(theta)
print("cos(",theta,") =",trig_variable)

https://docs.Python.org/3.4/library/math.html

10 1. GETTING STARTED IN PYTHON

Jfuse the exponential to give e
e = math.exp(1)
print("The base of the natural Togarithm is",e)

#Python has a built-in pi as well
print("The value of pi is",math.pi)

cos(3.14159) = -0.9999999999964793
The base of the natural logarithm is 2.718281828459045
The value of pi is 3.141592653589793

Notice how in the print statements, if I give it multiple arguments, it prints each with a
space in between. This is useful for combining static text with calculations, as we did above.

To evaluate logarithms we note an idiosyncrasy in the way that Python names the relevant
functions. The natural logarithm isjust math. 109 and the base 10 logarithmismath. 10g10.

In [12]:print("The natural log of 10 is",math.10g(10))
print("The log base-10 of 10 is",math.l0ogl10(10))

The natural Tog of 10 is 2.302585092994046
The Tog base-10 of 10 is 1.0

There are two non-obvious mathematical operators, integer division: //, and the modulus
(or remainder): %

In [131: # 7/ 3 is 2 remainder 1
print("7 divided by 3 is",7//3,"remainder",7%3)
print("851 divided by 13 is",851//13,"remainder",851%13)

7 divided by 3 is 2 remainder 1
851 divided by 13 is 65 remainder 6

1.2.3 Complex Numbers

Python can handle complex numbers, that is, numbers that have a real and imaginary part.
We denote complex numbers using two floats: one for the real part and one for the complex
part, multiplied by 1j. The one is necessary so that Python knows you are not referring to a
variable named j. Also, when Python prints complex variables, it typically surrounds them
in parentheses. One can also do arithmetic with complex numbers using standard operators:

In [14]: z1 = 1.0 + 3.14 = 1]
z2 = -6.28 + 2*1j

print(zl,"+", z2,"=", z1+z2)

print(zl,"-", z2,"=", z1-z2)

print(zl,"x", z2,"=", z1%z2)

print(zl,"/", z2,"=", z1/z2)
(1+3.147) + (-6.28+2)) = (-5.28+5.140000000000001j)
(1+3.143) - (-6.28+2j) = (7.28+1.1400000000000001])
(1+3.147) = (-6.28+2)) = (-12.56-17.7192j)
(1+3.143) / (-6.28+23) = (-0-0.53)

1.3. STRINGS AND OVERLOADING 11

To use common mathematical functions on complex numbers, we need to import the mod-
ule cmath. With cmath, the common special functions and trigonometric functions can be
applied to complex numbers. To illustrate this, we will compute the quadratic formula to
find the roots of the polynomial

x2+(2—ﬁ)x—2ﬁ=(x—ﬁ)(x+2).

In [15]: import cmath
a=1.0
b = (2 - math.sqrt(2))
c = -2*math.sqrt(2)
rootl = (-b + cmath.sqrt(bxb - 4xaxc))/(2*a)
root2 = (-b - cmath.sqrt(bxb - 4xaxc))/(2xa)
print("Roots are",rootl,root?2)

Roots are (1.4142135623730954+0j) (-2+0])

Notice that this example used cmath.sqrt when taking the square root of a number that
could be negative.

In cmath the constants cmath.e and cmath.pi are defined. We can use this to demon-
strate Euler’s famous relation:

In [16]: print(cmath.exp(cmath.pi*1j))

(-1+41.2246467991473532e-16])

Here we see the effects of finite precision arithmetic in that this does not evaluate to exactly
-1

1.3 STRINGS AND OVERLOADING

A string is a data type that is a collection of characters, and needs to be inside quotes (you
can use single or double quotes to enclose strings as the examples here will indicate):

In [171: #This is a string
aString = "Coffee is for closers."
print(aString)
print("aString")

Coffee is for closers.
aString

Anything inside the quotes is taken literally by Python. That is why the second print state-
ment above just printed the literal text aString.

You can also subset, that is get some of the characters in a string, using brackets. Putting
a single number in a bracket gives you the character in that position. Note, Python starts
numbering at 0 so that 0 is the first character in a string.

12 1. GETTING STARTED IN PYTHON

BOX 1.6 PYTHON PRINCIPLE

A string is a collection of characters. The want to access in square brackets. To access
characters can be accessed individually using multiple characters use : indexing.
the string name followed by the character you

In [18]: aStringl0]
Out[18]: ’C’
In [19]: aStringl5]
Outl19]1: e’

You can also get a range of characters in a string using the colon. The colon operator is
non-intuitive in that [a : b] says give me the elements in the string from position a to position
b—1.

¢ Python defines its ranges this way so that if the string is of length N, [0 : N] returns the
whole string.
* Negative subsets start at the end of the string (i.e., —1 is the last character of the string).

BOX 1.7 PYTHON PRINCIPLE

For strings the first character has index 0. turned and b-1 is the index of last character

To access multiple characters use the syntax returned. The first character in the string has
str_variablel[a:b] an index of 0 and the last character has an in-
dex of —1.

where str_variable is the name of the
string and a is the index of first character re-

Here are some examples of more advanced string indexing.
In [20]: aString[l:6]
Out[20]: "offee’
In [21]:aString[-1]
Out[21]:
In [22]: aStringl[-5:-2]
Out[22]: ’ser’

With characters (and strings) the + operator is overloaded. What we mean by overloaded
is that the operator is defined so that the idea of what addition means is conferred to strings.

1.3. STRINGS AND OVERLOADING 13

In [23]: ’Negative Ghostrider: * + ’the pattern is full’
Out[23]: ’"Negative Ghostrider: the pattern is full’

In [24]: ’a” + ’b” + ’¢’

Outl24]: ’abc’

The + operator concatenates (or smushes together) the strings/characters it operates on.
The multiplication operator is similarly overloaded, though it is not as general. It is simple to
think about ‘“The roof,” * 3

In [25]: "The roof, * % 3
Qut[25]: ’*The roof, The roof, The roof,
However, ‘The roof,” * 3.15 is not defined and will give an error:

In [26]: "The roof, * % 3.15

Typekrror Traceback (most recent call Tlast)

<iPython-input-28-b68ac6dccl30> in <module>()
----> 1 ’The roof, * = 3.15

TypeError: can’t multiply sequence by non-int of type 'float’

The upshot is that only an integer times a character/string makes sense. The order of op-
erations is respected by the operators

In [27]: *The roof, * = 3 + "is on fire...’

Qut[27]: ’The roof, The roof, The roof, is on fire...’

Minus makes sense, but only sometimes, so it is not allowed. In this instance, even though
subtraction makes sense to us, Python does not allow it:

In [28]: "The roof, * - ’oof’

Typekrror Traceback (most recent call Tlast)
<iPython-input-30-c999e0505465> in <module>()
----> 1 ’The roof, ~ - ’oof’

TypeError: unsupported operand type(s) for -: ’str’ and ’str’

The principle of operator overloading will be useful later when we talk about matrices
and vectors. These objects have, for example, addition defined so that the user can add two
vectors by using the plus sign +.

14 1. GETTING STARTED IN PYTHON

1.4 INPUT

There are times when you want the user of the program to interact with the program while
it is running. For the purposes of engineering calculations our interactions will be fairly sim-
ple and through text input. The means that we can ask the user for input from the keyboard
and record it. In Python we can prompt the user for input using the input command. To
illustrate how this command works, we ask the user for a number and then double that num-
ber.

In [29]: user_value = input("Enter a number: ")
user_value = float(user_value)
print("2 *", user_value,"=", 2*user_value)

Enter a number: 9.95
2 x 9.95 =19.9

When the program encounters an input command, it waits for the user to type something
in and press the enter or return key. In this example, the user entered 9. 95 as the input.

BOX 1.8 PYTHON PRINCIPLE

The function a string of the characters the user entered in
input_variable = input(str_variable) the variable input_variable. In Python 3
the input function always returns a string,

prints str_variable to the screen and
even when the user enters a number.

waits for the user to enter a value. It will store

Finally, this example also introduces the function f10at. This function takes a variable
and changes it into a f10at. This is necessary because the input function always returns a
character string variable.

1.5 BRANCHING (IF STATEMENTS)

Sometimes you want to execute code differently based on the value of a certain variable.
This is most commonly done in if-else constructs. Here is an example that takes input from
the keyboard and then executes different lines of code based on the response.

In [30]: instructors_op=input("What is your opinion of student? ")

grade = "’

if (instructors_op == “annoying’):
grade = ’F+’

elif (instructors_op == ’Not annoying’):
grade = ’B+’

else:
grade = 'A’

print(grade)

1.5. BRANCHING (IF STATEMENTS) 15

What is your opinion of student? Not Annoying
A

What this codes says is that if the value of instructors_opinion is “annoying”, the
grade will be “F+”, otherwise or else if (e11f in Python-speak) instructors_opinion
is “Not annoying” the grade will be “B+”, and anything else will be a grade of “A”. In the
example I typed in “Not Annoying” and the if statement and the el f statement require
that the string exactly match, so it executed the e 1se part of the code.

BOX 1.9 PYTHON PRINCIPLE

The if-else construct allows the code to ex- cute [some other codel]if expressionl
ecute different branches based on the value of

! evaluates to false and expressionZ eval-
expressions. The code

uates to true, or will execute [something
else] if both expressionl and expres-
sion2 evaluate to false. There could be more

if expressionl:
[some code]
elif expression2:

[eane otfier code] tha.n one elif condition, or the else and
else: elif statements could not be there at all.
[something elsel That is, it is possible to have an if without

will execute the block of code [some code] @0 eliforanelse.

if expressionl evaluates to true, exe-

It is important to remember that when you want to check equality between two things you
need to use == and not a single equals sign. A single equals sign is what you use when you
want to assign something to a variable. You can compare numbers using the standard greater
than, less than, and other operators. See Box 1.10 for a list of commonly used operators.

BOX 1.10 PYTHON PRINCIPLE

To compare numbers, and other variables, ® a == b—aequaltob
we can use the following operators to make ® a < b—alessthanb
comparisons: ® a <= b— alessthan or equal to b

© t = tt
® 4 > b— a greater than b not(a) —a not true

® a >= b — a greater than or equal to b Each statement will evaluate to true or false.

In Python, when an expression evaluates to true, it evaluates to the integer 1; a false expres-
sion evaluates to 0. Therefore, we can treat a false expression as a zero and a true expression
as non-zero, as we will do in later examples.

Python also has a not operator. This operator will return true if its argument is false (or
zero); it will return false is the argument is true or nonzero. For example, not (0) will evalu-
ate to true,and not (1) and not (2.005) will both evaluate to false. The not operator can be

16 1. GETTING STARTED IN PYTHON

combined with other expressions to make complex conditional statements. As an example,
the mathematical statement a # b can be written in Pythonas not(a == b).

It is often common to have a condition where one checks if a number is close to another
within some tolerance.

In [31]: import math
pi_approx = 22/7
if math.fabs(pi_approx - math.pi) < 1.0e-6:
print("Yes, that is a good approximation")
else:
print("No,",pi_approx,
"is not a good approximation of",
math.pi,".")

No, 3.142857142857143 is not a good approximation of
3.141592653589793.

The function math.fabs is the float version of the absolute value function. In this case we
were checking to see if an approximation is within 107 of 7. Here the number 1079 is written
as 1.0e-6 which is shorthand for 1.0 x 107°.

Branching statements are most powerful when combined with iteration, as we will now

explore.

1.6 ITERATION

Iteration executes a piece of code repeatedly, based on some criteria. In this example we
will try to find a good approximation to 7 by trying many different values in succession.

In [32]: #fthis code finds a decent approximation to pi
converged = 0
guess = 3.14
iteration = 0
#Define tolerance for approximating pi
eps = 1.0e-6
ffconverged will be 0 if false, 1 if true
converged = math.fabs(guess - math.pi) < eps
while (converged == 0):
guess = guess + eps/2
converged = math.fabs(guess - math.pi) < eps
iteration += 1 ffsame as iteration = iteration + I
print("Our approximation of pi is", guess)
print("It took us", iteration,"guesses to approximate pi")

Our approximation of pi is 3.1415920000002227
It took us 3184 guesses to approximate pi

In this code, as long as converged == 0 the code in the while block—the indented code
below while (converged == 0):—will execute over and over. When the value of our

THE GREAT BEYOND 17

guess is within 107 to 7 in absolute value, converged will become 1 and the whi e loop
will not start executing the code block again.

I did something tricky, but useful, in this example. In Python when a conditional expres-
sion like a > D is true it evaluates to an integer of 1, and evaluates to an integer of 0 when
false. We will make use of this trick later on and it is good to see it now to help you get
accustomed to it.

The idea of a while loop is not unique to Python, and can even be found in children’s
movies. The seven dwarfs in Snow White used the logic of a whi 1e loop to provide a sound-
track to their labors in a small mining operation, though they did not use Python:

while (working):

[whistlel]
BOX 1.11 PYTHON PRINCIPLE
The while loop is written in Python as This will execute the code in the block [some
code] as long as expression evaluates to
while expression: true when the loop returns to the top of the
[some code] code block.

We can modify our code by tightening the tolerance to 1078, and we will change the con-
dition for the while loop to show that there are multiple ways of accomplishing the same
task.

In [33]: guess = 3.14
iteration = 0
eps = 1.0e-8
converged = abs(guess - math.pi) >= eps
while (converged==1):
guess = guess + eps/2
converged = abs(guess - math.pi) >= eps
iteration += 1
print("Our approximation of pi is", guess)
print("It took us", iteration,"guesses to approximate pi")

Our approximation of pi is 3.141592644990321
It took us 318529 guesses to approximate pi

The while loop is an important form of iteration. Another type is the for loop which
executes a set number of times based on a set condition. We will talk about that loop in the
next chapter.

THE GREAT BEYOND

We have only scratched the surface of what Python can do. For example, we can generate
graphs with relative ease, and we will cover this in detail in a few chapters. This will allow us

18 1. GETTING STARTED IN PYTHON

to visualize our calculations easily as both a check of our computation and a means to report
our results. Here is an example of how simply we can generate the graph of a function:

In [34]: import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0, 3xnp.pi, 5000)
fig = plt.figure(figsize=(8,6), dpi=600)
plt.plot(x, np.sin(x**2))
plt.title(’A simple chirp’);

A simple chirp

VUL

I}
4.0 6.0 8.0 10.0

This example uses several features of Python that we have not discussed yet, namely numpy
and matplot1ib. These extensions of Python, called libraries, allow us to make a plot in just
a few lines of code.

FURTHER READING

There are a number of reference books on programming in Python. An advanced text on
using Python to write software to solve science problems is the work of Scopatz and Huff [1].
A more gentle introduction to Python and thinking like a coder is the work of Guttag [2].

PROBLEMS

Short Exercises

1.1. Ask the user for two numbers. Print to the user the value of the first number divided by
the second. Make your code such that it never divides by zero.

1.2. Ask the user for an integer. Tell the user if the number is prime. You will need to use a
while loop with a counting variable that goes up by one each time through the loop.

PROBLEMS 19

1.3. Ask the user for the length of two sides of a right triangle that form the right angle. Tell
the user what the length of the hypotenuse is and the number of degrees in each of the
other two angles.

1.4. When a object is not at rest, its mass is increased based on the formula m = ym where
m is the mass, my is the rest mass, and y is a relativistic factor given by

The rest mass of a baseball is 145 g and the speed of light, c, is 2.99792458 x 10% m/s.
What is the mass of a baseball when thrown at v = 169.1 km/h (the fastest recorded
pitch)? How fast does it have to move to have a mass of 1.45 kg?

Programming Projects
1. Harriot’s Method for Solving Cubics
The cubic equation
x® 4 3h%x =20
has a root given by
b2

—d——,
o d

where
d> =+ Vbo + ¢b.

This method was developed by Thomas Harriot (1560-1621), who also introduced the less
than and greater than symbols.
Write a program that prompts the user for coefficients of a general cubic,

Ax3+Bx2+Cx+D,

and determines if the cubic can be solved via Harriot’s method (i.e., B = 0). If it can be solved
via Harriot’s method, then print the solution. Also, print the residual from the root, that is
the value you get when you plug each into the original equation. Make sure that you do not
divide by zero, and that your method can handle imaginary roots.

CHAPTER

2

Digging Deeper Into Python

OUTLINE

2.1 A First Numerical Program 21 Problems 34
2.2 For Loops 24 Short Exercises 34
2.3 Lists and Tuples 29 Proerammine Project 35
231 Lists 29 rogramming Projects
2.3.2 Tuples 31 1. Nuclear Reaction Q Values 35
2.4 Floats and Numerical Precision 33 2. Calculating e, the Base of
Further Reading 34 the Natural Logarithm 35

The secret, | don't know... | guess you've just gotta find something you love to do and then... do it for
the rest of your life. For me, it’s going to Rushmore.

—“Max Fischer” in the movie Rushmore

CHAPTER POINTS

e For loops make performing a fixed e Floating point numbers are not exact, and
number of iterations simple. this can lead to unexpected behavior.

e Python has data structures that can contain
various groups of items and manipulate
them efficiently.

2.1 A FIRST NUMERICAL PROGRAM

Thus far we have talked about the basics of Python and some of the rudimentary building
blocks of a program. We have used these to make toy codes that did not do much useful.
Now we will make things a bit more concrete and show how we can use Python to perform
numerical calculations. We will start out very basic and expand our repertoire as we go.

Computational Nuclear Engineering and Radiological Science Using Python 2 1

DOI: 10.1016/B978-0-12-812253-2.00003-0 Copyright © 2018 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-812253-2.00003-0

22 2. DIGGING DEEPER INTO PYTHON

To begin, we will consider a common calculation in many applications (movie and com-
puter graphics for computing the reflection angles for lighting and shading, for example):

1
)’—ﬁ~

Assuming that we cannot just use the built-in square root function, we could find the value
of y such that

One way we could solve this equation is to start with a guess that we know is either high (or
low), and then decrement (or increment) the guess until it is accurate enough. This is not a
particularly good way of solving this problem, but it is easy to understand. To tell when we
are close enough to an answer, we will evaluate the residual. In simple terms the residual for
a guess y; is given by

residual = y;+/x — 1.

When the guess is equal to the solution y, the residual will be zero. Similarly, when the resid-
ual is small, we are close to the answer.
For our problem we know that

1
x> NG

as long as x is greater than 1. So we could start at x and decrease the guess until we get the
answer we desire. This is an example of exhaustive enumeration. It is called enumeration
because we list (i.e., enumerate) possible solutions to the problem until we get one close
enough. It is exhaustive because we list “all” the possible solutions up to some precision. As
we will see, it is also exhaustive because it is a lot of work to solve a simple problem.

Here is Python code to solve this problem. The user inputs an x and the code computes

1/Jx.

In [1]: #this code computes 1/sqrt(x), for x > 1
import math
x = float(input("Enter a number greater than 1: "))
if (x<=1):
print("I said a number greater than 1")
else:
converged = 0
answer = x ffinitial guess 1s X
eps = 1.0e-6 #the residual tolerance
converged = math.fabs(answer = math.sqrt(x) - 1.0) < eps
iteration = 0
while not(converged):
answer = answer - 0.5%eps

converged = math.fabs(answer = math.sqrt(x) - 1.0) < eps
iteration += 1
print("1/sqrt(",x,") =",answer)

print("It took",iteration,"guesses to get that answer.")

2.1. A FIRST NUMERICAL PROGRAM 23

Enter a number greater than 1: 3
1/sqrt(3.0) = 0.5773504997552141
It took 4845299 guesses to get that answer.

Before discussing how the algorithm performs, it is worthwhile to discuss how it works.
Notice that the code is using an if-else statement to check that the input provided by the user
is greater than one. Users can enter any number of wacky things, so it is always a good idea
to check user-specified input.

After assuring that the value of x is greater than or equal to one, the code starts with a
guess at the answer of x. It then checks if the absolute value of the residual is smaller than
a specified tolerance. If the absolute value of the residual is larger than the tolerance, then it
enters the while loop and decreases the value of the answer by one-half times the tolerance
until the residual is small enough in magnitude.

This is a really slow algorithm: it can easily take millions of guesses. Though it is easy to
deride this simplistic algorithm, starting with a very basic algorithm that is slow, but that we
know will work, is a good idea. In other words, having a slow, working algorithm is better
than nothing. To paraphrase, an algorithm in code is worth two in your head.

If we can bracket the answer, that is say it is between two numbers, we can improve the
algorithm by bisecting (dividing in two) the interval and zooming in on the answer. To start,
we can bracket the solution to our equation because we know that the answer is between 1/x
and x for x > 1. The following code starts out by defining this interval and checking on which
half of the interval the solution is in.

In [2]: #this code computes 1/sqrt(x), for x > 1
import math
x = float(input("Enter a number greater than 1: "))
if (x<=1):
print("I said a number greater than 1")
else:
converged = 0
upper_bound = x
lTower_bound 1.0/x
answer = (upper_bound + lower_bound)*0.5
eps = 1.0e-6
converged = math.fabs(answer x* math.sqrt(x) - 1.0) < eps
iteration = 0
while not(converged):
mid = answer
if (mid < 1.0/math.sqrt(x)):
lower_bound = mid
else:
upper_bound = mid
answer = (upper_bound + lower_bound)*0.5
#print(upper_bound, Tower_bound)
converged = (math.fabs(answer = math.sqrt(x) - 1.0)
< eps)
iteration += 1
print("1/sqrt(",x,") =",answer)
print("It took",iteration,"guesses to get that answer.")

24 2. DIGGING DEEPER INTO PYTHON

Enter a number greater than 1: 3
1/sqrt(3.0) = 0.5773506164550781
It took 20 guesses to get that answer.

This method is called the bisection method, and we will take a closer look at it in the future.
The way it works is it takes a range that brackets the root of an equation, and then looks at the
midpoint of that range. Based on the value of the function at the midpoint, you then know if
the root is in the lower half or upper half of the range. We will explain this in more detail in a
future chapter when we talk about solving nonlinear equations.

Notice that it took a lot fewer guesses using bisection compared to exhaustive enumera-
tion. Exhaustive enumeration is not very good for problems where we are trying to find a
continuous variable.

2.2 FOR LOOPS

While loops are great, and they can do everything we need for iteration. Nevertheless,
there are instances when we need to iterate a fixed number of times, it is useful to have a
shorthand for this type of iteration structure. For instance, if we wanted to execute a block of
code a set number of times, we have to define a counting variable and increment it by hand:

In [31: #Some code that counts to ten
count =1
while (count <= 10):
print(count)
count += 1

= O 00 N O WM =

The for loop is built for such a situation. The way we typically use it is with the range
function. This function takes 3 input parameters: range(start, stop, [stepl). The
stop parameter to the range function tells range to go to the number before stop. The
parameter Step is in brackets because it is optional. If you do not define it, Python assumes
you want to count by 1 (i.e., step by 1). What range returns is a sequence that startsat start
and counts up to stop - 1 by step. The next example demonstrates this:

In [4]: print(list(range(1,10)))
fthe Tist command tells Python to write out the range

(1, 2, 3, 4, 5,6, 7, 8, 9]

2.2. FOR LOOPS 25

Also, if you just give range one parameter, it treats that as stop and assumes you want to
start at 0:

In [5]: #These should be the same
print(list(range(0,10)))
print(list(range(10)))

[0, 1,2, 3,4,5,6, 7,8, 9]
(0,1, 2, 3,4,5,6, 7,8, 9]

In [6]: #Here’s something using the step parameter
print(list(range(0,10,2)))

[0, 2, 4, 6, 8]
With the range command we can have a for loop assign a variable a value in the range, in
order, each time the code block of the for loop executes:

In [7]: for i in range(10):
print(i+l)

— O 00N Ol WM

BOX 2.1 PYTHON PRINCIPLE

The range function it not included. The range function can be
called with one parameter:
range(start, stop, [stepl)
range(stop)
creates a list of integers that begins at start, This is equivalent to the three-parameter ver-
increments by step, and stops before stop. sion with start equal to 0, and step equal
The step parameter is assumed to be one if to 1, thatis, range(0,stop,1).

Suppose we want to add a number to itself seven times. To do this we could use a for
loop:
In [8]: number = 10
sum = 0
for 1 in range(7):
sum += number
print(sum)

70

26 2. DIGGING DEEPER INTO PYTHON

We could also do this using a whi I e loop, but it takes two extra lines: one to initialize a
variable, and another to increment it.

In [9]: {while Toop version
number = 10
sum = 0
i=0
while (i<7):
sum += number
i+=1
print(sum)

70

BOX 2.2 PYTHON PRINCIPLE

The for loop is written in Python as The code in the block [some code] will ex-

ecute once for each item in the object X and

for i in X: each time through the code block i will take
[some code] on the value of an item in X, in order.

Here is, perhaps, a more practical use of a for loop: to compute 7. We do this using random
numbers picked between —1 and 1 using the random library that comes with Python. In that
library there is a function called uniform that gives a uniformly distributed random number
between two endpoints.

In [10]: ”’Compute pi by picking random points between x = -1 and 1,

y = -1 and 1. The fraction of points

such that x*2 + y*2 < 1, compared with the total number

of points is an approximation to pi/4”’

import random

number_of_points = 10*x*5

number_inside_circle = 0

random.seed() {ffthis seeds the random number generator

for point in range(number_of_points):
x = random.uniform(-1,1) #pick random number between -1 and 1
y = random.uniform(-1,1) #pick random number between -1 and I
if xx%2 + yx%x2 < 1: {fis the point in the circle

number_inside_circle += 1
pi_approx = 4.0*number_inside_circle/number_of_points
print("With",number_of_points,
"points our approximation to pi is",pi_approx)

With 100000 points our approximation to pi is 3.1406

2.2. FOR LOOPS 27

This works because the ratio of the number of points inside the circle to the total number of
points will converge to the ratio of the area of the circle () to the total area of the square (4).
In particular, number_inside_circle/number_of_points will converge to 7/4 as the
number of points chosen goes to infinity. The code above is our first example of a Monte Carlo
method where we use random numbers to compute fixed quantities, and we will return to
these methods in the last part of this text.

The random numbers generated by Python are actually items in a really long list of num-
bers that seem random (such random numbers are called pseudorandom numbers). In the
code above we set where we start in the list using random.seed(), which then uses the
system time to pick a starting point, so that each time the code is run, it starts somewhere
different.

Using NumPy, which we have not covered yet, we can do this in an even fancier way. If
we use Matplotlib, another Python library, we can get nice graphs as well. The code below
picks 1000 random points to estimate = and plots the points on a graph in a particular color,
and draws the circle in another color (the print version of the book will have the points in
gray and the circle in black).

In [11]: import numpy as np

import matplotlib.pyplot as plt

#pick our points

number_of_points = 10%%3

x = np.random.uniform(-1,1,number_of_points)

y = np.random.uniform(-1,1,number_of_points)

ffcompute pi

pi_approx = 4.0*np.sum(xxx2 + y**2 <= 1)/number_of_points

#fnow make a scatter plot

maize = "ffffcb05"

blue = "#00274c"

fig = plt.figure(figsize=(8,6), dpi=600)

ffscatter plot with hex color

plt.scatter(x, y, alpha=0.5, color=maize)

ffdraw a circle of radius 1 with center (0,0)

circle = plt.Circle((0,0),1,color=blue, alpha=0.7,
fill=False, linewidth=4)

#fadd the circle to the plot

plt.gca().add_patch(circle)

f#fmake sure that the axes are square so that our circle is circular

plt.axis(’equal’)

#set axes bounds: axis([min x, max x, min y, max yJ)

plt.axis([-1,1,-1,11)

f#tmake the title have the approximation to pi

plt.title("$\\pi \\approx $" + str(pi_approx))

ftshow the plot

plt.show()

28 2. DIGGING DEEPER INTO PYTHON

T~3.176

-1.0 -0.5 0.0 0.5 1.0

You can also simply accomplish other tasks for loops. For instance, you can have the
control variable take on non-numeric things. If we have a list of strings, numbers, or whatever
we can loop over all the elements of that sequence. In the case below we have the for loop
make the control variable contain each string in a sequence.

In [13]: #silly hat code
hats = ["fedora","trilby","porkpie","tam o’shanter",
"Phrygian cap","Beefeaters’ hat","sombrero"]
days = ["Monday","Tuesday","Wednesday","Thursday",
"Friday","Saturday","Sunday"]
count = 0
for today in hats:
print("It is",dayslcount],"and I will wear a",today)
count += 1

It is Monday and I will wear a fedora

It is Tuesday and T will wear a trilby

[t is Wednesday and I will wear a porkpie

It is Thursday and I will wear a tam o’shanter
It is Friday and I will wear a Phrygian cap

It is Saturday and I will wear a Beefeaters’ hat
It is Sunday and I will wear a sombrero

Notice what this code did: we defined a list called days that contained strings for the
names of the days of the week. Inside our for loop we had a numeric variable that kept track
of what number the day of the week was (0 for Monday in this case). Then when we access
days[count] it returns the string in position count.

We can go one step beyond and plan our haberdashery decisions a month in advance using
random numbers.

In [14]: {silly hat code
import random

It
It
It
It
It
It
It
It
It
It
It
It
It
It
It
It
It
It
It
It
It
It
It
It
It
It
It
It
It
It

is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is

2.3. LISTS AND TUPLES 29

hats

["fedora","trilby","porkpie","tam o’shanter",
"Phrygian cap","Beefeaters’ hat","sombrero"]
days = ["Monday","Tuesday", "Wednesday","Thursday",
"Friday","Saturday","Sunday"]

for count in range(30):

hat_choice = round(random.uniform(0,6))

print("It is",days[count % 7],"and I will wear a",
hats[hat_choicel)

Monday and I will wear a fedora

Tuesday and I will wear a Phrygian cap
Wednesday and I will wear a tam o’shanter
Thursday and I will wear a Beefeaters’ hat
Friday and I will wear a Phrygian cap
Saturday and I will wear a Beefeaters’ hat
Sunday and T will wear a Beefeaters’ hat
Monday and I will wear a Phrygian cap
Tuesday and I will wear a Beefeaters’ hat
Wednesday and I will wear a Phrygian cap
Thursday and I will wear a sombrero

Friday and I will wear a sombrero

Saturday and I will wear a trilby

Sunday and I will wear a Beefeaters’ hat
Monday and I will wear a porkpie

Tuesday and I will wear a trilby

Wednesday and I will wear a Phrygian cap
Thursday and I will wear a sombrero

Friday and I will wear a tam o’shanter
Saturday and I will wear a porkpie

Sunday and I will wear a Phrygian cap
Monday and T will wear a fedora

Tuesday and I will wear a Beefeaters’ hat
Wednesday and I will wear a Phrygian cap
Thursday and I will wear a Beefeaters’ hat
Friday and T will wear a Beefeaters’ hat
Saturday and I will wear a porkpie

Sunday and I will wear a Beefeaters’ hat
Monday and T will wear a porkpie

Tuesday and I will wear a tam o’shanter

We will use the ability to iterate over a list in future codes to do things like investigate

radioactive decay.

2.3 LISTS AND TUPLES

2.3.1 Lists

In the previous section we defined a list of strings as

In [15]: hats = ["fedora","trilby","porkpie","tam o’shanter","Phrygian cap",

"Beefeaters’ hat","sombrero"]
print(hats)

30 2. DIGGING DEEPER INTO PYTHON

['fedora’, “trilby’, ’porkpie’, "tam o’shanter", ’Phrygian cap’,
"Beefeaters’” hat", ’sombrero’]

A list is a Python object that contains several other objects. A list is defined by enclosing
the list members in square brackets. In the case above the objects were strings, but they could
have been numbers or other objects. We can access items in a list using square brackets:

In [16]: hats[2]

OQut[16]: ’porkpie’
Slicing using the colon is allowed on lists just as it is in strings, like we did in the previous
chapter:

In [17]: print(hats[3:71)

["tam o’shanter", ’Phrygian cap’, "Beefeaters’ hat", ’sombrero’]

You can also add items to a list using the append function. To do this you use the name of
the list followed by . append:

In [18]: hats.append("toque")
print(Chats)

[’fedora’, ’trilby’, ’porkpie’, "tam o’shanter", ’Phrygian cap’,
"Beefeaters’ hat", ’sombrero’, “toque’]

You can delete an item from a list using the remove function in the same way we used the
append function:

In [19]: hats.remove(’trilby’)
print(hats)

[*fedora’, ’porkpie’, "tam o’shanter", ’Phrygian cap’,
"Beefeaters’” hat", ’sombrero’, ’toque’]

A feature of lists is that they can contain different types of items. For example you can mix
strings and numbers:

In [20]: my_list = ["Item 0", "Item 1", 2]
print(my_1list)

['Item 0’, "Item 17, 2]

In many cases we would like to know how many elements are in a list. To find the length
of a list use the 1en function:

In [21]: Ten(my_Tist)

Qutl[21]: 3

2.3. LISTS AND TUPLES 31

To see if an value is contained in a list use the in operator. This operator will return true if
its argument is in the list, and false otherwise:

In [22]: "Item 2" in my_1list
OQutl22]: False
In [23]: 2 in my_list

Qut[23]: True

The plus operator is overloaded so that we can use it to concatenate two lists, much like
we did with strings:

In [24]: print(my_list + hats)

["Item 0’, ’Item 1°, 2, ’fedora’, ’porkpie’, "tam o’shanter",
"Phrygian cap’, "Beefeaters’ hat", ’sombrero’, ’'toque’]

BOX 2.3 PYTHON PRINCIPLE

A list in Python is a collection of data that The 1en function will return the size of the
can be changed after creation. The syntax to list,

define a list is
len(1ist_var)

list_var = [iteml, item2, ..., itemN] et Bie lenath of 1St vl
where the ... indicates a number of other
items separated by commas. Items in a list can The in operator can be used to test if an

be indexed using square brackets, and slice item is in the list:
indexing using : is also supported. To add or
remove items from the list use the append
and remove commands with syntax of the
form

test_item in list_var

will evaluate to true if test_item is in the
list Tist_var.

IMst_var.append(iten_add) The plus operator, +, is overloaded so that

list_var.remove(item_remove)

where item_add and item_remove are Tist_varl + Tist_var?

items to add or remove from a list, respec-

tively. Appending to a list adds the element will concatenate 1ist_var2 to the end of
to the end. Tist_varl.

2.3.2 Tuples

A tuple is very similar to a list with two exceptions. The first exception is minor in that you
define a tuple using regular parentheses:

32 2. DIGGING DEEPER INTO PYTHON

In [25]: hats_tuple = ("fedora","trilby","porkpie",
"tam o’shanter","Phrygian cap",
"Beefeaters’ hat","sombrero")
print(hats_tuple)

(*fedora’, “trilby’, ’porkpie’, "tam o’shanter", ’Phrygian cap’,
"Beefeaters’ hat", ’sombrero’)

You can access an element in a tuple with square brackets the same way you do a list

In [26]: hats_tuple[l]

Out[26]: "trilby’

The major difference between lists and tuples is that tuples cannot be modified once cre-
ated. The technical term for this is that tuples are immutable, whereas lists are mutable. If we
try to change a tuple, we get an error:

In [27]: hats_tuple[l] = ’"deer stalker’

Typekrror Traceback (most recent call Tast)

<ipython-input-27-60a4d89f7f83> in <module>()
----> 1 hats_tuple[l] = "deer stalker’

TypekError: “tuple’ object does not support item assignment

The main point of tuples is to give the programmer the ability to group items together in a
lightweight manner without all the behind-the-scenes infrastructure that a mutable type (like
a list) has. It also can be useful if you want to define an object that you want to assure will not
change. We will not have many uses for tuples in our work, but it is useful to know that they
exist.

BOX 2.4 PYTHON PRINCIPLE

A tuple in Python is a collection of data ple can be indexed using square brackets, and
that cannot be changed after creation. Paren- slice indexing using : is also supported.

theses are used to define a tuple: The 1en function will return the size of the
tuple_var = (iteml, item2, ..., itemN) tuple
where the ... indicates a number of other

len(tuple_var)
items separated by commas. Items in a tu- #return the length of tuple_var

2.4. FLOATS AND NUMERICAL PRECISION 33

2.4 FLOATS AND NUMERICAL PRECISION

Previously, it was mentioned that floating point numbers are not exact because a computer
has a finite number of bits to represent the numbers (i.e., we cannot have an infinite number
of decimal places in the number). Typically, this is not a major issue, but when it does matter,
it can cause problems. In our work, one particular time that this matters is when we want to
have a stopping criteria on a floating point number, for instance this is a bad idea:

In [28]: import random
import math
iteration = 0
guess = 0
closest =0
target = 0.3
while (guess != target) and (iteration < 10%%6):
guess = random.random()#same as random.uniform(0,1)
if (math.fabs(guess - target) <
math.fabs(closest - target)):
closest = guess
iteration += 1
print("In", iteration,
"the closest random number we got to",
target,"is", closest)

In 1000000 the closest random number we got to 0.3
is 0.3000001943632269

To most people, and for most computations, 0.3000001943632269 is close enough to 0.3, but
the computer just knows that these two numbers are not equal.
What we probably wanted is something like

In [29]: import random
import math
iteration = 0
guess = 0
tolerance = 1.0e-6
while (math.fabs(guess - 0.3) > tolerance and
(iteration < 10%%6)):
guess = random.random()
iteration += 1
print("It took", iteration,
"guesses to get within",tolerance,"of 0.3")
print("The number we ended with is",guess)

It took 128626 guesses to get within le-06 of 0.3
The number we ended with is 0.29999952310331457

The bottom line, is that one should not use equality tests with floating point numbers. That
is why in our exhaustive enumeration example in Section 2.1 we only tried to get within a
tolerance rather than match the number exactly.

Even very simple equality tests with floating point numbers can fail.

34 2. DIGGING DEEPER INTO PYTHON

In [30]: (0.140.1+40.1) == 0.3

Out[30]: False

Wait, what? The number 0.1 is not exactly represented in the computer because a computer
stores numbers using a base 2 representation and not a base 10 representation like we are used
to. To demonstrate this we can print out 0.1 to 20 digits.

In [31]: print("%.20f" % 0.1)
0.10000000000000000555

There is a tiny error that is amplified when we compute 0.1 + 0.1 + 0.1.
In [32]: 0.1 + 0.1 + 0.1

Out[19]: 0.30000000000000004
Later, especially in solving linear systems, we will see that the numerical precision can

have a large effect on our answers, if we formulate algorithms that are sensitive to these
errors. For now, let us agree not to use equality with floating point numbers.

FURTHER READING

A excellent example of the power and limitations of finite precision arithmetic can be found
in the SIAM 100-Digit Challenge [3]. For further reading on Monte Carlo methods, Kalos and
Whitlock is the standard reference [4].

PROBLEMS

Short Exercises

2.1. Write a Python code that asks the user to input a string. Then print back to the user their
string backwards.

2.2. If we list all the natural numbers below 10 that are multiples of 3 or 7, we get 3, 6, 7,
and 9. The sum of these multiples is 25. Find the sum of all the multiples of 3 or 7 below
10000.

2.3. Prompt the user for a number. Report back the cube root of the number. Test the code
with some numbers that are perfect cubes, e.g., 125. How accurate is the answer?

2.4. The public domain folk song “Dem Bones” is a song that describes in a pseudo-scientific
manner the layout of the bones of the human body. An example couplet of this song
reads as

The foot bone connected to the leg bone
The leg bone connected to the knee bone

PROBLEMS 35

which can be generalized to

The b; bone connected to the b; 11 bone
The b; 11 bone connected to the b; 4, bone

Write a Python code that uses a for loop and a 11st that prints out an entire verse where
the bones, in order, are

b = ["foot", "leg", "knee", "thigh", "back", "neck", "head"]

Programming Projects

1. Nuclear Reaction Q Values

Write a Python code that asks the user to input the masses (in amu) of two reactants in a
nuclear reaction and the two products of the reaction. The code will output the Q value of the
reaction in MeV. Here is an example reaction:

Ax Ax Ay Ay
ZXX +Zx X =7z, Y ‘I'Zy y.

The user should be able to enter zero for the mass in case the reaction is a decay (i.e., has only
one reactant) or is a reaction that has only one product. Use 1 amu = 931.494061 MeV /c?.

2. Calculating e, the Base of the Natural Logarithm
The series

1 1 1 1 1

1
ottty Tyt 7O

is a means of approximating e from the Taylor expansion of ¢*. We can write a partial sum as

N

€approximate = i
i=0
2.1. Using a for loop, compute an approximation using

N=1,2,3,4,5,6,7,8,9,10, 100, 1000, 10000.

2.2. Describe how the solution converges to the exact answer as a function of N. That is, how
does the error in the estimate change as a function of N?
2.3. How many digits of

e =12.71828182845904523536028747135266249775724709369995

can you compute correctly?

CHAPTER

3

Functions, Scoping, Recursion, and

Other Miscellany

OUTLINE

3.1 Functions 37 3.5 Modules 47
3.1.1 Calling Functions and 3.6 Files 49
115 gc{ﬂult ‘z;lrlguments ;}i Problems 50

.1.2 Return Values .

3.2 Docstrings and Help 42 Short Exe;flscs ‘ 50

3.3 Scope 44 Programming Projects 51

3.4 Recursion 45 1. Monte Carlo Integration 51

There is no way that this winter is *ever* going to end as long as this groundhog keeps seeing his
shadow. | don't see any other way out. He’s got to be stopped. And | have to stop him.

—“Phil Connors” in the movie Groundhog Day

CHAPTER POINTS

e Defining functions makes code reuseable. o Functions have their own variables, as

e Docstrings are special comments that defined by scoping rules.
indicate how to use a function, and can be e Functions can be bundled into a module
accessed using the help function. and called from many programs.

3.1 FUNCTIONS

In this chapter we are going to define our own functions to make life easier on ourselves.
Defining functions will make our code more robust, less prone to errors, and more usable.
When we define a function what we want to do is to create an abstract version of a concrete
set of steps that we want to execute in our code. By creating abstract versions we will be able
to run the same lines of code repeatedly without typing them over and over. Motivating why

Computational Nuclear Engineering and Radiological Science Using Python
DOI: 10.1016/B978-0-12-812253-2.00004-2 37 Copyright © 2018 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-812253-2.00004-2

38 3. FUNCTIONS, SCOPING, RECURSION, AND OTHER MISCELLANY

this is necessary for writing good code is a bit of an uphill battle because cutting and pasting
code repeatedly can seem pretty easy.

To demonstrate why we might want to define a function, we will solve in code a particular
example of a simple system of linear equations. Our example system is

4.5x +3y=10.5

1.5x +3y="75.

We could find the values of x and y that solve these equations with the following Python
code that eliminates a variable by combining the equations to solve for y and then solving
for x. Read the comments to see what is happening.

In [1]: """Python code to solve
4.5 x + 3 y=10.5
1.5 x+3Y=17.5
by solving the second equation for y first,
and then solving for x"""
f#step 1 solve for y, multiply equation 2 by
#-3, and add to first equation
LHS_coefficient = -3x3 + 3 ffthe coefficient for y
RHS = -3%7.5 + 10.5 ffthe right-hand side
#now divide right-hand side by left-hand side coefficient
y = RHS / LHS_coefficient
#plug y into first equation
x = (10.5 - 3xy)/4.5
#print the solution, note \n produces a linebreak
print("The solution to:\n4.5 x + 3 y = 10.5\n
1.5 x + 3y =7.5\n is x =",x,"y=",y)

The solution to:

4.5 x + 3y =10.5
1.5 x+3y=17.5
is x =1.0 y= 2.0

Our code appears to work (you can check by plugging in the values into the system). Given
that we have put the effort into solving that system, it is likely that we want to solve another
2 by 2 system with different coefficients. We could just take our old code and change out the
coefficients and the right-hand sides, but there are many places that we need to change and
it is likely that we will make a mistake.

What we would like to do is define a function that will solve the system for any coefficients
and right-hand side (provided there is a solution). The definition of such a function to solve

aix + b1y =cq

ax +bryy =cy,

is given here

3.1. FUNCTIONS 39

In [2]: def two_by_two_solver(al,bl,cl,a2,b2,c2, LOUD=False):
"""Calculate the solution of the system
al x + bl y = cl,
a2 x + b2y = c?

Args:
al: x coefficient in first equation (cannot be zero)
bl: y coefficient in first equation
cl: right-hand side in first equation
aZ: x coefficient in second equation
bZ: y coefficient in second equation
c2: right-hand side in second equation
LOUD: boolean that decides whether to print out the answer

Returns:
list containing the solution in the format [x,y]

fstep one, eliminate x from the second equation
#by multiplying first equation by -a2/al

J#and then adding it to second equation

new_b2 = b2 - a2/alx*bl

new_c2 = c2 - a2/alx*cl

#solve the new equation 2

y = new_c2/new_b?

#plug y into original equation 1

x = (cl-blxy)/al

if (LOUD):
print("The solution to:\n",al,"x +",bl,"y =",cl,"\n",a2,"x +",
b2,"y =",c2,"\n is x =",x,"y=",y)
return [x,y]

After we define a function, we can call it to solve for the problem above by typing

In [3]: two_by_two_solver(4.5,3,10.5,1.5,3,7.5,True)

This will give the output.

The solution to:
4.5 x + 3y =10.5
1.5 x+3y=17.5
is x =1.0 y= 2.0

Outf31: [1.0, 2.0]

Given our function definition, when we type its name followed by the required input pa-
rameters, separated by commas, Python executes the code in the body of the function on
those input parameters. Then at the end the function will output the values specified by the
return statement. In this case the return statement creates a list that contains the values of
x and y.

Functions are very flexible in both the inputs they can take, and the outputs they can re-
turn. Our use of Python to solve engineering problems will be rife with the use of functions,
and we will see many examples of this flexibility. Before moving on, we will use this function
to demonstrate more features of functions.

40 3. FUNCTIONS, SCOPING, RECURSION, AND OTHER MISCELLANY

BOX 3.1 PYTHON PRINCIPLE

You can define a function using the syntax to the function are entered, separated by

def function_name([input_variables]): commas, in the spot [input_variables].
[code] This function returns the variable, or vari-
return [output_variables] ables, listed in the spot [output_vari-

In this definition the name of the function ablesl.
is function_name and the input variables

Because we have defined a function, we can also solve other systems by changing the
parameters when the function is called. We can also solve simple systems.

In [4]: two_by_two_solver(1,0,3,0,1,2,True)

The solution to:
1 x+0y=3
0x+1y=2
is x = 3.0 y=2.0

Out[4]: [3.0, 2.0]

This function cannot solve systems where a; is zero because our function divides by a;.
If we wanted to handle this case, we would have to make some changes to the way our
functions works. As it stands, if we give the function a system with a; = 0, we will get an
error:

In [5]: two_by_two_solver(0,1,2,1,0,3,True)
ZeroDivisionError Traceback (most recent call last)

<iPython-input-23-e8717fed1588> in <module>()
---> 1 two_by_two_solver(0,1,2,1,0,3,True)

<iPython-input-19-25039delb80f> in
two_by_two_solver(al, bl, cl, a2, b2, c2, LOUD)

--> 18 new_b2 = b2 - a2/alxbl
19 new_c2 = c2 - a2/alxcl
20 #solve the new equation 2

ZeroDivisionError: division by zero

We will develop a fix for this problem later when we talk about pivoting. Giving an error
when dividing by zero is a nice feature of Python for engineering calculations: if we acciden-
tally divide by zero, Python tells the user where it happened, rather than giving a nonsensical
answer.

3.1. FUNCTIONS 41

3.1.1 Calling Functions and Default Arguments

In the above examples, we called our function two_by_two_solver by listing out the argu-
ments in the order that it expects them al, bl, cl, a2, b2, c2, LOUD. Nevertheless,
Python allows you to call them in any order, as long as you are explicit in what goes where.
In the next snippet of code we will specify the left-hand side coefficients first, and then the
right-hand sides:

In [6]: two_by_two_solver(al = 4.5, bl =3, a2 = 1.5, b2 = 3,
cl =10.5, c2 = 7.5, LOUD = True)

The solution to:

4.5 x + 3y =10.5
1.5 x+3y=7.5
is x = 1.0 y= 2.0

Qutl6]: [1.0, 2.01

In this example we gave the values of the parameters explicitly: we told the function what
each parameter was, rather than relying on the order that the parameters was listed.

BOX 3.2 LESSON LEARNED

It is often a good idea to call a func- order of the arguments, it does not mat-
tion explicitly: that way if you mess up the ter.

In this example, there is also an example of a default parameter. Notice that in the function
definition, the argument LOUD has =F a1 se after it. This indicates that if the function is called
without a value for LOUD, it assumes the caller does not what the function to “be loud” and
print out extra detail. Here we call the function without the LOUD parameter

In [7]: +two_by_two_solver(al = 4.5, bl =3, a2 = 1.5,
b2 =3, cl = 10.5, c2 =7.5)

Outl71: [1.0, 2.0]

Notice that it did not print out its spiel about the system. The default behavior of not
printing out extra information is common, because if we were going to call this function as
part of a larger code many times, we do not want the screen filled with text to the point where
it is indecipherable.

3.1.2 Return Values

At the end of the function we have a return statement. This tells Python what the function
is returning to the caller. In this case we return a list that has the solution for x and y. We can
store this in a new variable, or do whatever we like with it.

42 3. FUNCTIONS, SCOPING, RECURSION, AND OTHER MISCELLANY

In [8]: answer = two_by_two_solver(al = 4.5, bl = 3,

a2 1.5, b2 = 3,

cl = 10.5, c2 =7.5)
#store in the variable x the first value in the 1ist
x = answer[0]
fstore in the variable y the first value in the Tist
y = answer[1]
print("The 1ist",answer,"contains",x,"and",y)

The 1ist [1.0, 2.0] contains 1.0 and 2.0

We can do even fancier things, if we are so bold. For example, we can grab the first
entry in the list returned by the function using square brackets on the end of the func-
tion call. We can also assign the two entries in the list to two variables in a single
line.

In [91: #just get x
x = two_by_two_solver(al = 4.5, bl = 3, a2 = 1.5,
b2 =3, cl = 10.5, c2 = 7.5)[0]
print("x =",x)

#assign variables to the output on the fly

X,y = two_by_two_solver(al = 4.5, bl =3, a2 = 1.5,
b2 =3, cl = 10.5, c2 = 7.5)

print("x =",x,"y =",x)

X = .

1.0
x=1.0y=1.0

These examples are more advanced, and they are designed to show you some of the neat
tricks you can do in Python.

3.2 DOCSTRINGS AND HELP

Our 2 x 2 solver code had a long, and a detailed comment at the beginning of it. This
comment is called a docstring and it is meant to tell the user of the function how to call the
function and what it does. The user will need to know, for example, what the function will
return to prepare to use that information. The user can get the information from the docstring
by using the he1p function:

In [10]: help(two_by_two_solver)
Help on function two_by_two_solver in module __main__

two_by_two_solver(al, bl, cl, a2, b2, c2, LOUD=False)
Calculate the solution of the system
al x + bl y=-cl,
alz x + b2y =c?

3.2. DOCSTRINGS AND HELP 43

Args:

al: x coefficient in first equation (cannot be zero)

bl: y coefficient in first equation

cl: right-hand side in first equation

a2: x coefficient in second equation

b2: y coefficient in second equation

c2: right-hand side in second equation

LOUD: boolean that decides whether to print out the answer

Returns:

list containing the solution in the format [x,y]

The point of this long comment is to tell the client (or caller) of the function what the
function expects, in terms of arguments, and what the client should expect in terms of what
is going to be returned. In this example we can see that we need to provide at least 6 numbers,

and possibly an optional boolean.

You may wonder why a docstring is important, when you have the code defining the
function right in front of you. The answer is that the user of a function will not always have
the definition of the function readily available (perhaps somebody else wrote it). If you want
to call that function properly, you can refer to the docstring.

BOX 3.3 PYTHON PRINCIPLE

Docstrings are long comments at the be-
ginning of the body of a function that tells the
user what the function needs as input param-
eters and what the function returns. These
useful comments can be obtained by a user

of the function by calling

help(function_name)

where function_name is the name of a
function.

Let us look at the docstring for some members of the math module and the random mod-

ule.

In [11]:import math
help(math.fabs)

Help on built-in function fabs in module math:

fabs(...)
fabs(x)

Return the absolute value of the float x.

In [12]:import random
help(random.uniform)

Help on method uniform in module random:

uniform(a, b) method of random.Random instance
Get a random number in the range [a, b) or [a, b] depending on rounding.

44 3. FUNCTIONS, SCOPING, RECURSION, AND OTHER MISCELLANY

We do not have the source code for these functions in front of us, but if we want to know
how to call them, the docstring tells us what to do.

The docstrings for random.uniformand math.fabs are a bit different that the one we
used in our function for solving a linear system. The format that we used is derived from
the Google coding standards for Python docstrings (https://google-styleguide.googlecode.
com/svn/trunk/pyguide. html#Comments).

3.3 SCOPE

The variables that we define in our code store information in the computer’s memory. The
computer divides the memory that you access into different sections based on scoping rules.
Scoping rules are, in essence, a way for the program to separate information in memory and
control access to that information. Understanding scoping rules is important when we define
functions. Functions have their own scope in memory that is different than the memory used
by other parts of a code. That is the memory used by a function is separate from the rest of the
program and only knows about the outside world through the parameters it gets passed. In
practice, what this means is that any variables used by the function (including those passed to
the function) are completely different than the variables outside the function. When a function
is called, it creates its own copy of the variables that get passed to it.

Here is a simple, but illustrative, example of how a function makes its own copy of the
data it gets passed.

In [13]: def scope_demonstration(input_variable):
X = input_variablex3
return x

fnow call the function after defining some variables
x = "oui "

y = "no "

new_x = scope_demonstration(x)
new_y = scope_demonstration(y)
print("x ,x, "\nnew_x =",new_x)
print("y =",y,"\nnew_y =",new_y)

X = oui
new_x = oui oui oui
y = no

new_y = no no no

Now let us analyze what happened in the code. Before we called the function, we de-
fined a variable x to be the string “oui”. Then we called scope_demonstration, passing
it X. Notice that even though scope_demonstration defines a variable x as input_vari-
ablex3, the value of x that exists outside the function is not changed. This is because when
I call scope_demonstration it creates its own memory space and any variable I create in
there is different than in the rest of the program, even if the variables have the same name.

https://google-styleguide.googlecode.com/svn/trunk/pyguide.html#Comments
https://google-styleguide.googlecode.com/svn/trunk/pyguide.html#Comments

3.4. RECURSION 45

In this particular example, the function first copies the value passed to the function into the
variable input_variable, and then manipulates that copy of the data.

There are many subtleties in scoping rules, but this example outlines the main pitfall for
a neophyte programmer. There are extra rules we will need, but these will be covered as we
need them.

3.4 RECURSION

The idea behind recursion is that a function can call itself. Recursion enables some neat
tricks for the programmer and can lead to very short code for some complicated tasks. In
many cases there is often a faster way of doing things than using recursion, but it can be a
useful tool for a programmer. Here is an example of computing the factorial of n,

n'=1x2x---xm—1) xn,
with both a recursive and non-recursive implementation.

In [14]: def factorial(n, prev=1):

if not((n==1) or (n==0)):
prev = factorial(n-1,prev)*n
elif n==0:
return 1
else

return prev

def factorial_no_recursion(n):
output = 1;
Jfcan skip 1 because x*1 = 1
for i in range(2,n+1):

output *= i
return output
x =12
print(x,"! =",factorial(x))
print(x,"! =",factorial_no_recursion(x))
12 I = 479001600
12 1 = 479001600

We can time the functions to see which is faster. To make the amount of time it takes
run large enough to measure well, we will compute the factorials of 0 through 20, 100,000
times. (These are timings on my computer, if you run this example for yourself you may see
differences based on your computer hardware and other demands on the system.)

In [15]: for times in range(10%%5):

for n in range(21):
factorial(n)

The time it took to run this was 16 ps. Compare this to

46 3. FUNCTIONS, SCOPING, RECURSION, AND OTHER MISCELLANY

In [16]: for times in range(10%%5):
for n in range(21):
factorial_no_recursion(n)

which takes 6 ps.

The no recursion version, while not as neat, is nearly 50% faster. Even though we’re talking
microseconds, if my code was going to do this millions of times, the difference would matter.
Part of the difference is that every time a function is called, there is an overhead in terms of
creating the new memory space, etc. With recursion this extra work has to be done when the
function recursively calls itself.

Another drawback to recursion is that it is possible to have too many levels of recursion.
The number of levels of recursion, that is, the number of times the function can call itself,
is limited to make sure the computer has enough memory to keep track of all the functions
that have been called. In this example we demonstrate such an error by having a function call
itself about 1000 times:

In [17]: x = 1000
#this won’t work and prints ~1000 errors
j#fthe errors are not repeated here
print(x,"! =",factorial(x))

In [18]: x = 1000
f#this works
print(x,"! =",factorial_no_recursion(x))

1000 ! = 40238726007709377354370243392300398571937486421071
463254379991042993851239862902059204420848696940480047998
861019719605863166687299480855890132382966994459099742450
408707375991882362772718873251977950595099527612087497546
249704360141827809464649629105639388743788648733711918104
582578364784997701247663288983595573543251318532395846307
555740911426241747434934755342864657661166779739666882029
120737914385371958824980812686783837455973174613608537953
452422158659320192809087829730843139284440328123155861103
697680135730421616874760967587134831202547858932076716913
244842623613141250878020800026168315102734182797770478463
586817016436502415369139828126481021309276124489635992870
511496497541990934222156683257208082133318611681155361583
654698404670897560290095053761647584772842188967964624494
516076535340819890138544248798495995331910172335555660213
945039973628075013783761530712776192684903435262520001588
853514733161170210396817592151090778801939317811419454525
722386554146106289218796022383897147608850627686296714667
469756291123408243920816015378088989396451826324367161676
217916890977991190375403127462228998800519544441428201218
736174599264295658174662830295557029902432415318161721046
583203678690611726015878352075151628422554026517048330422
614397428693306169089796848259012545832716822645806652676
995865268227280707578139185817888965220816434834482599326
604336766017699961283186078838615027946595513115655203609
398818061213855860030143569452722420634463179746059468257
310379008402443243846565724501440282188525247093519062092

3.5. MODULES

902313649327349756551395872055965422874977401141334696271
542284586237738753823048386568897646192738381490014076731
044664025989949022222176590433990188601856652648506179970
235619389701786004081188972991831102117122984590164192106
888438712185564612496079872290851929681937238864261483965
738229112312502418664935314397013742853192664987533721894
069428143411852015801412334482801505139969429015348307764
456909907315243327828826986460278986432113908350621709500
259738986355427719674282224875758676575234422020757363056
949882508796892816275384886339690995982628095612145099487
170124451646126037902930912088908694202851064018215439945
715680594187274899809425474217358240106367740459574178516
082923013535808184009699637252423056085590370062427124341
690900415369010593398383577793941097002775347200000000000
000
000
000
000
0000000000

3.5 MODULES

47

Often we have to define many functions and do not want to have one giant source file.
Also, once we define a function, we do not want to have to copy and paste functions that we
have already defined into each file we create. To make functions defined in one Python file

available in others, we can import the functions from a file (called a module).

To demonstrate this we define several functions inside a Python file. In particular consider
a file called sphere.py. This file defines two functions volume and surface_area that
compute the volume and surface area of a sphere. Because the file is called sphere.py we
can import those functions using import sphere leaving off the . py part of the name. The

code inside of sphere.py is

def volume(radius):
“““ compute volume of a sphere
Args:
radius: float giving the radius of the sphere

Returns:
volume of the sphere as a float

return 4.0/3.0*math.pixradius*=*3

def surface_area(radius):
‘77 **compute surface area of a sphere
Args:
radius: float giving the radius of the sphere

Returns:
surface area of the sphere as a float

48 3. FUNCTIONS, SCOPING, RECURSION, AND OTHER MISCELLANY

return 4.0*math.pi*radius**2

After we import the module, we can pass it to the help function to find out what is in the
module:

In [19]: import sphere
help(sphere)

Help on module sphere:

NAME
sphere

FUNCTIONS
surface_area(radius)
compute surface area of a sphere

Args:
radius: float giving the radius of the sphere

Returns:
surface area of the sphere as a float

volume(radius)
compute volume of a sphere

Args:
radius: float giving the radius of the sphere

Returns:
volume of the sphere as a float

FILE
/Users/mcclarren/sphere.py

With the module imported, I can call the functions inside the module by preceding the
function name by sphere.

In [20]: r =1.0
print("The volume of a sphere of radius",r,"cm is",
sphere.volume(r),"cmx*3")
print("The surface area of a sphere of radius",r,"cm is",
sphere.surface_area(r),"cmx*2")

The volume of a sphere of radius 1.0 cm is 4.1887902047863905 cm*=*3
The surface area of a sphere of radius 1.0 cm is 12.566370614359172 cm*=*2

Modules will be useful for us because our numerical algorithms will build on each other.
Using modules will make our source code manageable and eliminate copy/paste errors.

3.6. FILES 49

3.6 FILES

It will be useful for us occasionally to use files for input and output from our codes. In this
section we will cover some rudimentary uses of files for reading and writing. This discussion
is not exhaustive, but will give you the necessary ingredients for file input and output.

It is simple to read in text files in Python. Just about any file that is plain text can be read
by Python. One simple way to read in a file is to read it in a line at a time. This can be done
by having a for loop, loop over the file: each pass through the loop body will read in a new
line of the file.

BOX 3.4 PYTHON PRINCIPLE

Using a for loop to iterate over a file, tire line of the file each pass through the
the looping variable will contain an en- loop.

In the folder that the following code is saved in, I have created a file called fifth_repub-
11c.txt that has the names of the presidents of France’s fifth republic, one per line. Using a
for loop, we can read that file and print it to the screen line by line:

In [21]: ffopen fifth_republic.txt for reading (’r’)
file = open(’fifth_republic.txt’, ’r’)
for line in file:

print(line)
file.close()

Charles de Gaulle

Georges Pompidou

Valéry Giscard d’Estaing

Francois Mitterrand

Jacques Chirac

Nicolas Sarkozy

Francois Hollande

Emmanuel Macron

Notice how the for loop can iterate through each line of the file. You can also read a line at a
time:

In [22]: ftopen fifth_republic.txt for reading (’'r’)
file = open(’fifth_republic.txt’, ’r’)
first_line = file.readline()
second_line = file.readline()

50 3. FUNCTIONS, SCOPING, RECURSION, AND OTHER MISCELLANY

print(first_line)
print(second_line)
file.close()

Charles de Gaulle
Georges Pompidou

It is also possible to write to a file. A straightforward way of doing this is to open a file for
writing using the open function. With the file open, we then can write to the file much like we
use the print statement. To end a line we use \n. Also, note that if we open a file for writing
and it exists, the file will be wiped clean (sometimes called clobbered) upon opening it.

In [23]: {ffopen hats.txt to write (clobber if it exists)
writeFile = open("hats.txt","w")
hats = ["fedora","trilby","porkpie","tam o’shanter",
"Phrygian cap","Beefeaters’ hat","sombrero"]
for hat in hats:
writeFile.write(hat + "\n") #add the endline
writeFile.close()

#now open file and print
readFile = open("hats.txt","r")

for line in readFile:
print(line)

fedora

trilby

porkpie

tam o’shanter
Phrygian cap
Beefeaters’ hat
sombrero

There are more sophisticated ways to use files for input and output, but these examples
will enable the basic functionality we need for file manipulation.

PROBLEMS

Short Exercises

3.1. Write a function for Python that simulates the roll of two standard, six-sided dice. Have
the program roll the dice a large number of times and report the fraction of rolls that are
each possible combination, 2-12. Compare your numbers with the probability of each
possible roll that you calculate by hand.

PROBLEMS 51

3.2. What is the value of x at the end of the following code snippet:

def sillyFunction(input_var):
x =1.0
return input_var

x =10.0
sillyFunction(x)

3.3. Write a function that takes as a parameter the name of the file, and a parameter that
gives the number of lines to read from the file. The function should open the file, read
the lines and print them to the screen, and then close the file.

Programming Projects

1. Monte Carlo Integration

The exponential integral, E, (x), is an important function in nuclear engineering and health
physics applications. This function is defined as

o0 e—xt
E,(x) :/ dt
1

m

One way to compute this integral is via a Monte Carlo procedure for a general integral,

b b—a N
/dyf(y)%TZf(yi),
a i=1

where
yi ~Ula, b],

or in words, y; is a uniform random number between a and b. For this problem you may use
the random or numpy modules.

3.1. Make the substitution u = 1/¢ in the integral to get an integral with finite bounds.

3.2. Write a Python function to compute the exponential integral. The inputs should be #,
x,and N in the notation above. Give estimates for E;(1) using N = 1, 10, 100, 1000, and
10°.

3.3. Write a Python function that estimates the standard deviation of several estimates of
the exponential integral function from the function you wrote in the previous part. The
formula for the standard deviation of a quantity g given L samples is

L
1 _
Og = L—IE (gl_g)z,
=1

where g is the mean of the L samples. Using your function and L of at least 10,
estimate the standard deviation of the Monte Carlo estimate of E{(1) using N =
1,10, 100, 1000, 10%, and 10°.

CHAPTER

4

NumPy and Matplotlib

OUTLINE

4.1 NumPy Arrays 54 4.2.1 Customizing Plots 66
4.1.1 Creating Arrays in Neat Ways 55 Further Reading 69
4.1.2 Operations on Arrays 58 Problems 69
4.1.3 Universal Functions 60 Short Exercises 69
4.1.4 Copying Arrays and Scope 61 Programming Projects 70
4.1.5 Indexing, Slicing, and Iterating 63 1. Inhour Equation 70
4.1.6 NumPy and Complex Numbers 65 2. Fractal Growth 71

4.2 Matplotlib Basics 65 3. Charges in a Plane 73

Harry, | have no idea where this will lead us, but | have a definite feeling it will be a place both won-
derful and strange.

-“Dale Cooper” in the television series Twin Peaks

CHAPTER POINTS

e NumPy is a library that provides a flexible =~ e Matplotlib enables the visualization of
means to define and manipulate vectors, numerical results with only a few lines of
matrices, and higher-dimensional arrays. code.

In this chapter we will cover two important libraries that are available for Python: NumPy
and Matplotlib. In this lecture we will make particular reference to nuclear and radiological
engineering applications. It is not essential to understand these applications, but these will
help motivate our discussion.

Computational Nuclear Engineering and Radiological Science Using Python
DOI: 10.1016/B978-0-12-812253-2.00005-4 53 Copyright © 2018 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-812253-2.00005-4

54 4. NUMPY AND MATPLOTLIB

4.1 NUMPY ARRAYS

NumPy is a collection of modules, called a library, that gives the programmer powerful
array objects and linear algebra tools, among other things. In this section we will explore that
arrays that NumPy supplies.

The basic unit in NumPy is a multi-dimensional array, sometimes called an N-dimensional
or N — D array. You can think of an array as a collection of pieces of data, most typically in
our work the data we store in an array is a float. You have already seen arrays in other areas
of mathematics: a one-dimensional (1-D) array you can think of as a vector, and a 2-D array is
a matrix. We can generalize from there by thinking of a 3-D array is a vector of matrices, and
so on. It is not too common in our work to go beyond a 3-D array, but one can define these
more exotic data structures.

In the following code, we make a vector and a matrix. The first line tells Python that we
want to use NumPy, but we do not want to type numpy every time we need to use a function
from the library; we abbreviate to np.

In [1]: import numpy as np
a_vector = np.array([1,2,3,41)
a_matrix = np.array([(1,2,3),(4,5,6),(7,8,9)1)
print("The vector",a_vector)
print("The matrix\n",a_matrix)

The vector [1 2 3 4]
The matrix

[[1 2 3]

[4 5 6]

[7 8 911

Now that we have defined arrays, we want to work with them. Arrays have several “at-
tributes” that you can use to find out information regarding a particular array. The following
code blocks explore these attributes, as noted in the comments:

In [2]: #shape tells you the shape

print("The shape of a_vector is
print("The shape of a_matrix is

, a_vector.shape)
, a_matrix.shape)

"

The shape of a_vector is (4,)
The shape of a_matrix is (3, 3)

In [3]: #ndim tells you the dimensionality of an array
print("The dimension of a_vector is ", a_vector.ndim)
print("The dimension of a_matrix is ", a_matrix.ndim)

The dimension of a_vector is 1
The dimension of a_matrix is 2

In [47: ffsize is the total number of elements = the product of
the number of elements in each dimension
print("The size of a_vector is ", a_vector.size,"=

a_vector.shape[0])
print("The size of a_matrix is ", a_matrix.size,"=",
a_matrix.shape[0],"*",a_matrix.shapel[1])

4.1. NUMPY ARRAYS 55

The size of a_vector is 4 = 4
The size of a_matrix is 9 =3 * 3

For an existing array, you can change the shape after creating it. You can “reshape” an
array to have different dimensions as long as the size of the array does not change. Here is an
example:

In [5]: A =np.array([2,4,6,8])
print("A is now a vector",A)
A = A.reshape(2,2)
print("A is now a matrix\n",A,"\nSorcery!")

A is now a vector [2 4 6 8]
A is now a matrix

[[2 4]

[6 8]1]
Sorcery!

Notice how I needed to assign A with the reshaped array in the third line of code.

4.1.1 Creating Arrays in Neat Ways

In the examples above, we created arrays by specifying the value of each element in the
array explicitly. We would like to have a way to define an array without having to type in each
element. This is especially useful when we want to fill an array with thousands or millions of
elements.

The function arange is a NumPy variant of range, which we saw earlier. The difference
is that the function will create a NumPy array based on the parameters passed to arange.

In [6]: 4tlet’s make a vector from 0 to 2+pi in intervals of 0.1

dx = 0.1
X = np.arange(0,2*np.pi,dx)
print(X)

[0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1. 1.1 1.2 1.3 1.4
1.5 1.6 1.7 1.8 1.9 2. 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9
3. 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4. 4.1 4.2 4.3 4.4
4.5 4.6 4.7 4.8 4.9 5. 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9
6. 6.1 6.2]

We can also generate a fixed number of equally spaced points between fixed endpoints
(a linearly increasing set of points) with the 1inspace function.

In [7]: X = np.linspace(start = 0, stop = 2xnp.pi, num = 62)

print(X)

[0. 0.10300304 0.20600608 0.30900911 0.41201215 0.51501519
0.61801823 0.72102126 0.8240243 0.92702734 1.03003038 1.13303342
1.23603645 1.33903949 1.44204253 1.54504557 1.64804861 1.75105164
1.85405468 1.95705772 2.06006076 2.16306379 2.26606683 2.36906987
2.47207291 2.57507595 2.67807898 2.78108202 2.88408506 2.9870881
3.09009113 3.19309417 3.29609721 3.39910025 3.50210329 3.60510632

56 4. NUMPY AND MATPLOTLIB

.70810936 3.8111124 3.91411544 4.01711848 4.12012151 4.22312455
.32612759 4.42913063 4.53213366 4.6351367 4.73813974 4.84114278
.94414582 5.04714885 5.15015189 5.25315493 5.35615797 5.459161
.56216404 5.66516708 5.76817012 5.87117316 5.97417619 6.07717923
.18018227 6.28318531]

oo P~Ww

Notice how it starts and ends exactly where I told it to. The 1inspace function is very useful,
and we will use it extensively.

BOX 4.1 NUMPY PRINCIPLE

The function creates a NumPy array of length num starting

np.linspace(start, stop, num) at start and endingat stop.

There are other special arrays that you might want to define. Defining arrays to be all zeros
or ones can be very useful for initializing arrays to a fixed value:

In [8]: zero_vector = np.zeros(10) {fvector of length 10
zero_matrix = np.zeros((4,4)) #4 by 4 matrix
print("The zero vector:",zero_vector)
print("The zero matrix\n",zero_matrix)

The zero vector: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.1
The zero matrix
(C 0. 0. 0. 0.1

L 0. 0. 0. 0.]
[0. 0. 0. 0.1
L 0. 0. 0. 0.]11

In [9]: ones_vector = np.ones(10) #vector of length 10
ones_matrix = np.ones((4,4)) #4 by 4 matrix
print("The ones vector:",ones_vector)
print("The ones matrix\n",ones_matrix)

The ones vector: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
The ones matrix
(C1. 1. 1. 1.1

1. 1. 1. 1.1
1. 1. 1. 1.]
1. 1. 1. 1.1]

There are times when we want to define an array filled with random values. For these pur-
poses NumPy has an additional module called random that generalizes the library we used
earlier. The NumPy random module can create matrices with random entries between 0 and
1 with the function np.random.rand, random entries between endpoints using np.ran-
dom.uniform, and random integers with np.random.randint.

In [10]: random_matrix = np.random.rand(2,3) ffrandom 2 x 3 matrix
print("Here’s a random 2 x 3 matrix\n",random_matrix)

4.1. NUMPY ARRAYS 57

print("Another example")

ffmake a random array between two numbers
print(np.random.uniform(low=-5,high=6,size=(3,3)))

#make random integers
print(np.random.randint(low=1,high=6,size=10))

Here’s a random 2 x 3 matrix
([0.13097005 0.52015702 0.94753032]
[0.99428635 0.10108597 0.620912247]
Another example
[[1.86706869 -1.76316942 -1.88067072]
[-2.13386359 2.84442703 -2.04880365]
[-2.06079464 -2.17357025 -3.709125411]
[63322334414]

It is also possible to automatically generate an identity matrix:

In [11]: #3 x 3 identity matrix
identity33 = np.identity(3)
print(identity33)

0.
1.
0.

— /e
o O
— o o
[

]

There are many other ways to define matrices using NumPy, but the ones we have covered
will be the most useful for us.

BOX 4.2 NUMPY PRINCIPLE

To create NumPy vectors in simple ways #create a vector of length 1

you can use the following functions with entries 0.0

np.zeros(1)
jficreate a vector of length 1 Jfcreate a vector of length 1
with entries 1.0 w/random values in [0,1]
np.ones(1) np.random.rand(1)

BOX 4.3 NUMPY PRINCIPLE

To create NumPy matrices in simple ways with entries 0.0

you can use the following functions np.zeros((1,m)) }
Jfcreate an 1 by m matrix
ficreate an 1 by m matrix w/random values in [0,1]
with entries 1.0 np.random.rand(1,m)
np.ones((1,m)) ficreate an 1 by 1 identity matrix

Jicreate an 1 by m matrix np.identity(1)

58 4. NUMPY AND MATPLOTLIB

4.1.2 Operations on Arrays

Previously, we talked about operator overloading where we can apply common operators,
such as arithmetic operations, to objects other than numbers. We would like to be able to
take several arrays and do things like add them, multiply by a scalar, and perform other
linear algebra operations on them. NumPy has defined most of these operations for us by
overloading the common operators. We will explore these operations here.

NumPy defines arithmetic operations mostly in the way that you would expect. For exam-
ple, addition is easily accomplished provided that the arrays are of the same size and shape.
We will begin by demonstrating operations on vectors.

In [12]: #fvector addition
x = np.ones(3) #f3-vector of ones
y = 3*np.ones(3)-1 #3-vector of 2’s

print(x,"+",y,"=",x+ty)
print(x,"-",y,"=",x-y)
(1. 1. 1.1+[2. 2. 2.1]=1[3. 3. 3.]
r1. 1. 1.1 -02. 2. 2.1=10[-1.-1. -1.]

Multiplication and division are “element-wise”; this means that the elements in the same
position are multiplied together:

In [13]: y = np.array([1.0,2.0,3.0])
print(x,"",y,"=",xxy)
print(x,"/",y,"=",x/y)

1. 1. 1.1 [

(1. 1. 1.1/ =

1. 2. 3.1=01. 2. 3.]
1. 2. 3.] [1.

0.5 0.33333333]
If you want the dot product, you have to use the dot function:

In [14]: print(x,".",y,"=",np.dot(x,y))
(1. 1. 1.1 .[C01. 2. 3.1=6.0

Matrices work about the same way as vectors, when it comes to arithmetic operations.

In [15]: silly_matrix = np.array([(1,2,3),(1,2,3),(1,2,3)1)
print("The sum of\n",identity33,"\nand\n",
silly_matrix,"\nis\n",identity33+silly_matrix)

The sum of
(L 1. 0. 0.]

[0. 1. 0.]
[0. 0. 1.1]
and
[[1 2 3]
[1 2 3]
[1 2 3]1]
is
(L 2. 2. 3.]
[1. 3

4.1. NUMPY ARRAYS 59
Multiplication and division are also element-wise:

In [16]: identity33 = silly_matrix

Outlfl6]: array(L[1., 0., 0.]
[o0., 2., 0.7,
[0 0., 3.1

In [17]: identity33 / silly_matrix

Qutl[177: array([0. 1,
0.]
0

1
0. ,
0 .3333333311)

/o
o O O
o1

The dot function will give you the matrix product when the it is passed two matrices:

In [18]: print("The matrix product of\n",identity33,"\nand\n",
silly_matrix,"\nis\n",
np.dot(identity33,silly_matrix))

The matrix product of
(1. 0. 0.1

[0. 1. 0.1
[0. 0. 1.1]
and
[[1 2 3]
[1 2 3]
[1 2 3]]
is
[1. 2. 3.]
[1. 2. 3.1
[1. 2. 3.1]

To compute the product of a matrix and vector, we use the dot function and pass it the
matrix followed by the vector.

In [19]1: #matrix times a vector
print(silly_matrix,"times", vy,
print(np.dot(silly_matrix,y))

is")

[[1 2 3]

[1 23]

[1 2311 times [1. 2. 3.] 1s
[14. 14. 14.]

When we use the dot function, the matrices and vectors must have the appropriate sizes.
If the sizes are incompatible, Python will give an error.

60 4. NUMPY AND MATPLOTLIB

BOX 4.4 NUMPY PRINCIPLE

Standard arithmetic operations are over-
loaded so that they work on an element by
element basis on NumPy arrays. This means
that the arrays must have the same size. To

use linear algebra operations such as matrix
multiplication or the dot product of two vec-
tors you will want to use the np.dot(a,b)
function.

4.1.3 Universal Functions

It is common that we might want to interpret a vector as a series of points to feed to a
function. For example, the vector could be a list of angles we want to compute the sine of.
For these, and more general situations, NumPy provides universal functions that operate on
each element of an array. Common mathematical functions are defined in this way, and are
used in a similar way to the functions in the math module we used previously:

In [20]: {ffrecall we defined X as a linspace from 0 to 2pi
print(X)
j#taking the sin(X)
print(np.sin(X))

should be one whole sine wave

[0. 0.10300304 0.20600608 0.30900911 0.41201215 0.51501519
0.61801823 0.72102126 0.8240243 0.92702734 1.03003038 1.13303342
1.23603645 1.33903949 1.44204253 1.54504557 1.64804861 1.75105164
1.85405468 1.95705772 2.06006076 2.16306379 2.26606683 2.36906987
2.47207291 2.57507595 2.67807898 2.78108202 2.88408506 2.9870881
3.09009113 3.19309417 3.29609721 3.39910025 3.50210329 3.60510632
3.70810936 3.8111124 3.91411544 4.01711848 4.12012151 4.22312455
4.32612759 4.42913063 4.53213366 4.6351367 4.73813974 4.84114278
4.94414582 5.04714885 5.15015189 5.25315493 5.35615797 5.459161
5.56216404 5.66516708 5.76817012 5.87117316 5.97417619 6.07717923
6.18018227 6.28318531]

[0.00000000e+00 1.02820997e-01 2.04552066e-01 3.04114832e-01
4.00453906e-01 4.92548068e-01 5.79421098e-01 6.60152121e-01
7.33885366e-01 7.99839245e-01 8.57314628e-01 9.05702263e-01
9.44489229e-01 9.73264374e-01 9.91722674e-01 9.99668468e-01
9.97017526e-01 9.83797952e-01 9.60149874e-01 9.26323968e-01
8.82678798e-01 8.29677014e-01 7.67880446e-01 6.97944155e-01
6.20609482e-01 5.36696194e-01 4.47093793e-01 3.52752087e-01
2.54671120e-01 1.53890577e-01 5.14787548e-02 -5.14787548e-02
-1.53890577e-01 -2.54671120e-01 -3.52752087e-01 -4.47093793e-01
-5.36696194e-01 -6.20609482e-01 -6.97944155e-01 -7.67880446e-01
-8.29677014e-01 -8.82678798e-01 -9.26323968e-01 -9.60149874e-01
-9.83797952e-01 -9.97017526e-01 -9.99668468e-01 -9.91722674e-01
-9.73264374e-01 -9.44489229e-01 -9.05702263e-01 -8.57314628e-01
-7.99839245e-01 -7.33885366e-01 -6.60152121e-01 -5.79421098e-01
-4.92548068e-01 -4.00453906e-01 -3.04114832e-01 -2.04552066e-01

.02820997e-01

.44929360e-161]

4.1. NUMPY ARRAYS 61

Universal functions are useful for plotting when we define a vector of points for the x axis
and apply the function to get the y axis. Using matplot1ib, which we cover extensively in
a later section in this chapter, we can use a universal function to plot the sine function:

In [21]: import matplotlib.pyplot as plt
plt.plot(X,np.sin(X));

1.0

0.5

0.0

-0.5

10| ‘
0.0 10 2.0 3.0 40 5.0 6.0

Therefore, if we wanted to plot the fundamental mode of a slab reactor of width 10, we
could combine the arithmetic operators and universal functions defined by NumPy in the
following way:

In [22]: X = np.linspace(0,10,100)
Y = np.sin(np.pi*X/10)
plt.plot(X,Y);

1.0f-

0.6
04}

02}

4.1.4 Copying Arrays and Scope

The assignment operator = behaves differently for NumPy arrays than for other data types
we have used. When you assign a new variable name to an existing array, it is the same as
giving two names for the object. It does not copy the array into a new array.

62 4. NUMPY AND MATPLOTLIB

In [23]: a = np.array([1.0,2,3,4,5,6])

print(a)

#this will make a and b different names for the same array
b=a

j#fchanging b at position 2, also changes a

b[2] = 2.56

print("The value of array a is",a)
print("The value of array b is",b)

(1. 2. 3. 4. 5. 6.1
The value of array a is [1. 2. 2.56 4. 5. 6.]
The value of array b is [1. 2. 2.56 4. 5. 6.]

The reason for this behavior is that the array could have thousands or millions of elements,
and creating new arrays in a pell mell fashion could quickly fill up the computer memory and
slow down the program. To make a real copy of the entire elements of an array you need to
explicitly tell Python that you want to make a copy by using the copy function on the array.
This assures that you only create copies of an array when you truly want that to happen. We
can modify the previous code snippet to copy the array:

In [24]: a = np.array([1.0,2,3,4,5,61)

print(a)

#this will make a and b different copies for the same array
b = a.copy()

f#fchanging b at position 2, will not change a

b[2] = 2.56

print("The value of array a is",a)
print("The value of array b is",b)

[1. 2. 3. 4. 5. 6.]
The value of array a is [1. 2. 3. 4. 5. 6.]
The value of array b is [1. 2. 2.56 4. 5. 6.]

BOX 4.5 NUMPY PRINCIPLE

To copy a NumPy array named origAr- The syntax
ray to the NumPy array copyArray use the

sameArray = origArray
syntax
will give an additional name, sameArray, for

copyArray = origArray.copy() the array origArray.

Typically, when you pass a variable to a function it copies that variable into the function’s
memory scope. This does not happen with NumPy arrays. When you pass an array to a
function, the function does not copy the array, it just assigns that array another name as in
the previous example. This means that if the NumPy array is changed inside the function, it
is also changed outside the function.

4.1. NUMPY ARRAYS 63

In [25]: def devious_function(func_array):
#changes the value of array passed in
func_array[0] = -1.0e6

a =np.array([1.0,2,3,4,5,6])
print("Before the function a =",a)
devious_function(a)

print("After the function a =",a)

Before the functiona=10[1. 2. 3. 4. 5. 6.]
After the function a =

[-1.00000000e+06 2.00000000e+00 3.00000000e+00
4.00000000e+00 5.00000000e+00 6.00000000e+001]

This is different than what we saw previously for passing floats, and integers to functions.
The difference is that a NumPy array is a mutable object that could possibly be large. The
technicalities are not of much interest here, but, because a NumPy array could be millions
of elements, it is best for efficient memory usage if functions do not make multiple copies
of millions of elements. This is same rationale that leads to the behavior of the assignment
operator not automatically copying the entire array into a new array. For example, if had an
array with one billion elements, passing that array into a function could take a long time to
make all of those copies into a new array, before the function even begins to do its work.

4.1.5 Indexing, Slicing, and Iterating

Oftentimes we will want to access or modify more than one element of an array at a time.
We can do this by slicing. Slicing, in many ways, mirrors what we did with strings before.
One feature we have not discussed is the plain : operator without a number on either side.
This will give all the values in a particular dimension, as seen below.

In [26]1: #bring these guys back
a_vector = np.array([1,2,3,41)
a_matrix = np.array([(1,2,3),(4,5,6),(7,8,9)1)
print("The vector",a_vector)
print("The matrix\n",a_matrix)
#single colon gives everything
print("a_vector[:] =",a_vector[:])
#print out position 1 to position 2 (same as for 1ists)
print("a_vector[1:3] =",a_vector[1:31)
print("For a matrix, we can slice in each dimension")
ffevery column in row 0
print("a_matrix[0,:] =",a_matrix[0,:])
fhcolumns 1 and 2 in row 0
print("a_matrix[0,1:3] =",a_matrix[0,1:31)
f#fevery row in column 2
print("a_matrix[:,2] =",a_matrix[:,2])

The vector [1 2 3 4]
The matrix

[[1 2 3]

[4 5 6]

64 4. NUMPY AND MATPLOTLIB

[7 8 9]1]
a_vector[:] = [1 2 3 4]
a_vector[1:3] = [2 3]
For a matrix, we can slice in each dimension
a_matrix[0,:]1 = [1 2 3]
a_matrix[0,1:3] = [2 3]
a_matrix[:,2] [36 9]

[

We can also use a Tor loop to iterate over an array. If the array is a vector, the iteration will
be over each element. Iteration over a matrix will give you everything in a row. If you want
to iterate over the columns of the matrix, take the transpose of the matrix when iterating.

In [27]: a_matrix = np.array([(1,2,3),(4,5,6),(7,8,9)1)
count = 0
for row in a_matrix:
print("Row",count,"of a_matrix is",row)
count +=1

count = 0

for column in a_matrix.transpose():
print("Column",count,"of a_matrix is",column)
count +=1

Row 0 of a_matrix is [1 2 3]
Row 1 of a_matrix is [4 5 6]
Row 2 of a_matrix is [7 8 9]
Column 0 of a_matrix is [1 4 7]
Column 1 of a_matrix is [2 5 8]
Column 2 of a_matrix is [3 6 9]

To iterate over every element in the matrix you’ll need two for loops: one to get the rows,
and another to iterate over each element in the row. This is an example of nested for loops:
a for loop with another for loop inside.

In [28]: a_matrix = np.array([(1,2,3),(4,5,6),(7,8,9)1)
row_count = 0
col_count =0
for row in a_matrix:
col_count =0
for col in row:
print("Row",row_count,"Column",col_count,
"of a_matrix is",col)
col_count +=1
row_count += 1

Row 0 Column 0 of a_matrix is 1
Row 0 Column 1 of a_matrix is 2
Row 0 Column 2 of a_matrix is 3
Row 1 Column 0 of a_matrix is 4
Row 1 Column 1 of a_matrix is 5
Row 1 Column 2 of a_matrix is 6
Row 2 Column 0 of a_matrix is 7
Row 2 Column 1 of a_matrix is 8
Row 2 Column 2 of a_matrix is 9

4.2. MATPLOTLIB BASICS 65

4.1.6 NumPy and Complex Numbers

NumPy can handle complex numbers without much difficulty. A NumPy array can be
specified to contain complex numbers by adding the parameter dtype = “complex” to
the creation. For example, an array full of 0+0j can be created by

In [29]: cArray = np.zeros(b, dtype = "complex")
print(cArray)

[0.+40.J 0.+0.J 0.40.j 0.40.j 0.+40.j]

The dtype argument tells NumPy what datatype will be in the array. This will work with
other methods we discussed for creating arrays ones, identity,and array.

You do not have to specify dtype if it is obvious that you are using complex numbers. For
example, this will create an array of complex numbers without the dtype command

In [30]: cArray2 = np.array([1+1]j,-11)
print(cArray?2)

[1.+41.7 -1.40.7]

The time that you have to be careful with complex numbers and NumPy is when you have
a non-complex array that evaluates to a complex number inside a function. For instance, the
square root of a negative number is imaginary. Calling np.sqrt on a negative float will
give an error, unless the dtype = “complex” argument is provided. If this argument is not
provided, the result may be “not a number” or nan, and Python may throw an error. Here is
an example of the wrong way and the right way to take a square root of an array that contains
negative numbers:

In [311: fArray = np.array([-1,11)
print("Wrong way gives", np.sqrt(fArray))
print("Right way gives", np.sqrt(fArray, dtype = "complex"))
print(cArray?2)

Wrong way gives [nan 1.]
Right way gives [0.+1.j 1.40.j]

This is an important consideration when using built-in mathematical functions with NumPy.

We have now covered the details of NumPy that we will need for our numerical inves-
tigations. Having numbers in an array is an important step in engineering analysis, but
understanding what comes out of a calculation can be much easier if we can visualize the
results. In the next section we discuss a method for this visualization.

4.2 MATPLOTLIB BASICS

Matplotlib is a library for Python that allows you to plot the arrays from NumPy, as well
as many other features. It is designed to be intuitive and easy to use, and it mimic the plot-
ting interface of MATLAB, a widely used toolkit and language for applied mathematics and

66

4. NUMPY AND MATPLOTLIB

computation. Therefore, if you have experience with MATLAB, using Matplotlib will be very

familiar.

In the following example, a plot is created, and properly annotated using Matplotlib.

In [32]:

import matplotlib.pyplot as plt
import numpy as np

f#make a simple plot

x = np.linspace(-100,100,1000)

y = np.sin(x)/x

#plot x versus y

plt.plot(x,y)

J#label the y axis
plt.ylabel("sinc(x) (arb units)");
j#label the x axis

plt.xlabel("x (cm)")

J#give the plot a title
plt.title("Line plot of the sinc function")
f#show the plot

plt.show()

Line plot of the sinc function

0.8
0.6
0.4

02

sinc(x) (arb units)

0.0

-0.21

-0.4
-100.0 -50.0 0.0
x (cm)

I
50.0 100.0

Reviewing what the code above did we see that the p10t function took in two arguments
that served as the data for the x and y axes. The y1abel and x1abel functions take in a string
to print on the respective axes; the tit1e function prints a string as the plot title. Finally, the
show function tells Python to show us the plot. Notice how I labeled each axis and even gave
the plot a title. I also included the units for each axis.

4.2.1 Customizing Plots

You can also change the plot type. Here we will change from line plotting to using red

dots:

4.2. MATPLOTLIB BASICS
In [331:

67
x = np.linspace(-3,3,100)
y = np.exp(-x**2)

plt.plot(x,y,"ro"); #red dots on the plot

plt.ylabel("$er{-x"2}$ (arb units)");
plt.xTabel("x (cm)")

plt.title("Plot of $er{-x"2}$")
plt.show()

Plot of ¢’
1.0} 'A
]
@ []
[} [}
08| ®)
[) []
[] []
> [[)
06 o °
E ° e
E))
- [] []
b [} [}
[0.4 ® ®
[J)
[J []
@ []
0.2 (]]
0.0 J L L ! \
-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0
x (cm)
We could also use dots and a line in our plot:
In [34]: x =

np.linspace(-3,3,100)
Yy = np.exp(-xx*2)

plt.plot(x,y,"ko-"); #black dots and a Tine on the plot
plt.ylabel("$er{-x"2}$ (arb units)");
plt.xTabel("x (cm)")

plt.title("Plot of $er{-x"2}$")
plt.show()

Plot of ¢’
1.0
08}
z
S 06
o
&
TU 041
0.2
00 L L L
-3.0 -2.0 -1.0 0.0 1.0 2.0
X (cm)

3.0

68 4. NUMPY AND MATPLOTLIB

Notice these examples have included IATEX mathematics in the labels by enclosing it in
dollar signs. IATEX mathematics is a markup language for mathematical characters. For exam-
ple, you can make characters superscript by enclosing the characters in curly braces preceded
by *. In IXIEX to use Greek letters you use a backslash before the name of the letter, and other
usually obvious characters. We will use I£TgX, extensively to annotate figures throughout the
work.

It is also possible to plot several lines on a plot and include a legend. The legend text is
passed into the p1ot function through the parameter 1abel which takes in a string, poten-
tially with IATgX. Calling the Tegend function will add the legend to the figure. Here is an

example of multiple lines:

In [35]: x = np.linspace(-3,3,100)
Yy = np.exp(-x**2)
yl = np.exp(-x*%x2/2)
y2 = np.exp(-x*x2/4)
plt.plot(x,y,marker="", color="r",
linestyle="--", Tabel="$§\sigmar2 = 1$")
plt.plot(x,yl,color="blue",
lTabel="$\sigma”2 = 2%$")
plt.plot(x,y2,color="black",
marker = "+", Tlabel="$\sigmar2 = 4$")
plt.ylabel("$er{-x"2/\sigma~2}$ (arb units)");
plt.xlabel("x (cm)")
plt.title("Plot of $e~{-x"2/\sigma~2}$")
plt.legend()
plt.show()

_a?o?
Plot of e /7

e e (arb units)

X (cm)

With MatPlotLib it is also possible to make plots that are more than just lines. This example
here we make a contour plot of a function of two variables. We will not go into detail about
these plots here, rather we will demonstrate additional plotting features as we need them.

In [36]: phi_m = np.linspace(0, 1, 100)
phi_p = np.linspace(0, 1, 100)

FURTHER READING 69

X,Y = np.meshgrid(phi_p, phi_m)

Z = np.sin(Xx2xnp.pi)*np.cos(Yx2xnp.pi)

CS = plt.contour(X,Y,Z, colors="k”)

plt.clabel(CS, fontsize=9, inline=1)

plt.xTabel("x (cm)");

plt.ylabel("y (cm)");

plt.title("Second harmonic of ϕ (arb units)");

Second harmonic of ¢ (arb units)

| \org |0
0., N RN {1
<] 5 ; S, ~.750
P sXS | G 0P P
o8t 8 DR
\ 0.000——
- —-0.25
7 .0.500- _ RN 0.50!
0.6 s - < N
: 7 AR
o \
§ [\ W]
> I“ \ Vi I o
L v /0 S
0.4 X \3750/ S 1
S~ -7 25
0.000
02} o~ - — =~
(o) P ~
50 %) W DRV
? 250\ B | S 013 (%
[°
[L
0.0 I I \\ ‘ 1 1] I) I I
-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
x (cm)

For a less nuclear engineering-specific tutorial on NumPy see http:/ /wiki.scipy.org/. For a
list, see http:/ /matplotlib.org/users/pyplot_tutorial.html. IXTEX has several books available
that are useful references such as [5,6]. Additionally, there are many tutorials available on the
Internet, including one from the IXTEX project https:/ /www.latex-project.org/.

PROBLEMS

Short Exercises

4.1. Write a simple dot product calculator. Ask the user for the size of the vector, and then
to input the value for each element in the vector. Print to the user the value of the dot
product of the two vectors.

4.2. Ask the user for a matrix size, N. Print to the user a random matrix of size N by N. Then
print to the user the vector that contains the sum of each column.

4.3. Ask the user for a vector size, N. Print to the user a random vector of size N. Then print
the sorted matrix. NumPy has a function for sorting a vector: x. sort (), where x is the
name of a vector.

http://wiki.scipy.org/
http://matplotlib.org/users/pyplot_tutorial.html
https://www.latex-project.org/

70 4. NUMPY AND MATPLOTLIB

4.4. Ask the user for a vector size, N. Print to the user a random vector of size N. Then print
the maximum value of the vector. NumPy has a function that returns the index of the
maximum value: X.argmax (), where X is the name of a vector.

4.5. Ask the user for a vector size, N. Print to the user a random vector of size N where the
elements of N are from a normal distribution with mean 0 and standard deviation 1. To
generate this vector you should use np.random.normal. Then print the mean value
of the vector and the standard deviation. NumPy has a function that returns the mean
value and standard deviation: x .mean () and x.std (), where X is the name of a vector.

4.6. Ask the user for a vector size, N. Print to the user two random vectors of size N; call these
vectors x and y. If we consider these vectors being the coordinates of points (x;, y;),
compute the matrix r that contains the distances between each point and each of other
points. This matrix will have elements

rij = \/(xz' —x)2+ i —)2

The diagonal of this matrix should be all zeros.

Programming Projects

1. Inhour Equation

The inhour equation (short for inverse hour) describes the growth or decay of the neutron
population in a reactor as described by the point kinetics equations. The equation relates the
reactivity, p, the mean generation time, A, the fraction of fission neutrons born from each of
six delayed neutron precursor groups, 8;, and the decay constant for those groups, A;. The
inhour equation is

6)
'OZS(A—’_ZS_’_[)L.)'

The seven values of s that satisfy this equation are used to express the neutron population as
function of time, n(t), as

7
n(t) = Z Age’’.
=1

The decay constant of a delayed neutron precursor group is related to the half-life for neutron
emission by the group is

_ In2

Ai = .
112

Common values of the necessary constants in this equation are [7]: A=35 x 107 s

B =1{0.00021, 0.00142, 0.00128, 0.00257, 0.00075, 0.00027},

PROBLEMS 71

where the total delayed fraction B = 0.0065, and
t12=1{56,23,6.2,2.3,0.61,0.23} s.

Using this data, plot the right-hand side of the inhour equation as a function of s, and plot
a horizontal line corresponding to p to graphically illustrate the roots of the inhour equation.
Do this for p = —1,0,0.18, B, and discuss the results. Make sure that the scale of your plot
makes sense given that there will be singularities in the plot.

2. Fractal Growth

In this problem you will code a program that grows a cluster of particles that stick together
using a diffusion process known as a random walk. The resulting structure will be a fractal,
that is a structure that is self-similar, where the structure looks the same at every scale. To
build these structures we start with a single particle at the position (0, 0), then introduce a
particle at “infinity”. The new particle undergoes a random walk where it jumps a random
distance in a random direction. The particle undergoes random jumps until it strikes the
center particle. Then, we repeatedly introduce particles at “infinity” and follow each until it
sticks to the existing particles.

To make the algorithm work quickly, we will define “infinity” by placing a particle ran-
domly on a circle that circumscribes the existing structure. We also, allow the distance trav-
eled by the particle in each step to be the minimum distance between the particle and the
structure. The following code will perform this algorithm, but there are expressions missing
in key positions. The comments will tell you how to fill them in; these are denoted by 7 7.. Get
the code working, and make plots of the resulting structures with matplotlib. Make figures of
various sizes by changing the value of N, ie, N = 100, 500, 1000, 500, 10000, and
even higher values if the code is fast enough. Comment on the similarity of the structures of
different size.

import matplotlib.pyplot as plt
import numpy as np

#initialize 1ist of particles
fficolumn 0 is x position

f#column 1 is y position
particles = np.zeros([1,2])
J#how many particles to simulate

N = 500
Jfhow close do we need to be to "stick"
tol = 1.0e-2

J#how many steps can a particle take before we stop tracking
maxsteps = 1e3
f#radius of structure, initially small
r = 2.0xtol
#pick the angle on the circle in [0,2pi]
theta = np.random.uniform(low=0,
high=2xnp.pi,
size = 1)
for i in range(N):
ffmake the initial position of the new particles
newposx = rxnp.sin(theta)

72 4. NUMPY AND MATPLOTLIB

newposy = r*xnp.cos(theta)

steps = 0
J#how close is the new particle to the cluster
dist = r

while (dist > tol) and (steps<maxsteps):
f#how close is the new particle to the cluster
dist_vect = np.sqgrt(
(particlesl[:,0]-newposx)**2 + (particles[:,1]-newposy)*=*2)
dist = np.min(dist_vect)
jfcompute the jump distance randomly in [0,dist]
rho = 77
jfcompute the direction of the jump randomly in [0,2 pi]
theta = 77
#move the particle
newposx += 77
newposy += 2?7
steps += 1
#if the while Toop is exited with fewer steps than
ffthe maximum, then add the particle to the Tist
ffotherwise forget it
if (steps < maxsteps):
tmp = np.ndarray(shape = [1,2])
tmp[0,0] = newposx
tmp[0,1] = newposy
particles = np.append(particles, tmp,axis=0)
f#fmake the starting point for the next particle
#fby calculating the radius and angle
r = (l+tol)xnp.max(np.sqrt(particles[:,0]*xx2 + particles[:,1]*%2))
theta = 77

The figures below show the similarity of scales and were generated with this code, and
N = 5x10°.

PROBLEMS 73

3. Charges in a Plane

Consider a collection of N charged point particles distributed in the xy plane. The particles
have known masses, m, and charges, ¢g. The Coulomb force on particle i is given by

N
_ qiq;
Fi= Z 2

j=Li#i

where r is the distance between particle i and j. The x and y components of the force are

N N
X qiqj Xi — X y qiqj Yi — Yj
Fr=) = F=3) =
j=lj#i j=Lj#i

From the forces, we can compute the acceleration in each direction using F; = m;ad. Given the
equations of motion of a particle

+1 _ 1 I I+1 _ 1 I
Uyl = Uy + Atax’i, Uy =y + Atay,i,
I+1 _ I I+1 I+1 _ 1 I+1
X; —-xi+—AtvLi, y; —-yi+—Atv%i,

for/=1...L and vg’ ;= v(y)’ . = 0. Where the superscripts indicate the time level, i.e., x! =
x([At).

Write a Python code that solves the above problem using L = 1000 and A7 = 0.001, and the
following table of masses and initial positions as defined in the following code snippet:

#fCode to advect point charges using Coulomb’s Taw
import numpy as np
import matplotlib.pyplot as plt

f#fset up initial values of x,y,vx,vy,Fx,Fy
N =20

X = np.zeros(N)

x[0:(N//2)] = O*np.linspace(-N,-5,N//2)
x[(N//2):N]1 = np.linspace(1,10,N//2)

y = np.zeros(N)

y[0:(N//2)] = np.linspace(-10,10,N//2)

y[(N//2):N] = np.random.uniform(low = -le-3, high = le-3, size = N//2)
mass = np.zeros(N)

mass[0:(N//2)] = 1e8

mass[(N//2):N] =1

q = np.zeros(N)

qf0:(N//2)]1 = 10

qL(N//2):N] =1

vX = np.zeros(N);

vx[0:(N//2)] = 0.0

vx[(N//2):N] = -10.0

vy = np.zeros(N)
Fx = np.zeros(N)
Fy = np.zeros(N)

74 4. NUMPY AND MATPLOTLIB

To solve this problem you will need three loops: one to compute the forces, one to compute
the velocities, and one to compute the new positions. These loops will be nested inside a loop

that keeps track of the time.
Plot the solution at the final time for varying values of N: 20, 50, 100. Explain the differences

in the results.

CHAPTER

5

Dictionaries and Functions as
Arguments

OUTLINE

5.1 Dictionaries 75 Programming Projects 91
5.2 Functions Passed to Functions 84 1. Plutonium Decay Chain 91
5.3 Lambda Functions 88
Problems 91 2. Simple Cryptographic

Short Exercises 9] Cipher £

DICTIONARY, n. A malevolent literary device for cramping the growth of a language and making it
hard and inelastic. This dictionary, however, is a most useful work.
—-Ambrose Bierce, The Devil’s Dictionary

CHAPTER POINTS

e Dictionaries are lists where the elements e Lambda functions allow the programmer
are accessed via special names, called keys. to define a function in one line and use all

e In Python it is possible to pass the name of the variables in the current scope.

a function as an argument to another
function. This allows functions, such as
numerical integration, to operate on an
arbitrary function.

5.1 DICTIONARIES

Previously, we learned about lists as a sequence of items that we can access via position
using square brackets. There may be cases where we do not want to access items based on
a numerical index, rather we want to access them based on a name. A typical example of
this might be the children in a family. You could have a list of children that you access via the

Computational Nuclear Engineering and Radiological Science Using Python 7 5

DOI: 10.1016/B978-0-12-812253-2.00006-6 Copyright © 2018 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-812253-2.00006-6

76 5. DICTIONARIES AND FUNCTIONS AS ARGUMENTS

order that they were born; however, this would be fairly impersonal and not a useful ordering
for anyone other than the parents in that family. The solution to this problem in Python can
be found in the dictionary. A dictionary is like a list in many ways, but you access it with the
name of the item.

In technical terms, a dictionary is a set of key:value pairs. The key is the analog to the
index of a list, and is, in effect, the name of the item. You define a dictionary using curly
braces.

In [1]: #simple dictionary

days_of_week = {"M":"Monday", "T":"Tuesday",
"W":"Wednesday", "R":"Thursday",
"F":"Friday", "S":"Saturday",
"U":"Sunday"}

print("Key M gives", days_of_week["M"])

print("Key R gives", days_of_week["R"])

#is G a key in days_of_week?

print("G" in days_of_week.keys())

Key M gives Monday
Key R gives Thursday
False

Instead of accessing the dictionary using a position, like we have done with strings, lists,
and NumPy arrays, we use the key. This is useful because we then do not have to remember
the order we have listed the values in. For example, in the days of the week above we don’t
have to remember how we ordered the days (e.g., Monday first or Sunday first).

Also, the above example used the in operator to indicate if a particular key is in a dictio-
nary. In particular, it tells us that "G" is not a key in the dictionary.

BOX 5.1 PYTHON PRINCIPLE

A dictionary is a sequence of items that my_dictionary ={key_l:value_I,
is accessed via a name called a key. The ele- key_2:value_2, ...|
ments of the dictionary that the key refers to
is called the value. To define a dictionary we A list of the keys in a dictionary can be ob-
use curly brackets as in the following exam- tained via the function d. keys (), where d is
ple the name of a dictionary.

For a further example we will read in a comma-separated-values text file (often called
a csv), using the module csv. The text file will be used to give the key:value pairs in
a dictionary. The format of this file is chemical symbol, element name. The first few
lines of the file are

Ac,Actinium
Ag,Silver
Al,ATuminum
Am,Americium

5.1. DICTIONARIES 77

The following code reads in the file and uses the chemical symbol as the key and the chemical
name as the value. It also asks the user to input a chemical symbol, and will return the name.

In [2]: import csv
ffcreate a blank dictionary
element_dict = {}
#this block will only execute if the file opens
with open(’ChemicalSymbols.csv’) as csvfile:
chemreader = csv.reader(csvfile)
for row in chemreader: fhave for Toop that loops over each line
element_dictlrow[0]] = rowl[1] #add a key:value pair
key = input("Enter a valid chemical symbol: ")
if key in element_dict:
print(key,"is",element_dictlkey])
else:
print("Not a valid element")

Enter a valid chemical symbol: Pu
Pu is Plutonium

Dictionaries can be made even more powerful, if we make a dictionary of dictionaries.
Yes, you read that correctly: the value in the key : value pair can be another dictionary. For
many applications, this is where dictionaries become very useful. In the following example
we use idea of a dictionary of dictionaries to store extra information about the days of the
week.

In [3]1: #simple dictionary of dictionaries
days_of_week = {"M":{"name":"Monday", "weekday":True, "weekend":False},

"T":{"name":"Tuesday", "weekday":True, "weekend":False},
"W":{"name":"Wednesday", "weekday":True, "weekend":False},
"R":{"name":"Thursday", "weekday":True, "weekend":False},

o
|
|
"F":{"name":"Friday", "weekday":True, "weekend":False},
|
|

" "o

"S":{"name":"Saturday", "weekday":False, "weekend":True},
"U":{"name":"Sunday", "weekday":False,"weekend":True}}
print("The days that are weekdays:")
for day in days_of_week: #for loop over dictionary, loops over keys
if days_of_week[day]l["weekday"] == True:
print(days_of_week[day]l["name"],"is a weekday.")

for day in days_of_week: #for lToop over dictionary, loops over keys
if days_of_week[day]["weekend"] == True:
print(days_of_week[dayJ["name"],"is a weekend, whoop.")

The days that are weekdays:
Thursday is a weekday.
Wednesday is a weekday.
Tuesday is a weekday.

Monday is a weekday.

Friday is a weekday.

Saturday is a weekend, whoop.
Sunday is a weekend, whoop.

78 5. DICTIONARIES AND FUNCTIONS AS ARGUMENTS

Notice that when a dictionary is iterated over in a for loop, the loop variable will get
each of the keys of the dictionary. Also, the order of the keys is not guaranteed to match the
order in which they were input. In the above loop, the keys were not printed out in the order
Monday through Sunday.

We can use the idea of a dictionary of dictionaries idea to make a code that can compute
radioactive decay for us, automatically. To do this I will create a dictionary where the key is
the atomic number (Z), and the value will be a dictionary with the element name and symbol.
The file that is read below is of the format Z, Symbol, Name.

In [4]: import csv
element_dict = {} {ffcreate a blank dictionary
f#this block will only execute if the file opens
with open(’ChemicalSymbolsZ.csv’) as csvfile:
chemreader = csv.reader(csvfile)
##have for Toop that Toops over each row
for row in chemreader:
ffadd a key:value pair
element_dict[row[0]]={"symbol":row[1],"name":rowl[2]}
key = input("Enter a valid atomic number: ")
if key in element_dict:
print(key,"is",element_dict[keyl["symbol"],
":",element_dictl[keyl["name"])
else:
print("Not a valid element")

Enter a valid atomic number: 34
34 is Se : Selenium

In [5]: key = input("Enter a valid atomic number: ")
if key in element_dict:
print(key,"is",element_dict[key]["symbol"],
":",element_dictlkey]l["name"])
else:
print("Not a valid element")

Enter a valid atomic number: 104
104 is Rf : Rutherfordium

Given that we have a dictionary where we can look up an element by its atomic number,
we can write a function that computes the product of alpha decay of a particular nuclide. We
will pass the function the atomic number, the mass number, and the dictionary of elements,
and it will return the atomic number and the mass number of the product, along with printing
some information to the screen.

In [6]: def alpha_decay(Z,A,elements):
"""Alpha decay a nuclide

Args:
Z: atomic number of nuclide
A: mass number of nuclide
elements: dictionary of elements

5.1. DICTIONARIES 79

Returns:
Z and A of daughter nuclide (both ints)
Side effects:
Prints a descriptive string of the decay
newZ = int(Z) - 2 {#lose two protons in alpha decay
newA = int(A) - 4 {lose four nucleons in alpha decay

print(elements[str(Z)I["name"],"-",A,"(",
elements[str(Z)J["symbol"]1,"-",A,"), alpha decays to",
elements[str(newZ)]["name"],"-" newA," (",
elements[str(newZ)]J["symbol"],"-",newA,")")

return newZ,newA
z_value = input("Enter the Z of the nuclide: ")
a_value = input("Enter the mass number of the nuclide: ")
/,A = alpha_decay(z_value, a_value, element_dict)

Enter the Z of the nuclide: 94
Enter the mass number of the nuclide: 239
Plutonium - 239 (Pu - 239), alpha decays to Uranium - 235 (U - 235)

Given that the function returns the atomic and mass numbers of the products, we can run
alpha_decay in a loop.

In [7]: #alpha decay something 10 times
7 =94
A = 239
for decays in range(10):
/,A = alpha_decay(Z, A, element_dict)

Plutonium - 239 (Pu - 239), alpha decays to Uranium - 235 (U - 235)
Uranium - 235 (U - 235), alpha decays to Thorium - 231 (Th - 231)
Thorium - 231 (Th - 231), alpha decays to Radium - 227 (Ra - 227)
Radium - 227 (Ra - 227), alpha decays to Radon - 223 (Rn - 223)
Radon - 223 (Rn - 223), alpha decays to Polonium - 219 (Po - 219)
Polonium - 219 (Po - 219), alpha decays to Lead - 215 (Pb - 215)
Lead - 215 (Pb - 215), alpha decays to Mercury - 211 (Hg - 211)
Mercury - 211 (Hg - 211), alpha decays to Platinum - 207 (Pt - 207)
Platinum - 207 (Pt - 207), alpha decays to Osmium - 203 (Os - 203)
Osmium - 203 (Os - 203), alpha decays to Tungsten - 199 (W - 199)

This example does not check if such an alpha decay is possible or likely, however, with
an appropriate modification to the dictionary we could add information about the decay
mode for a particular nuclide. This dictionary would be much more complicated, because it
might require a three-level hierarchy consisting of a top level dictionary where the keys are
the atomic number and the values are a dictionary of dictionaries where the key is the mass
number and the values are the decay modes. Setting this up and filling it with data would be
messy, but in principle doable.

Another use of dictionaries would be to store information about the different fuel elements
in a reactor. We will consider a reactor that has two types of fuel, high-enriched uranium
(HEU) and low-enriched uranium (LEU). We will use a dictionary to describe the properties
of each type of fuel. Then using this information, we plot the HEU fuel geometric cross-
section.

80

In [8]:

5. DICTIONARIES AND FUNCTIONS AS ARGUMENTS

fuel_types = {}
fuel_types["heu"] = {"fuel":{"nu sigma_f":12.0,

"D":3.0, "thickness":5.0},

"clad":{"nu sigma_f":0.0, "

D":300.0, "thickness":0.5}}
fuel_types["leu"] = {"fuel":{"nu sigma_f":8.5,

"D":1.25, "thickness":4.25},

"clad":{"nu sigma_f":0.0,

"D":300.0, "thickness":1.25}}
#plot heu
#heu fuel
fuel_radius = fuel_types["heu"]["fuel"]["thickness"]
clad_radius = fuel_radius + fuel_types["heu"]["clad"]["thickness"]
fuel = plt.Circle((0,0),fuel_radius,

facecolor="white",label="Fuel", hatch="//")

clad = plt.Circle((0,0),clad_radius,color="gray’,label="Clad")
fig = plt.figure(figsize=(8,6), dpi=600)
plt.gca().add_patch(clad)
plt.gca().add_patch(fuel)
plt.title("HEU Fuel")
plt.axis(’equal’)
plt.legend()
plt.axis([-clad_radius,clad_radius,-clad_radius,clad_radius])
plt.show();

HEU Fuel

mm Clad
Fuel

-6 . ‘ . . ‘ .
-6 -4 =2 0 2 4 6

In a similar manner, the LEU fuel can be visualized by using the dictionary.

In [9]:

fuel_radius = fuel_types["Teu"J["fuel"J["thickness"]

clad_radius = fuel_radius + fuel_types["Teu"I["clad"1["thickness"]

fig = plt.figure(figsize=(8,6), dpi=600)

fuel = plt.Circle((0,0),fuel_radius,
facecolor="white",label="Fuel", hatch="+")

5.1. DICTIONARIES 81

clad = plt.Circle((0,0),clad_radius,color="gray’,label="Clad")
plt.gca().add_patch(clad)

plt.gca().add_patch(fuel)

plt.title("LEU Fuel™)

plt.axis(’equal’)

plt.legend()
plt.axis([-clad_radius,clad_radius,-clad_radius,clad_radius])
plt.show();

LEU Fuel

mm Clad
Fuel

-6 . ‘ ‘ ‘ . ‘
-6 -4 -2 0 2 4 6

Given that we have a dictionary describing each type of fuel, we can define a lattice of fuel
elements. We will make a 10 by 10 lattice of fuel with a 0.5 cm spacing between elements.
Also, we will make every third element HEU and the rest LEU. The code below creates this
lattice and then plots it.

In [10]: fuel_placements = {}
#10 x 10 Tattice with 0.5 cm spacing
ftevery third pin is heu
X = np.arange(6.,120,12)
y = np.arange(6.,120,12)
fig = plt.figure(figsize=(8,6), dpi=600)
count = 1 #set up counting variable
for i in x:
for j in y:
if not(count % 3): #if count mod 3 is 0, then heu
pin_type = "heu"
hatch = "/"
else: ffelse leu
pin_type = "leu"
hatch = "+"
fuel_radius = fuel_types[pin_typel["fuel"1["thickness"]
clad_radius fuel_radius +
fuel_types[pin_typel["clad"]J["thickness"]

82 5. DICTIONARIES AND FUNCTIONS AS ARGUMENTS

fuel = plt.Circle((i,j),fuel_radius,facecolor="white",
edgecolor="black",hatch=hatch,
label="Fuel™")
clad = plt.Circle((i,j),clad_radius,color="gray’,label="Clad")
plt.gca().add_patch(clad)
plt.gca().add_patch(fuel)
count += 1 fincrement count
plt.title("Fuel Lattice")
plt.axis(’equal’)
plt.axis([0,120,0,120])
plt.show();

Fuel Lattice

120

100+

80+

60t

20+

0 20 40 60 80 100 120

With this lattice, if we knew the shape of the fundamental mode of the scalar flux, we
could compute the fission neutron production rate density at each point of the reactor. We
will assume a simple scalar flux shape and multiply the flux by the value of v X, that is the
product of the average number of fission neutrons produced, times the macroscopic fission
cross-section, to get the fission neutron production rate density. The following code computes
this quantity by evaluating v Xt at the middle of each fuel element.

In [11]: fuel_placements = {}
#10 x 10 lattice with 0.5 cm spacing
ffevery third pin is heu
X = np.arange(6.,120,12)
y = np.arange(6.,120,12)
fig = plt.figure(figsize=(8,6), dpi=600)
X = np.zeros((x.size, x.size))
Y X.copy()
7 = X.copy()
Zflux = Z.copy()
row =
col =
count

ool

5.1. DICTIONARIES 83

for i in x:
for j in y:
if not(count % 3): #if count mod 3 is 0, then heu
pin_type = "heu"
else: ffelse Teu
pin_type = "leu"
nusigf = fuel_types[pin_typel["fuel"I["nu sigma_f"]
X[row,col] = 1
Y[row,col]l = j
Zlrow,coll=nusigf*np.sin(i*np.pi/120)*np.sin(j*np.pi/120)
Zfluxlrow,col]=np.sin(i*np.pi/120)*np.sin(jxnp.pi/120)
row += 1 #fincrement row
count += 1 #increment count
col += 1 fincrement column
row = 0

CS = plt.contour(X,Y,Z, colors="k")
plt.clabel(CS, fontsize=9, inline=1)
plt.xlabel("x (cm)");

plt.ylabel("y (cm)");

Tt.title("fission neutron production rate (neutrons/cm$~3$/s)");
Tt.show();

S = plt.contour(X,Y,Zflux, colors="k’)
1t.clabel(CS, fontsize=9, inline=1)
plt.xlabel("x (cm)");

plt.ylabel("y (cm)");
plt.title("fundamental mode scalar flux");
plt.show();

fundamental mode scalar flux

fission neutron prod. rate (neut/cm?/s)

Q,\f’g 0.309 0'15‘0
0l 100 045,
soll 80
= E
£ ¢of L €0
g >
0] 40
20| & 20t %, &
1-500 ~ \\ ‘/
20 40 60 80 100 20 40 60 80 100
x (cm) x (cm)

When we solve the diffusion equation for the scalar flux of neutrons in a system, we will
revisit these techniques for calculating the fission neutron production rate, and other quanti-
ties.

84 5. DICTIONARIES AND FUNCTIONS AS ARGUMENTS

5.2 FUNCTIONS PASSED TO FUNCTIONS

In Python it is possible to pass the name of an existing function as a parameter to another
function. This name can then be used to execute the function and manipulate the results. This
ability to call a generic function results in very powerful codes as we will see.

BOX 5.2 PYTHON PRINCIPLE

In Python a function can take the name of The function new_function returns the
an arbitrary function as a parameter. In the value of function f called as f (X). In this ex-
generic example ample, the function name that is passed to
new_function must be a single parameter

def new_function(f,x):
L TE T) and x must be of the correct type.

return f(x)

A salient example of this a numerical integration function. If we wanted to write a function
to apply an integration formula, we would not want to have to write a new integration routine
for each integrand. Instead, we can make the function that forms the integrand a parameter,
and then call that function every time we want to evaluate the integrand. The example below
uses the midpoint rule to integrate a generic integrand, f (x) between points a and b.

In [12]: def midpoint_rule(f,a,b,num_intervals):
"""integrate function f using the midpoint rule

Args:
f: function to be integrated, it must take 1 argument
a: lower bound of integral range
b: upper bound of integral range
num_intervals: the number of intervals in [a,b]
Returns:
estimate of the integral
L = (b-a) #how big is the range
dx = L/num_intervals ffhow big is each interval

f#fmidpoints are a+dx/2, a+3dx/2, ..., b-dx/2
midpoints = np.arange(num_intervals)*dx+0.5*dx+a
integral =0

for point in midpoints:
integral = integral + f(point)
return integralxdx

To integrate sinx from 0 to 7 we pass in the name of NumPy sine function, np . sin. The
exact value of this integral is 2. With 10 intervals, we get a pretty good answer.

In [13]: print(midpoint_rule(np.sin,0,np.pi,10))

2.00824840791

5.2. FUNCTIONS PASSED TO FUNCTIONS 85

We can see how the numerical integration technique converges to the exact answer as a
function of the number of intervals by calling the midpoint rule function with several dif-
ferent values of num_intervals. In the next code snippet we do this using a for loop to
compute the integral using 10’ intervals fori =0, 1,2, ..., 8. Then we plot the error as a func-
tion of the number of intervals on a log-log scale. Later, when we study numerical integration
in more detail this type of plot will be important.

In [14]: num_intervals = 8 #number of interval sizes
#run several different intervals
intervals = 10*xnp.arange(num_intervals)
ierror = np.zeros(num_intervals)
fig = plt.figure(figsize=(8,6), dpi=600)

count =0
a =20
b = np.pi

for interval in intervals:
errorfcount] = np.fabs(midpoint_rule(np.sin,a,b,interval)-2)
count +=1
plt.loglog(intervals,error,marker="o0",
markersize = 10, linewidth=2);
plt.xlabel("# of intervals")
plt.ylabel("Error in midpoint rule")
plt.show()

10°
107!

1073

Error in midpoint rule
=)

1078

Iofl()

1o L

.
10° 10! 10% 10% 10* 10° 10° 107

of intervals

We are not limited to integrating only the sine function. We can define our own functions
and pass them to the midpoint rule function we defined. In other words, the midpoint rule
can approximate any 1-D definite integral. For example, we can use our midpoint rule func-
tion to compute an estimate of the exponential integral function,

o0 e—xt
E,(x) :/ dt
1

m

Because this is an improper integral, we have to introduce a finite upper bound, and this is
another approximation.

86 5. DICTIONARIES AND FUNCTIONS AS ARGUMENTS

In [15]: def exp_int_argument(t,n=1,x=1):
return np.exp(-x*t)/t**n

num_points = 10%x6

upper_bound = 1000

print("Exact answer is 0.2193839343")

print("Our approximation with upper bound",upper_bound,
"and",num_points,
"points is",
midpoint_rule(exp_int_argument,1,upper_bound,num_points))

Exact answer is 0.2193839343
Our approximation with upper bound 1000 and 1000000 points is 0.2193839038

Using Matplotlib we can add the functionality to the integration function to graphically
show how the midpoint rule estimates the integral. The function below draws the areas that
comprise the integral estimate. It should give the same answer as the previous midpoint rule
function, but with pretty graphics. Notice in the docstring for the function, the fact that the
function produces a plot is listed as a side effect. A side effect is something that the function
does other than return a value. In this case it makes a plot, but a side effect could be printing
something to the screen, writing to file, or modifying a NumPy array that was passed to the
function.

In [16]: def midpoint_rule_graphical(f,a,b,num_intervals):
"""integrate function f using the midpoint rule

Args:
f: function to be integrated, it must take one argument
a: lower bound of integral range
b: upper bound of integral range
num_intervals: the number of intervals to break [a,b] into
Returns:
estimate of the integral
Side Effect:
Plots intervals and areas of midpoint rule
fig = plt.figure()
ax = plt.subplot(111)
L = (b-a) f#how big is the range
dx = L/num_intervals #fhow big is each interval
midpoints = np.arange(num_intervals)*dx+0.5*dx+a
x = midpoints
y = np.zeros(num_intervals)
integral = 0
count = 0
for point in midpoints:
ylcount] = f(point)
integral = integral + f(point)
verts = [(point-dx/2,0)] + [(point-dx/2,f(point))]
verts += [(point+dx/2,f(point))] + [(point+dx/2,0)]
poly = plt.Polygon(verts, facecolor="0.8", edgecolor="k’)
ax.add_patch(poly)
count += 1

5.2. FUNCTIONS PASSED TO FUNCTIONS 87

y = f(x)

smooth_x = np.linspace(a,b,10000)

smooth_y = f(smooth_x)

plt.plot(smooth_x, smooth_y, Tinewidth=1)

plt.xTabel("x")

plt.ylabel("f(x)")

plt.title("Integral Estimate is

plt.show()

return integral=dx
midpoint_rule_graphical(np.sin,0,2xnp.pi,10)

+ str(integral*dx))

10, Integral Estimate is -1.743934249e-16

BOX 5.3 PYTHON PRINCIPLE

A side effect of a function is something (e.g., a NumPy vector) passed to the function.
that the function does that affects or inter- It is important to document side effects so
acts with the function caller in some way. This that the code calling the function can handle
can be printing to the screen, making a graph, them.
or changing something in a mutable variable

We can use the same function to compute the exponential integral and visualize how well the
approximation of the midpoint rule is doing.

In [17]1: num_points = 20
upper_bound = 5
print("Answer is 0.2193839343")
print("Our approximation with upper bound",upper_bound,
"and",num_points,"points is",
midpoint_rule_graphical(exp_int_argument,1,upper_bound,num_points))

Answer is 0.2193839343

88 5. DICTIONARIES AND FUNCTIONS AS ARGUMENTS

0.40. Integral Estimate is 0.217023273378

0.35
Q3OXK
0.25}

E0.200
0.15}
o.10}
0.05}
0.09

0 I5 20 25 30 35 40 45 50

X
Our approximation with upper bound 5 and 20 points is 0.217023273378

It appears that the area is better approximated near x = 5 than near x = 1. Later, we will
see other approaches to estimating integrals that give better approximations than rectangles.

5.3 LAMBDA FUNCTIONS

Python also allows you to define simple, one line functions called lambda functions. One
of the benefits of a lambda function is that they are very easy to define. Because of this, they
are especially good if we want to combine previously defined functions in a simple manner.

Lambda functions also have different scope rules than standard functions. Lambda func-
tions give you access to all the variables available in the scope they are defined. This means
that lambda functions do not have their own variable scope.

BOX 5.4 PYTHON PRINCIPLE

Lambda functions are short functions that
you define in a single line. The syntax to de-
fine a lambda function named 1ambda_func

function and the result of evaluating ex-
pression is what the function returns.
Lambda functions have the same scope as

In [171]:

is
lambda_func =
expression

where [parameter Tist] is a comma-
separated list of the input parameters to the

lambda [parameter list]:

the scope in which they are defined. For ex-
ample, if you define a lambda function inside
of a function, it has the same scope as that
function.

The following example uses a lambda function to define a line.

simple_line = lambda x:
print("The Tine at x =
print("The line at x =
print("The Tine at x =

0 is",
1 is",
2 is",

2.0%x + 1.0

simple_1ine(0))
simple_line(1))
simple_line(2))

5.3. LAMBDA FUNCTIONS 89

x = np.linspace(0,6,50)
y = simple_line(x)
plt.plot(x,y)
plt.ylabel("y")
plt.xTabel("x")
plt.show()
The Tine at x = 0 is 1.0
The Tine at x =1 .0
The Tine at x = 2 5.0
14
12+
10+
8l
>
6}
41
21
% | 2 4 5 6

We can use lambda functions in our midpoint integration routine as well. Here we define
the probability density function of a Gaussian as the integrand. A unit variance and zero
mean Gaussian is given by

_x?

e
f(X)=ﬁ-

The integral over x € [—00, c0] should be 1. Lambda functions are very useful in this context

because the exponential is already defined; we just want to integrate it with a particular form
of argument and multiply it by a constant.

In [18]: #ffunction to compute gaussian
gaussian = Tambda x: np.exp(-x**2)/np.sqrt(np.pi)
midpoint_rule_graphical(gaussian,-3,3,20)
Integral Estimate is 0.999980808069
0.5+ %7QK¥
0.4}
=03}

0.2

0.6

0.1}
0.0

90 5. DICTIONARIES AND FUNCTIONS AS ARGUMENTS

We can use the fact that lambda functions have the same scope as where they are defined to
make our midpoint rule integrate two-dimensional functions by defining two lambda func-
tions. In effect, what this code does is treat a 2-D integral as a 1-D integral:

by by by
f dy/ dxf(x,y>=f dy (),
ay ay ay

where
by
g(y)=/ dx f(x,y).

This is possible to define because we can define the g(y) using lambda functions. For a test
we will estimate the integral

/ dy/ dx sin(x) sin(y) = 4.
0 0

In [19]: def midpoint_2D(f,ax,bx,ay,by,num_intervals_x,num_intervals_y):
"""integrate function f(x,y) using the midpoint rule
Args:
f: function to be integrated, it must take 2 arguments
ax: lower bound of integral range in x
bx: upper bound of integral range in x
ay: lower bound of integral range in y
by: upper bound of integral range in y
num_intervals_x: the number of intervals in x
num_intervals_y: the number of intervals in y
Returns:
estimate of the integral
g = lambda y: midpoint_rule(lambda x: f(x,y),ax,bx,num_intervals_x)
return midpoint_rule(g,ay,by,num_intervals_y)
sin2 = lambda x,y:np.sin(x)*np.sin(y)
print("Estimate of the integral of sin(x)sin(y), over [0,pi] x [0,pi] is",
midpoint_2D(sin2,0,np.pi,0,np.pi,1000,1000))

Estimate of the integral of sin(x)sin(y), over [0,pi]l x [0,pi] is 4.00000328987

The lambda functions in this example tell Python to treat only a single variable as the
function parameter, and evaluate everything else based on the current scope. This means that
the code Tambda x: f(x,y) evaluates f(Xx,y) using whatever the current value of y is
and the parameter x that the function was passed. The value of y is supplied by a parameter
to the lambda function g.

The intricacies of defining lambda functions inside other lambda functions can get a bit
abstract, but remembering that they treat all variables in an expression that is not specified in
the parameter list as “known”, is the key to understanding how they function.

PROBLEMS 91

PROBLEMS

Short Exercises

5.1.

5.2.

5.3.

5.4.

Write a Python dictionary that contains the key:value pairs that have for a key the name
of the common subatomic particles (i.e., proton, neutron, and electron) and the value the
mass of the particle in kilograms.

Using the midpoint_rule function defined above, compute the integral of sin® x, over
the range [0, 2] with 10, 100, and 1000 intervals.

Estimate 7 to five digits of accuracy by computing the integral of f(x) =4+/1 —x? for
x €[0, 1].

Integrate the function f(x,y,z) = exp(—z2) sin(x) sin(y) over the (x, y, z) range [0, 7] x
[0, 7] x [—4, 4] using 10, 100, and 1000 intervals.

Programming Projects

1. Plutonium Decay Chain

Consider the plutonium decay chain from 23*Pu to stable 2’ Pb, as shown below. Construct
a dictionary with the keys are A-X where A is the mass number of the nuclide and X is the
atomic symbol for the nuclide. For example one key is 239 -Pu. The value for the aforemen-
tioned keys should be a dictionary with key : value pairs given by:

e key: half-11fe, value: the half-life of the decay in seconds,
e key: decay_mode, value: the decay mode (i.e., alpha, beta, or stable in this case), and
* key: mass, value: the mass of the nuclide.

239
>

235
E=
231
231

223 . 227
= - G

ey
P N>
PO NG
e

207
a1

Q>

92 5. DICTIONARIES AND FUNCTIONS AS ARGUMENTS

Your code should use the dictionary to print out

e All the nuclides that decay by alpha decay
® The activity of 1 gram of each nuclide that is a beta emitter.

2. Simple Cryptographic Cipher

To transmit a message you desire to encrypt it. In the terminology of cryptography the
original message is the plain text and the encrypted message is called the cipher text. The
means of encrypting the message is called a cipher. A simple method is the ROT-13 cipher,
which is an example of the Caesar cipher. In this cipher the letter is replaced by a letter 13
places away in the alphabet. This can be encoded easily in a dictionary:

cipherDict = {a:"n", b:"0",..., m:"z",n:"a",...}

Write a function called cipher that takes in a string and returns an encrypted cipher text
using the ROT-13 cipher, your function must also take in cipher text and return plain text.
Your code must have the following behavior:

* Handle lower case and capital letters,

* Not do anything to characters that are not alphabet characters, e.g., numbers, punctuation,
and other characters, and

* Only take a single parameter as an argument to the function. This argument will be a string
containing the plain text or cipher text.

Test your code on the following cipher text “Gur bayl rzcrebe vf gur rzcrebe bs vpr-pernz.”
Show that it can give the correct plain text, and that it can recover the cipher text by applying
the function to the plain text.

CHAPTER

6

Testing and Debugging

OUTLINE

6.1 Testing Your Code 93 Problems 106
6.2 Debugging 96 Short Exercises 106
6.3 Assertions 99 Programming Projects 106
6.4 Error Handling 101 1. Test Function for

Further Reading 106 k-Eigenvalue 106

Als Gregor Samsa eines Morgens aus unruhigen Traumen erwachte, fand er sich in seinem Bett
zu einem ungeheuren Ungeziefer verwandelt.
One morning, as Gregor Samsa was waking up from anxious dreams, he discovered that in bed he
had been changed into a monstrous verminous bug.

-Franz Kafka, The Metamorphosis, as translated by lan Johnston

CHAPTER POINTS

e Strong testing of code is as important as e Assertions can help isolate problems inside
the ability to write codes. of large codes, especially when functions

e Finding problems inside a code, i.e., call other functions.
debugging, is an exercise in intuition as e Itis possible to catch errors and handle
well as inference from how the code fails them in Python using try-except blocks.
its tests.

6.1 TESTING YOUR CODE

For any code it is incumbent on the programmer to make sure that code accomplishes the
desired task. For instance, if a function is supposed to return the largest item in a list, the
programmer should not deliver that function to a user unless it has been shown, for a variety
of test cases, that it indeed gives the correct answer. This needs to be done anytime one writes
code where any the following apply:

Computational Nuclear Engineering and Radiological Science Using Python 9 3

DOI: 10.1016/B978-0-12-812253-2.00007-8 Copyright © 2018 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-812253-2.00007-8

94 6. TESTING AND DEBUGGING

p—

. The code will be used by somebody else;

2. The code will be used to be input for another piece of code (e.g., a function that calls
another function);

. The code will be used to make a decisions, or

4. The code will be turned in as a class assignment.

»

Writing tests for a code, and demonstrating that the code passes the tests, is essential to
giving your code credibility. Consider the NumPy dot function. We have not questioned if it
will give us the correct answer. To some degree we just believed that the super smart people
at NumPy Inc. would not release faulty code. This implicit belief is correct, but not because of
the corporate imprimatur of the developers. In fact NumPy is the product of a community of
hundreds of developers, and millions of users. The developers have built tests into the source
code that take the known value of the dot product, and compare it to the value returned by
np.dot. Users of the code can view these tests inside the NumPy source code (i.e., the code
that gets executed when NumPy is used). This test, and thousands like it, are run on a regular
basis to make sure the code is behaving properly. Furthermore, the user community acts as
a secondary test bed. Users of NumPy can report problems with the code to the developers,
along with a minimal example demonstrating the flaw, and these will be resolved.

Taken together, we do not believe that np . dot works because some imperious entity tells
us; it is because there is evidence of testing, and a user community to help identify errors
that might have been missed. The ability to see which tests are used is a clear benefit of an
open-source product such as NumPy. Were we not able to view the source code, we would
have to rely on the quality of the software vendor, which can vary wildly from vendor to
vendor.

In many of our cases, we will need to demonstrate that a piece of code we develop to make
a numerical evaluation is giving us the correct answer. To do this we can often use exact
solutions to simple problems, the known limits of a system, or look at the overall behavior
of the solution compared with some theoretical behavior. It is important that we have more
than a single test because a single test could be passed for the wrong reasons.

A simple example of a test being passed for the wrong reasons is a function that is sup-
posed to compute the probability for an event. If the function returns a value of 0.5, no matter
the inputs, it would pass a test checking whether the probability is in the interval [0, 1]. Fur-
thermore, it would pass a test designed to check if the function correctly computes a value
of 0.5 for a particular set of inputs. Clearly, there are many tests that this function would not
pass, but selecting just a few tests may not cover enough of the function’s intended use.

A more detailed example of testing, and why multiple tests are needed is presented below.
Consider the following code to compute the multiplication factor (k-effective, kegf) for a sys-
tem of where nuclear fission is present, under the approximation of a one-group, bare reactor
[7]. The formula for the multiplication factor is

et = 2
eff = 1+ Lng ,
where
vEf
koo = ,

2a

6.1. TESTING YOUR CODE 95

and
L2 _flzz___l___
Y, 3XuX)
and if the reactor is a slab we have
2 (T2
5 =(%)

The notation here is standard: X¥,, X, and X} are the macroscopic absorption, transport,

and fission cross-sections with units of inverse length, v is the mean number of neutrons per

fission, and D is the diffusion coefficient with units of length. The thickness of the slab is X.
The code to compute k-effective is below:

In [1]: import numpy as np
def k_effective(slab_length, nuSigma_f, Sigma_a, Diff_coef):
""" Computes the eigenvalue
(k-effective) for a slab reactor

Args:
slab_length: the length of the slab
nuSigma_f: value of nu * the macro. fission x-section
Sigma_a: value of the macro. absorption x-section
Diff_coef: the diffusion coefficient

Returns:
The value of k-effective
k_infinity = nuSigma_f / Sigma_a #k-infinity
L = Diff_coef/Sigma_a #Diffusion length
B = np.pi/slab_length {ffgeometric buckling.
k = k_infinity/(1+L*%*2 % Bxx2)
return k

To make sure that our function is correct, there are several tests we could run to make sure
that the function behaves the way that it should. A simple one would check that k — k, as
the slab size goes to infinity. The code below does this.

In [2]: import matplotlib.pyplot as plt
#20 points from 100 to 10"3
lengths = np.logspace(0,3,20)

nuSigma_f = 1.1
Sigma_a = 1.0
Diff_coef = 1.0

k_vector = k_effective(lengths, nuSigma_f,

Sigma_a, Diff_coef)
plt.semilogx(lengths,k_vector,’o-")
plt.semilogx(lengths,nuSigma_f/Sigma_a*np.ones(20))
plt.xlabel(’STab Width (cm)”)
plt.ylabel (*k_eff”)
plt.show()

96 6. TESTING AND DEBUGGING

107 10
Slab Width (cm)
Viewing the resulting figure, we can see that the result goes to k, as the slab size goes to
infinity. Next, we test a particular case where we know the answer. If ¥, = D and X =, the
system will have k-effective equal to koo /2. Here is that test:

In [3]: test_k = k_effective(slab_length = np.pi, nuSigma_f =1,
Sigma_a = 1, Diff_coef = 1)
if np.fabs(test_k - 0.5) < 1.0e-8:
print("The test passed, k =",test_k)
else:
print("Test failed, you should probably",
"fix the code, k =", test_k)

The test passed, k = 0.5

You might be tempted to think that our code is fine, but it turns out that there is a problem
(or bug) in the code. Let’s try the test again, this time with D =2X,. The answer should be
one-third of k.

In [4]: test_k = k_effective(slab_length = np.pi, nuSigma_f = 1,
Sigma_a = 1, Diff_coef = 2)
kinf = 1.0
if np.fabs(test_k - 1.0/3.0) < 1.0e-8:
print("The test passed, k =",test_k)
else:
print("Test failed, you should probably",
"fix the code, k =", test_k)

Test failed, you should probably fix the code, k = 0.2

It is clear that our code has managed to pass some tests, and has failed the third test we
tried. Now begins our hunt to find the bug that is giving us the error.

6.2 DEBUGGING

Now that we have identified that our code has a bug, the process of finding that error is
called debugging. Given that we ran three tests, and two of them passed we can use how the
tests are different to identify where the bug might be.

6.2. DEBUGGING 97

The first test checked thatas s1ab_1ength went to infinity, k — k. Looking at the equa-
tions we can see that as the slab length goes to infinity, B, goes to 0. Therefore, this test just
checks that ko is calculated properly, and indeed it is. The second test was designed so that
B, would be 1 and L? would be 1. In this instance things behaved like they should. When we
switched things so that L? would be 2 and B, would be 1, we had a failure. Therefore, the
bug does not appear when L? = 1.

This is a covert bug (in that it is not apparent without a test). Take a moment to look at the
function definition, and the equations it was trying to implement to see if you can identify
the bug before moving on.

The code below has the bug fixed. It is a very small change, but often the hardest bugs to
find are the ones that require just a small correction.

In [5]: import numpy as np
def k_effective(slab_Tlength, nuSigma_f, Sigma_a, Diff_coef):
""" Computes the eigenvalue
(k-effective) for a slab reactor

Args:
slab_Tlength: the length of the slab
nuSigma_f: value of nu = the macro. fission x-section
Sigma_a: value of the macro. absorption x-section
Diff_coef: the diffusion coefficient

Returns:
The value of k-effective
k_infinity = nuSigma_f / Sigma_a #k-infinity
L2 = Diff_coef/Sigma_a #Diffusion length squared
B = np.pi/slab_length fgeometric buckling.
k = k_infinity/(1+L2 * Bx%x2)
return k

Then, re-running the test from before, we get the correct answer.

In [6]: test_k = k_effective(slab_length = np.pi, nuSigma_f = 1,
Sigma_a = 1, Diff_coef = 2)
kinf = 1.0
if np.fabs(test_k - 1.0/3.0) < 1.0e-8:
print("The test passed, k =",test_k)
else:
print("Test failed, you should probably",
"fix the code, k =", test_k)

The test passed, k = 0.3333333333333333

The bug in the code was that L? and L were mixed up. That is why the error did not show
up when L? = 1 because in that case the values are the same.

In this example we see how tests can help us debug. By running several tests we can hone
in on the error in the code: the first test demonstrated that ko, was correctly calculated, the
second test showed that when L = 1, the code was correct. Note also that only one test is not
sufficient, as we saw. This is why you want multiple tests for your code, you want to do more

98 6. TESTING AND DEBUGGING

than just make sure the code works in one limit or one case, you need to test several possible
cases and see that the code works in all of them.

Debugging is a mindset. When looking at your code you need to be thinking critically
about how the code works, and what the value of a variable is after each line, etc. Then you
want to compare that with what the code is supposed to do. This is one way that comments
can be important: they indicate the intension of the programmer and what the code should
be doing. When comparing code to what it should be doing, a keen attention to detail is
necessary because the error could be as small as a single character.

Unfortunately, there is no simple recipe for debugging code. Experience is an important
ingredient because the errors that appear in code often repeat, and having made a mistake
once will make it possible for the programmer to look for that mistake again in a similar piece
of code. The value of experience becomes apparent when a novice programmer presents code
with an error to an instructor or another expert. Sometimes without even looking at the code,
the expert can identify the problem based on the described behavior. Such an occurrence can
cause the novice programmer to despair that he or she “will never be that good”, or some
other self-defeating watchword. Typically, the expert can diagnose the problem so quickly
because of that expert’s past mistakes.

Despite not having a simple recipe, when debugging it can be useful to ask the following
questions:

¢ How is the code failing?
¢ What is the code doing correctly?
* What pieces of the code are most likely to have an error?

Moreover, your best tool for debugging is the print function. When in doubt have the
code print out what happens after every line and check that with your intuition/expectation.
For example, if there is a mistake in a formula you could print out the result and compare it
with a hand calculation.

BOX 6.1 LESSON LEARNED

The best debugging tool is the print print statements, like a chef preparing steak
function. When you want to figure out what au poivre, to see what each line is do-
is going on in your code, pepper it with ing.

There are other tools for debugging. If you use IDLE, Anaconda, or another integrated de-
velopment environment (such as Visual Studio or XCode), there is a built-in debugger. One
of the features a debugger allows you to do is set breakpoints. A breakpoint is a point in
the code where execution stops, and you can enter commands interactively to see what the
value of different variables are, for example. Also, once the code stops at a breakpoint you
can step through the code line by line and see how the code is actually executing, e.g., is a
particular if statement evaluating to true or false, or how many times does a loop execute.
For more information about the debugger check your development environment’s documen-
tation.

6.3. ASSERTIONS 99

6.3 ASSERTIONS

In life it pays to be assertive. The same is true in programming. With the assert statement,
you can check assumptions that are embedded in your code using an assert statement. The
assert statement takes an expression as input. If the expression evaluates to true, then the
assert does nothing. However, if the expression evaluates to false, an error is thrown and
the code stops executing. The benefit of the assert statement is that you can make the code
stop dead in its tracks, if some assumption made is violated. Then, Python will tell you where
the code stopped.

BOX 6.2 PYTHON PRINCIPLE

The assert statement is called using the evaluates to true, nothing happens. When
syntax expression evaluates to false, an error oc-
curs and code execution stops. Python will
indicate where in the code the assert state-

where expression is a python expression ment failed. This type of error is called an
that evaluates to true or false. If expression AssertionError.

assert expression

As an example, we use our k_ef fective function from before. Physically, all of the cross-
sections in the model we implemented should be non-negative. However, the code will work
even if the inputs are negative:

In [7]: test_k = k_effective(slab_length = np.pi, nuSigma_f =1,
Sigma_a = -2, Diff_coef = 1)
print("With negative Sigma_a, k =", test_k)

With negative Sigma_a, k = -1.0

The code worked, but the answer is non-sensical. We would like to tell the user that k_ef -
fective was called with an improper value. We could just change the help text to indicate
that each input needs to be greater than zero. However, if we do this it will not prevent the
user from running the code with negative cross-sections. Moreover, if the user does not re-
spect the instruction for the function inputs, the function will behave strangely or give an
error

In [8]: test_k = k_effective(slab_length = np.pi, nuSigma_f =1,

Sigma_a = -1, Diff_coef = 1)
print("With negative Sigma_a, k =", test_k)

ZeroDivisionError Traceback (most recent call last)

<ipython-input-23-a6b005d701c7> in <module>()

100 6. TESTING AND DEBUGGING

----> 1 test_k = k_effective(slab_length = np.pi, nuSigma_f =1,
Sigma_a = -1, Diff_coef = 1)
2 print("With negative Sigma_a, k =", test_k)

<ipython-input-21-2a945842ebab> in
k_effective(slab_length, nuSigma_f, Sigma_a, Diff_coef)

15 L2 = Diff_coef/Sigma_a #Diffusion length

16 B = np.pi/slab_length #geometric buckling.
---> 17 k = k_infinity/(1+L2 % B*%2)

18 return k

ZeroDivisionkError: float division by zero

In such a case even though the function caller made a mistake, by passing in a negative
cross-section, because the code failed in the function k_effective, the programmer of that
function is likely to be blamed.

This is where the assert statement comes in. It can assure that the arguments to the func-
tion are what they should be. Therefore, the function can throw an error when it is called
improperly. Below, we do this for k_effective; the docstring is not shown for brevity.

In [9]: import numpy as np
def k_effective(slab_length, nuSigma_f, Sigma_a, Diff_coef):
assert (slab_length > 0)
assert (nuSigma_f > 0)
assert (Sigma_a > 0)
assert (Diff_coef > 0)
k_infinity = nuSigma_f / Sigma_a #k-infinity
L2 = Diff_coef/Sigma_a #Diffusion length
B = np.pi/slab_length Jgeometric buckling.
k = k_infinity/(1+L2 % B*%2)
return k

If we call this function with invalid parameters, it will give an error and indicate where the
error occurred.

In [10]: test_k = k_effective(slab_length = np.pi, nuSigma_f =1,
Sigma_a = -1, Diff_coef = 1)
print("With negative Sigma_a, k =", test_k)

AssertionError Traceback (most recent call Tlast)

<ipython-input-10-a6b005d701c7> in <module>()
----> 1 test_k = k_effective(slab_length = np.pi, nuSigma_f =1,
Sigma_a = -1, Diff_coef = 1)
2 print("With negative Sigma_a, k =", test_k)

6.4. ERROR HANDLING 101

ipython-input-9-b097a84a2036> in
k_effective(slab_length, nuSigma_f, Sigma_a, Diff_coef)

14 assert (slab_length > 0)
15 assert (nuSigma_f > 0)
---> 16 assert (Sigma_a > 0)
17 assert (Diff_coef > 0)
18 k_infinity = nuSigma_f / Sigma_a #k-infinity

AssertionError:

Notice that Python tells us which assertion failed so we know that the function call had
a bad value of Sigma_a. The program still fails, but it tells us exactly why. Additionally, it
indicates that the error is not in the function itself, but with the input parameters.

We can also use assertions to test that the code behaves the way we expect. In the case of
this function, we know that k is in [0, ko]. Therefore, we can embed that check in two uses of
assert.

In [11]: import numpy as np
def k_effective(slab_length, nuSigma_f, Sigma_a, Diff_coef):
assert (slab_length > 0)
assert (nuSigma_f > 0)
assert (Sigma_a > 0)
assert (Diff_coef > 0)
k_infinity = nuSigma_f / Sigma_a #k-infinity
L2 = Diff_coef/Sigma_a #Diffusion length
B = np.pi/slab_length {geometric buckling.
k = k_infinity/(1+L2 = B*x%2)
assert k >= 0
assert k <= k_infinity
return k

These types of assert statements can help you debug later on down the road. This is es-
pecially true when you have functions being called by other functions. In these situations
assert statements can assure that functions were called properly and help isolate where
any problems lie.

6.4 ERROR HANDLING

There are times when you want to handle an error so that either the program can continue
or print a useful error message before exiting. The complete topic of error handling is outside
the scope of this work, and in the purview of writing production software, which we are not
tackling. Nevertheless, error handling can make debugging and finding errors in code easier.
Additionally, we can use error handling to help us execute tests of our code.

Error handling is often called exception handling. When a program is running, if it en-
counters an error it can raise an exception. The exception will give some indication of what
the error is. In Python, you can place some code in a special block of code called a t ry block.

102 6. TESTING AND DEBUGGING

TABLE 6.1 Common Exceptions in Python

Exception Meaning

AssertionError The argument passed to an assert was False
FloatingPointError An error happened in a floating point calculation
KeyError A dictionary key that was not valid was used
KeyboardInterrupt The user pressed ctrl-c to exit

NameError An undefined variable was used to exit
OverflowError A number too large was created /used
Recursionkrror Function called itself too many times
TypeError The wrong type was used in an expression

ZeroDivisionError Attempted to divide by zero

After the try block, the types of exception to handle are listed using except blocks. Only
the exceptions that are explicitly handled are caught.

One type of exception is the ZeroDivisionError that is raised when a number is di-
vided by zero. First, we will look at an uncaught exception:

In [12]: z = 10.5/0

ZeroDivisionError Traceback (most recent call last)

<ipython-input-12-011b064d3b54> in <module>()
-->1 2z =10.5/0

ZeroDivisionError: float division by zero

To catch this exception and proceed in the code, we use a try block and except block as

In [13]: try:
z =10.5/0
except ZeroDivisionError:
print("You cannot divide by 0")

You cannot divide by 0

Notice that the except block takes the name of the exception as an argument (in this case
ZeroDivisionError). Alist of common exception types, and what they mean, are given in
Table 6.1.

One thing that happens when you catch a raised exception, is that the program will con-
tinue on. This can be a useful feature, but often times you want to catch an exception, print a
useful error message, and then have the program end. This can be done by adding a raise
statement to the end of the except block. The raise statement tells Python to still fail due
to the exception, despite the fact that we caught it. This changes the previous example by one
line, but changes the output and forces the program to quit:

6.4. ERROR HANDLING 103

In [14]: try:
z = 10.5/0
except ZeroDivisionError:
print("You cannot divide by 0, exiting")
raise

You cannot divide by 0, exiting

ZeroDivisionError Traceback (most recent call Tast)

ipython-input-14-525c0fef7adc> in <module>()
1 try:
---> 2 z =10.5/0
3 except ZeroDivisionError:
4 print("You cannot divide by 0, exiting")
5 raise

ZeroDivisionError: float division by zero

BOX 6.3 PYTHON PRINCIPLE

and ExceptionB), the code in that except
block will be executed and the code will con-

To handle errors, use a try block com-
bined with except blocks. These have the

form tinue. See Table 6.1 for a list of common ex-

try: ceptions. After executing the except block,
[SomeCode] the code will continue as normal.

except ExceptionA: The last except block may not have an ex-
[ExcepCodeAl ception type. This block will catch all other

except ExceptionB: X) -)
[ExcepCodeB] exceptions and execute its code, in this case

. [CatchAl1]. This should be used with cau-

except: tion as unexpected exceptions may arise that

[CatchAl1]

The code in the try block, [SomeCode], will
be executed. If there is an exception raised
while running the code in the try block that
matches one of the parameters in the except
blocks below (in this example, ExpectionA,

causes errors later in the program.

The raise statement may be used to raise
an exception, and if called inside an except
block will raise the current exception type.
This can be used to make Python quit the pro-
gram due to an error.

For a more in depth example of error handling we return to the function k_effective.
Previously, we added assert statements to make sure that the user gave the function all posi-
tive inputs. It would be more useful to the user, and for debugging, to have the code output
what the values of the inputs were, if one of the assert calls fails. We do this in the code
below (again without the docstring for brevity):

104 6. TESTING AND DEBUGGING

In [15]: import numpy as np
def k_effective(slab_length, nuSigma_f, Sigma_a, Diff_coef):

try:
assert (slab_length >0)
assert (nuSigma_f > 0)
assert (Sigma_a >0)
assert (Diff_coef > 0)

except AssertionError:
print("Input Parameters are not all positive.")
print("slab_length =",slab_length)
print("nuSigma_f =",nuSigma_f)
print("Sigma_a =",Sigma_a)
print("Diff_coef =",Diff_coef)
rajse

except:
print("An unexpected error occurred when",

"checking the function parameters")

raise

k_infinity = nuSigma_f / Sigma_a #k-infinity
L2 = Diff_coef/Sigma_a #Diffusion length

B = np.pi/slab_length fgeometric buckiing.

k = k_infinity/(1+L2 * Bxx2)

assert k >=0

assert k <= k_infinity

return k

With this function, if it is passed a negative value, will raise an AssertionError. The
code catches this error, prints out the input parameters to the user, and then exits by raising
the exception. This functionality is demonstrated below.

In [16]: test_k = k_effective(slab_length = np.pi, nuSigma_f =1,
Sigma_a = -1, Diff_coef = 1)

Input Parameters are not all positive.
slab_length = 3.141592653589793
nuSigma_f =1

Sigma_a = -1

Diff_coef =1

AssertionkError Traceback (most recent call Tast)

<ipython-input-18-ee866f2992f9> in <module>()
1 test_k = k_effective(slab_length = np.pi, nuSigma_f =1,
----> 2 Sigma_a = -1, Diff_coef = 1)

<ipython-input-17-83b9328123be> in
k_effective(slab_Tength, nuSigma_f, Sigma_a, Diff_coef)
4 assert (slab_length >0)
5 assert (nuSigma_f > 0)

6.4. ERROR HANDLING 105

---> 6 assert (Sigma_a >0)
7 assert (Diff_coef > 0)
8 except AssertionError:

AssertionError:

Also, the function has a generic except statement that will catch any other errors in the
try block. Because the try block involves comparison of numbers, if we pass a string as
a parameter, there will be an error when checking if that parameter is greater than 0. This
exception will be caught by the generic except statement, and the code prints out an error
message, and then quits:

In [17]: test_k = k_effective(slab_length = "Pi", nuSigma_f = 1,
Sigma_a = -1, Diff_coef = 1)

An unexpected error occurred when checking the function parameters

TypeError Traceback (most recent call Tast)

<ipython-input-22-6c226c0ff76e> in <module>()
1 test_k = k_effective(slab_length = "Pi", nuSigma_f =1,
----> 2 Sigma_a = -1, Diff_coef = 1)

<ipython-input-21-72247d51776d> in
k_effective(slab_length, nuSigma_f, Sigma_a, Diff_coef)
2 def k_effective(slab_length, nuSigma_f, Sigma_a, Diff_coef):

3 try:

----> 4 assert (slab_length >0)
5 assert (nuSigma_f > 0)
6 assert (Sigma_a >0)

TypeError: unorderable types: str() > int()

The exception is a TypeError, and was not anticipated, so the program tells the user
something unexpected happened.

The try-except structure is a useful tool when writing functions that will be called by
other functions, or when there is a chance for input parameters to have the wrong form. They
go beyond assert statements to give the programmer the ability to tell the user what went
wrong, and possibly fix the error, before either continuing or quitting.

The concepts of testing, debugging, assertions, and exceptions can be combined to make
a capability to readily test and find bugs in code. In the programming exercises below, ex-
ceptions and assertions are combined to run a variety of tests on a piece of code, and to raise
assertions when tests fail.

106 6. TESTING AND DEBUGGING

FURTHER READING

There are not many books the discuss the process of debugging, but a book by Butcher
[8] does discuss how to build the mindset of a master debugger. For a more detailed, though
perhaps too detailed for novices, description of exception handling in Python see the Python
tutorial https:/ /docs.python.org/3/tutorial /errors.html.

PROBLEMS

Short Exercises

6.1. Write an assert statement that guarantees a variable n is less than 100 and is positive.
6.2. Debug the following code:

for i in list_variable:
list_variable = [’one’,2,’II1’, quatro’]
print(i)

6.3. Write a function called soft_equivalence that takes as input 3 parameters: a, b, and
tol. The function should return True if the absolute difference between a and b is
less than tol, and return False otherwise. The parameter tol should be an optional
parameter with a default value of 107°.

6.4. Create a list of tests you would perform to test a function solve (A, b) that returns the
solution to the linear system Ax =b. You do not need to write any code, just describe
the tests, either in equations and/or words.

Programming Projects

1. Test Function for k-Eigenvalue

In this problem you will create a test function that performs all of the tests we performed
above on the k-eigenvalue function k_effective. Create a function named test, that takes
no input parameters. This function needs to execute the three tests the we developed for the
k_effective function: the infinite medium case and the two particular value cases. Each
test should raise an assertion error if the test fails to be within some tolerance, appropriately
defined by you, of the correct value. If an assertion error is raised, the error needs to be
caught, and which test(s) failed should be printed to the screen. The function should return
either True, if all of the tests passed, and False, if any test failed.

Demonstrate that you test function works on the k_effective as we defined it correctly
above, and demonstrate that it will catch an error in the calculation, if a bug is inserted.

https://docs.python.org/3/tutorial/errors.html

PART II

NUMERICAL METHODS

CHAPTER

7

Gaussian Elimination

OUTLINE

7.1 A Motivating Example 109 Further Reading 127
7.2 A Function for Solving 3 x 3 Problems 127
Systems 112 Short Exercises 127
7.3 Gaussian Elimination for a Programming Projects 127
General System 115 1. Xenon Poisoning 127
7.4 Round off and Pivoting 118 2. Flux Capacitor Waste 128
7.5 Time to Solution for Gaussian 3. Four-Group Reactor Theory 128
Elimination 124 4. Matrix Inverse 129

Vaughn's been working on a couple of new pitches, the Eliminator and the Humilator, to complement
his fastball, the Terminator.

“Harry Doyle” in the movie Major League I

CHAPTER POINTS

e The most natural way to solve systems of e The number of operations needed to
linear equations by hand can be perform Gaussian elimination scales as the
generalized into the algorithm known as number of equations cubed, O (n?), though
Gaussian elimination. on moderately-sized matrices we observe
e This algorithm works well for almost all slightly lower growth in the time to
systems, if we allow the order of the solution.

equations to be rearranged.

7.1 A MOTIVATING EXAMPLE

In this chapter we will be interested in computing the solution to a system of linear,
algebraic equations. The solution of such systems is the basis for many other numerical tech-

Computational Nuclear Engineering and Radiological Science Using Python
DOI: 10.1016/B978-0-12-812253-2.00009-1 109 Copyright © 2018 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-812253-2.00009-1

110 7. GAUSSIAN ELIMINATION

niques. For example, the solution of nonlinear systems is often reduced to the solution of
successive linear systems that approximate the nonlinear system.

We desire to write a generic algorithm for solving linear systems. We want the systems to
have arbitrary size, and arbitrary values for the coefficients. To develop this algorithm, we
will start with a concrete example, and then generalize our approach.

We will begin with the following system:

3x1 +2xp + x3 =06, (7.1a)
—x1 4+ 4xy + 5x3 =8, (7.1b)
2x1 — 8xp + 10x3 = 4. (7.1¢)

In matrix form this looks like

3 2 1 X1 6
-1 4 5 x|=18
2 =8 10/ \x3 4

Another way to write this system is a notational shorthand called an augmented matrix,
where we put the righthand side into the matrix separated by a vertical line:

2 -8 10| 4

We will store this matrix in Python for use later:

In [1]: import numpy as np
aug_matrix = np.matrix([(3.0,2,1,6),(-1,4,5,8),(2,-8,10,4)1)
print(aug_matrix)

(r 3. 2. 1.
[-1. 4. 5.
[2. -8. 10.

~ 00 o
[E RS R}

1]

A straightforward way to solve this system is to use the tools of elementary algebra and
try to eliminate variables by adding and subtracting equations from each other. We could do
this by taking the second row, and adding to it 1/3 times the first row. Here’s how that’s done
in Python:

In [2]: ffadd row 2 to 1/3 times row 1
rowl3 = aug_matrix[01/3 #rowl * 1/3
new_row2 = aug_matrix[1] + rowl3 fadd 1/3 row 1 to row 2
#replace row 2
aug_matrix[1l,:] = new_row2
print("New matrix =\n",aug_matrix)

New matrix =

([3. 2. 1. 6.]
[0. 4.66666667 5.33333333 10.]
[2. -8. 10. 4. 1]

7.1. A MOTIVATING EXAMPLE 111

This eliminated x; from the second equation. The next step would be to eliminate x; from
the third equation by adding —2/3 times row 1 to row 3:

In [31: #add row 3 to -2/3 times row I
row23 = -2%aug_matrix[01/3 #rowl * -2/3
new_row3 = aug_matrix[2] + row23 ffadd -2/3 row 1 to row 3
#freplace row 3
aug_matrix[2] = new_row3
print("New matrix =\n",aug_matrix)

New matrix =

(L 3. 2. 1. 6.]
[0. 4.66666667 5.33333333 10.]
[0. -9.33333333 9.33333333 0. 1]

The x; term from the third equation can be removed by adding to row 3 the quantity 9% / 4%
times row 2:

In [47: #fadd row 3 to 9.33333/4.66666 times row 2
modrow = (9+1./3)/(4+2./3)*aug_matrix[1] ffrow2 * (-9+1./3)/(4+2.0/3)
new_row3 = aug_matrix[2] + modrow ffadd -2/3 row 1 to row 3
f#freplace row 3
aug_matrix[2] = new_row3.copy()
print("New matrix =\n",aug_matrix)

New matrix =

(r 3. 2. 1. 6.]
[0. 4.66666667 5.33333333 10.]
[0. 0. 20. 20. 1]

Notice that we have manipulated our original system into the equivalent system

32 1] 6
2 1

0 42 si |10 |,

0 0 20|20

or

3 2 1 X1 6
0 4% 51 x| =110
0 0 20 x3 20

We can easily solve this via system using a process called “back substitution”. In back sub-
stitution we start at the last row and solve each equation in succession. In this particular
example, take the last equation and solve for x3, then plug the value of x3 into the second
equation, solve for x,, and then plug both into the first equation and solve for xj.

In [5]: #backsubstitution
x3 = aug_matrix[2,3]1/aug_matrix[2,2] #solve for x3
print("x3 =",x3)
#now solve for x2
x2 = (aug_matrix[1,3] - x3xaug_matrix[1,2])/aug_matrix[1,1]

112 7. GAUSSIAN ELIMINATION

print("x2 =",x2)

#now solve for xI

x1 = (aug_matrix[0,3] - x3xaug_matrix[0,2]-
x2xaug_matrix[0,1]1)/aug_matrix[0,0]

print("x1l =",x1)

x3 =1.0
x2 =1.0
x1 =1.0

Therefore, the solution we get is
x1=1, x =1, x3=1.

We can check this solution by multiplying it by the original coefficient matrix, and showing
that the result is equal to the system’s righthand side:

In [6]: A =np.matrix([(3.0,2,1),(-1,4,5),(2,-8,10)])
x =mnp.array([1,1,1])
b =np.array([6,8,47)
print(np.dot(A,x),"-",b,"=",np.dot(A,x)-b)

[[6. 8. 4.11 -[684]1=1[L0. 0. 0.]1]

Our solution does indeed satisfy the original system. The method we used to solve this
system goes by the name Gaussian elimination. The basic idea is to march through the system
and eliminate variables one by one until the final equation of the system has only a single
unknown. Then back substitution is used to solve for each variable, starting with the last one.

The formula for back-substitution can be written succinctly by noticing that each x; is the
sum of solutions of the unknowns further down the vector divided by the diagonal element
of the modified matrix:

3
1
xi:; bi_ Z Aij-xi , l=1,2,3 (72)
ii j=i+1

with A being the matrix after applying Gaussian elimination.

7.2 A FUNCTION FOR SOLVING 3 x 3 SYSTEMS

The procedure we used to solve the system given in Eq. (7.1) can be generalized to any
coefficients and righthand side. We could just copy and paste the code above, and then change
the numbers if we wanted to solve another system, but that would be prone to errors. In
the next code block, we define a function that mimics our algorithm above to change the
augmented matrix into a form ready for back substitution. The function is then tested on the
system in Eq. (7.1).

7.2. A FUNCTION FOR SOLVING 3 x 3 SYSTEMS 113

In [7]: def GaussETim33(A,b):
"""create a Gaussian elimination matrix for a 3x3 system

Args:
A: 3 by 3 array
b: array of length 3
Returns:
augmented matrix ready for back substitution
fcreate augmented matrix
aug_matrix = np.zeros((3,4))
aug_matrix[0:3,0:3] = A
aug_matrix[:,3] = Db
faugmented matrix is created
for column in range(0,3):
for row in range(column+l,3):
mod_row = aug_matrix[row,:]
mod_row -= (mod_row[column]/aug_matrix[column,column]x*
aug_matrix[Lcolumn,:1)
aug_matrix[row] = mod_row
return aug_matrix
f#ftest function on the problem above
aug = GaussE1im33(A,b)

print(aug)
(L 3. 2. 1. 6.]
0. 4.66666667 5.33333333 10.]
[0. 0. 20. 20. 1]

As we can see, this gives us the same result we obtained from our hand calculation. We
should test this function more thoroughly, but we will return to that later. The next step is to
write a back substitution function that implements Eq. (7.4)

In [8]: def BackSub33(aug_matrix,x):
"""back substitute a 3 by 3 system after Gaussian elimination

Args:
aug_matrix: augmented matrix with zeros below the diagonal
x: length 3 vector to hold solution
Returns:
nothing
Side Effect:
X now contains solution
f#start at the end
for row in [2,1,0]:
RHS = aug_matrix[row,3]
for column in range(row+1,3):
RHS -= x[column]*aug_matrix[row,column]
x[row] = RHS/aug_matrix[row,row]
return
X = np.zeros(3)
BackSub33(aug,x)
print("The solution is

, X)

114 7. GAUSSIAN ELIMINATION

The solution is [1. 1. 1.]

The back substitution function has the first example of using a side effect to change an input
parameter that we have seen up to this point. To illustrate why we do this, we will revisit the
topic of mutable types being passed to a function. Recall, the way that Python and NumPy
work: when a NumPy array is passed to a function, the function does not copy the array into
local scope. Rather, the function can modify the original values of the array. This is accom-
plished through a construct called pass by reference. What this means is that the function
gets a reference to the memory where the original array lives, and can therefore modify that
memory. The function does not make a copy of the NumPy array because the array could
easily have millions of elements, and it is a bad idea to be heedlessly copying these large data
structures because the computer could easily run out of memory. The upshot of pass by ref-
erence in the code above is that when we pass x into the function BackSub33, the function
puts the solution into x. This changing of memory outside the function is a side effect because
it is a way that a function interacts with the rest of the code not through the mechanism of
returning information from a function.

NumPy arrays are not the only data structures that are passed by reference to a function.
Any data type that can have its size modified is called a mutable type, and these are passed
by reference to functions. We have already encountered two other mutable types in python:
the list and dictionary. This means if you pass either of these two types to a function, that
function can change the list or dictionary. It is good programming practice to make explicit
in the comments and docstring what the side-effects are of a function so that the user knows
when a function is called the original data may be changed.

BOX 7.1 PYTHON PRINCIPLE

Mutable data types such as lists, dictio- type when it is the parameter of the function.
naries, and NumPy arrays, are passed by ref- When a function changes the input data, this
erence to functions. This means that a func- is a side effect, and it should be noted in the
tion can change the values of a mutable data function’s docstring.

We need more vigorous testing of our function above to convince ourselves that it is a tool
for solving a general 3 x 3 system. To make this a general test, we will select a random matrix
(using np.random.random) and then multiply it by a random vector to get the righthand
side. Then when we solve the system the solution should be the original vector. It would be
best to do this many times using a different matrix each time. The code below performs 100
such tests and asserts that the maximum absolute difference between the computed solution
and the true solution should be less than 10~!2. An assert checks this, and error handling
is used to give information about a failed test.

In [9]: tests = 100
for i in range(tests):
X = np.random.rand(3)
A = np.random.rand(3,3)
b = np.dot(A,x)

7.3. GAUSSIAN ELIMINATION FOR A GENERAL SYSTEM 115

aug = GaussE1im33(A,b)
sol = np.zeros(3)
BackSub33(aug,sol)
diff = np.abs(sol-x)
try:

assert(np.max(diff) < 1.0e-12)
except AssertionError:

print("Test failed with")

print("A = ",A)
print("x = ",x)
raise

print("All Tests Passed!")

A1l Tests Passed!

These tests pass, and we have some confidence that our algorithm is working. Later we will
see how it might be improved to tackle some pathological cases.

7.3 GAUSSIAN ELIMINATION FOR A GENERAL SYSTEM

The code we wrote above only solved 3 x 3 systems, that is a useful tool, but we would
not want to write a different function for every size system we want to solve. That is, we do
not want to have to write a 4 x 4 solver and a 5 x 5 solver, etc. Therefore, we need to have a
general Gaussian elimination code to solve the system

Ax=b, (7.3)

where x and b are vectors of length N, and A is an N x N matrix.

Due to the way we structured our 3 x 3 code, the main change we need to make to adapt
the function systems of size N is in the for loops. On the whole the code is unchanged: all
we must do is replace the 3’s in the function with N’s. The next code block has this function,
and a 4 x 4 test that has solution x = (1, 2, 3, 4).

In [10]: def GaussElim(A,b):
"""create a Gaussian elimination matrix for a system

Args:

A: N by N array

b: array of length N
Returns:

augmented matrix ready for back substitution
[Nrow, Ncol] = A.shape
assert Nrow == Ncol
N = Nrow
assert b.size ==
Jfcreate augmented matrix
aug_matrix = np.zeros((N,N+1))
aug_matrix[0:N,0:N] = A

116

O O O W

7. GAUSSIAN

aug_matrix[:,N] = b
Jffaugmented matrix is created
for column in range(0,N):

for row in range(column+1

ELIMINATION

NP

mod_row = aug_matrix[row,:]

mod_row -= (mod_row[column]/aug_matrix[column,column]x
aug_matrix[column,:1)

aug_matrix[row] = mod_row

return aug_matrix

f#let’s try it on a 4 x 4 to start
A =np.array([(3.0,2,1,1),(-1,4,5

,-2),(2,-8,10,-3),(2,3,4,5)1)

answer = np.arange(4)+1.0 #1,2,3,4

b = np.dot(A,answer)
aug = GaussETim(A,b)

print(aug)
2. 1.
4.66666667 5.33333333
0. 20.
0. 0.

1. 14.]
-1.66666667 18.66666667]
-7 32.]

5.42857143 21.714285711]

Notice that we had to determine the size of the system by looking at the size of the matrix
and the vector. Also, using assert statements, the function checks that the sizes of the input
data are compatible. The next step is to define the back substitution function. This function
will generalize Eq. (7.4) to have the summation going to N rather than 3, and letting i range
from1to N:

N
1
Xi = - bi — Z Aij-xi s = 1, 2, 3. (74)

j=i+1

The resulting code is

In [1117:

def BackSub(aug_matrix,x):

"""back substitute a N by N system after Gauss elimination

Args:

aug_matrix: augmented matrix with zeros below the diagonal
x: length N vector to hold solution

Returns:
nothing
Side Effect:
X now contains solution

nwnn

N = x.size

[Nrow, Ncol]l = aug_matrix.shape

assert Nrow + 1 == Ncol

assert N == Nrow

for row in range(N-1,-1,-1):
RHS = aug_matrix[row,N]

for column in range(row+l,

N :

RHS -= x[column]*aug_matrix[row,column]

7.3. GAUSSIAN ELIMINATION FOR A GENERAL SYSTEM 117

x[row] = RHS/aug_matrix[row,row]
return

X = np.zeros(4)
BackSub(aug,x)
print("The solution is

, X)

The solution is [1. 2. 3. 4.]

Applying the back substitution function gives us the expected solution, x=(1, 2, 3, 4).

Now that we have a generic solver, we can make a large matrix that has 2.01 on the diag-
onal and —1 on the immediate off diagonals, and create a simple righthand side. This code
is an example of automatically filling in a matrix. This is an important technique to master
because there are many different methods available for solving linear systems, yet filling the
matrix can be the hardest part of solving the problem. In the code below we fill the diagonal
by setting up a range that runs from 0 to the number of rows in the matrix minus one. We then
fill the off diagonals using similar ranges. This type of matrix is called a tridiagonal matrix
because it has entries in three diagonal lines in the matrix. We will see these matrices again
when we discretize the neutron diffusion equation.

In [12]: mat_size = 100
A = np.zeros((mat_size,mat_size))
b = np.zeros(mat_size)
diag = np.arange(mat_size)
Aldiag,diag] = 2.01
belowDiagRow = np.arange(1l,mat_size)
AlbelowDiagRow,belowDiagRow-1] = -1
aboveDiagRow = np.arange(mat_size-1)
AlaboveDiagRow,aboveDiagRow+1] = -1
print(A)

b[np.floor(mat_size/2)] =1
aug_mat = GaussElim(A,b)

X = np.zeros(mat_size)
BackSub(aug_mat,x)
plt.plot(diag,x,color="blue")
plt.xlabel ("Row");
plt.ylabel("x value");

plt.show();

[[2.01 -1. 0. ..., 0. 0. 0. 1
[-1. 2.01 -1. ..., 0. 0. 0. 1
[0. -1. 2.01 ..., 0. 0. 0. 1
[0. 0. 0. ..., 2.01 -1. 0. 1
[0. 0. 0. A 2.01 -1. 1]
[0. 0. 0. ..., 0. -1. 2.017]

118 7. GAUSSIAN ELIMINATION

x value

100

Row

As we will see later, this is related to the solution of the diffusion equation with a Dirac
delta function source. The delta function source was specified by having the vector b be zero
everywhere except for a single row where it was set to one.

7.4 ROUND OFF AND PIVOTING

For matrices with a large discrepancy in the magnitude of the elements, Gaussian elimina-
tion does not perform quite as well. This is due to the fact that the operations used in Gaussian
elimination are done with finite precision arithmetic. When large numbers are divided by
small numbers, the numerical round off error can build and lead to incorrect answers at the
end of Gaussian elimination. An example matrix to demonstrate this is given below.

In [13]: epsilon = le-14
A = np.array([(epsilon,-1,1),(-1,2,-1),(2,-1,0)1)
print(A)

[[1.00000000e-14 -1.00000000e+00 1.00000000e+00]
[-1.00000000e+00 2.00000000e+00 -1.00000000e+001]
[2.00000000e+00 -1.00000000e+00 0.00000000e+0017]

We will set the righthand side of our system to a simple vector:

In [14]: b = np.array([0,0,1.01)
print(b)

[0. 0. 1.]

Now we solve this system:

In [15]: aug_mat = GaussElim(A,b)
X = np.zeros(3)
BackSub(aug_mat, x)
print("The solution is",x)
print("The residual is",b-np.dot(A,x))

7.4. ROUND OFF AND PIVOTING 119

0.96969697
-0.00380294

0.969696971]
0.037908911]

The solution is [0.96589403
The residual is [0.

As you can see there is a noticeable difference between the calculated solution and the ac-
tual solution (as measured by the residual). The residual is the difference between the vector
b and the matrix A times the solution. If the solution were exact, the residual would be zero.
Part of the reason for this is that we have not used the largest row element as the pivot el-
ement, or the element we divide by when doing the elimination. In this example, the pivot
element is near zero and finite precision error is magnified when we divide by this small
number.

To correct this issue we could rearrange the rows so that we divide by larger elements. This
is called row pivoting.

BOX 7.2 NUMERICAL PRINCIPLE

In [16]: A =

A

b

In [171:

L

The error in an approximation is the dif-
ference between the true solution and the ap-
proximate solution, i.e., for an approximate
solution X to the vector x the error is defined
as

e=x—X.
The residual is equal to the discrepancy be-
tween the righthand and lefthand sides of the
original equations when the approximate so-
lution is substituted. For a linear system of

equations given by Ax =Db, the residual, r, for
an approximation X is

r=b— Ax.

If one does not know the true solution, the
residual can give a measure of the error be-
cause the exact solution has a residual of zero.
Also, the residual and the error are related via
the equation,

Ae=r.

To further demonstrate the need for row pivoting, consider the system:

np.array([(1.0,0),(0,1.0)1)
b =np.array([2,6.0])
print("A=\n",A)

print("b=",b)

([1. 0.]

I

0. 1.1
[2. 6.]

The solution to this system is

2.

aug_mat = GaussETim(A,b)
X = np.zeros(2)
BackSub(aug_mat,x)
print(x)

6.1

120 7. GAUSSIAN ELIMINATION

This is as expected because A is an identity matrix. Now what if we switch the rows in A
and try the same thing:

In [18]: A = np.array([(0,1.0),(1.0,0)1)
b =np.array([6.,2.0])
print("A =\n",A)
print("b =",b)
aug_mat = GaussETlim(A,b)
X = np.zeros(2)
BackSub(aug_mat,x)

print("x =",x)
(L 0. 1.]
[1. 0.]1]
b=>[06. 2.1
x = [nan nan]

-c:21: RuntimeWarning: divide by zero encountered in double_scalars
-c:21: RuntimeWarning: invalid value encountered in multiply
-c:17: RuntimeWarning: invalid value encountered in double_scalars

We do not get a solution because the diagonal element in the first row was zero. Therefore,
we divided by zero during the Gaussian elimination process.

We can correct both of these issues by checking before we eliminate and rearranging the
equations so that we divide by the largest possible entry. This is just rearranging the order
that we solve the equations, and will just involve switching rows in the augmented matrix.

It is worth mentioning that largest element is relative to the size of the other entries in the
row. If one row is (10, 11, 10) and another is (2, 1, 1) the 2 is actually a better pivot because it
is the largest element in its row.

To do pivoting we will need a means to swap rows in our augmented matrix. The following
function will modify the augmented matrix by swapping rows.

In [19]: def swap_rows(A, a, b):
"""Swap two rows in a matrix: switch row a with row b

args:

A: matrix to perform row swaps on
a: row index of matrix

b: row index of matrix

returns: nothing

side effects:

changes A to have rows a and b swapped

assert (a>=0) and (b>=0)

N = A.shapel0] #number of rows

assert (a<N) and (b<N) #less than because 0-based indexing
temp = Ala,:].copy()

Ala,:] = Alb,:1.copy()

Alb,:] = temp.copy()

7.4. ROUND OFF AND PIVOTING 121

print("Before swap, A =\n",A)
swap_rows(A,0,1)
print("After swapping 0 and 1, A =\n",A)

Before swap, A =

[0. 1.1
[1. 0.]1]
After swapping 0 and 1, A =
[(C1. 0.]
[0. 1.1]

The next step is figuring out how to swap during each step. At the beginning of the solve
we want find the maximum row element magnitude for each row and store it as a vector. The
following code is an example of this:

In [20]: N =5

A = np.random.rand(N,N)

print("A =\n",A)

s = np.zeros(N)

count =0

for row in A:
sfcount] = np.max(np.fabs(row))
count +=1

print("s =",s)

A =
[[0.52115101 0.46323356 0.68539875 0.56665694 0.1093434]
[0.00451899 0.29089231 0.9037581 0.83739104 0.90189019]
[0.15378442 0.77964023 0.51662888 0.03317186 0.35942844]
[0.24128529 0.03615319 0.43274014 0.68011597 0.42847979]
[0.96757013 0.94404531 0.56392054 0.32454444 0.97512228]]
s = [0.68539875 0.9037581 0.77964023 0.68011597 0.97512228]

Then we will have to figure out which row has the largest scaled element in the pivot
position and call the swap_rows function. We will use the argmax function which returns
the index of the largest element in a vector.

In [21]: pivot_column = 2
largest_pos = np.argmax(np.fabs(AL:,pivot_column]/s))
print("Largest scaled element in column",
pivot_column,"is in row",largest_pos)

Largest scaled element in column 2 is in row 1

Now can put this all together in a new version of Gaussian elimination. This function will
find the largest elements in each row of the matrix, then proceed with Gaussian elimina-
tion where the pivot element is the element that is the largest element in remaining in the
TOW.

In [22]: def GaussElimPivotSolve(A,b,LOUD=0):
"""create a Gaussian elimination with pivoting matrix for a system

122

7. GAUSSIAN ELIMINATION

Args:

A: N by N array

b: array of Tength N
Returns:

solution vector in the original order
[Nrow, Ncol]l = A.shape
assert Nrow == Ncol
N = Nrow
ffcreate augmented matrix
aug_matrix = np.zeros((N,N+1))
aug_matrix[0:N,0:N] = A
aug_matrix[:,N] = b
Faugmented matrix is created

ffcreate scale factors
s = np.zeros(N)
count =0
for row in aug_matrix[:,0:N]: #don’t include b
sfcount] = np.max(np.fabs(row))
count +=1
if LOUD:
print("s =",s)
if LOUD:
print("Original Augmented Matrix is\n",aug_matrix)
#fperform elimination
for column in range(0,N):

ffswap rows if needed
largest_pos =(np.argmax(np.fabs(aug_matrix[column:N,column:N]/
sfcolumn])) + column)
if (largest_pos != column):
if (LOUD):
print("Swapping row",column,"with row",largest_pos)
print("Pre swap\n",aug_matrix)
swap_rows(aug_matrix,column,largest_pos)
#re-order s
tmp = s[column]
sfcolumn] = s[largest_pos]
sflargest_pos] = tmp
if (LOUD):
print("A =\n",aug_matrix)
#finish off the row
for row in range(column+1,N):
mod_row = aug_matrix[row,:]
mod_row -= (mod_row[column]/
aug_matrix[column,column]*aug_matrix[column,:])
aug_matrix[row] = mod_row
#fnow back solve
X = b.copy()
if LOUD:
print("Final aug_matrix is\n",aug_matrix)
BackSub(aug_matrix,x)
return x

7.4. ROUND OFF AND PIVOTING 123

As a basic test we will solve a 3 x 3 system:

In [23]: {let’s try it on a 3 x 3 to start
A =np.array([(3.0,2,1),(-1,4,5),(2,-8,10)1)
answer = np.arange(3)+1.0 #1,2,3
b = np.dot(A,answer)
x = GaussElimPivotSolve(A,b,LOUD=True)
print("The solution is",x)
print("The residual (errors) are",np.dot(A,x)-b)

s=1[3. 5. 10.]
Original Augmented Matrix is

[3. 2. 1. 10.]

[-1. 4. 5. 22.]

[2. -8. 10. 16.1]
Swapping row 1 with row 2

Pre swap
[3. 2. 1. 10.]
[0. 4.66666667 5.33333333 25.33333333]
[0. -9.33333333 9.33333333 9.3333333311]
A:
[3. 2. 1. 10.]
[0. -9.33333333 9.33333333 9.33333333]
[0. 4.66666667 5.33333333 25.333333331]
Final aug_matrix is
[t 3. 2. 1. 10.]
[0. -9.33333333 9.33333333 9.33333333]
[0 0 10. 30. 1]

The solution is [1. 2. 3.1
The residual (errors) are [0.00000000e+00 0.00000000e+00 3.55271368e-15]

Based on the residual, and the fact the we engineered the answer to be known, we can see
that the solution is correct. To see the efficacy of the row pivoting we will try our function on
the systems that did not work so well before. First we try the rearranged identity matrix:

In [24]: A =np.array([(0,1.0),(1.0,0)1)
b =np.array([6.,2.0])
print("A =\n",A)
print("b =",b)
x = GaussElimPivotSolve(A,b,LOUD=False)
print("x =",x)
print("The residual (errors) are",np.dot(A,x)-b)

x=1[2. 6.]
The residual (errors) are [0. 0.]

The answer is correct. Finally, we try the matrix that had a large discrepancy between the
element sizes:

In [25]: epsilon = le-14
A = np.array([(epsilon,-1,1),(-1,2,-1),(2,-1,0)1)

print(A) b =np.array([0,0,1.01)
x = GaussElimPivotSolve(A,b,LOUD=False)
print("x =",x)

print("The residual is",np.dot(A,x)-b)

124 7. GAUSSIAN ELIMINATION

x=[1. 1. 1.]
The residual is [0.00000000e+00 -2.22044605e-16 0.00000000e+001]

Now we get the correct answer and the residual is effectively zero.

7.5 TIME TO SOLUTION FOR GAUSSIAN ELIMINATION

We will now discuss how long we should expect Gaussian elimination to take. We will do
this through counting the number of floating point operations required to perform Gaussian
elimination on an n x n matrix. A floating point operation is either addition, subtraction,
multiplication, or division of floating point numbers. The counting of these operations for
Gaussian elimination is straightforward, but tedious. In our derivation of the operation count
we will ignore the extra column we added to get the augmented matrix because we care about
how the operation count scales for large matrices. If the matrix is large, the addition of a single
column is a small perturbation.

At the start of the algorithm we have to eliminate the first column from the (n — 1) rows
that are not the first row. We first need to compute the elimination factors which involve
dividing the row 1, column 1 element by the appropriate pivot element, requiring (n — 1)
divisions because this must be done for each row that is not the first. Next, we multiply each
row by the elimination factor. This involves (n — 1)> multiplications because we multiply
every element of the matrix, besides the first row and the first column, by the appropriate
factor to eliminate the first column below the first row. Then we need to add (n — 1) elements
from row 1, columns 2 through »n to the corresponding elements in all the other rows: this
is (n — 1)2 additions in all. Therefore after eliminating the first column we have performed
2(n — 1)? 4+ (n — 1) floating point operations.

After eliminating the first column below the diagonal, we now have an (n — 1) by (n — 1)
matrix that we need to eliminate a column from. This will require 2(n — 224+ (m—-2) floating
point operations. The column after that requires 2(n — 3)> + (n — 3), and so on until we get to
the last column. Using summation notation we can write the total number of floating point
operations as

Total Floating Point Operations = Z [Z(n)2+ (n— l)] .
I=1

We can factor this expression to get a simpler form:

i[Z(n—Z)z—l—(n—Z)]=i[2n2—4nﬂ+2ﬁz+n—ﬁ]
=1 =1
=2n3+n2—Zn:[4nz—2e2+e]
=1
nn+1) n nn+1)2n+1)

— o34 n?—on? -
n’+n n“(n+1) 3 3

7.5. TIME TO SOLUTION FOR GAUSSIAN ELIMINATION 125

where we have used the identities

2":13 _nn+ 1), iﬂz _n+ D@+ 1)
(=1 2 =1 6

Therefore, the total number of floating point operations in Gaussian elimination for a matrix
of size n by n is
3 1o 1

2
Total Floating Point Operations = 3" T g™

Often we are concerned with how the number of floating point operations scales as n in-
creases. Therefore, we want to know how Gaussian elimination trends as n is large. For
large n, n® > n? > n. For this reason we say that Gaussian elimination is an O(n?), or or-
der n cubed, algorithm because the leading term when » is large is the n3 term. What this
means in practice is that if we double the number of rows in my matrix, i.e., n goes to 2n, we
should expect the code to take 23 = 8 times longer. Nevertheless, this is only for large n as
will see next.

BOX 7.3 NUMERICAL PRINCIPLE

When talking about the number of oper- nation scales as the number of equations, n,
ations for an algorithm, we often use Big- to the third power. Therefore, we say that this
O notation to describe how the leading or- algorithm is O(n3). As an example, an algo-
der term behaves as the problem gets bigger. rithm that increased linearly in the problem
The leading-order growth of Gaussian elimi- size would be an O (n) algorithm.

We can use the time module that Python provides to time how long it takes to run our
Gaussian elimination code as we increase n.

In [26]: import time

num_tests = 13

N = 2*x*np.arange(num_tests)

times = np.zeros(num_tests)

for test in range(l,num_tests):
A = np.random.rand(N[test],N[test])
b = np.dot(A,np.ones(N[test]))
x = np.zeros(N[test])
start = time.clock()
aug = GaussElim(A,b)
BackSub(aug, x)
end = time.clock()
times[test] = end-start

plt.loglog(N,times, 0-")

y_comp = times.copy()/4

126 7. GAUSSIAN ELIMINATION

for comp_place in range(num_tests-1,0,-1):
jfbecause x goes up by factor 2 each time, time should go up by 8
y_comp[comp_place -1] = np.exp(np.log(y_compl[test])-3x(
np.log(N[test])-np.log(N[comp_place-11)))
plt.loglog(N[4:num_tests],y_comp[4:num_tests],’r’,Tinewidth=4)
#make a comparison line with siope 2
y_comp = times.copy()=*4
for comp_place in range(num_tests-1,0,-1):
y_comp[comp_place -1] = np.exp(np.log(y_comp[test])-2x*(
np.log(N[testl)-np.log(N[Lcomp_place-11)))
plt.loglog(N[4:num_tests],y_comp[4:num_tests],’g-’,Tinewidth=4)
plt.xTabel("Number of Equations")
plt.ylabel("Seconds to complete solve")
plt.show()

Seconds to complete solve

10 100 1000 10000

Number of Equations

In this figure the solid line is a slope of 3 on a log-log scale (which corresponds time
growing as the number of equations to the third power). If the time to solve a system was
consistent with the theory, then this dots would be parallel to the red line. That assumes that
the time it takes to execute the code is linearly related to the number of floating point op-
erations. Starting around tens of equations, the slope is closer to 2, the slope of the dashed
line. This implies that initially the time to solution is not growing as fast as the theory. The
reason for this is that Python is not giving the CPU work to do fast enough so that the float-
ing point operations are not the bottleneck to the calculation, rather, feeding instructions
to the CPU is taking up the bulk of the time. As the matrices get bigger, each instruction
takes longer and the overhead of feeding instructions is a smaller fraction of the execu-
tion time. We see this in the figure: as n grows, the slope is getting steeper: when we have
thousands of equations the slope is around 2.6. This indicates that if we ran a large enough
problem, and had enough patience and computer memory, we would see the predicted re-
sult.

FURTHER READING 127

FURTHER READING

Gaussian elimination is a classical method for solving linear systems, and there are many
possible references for it. The book on numerical linear algebra by Trefethen and Bau [9]
provides an in-depth discussion of the stability of Gaussian elimination with row pivoting.

PROBLEMS

Short Exercises

7.1. Solve the linear system Ax =b for x where

-1 2 3
A=| 4 -5 6 b=(12.9,-5.1,10.7)T.
7 8 -9

7.2. Consider the n by n matrix defined by

;L 1

T | o

2 3 4 n+1
A=1")

1 1 1 1

n n+1 n+2 0 2n—1

and the vector
b=(,-1,1,—1,..)T.

Write a function to generate A and b as a function of n. Use Gaussian elimination to
solve the system Ax =b for n =2, 4, 8, 16. What do you notice about your answers? Are
the answers that you get from Gaussian elimination correct?

Programming Projects

1. Xenon Poisoning
135Xe is produced in a nuclear reactor through two mechanisms:

¢ The production of '33Te from fission, which then decays to '3°I via # decay with a half-life
of 19 s, which then decays to '33Xe via 8 decay with a half-life of 6.6 h.
e The production of 1**Xe directly from fission.

135Xe is important because it has a very large capture cross-section of 2.6 x 10° barns. '¥3Xe is
also radioactive, and decays with a half-life of 9.1 h.

For a reactor with an average scalar flux, ¢ in units [neutrons/ cm?/s], the equations for the
production of 13%Xe are (using the abbreviation number density [nuclei/cm?] of '33Xe— X,
1351 1,13 Te— T),

128 7. GAUSSIAN ELIMINATION

d
—T =yr 2 —ArT,

dr
Lt arT — a1

dt = AT 11,

d
EX:AII+yXEf¢—(kx+0;(¢)X-

If we consider the steady-state limit, i.e., 4 = 0, we have an equation for the equilibrium

concentration of all three nuclides. For a 23U fueled reactor, the fission yields for Te and Xe
are yr = 0.061, yx = 0.003, and the macroscopic fission cross-section is Xt = 0.07136 cm~ L
Compute the equilibrium concentrations of these three nuclides at power densities of 5, 50,
and 100 W/cm?, using the energy per fission of 200 MeV /fission. Also, compute the absorp-
tion rate density of neutrons in 13°Xe, given by 0¥ ¢ X.

2. Flux Capacitor Waste

In the movie Back to the Future, the time machine is fueled by plutonium. Assuming that
the time machine is refueled with 1 mg of pure >*Pu every year and the old fuel, still with
the same mass, is placed in a disposal site. The stable lead is recovered from the site at a rate
of 50% a year. What are the equilibrium mass of >*Pu and its daughter products after this
refueling cycle goes on for a long time. Also, compute the alpha particle and beta particle
production rate. The decay chain for >*’Pu is given on page 92.

3. Four-Group Reactor Theory

A large subcritical system with a source has its scalar flux in each of four groups described
by these four equations,

4
Za191+ Ls 15201 = X1 szf,g% + 01
g=1
4
Ya2¢2+ Xs25302=x2 Z v e + 215201 + 02
g=1

4
Ta3®s + Tesad3 =3) v gh + Tsoo302 + 03
g=1
4
Sauabs=xa Y Tighe + Tssa¢3+ Qa.
g=1

For source strength, 0 = [10'2,0,0,0] n/cm? /s and the cross-sections given below in Table 7.1
[10] for the group bounds, [1.35 MeV, 10 MeV], [9.1 keV, 1.35 MeV], [0.4 eV, 9.1 keV], and
[0.0 eV, 0.4 eV], compute the scalar flux in each group in system where neutrons can only
scatter within group or to the energy group below.

PROBLEMS 129

TABLE 7.1 Four Group Constants
Group1l Group2 Group3 Group4

Xg 057500 0.42500 0.00000 0.00000
V¢, (cm™Y) 0.00480 0.00060 0.00885 0.09255
Sag (em™1) 0.00490 0.00280 0.03050 0.12100
Sggsgt1 (cm™1) 008310 0.05850 0.06510

Dy (cm) 216200 1.08700 0.63200 0.35400

4, Matrix Inverse
The inverse of a matrix A is defined as the matrix such that

100 - 0
010 - 0
AA-I—|0 0 1 0
000 - 1

Given this fact, we can compute the inverse of an n by n matrix, column by column, by solving
the following set of problems:

Ax; =b; i=1,...,n,

where b; is a vector of zeros except at position i where it has 1, and x; is the ith column
of the inverse. Using this formulation write a Python function that computes the inverse
of a general n x n matrix. There are two ways of doing this, one way computes Gaussian
elimination n times, the other more sophisticated way has the augmented matrix have n extra
columns corresponding to all the b;. Test your function on the matrix from Short Exercise 7.1
of this chapter and demonstrate that the inverse matrix you compute gives the identity when
multiplied by A.

CHAPTER

8

.U Factorization and Banded Matrices

OUTLINE

8.1 LU Factorization 132 Short Exercises 142
8.1.1 Forward and Backward Programming Projects 143
Substitution 135 1. Matrix Inverse via LU
8.2 LU With Pivoting, and Other Factorization 143
Supposedly Fun Things 137 2. Shielding a Radioactive
8.3 Banded and Symmetric Matrices 140 Source 143
Further Reading 142 3. LU Factorization of a
Problems 142 Tridiagonal System 144

Lu Lu Lu, I've got some apples. Lu Lu Lu you've got some too.
—"Butters Stotch” in the television series South Park

CHAPTER POINTS

e In the case where one wants to solve e Banded matrices have non-zero entries
several systems with changing righthand only on or near the diagonal, and the
sides, LU factorization is an efficient banded structure is preserved by LU
solution method. factorization.

e With our methods we are able to solve
realistic neutron diffusion problems.

In practice it is often the case that we want to solve the same linear system multiple times,
just with different right-hand sides. One example in nuclear engineering involves a subcritical
nuclear system with a source. We can write the neutron diffusion equation for this system as

—V-D@®Vo(r) + Xag (r) = v e (r) + O(1),

where the energy-integrated scalar flux is ¢ (r), the diffusion coefficient is D(r), the absorption
macroscopic cross-section is X, and the source rate density is Q(r). As we will see later, this

Computational Nuclear Engineering and Radiological Science Using Python 1 3 1

DOI: 10.1016/B978-0-12-812253-2.00010-8 Copyright © 2018 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-812253-2.00010-8

132 8. LU FACTORIZATION AND BANDED MATRICES

equation can, after numerical discretization, be written as

Ad=q,

where the entries in ¢ and q represent a discrete value of the scalar flux and source rate
density, respectively, and the matrix A is a discrete version of the diffusion operator.

From the previous chapter, we know that solving this system with Gaussian elimination
is possible. Nevertheless, if you we going to analyze the system with several different source
configurations (e.g., strength and position of the source) you would have to perform Gaus-
sian elimination on each source configuration. If you have the intuition that the solution of
one of these systems should make it possible to solve all of them, you are on the right track.
To put it another way, besides the manipulations to the right-hand side of the equation, Gaus-
sian elimination manipulates the matrix to get it in a form where the solution is reduced to
back-substitution. We would like to do this work only once.

It is possible to do the work of Gaussian elimination to put the matrix in a form to make
the solution with any right-hand side simple. By simple we mean that it involves one back
substitution and one forward substitution, that is back substitution in the opposite direction
(from top to bottom).

8.1 LU FACTORIZATION

LU factorization writes a matrix A as the product of a lower triangular matrix (that is a
matrix with nonzero elements on the diagonal and below) times an upper triangular matrix
(that is a matrix with nonzero elements on or above the diagonal). In other words,

A=1U,
where
* 0
* % 0
L=|* * = 0
* ok % *
and

O *
* ¥
* %
* ¥

o ... 0 =

where the * denote a potentially nonzero matrix element.

8.1. LU FACTORIZATION 133

The question remains how we find the entries in the matrices in the LU factorization. To
see this, consider a matrix we used in the last chapter:

3 2 1
-1 4 5
2 -8 10

For this matrix, after Gaussian elimination, the matrix became

302 1
2 <1
0 42 sl
0 0 20

Notice that this matrix is upper triangular.
We want to find the matrices L and U such that

Iih 0 O Uil U U3 3 2 1
by ln O 0 wupy upyl=[|-1 4 5
31 I3 I33 0 0 us; 2 -8 10

We have to make a choice at this point. The choice we have is which diagonal, either L or U,
we want to be all ones. We will choose to have all the /;; = 1, that is the L matrix has a diag-
onal of all 1’s (this choice makes our algorithm equivalent to an algorithm called Doolittle’s
method). Performing the matrix multiplication we get 9 equations and 9 unknowns for the
factorization. The product of the first column of U by the first column of L gives

buyp =—1
l3iug =2.

Which simplifies to,
upp =3,

1
l = ——=,
21 3

2
I31 = 3
Notice that the solutions below the diagonal, the /51 and /31, are the factors we used in our
Gaussian elimination algorithm to remove the first column in the second and third equations
(see Section 7.1). Also, the uj; value is that found in the same position in our Gaussian-
eliminated matrix.
Continuing on, the equations from the second column are

up =2,
uply +ux =4,

134 8. LU FACTORIZATION AND BANDED MATRICES

ui2l31 +ulzp = =8,

the solutions to these equations are

up =2,

u» =4%
3’

I3 = —=2.

Looking back to Section 7.1 of the previous chapter, we see that the value of /35 is the value of
the factor used to eliminate the second column below the diagonal in the Gaussian elimina-
tion example from before. Finally, the last three equations are

uiz =1,
uzlay +ux3 =35,
u13l31 + uz3lz +uzz = 10.

The solutions to these equations are

upi =1,
1

M23=5§,

u33:20.

These are precisely the values of the third column in our Gaussian elimination example.
In summary, our factorization looks like:

1 0 0\ /3 2 1 302 1
-3 1L o]lo 42 si]=(-1 4 5
Z 2 1)J\0 0 20 2 -8 10

3
Some observations are in order:

1. The upper triangular matrix is the same as the matrix we received after doing Gaussian
elimination.

2. The non-zero and non-diagonal elements of the lower triangular matrix are the factors we
used to arrive at our Gaussian matrix.

This suggests that we can reformulate our Gaussian elimination example to give us an LU
factorization. What we will have to do is

1. Store the factors used to eliminate matrix elements in the appropriate place to get the L
matrix, and
2. Perform Gaussian elimination as usual.

The code below modifies our Gauss elimination function to do just this. Also, we apply the
function to our example matrix.

8.1. LU FACTORIZATION 135

In [1]: import numpy as np
def LU_factor(A):
"""Factor in place A in L*U=A. The lower triangular parts of A
are the L matrix. The L has implied ones on the diagonal.
Args:
A: N by N array
Side Effects:
A is factored in place.
[Nrow, Ncol] = A.shape
assert Nrow == Ncol
N = Nrow
for column in range(0,N):
for row in range(column+1,N):
mod_row = A[row]
factor = mod_rowl[column]/A[column,column]
mod_row = mod_row - factorxA[column,:]
#fput the factor in the correct place in the modified row
mod_row[column] = factor
ffonly take the part of the modified row we need
mod_row = mod_row[column:N]
Alrow,column:N] = mod_row
return

fflet’s try it on a 3 x 3 to start

A = np.array([(3.0,2,1),(-1,4,5),(2,-8,10)1)
print("The original matrix is\n",A)
LU_factor(A)

print("The LU factored A is\n",A)

The original matrix is
[t 3. 2. 1.1
[-1. 4. 5.1
[2. -8. 10.1]

The LU factored A is

(L 3. 2. 1.]
[-0.33333333 4.66666667 5.33333333]
[0.66666667 -2. 20. 1]

This algorithm gives us the same thing our onerous, by-hand procedure did. Notice that
we did not return an L and a U matrix, rather we factored in place the original matrix A by
overwriting it. This is a reasonable thing to do because A could be a very large system and
we do not want to duplicate that memory unnecessarily.

8.1.1 Forward and Backward Substitution

Now that we have discussed how to do LU factorization, the question we have not an-
swered is how we can take an LU factored matrix and get the solution to the system Ax =b.
To do this, we note that we can easily solve systems that only involve a lower (or upper)
triangular matrix using back (or forward) substitution. For example, both

Ly =b,

136 8. LU FACTORIZATION AND BANDED MATRICES

and
Ux=y,

are easy to solve. In fact that is exactly what we want to do, notice that if we solve

Ly =D,
that implies we know
y=L""b.
Therefore, if we take the original system
Ax=LUx=Db,
and operate by L™, we get
Ux=L""b.

Therefore, given an LU factorization of a matrix A we want to solve
Ly=b,

then
Ux=y.
The following code does just this.

In [2]: def LU_solve(A,b):
"""Take a LU factorized matrix and solve it for RHS b
Args:
A: N by N array that has been LU factored with
assumed 1°s on the diagonal of the L matrix
b: N by 1 array of righthand side
Returns:
x: N by 1 array of solutions
[Nrow, Ncol] = A.shape
assert Nrow == Ncol
N = Nrow
X = np.zeros(N)
ftemporary vector for L"-1 b
y = np.zeros(N)
#forward solve
for row in range(N):
RHS = blrow]
for column in range(0,row):
RHS -= y[column]l*A[row,column]
ylrow] = RHS
ftback solve
for row in range(N-1,-1,-1):
RHS = y[row]

8.2. LU WITH PIVOTING, AND OTHER SUPPOSEDLY FUN THINGS 137

for column in range(row+1,N):
RHS -= x[columnl*A[row,column]
x[row] = RHS/A[row,row]
return x

In [3]: #let’s try it on a 3 x 3 to start
A =np.array([(3.0,2,1),(-1,4,5),(2,-8,10)])
LU_factor(A)
b = np.array([6,8,4])
x = LU_solve(A,b)
print("The solution to the system is",x)

The solution to the system is [1. 1. 1.]

This code gives the correct answer, a fact that is easily checked as you see that the sum of
each row of this matrix equals the corresponding row on the right-hand side.

8.2 LU WITH PIVOTING, AND OTHER SUPPOSEDLY FUN THINGS

One thing we have not discussed is pivoting. Pivoting with LU is needed in the same cases
as it is in Gaussian elimination. Nevertheless, when we switch equations around, we need
to make sure that we keep track of where we have switched rows, so we can do the same
to the right-hand side when we do our forward and back solves. This complicates things
considerably, but only because we have to add that bookkeeping to our algorithm.

First, we will need to be able to swap rows in the matrix:

In [4]: def swap_rows(A, a, b):
"""Rows two rows in a matrix, switch row a with row b
args:
A: matrix to perform row swaps on
a: row index of matrix
b: row index of matrix

returns:
nothing

side effects:

changes A to have rows a and b swapped

assert (a>=0) and (b>=0)

N = A.shapel[0] #number of rows

assert (a<N) and (b<N) #iless than because 0-based indexing
temp = Ala,:].copy()

Ala,:] = Alb,:1.copy()

Alb,:] = temp.copy()

Next, we will change our algorithm to handle pivoting and keep track of the pivots:

In [5]: def LU_factor(A,LOUD=True):
"""Factor in place A in L*U=A. The lower triangular parts of A

138 8. LU FACTORIZATION AND BANDED MATRICES

are the L matrix. The L has implied ones on the diagonal.

Args:
A: N by N array
Returns:
a vector holding the order of the rows,
relative to the original order
Side Effects:
A is factored in place.
[Nrow, Ncol] = A.shape
assert Nrow == Ncol
N = Nrow
ffcreate scale factors
s = np.zeros(N)
count = 0
row_order = np.arange(N)
for row in A:
sfcount] = np.max(np.fabs(row))
count += 1
if LOUD:
print("s
if LOUD:
print("Original Matrix is\n",A)
for column in range(0,N):
#fswap rows 1f needed
largest_pos = np.argmax(np.fabs(ALcolumn:N,column]/slcolumn]))
+ column
if (largest_pos != column):
if (LOUD):
print("Swapping row",column,"with row",largest_pos)
print("Pre swap\n",A)
swap_rows(A,column,largest_pos)
jfkeep track of changes to RHS
tmp = row_order[column]
row_order[column] = row_order[largest_pos]
row_order[largest_pos] = tmp
#re-order s
tmp = sfcolumn]
sfcolumn] = s[largest_pos]
s[largest_pos] = tmp
if (LOUD):
print("A =\n",A)
for row in range(column+1,N):
mod_row = A[row]
factor = mod_rowl[column]/A[column,column]
mod_row = mod_row - factorxA[column,:]
ffput the factor in the correct place in the modified row
mod_row[column] = factor
f#only take the part of the modified row we need
mod_row = mod_row[column:N]
Alrow,column:N] = mod_row
return row_order
#let’s try it on a 4 x 4 to start

,S)

8.2. LU WITH PIVOTING, AND OTHER SUPPOSEDLY FUN THINGS 139

A = np.array([(3.0,2,1,-2),(-1,4,5,4),(2,-8,10,3),(-2,-8,10,0.1)1)
answer = np.ones(4)

b = np.dot(A,answer)

print(b)

row_order = LU_factor(A)

print(A)

print("The new row order is",row_order)

[4. 12. 7. 0.11
s =1 3. 5. 10. 10.]
Original Matrix is

([3. 2. 1. -2.]
[-1. 4. 5. 4.]
[2. -8. 10. 3.1
[-2. -8. 10. 0.11]
Swapping row 1 with row 2
Pre swap
[3. 2 1 -2.]

[-0.33333333 4.66666667 5.33333333 3.33333333]
[0.66666667 -9.33333333 9.33333333 4.33333333]
[-0.66666667 -6.66666667 10.66666667 -1.23333333]]

A:
[t 3. 2. 1. -2.]
[0.66666667 -9.33333333 9.33333333 4.33333333]
[-0.33333333 4.66666667 5.33333333 3.33333333]
[-0.66666667 -6.66666667 10.66666667 -1.233333337]
[[3. 2. 1. -2.]
[0.66666667 -9.33333333 9.33333333 4.33333333]
[-0.33333333 -0.5 10. 5.5]
[-0.66666667 0.71428571 0.4 -6.52857143]]

The new row order is [0 2 1 3]

We need to change the LU_solve function to take advantage of the swapped rows. In
function below, we make the necessary modification, and test the solution

In [6]: def LU_solve(A,b,row_order):
"""Take a LU factorized matrix and solve it for RHS b

Args:
A: N by N array that has been LU factored with
assumed 1°s on the diagonal of the L matrix
b: N by 1 array of righthand side
row_order: 1ist giving the re-ordered equations
from the LU factorization with pivoting
Returns:
x: N by 1 array of solutions
[Nrow, Ncol] = A.shape
assert Nrow == Ncol
assert b.size == Ncol
assert row_order.max() == Ncol-1
N = Nrow

140 8. LU FACTORIZATION AND BANDED MATRICES

f#freorder the equations

tmp = b.copy()

for row in range(N):
blrow_order[row]] = tmplrow]

X = np.zeros(N)

j#temporary vector for [~-1 b

y = np.zeros(N)

#forward solve

for row in range(N):
RHS = blrow]
for column in range(0,row):

RHS -= y[column]*A[row,column]

ylrow] = RHS

ffback solve

for row in range(N-1,-1,-1):

RHS = y[row]
for column in range(row+1,N):
RHS -= x[column]*A[row,column]
x[row] = RHS/Alrow,row]
return x

print(A,row_order)
x = LU_solve(A,b,row_order)
print("The solution to the system is",x)

[t 3. 2. 1. -2.]
[0.66666667 -9.33333333 9.33333333 4.33333333]
[-0.33333333 -0.5 10. 5.5]
[-0.66666667 0.71428571 0.4 -6.5

285714311 [0 2 1 31
The solution to the system is [1. 1. 1. 1.]

We now have a fully functional LU factorization algorithm and solving capability. We have
not presented an exhaustive testing of the algorithm here, but this should be done before you
use it in your own coding.

8.3 BANDED AND SYMMETRIC MATRICES

In many engineering calculations, symmetric and banded matrices arise from the equa-
tions. These matrices are often the result of a discretization of a diffusion equation. This is
an important topic because, in truth, until about 20 years ago, large matrices that were not
banded and symmetric were too difficult for all but the most specialized codes to handle.

For a matrix to be symmetric is means that if I transpose the matrix, the matrix does not
change, i.e. if,

Ajj=Aji

8.3. BANDED AND SYMMETRIC MATRICES 141
then the matrix is symmetric. This is equivalent to saying A = AT. One feature of a symmetric
matrix is that it is possible to store only the lower or upper triangular part of the matrix
because of the symmetry.

Banded matrices take their name from the structure of the matrix. When the non-zeros of
the matrix are shown they form bands around the diagonal. A diagonal matrix is a banded
matrix of bandwith 1:

* 0 ...

0O x 0 ...

0 0 =% 0

0O 0 =%

The bandwidth is 1 because there is only 1 diagonal or off diagonal that has non-zero ele-
ments.

A common banded matrix is the tri-diagonal matrix. This matrix has a bandwidth of 3 and
looks like

k% 0o ...
* 0o ...
0 =* * * 0

*

0 * * * 0
0o ... 0 * % %
0 O 0 % ok

BOX 8.1 NUMERICAL PRINCIPLE

A matrix that does not change when the
transpose is taken, i.e., A = AT, is called a

diagonals around the main diagonal of a ma-
trix. The width of the band around the main

symmetric matrix.

The main diagonal of a matrix is defined
as the all the entries in a matrix where the row
number equals the column number.

A banded matrix is a matrix whose non-
zero entries are confined to the a subset of

diagonal that contains the non-zero elements
is called the bandwidth. A diagonal matrix
is a banded matrix with bandwidth of 1.
A tridiagonal matrix has nonzero elements
directly above and below the main diago-
nal.

To solve a tridiagonal system we can make some shortcuts. The primary shortcut is that we
do not need to create a matrix at all. We only need to store three vectors, one for the diagonal
and two for the off diagonals. We could redefine our algorithms to respect this sparsity of the
matrix, i.e., take advantage of all the 0’s. We will not do this here because the algorithm gets
much more complicated. If we were writing a code to solve very large tridiagonal systems,
we would want to take advantage of this efficiency because the amount of memory needed

142 8. LU FACTORIZATION AND BANDED MATRICES

to store three vectors grows linearly with the number of equations, but grows quadratically
if we store the whole matrix and all those wasteful zeros.

Pentadiagonal systems also arise in practice, namely 2-D diffusion equations will have 5
non-zero terms in each row. Furthermore, a 3-D diffusion equation will lead to a heptadiag-
onal matrix or a matrix that has 7 non-zero elements in each row. These matrices typically
have a bandwidth much larger than 5 or 7 because the ordering of unknowns often makes it
so that there are zeros between the non-zero elements in a row.

FURTHER READING

LU factorization is a common technique for solving linear systems of equations. It is also
the basis for the SuperLU package [11], which has a Python interface through the scipy
package.

PROBLEMS

Short Exercises

8.1. Compute the LU factorization of the matrix

-1 2 3
A=| 4 -5 6
7 8 -9
8.2. Consider the n by n matrix defined by
Log 5 »
11 1 1
A=|2 3 1 n+1
L1 L 1
n n+l n42 2n—1

and the vector
b=(,-1,1,-1..0)%
Write a function to generate A and b as a function of n. Use it to solve the system Ax=b

for n =2,4,8, 16 via LU factorization. What do you notice about your answers and the
resulting factorization?

PROBLEMS 143

Programming Projects

1. Matrix Inverse via LU Factorization

In the previous chapter we presented an approach to compute the inverse of a matrix.
Here is another way to compute the inverse; this time using LU factorization. Compute the
LU factorization of A and then use this to solve

AX,’:bi i=1,...,l’l,

where b; is a vector of zeros except at position i where it has 1, and x; is the ith column of
the inverse. Test your implementation on the matrix from Short Exercise problem 8.1 above.
Check that the inverse of A times the original matrix gives the identity matrix.

2. Shielding a Radioactive Source

Consider the problem of a slab geometry radiation source surrounded by a shield. You
are interested in computing the leakage rate of radiation outside the shield. If the shield is
a pure absorber and the source is collimated into a beam, the net neutron current density
J [neutrons/cm?2-s] of neutrons can be described by the equation

d—J-i-EaJ(x):Q(x), J(0) =0,
dx

where x is the position in the slab which extends from x =0 to x = 10 cm, Q(x) [neutrons/
cm?s] is the spatially dependent source strength, and X, [cm~!] is the macroscopic absorp-
tion cross-section. The leakage rate density out of the shield is J(10). A simple discretization

of this equation leads to the system of equations
Ji = Ji-1

Ax
In this equation Ax =10/1, J; = J(i Ax), and Q; = Q(i Ax + Ax/2). Solve this system of equa-

tions and find the net leakage rate density with 7 =100 and X, = 1 with several different
source configurations:

2a)
+7(Ji+Ji71)=Qi, i=0...1

e A thin source at the left of the slab

1 0<x<l1
Q@) = {O otherwise ’
¢ A thin source at the middle of the slab
1 45<x<55
Q) = {O otherwise

e A thick source at the left of the slab

1 0<x<4
0 otherwise’

Qx) ={

144 8. LU FACTORIZATION AND BANDED MATRICES

¢ A thin source at the middle of the slab

I 3<x<7
Q(x) = o
0 otherwise
Compare your solution to the analytic solution to problem. The analytic solution is an in-
tegral over an exponential function. To compute your numerical solution you will not need
Gaussian elimination or LU factorization.

3. LU Factorization of a Tridiagonal System

Before we mentioned that it was possible to LU factorize a tridiagonal matrix. Modify
the LU factorization without pivoting function, LU_factor, defined above to work with
tridiagonal matrix. Your modified function should take as input three vectors, representing
the main diagonal and two off diagonals. The function should return the three vectors that
yield the LU factorization. Check your algorithm on one of the tridiagonal matrices used in
this chapter. Also, use this function to see how large of a tridiagonal system you can solve on
your computer.

CHAPTER

9

[terative Methods for Linear Systems

OUTLINE

9.1 Jacobi Iteration 146 9.5 Conjugate Gradient 163
9.1.1 Convergence of the Jacobi 9.5.1 Convergence of CG 166
Method ' ' 151 9.5.2 Time to Solution for CG 167
9.1.2 Time to Solution for Jacobi 9.6 Taking Advantage of Tri-diagonal
Method 152 Form 168
9.2 A Faster Jacobi Method 154 .
! Further Reading 170
9.3 Gauss-Seidel 156 Problems 170
9.3.1 Convergence of Gauss-Seidel 158 robiems)
9.3.2 Time to Solution for Short Exercises 170
Gauss-Seidel 159 Programming Projects 170
9.4 Successive Over-Relaxation 160 1. Exiting Gracefully 170
9.4.1 Convergence of SOR 162 2. Tri-diagonal Gauss-Seidel 170
9.4.2 Time to Solution for SOR 162 3. 2-D Heat Equation 171

These evils thou repeat’st upon thyself
Have banishd me from Scotland. O my breast,
Thy hope ends here!

—“MacDuff” in the play Macbeth by William Shakespeare

CHAPTER POINTS

e Iterative methods are an alternative to e The number of iterations required to
direct methods such as Gaussian compute a solution may be less important
Elimination and LU factorization. than how long it takes each iteration to

e These methods can be faster than direct complete.
methods.

The methods we have talked about up to this point are called “direct” methods because they
pass through the matrix a fixed number of times to get the answer. For example, Gaussian

Computational Nuclear Engineering and Radiological Science Using Python 1 45

DOI: 10.1016/B978-0-12-812253-2.00011-X Copyright © 2018 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-812253-2.00011-X

146 9. ITERATIVE METHODS FOR LINEAR SYSTEMS

elimination makes one pass through the augmented matrix to get it in upper triangular form,
and then back solves to get the answers. You can say ahead of time exactly how many opera-
tions it will take to solve the system (modulo any pivoting). One thing that is also true is that
no matter the system, the amount of work is the same if the number of equations is the same.
If we have a large system, it may be possible to solve the linear system in a faster way by
making a guess at the solution and refining that guess until we are “close enough”. These
methods are called iterative methods, and most of the methods we cover require diagonal
dominance. Diagonal dominance means that for each row i in the matrix A of size I by /

n

Al > > 1Ayl i=l..n

J=lj#i

or in words, the diagonal is larger than the sum of the magnitudes all the off-diagonal ele-
ments of each row.

BOX 9.1 NUMERICAL PRINCIPLE

When the absolute value of the each ele- form an n x n matrix is diagonally dominant
ment of the main diagonal in the matrix is if
larger than the sum of the absolute values of "
tche c?ff dlagorTal terms in eac'h row, the mat.rlx |A;i] > Z |41, i=1.
is said to be diagonally dominant. In equation il

9.1 JACOBI ITERATION

The first iterative method we will meet is the simplest, and it is called the Jacobi method.
For a system Ax = b, what the Jacobi method does is start with a guess x¥ and then solve
each row of the system by evaluating the diagonal term at the ¢ + 1 iteration and the off
diagonal terms at the ¢ iteration. It then does this over and over until either the change
XD — x©| is small, the residual |[Ax“*+D —b| is small, or the maximum number of it-
erations is met.

We will demonstrate how the Jacobi method works with an example. Consider the linear
system of a 4 x 4 tri-diagonal matrix

25 =1 0 0\ [xi
-1 25 -1 0 |[x
0 —1 25 —1||x
0 0 -1 25/ \x

—

9.1. JACOBI ITERATION 147

Take an initial guess of x? =10, 0.5, 0.5, 0]. The first iteration looks like:

2.5x§1) — xéo) =1

—xfo) + 2.5x§1) — x_,(,o) =1
—xéo) + 2.5x§1) — xflo) =1
0 425V =1

Each of these equations is independent of the other because we know the value of xl.(o) from
our initial guess. Therefore, we can solve to get

V=06, x{" =06, x{" =0.6, x{" = 0.6.
We can solve for x? from the system
255y 1,
L 255 _ o0,
e 255 _ a0,
—xgl) + 2.5x4(‘2) =1,
@

for x;) and repeat the procedure until we are happy with the answer.
The general idea behind Jacobi iteration, is that given an initial guess x@ we compute

1

1

xl.(“”:A— bi—) A,»jx;‘) , fori=1...1, £=0....
! j=Li#j

We stop when the following criteria is met:

[xEHD —x O, .
[xE+D]|, ’

where ¢ is a user-defined tolerance, and the 2-norm is

I
27

i=1

lyll2=

Now we will do these Jacobi iterations in Python on the system from above.

In [1]: import numpy as np
A =np.array([(2.5,-1,0,0),(-1,2.5,-1,0),(0,-1,2.5,-1),(0,0,-1,2.5)1)
print("Our matrix is\n",A)
b =mnp.array([1.0,1,1,11)
x = np.array([0,0.5,0.5,01)
print("Our RHS is",b)
print("The initial guess is",x)

148 9. ITERATIVE METHODS FOR LINEAR SYSTEMS

Qur matrix is
([2.5 -1. 0. 0. 1
[-1. 2.5 -1. 0.1
[0. -1. 2.5 -1. 1
[0. 0. -1. 2.511]
Qur RHS is [1. 1. 1. 1.]
The initial guess is [0. 0.5 0.5 0.1

In [2]: 4first Jacobi iteration

x_new = np.zeros(4)
for row in range(4):

x_newl[row] = b[row]

for column in range(4):

if column != row:
x_newl[row] -= Alrow,column]xx[column]

x_new[row] /= Alrow,row]
Jfcheck difference
relative_change = np.linalg.norm(x_new-x)/np.linalg.norm(x_new)
print("New guess is",x_new)
print("Norm of change is",relative_change)

New guess is [0.6 0.6 0.6 0.6]
Norm of change is 0.71686043892

In [3]: #Second Jacobi Iteration
x = x_new.copy() ffreplace old value
x_new *= 0 ffreset x_new
for row in range(4):
x_new[row] = b[row]
for column in range(4):
if column != row:
x_newl[row] -= Alrow,column]xx[column]
x_new[row] /= A[lrow,row]
ffcheck difference
relative_change = np.linalg.norm(x_new-x)/np.linalg.norm(x_new)
print("New guess is",x_new)
print("Norm of change is",relative_change)

New guess is [0.64 0.88 0.88 0.64]
Norm of change is 0.259937622455

Notice that the change is going down. We will perform one more iteration in this example.

In [4]1: #Third Jacobi Iteration

x = x_new.copy() ffreplace old value
x_new *= 0 ffreset x_new
for row in range(4):

x_newlrow] = b[row]

for column in range(4):

if column != row:
x_newl[row] -= Alrow,column]xx[column]

x_newlrow] /= Alrow,row]
Jfcheck difference
relative_change = np.linalg.norm(x_new-x)/np.linalg.norm(x_new)
print("New guess is",x_new)
print("Norm of change is",relative_change)

9.1. JACOBI ITERATION 149

Data: Matrix A, vector b, vector x,jq (initial guess), tolerance
Result: The solution x to Ax=Db
x=0;
while || x — x4/l >tolerance do
for i € [0, number of rows of A] do
for j € [0, number of columns of A] do
if i # j then
| xi =xi — AijXoldj;
end
end
xi = xi/Aii;
end
Compute the change from x,)4 to x;
Xold = X;
end

Algorithm 9.1. Jacobi Iterations

New guess is [0.752 1.008 1.008 0.752]
Norm of change is 0.13524314758

We could continue by hand, but it makes sense at this point to write out the general algo-
rithm. The Jacobi method is written in pseudocode in Algorithm 9.1.

This pseudocode is converted to a Python implementation in the code below. One change
between the pseudocode and the Python implementation is that the user is not required to
input an initial guess: if the user does not provide an initial guess, the initial guess is set
to a random vector. Also, in practice it may be the case that the method does not converge
because, for instance, the matrix is not diagonally dominant. To make sure that the function
returns something in this case, we set a maximum number of iterations as a user input with
a default value of 100.

In [5]: def JacobiSolve(A,b,x0=np.array([]),tol=1.0e-6,
max_iterations=100,L0UD=False,):
"""Solve a linear system by dJacobi iteration.
Note: system must be diagonally dominant
Args:
A: N by N array
b: array of length N
x0: initial guess (if none given will be random)
tol: Relative L2 norm tolerance for convergence
max_iterations: maximum number of iterations
Returns:
The approximate solution to the linear system
[Nrow, Ncol]l = A.shape
assert Nrow == Ncol
N = Nrow
converged = False

150 9. ITERATIVE METHODS FOR LINEAR SYSTEMS

iteration =1
if (x0.size==0):
f#frandom initial guess
x0 = np.random.rand(N)
x = x0.copy()
while not(converged):
#replace old value
x0 = x.copy()
for row in range(N):
x[row] = blrow]
for column in range(N):
if column != row:
x[row] -= Alrow,column]*x0[column]
x[row] /= Alrow,row]
relative_change = np.linalg.norm(x-x0)/np.linalg.norm(x)
if (LOUD):
print("Iteration",iteration,
": Relative Change =",relative_change)
if (relative_change < tol) or (iteration >= max_iterations):
converged = True
iteration += 1
return x

We will try this function on our system from above. Only a portion of the output is shown
because it takes tens of iterations to converge to the solution.

In [6]: A =np.array([(2.5,-1,0,0),(-1,2.5,-1,0),(0,-1,2.5,-1),(0,0,-1,2.5)1)
print("Our matrix is\n",A)
b =np.array([1.0,1,1,11)
x = JacobiSolve(A,b,tol=1.0e-6,L0UD=True)
print(x)

Qur matrix is
[[2.5 -1. 0. 0. 1
[-1. 2.5 -1. 0. 1
[0. -1. 2.5 -1. 1]
[0. 0. -1. 2.511]
Iteration 1 : Relative Change = 1.0
Iteration 2 : Relative Change 0.392232270276
Iteration 3 : Relative Change 0.201990875657

Iteration 30 : Relative Change = 1.16661625519e-06
Iteration 31 : Relative Change = 7.55049332263e-07
[0.90908977 1.27272543 1.27272543 0.90908977]

Note that the iterations stopped when the change in the iterate was smaller than the tolerance
107%. Tt is a good idea to check the answer by comparing Ax to b.

In [71: #Check the answer

print("Ax =",np.dot(A,x))
print("b =",b)

Ax = [0.999999 0.99999837 0.99999837 0.999999 |
b=C1. 1. 1. 1.]

9.1. JACOBI ITERATION 151

We see that the solution does indeed have a small residual. Our Jacobi method could be
used on a much larger matrix, as in the next example:

In [8]: N = 100
A = np.zeros((N,N))
b = np.ones(N)
#fsame structure as before
for i in range(N):
Ali,i] = 2.5
if (i>0):
ALi,1-1]
if (i < N-1):
ALi,i+1] = -1
x100 = JacobiSolve(A,b,tol=1.0e-6,L0UD=True)
print(x100)

-1

Iteration 1 : Relative Change = 1.0
Iteration 2 : Relative Change 0.44285152295
Iteration 3 : Relative Change 0.260809758969

Iteration 54 : Relative Change = 1.36670150228e-06

Iteration 55 : Relative Change 1.09236419158e-06

Iteration 56 : Relative Change 8.73100528097e-07

[0.99999923 1.49999848 1.74999775 1.87499706 1.93749641 1.96874581
1.98437027 1.99218229 1.99608811 1.99804087 1.99901712 1.99950515

1.99804087 1.99608811 1.99218229 1.98437027 1.96874581 1.93749641
1.87499706 1.74999775 1.49999848 0.99999923]

9.1.1 Convergence of the Jacobi Method

We can demonstrate graphically the convergence of the Jacobi method for a 2 by 2 sys-
tem. This will help us compare different methods and how they converge. For Jacobi, and
subsequent methods, we will solve the system

2 19\ (x1) _ (02
1.9 4 xp) \—=42)"
The solution to this system is x; = 2 and x; = —2. We will start the Jacobi method with an ini-

tial guess of x¥ = (-1, 0.5)T. This time we will accompany the solution with a graph showing

how the approximate solution for Jacobi changes with each iteration.
In [9]: A =np.array([(2,1.9),(1.9,4)1)

solution = np.ones(2)*2

solution[l] = -2

b = np.dot(A,solution)

x0 = np.array([-1,.51)

Xxp, yp = JacobiSolve(A,b,x0=x0, LOUD=True)
plt.plot(xp,yp,’0o-",label="Jdacobi’)

xpoint = np.linspace(-5,5,100)

1inel = Tambda x: (0.2 - 2*x)/1.9

152 9. ITERATIVE METHODS FOR LINEAR SYSTEMS

line2 = Tambda x: (-4.2 - 1.9xx)/4
plt.plot(xpoint,linel(xpoint),’-",color="black”)
plt.plot(xpoint,Tine2(xpoint),’-",color="black”)
plt.axis([-1.2,3,-3,2])

plt.legend(); plt.xTabel("x$_1$"); plt.ylabel (" x$_2$")
plt.show()

Iteration 1 : Relative Change = 1.0
Iteration 2 : Relative Change 0.643406164463
Iteration 3 : Relative Change 0.244980153199

Iteration 33 : Relative Change = 1.10225320325e-06
Iteration 34 : Relative Change = 1.04360408096e-06
Iteration 35 : Relative Change 4.97391183094e-07

2- -
> ®—@ Jacobi

X3

In this figure, the dashed lines are the two lines that represent our system of equations

2 02
= ——X D
YT T e
19 42
Y= X

Where these lines intersect is the solution to our system. In this figure, there is one striking
phenomenon we can see. The Jacobi solution bounces around in the area between the two
lines. Because the approximation is always in this area and moves toward the solution, it
will eventually get to the solution. Also, note that the initial steps are large, and the step
size shrinks as the approximate solutions gets closer to the true answer. This is a common
phenomenon for iterative methods. The behavior of Jacobi is similar when there are more
equations than two, it just becomes harder to visualize the convergence.

9.1.2 Time to Solution for Jacobi Method

As we did with Gaussian elimination, we can time how long it takes to get a solution and
see how that time scales with the number of unknowns by plotting the time to solution versus
the number of equations on a log-log scale. The slope of this line (on the log-log scale) gives
us the leading order behavior of the Jacobi method as the number of equations gets large.

9.1. JACOBI ITERATION 153

Recall, for Gaussian elimination we observed a slope between 2 and 3.

In [10]: import time
num_tests = 10
I = 2%*np.arange(num_tests)
times = np.zeros(num_tests)
for test in range(num_tests):

N = I[test]
A = np.zeros((N,N))
b = np.ones(N)

fsame structure as before
for i in range(N):
Ali,i]1 = 2.5
if (i>0):
Ali,i-11 = -1
if (i < N-1):
A[i,i+1] = -1
start = time.clock()
x = JacobiSolve(A,b)
end = time.clock()
times[test] = end-start
plt.loglog(I,times,’ 0-")
plt.xlabel("Number of Equations")
plt.ylabel("Seconds to complete solve")
plt.show()
print("Approximate growth rate is n™",
(np.log(times[test])-np.log(times[test-11))/
(np.log(I[test])-np.log(Iftest-11)))

102 L
10 L

100

Seconds to complete solve
=)

100 10! 102 103
Number of Equations

Approximate growth rate is n” 2.00477104343

The slope of the line is 2, so that we can conclude that our implementation of Jacobi method
requires O (n?) operations where n is the number of equations. This means the time to so-
lution is growing more slowly than we saw for Gauss elimination, which has a theoretical
growth rate of three or O (n?). This means that for a large enough system, we will expect Ja-
cobi be faster than Gaussian elimination. However, Jacobi can only be applied to diagonally
dominant systems and, therefore, is not as general purpose as Gaussian elimination. Another

154 9. ITERATIVE METHODS FOR LINEAR SYSTEMS

Data: Matrix A, vector b, vector x,)q (initial guess), tolerance
Result: The solution x to Ax=Db

x=0;
while |x — xql2 >tolerance do
Xold = X;
x = (b — Ax + diag(A) - x);
end

Algorithm 9.2. Jacobi Algorithm without any for loops

difference between Jacobi and Gaussian elimination is that we cannot guarantee the number
of iterations in a Jacobi solve, whereas with Gaussian elimination we know it takes one pass
through the system to get a upper triangular form plus a back solve.

Just saying that Gaussian elimination is O(n?) and Jacobi is O(1n?) does not mean that
for a given problem Jacobi will be faster. The constant that multiples the leading order term
could be large in one method making the comparison only valid as n — co. For example,
n® < 1000n? for n < 1000. Therefore, to compare two methods at a given system size requires
knowing more than just the scaling. We will see this phenomenon concretely in the next sec-
tion where we speed up Jacobi, but do not change its scaling as n — oo.

9.2 A FASTER JACOBI METHOD

With NumPy we can make a simpler Jacobi iteration that should also be faster by removing
the inner two for loops. We can do this by using the fact that we can represent the Jacobi
method using matrix-vector products, vector addition, and scalar division. To do this we
notice that the inner update of a Jacobi iteration can be written as

1
ey _ L, oL o g (6))
X; = A, b; j:;#A,]xj =1 (b, a;-x + Ayx;),

where the ith row of the matrix is denoted as a;. Furthermore, we can write the entire update
as a matrix vector product

w1 (~A-x9 4+ Di , (@)
X = Diag(A) b—A.x" 4+ Diag(A) -x*),
where the diagonal of the matrix is denoted as Diag(A), and division by a vector is under-
stood to be elementwise.

Therefore, instead of writing a for loop to perform the sum in the update and then using
another Tor loop to look over the rows, we can use the optimized, built-in NumPy routine for
a matrix vector product. The resulting function is not quite as easy to read, but the algorithm
runs faster. We implement Algorithm 9.2 and test it out.

In [11]: def JacobiSolve_Short(A,b,x0=np.array([]),tol=1.0e-6,
max_1iterations=100,L0UD=False):
"""Solve a linear system by Jacobi iteration.
This implementation removes the for loops to make it faster

9.2. A FASTER JACOBI METHOD 155

Note: system must be diagonally dominant
Args:
A: N by N array
b: array of length N
tol: Relative L2 norm tolerance for convergence
max_iterations: maximum number of iterations
Returns:
The approximate solution to the linear system
[Nrow, Ncol] = A.shape
assert Nrow == Ncol
N = Nrow
converged = False
iteration =1
if (x0.size==0):
#random initial guess
x0 = np.random.rand(N)
x = x0.copy()
while not(converged):
x0 = x.copy() freplace old value
ffupdate is (b - whole row * x + diagonal part * x)/diagonal
x = (b - np.dot(A,x0)+ A.diagonal()*x0)/A.diagonal()
relative_change = np.linalg.norm(x-x0)/np.linalg.norm(x)
if (LOUD):
print("Iteration”, iteration,
": Relative Change =",relative_change)
if (relative_change < tol) or (iteration >= max_iterations):
converged = True
iteration += 1
return x

A reasonable first check is that the new algorithm gives the same answer as before.

In [12]: N = 100
A = np.zeros((N,N))
b = np.ones(N)
#fsame structure as before
for i in range(N):
Ali,i] = 2.5
if (i>0):
Ali,i-1]
if (i < N-1):
ALi,i+1] = -1
x100_Short = JacobiSolve_Short(A,b,tol=1.0e-6,L0UD=False)
print(x100_Short-x100)

-1

[0.00000000e+00 2.22044605e-16 0.00000000e+00 4.44089210e-16
0.00000000e+00 -4.44089210e-16 -4.44089210e-16 0.00000000e+00

0.00000000e+00 -4.44089210e-16 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]

Those are almost identical. We can also demonstrate that this algorithm is much faster than
the previous one.

156 9. ITERATIVE METHODS FOR LINEAR SYSTEMS

Below, we show results from the same timing study that we did for plain Jacobi. The results
in the figure show that we can solve more than 1000 equations in less than 1 second. The
calculated growth rate of the time to complete the solve is n*!2, basically quadratic scaling in
the number of equations.

102

Seconds to complete solve
=)

®—@ Fast Jacobi
— Plain Jacobi

100 10! 102 103 104
Number of Equations

This curve is typical of the performance of an algorithm that is initially not filling up all the
resources of the computer (fast memory called cache, for example). The bulk of the compu-
tation is spent on setting up the problem or moving memory around, two things that are not
dependent on the number of floating point operations required. Eventually, once this set up
time is small compared to the overall computation, we see that the scaling is about quadratic,
which is better than the theoretical growth of Gaussian elimination. Despite having the same
growth rate as the previous implementation, the absolute speed is much better.

One way to understand why the second implementation is faster is because the second has
fewer for loops. When I have a for loop, the computer has to wait for each pass through the
loop to complete before beginning the loop body again. With my “fast” implementation, all
the work that needs to be done for an iteration is specified in a few lines using NumPy func-
tions. This gives Python and NumPy the ability to keep the CPU of my computer completely
filled up with tasks to do, instead of waiting for other tasks to finish and for memory to move
around. As a result the time to solution is basically constant at less than 0.01 seconds until we
get to about 256 equations.

9.3 GAUSS-SEIDEL

The Gauss-Seidel (GS) method is a twist on Jacobi iteration. The difference between the
Jacobi and Gauss-Seidel method is that GS uses the most up to date information when per-
forming an iteration. In equation form, Gauss-Seidel computes

| i—1 1
(t+1) (e+1) ® .
X; :A_i,' b,‘—jzlA,‘jxj —j;HAijxj y fOI'l=1...I,K=O.... (9.1)

In particular, when the method is updating x;, it can use the updates already computed for
the previous equations to get a better approximation: these are the j =1...i — | terms on the
right-hand side of Eq. (9.1). Because Gauss-Seidel is using the most up to date information,

9.3. GAUSS-SEIDEL 157

Data: Matrix A, vector b, vector x (initial guess), tolerance
Result: The solution x to Ax=b
Xold = 0;
while || x — x4/l >tolerance do
xi = b;;
for i € [0, number of rows of A] do
for j € [0, number of columns of A] do
if i # j then
| xi=xi — Aijxj;
end
end
Xi = xi/Aii;
end
Compute the change from x4 to x;
Xold = X;
end

Algorithm 9.3. Gauss-Seidel Iterations

by the time it gets to the last equation it is basically using information all at iteration ¢ + 1.
Therefore, we might expect Gauss-Seidel to converge in fewer iterations than Jacobi. That
being said, it may not be faster than Jacobi if the iterations take longer to compute than a
Jacobi iteration.

The algorithm for Gauss-Seidel is given in Algorithm 9.3. Notice that the only change is
that x,14 is only used to compute the change during an iteration and is not otherwise used in
the update.

Below, we implement a standard Gauss-Seidel algorithm in Python:

In [14]: def Gauss_Seidel_Solve(A,b,x0=np.array([]),tol=1.0e-6,
max_iterations=100,L0UD=False):
"""Solve a linear system by Gauss-Seidel iteration.
Note: system must be diagonally dominant
Args:
A: N by N array
b: array of length N
x0: initial guess (if none given will be random)
tol: Relative L2 norm tolerance for convergence
max_iterations: maximum number of iterations
Returns:
The approximate solution to the Iinear system
[Nrow, Ncol] = A.shape
assert Nrow == Ncol
N = Nrow
converged = False
iteration =1
if (x0.size==0):
x0 = np.random.rand(N) #random initial guess
x = x0.copy()
while not(converged):
x0 = x.copy() #replace old value

158 9. ITERATIVE METHODS FOR LINEAR SYSTEMS

for row in range(N):
x[row] = blrow]
for column in range(N):

if column != row:
jfuse x in update
x[row] -= A[row,column]*x[column]

x[row] /= Alrow,row]
relative_change = np.linalg.norm(x-x0)/np.linalg.norm(x)
if (LOUD):
print("Iteration",iteration,
": Relative Change =",relative_change)
if (relative_change < tol) or (iteration >= max_iterations):
converged = True
iteration += 1
return x

We now repeat the solution of a system that we previously solved using the Jacobi method,
where it took 56 iterations. The code below performs the same test using Gauss-Seidel.

In [15]: N =100
A = np.zeros((N,N))
b = np.ones(N)
same structure as before
for i in range(N):
Ali,i] = 2.5
if (i>0):
Ali,i-11 = -1
if (i < N-1):
ALi,i+1]1 = -1
x100_GS = Gauss_Seidel_Solve(A,b,LOUD=True)
print(x100_GS)
Iteration 1 : Relative Change = 1.0
Iteration 2 : Relative Change 0.398660303888
Iteration 3 : Relative Change 0.209236888361

Iteration 31 : Relative Change = 1.61012686252e-06

Iteration 32 : Relative Change 1.07080293175e-06

Iteration 33 : Relative Change = 7.12128943502e-07

[0.99999896 1.49999827 1.74999781 1.8749975 1.9374973 1.96874716
1.98437208 1.99218452 1.99609073 1.99804383 1.99902038 1.99950865

1.99804605 1.99609309 1.99218699 1.98437462 1.96874972 1.93749981

1.87499987 1.74999992 1.49999996 0.99999998]
The 33 iterations Gauss-Seidel required is quite a bit fewer than the 56 required by Jacobi
(about 41% less). Using the most up-to-date information nearly cut the number of iterations
in half. Compared to the Jacobi method, the complexity of the algorithm should be roughly
the same per iteration because each iteration is solving a simple one-equation system for the
next iteration’s value for each unknown.

9.3.1 Convergence of Gauss-Seidel

We can compare the convergence between Jacobi and Gauss-Seidel graphically on the same
2 by 2 system as before and visually see how the iterations proceed. The figure below shows

9.3. GAUSS-SEIDEL 159

different behavior than the Jacobi method.

2r -

N *—k Jacobi
~ ®—@ Gauss-Seidel

X2

2L

-3

X

When we observe the convergence of Gauss-Seidel, we see that unlike Jacobi, it does not
bounce between the lines. Rather it goes to one of the lines and then moves along that line to
the solution. We can also see that Gauss-Seidel is “skipping” some of the Jacobi iterates, but
getting to what looks like nearly the same points. For example, we can see that the third point
for Gauss-Seidel is very near the fourth Jacobi point.

9.3.2 Time to Solution for Gauss-Seidel

We can do the same timing study we did for Jacobi. We expect Gauss-Seidel to be faster
than the plain Jacobi (our first implementation), but probably slower than the fast Jacobi.
We expect it to be faster than our simple Jacobi because it should take fewer iterations, and
slower than fast Jacobi because there is not a way to implement Gauss-Seidel using matrix
vector products, like we did in our fast Jacobi implementation and the reduction in iterations
is not sufficient to overcome the additional cost per iteration. This is a visual demonstration
of the benefit using up-to-date information in the iteration. In this test we observe a quadratic
growth rate again.

=
‘

Seconds to complete solve
=)
T

©—@ Gauss Seidel
A—4A Fast Jacobi
— Plain Jacobi

100 10! 102 103 104
Number of Equations

160 9. ITERATIVE METHODS FOR LINEAR SYSTEMS

Gauss-Seidel, like our two Jacobi implementations, appears to be an O (n?) algorithm. Due
to the fewer number of iterations, the absolute time to solution is faster than plain Jacobi, but
it is slower than fast Jacobi because each iteration is more expensive.

Before moving on, it is worthwhile to discuss in more detail why Gauss-Seidel cannot be
done in the same fast manner as Jacobi. This is because each equation in Jacobi is independent

of another: to update xlo) does not depend on the update to x9 , for example. This indepen-

dence in updates is not the case for Gauss-Seidel iterations: xfo) cannot be updated until xéa

is. This means that I cannot write the algorithm as briefly as I could Jacobi. Gauss-Seidel has
an intra-iteration dependence that makes each row’s unknown dependent on those that come
before it. This dependence is the fundamental reason we do not have a fast Gauss-Seidel im-
plementation.

All hope is not lost for Gauss-Seidel, however. One can do something fancy called red-
black Gauss-Seidel where all the even unknowns (called the red unknowns) are updated,
and then all the odd unknowns (the black unknowns) are updated. Given the structure of
the tridiagonal matrix above, to do a Gauss-Seidel update on an even unknown only requires
knowledge of odd unknowns, and vice-versa. The updates for red and black unknowns can
be done independently. This can make for a fast algorithm, however it gets more complicated
because you need to split your system into “red” and “black” parts. As a general algorithm,
this can be much trickier to code. For a tridiagonal system, the coding is pretty straightfor-
ward and comprises an exercise at the end of the chapter.

9.4 SUCCESSIVE OVER-RELAXATION

Though it sounds like an injury you can get sitting in your easy chair, over-relaxation takes

the update from a Gauss-Seidel iteration and moves the solution further in that direction,

e., it over relaxes it. The basic idea is to combine the current iterate with the Gauss-Seidel
calculation of the next iterate using a factor w:

A = (1@ 2 o = 3 A - Z A), fori=1..1.£=0.... 92)
j=1 =i+l

Clearly, if w = 1 then nothing has changed about the update. On the other hand, making w > 1
over-relaxes the system. In a sense it tries to take the correction to the current iteration and
move the solution farther in that direction. The algorithm hardly changes at all. All we do is
compute the update, and then compute the linear combination in Eq. (9.2).

In [18]: def SOR_Solve(A,b, x0= np.array([1),tol=1.0e-6,
omega=1,max_iterations=100,L0UD=False):
"""Solve a linear system by Gauss-Seidel iteration with SOR.
Note: system must be diagonally dominant
Args:
A: N by N array
b: array of Tength N
x0: initial guess (if none given will be random)
tol: Relative L2 norm tolerance for convergence

9.4. SUCCESSIVE OVER-RELAXATION 161

omega: the over-relaxation parameter

max_iterations: maximum number of iterations
Returns:

The approximate solution to the linear system

noun

[Nrow, Ncoll = A.shape

assert Nrow == Ncol
N = Nrow

converged = False
iteration =1

if (x0.size==0):
#random initial guess
x0 = np.random.rand(N)
x = x0.copy()
while not(converged):
x0 = x.copy() #replace old value
for row in range(N):
x[row] = blrow]
for column in range(N):
if column != row:
x[row] -= Alrow,column]*x[column]
x[row] /= Alrow,row]
x[row] = (1.0-omega) * xO[row] + omegaxx[row]
relative_change = np.linalg.norm(x-x0)/np.linalg.norm(x)
if (LOUD):
print("Iteration",iteration,
": Relative Change =",relative_change)
if (relative_change < tol) or (iteration >= max_iterations):
converged = True
iteration += 1
return x

Using our standard example of 100 tri-diagonal equations, we can get a reduction in the
number of iterations using w = 1.2:

In [19]: N = 100
A = np.zeros((N,N))
b = np.ones(N)
ffsame structure as before
for i in range(N):

Ali,i1 = 2.5

if (i>0):
Ali,i-11 = -1

if (1 < N-1):
ALi,i+1] = -1

x100_GS11 = SOR_Solve(A,b,omega=1.2,L0UD=True)

Iteration 1 : Relative Change = 1.0
Iteration 2 : Relative Change 0.348994473141
Iteration 3 : Relative Change 0.15758242743

Iteration 20 : Relative Change = 3.29823212222e-06
Iteration 21 : Relative Change = 1.76671341242e-06
Iteration 22 : Relative Change 9.46306176483e-07

162 9. ITERATIVE METHODS FOR LINEAR SYSTEMS

That saved us 11 iterations: Gauss-Seidel required 33 compared with 22 here. If we tweak w
some more, we get that w ~ 1.3 is the best value of w, leading to 19 iterations.

9.4.1 Convergence of SOR

On our 2 by 2 system, we expect that the graphical convergence of SOR should look similar
to that of Gauss-Seidel, but exaggerated because SOR is taking the Gauss-Seidel update and
moving further in that direction. The figure below compares an SOR solution with a tuned
value of w with an SOR solution using too large a value of w.

2 -
N *—* Jacobi
©—@ Gauss-Seidel
. > SOR,w=1.185
<4< SOR,w=15

X2
I

With SOR the convergence with a tuned value of w, in this case w = 1.185, is similar to
Gauss-Seidel, but faster. This happens because SOR allows the solution to go off the dashed
lines during convergence to get a better approximation. Indeed, after the first iteration, the
iterates zoom into the solution quickly. There can be too much of good thing, however. When
the value of w is too large, in this case w = 1.5, the approximation overshoots the true solution,
before coming back. This leads to the solution requiring more iterations than Gauss-Seidel.

9.4.2 Time to Solution for SOR

The results from the timing study on SOR is given next. In this figure we observe the same
trend as the standard Jacobi, and Gauss-Seidel methods.

1021

=
‘

100 L

e SORw=1.3
+—+ Gauss Seidel
A—4A Fast Jacobi
— Plain Jacobi

Seconds to complete solve
=)

102 103 104

Number of Equations

100 10!

9.5. CONJUGATE GRADIENT 163

Once again, we get a little faster because we saved on some iterations, also the growth
rate shrunk mildly. It is worth noting at this point that the improvement from plain Jacobi to
Gauss-Seidel to SOR are all numerical improvements: that is the numerical method improved
resulting in fewer iterations. The speed increase going to Fast Jacobi is due to an implemen-
tation improvement: the fast implementation uses the computer’s resources better.

One drawback with SOR is that it is not generally possible to determine ahead of time
what the appropriate value of w is. Experience on similar systems is generally required to
determine the value of w. As a result, it may be more expensive to determine w properly, by
trial and error, than the savings it gives on a similar system. In the timing study above, the
value of w used was determined using this trial and error approach.

9.5 CONJUGATE GRADIENT

The conjugate gradient method will work on systems where the matrix A is symmetric,
and positive definite (it does not need to be diagonally dominant in this case). Positive defi-
nite means that for any x that is not all zeros,

xTAx > 0.

We will need this fact when deriving the method because we will divide by xT Ax. We will
also need the definition of the residual for iteration ¢, r'¥), given by

9 =b — Ax®.
To derive the method consider the function of x:
1
f(x)= EXTAX —bTx, (9.3)

the minimum of this function occurs when the gradient of f(x) with respect to x is 0 or when
Ax=b.

Therefore, we can derive an iterative method by computing f(x?’) for an initial guess and
refining the solution by decreasing the value of f(x’) and continuing on. In particular we
write

XD =xO a0,

The vector s is the search direction, and o, is the step length. All that we have said up to
this point is that at each iteration we are moving the solution in a particular direction s’ by
an amount o¢. We would like to pick a; so that the error after step £ + 1 the function is at
a minimum along direction s). To accomplish this we take the derivative of f(x“*") with
respect to ay and set it to zero,

D pxery = (0 gt ! NN
dap ax+D dag

164 9. ITERATIVE METHODS FOR LINEAR SYSTEMS
T
- (r(4+1>> s©
T
=— (A (x“) + aes(z)) — b) s®
¢ o\T .«
— (r() Aays)) s©
=0.
When we solve this for «y, we get,

(x®)T 5O
==t (9.4)
(s(g)) As®

We still have not specified the search direction.

The power of the conjugate gradient method is in how it selects the search direction. To
understand this we will need to understand what it means for two vectors to be conjugate.
Two vectors, u and v, are conjugate with respect to a matrix A if

uTAv =0.

It is true that if u is conjugate to v, then v is conjugate to u. The property of conjugacy is
related to orthogonality of two vectors. If two vectors are orthogonal then,

u-v=ulv=0.
When two vectors are conjugate, they are orthogonal after one is multiplied by A.

Conjugate gradient seeks search directions that are conjugate to all the previous search
directions. What this means is that every search direction is orthogonal to each of the previous
directions when multiplied by A. That is, we do not step in the same direction multiple times.
To do this we want to write the search direction for the £ 4- 1 step as a linear combination of
the residual plus a constant times the previous step as

sUHD — (D | g5 (9.5)

We want step £ + 1 to be conjugate to the previous step so that (s(?)TAs“*! = 0. We want to
pick B¢ so that this is the case. We will multiply Eq. (9.5) by (s¢?)TA and set the result to zero
to get

(s9) Are+) 1 g, (s0)" s o, 9.6)
Solving for S, gives
. (r<l+1>)TAs<‘f> ©.7)
(s0)TAs® ‘

This process that will ensure that every subsequent search direction is conjugate to all pre-
vious search directions. To set the initial search direction, we set 8@ = r@. This also bounds

9.5. CONJUGATE GRADIENT 165

Data: Matrix A, vector b, vector x (initial guess)
Result: The solution x to Ax=b
residual =b — Ax;
s = residual;
while change in x is small do
compute « defined by Eq. (9.4);
X=X+ us,
residual =b — Ax;
compute B defined by Eq. (9.7);
compute s defined by Eq. (9.5);
end

Algorithm 9.4. Conjugate Gradient Algorithm

the number of iterations in the solution. For an N by N matrix there are at most N mutually
conjugate vectors. This means that there are at most N iterations in a CG solve because each
step is in a conjugate direction and we minimize the error along each step.

We have talked through the mathematics of how conjugate gradient works, we write the
method in pseudocode in Algorithm 9.4.

Notice that the CG algorithm is expressed entirely in matrix-vector products and vector
addition/subtraction. This algorithm for conjugate gradient is implemented in Python be-
low.

In [22]: def CG(A,b, x= np.array([]),tol=1.0e-6,
max_iterations=100,L0UD=False):
"""Solve a linear system by Conjugate Gradient
Note: system must be SPD
Args:
A: N by N array
b: array of length N
Xx0: initial guess (if none given will be random)
tol: Relative L2 norm tolerance for convergence
max_iterations: maximum number of iterations
Returns:
The approximate solution to the Iinear system
[Nrow, Ncol] = A.shape
assert Nrow == Ncol
N = Nrow
converged = False
iteration =1
if (x.size==0):
#random initial guess
x = np.random.rand(N)
r=>5b - np.dot(A,x)
s = r.copy()
while not(converged):
denom = np.dot(s, np.dot(A,s))
alpha = np.dot(s,r)/denom
X = x + alphaxs

166

9. ITERATIVE METHODS FOR LINEAR SYSTEMS

r==>b - np.dot(A,x)
beta = - np.dot(r,np.dot(A,s))/denom
s =r + pbeta x s
relative_change = np.linalg.norm(r)
if (LOUD):
print("Iteration",iteration,
": Relative Change =",relative_change)
if (relative_change < tol) or (iteration >= max_iterations):
converged = True
iteration += 1

return x

The results from our standard example are below.

In [23]:

Iteration
Iteration
Iteration

Iteration
Iteration
Iteration

A couple of things to note. The number of iterations of this algorithm is about the same as
Gauss-Seidel with SOR, in other words it converges faster than Jacobi. Also, there are no for
loops in the algorithm, it is all matrix-vector operations. Therefore, it should be competitive

N =

A =

b

np.zeros((N,N))
np.ones(N)

#same structure as before

for i

in range(N):
Ali,i] = 2.5
if (i>0):

Ali,i-11 = -1
(i < N-1):
A[1,i+1] = -1

x100_CG = CG(A,b,LOUD=True)

1
2

3

22

23
24

Relative Change = 8.2630468612
Relative Change
Relative Change

5.11537771495
1.90670704394

Relative Change = 2.34099376734e-06
Relative Change
Relative Change

1.1809715533e-06
5.42003345606e-07

with our fast implementation of Jacobi in terms of speed.

9.5.1 Convergence of CG

On our 2 by 2 system, we can compare the graphical convergence of conjugate gradient
relative to the other methods. Given that our search directions will be conjugate, we expect
that the solution should converge in two iterations because there are not more than two con-
jugate directions in a two-dimensional space. After the first iteration, the conjugate gradient

approximate moves directly to the solution, as predicted.

9.5. CONJUGATE GRADIENT 167

2 B ~N
S o *—* Jacobi
S ®—@ Gauss-Seidel
' > SOR,w=1.185
<4< SOR,w=1.5
ol Conjugate Gradient
>c<\l =<
HEs
21
N
23 ! ! ! ! N
-2 bl 0 | 2 3

9.5.2 Time to Solution for CG

We now replicate the timing study we did before for Jacobi, Gauss-Seidel, and SOR for CG.
Given that the number of iterations was similar to SOR for our N = 100 system, we expect
the scaling for CG to be similar to SOR. However, the CG algorithm is expressed in terms of
matrix-vector product so we expect the time to solution should exhibit the behavior we saw
with the fast Jacobi method: for small systems the time to solution will be roughly constant,
and as the system gets larger the time to solution should scale as O (N?).

102 L
o 0L
=
3
g 100}
a
£
S ol
8
-z ®—® Conjugate Gradient
5 102 e SORw=1.3
v
a +—F Gauss Seidel
103 A—A Fast Jacobi
— Plain Jacobi
10-4 I I I I L
100 10! 102 103 104 105

Number of Equations

In these results the time to solution for conjugate gradient is roughly constant until there
are hundreds of equations. Past this point, the time to solution grows roughly as the number
of equations squared. In the end the time to solution is roughly equal to that from Jacobi.
Given that the two methods have a similar time to solution, there are still reasons to favor
conjugate gradient: the matrix need not be diagonally dominant and it is guaranteed to con-
verge in N iterations.

168 9. ITERATIVE METHODS FOR LINEAR SYSTEMS

9.6 TAKING ADVANTAGE OF TRI-DIAGONAL FORM

In the example problems above we have been storing the whole N by N matrix, when
really we only need about 3N numbers because the rest are zeros. We can do this by refor-
mulating our matrix to be N by 3 and putting the matrix elements in the appropriate place as

done here:
In [26]: 10
ri = np.zeros((N,3))

np.ones(N)

same structure as before

#but fill it more easily

A_tril:,11 = 2.5 {middle column is diagonal
A_tril:,0]1 = -1.0 #left column is left of diagonal
A_tril:,2] = -1.0 {#right column is right of diagonal
A_tri[0,0] = 0 #remove left column in first row
A_tri[N-1,21 = 0 {remove right column in last row
print("Our matrix is\n",A_tri)

N
A_
b

[

Qur matrix is
(L 0. 2.5 -1. 1]
-1. -1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
0.

enRanRanRen N e W e W W e
| | |

Il T T N S S Y
R NN MN NN NN
o oy O O O OO OO
R S T T S S

]

This is a much smaller matrix, but to use it we need to define special algorithms. We will
do this for Jacobi because it is the simplest to show here. The modification for Gauss-Seidel,
SOR, or conjugate gradient would also be possible (in fact implementing Gauss-Seidel is an
exercise at the end of this chapter). The code below is our Jacobi method for a tri-diagonal
system. In the code, the major change is that the main diagonal is always in column 1 of a
row and the off diagonals are in columns 0 and 2 respectively.

In [27]: def JacobiTri(A,b,tol=1.0e-6,max_iterations=100,L0UD=False):
"""Solve a tridiagonal system by Jacobi iteration.
Note: system must be diagonally dominant
Args:

A: N by 3 array

b: array of Tlength N

tol: Relative L2 norm tolerance for convergence

max_iterations: maximum number of iterations
Returns:

The approximate solution to the linear system
[Nrow, Ncol]l = A.shape
assert 3 == Ncol

9.6. TAKING ADVANTAGE OF TRI-DIAGONAL FORM 169

N = Nrow
converged = False
iteration =1
x0 = np.random.rand(N) #random initial guess
X = np.zeros(N)
while not(converged):

x0 = x.copy() #replace old value

for i in range(1,N-1):

x[1] = (b[i] - ALi,01*x0[1-11 - A[i,2]*x0[i+11)/A[i,1]

i=0
x[0] = (b[i] - A[1,2]xx0[i+11)/ALi,1]
i=N-1

x[1] = (b[1] - A[i,0]xx0[1-11)/A[1,1]
relative_change = (np.linalg.norm(x-x0)/
np.linalg.norm(x))
if (LOUD):
print("Iteration",iteration,
": Relative Change =",relative_change)
if (relative_change < tol) or (iteration >= max_iterations):
converged = True
iteration += 1
return x_new

The results from our timing study indicate that the rate of growth in the solution time is
linear, rather than quadratic. This is because the number of elements in the system is grow-
ing linearly in n, whereas the elements in a full matrix grows as the number of equations
squared.

102 L
10! L

1oo |

Tri Jacobi
Conjugate Gradient
SORw=1.3
Gauss Seidel

Seconds to complete solve
=)

Fast Jacobi
Plain Jacobi

10-4

102 103 104 105
Number of Equations

100 10!

When the solution time is only growing linearly, we can run matrices as large as 100,000
by 100,000 in as little as 10 seconds. This is about 3 orders of magnitude improvement on a
simple problem. This last figure tells makes three key points that are common in numerical
methods:

1. The number of iterations is not necessarily as important as the speed at which the iterations
are performed (compare SOR with fast Jacobi).

170 9. ITERATIVE METHODS FOR LINEAR SYSTEMS

2. Eventually, the method that grows more slowly will be more efficient. This is seen in the
fact that eventually the tridiagonal Jacobi method is the fastest because it grows linearly in
the number of equations whereas the other methods grow quadratically in the number of
equations.

This will be our last chapter on linear solvers. In the future we will use them to solve
a variety of problems. Linear solvers also form the basis for several other numerical meth-
ods: nonlinear solvers, eigenvalue solvers, and discretizations for initial and boundary value
problems. The fact that linear solvers are the foundation for so many other topics in scientific
computing is one of the motivations for starting with that topic.

FURTHER READING

There are a variety of iterative methods that can be used to solve linear systems that ex-
tend beyond those discussed here. The classic reference for these methods is Saad’s treatment
aimed at sparse linear systems [12], i.e., systems where the matrix has many zero entries,
such as a tridiagonal matrix. Trefethen and Bau also provide detailed discussion of iterative
methods [9].

PROBLEMS

Short Exercises

9.1. Write a Python function called isSymmetric which takes a single parameter A and
checks if the NumPy matrix A is symmetric. It should return 1 if the matrix is symmetric,
and 0 if the matrix is non-symmetric.

9.2. Write a Python function called isDiagonallyDominant which takes a single parame-
ter A and checks if the NumPy matrix A is diagonally dominant. It should return 1 if the
matrix is diagonally dominant, and 0 if the matrix is not diagonally dominant.

Programming Projects

1. Exiting Gracefully

The Jacobi and Gauss-Seidel implementations in this chapter have a maximum number of
iterations before they return a solution. They do not, however, tell the user that the maximum
number of iterations was reached. Modify the Jacobi implementation given above to alert the
user that the maximum number of iterations has been reached. You can do this by inserting a
print statement that is executed or by using an assert statement.

2. Tri-diagonal Gauss-Seidel

Write a Gauss-Seidel solver for tri-diagonal matrices. The implementation should take as
input a tri-diagonal matrix just as the tri-diagonal Jacobi defined previously. Test your im-
plementations on the same timing study performed above in Section 9.6. Comment on the
results.

PROBLEMS 171

import numpy as np
import math

delta = 0.05;
L =1.0;
k =0.001;

ndim = round(L/delta)

nCells = ndimxndim;

A = np.zeros((nCells,nCells));
b = np.zeros(nCells)

#save us some work for later
idelta2 = 1.0/(deltaxdelta);

#fnow fill in A and b
for cellVar in range(nCells):
xCell = cellVar % ndim; #x Z y means x modulo y
yCell = (cellVar-xCell)/ndim;
xVal = xCellxdelta + 0.5*«delta;
yVal yCell*delta + 0.5xdelta;
#put source only in the middie of the problem
if ((math.fabs(xVal - L*0.5) < .25%L) and
(math.fabs(yVal - Lx0.5) < .25%L)):
blcellVar] = 1;
ftend if

AlcellVar,cellVar] = 4.0xkxidelta2;

if (xCell > 0):

AlcellVar,ndim*yCell + xCell -1] = -k*idelta?2;
if (xCell < ndim-1):

AlcellVar,ndimxyCell + xCell + 1] = -kxidelta?;
if (yCell > 0):

AlcellVar,ndim*(yCell-1) + xCell] = -k*xideltaZ;
if (yCell < ndim-1):

AlcellVar,ndim*(yCell+1) + xCell] = -k*ideltal;

if (nCells <= 20):
ffprint the matrix
print("The A matrix in Ax = b is\n",A)

#fprint the righthand side
print("The RHS is",b)

X, residual = CG(A,b,LOUD=True,max_iterations=1000)

Algorithm 9.5. 2-D Heat Equation Code

3. 2-D Heat Equation

Below is a program in Algorithm 9.5, which builds a matrix and righthand side for a heat
conduction problem in 2-D. The discretization of the 2-D heat equation gives a linear system
Ax = b where the solution vector x is the temperature at the grid points of the 2-D domain.
In particular

172 9. ITERATIVE METHODS FOR LINEAR SYSTEMS

The 2-D heat equation in a homogeneous material of constant conductivity & with a uni-
form volumetric heat source ¢ and zero-temperature conditions on the boundary of the
rectangular domain of length L, and width L, is

—kV’T =g, forx €[0,L,] yel0, Lyl
With the boundary condition
T(x,y)=0 for x, y on the boundary.

The 2-D Laplacian is discretized using a mathematical technique known as finite differ-
ences (which we will see later on).

As a result of the spatial discretization, the heat equation forms a linear system of the form
Ax =Db. The code below forms this matrix.

The size of this matrix is nCe11s is determined by the value of A (the distance between
points at which we want to evaluate the temperature), and the size of Ly and L,. In the
code L, = L, and this value is called L. The total number of values in each direction is
ndim= L/A leading to a total number of unknownsis nCells = ndim * ndim.

Your work:

1.

Look at Algorithm 9.5. It is a working program except that the conjugate gradient function
has been deleted from it. To make it run you will have to add in a conjugate gradient solver.
The conjugate gradient solver given in class should return a vector containing the residual
at each iteration.
Plot the logarithm of the 2-norm of the residual, ||Ax; —b||» error versus the iteration num-
ber.
The solution vector x contains the nCells = ndim * ndimunknowns. The x and y po-
sitions corresponding to a given row of the matrix are defined in the lines that assign xVa
and yVal. Plot the 2-D temperature distribution in the two following cases:

a. Avery coarse grid (small number of grid points)

b. A fine grid (high number of grid points).

CHAPTER

10

Interpolation

OUTLINE

10.1 Polynomials 174

10.2 Lagrange Polynomials 176
10.2.1 Efficiency of Lagrange

Polynomials 180

10.2.2 The Runge Phenomenon 181

10.3 Cubic Spline Interpolation 182

Coda 189

Further Reading 190

Problems 190

Short Exercises
Programming Projects
1. Root-Finding via
Interpolation
2. Extrapolation

3. Moderator Temperature
Coefficient of
Reactivity

190
191

191
191

191

Islands in the stream
That is what we are

No one in between
How can we be wrong?

—“Islands in the Stream” by Dolly Parton and Kenny Rogers

CHAPTER POINTS

e Polynomials can be used to approximate an
unknown function between known values.

e High-degree polynomial interpolation is
subject to oscillations known as the Runge
phenomenon.

points of the function are known.

Spline interpolants can give accurate and
smooth interpolating functions when many

In this chapter we will look at how we can take functions evaluated at particular points and fit
polynomials to them. The points which we know the function could be from a table of values,
measurements, etc. The process of creating a function that fits observed data is called inter-

Computational Nuclear Engineering and Radiological Science Using Python 1 73

DOI: 10.1016/B978-0-12-812253-2.00012-1

Copyright © 2018 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-812253-2.00012-1

174 10. INTERPOLATION

polation: the interpolation function will pass through the given points and make it possible
to give values between the known data.

Polynomials are useful for interpolation because they are easy to evaluate and can be read-
ily generated. As we will see, high-degree polynomials are not always the best choice, but a
set of low-degree polynomials can be quite useful when we have many data points.

10.1 POLYNOMIALS

We denote a polynomial that is of degree n as P,(x). A polynomial of degree n has n + 1
coefficients and is written as

n
Py(x)=ap+aix +axx* + - +a,x" =Y aix’.
i=0

It is possible to evaluate polynomials efficiently because there is a natural recursion. To
compute the value of x" we need to compute x"~1 x"=2 .. x. Therefore, if we com-
pute a term at a time, we only have to perform n multiplications to compute the values
{x", x"~1, ..., x}. Below is a function that evaluates polynomials in this efficient manner.

In [1]: def polynomial(a,x):
"""Fvaluate a general 1-D polynomial at point
Args:
a: array of the n+tl coefficients of a polynomial
Xx: the point to evaluate the polynomial at
Returns:
Pn(x)
num_coefficients = a.size
answer = a[0]
xpower =1
for i in range(l,num_coefficients):
f#the next power of x is x*previous power
Xxpower *= X
answer += a[i]xxpower
return answer

The total number of floating point operations in this calculation is comprised of 2n mul-
tiplications (n from computing x" and n more from the coefficient multiplications) and n
additions. Testing out this function reveals that in practice there is basically no difference in
the time it takes to evaluate a degree 10 polynomial and a degree 10° polynomial.

To demonstrate how this function works, we will test it on a simple quadratic polynomial:

P(x)=x—-Dx+1)=x>—1.
In [2]: a = np.array([-1,0,11)
X_points = np.linspace(-3,3,100)
y = polynomial(a,X_points)

10.1. POLYNOMIALS 175

plt.plot(X_points,y)
plt.xTabel("x")
plt.ylabel("y")
plt.show()

1.0 2.0 3.0

A more complicated polynomial can also be evaluated. Next we evaluate a quintic, or fifth
degree, polynomial with random coefficients.
In [4]: poly_degree =5
a = np.random.uniform(-2,2,poly_degree + 1)#+1 because of 0
y = polynomial(a,X_points)
plt.plot(X_points,y)
plt.xTabel("x")
plt.ylabel("y")
plt.show()

8.0
6.0
4.0
2.0

0.0

15 -1.0 -0.5 0.0 0.5 1.0 1.5

Polynomials have the property that any function can be approximated by a polynomial to
any desired degree of accuracy. This result, known as the Weierstrass approximation theorem,
is written as

176 10. INTERPOLATION

Weierstrass approximation theorem. For any function f(x) defined on the interval a < x <b,
there exists a degree n polynomial with n finite where

[P (x) — f(0)] <€,
forall x e [a, bl and any € > 0.
Therefore, any function you name, we can approximate it as well as you like with a poly-

nomial inside a given interval.

BOX 10.1 NUMERICAL PRINCIPLE

The Weierstrass approximation theorem degree the polynomial needs to be to make a
states that we can approximate any function good approximation.
well using polynomials. It does not state what

In addition to the approximation properties of polynomials, these functions are also
unique. For a given set of n + 1 pairs of points [x;, f(x;)], there is only one polynomial of
degree n that passes through all those points. This makes sense because a polynomial of de-
gree n has n 4 1 coefficients. Therefore, the n 4- 1 data points define a unique polynomial. We
will now discuss a method to compute the coefficients of polynomials given data.

10.2 LAGRANGE POLYNOMIALS

Lagrange polynomials are the simplest way to interpolate a set of points. This approach is
not necessarily the most efficient for generating polynomial interpolating functions, but the
difference is minimal for most applications. Regardless of the method used to compute the
polynomial, the polynomial coefficients will be the same due to the uniqueness of interpolat-
ing polynomials.

The equations to construct a linear Lagrange polynomial are straightforward. Given points
ap and a1 and f(ap) and f(a1), the linear Lagrange polynomial formula is

X —aj
f(ao) +
ap — aj

Pi(x) = —

X —a
ai

0
Sf(a).
ag
Itis clear that Pj(ag) = f(ap) and P;(a;) = f(a;) because in each case one of the numerators

goes to 0. Also, it is clear that the function is a linear polynomial. We can translate this formula
for linear interpolation into a function for Python:

In [5]: def linear_interp(a,f,x):
"""Compute linear interpolant
Args:
a: array of the 2 points
f: array of the value of f(a) at the 2 points

10.2. LAGRANGE POLYNOMIALS 177

Returns:
The value of the linear interpolant at x
assert a.size == f.size
answer = (x-a[l1])/(al[0]-all11)*f[0] + (x-a[0])/(all]-al0])*f[1]
return answer

We can check this on an example when the function is sin(x) and we interpolate x = 0 and
x=m/2.

In [6]: a = np.array([0,np.pi*0.5])

f = np.sin(a)

x = np.linspace(-0.05*np.pi,0.55xnp.pi,200)

y = linear_interp(a,f,x)
plt.plot(x,y,linestyle="--",Tabel="Linear Interpolant")
plt.plot(x,np.sin(x),",Tabel="$\sin(x)$")
plt.scatter(a,f,c="black",label="Data Points")
plt.xTabel("x")

plt.ylabel("y")

plt.legend(loc="best")

plt.show()

— = Linear Interpolant
— sin(z)

Data Points

Note how the line passes through the two points we passed to the function. The line
captures the overall trend of sin(x) between the two points, but we might want a better ap-
proximation.

The formulation of the quadratic Lagrange polynomial is also straightforward. Given
points ag, a1, and a2 and f(ap), f(a1), and f(az), the quadratic Lagrange polynomial formula
is

Py(x) = (x —a))x —a) Flao)+ (x—ap)x —a
(ap — ar)(ap — az)

(x —ap)(x —ay)

(a2 —ap)(az — a1

2 fay)

(a1 —ap)(a; —az)

)f(az).

This formula now has three terms that each have the product of two linear polynomials.
Similar to the linear Lagrange polynomial, the numerator vanishes on two of the terms when

178 10. INTERPOLATION

we evaluate the formula at one of the data points. A function to implement the quadratic
Lagrange polynomial is given next.

In [7]: def quadratic_interp(a,f,x):

"""Compute the quadratic interpolant
Args:

a: array of the 3 points

f: array of the value of f(a) at the 3 points
Returns:

The value of the quadratic interpolant at x
answer = (x-a[l])*(x-al[2])/(al0]-al[1])/(al0]-al[2])*f[0]
answer += (x-a[0])*(x-al[2])/(all]-al[0]1)/(all]-al2])*f[1]
answer += (x-a[0])*(x-al[l])/(al2]1-al[0]1)/(al2]-all])*f[2]
return answer

We will do the same test as before on sin(x), the point we add is in the middle and compare
our result to the linear interpolant.

1.2
— - Linear Interpolant i
LoF .. Quadratic Interpolant -
08l — sin(z)
e®¢ Data Points s
0.6 P
>~ 04}
0.2}
0.0}
021
.04 . ! ! ! |
-0.5 0.0 0.5 1.0 1.5 2.0

Notice that the quadratic interpolant does a much better job than a linear function. Part
of this is due to the fact that by adding the point in the middle we have decreased the dis-
tance between known values of the function. Moreover, between the known data points, the
curvature of the quadratic interpolant follows the original function more closely.

Comparing the linear and quadratic Lagrange interpolation formulas, we can begin to
see a pattern in the Lagrange interpolation formulas. Each term has in the numerator the
product of (x — a;) where the q;’s are different than the point we evaluate f(x) at. Also, the
denominator is the product of the a point minus each other a point. This leads us to the
general Lagrange interpolation formula:

-]_[?=1 ji (e —xj)
Py(x)=) flai)=— ,
* g ¢ Hj:l,j;éi(xi —X;)

10.2. LAGRANGE POLYNOMIALS 179

Data: Degree: n, Points: ag, a, ..., a,, Function values: f(ao), f(a1), ..., f(ay),
Evaluation Point: x

Result: The value of the nth degree Lagrange interpolant at point x
answer = 0;
fori €[0,n] do
product =1;
for j €[0,n] do

if i # j then

product = (product) x ;:‘;’1

end
end
answer = answer + (product) x f(a;);
end

Algorithm 10.1: Lagrange Polynomial Interpolation

where we have used the product notation:

n

]_[ai =aja...a,.

i=1

The general Lagrange polynomial interpolation algorithm is given in pseudocode in Algo-
rithm 10.1.
This algorithm is implemented in Python below.

In [9]: def lagrange_interp(a,f,x):
"""Compute a lagrange interpolant
Args:
a: array of n points
f: array of the value of f(a) at the n points
Returns:
The value of the Lagrange interpolant at x
answer = 0
assert a.size == f.size
n = a.size
for i in range(n):
product =1
for j in range(n):
if (i 1= 3):
product *= (x-aljl)/(alil-aljl)
answer += product*f[i]
return answer

We can use this function to compute the interpolation of sin(x) using a degree 3, or cubic,
polynomial.

In [10]: a = np.linspace(0,np.pix0.5,4)
f = np.sin(a)

180

1.2

1.0

0.8}

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.5

10. INTERPOLATION

= np.linspace(-0.1xnp.pi,0.6%np.pi,200)
lagrange_interp(a,f,x)

Cubic Interpolant

— sin(z)
e®¢ Data Points

This interpolant is nearly indistinguishable from the original function over this range. With
a general Lagrange interpolation routine, we can go even further and create a quintic inter-
polant. The result of running the code above with 6 points instead of 4 gives the following

result:
1.2

1.0
0.8
0.6

>

0.4

Quintic Interpolant
— sin(z)
e®e Data Points

1.0 1.5 2.0
x

In this case we cannot distinguish between the original function and the interpolating
polynomial. These results seem to indicate that higher degree polynomial interpolants are
superior to lower degree, but there is a problem with high-degree interpolation called the
Runge phenomenon that we discuss later.

10.2.1 Efficiency of Lagrange Polynomials

The Lagrange polynomial formula is not the most efficient way to compute an interpo-
lating polynomial. Nevertheless, for almost any application the speed of modern computers
means that our Lagrange polynomial is fast enough. This is especially true because using

10.2. LAGRANGE POLYNOMIALS 181

NumPy we can compute the value of the polynomial at many x points at the same time for a
given set of input data points. As shown in the figure below, it is possible to evaluate degree
512 polynomials at one million points in less than a second.

0.1

0.01 4

Time to Evaluate 108 Points (s)

1.0 10.0 100.0
Degree of Polynomial

If the Lagrange polynomial formula is too slow for a particular application, there are other
approaches discussed at the end this chapter.

10.2.2 The Runge Phenomenon

At degrees higher than 3, polynomial interpolation can be ill-behaved between the inter-
polation data. Specifically, the interpolating polynomial can have large oscillations. We can
see this in a simple example with the function

FO = e

This function seems to be fairly innocuous, but it tortures polynomial interpolation. We will
look at 5th and 7th degree polynomials. Using our Lagrange polynomial function defined
above, we produce the interpolating polynomials we get the following result:

1.0 — ()
=== Quintic Interpolant
—+= 7th Degree Interpolant
0.75 1 @ Quintic Points
% 7th Degree Points
>~ 0.5
0.25 1
0.04 !_// N ‘

182 10. INTERPOLATION

Notice how the polynomial interpolants are very inaccurate near the edges of the domain
and the behavior of the interpolating polynomials are completely different than the under-
lying function. In particular the higher degree polynomial has a larger maximum error and
larger average error than the lower degree polynomial. This can be seen in the plot of the
absolute value of the interpolation error below:

1 1
1.0 | —— Cubic Interpolant |
i --- Quintic Interpolant i
i —+= 7th Degree Interpolant |
0.75 | |
s i
- |
Q
5 039 \
0
4
<
0.25 1
0.0 1

This behavior of high degree interpolants is called the Runge phenomenon: with equally
spaced points a polynomial interpolant can have large oscillations going both high and below
the actual function. This also makes extrapolating, that is evaluating the function outside the
range of the data a dangerous endeavor. In this example, whether the function increases or
decreases beyond the data depends on the degree of the interpolating polynomial. This high
sensitivity to the choices made in interpolation make extrapolation untrustworthy outside
the domain of the data, especially when the polynomial degree is high.

In general, performing high degree polynomial interpolation is a bad idea. In general it is
better to fit low-degree polynomials to subsets of the data and then connect those polynomi-
als. This is the idea behind spline interpolation.

10.3 CUBIC SPLINE INTERPOLATION

A cubic spline is a piecewise cubic function that interpolates a set of data points and guar-
antees smoothness at the data points. Before we discuss cubic splines, we will develop the
concept of piecewise linear fits.

If we have several points, but do not want to have a high degree polynomial interpolant
because of fear of the Runge phenomenon, we could do linear interpolation between each of
the points.

10.3. CUBIC SPLINE INTERPOLATION 183

1.0 1

0.8+

0.6 4

>
0.4+
0.2 — sin(x)
piecewise linear interpolant
0.0 @ data points
0.0) 20 30

X

This fit is OK, but it has some problems. The primary one is that it is not smooth at the
data points: the function has a discontinuous derivative at some of the points. This would
be the case even if we knew that the underlying function should be smooth. Also, a linear
interpolant is not a good fit to the function: above we had much better luck with quadratics
and cubics.

To guarantee a degree of accuracy, avoid the oscillations we have seen before, and get
smooth functions we can, and should, use cubic spline interpolants. Cubic spline interpolants
are continuous in the zeroth through second derivatives and pass through all the data points.
The name spline comes from thin sticks, called splines, that were used in drafting in the
days before computers. One also could imagine that these flexible sticks were used to strike
colleagues in moments of merriment or anger.

To set up our algorithm we begin with the n 4 1 data points (x;, y;) (also called knot points),
this implies n intervals and » — 1 interior (not at the beginning or end) points. We will denote
the cubic on the interval from point (i — 1) to i as

fi(x) = a; + bix + cix* 4+ d;x°.
The cubics need to match at the knot points so
JixD) =y,

fitxiv) = firi(xig) =yiq1 1<i<n,
fn(xn+1) = Yn+1,

which are 2 total conditions, when the end points are included. In equation form these be-
come

ay +bixy +ci1xi +dixi =y,
. b; . . 2 d: 3 a4 bix: 2 d: 3.
il F0ip1Xip1 + X FdiqiXi) =a; F0ixip1 +eixi) Hdip1x;) = Vi1,

2 3
ap + bpXpy1 +cuxy g + d,,)cn_H = Yn+1-

184 10. INTERPOLATION

Also, we need to make the derivatives continuous at the interior knot points,
S Gig) = fi (i) 1<i<n.
The n — 1 equations for this are
biy1 4+ 2ciy1xi+1 + 3d,~+1xi2+1 =bit1+2ci+1x;i + 3d,-+1xl-2 1<i<n.
Finally, we need to make the second derivatives continuous at the interior knot points,
fl iy = fl(is) 1<i<n.
The n — 1 equations for equality are

2¢i41 +6d;iy1xi 41 =2¢; +6d;xi11.

For the n intervals there are 4n unknowns (4 coefficients for each cubic). We have 4n — 2
equations at this point so we need two more equations. The natural choice is to set the second

derivative to be zero at the two endpoints:
[(x1) =0, w (1) = 0.

We now have 4n equations and 4n unknowns.

We will build a cubic spline for sin(x) using x = (0, /2, 7). This spline will have two in-
tervals, meaning that there are 8 cubic coefficients we need to find. We fill a matrix with the

equations for matching the function at the knot points first. The code below does this.

In [11]: {#tknot points are sin(x) at 0, pi/2,pi
n =2 {#2 intervals
data = np.zeros((n+1,2))
datal:,0] = a
datal:,1] = y_a
coef_matrix = np.zeros((4*n,4xn))
rhs = np.zeros(4+*n)
J#fset up the 2n equations that match the data at the knot points
#first point
x = datal0,0]
coef_matrix[0,0:4]
rhs[0] = datal0,1]
#second point
x = datall,0]
coef_matrix[1,0:4] = [1,x,x**x2,x*xx3]
rhs(1] = datal[l,1]
x = datall1,0]
coef_matrix[2,4:8] = [1,x,x**2,x**3]
rhs[2] = datal[l,1]
#third point
x = datal2,0]
coef_matrix[3,4:8] = [1,x,x**x2,x*x3]
rhs[3] = datal[2,1]
print(coef_matrix[0:4,:1)

[1,Xx,x*%2,x*x*3]

10.3. CUBIC SPLINE INTERPOLATION 185

[C 1 0. 0. 0. 0. 0. 0. 0.]

L1 1.57079633 2.4674011 3.87578459 0. 0. 0. 0.]

[0 0. 0. 0. 1. 1.57079633 2.4674011 3.87578459]
[o 0. 0. 0. 1. 3.14159265 9.8696044 31.0062766871]

These are the first four rows of the matrix to determine the 8 unknowns in our spline fit.
The next step is defining the equations for the first derivative at the interior point. This
adds one more equation.

In [12]1: dfnow the first derivative equations
ffsecond point
x = datal[1,0]
coef_matrix[(4,0:4]
rhs(4] =0
coef_matrix[4,4:8]

[0,1,2%x,3%x*%2]

[0,-1,-2%x,-3%xx*xx2]

The last step in the construction of the equations is to create the equations for the second-
derivatives at the knot points. One of these equations will be at the middle point, x = 7 /2,
and the other two specify that the second derivative goes to zero at the endpoints.

In [13]1: {now the second derivative equations
f#second point
x = datal[l,0]

coef_matrix[5,0:4] = [0,0,2,6%x]
rhs[5] =0
coef_matrix[5,4:8] = [0,0,-2,-6%x]

ffset first point to 0
x = datal[0,0]

coef_matrix[6,0:4] = [0,0,-2,6%x]
rhsf6] = 0
#fset last point to O
x = datal2,0]
coef_matrix[7,4:8] = [0,0,2,6%xx]
rhsf7]1 = 0
print(coef_matrix)
[f 1. 0. 0. 0. 0. 0. 0. 0.]
[1. 1.57079633 2.4674011 3.87578459 0. 0.
0. 0.]
[0. 0. 0. 0. 1. 1.57079633
2.4674011 3.87578459]
[0. 0. 0. 0. 1. 3.14159265
9.8696044 31.00627668]
[0. 1. 3.14159265 7.4022033 0. -1.
-3.14159265 -7.4022033]
[0. 0. 2. 9.42477796 0. 0.
-2. -9.42477796
[0. 0. -2. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 2. 18.849555927]

Finally, we solve the system of equations using Gauss elimination (from Chapter 7) and get
the coefficients of the cubic spline interpolant.

In [14]: dtsolve for the cubic coefficients
coefs = GaussElim(coef_matrix,rhs)
print(coefs)

186 10. INTERPOLATION

[0. 0.95492966 0. -0.12900614
-1. 2.86478898 -1.2158542 0.129006141]

Therefore, our approximation is

0.95492966x — 0.12900614x3 x <

f()C) = 2 3 _
—1+2.86478898x — 1.2158542x“ 4+ 0.12900614x> x >

S ERSE]

The beauty of the cubic spline interpolant is how well it approximates a function. If we look
at the sine wave example from before, it is hard to distinguish the cubic spline interpolant
from the original function. In the code below we evaluate the cubic spline fit. For a given point

we need to determine which spline to use and this logic is expressed in the if-elif-else
block.

In [15]: dfevaluate function
points = 200
X = np.linspace(-0.1,np.pi+0.1,points)
y_interp = np.zeros(points)
for i in range(points):
if (X[i] < np.min(datal:,01)):
spline = 0
elif (X[i] > np.max(datal0:n,0]1)):
spline = n-1
else:
ffknot to the left is spline
spline = np.argmax(X[iJl-datal:,0])
y_interp[il = np.sum(coefs[4xspline: (4*spline+d)] =
L1, XLiT,XEiTx%2,X[11%%31)
plt.plot(X,np.sin(X), Tabel="$\sin(x)$")
plt.plot(X,y_interp, Tinestyle="--", Tabel="Cubic Spline")
plt.scatter(datal:,0],datal:,1],label="knot points")

1.0 -3 — sin(x)
cubic spline
® knot points
0.75 1
0.5
>
0.25
004 ¢
/ \
0.0 10 20 3.0

In the following graph, the error, as defined by the difference between the true function
and the interpolant, is quantified so that we can see how small it is:

10.3. CUBIC SPLINE INTERPOLATION 187

In [16]: plt.plot(X,y_interp-np.sin(X), label="cubic spline $- \sin(x)$")
plt.scatter(datal:,0],0xdatal:,1],Tabel="knot points");
plt.xlabel("x")
plt.ylabel("Error")
plt.legend(loc="best")

0.005 .
—— cubic spline —sin(x)
® knot points
0.0
-0.005 |
—
o
i
-0.01 1
-0.015+
-0.02

00 10 20 30
X

Making the cubic spline was straightforward, but tedious. Additionally, evaluating the
splines involved determining which spline to use and then evaluating the function. Thank-
fully, the package SciPy, a companion package for NumPy that implements many numerical
algorithms, has a cubic spline function that we can use.

The function in the interpolate section of SciPy that we want to use is called Cu-
bicSpline. It takes in the data points x and y as inputs, and returns a function that we
can evaluate. There are several options for the conditions at the beginning and end points.
We have already discussed the natural spline conditions where the second derivative of the
splines at the first and last knot point are set to zero, i.e.,

V(1) = £ (xpg1) =0, natural spline conditions.

Another type of spline is the “clamped” spline where the first-derivative is set to zero at the
end points:
fix1) = f(xns1) =0, clamped spline conditions.

The default condition used by CubicSp11ine is the “not-a-knot” condition where the third
derivative of the first and last splines is fixed so that it matches the third derivative at the
nearest interior point:

7 (x2) = £ (x2), £) = £ (xn), not-a-knot spline conditions.

Plugging in the cubics to this equation we get the conditions
ay =ay, dp—1 =dan.

This implies that the spline in the first and nth interval are the same as the splines in the
second and (n — 1) intervals, respectively. In this sense, the endpoints are not treated as knots,
just a point that the interior spline must pass through.

188 10. INTERPOLATION

The code below compares these splines on an interpolation problem. This time we apply
it to the hyperbolic sine function using five knot points, meaning there are four different
splines.

In [171: from scipy.interpolate import CubicSpline

jtdefine data

a = np.linspace(0.2,np.pi*1.8,5)

data = np.zeros((5,2))

datal:,0] = a

datal:,1] = np.sinh(a)

Jfdefine splines

splineFunction = CubicSpline(datal:,0],datal:,1],bc_type="natural’)

splineFuncClamp = CubicSpline(datal:,0],datal:,1],bc_type="clamped’)

splineFuncNot = CubicSpline(datal:,0],datal:,1],bc_type="not-a-knot’)

Jmake plot

points = 200

X = np.linspace(0,np.pi*2,points)

plt.plot(X,splineFunction(X),
label="Natural Cubic Spline")

plt.plot(X,splineFuncClamp(X),linestyle="--
label="Clamped Cubic Spline")

plt.plot(X,splineFuncNot(X),linestyle="-.
Tabel="NaK Cubic Spline")

plt.plot(X,np.sin(X), Tabel="$\sinh(x)$")

plt.scatter(datal:,0],datal:,1],1abel="knot points")

—— natural cubic spline
250.0 1 . I
clamped cubic spline ’
—-= NaK cubic spline /
200.041 — sinh(x) :
® knot points
150.0 1
>
100.0 4
50.0 A
0.0 1

0.0 2.0 4.0 6.0

It is apparent that the choice of spline type does have an affect on the interpolation. The
clamped splines force a local extreme point to be created at the endpoints because the deriva-
tive goes to zero. Similarly, the natural splines create an inflection point (i.e., the second-
derivative is zero at the endpoints). For this particular problem the not-a-knot splines work
best near the large values of x.

On the Runge phenomenon example from before, cubic spline interpolants perform better
than high-degree polynomials as shown in this next figure.

CODA

7 knot points

— f(x)
1.0 -=—- 6th-degree Interpolant
—-= NaK cubic spline
0.75] @ data points
> 05
0.25 4
0.0 1 \ v
‘_,', U
-1.0 0.0 10 20

Adding two more knot points makes the spline fit better

0.75 1

> 0.5

0.25 1

0.0

9 knot points

— f(x)
-=- 8th-degree interpolant

—-= NaK cubic spline
@ data points

I
I
1 1
L

210 0.0 10 20

189

Notice how the splines get better, but the full polynomial gets worse. That is why cubic

splines are the go to method for fitting curves through a series of points.

CODA

Next time we will talk about those times when it is not desirable to have the function touch
every point. These problems are curve-fitting problems and sometimes called regression. In
these problems, as demonstrated below, we do not want the function to interpolate the data
but to find some trend in the data. In the following figure a line that has had random noise
added to it is shown, along with the original function, a cubic spline interpolant, and a line
fitted by linear regression. We will cover this topic in the next chapter.

190 10. INTERPOLATION

A line with noise

2.0
—— Cubic Spline e

R
Fitted Line
Y Original Function ¥

® Noisy Data

- 101
0.5 z
0.0 l
-0 -05 00 05 10
FURTHER READING

As mentioned above, there are other ways to compute interpolating polynomials than the
Lagrange polynomial formula. All of the methods give the same the result, but different al-
gorithms to compute them. Neville’s algorithm and Newton’s divided difference formula
are two well-known polynomial construction techniques. Additionally, it is possible to use
other functions for interpolation. Rational function interpolation writes the interpolant as the
quotient of two polynomials and can give well-behaved interpolants where polynomial in-
terpolation is too oscillatory. For periodic functions, trigonometric interpolation is another
approach.

PROBLEMS

Short Exercises

10.1. Compute, by hand, the second-degree Lagrange polynomial for the points, x = {0, 2, 4}
and f(x) = {1,0.223891, —0.39715}. If f(3) = —0.260052, how accurate is the interpo-
lation at this point. Plot your interpolating polynomial for x € [0, 5]. The points were
generated from the Bessel function of the first kind, Jo(x). Compare your interpolating
polynomial to the actual function.

10.2. Repeat the previous exercise with a clamped cubic spline and a not-a-knot cubic
spline.

PROBLEMS 191

Programming Projects

1. Root-Finding via Interpolation

Given the following function data

x 2.5 2.4 1.2 1 0.5 0.2 0.1
f(x) —0.0600307 —0.0594935 —0.039363 —0.0279285 0.071541 0.43361 0.73361

Use interpolation to find the root of the function, that is find x such that f(x) = 0. You can
do this by fitting interpolating functions to the data using X; = f(x;), and f (xX;) = x;, and
then evaluating £ (0). Find the best approximation you can using an interpolating polynomial
of maximum degree, and the three kinds of splines discussed above. The correct answer is
x =0.75. Comment on the results.

2. Extrapolation

Consider the following data for an unknown function. In the problems below log x denotes
the natural logarithm of x.

X 1.2 1.525 1.85 2175 25
f(x) 548481 23697 1.62553 1.28695 1.09136

Use interpolating polynomials of different degree, and three kinds of splines to estimate
f(3). Repeat the previous procedure after logarithmically transforming the data, i.e., set
x; =logx;, and f (%) =log f (x;). The correct answer is f(3) =0.910239226627. Discuss which
approaches performed best for both the linear and logarithmic interpolation.

3. Moderator Temperature Coefficient of Reactivity

The change in the reactivity for a nuclear reactor due to changes in the moderator temper-
ature is called the moderator temperature coefficient of ay, is the logarithmic derivative of k,
for the reactor as

1 akoo
— log — — (1 —
mm B (g).
where the subscript m denotes “moderator”, p is the resonance escape probability for the
reactor, f is the thermal utilization, and By, is

1 ONm

B =~

Nm 0Tm

with N, the number density of the moderator.
Consider a research reactor that is cooled by natural convection. It has p = 0.63 and f =
0.94. Plot the moderator temperature coefficient from 7, = 285 K to 373 K as a function of

192 10. INTERPOLATION

temperature for this reactor, using the data below from the National Institute for Standards
and Technology (NIST) for Ty, in K, and density, pm, in mol/liter:

Tm Pm g%:
289.99 55442 —0.00769
300.12 55.315 —0.0143
320.53 54909 —0.0231
346.13 54.178 —0.0308
366 53.475 —0.0385
369.87 53326 —0.0385

CHAPTER

11

Curve Fitting

OUTLINE

11.1 Fitting a Simple Line 194 Further Reading 212
11.1.1 Least-Squares Regression 197 Problems 212
11.2 Multiple Linear Regressmn' 198 Programming Projects 212
11.2.1 Example From Outside of : .
Enoi . 1. Power Law Fit 212
ngineering 199 i 5
11.2.2 Adding More Variables 202 Zulliihteng i 213
11.3 “Nonlinear” Models 206 3. koo and Diffusion
11.4 Exponential Models: The Length for a Water
Logarithmic Transform 208 Balloon 213
11.4.1 Power Law Models 210 4. Model Without a
Coda 212 Constant 214

Thus the unfacts, did we possess them, are too imprecisely few to warrant our certitude...

-James Joyce, Finnegan’s Wake

CHAPTER POINTS

e Given independent and dependent e Least squares can handle multiple
variables, we can fit a linear model to the independent variables and nonlinearity in
data using least squares regression. the independent variables.

e Logarithmic transforms allow us to fit
exponential and power law models.

In the previous chapter we investigated methods that exactly interpolated a set of data. That
is we derived functions that passed through a set of data points. Sometimes it is better to find
a function that does not exactly interpolate the data points. For example, if we did an exper-
iment and we expected the measured value to be linear in some variable x we might write

f(x)=a+bx+e,

Computational Nuclear Engineering and Radiological Science Using Python 1 93

DOI: 10.1016/B978-0-12-812253-2.00013-3 Copyright © 2018 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-812253-2.00013-3

194 11. CURVE FITTING

where f(x) is the measured value, and ¢ is an error term because the experimental data prob-
ably does not fall in exactly a straight line. In this case the € contains the measurement error
and inherent variability in the system. In such a case, rather than performing linear interpo-
lation, we want to find the values of ¢ and b that best match the measured data, but do not
necessarily exactly match the data.

Another reason we might want to find this best match is that there might be another hid-
den variable we do not know about, but we want to find the best possible model given the
variables we do know about. As an example say we want to know the radiation dose rate
outside of a shield, but there is an unknown source variability, we could write

log(dose) = a + b(shield thickness) + ¢,

where now e is capturing the error in not including the source variation, as well as the mea-
surement uncertainty.

In a less scientific example, a retail corporation has stores throughout the country and
wants to know how the area around the store (sometimes called a trade area) and the size of
the store affect the sales at a store. In this case we may write

sales = a + b(Population within 5 minute drive of store) + ¢(Size of Store) + €.

In this case there may be hundred of hidden variables such as the presence of competition in
the market, the age of the store, or the time of year.

The question that we are faced with is that we have set of input variables and the value of
an output variable at several points, and we want to fit a linear model to this data. By linear
model we mean a function that is the sum of contributions from each input or some operation
on the inputs. The form of the model could come from theory or we could just be looking for
an explanation of the output using the data we have. In this case Lagrange polynomials or
cubic splines will not work because we have a model form we want to approximate, and
interpolation methods either prescribe a model form or have the form determined by the
amount of data. Furthermore, if we do an experiment and measure at the same point mul-
tiple times, we will likely get several slightly different values of the outputs. Interpolation
methods will not work because they expect the interpolating function to only take on a single
value at each input.

11.1 FITTING A SIMPLE LINE

To proceed, we will take some data and try to fit a linear model to the data. Along the way
we will see that the problem is not well-posed, and demonstrate a means to give it a unique
solution.

Say we are given data for an input x and an output y:

X y
1 11.94688
2 22.30126
3 32.56929
4

41.65564

11.1. FITTING A SIMPLE LINE 195

and we want to fit a model
y=a+ bx,

which makes sense because y does look roughly linear in x. In the parlance of curve fitting,
x is an independent variable, and y is the dependent variable.

What we can do is write this as a linear system of equations, where the unknowns are
u = (a, b)T. That is, we want to solve for u in the equation

Xu=y,

where X is the data matrix,

— =

and y is the vector of dependent variables
y = (11.94688, 22.30126, 32.56929, 41.65564) 1.

Notice that the data matrix has a column of ones because for each equation in the system the
constant a is the same. Putting in our data values our system gives

11 11.94688
1 2| (a) _|22.30126
1 3 <b) ~ 1 32.56929
1 4 41.65564

I think that the problem here is obvious: we have 4 equations and 2 unknowns. This means
that there is not expected to be a vector u that can satisfy every equation. To make the problem
well-posed, we can multiply both sides of the equation by the transpose of the matrix:

11 11.94688
111\ 2fay_(1 1 1 1\[2230126
(1 2 3 4) 13 (b)_<1 2 3 4) 32.56929
1 4 41.65564

We will perform this calculation using Python, rather than by hand:

In [1]: import numpy as np
A =np.array([(1,1),(1,2),(1,3),(1,4)1)
RHS = np.array([11.94688, 22.30126, 32.56929, 41.65564])
print("The system A x = b has A =\n",A)
print("And b =",RHS)

The system A x = b has A =
[[1 1]
[1 2]

196 11. CURVE FITTING

(1 3]
[1 47]
And b = [11.94688 22.30126 32.56929 41.65564]

In [2]: AT_times_A = np.dot(A.transpose(),A)
AT_times_RHS = np.dot(A.transpose(),RHS)
print("The system after multiplying by A transpose is AT A =\n",AT_times_A)
print("ArT b =",AT_times_RHS)

The system after multiplying by A transpose is A"T A =
[[4 10]

[10 3011
AT b = [108.47307 320.87983]

Now we have a two-by-two system that we can solve:
4 10 u— 108.47307
10 30) " \320.87983)"
This system is known as the “normal equations”. We will solve this system with the Gaus-
sian elimination code we wrote earlier, and that I have handily stored in GaussElim.py.
In [3]: from GaussElim import =*
ab = GaussElimPivotSolve(AT_times_A,AT_times_RHS)

print("The constant a =",ab[0]," with a slope of b =",ab[1])

The constant a = 2.26969 with a slope of b = 9.939431

The data and the fitted line are shown next.

—— Fitted Line
® Data
40 1
30 1
>
20 A
10 1

To get a measure of how this model fits the data we look at a quantity called R? (pro-
nounced “R-squared”), defined as

G —y)?

RP=1-&—=
Zi(y_yi)z

11.1. FITTING A SIMPLE LINE 197

where J; is the ith predicted data point by the model,

A

yi=X;-u=a+bx;,

and y is the mean of the data. Notice that in the definition of x we had to include a 1 to handle
the intercept term: x; = (1, xi)T.
For our data we can compute R? in Python as

In [4]: yhat = ab[0] + ab[1]xA[:,1]
print("yhat =\t",yhat)
print("y =\t",RHS)
residual = yhat - RHS
print("error =\t",residual)
rZNum = np.sum(residual**2)
reDenom = np.sum((RHS-RHS.mean())**2)

print("R2 numerator =", r2Num)
print("R2 denominator =", r2Denom)
re =1 - r2Num/r2Denom

print("R2 =", r2)

yhat = [12.209121 22.148552 32.087983 42.027414]
y = [11.94688 22.30126 32.56929 41.65564]

error = [0.262241 -0.152708 -0.481307 0.371774]

R2 numerator = 0.46196241067

R2 denominator = 494.423405429

R2 = 0.999065654244

A perfect R? is 1. Sometimes R? is called the fraction of variance explained by the model.
Therefore, 1 or 100% implies that 100% of the variance in the data is explained by the model.
A value of 0.999, as in this fit, is very high and typically only appears in contrived data sets
used as examples.

11.1.1 Least-Squares Regression

So why did we multiply by the transpose of the matrix? It turns out that the above proce-
dure, besides giving us a system that we can solve, minimizes the error

E=) (G-

i=1

That is why the above procedure is called least-squares regression because it minimizes the
sum of the squares of the error at each point.

We can show that our solution gives the minimum, or least, squared error by differentiat-
ing the formula for E with respect to u and setting the result to 0. The derivative of E with
respect to u is

dE n
%=22x?(xi-u—yi>=o,
iz

198 11. CURVE FITTING
which upon rearranging and using the definition of a matrix vector product leads to
XTXu =XTy.

That is, the value of u is found by multiplying the system by the transpose of X. This is the
equation we solve to estimate the coefficients in the model.

Least-squares regression has the property that if we sum up the errors, we get zero. It
works particularly well when the errors in the data (that is the deviation from the model)
are independent random variables that do not depend on the value of the independent or
dependent variables.

BOX 11.1 NUMERICAL PRINCIPLE

Least-squares regression is the most com- will give errors with an average of zero, and it
mon type of model/curve fitting method: it minimizes the sum of the squares of the error.

11.2 MULTIPLE LINEAR REGRESSION

We will now generalize the problem of fitting a linear function to data to allow for there
to be multiple independent variables. Consider I observations of a dependent variable y and
independent variables x = (1, x1, x2, ..., x Y. We desire to fit a linear model of the form

yX)=ap+aixi+---+ajx;+e.
The equations that govern the relationship between y and x are given by

Xu=y,

where X is an I x (J + 1) matrix of the form

1 x11 X122 ... X1J
1 xp1 x» ... xo5
x=|: - -, 11.1)
1 Xil Xi2 e Xig
1 XI1 X2 ... XJJ

where the notation x;; is the ith observation for the jth independent variable. The vector u
holds the coefficients of the model

u=(apar,....an", (11.2)

11.2. MULTIPLE LINEAR REGRESSION 199

TABLE 11.1 Statistics from 2013 Texas A&M Football Team

Game Opponent Yards Points Off. T.O.? Def. T.O.7
Gained Scored
1 Rice 486 52 1 2
2 Sam Houston State 714 65 1 2
3 Alabama 628 42 2 1
4 SMU 581 42 1 3
5 Arkansas 523 45 0 2
6 Ole Miss 587 41 2 1
7 Auburn 602 41 2 1
8 Vanderbilt 558 56 5 3
9 UTEP 564 57 1 4
10 Mississippi State 537 51 3 1
11 LSU 299 10 2 0
12 Missouri 379 21 1 0
13 Duke 541 52 0 2

a T.O. is an abbreviation for turnovers.

and the vector y contains the observations of the dependent variable

y=01 ... yn)h (11.3)

As before, we will multiply both sides of the equation by XT to form the normal equa-
tions, and solve for u. We will now apply this more general technique to a real set of
data.

11.2.1 Example From Outside of Engineering

Consider the following data in Table 11.1. This is data from the 2013 Texas A&M Aggies’
football season. The numeric columns are

* Yards Gained on Offense

* Points Scored on Offense

* Turnovers by the Aggie Offense

e Turnovers received by the Aggie Defense.

For this example we will use the points scored as the dependent variable with a single inde-
pendent variable: yards gained. The data in Table 11.1 has been stored in a csv file that is read
in the next code block.

In [5]: import csv
with open(’FootballScores.csv’, newline="") as csvfile:
reader = csv.DictReader(csvfile)
opponent = []
Yards = np.array([])
Points = np.array([])
0ffTurn = np.array([])
DefTurn = np.array([]1)

200 11. CURVE FITTING

for row in reader:
#print(row)
opponent.append(row[Opponent’])
Yards = np.append(Yards,float(row[’Yards Gained’]))
Points = np.append(Points,float(row[’Points Scored’]))
0ffTurn = np.append(0ffTurn,float(rowl "0ff Turnovers’1))
DefTurn = np.append(DefTurn,float(row[’Def Turnovers’]))
print(opponent)
print(Yards)
print(Points)
print(0ffTurn)
print(DefTurn)

[’Rice ’, ’Sam Houston State ’, “Alabama ’, °*SMU ’, ’Arkansas ’

"0Ole Miss *, ’Auburn *, ’Vanderbilt ’, "UTEP ’, ’Mississippi State ~’

*LSU ’, “Missouri ’, ’Duke]

[486. 714. 628. 581. 523. 587. 602. 558. 564. 537. 299. 379.
541.1]

[52. ©65. 42. 42. 45. 41. 41. 56. 57. 5I1.
1. 1. 2. 1. 0. 2. 2. 5. 1. 3. 2. 1. O.
2. 2. 1. 3. 2. 1. 1. 3. 4. 1. 0. 2.

0. 21. 52.]

Ll

Now we want to perform our least squares procedure where the independent variable is
yards gained and the dependent variable is points scored. First, we build the matrix as before.
This is a good opportunity to use the vstack function in NumPy to stack two vectors on top
of each other and then take the transpose to get a rectangular matrix with 13 rows and 2
columns:

In [6]: A = np.vstack([np.ones(Yards.size), Yards]).transpose()
print("The A matrix is\n",A)

The A matrix is
[C 1. 486.]
L 714.

628.

581.

523.

587.

602.

558.

564.

537.

299.

379.

541.

L e s I e e M s I e B s M s B s B
2 b b b b b s e e
[S T S S N SN SN By Y QS

]

NumPy also has a built-in least squares function 1inalg. 1stsq. This function is used by
passing it the data matrix and the righthand side. We use this function to determine the linear
model for points scored as a function of yards gained:

In [7]: solution = np.linalg.lstsq(A,Points)[0]
print("The function is Points =",solution[0],"+",solution[1],"* Yards")

The function is Points = -16.2577502382 + 0.112351872138 = Yards

11.2. MULTIPLE LINEAR REGRESSION 201

BOX 11.2 NUMPY PRINCIPLE

In the linear algebra section of NumPy described above in Eq. (11.1), and b is the vec-
there is a function that can solve the least tor of dependent variables given in Eq. (11.3).
squares problem called 1stsq.Itis called via The [0] selects the first of the many variables
the syntax the function 1stsq returns. This function re-
X = np.linalg.1stsq(A,b)[0] turns several extra pieces of information that

. - . we do not need.
where X is the vector containing the solution

described in Eq. (11.2), A is the data matrix

It is important to interpret what the coefficients in your model mean. In this case the model
says that for every 10 yards gained, we expect to score 1.1 points. It also says that if zero yards
are gained, then we expect —16 points to be scored. This seemingly anomalous result arises
because we are trying to fit a simple model to this data. The original data and model are
plotted next to help illustrate what the model is telling us:

—— Simple Model
601 e Data
504
o
2
S 40
4]
£
L 304
20 4
Lsu
10

300 400 500 600 700
Yards on Offense

This is what real data typically look like: a lot messier than a simple line with a little noise.
The model shows that several games with very high or very low yards set the trend for the
line. Also we notice that half of the data are on one side of the line and the other half are on
the other. This splitting of the data is typical of least-squares regression.

To adjust our model, we can remove two of the lower conference schools (Sam Houston
State and UTEP); the scores in these games are expected to be different than the other games
based on the strength of those teams. This removes two data points to the top right. Removing
data points like this can help a model if we think that the data removed is not representative
of the overall data set.

In [8]: Asmall = A[(0,2,3,4,5,6,7,9,10,11,12),:]
PointsSmall = Points[[0,2,3,4,5,6,7,9,10,11,121]]
solution = np.linalg.Istsq(Asmall,PointsSmall)[0]

202 11. CURVE FITTING

The function is Points = -13.9002357065 + 0.105908511234 = Yards

Sam Houston State

—— Simple Model
e Data

60 -

50

40 A

Points Scored

30 1

20 A
iy
10{ %

300 400 500 600 700
Yards on Offense

Notice that the slope of our line did not change much by removing some data (0.112 points
per yard versus 0.106). This is a useful observation. It means that our model is robust to
removing some games. Had the result changed drastically we should be worried that the
model was driven by just a few data points.

11.2.2 Adding More Variables

To attempt to improve this model we could add more independent variables. For exam-
ple, the number of turnovers produced by the defense (i.e., interceptions or fumbles that the
opponent gives up) or given up by the offense (throwing an interception or losing a fumble
by the offense) could also be important. The next figure colors the dots with the number of
turnovers taken by the defense, and the size of the dot is the number of turnovers given up
by the offense. Looking at this chart seems to indicate that the lower scoring games had fewer
turnovers produced by the defense.

Sam Houston State 4

60 -

501

40

Points Scored
N
Def. Turnovers

30

20 e :

=)
|0-%'

300 400 500 600 700
Yards on Offense

11.2. MULTIPLE LINEAR REGRESSION 203

We will add these two variables to our model and compute the fit via least squares.

In [9]: A = np.vstack([np.ones(Yards.size), Yards, OffTurn, DefTurn]).transpose()
print("The A matrix is\n",A)
solution = np.linalg.lstsq(A,Points)[0]
print("The function is Points =",solution[0],
"+",solution[1],"x Yards","+",solution[2],
"x Off Turnovers","+",solution[3],"x Def Turnovers")

The A matrix is
[L 1. 486. 1. 2.1
[714.

628.

581.

523.

587.

602.

558.

564.

537.

299.

379.

541.

e Ean e Nan B e W e W e W e W e W
= = e e e e T e e e
O L N WEFE TN O N
N OO P WRF FEF NN WRF N
I S T A B B S R N R N R B R

]

The function is Points = -10.2946466989 + 0.0826356338026 % Yards +
0.376961922593 * Off Turnovers + 5.57033662396 = Def Turnovers

Once again, we will try to interpret the coefficients in the model. Given the sign of the
coefficient for offensive turnovers, the model indicates that turning over the ball on offense is
actually good for scoring points. Even a basic understanding of football indicates that this is
not likely to be a good strategy. When you get a model with an obviously wrong (or indefen-
sible coefficient), it is best to remove that coefficient and refit the model. The reason we can
get coefficients with strange values is that the model does not tell us what causes the depen-
dent variable to change, it is simply telling us what is correlated with the dependent variable.
To get at causation we would have to do a controlled experiment, not look at historical, ob-
servational data such as this data set.

Before we remove the offending independent variable from the mode, we will look at the
values of the predictions versus the actual values. This is an important diagnostic for mul-
tivariate models because it is harder to visualize the trends like we did for a single variable
model. We make a scatter plot where the x axis is the actual points scored and the y axis is the
predicted points scored. If the model is perfect, then all the points will fall on the diagonal
line y = x.

204 11. CURVE FITTING

— y=x
® Data

o
o
L

v
o
s

S
o
L

Predicted Points

w
o
L

Actual Points

This figure indicates that our model does seem to predict the number of points scored
based on the independent variables. To get a more quantitative measure of the model accu-
racy we will compute the average amount the model is off by. This quantity is the average
absolute value of the error, which is simply called the mean absolute error. For this model the
mean absolute error is

In [10]: yhat = np.dot(A,solution)
np.mean(np.fabs(Points-yhat))

Out[10]: 5.3201734672523262

BOX 11.3 NUMERICAL PRINCIPLE

The mean absolute error can be a better for predictions. In such a case you are often
measure of the model fit than R?. This is es- more concerned with how far off a prediction
pecially true is the model is going to be used is going to be.

We have to compute the average absolute error because of error cancellation—if we com-
puted the average error, the cancellation of positive and negative errors would give us an
average error very close to zero. Indeed this is what we see:

In [11]1: np.mean(Points-yhat)

Out[11]: -1.1409676622301608e-13

As indicated above, we should remove offensive turnovers from the model because the
coefficient for this variable did not make sense. We will remove this variable, refit the model,
and plot the actual versus predicted values.

In [12]1: A = np.vstack([np.ones(Yards.size), Yards, DefTurn]).transpose()
solution = np.linalg.1stsq(A,Points)[0]
print("The function is Points =",solution[0],
"+",solution[1],"* Yards","+",solution[2],"* Def Turnovers")

11.2. MULTIPLE LINEAR REGRESSION 205

The function is Points = -9.79027984448 + 0.0829036035041 % Yards +
5.54687804786 * Def Turnovers

o
o
L

v
o
L

N
o
s

30 A

Predicted Points

10 20 30 40 50 60
Actual Points

The coefficients of this model indicate that an additional defensive turnover is worth about
5.5 points on offense and that each 10 yards gained is worth 0.8 points. The actual versus pre-
dicted values plot looks very similar to the previous model. Additionally, the mean absolute
error is about the same.

In [12]: np.mean(np.fabs(Points-yhat))

OQutl12]: 5.3393751264980898

The R? for this model is
In [13]: 1-np.sum((Points-yhat)**2)/np.sum((Points.mean() - Points)xx2)

OQutl[13]: 0.79071317769713123

This is a respectable value for R? for a real data set: almost 80% of the variability in points
scored can be explained by our model that contains only the number yards gained and the
number of defensive turnovers. The mean absolute error also tells us that given the number
of yards gained by the Aggies and the number of takeaways on defense, we can estimate how
many points the team scored to within about +5 points.

It is a good thing to remove unnecessary variables in the model for several reasons. The
first is that putting too many variables in the model can lead to overfitting: if we add enough
variables eventually the model will have zero error (when we have the same number of vari-
ables as observations, the fit will be “perfect”). However, this model will perform poorly in
making predictions.

The other reason is that strange values will call the model into question. Nobody will
believe anything else you say if you make a patently false claim (like turn the ball over to get
more points). It is important when performing curve fitting to think critically about what the
model is indicating. Especially, if you want to use the model to explain what is occurring in
the data set.

206 11. CURVE FITTING

11.3 “NONLINEAR” MODELS

Least squares regression can be applied to models that are nonlinear in the independent
variables, if we can map the nonlinearity to new independent variables. In this section we
will demonstrate this procedure.

Suppose we wish to fit a model that has the form

fx)=ao+aix; + agxlz.

We can fit this model using least squares by defining a new variable x, = x?. This will make
the model look like a multivariate regression model:

f(x) =ao +aixi; +axxs.

Therefore, to fit this quadratic model we set up the matrix with this additional variable x; in
the appropriate column.
Consider the following data generated from the function y = 1 —5x +2x2 with noise added:

Actual function plus noisy data

254 — Actual Function
® Noisy Data

20 A
154
> 104
5 B
0
_5 B

To fit the quadratic model need to build the matrix with x? in the appropriate column
before calling the least squares function:

In [147: {now build the matrix
A = np.ones((N,3))
for i in range(N):
AL1,11 = x[i1]
Al1,2] = x[i1x%2
solution = np.linalg.lstsq(A,y)[0]
print("The function is y =",solution[0],"+",
solution[1],"x x","+",solution[2],"* x"2")

The function is y = 0.50907172038 + -4.69368434583 ~ x + 1.92891037106 * x"2

The fitted function is close to the actual function used to produce the data. The coefficients
are slightly off. Graphically, the fitted and original function are close.

11.3. “NONLINEAR” MODELS 207

Actual and fitted functions plus noisy data

254 —— Actual Function
Fitted Function
20{ @ Original Data

If we wanted to fit more complicated polynomial models, we can do this by placing the
correct powers of the independent variables in the data matrix X. This makes the least squares
curve fitting process very flexible.

We can also fit non-polynomial models such as

f(x)=a+bx +csinx.

In this case we have a column in the matrix that correspond to sinx. We will demonstrate this
with data produced from the function y = 1 — 0.5x + 3 sinx with added noise:

Actual function plus noisy data

—— Actual Function
2 ® Original Data

To fit this model we place the sine of x in the appropriate column of the data matrix and
solve using least squares, as shown next:

In [151: #now build the matrix
A = np.ones((N,3))
for i in range(N):

ALi,1] = x[i]

208 11. CURVE FITTING

A[i,2] = np.sin(x[i])
solution = np.linalg.lstsq(A,y)[0]
print("The fitted function is y =",solution[0],
"+" solution[1],"* x","+",solution[2],"* sin(x)")

The fitted function is y = 0.792955748456 + -0.482057534691 * x
+ 2.7346948684 * sin(x)

The fitted function does deviate from the original function, primarily due to the noise in
the data making some of the points used to fit the model being far away from the actual
function. Despite this, the overall trend appears to be correct. This is apparent in a graphical
comparison between the original function and the fitted function.

Actual and fitted functions plus noisy data

—— Actual Function
2 R Fitted Function
° @ Original Data
04 J
{]
>~ —21 @
\?y,/ .
—4 (4 \
4 ° [] \
_6 4
®
-81— T T T T T T
0 2 4 6 8 10 12

X

In this example with the sine function, the least squares regression model does a good job
of finding the underlying model coefficients. Despite there being some data points far away
from the actual function due to noise, the model fit is very close to the actual model used to
generate the data.

BOX 11.4 NUMERICAL PRINCIPLE

Many different models can be fit with tional transformations of other independent
least-squares regression, even if at first glance variables, the resulting model can be fit with
the model does not look linear. If you can de- least-squares.
fine new independent variables that are func-

11.4 EXPONENTIAL MODELS: THE LOGARITHMIC TRANSFORM

Beyond nonlinear transformations to independent variables, we can use logarithms to fit
models that are exponentials or power laws of independent variables. A particularly relevant

11.4. EXPONENTIAL MODELS: THE LOGARITHMIC TRANSFORM 209

example would be fitting a model to determine the half-life of a radioactive sample:

A(t) = Age™
In2
A=,
T2

where A is the activity. To fit this model we can take the natural logarithm of both sides and
find
InA(t) =InAg — At.
Therefore, if we fit a model where the dependent variable (i.e., the left-hand side) is the nat-
ural logarithm of f(x) then we can infer both the half-life and the initial activity.
As before we will generate data from a known exponential and add noise to the data

points. In this case we generate decay data from a sample of 10> atoms of arsenic-76, which
has a half-life 1.09379 £ 0.00045 days.

Arsenic-76 decay data

1012 H
—— Actual Function
® Original Data

g 1011 -
fo
2z
9]
<

1010 4

t (days)

To fit the exponential model, we need to make the righthand side in the least-squares equa-
tions equal to the natural logarithm. The data matrix will contain the number of days since
the sample was obtained.

In [16]1: ftnow build the matrix
A = np.ones((N,2))
for i in range(N):
AL1,1] = tli]
print("The A matrix is\n",A)
solution = np.linalg.lstsq(A,np.log(activity))[0]
print("The inital activity is A_0 =",np.exp(solution[0]),
"and the half-1ife is",-np.log(2)/solution[1],"days.")

The inital activity is A_0 = 1.00216154364e+12 and the half-T1ife is
1.09039181369 days.

The fitted model gives a reasonable approximation of the half-life given the noise in the data.

210 11. CURVE FITTING

11.4.1 Power Law Models

It is also possible fit power-law models using similar manipulations. The function
f@ =ax’,
can be transformed to a linear, additive model by writing a function
In f(x) =Ina + bIn(x),

that is we take the natural logarithm of x and f(x) to get a linear function. Such power laws
appear in all kinds of natural data. One, perhaps unexpected, place a power law appears is
in the number of words used with a given frequency in language. In English it has been con-
jectured that the 100 most common words make up 50% of all writing. Another way to look
at this, is that there are a small number of words that are used very frequently (e.g., the, a,
and, etc.), and many words that are used very infrequently (e.g. consanguine or antideriva-
tive). Therefore, if we look at any work of literature we expect there to be thousands of words
used one or two times, and a few words used thousands of times. To demonstrate this we can
look at the word frequency distribution for that venerable work of literature Moby Dick. The
next figure is a histogram of word frequency in Moby Dick. For example, there are approxi-
mately 10* words that are only used once in the book out of the 17,227 unique words in the
book.

Word Frequency Distribution in Moby Dick
10% 4
103 4

102 4

101 4

Number of Words in Frequency Bin

100 4

| 100 1000 10000
Word frequency

The word “the” was used over 10,000 times.
For this data, we want to fit a model as

Number of words with a given frequency = a(Word Frequency)”.

This will require us to make the righthand side of the least square equations equal to the
logarithm of the dependent variable, and place the logarithm of the independent variable in
the data matrix. The resulting model for Moby Dick is

Number of words with a given frequency = 7.52(Word Frequency) .

11.4. EXPONENTIAL MODELS: THE LOGARITHMIC TRANSFORM 211

We can then compare this model to the actual data, and see that a simple power law is a
reasonable fit to the data:

Fitted function to Moby Dick Word Frequency data

=
o
IS
([]

—— Fitted Function
[® Original Data

=

o
W
L

102 4

10?4

100 4

Number of words used that many times

10° 10t 102 103 104
Number of times a word is used

Except for words used less than 3 times, the model predicts the number of words with a
given frequency well. This natural behavior of language (and other systems such as income)
are examples of power laws.

An important lesson that we can take from this data is that power law distributions, such as
those for the word frequency in Moby Dick cannot be approximated by a normal or Gaussian
distribution. For example, if we generate samples from a Gaussian distribution with a mean
equal to the mean number of times a word is used in Moby Dick, and a variance equal to the
observed variance in word frequencies the data looks nothing like a power law. The figure
below shows 211,763 samples chosen from a Gaussian distribution with mean 11.137 (the
average number of times a word in used in Moby Dick), and variance of 22,001 (the observed
variance of word frequencies in Moby Dick).

Word Frequency Distribution in Gaussian Moby Dick

60000 -

40000

20000 A

Number of Words in Frequency Bin

o 4
=750 -500 -250 0 250
Word frequency

This, you can agree, does not look anything like the distribution of word frequency in
Moby Dick. Even if we ignore the negative frequencies, the distribution says there should be
very few words used more frequently than 500 times. In actuality, there are about 100 words

212 11. CURVE FITTING

used more than 500 times. Gaussian Moby Dick is a very different book. “Call me Ishmael”
may not have made the cut.

CODA

There are many times in engineering and quantitative analysis in general where you need
to reconcile data with a model (as is the case in the half-life example above) or when you want
to develop a model to explain data (similar to the football score example). The most basic, but
still very useful, tool for these situations is least-squares regression. These regression models
can be fit easily using the capabilities in NumPy.

FURTHER READING

The application of curve fitting to observed data is an important part of the study of statis-
tics. As such, there are many works on applying regression techniques. For a deep dive into
the field of machine learning (of which linear regression is an example) see the comprehen-
sive monograph by Hastie, Tibshirani, and Friedman [13]. For the application of regression
techniques to data collected from a variety of sources (including social science and public
safety), Gelman and Hill’s book [14] is recommended.

N.N. Taleb is a crusader against using Gaussian ideas in a world of power law distribu-
tions. His various books on this subject are entertaining and informative reads [15-17].

PROBLEMS

Programming Projects

1. Power Law Fit

Fit a power law to the data below from the United States Internal Revenue Service for the
number (in thousands) of tax returns filed in 2014 with particular values of incomes (in thou-
sands). The incomes come from the midpoints of the brackets that the IRS uses to report data.
Make the independent variable be the income, and the number of returns be the dependent
variable. Compute R? and the mean absolute error for the model.

Income (Thousands $) Returns (Thousands)

2.5 10263
7.5 11790
12.5 12290
17.5 11331
225 10062
27.5 8819

35 14600
45 11473
57.5 19395

87.5 12826

PROBLEMS 213

Income (Thousands $) Returns (Thousands)

150 17501
350 4979
750 835
1250 180
1750 77
3500 109
7500 27
10000 17

2. Inflating R?

Produce 10 uniform random samples in the range [0,1], call this the independent vari-
able x;. Produce another 10 uniform random samples in range [0,1], call this the independent
variable x;. Finally, produce 10 uniform random samples in the range [2,3] and call this the
dependent variable y. Fit 5 linear models

Yy =ap+aixi,

y=bo+ bixa,

Y =co+ci1x1 + c2x2,
y=dy+dix1 + daxy 4+ d3xixz,

y=-ep+ejx] +exxy +e3xixp + e4x12 + eng.
For each of these models compute R? and the mean absolute error. Discuss the results.

3. ks and Diffusion Length for a Water Balloon

Consider a water balloon that you fill with a homogeneous mixture of heavy water and
fissile material. You do not know the exact ratio of the water molecules to fissile atoms. How-
ever, you can fill the balloon with different amounts of the solution (thereby changing the
radius of the sphere). You are able to measure the multiplication factor, k., at several different
balloon radii by pulsing the sphere with a neutron source and observing the subcritical multi-
plication. You also astutely remember that the 1-group diffusion theory relation between the
multiplication factor, the infinite medium multiplication factor (k~), and the diffusion length,
Lis

koo

et = ———
eff 1+LZB§

where Bé% is the geometric buckling for the system. In this case we have
2 ?

Bi=—>
& (R+d)?

where d is the extrapolation length. If we assume that d < R, we can do a linear Taylor
expansion around d = 0 to write

2 72 272
B, =— — —
8 R2 R3

214 11. CURVE FITTING

Given the measurement data below, infer the values of k., L, and d. Is the assumption on d
correct? What radius will make the reactor critical? Report R? for your model.
Hint: make your regression model have the dependent variable be 1/ k.

Experiment R koff

1 10.00 0.16
2 1250 0.23
3 15.00 0.31
4 20.00 0.46
5 25.00 0.60
6 35.00 0.80
7 36.00 0.82
8 40.00 0.87
9 45.00 0.93
10 50.00 0.98

4. Model Without a Constant

It does not always make sense to have a constant in a linear model. What the constant
indicates is the value of the dependent variable when all the independent variables are zero.
One example of a model where this is the case is the temperature coefficient of reactivity for
a nuclear system. This coefficient, denoted by «, given by

Ap =aAT,

where T is the temperature of the system and AT is the difference between the current tem-
perature and the point where the reactivity p is 0. The reactivity is given by

k=1
p=—
Your task is to find « using the data below by fitting a model without a constant. To do this
you have to modify the data matrix in the least squares procedure. Report R? for your model.

keff T (K)
1.000000 250
0.999901 300
0.998032 350
0.996076 400
0.994055 450

0.992329 500

CHAPTER

12
Closed Root Finding Methods

OUTLINE

12.1 Bisection 216 Problems 227
12.1.1 Critical Radius of a Sphere 218 Short Exercises 227

12.2 False Position (Regula Falsi) 219 Programming Projects 227

12.3 Ridder’s Method 223 1. 2-D Heat Equation

Coda 226 Optimization 227

Further Reading 227 2. Peak Xenon Time 228

We're Talking Root Down, | Put My Boot Down
And If You Want To Battle Me, You're Putting Loot Down
“Root Down” by the Beastie Boys

CHAPTER POINTS

e Finding the root of a nonlinear function e Other methods can improve on bisection,
requires an iterative method. but may be slower on some problems.

e The simplest and most robust method is
bisection.

Up to this point we have only solved linear equations. In this chapter we solve nonlinear
equations. Commonly, this process is called root finding because the problem is generally
stated as determining a root of a function, i.e., find x so that

fx)=0.

The complication with nonlinear functions is that they may have many roots or not have any
roots at all. For a single-variable linear function, f(x) = a + bx, we know that there is a single
root, provided that b # 0.

A feature of nonlinear root finding is that it almost always requires an iterative method
for finding the root: an initial guess is required and that guess is refined until the answer is
good enough. In this chapter we will treat iterative methods for finding roots that start with an

Computational Nuclear Engineering and Radiological Science Using Python 2 1 5

DOI: 10.1016/B978-0-12-812253-2.00014-5 Copyright © 2018 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-812253-2.00014-5

216 12. CLOSED ROOT FINDING METHODS
initial interval that we know the root is in, and then shrink that interval until we know the

root is in a very small interval. These methods are called closed root finding methods because
the root is known to be inside a closed interval.

12.1 BISECTION

The first closed method we use is the bisection algorithm. As with any closed method, to
use it we need to first bracket the root. That is we need to find two points a and b where

fla)f(b) <0,

that is two points where f(x) has a different sign. Therefore, we know by the intermediate
value theorem that f(x) =01isin [a, b], provided f(x) is continuous in [a, b].
Once we have two points a and b, we then pick the midpoint of the interval and call it c:

a+b

2

Then we can determine which side of the interval root is on by comparing the sign of f(c) to
the sign of the function at the endpoints. Once we determine which side of the midpoint the
root was on, we can change our interval to be that half. Algorithmically,

if f(a)f(c)<0 then we setb =c
because the root is between a and c¢. Otherwise,
if fb)f(c)<0 then we seta =¢

because the root is between ¢ and b. Of course, if f(a) f(c) =0, then c is the root, the proba-
bility of this happening is vanishingly small, however. If the function has multiple roots, it is
possible that both f(a) f(c) <0and f(b) f(c) < 0. In this case we could take either half of the
interval and still find a root. The result of this procedure is that the new interval is half the
size of the previous interval: we can think of the result is that we have improved our estimate
of the root by a factor of 2.

We can repeat this process of computing the sign of the function at the midpoint and
shrinking the interval by a factor of 2 until the range is small enough that we can say we
are done. Define the width of an interval after iteration n as Ax, = b — a, with the initial
interval width written as Axy. Using this definition and the fact that each iteration cuts the
interval in half, we know that after n iterations the width of the interval is

Ax, =27" Axg.
If we want to know the root within a tolerance ¢, then we can solve for n in the equation

e =2""Axp,

12.1. BISECTION 217

which implies

log(Axg/€)
n=———.
log?2

BOX 12.1 NUMERICAL PRINCIPLE

To find the root of a nonlinear function al- very robust and almost always guaranteed to
most always requires an iterative method. Bi- converge to the root.
section is the simplest method, but it is also

Below is an implementation of the bisection algorithm in Python. As you can see, it is a
simple algorithm.

In [1]: def bisection(f,a,b,epsilon=1.0e-6):
"""Find the root of the function f via bisection
where the root lies within [a,b]
Args:
f: function to find root of
a: left-side of interval
b: right-side of interval
epsilon: tolerance

Returns:
estimate of root
assert (b>a)
fa = f(a)
fb = f(b)
assert (faxfb < 0)
delta = b - a
print("We expect",
int(np.ceil(np.log(delta/epsilon)/np.log(2))),"iterations")
iterations = 0
while (delta > epsilon):
c = (at+tb)*0.5
fc = f(c)
if (faxfc < 0):
b=c
fb = fc
elif (fbxfc < 0):
a=c¢c
fa = fc
else:
return c
delta = b-a
iterations += 1
print("It took",iterations,"iterations")
return c #return midpoint of interval

218 12. CLOSED ROOT FINDING METHODS

Notice that we save the value of the function evaluations so that we only evaluate the function
at a given point once. This will be important if it takes a long time to evaluate the function.
For example, if the function evaluation involves the solution of a system of equations, as done
in one of the exercises for this chapter, one does not want to be evaluating the function more
times than necessary.

Below we test the bisection function with a simple cubic, to find a single root:

In [2]: def nonlinear_function(x):
ffcompute a nonlinear function for demonstration
return 3xxx*3 + 2xx**x2 - 5%x-20
root = bisection(nonlinear_function,1,2)
print("The root estimate is",root,"\nf(",root,
") =",nonlinear_function(root))

We expect 20 iterations

It took 20 iterations

The root estimate is 1.9473047256469727

f(1.9473047256469727) = -1.883242441280686¢e-05

Bisection is a useful algorithm because it is really easy to implement, and we know how
long it should take to converge. Also, we know that it will converge. We can give it a really
big range and as long as the root is in the range, it will find it. In this case we increase the
initial interval from a width of 3 to 7. Bisection has no trouble finding the root.

In [3]: root = bisection(nonlinear_function,-5,2)
print("The root estimate is",root,"\nf(",root,
") =",nonlinear_function(root))

We expect 23 iterations

It took 23 iterations

The root estimate is 1.9473060369491577

f(1.9473060369491577) = 2.9577188165319512e-05

It did take more iterations, but with this larger interval, bisection still arrived at the answer.

12.1.1 Critical Radius of a Sphere

An example problem that we will use to compare root finding methods is that of finding
the critical radius of a bare sphere reactor. From elementary nuclear reactor theory [7], one
can show that for a critical, spherical reactor

7 \° vZi— %,
R+2D) D

where D [cm] is the diffusion coefficient, v is the number of neutrons born per fission,
Yt [em~!] is the fission macroscopic cross-section, X, [cm~!] is the macroscopic cross-section

12.2. FALSE POSITION (REGULA FALSI) 219

for absorption, and R [cm] is the radius of the reactor. Therefore, given D, vX, and X, we

can compute the critical radius. To use bisection we need to define the function we want to
be zero:

T \> vXi— X,
R+2D D

f(R)=<

We will solve the problem with D =9.21 cm, vX¢ =0.1570 cm~! and ¥, =0.1532 cm .

For the initial interval we will pick @ = 0 and b = 250 cm, because f(R) has different signs
at these points. In the code below we define a simple function and pass it to our bisection al-
gorithm. Notice that this function has all the arguments except for R have default arguments.

This is because the bisection algorithm we defined earlier operates on a function of only a
single variable.

The bisection algorithm finds the critical radius in 28 iterations.

In [4]: #first define the function
def Crit_Radius(R, D=9.21, nuSigf = 0.1570, Siga = 0.1532):
return (np.pi/(R + 2xD))*x2 - (nuSigf - Siga)/D

a =20

b = 250

Radius = bisection(Crit_Radius,a,b)

print("The critical radius estimate is",Radius,
"\nf(",Radius,") =",Crit_Radius(Radius))

We expect 28 iterations

It took 28 iterations

The critical radius estimate is 136.2435193732381
f(136.2435193732381) = 2.175801910603986e-12

This will be the baseline for comparison as we examine new closed root finding methods.

12.2 FALSE POSITION (REGULA FALSI)

Another closed root finding method is the false position method (also called regula falsi, if
one prefers Latin names). This method draws a line between the two endpoints of the interval
[a, b] and uses the position where that line intersects the x axis as the value of ¢ (the guess for
the new endpoint). Below is a graphical example:

220 12. CLOSED ROOT FINDING METHODS

lllustration of Regula Falsi

6] 270 Ve
flx) 7
—-~ Line Between Endpoints e
. -

® End points -

40 A 7
* Root e
A New Guess /~/
>~ e
20 R
7
7
g
7
04 =------- S R it
e
e
e
—20 1 o
1.5 2.0 25 3.0

The false position methods works in almost the exact same way as bisection except that ¢
is not directly in the middle of the interval, rather it is where the interpolating line intersects
the x axis. The reason this may be a good idea, is that if the function is linear (or near linear)
in the interval, this value of ¢ will be the root.

To derive false position, we first define the slope between the two endpoints:

f) — f(a)
b—a)

m

For a line the slope is the same everywhere so we know that

f®) = fla) _ fle) = fla)

b—a c—a

We also want f(c) to be zero, so this simplifies to

f@) —fla) _ —fl

b—a c—a

Solving for ¢ gives

_ f@
c=da— .
m

We have to use a different convergence criterion than we did for bisection as the interval size
is not the best measure in false position because after each iteration our guess is c. In this case
we will use | f(c)| < € for our convergence criteria.

A Python implementation of this algorithm is below.

In [5]: def false_position(f,a,b,epsilon=1.0e-6):
"""Find the root of the function f via false position
where the root lies within [a,b]
Args:
f: function to find root of
a: left-side of interval

12.2. FALSE POSITION (REGULA FALSI) 221

b: right-side of interval
epsilon: tolerance

Returns:
estimate of root
assert (b>a)
fa = f(a)
fb f(b)
assert (faxfb< 0)
delta = b - a
iterations = 0
residual = 1.0
while (np.fabs(residual) > epsilon):
m = (fb-fa)/(b-a)
c=a - fa/m

fc = f(c)
if (faxfc < 0):
b=c
fb = fc
elif (fbxfc < 0):
a=c
fa = fc
else:
print("It took",iterations,"iterations")
return c

residual = fc

iterations += 1
print("It took",iterations,"iterations")
return c #return c

We will apply false position to the cubic function we defined above:

In [6]: root = false_position(nonlinear_function,1,2)
print("The root estimate is",root,"\nf(",root,
") =",nonlinear_function(root))

It took 5 iterations
The root estimate is 1.9473052141477751
f(1.9473052141477751) = -7.983476244532994e-07

This is faster than bisection on this short interval because bisection took 20 iterations. This
factor of 4 improvement is impressive. If we give it a bigger interval, it is still faster than
bisection by a factor of 3.

In [7]: root = false_position(nonlinear_function,-5,2)
print("The root estimate is",root,"\nf(",root,") =",
nonlinear_function(root))

It took 9 iterations
The root estimate is 1.947305257431454
f(1.947305257431454) = 7.995646100766862e-07

222 12. CLOSED ROOT FINDING METHODS

Finally, we apply it on the critical slab case (bisection took 28 iterations for this problem
and initial interval).
In [8]: a =20
b = 250
Radius = false_position(Crit_Radius,a,b)
print("The critical radius estimate is",Radius,"\nf(",Radius,
") =",Crit_Radius(Radius))

It took 260 iterations
The critical radius estimate is 136.42803805393132
f(136.42803805393132) = -9.827177585040653e-07

What happened? False position was much faster on the cubic function, but is now 9 times
slower than bisection. It is important to note that it still converged (that’s good), but it con-

verged slowly (that’s bad). To see why, we can look at the first iteration by plotting the
function and the false position update:

lllustration of Regula Falsi on Critical Slab

0.030 1

o -=-y=0
0os| | N ft9

’ G —-= Line Between Endpoints
. @ End points
B \.
0.020 \.\ * Root
. A New Guess
& 0.015 1 \.\
= N
N
0.010 1 N
N,
\~
0.005 N
\.
N,

(Y R ———— e ey

0 50 100 150 200 250

R

Notice how the function is very steep near 0 and much less steep to the right of the root.
This makes the value of ¢ very close to b. Since the right endpoint moves so slowly, it takes
a long time to converge. If we gave it a better initial range, it should work better. With the
minimum value of the initial interval shifted to R = 100 we get:

lllustration of Regula Falsi on Critical Slab

0.0003{ @ e y=0
N
N, ftx)
0.0002 S —-= Line Between Endpoints
\-\' ® End points
0.0001 N * Root
A\.\ A New Guess
& 00000{ --------= et CCE LR R e
.
\.
~0.0001 1 N
.
S
-0.0002 | .
\\°
_0.0003 L T T T T T T T
100 125 150 175 200 225 250

R

12.3. RIDDER’S METHOD 223

In [9]: a = 100
b = 250
Radius = false_position(Crit_Radius,a,b)
print("The critical radius estimate is",Radius,"\nf(",Radius,
") =",Crit_Radius(Radius))

It took 6 iterations
The critical radius estimate is 136.42658989359794
f(136.42658989359794) = -9.750187400692396e-07

This demonstrates that when we tried to get better than bisection we sometimes are slower.
Bisection is the tank of nonlinear solvers: it is slow, but it will get there. Regula falsi can be
faster than the tank, but it can also be slowed down in the mud. There is a lot of mud in the
realm of solving nonlinear equations.

BOX 12.2 NUMERICAL PRINCIPLE

Faster methods are not always better in ~ much faster than bisection, but it also can be
terms of robustness. False position can be much slower than bisection in certain cases.

12.3 RIDDER’S METHOD

An obvious way to quantify the speed of a rootfinding method is the number of iterations.
This, however, is not a perfect comparison between methods because the number of function
evaluations per iteration may differ between methods. For both bisection and false position,
the number of additional function evaluations needed is one, at x = c¢. This will not always
be the case. The next method requires an extra function evaluation in each iteration.

BOX 12.3 NUMERICAL PRINCIPLE

An appropriate measure of a root find- tion in many applications may be difficult to
ing methods speed is the number of function = compute and might require the solution of a
evaluations. This is the case because the func- linear system of equations.

In Ridder’s method we interpolate between a and b in a way that is different than linear
interpolation. In particular, given points ¢ and b which bracket the root, we compute the
values f(a), f(b), f(c) where c is the midpoint of @ and b.

224 12. CLOSED ROOT FINDING METHODS

f(a), f(b), and f(c) for Ridder's Method

| mmy=0 P
60) /‘/‘
—-~ Line Between Endpoints ke
404 @ Points ‘/‘/
e
* Root ~°
e
7
> 20+ ‘/'/
7
7
Rd
7
04 -------- LRt e PR EED
7
7
-7 o
-201 €
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Then we use these function values to estimate the function:
g(x) = f(x)e™ VL.

The function g(x) will only be zero when f(x) is zero. Furthermore, it touches the original
function at a, and not at b. To determine the value of Q in g(x) we require that g(a), g(b), and
g(c) all lie on a line (or they are collinear). To do this we first look at each of these values:

gl@)=f@, gb)=rfbe"?, gl = fle)e"?,

where h = ¢ — a. If these three points are to lie on a straight line then,

(= 8@ +8®)
8 = 72 s
or
210
oo - L@+ SO

Solving this equation for ¢"¢ we get

o _ TOEVI©? = f@fb)
f) '
The root we choose is the “+” root if f(a) — f(b) > 0 and the “—" root otherwise. Once we

have our g(x) function, we then linearly interpolate from (a, g(a)) and (c, g(c)) to find where
g(d) =0 and use this as the next guess at the root:

e c-—a)f©
VI@©r= f(@a)fb)

The following figures shows this procedure graphically.

12.3. RIDDER’S METHOD 225

g(a), g(b), and g(c) for Ridder's Method

-—-y=0 []
60 - 7
fix) P
—-~ Line Between Endpoints 7
R
404 g(x) R
; e
® Points 2
* Root ‘/-/
>~ 204 A New Guess /-/
0 4
_20 4

0.0 05 10 I'5 20 25 30

As you can see the new guess is really close. This appears to be much better than false
position. This is one of the benefits of performing interpolation on the exponentially varying
function g(x) rather than using the original function f(x).

The general algorithm for Ridder’s method is below.

In [10]: def ridder(f,a,b,epsilon=1.0e-6):
"""Find the root of the function f via Ridder’s Method
where the root lies within [a,b]
Args:
f: function to find root of
a: left-side of interval
b: right-side of interval
epsilon: tolerance

Returns:
estimate of root
assert (b>a)
fa = f(a)
fb = f(b)
assert (faxfb < Q)
delta = b - a
iterations
residual =
while (np.f
c = 0.5+
d=20.0
fc = f(c)
if (fa - fb > 0):
d =c + (c-a)xfc/np.sqrt(fcx*2-faxfb)
else:
d =c - (c-a)*xfc/np.sqrt(fcx*2-faxfb)
fd = f(d)
f#fnow see which part of interval root is in
if (faxfd < 0):
b=d

[|

(residual) > epsilon):

226 12. CLOSED ROOT FINDING METHODS

fb = fd

elif (fbxfd < 0):
a=d
fa = fd

residual = fd

iterations += 1
print("It took",iterations,"iterations")
return d #return c

On the example using a cubic function from before Ridder performs the best of the meth-
ods we have seen (bisection took 23 iterations and false position took 9):

In [20]: root = ridder(nonlinear_function,-5,2)
print("The root estimate is",root,"\nf(",root,
") =",nonlinear_function(root))

It took 7 iterations
The root estimate is 1.94730524023
f(1.94730524023) = 1.64623202181e-07

Now we try our criticality problem (the one that false position required 260 iterations and
bisection took 28). This is where Ridder’s method shines: it can handle the large change in
our function’s behavior.

In [21]: a =0
b = 250
Radius = ridder(Crit_Radius,a,b)
print("The critical radius estimate is",Radius,"\nf(",Radius,
") =",Crit_Radius(Radius))

It took 3 iterations
The critical radius estimate is 136.242306777
f(136.242306777) = 6.47192578831e-09

That was much faster than either of the previous methods.

The total cost of Ridder’s method per iteration is one function evaluation more per itera-
tion than false position or bisection: we need to evaluate the function at the guess from the
previous iteration, f(d), and at the midpoint of the new interval. Therefore, to be more effi-
cient than false position or bisection, the number of iterations needs to be 2 times fewer than
for either of those methods. In the example above Ridder’s method met this hurdle, except in
the case where Ridder had 7 iterations and false position had 9 (to have the same number of
function evaluations Ridder’s method needed 4.5 iterations). This slight miss is mitigated by
the fact that Ridder’s method seems much more robust than false position.

CODA

We have reviewed root finding methods that work by bracketing the root and then zoom-
ing in on the root either simply, as in bisection, or through interpolation, as in false position

FURTHER READING 227

or Ridder’s method. One observation we can make at this point is that the methods all con-
verged to the root, even though they could be slow.

In the next chapter we will cover open root finding methods that require only a single
initial guess and do not bracket a root. These methods can converge quickly, though they
generally require information about the slope of the function.

FURTHER READING

There are additional closed root finding methods that we have not discussed. A popular
one is Brent’s method the details of this method can be found in Atkinson’s text [18], among
others.

PROBLEMS

Short Exercises

12.1. Find a root of cosx using the three methods discussed in this section and an initial
interval of [0, 10]. Compare the solutions and the number of iterations to find the root
for each method.

12.2. You are given a radioactive sample with an initial specific activity of 10* Bq/kg, and
you are told the half-life is 19 days. Compute the time it will take to get the specific
activity of Brazil nuts (444 Bq/kg) using the three methods specified above.

Programming Projects
1. 2-D Heat Equation Optimization
Previously, in Algorithm 9.5 we gave code to solve the heat equation:
—kV?T =g, forx €[0,L,] yel0, Lyl
With the boundary condition

T(x,y)=0 for x, y on the boundary.

Your have been tasked to determine what value of k£ will make the maximum temperature
equal to 3 when L, = L, =1 and the source, ¢, is given by

_J1 025<x<0.75 0.25<y<0.75
10 otherwise '

Your particular tasks are as follows:

228 12. CLOSED ROOT FINDING METHODS

¢ Define a function called max_temperature that finds the maximum value of T(x) in the
domain. This function will take as it’s only argument k. Inside the function solve the heat
equation with Ax = Ay =0.025. The function np . max will be helpful here.

¢ Find the value of k for which the max temperature equals 3 using bisection, false position,
and Ridder’s method. Use an initial interval of k € [0.001, 0.01]. Remember that the root-
finding methods find when a function is equal to 0. You will have to define a function that
is equal to 0 when the maximum temperature is equal to 3. How many iterations does each
method take?

¢ The Python package, time, has a function time.clock() that returns the system time.
Using this function time how long it takes for each method to find the value of k that makes
the maximum temperature equal to 3. Which method is the fastest?

This problem will demonstrate why it is important to be parsimonious with the number of
function evaluations.

2. Peak Xenon Time

In Programming Project 1 from Chapter 7 you determined the equilibrium concentrations
of 1Xe, 1331 and 3>Te. After shutdown of the reactor, the !3°Xe concentration, X () can be
written as
Al

X (1) = Xoe ¥ 4
(1) =Xo My

I (e—,\xt _ e—x,t) ’
where ¢ is the time since shutdown, X and I are the equilibrium concentrations of 135X e and
1351 during reactor operation, and A x and A; are the decay constants for 135Xe and 1351

Using a root finding method of your choice, compute how long after shutdown the max-
imum concentration of 13 Xe is reached, as well as the value of the concentration at those
times for power densities of 5, 50, and 100 W/ cm?.

CHAPTER

13
Open Root Finding Methods

OUTLINE

13.1 Newton’s Method 230
13.2 Inexact Newton 234
13.3 Secant Method 236
13.4 Slow Convergence 238
13.5 Newton’s Method for Systems of
Equations 242

13.5.1 Rectangular Parallelepiped
(Shoebox) Reactor Example 243

Coda 247
Problems 247
Short Exercises 247
Programming Projects 247

1. Roots of Bessel Function 247

2. Nonlinear Heat
Conduction 248

Two roads diverged in a yellow wood,
And sorry | could not travel both

And be one traveler, long | stood

And looked down one as far as | could
To where it bent in the undergrowth;

CHAPTER POINTS

e Open root finding methods require an
initial guess of the solution.

e These can converge faster than closed
methods, but are not guaranteed to find a
root.

—“The Road Not Taken” by Robert Frost

e Newton’s method uses the derivative of

the function to generate a new estimate of
the root.

e Newton’s method can be generalized to

multidimensional problems. Each iteration
then requires the solution of a linear
system of equations.

The previous chapter discussed closed root finding methods that bracket the root and then
zoom in on the root by tightening the interval like a boa constrictor on a rat. Today we’ll

Computational Nuclear Engineering and Radiological Science Using Python

DOI: 10.1016/B978-0-12-812253-2.00015-7 229

Copyright © 2018 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-812253-2.00015-7

230 13. OPEN ROOT FINDING METHODS

discuss open methods that only need an initial guess, but not a range to begin. These are
called open root finding methods.

13.1 NEWTON’S METHOD

Newton’s method is a rapidly convergent method that is a good choice provided that one
has an estimate of the root. Newton’s method is also known as the Newton-Raphson method
because Isaac Newton is famous enough, and Raphson published the method before Newton
did. However, the historical record indicates that Newton had used this method well before
Raphson published it. Interestingly enough, Raphson also coined the term pantheism.

Newton’s method is fairly robust. What the method does is compute the tangent at the
guess x; (via the derivative f’(x;)), and uses where the tangent crosses zero to get the next
guess. In the following figures, this procedure is illustrated. First, we show the procedure for
going from the initial guess to the first calculated update:

80 Guess 0 and |
— f
60 — - y=0
-+ - Tangent at guess
401 weds guess |
AAA guess 0
20 @0@ Root I
>
otk
_20 L
—40 | -
_60 1 1 1 1 ! !
-2 =1 0 | 2 3 4

Next, we compute the slope of the function at this point and find where it crosses the axis:

Guess | and 2

60 -
— f

e
- - - Tangent at guess
AAA guess 1

20} Hksk guess 2

13.1. NEWTON’S METHOD 231

As you can see, we get closer to the root each iteration. This is due to the fact that over
a short range, the tangent line is a reasonable approximation to the original function—just
as the linear Taylor series can be a good approximation for small perturbations around the
center of the expansion. Of course, using the slope to approximate the function behavior near
a root is not always a good approximation, as we will see later.

The basic idea is to compute where the tangent line to the current root estimate crosses
the x axis. We do this by equating the derivative of the function at the current estimate, x;, to
the slope of a line between the point f(x;) and the estimate of the function evaluated at an
unknown point f (x;41):

fxig) — f(x)

Xi+1l — Xi

flxi) =
Then, we set f(x;+1) =0 to determine where the tangent crosses zero. This yields

S

J'(xi)
Therefore, each iteration requires the evaluation of the slope at x; and the value of the function
at that same point. An implementation of Newton’s method in Python is given below.

Xi+1 = Xi

In [1]: def newton(f,fprime,x0,epsilon=1.0e-6, LOUD=False):
"""Find the root of the function f via Newton-Raphson method
Args:
f: function to find root of
fprime: derivative of f
x0: initial guess
epsilon: tolerance

Returns:
estimate of root
x = x0
if (LOUD):
print("x0 =",x0)
iterations = 0
fx = f(x)
while (np.fabs(fx) > epsilon):
fprimex = fprime(x)
if (LOUD):
print("x_",iterations+1,"=" x,"-",fx,
"/, fprimex,"=",x - fx/fprimex)
x = x- fx/fprimex
iterations += 1
fx = f(x)
print("It took",iterations,"iterations")
return x {#return estimate of root

We will test the method on the cubic nonlinear function from the previous chapter. We
will need to define a derivative function to use because Newton’s method requires it. As a
reference, bisection took 23 iterations and Ridder’s method took 8. It is slightly difficult to

232 13. OPEN ROOT FINDING METHODS

compare an open method to the closed methods because we cannot run the method under
the same conditions and the open method only requires a single initial guess, not an interval
that brackets the root. Furthermore, in Newton’s method we have to evaluate the function
and its derivative in each iteration. It is useful, however, to compare the overall convergence
behavior between methods.

In [2]: def Dnonlinear_function(x):
ffcompute a nonlinear function for demonstration
return 9xxxx2 + 4xx - 5
root = newton(nonlinear_function,Dnonlinear_function,-1.5,L0UD=True)
print("The root estimate is",root,"\nf(",root,") =",
nonlinear_function(root))

x0 = -1.5
Xx_ 1 =-1.5--18.125 / 9.25 = 0.45945945945945943
Xx_ 2 = 0.45945945945945943 - -21.584111503760884 / -1.2622352081811545
= -16.64045295295295
X_ 3 = -16.64045295295295 - -13206.446010659996 / 2420.5802585031524
= -11.184552053047796
Xx_ 4 = -11.184552053047796 - -3911.2567600472344 / 1076.1096334338297
= -7.54992539557002
X_ 5 = -7.54992539557002 - -1159.3159776918205 / 477.81265972577813
= -5.123627234367753
X_ 6 = -5.123627234367753 - -345.3883141179978 / 210.7694953933235
= -3.484925611661592
X_ 7 = -3.484925611661592 - -105.25615528465704 / 90.36265622268793
= -2.320106429882939
X_ 8 = -2.320106429882939 - -35.100340028952424 / 34.165618894325654
= -1.2927478991471761

9 = -1.2927478991471761 - -16.675175982276617 / 4.869782580156233

Il ‘><

2.131465750600949

_ 10 = 2.131465750600949 - 7.479645608829035 / 44.41417921626759
1.963059044886359

_ 11 =1.963059044886359 - 0.5864442011938849 / 37.53464350293673
1.9474349667957278

x_ 12 = 1.9474349667957278 - 0.004789634744607696 / 36.92226641627101

= 1.947305244673835

It took 12 iterations

The root estimate is 1.947305244673835

f(1.947305244673835) = 3.2858902798693634e-07

I >

I >

In this example we had a bad initial guess so the method went the wrong way at first, but
it eventually honed in on the solution. This highlights a feature of open methods: the root
estimate can get worse, and even diverge. This is in comparison with closed methods where
the root is confined to an interval. On the other hand, open methods only require an initial
guess instead of knowledge of an interval where the root lies. In the first iteration, the method
did move closer to the root, but the new estimate was close to a local minimum:

13.1. NEWTON’S METHOD 233

Guess 0 and |

—

60 — - y=0

-+ - Tangent at guess
a0l AAA guess 0

*%% guess |
>~ 20}
(3 -
-0l
_40 ! ! ! ! ! ! |
-3 -2 -1 0 | 2 3 4

The slope at this point then moves the method long distance in the wrong direction:
60 - Guess | and 2

— f

- - y = 0

- - - Tangent at guess

AAA guess]

20} Kk guess 2

@0@ Root

40|

This estimate is much worse than that after the first iteration. Nevertheless, after this point
the method, does move in the correct direction.
The other test we performed on the closed root finding methods was the critical sphere

problem:
FR) = b4 2 vXi— X,
~ \R+2D D

For Newton’s method, we need to compute the derivative:

—272

SR = Ry

Recall that regula falsi (false position) had a very hard time with this problem because the
function is flat for a large range of the radius and sharply changing past a transition point.
Newton’s method does not suffer from these problems.

234 13. OPEN ROOT FINDING METHODS

First, we define the function and a function to compute its derivative:

In [3]: def Crit_Radius(R, D=9.21, nuSigf = 0.1570, Siga = 0.1532):
return (np.pi/(R + 2*D))**x2 - (nuSigf - Siga)/D
def DCrit_Radius(R, D=9.21, nuSigf = 0.1570, Siga = 0.1532):
return (-2.0*np.pi**2/(R + 2xD)*%x3)

For this problem bisection took 28 iterations, false position took 260, and Ridder’s method
took 3 iterations. Here, we will run Newton’s method with an initial guess of 120 (about the
midpoint of the initial range used in the previous chapter).

In [4]: Radius = newton(Crit_Radius,DCrit_Radius,120,L0UD=True)
print("The critical radius estimate is",Radius,
"\nf(",Radius,") =",Crit_Radius(Radius))

0

=

=120
1 =120 - 0.00010251745512686794 / -7.442746142981495e-06
133.77414373101277

2 = 133.77414373101277 - 1.3497467451998235e-05 / -5.599328100744185e-06
= 136.1846949987987

It took 2 iterations

The critical radius estimate is 136.1846949987987

f(136.1846949987987) = 3.140322315689872e-07

[

This is even faster than Ridder’s method, though the comparison is not exactly fair. We
did, however, need to know the derivative of the function and evaluate this at each itera-
tion.

BOX 13.1 NUMERICAL PRINCIPLE

Newton’s method converges rapidly and ing the root. You do need to know the deriva-
has a degree of robustness. It also only re- tive of the target function to use Newton’s
quires an initial guess, not an interval bound- method without modification.

13.2 INEXACT NEWTON

What if we do not know the derivative of the function? There may be cases where the
derivative of the function is unknown or not easily calculable. In these cases we can use a
method that is known as inexact Newton. This method estimates the derivative using a finite
difference:

S &xi+8) — f(xi)
8 ki
which will converge to the derivative as § — 0. Indeed, the limit of this approximation as

8 — 0 is the definition of a derivative. To implement this we need to only make a small change
to the code to estimate the derivative instead of calling a derivative function. The downside

i)~

13.2. INEXACT NEWTON 235

is that we need an extra function evaluation to estimate the derivative. This extra cost is
partially offset by eliminating the need to evaluate a function that gives the derivative. In
the code below, we modify the Newton’s method implementation above to perform inexact
Newton iterations.

In [5]: def inexact_newton(f,x0,delta = 1.0e-7, epsilon=1.0e-6, LOUD=False):
"""Find the root of the function f via Newton-Raphson method
Args:
f: function to find root of
x0: initial guess
delta: finite difference parameter
epsilon: tolerance

Returns:
estimate of root
x = x0
if (LOUD):
print("x0 =",x0)
iterations = 0
fx = f(x)
while (np.fabs(fx) > epsilon):
fxdelta = f(x+delta)
slope = (fxdelta - fx)/delta
if (LOUD):
print("x_",iterations+1,"=",x,
x - fx/slope)
x = x - fx/slope
fx = f(x)
iterations += 1
print("It took",iterations,"iterations")
return x ffreturn estimate of root

" fx,"/",slope,"=",

To compute the derivative we need to define the value of §. In general, a reasonable value
for this parameter is 1077, though it should be adjusted if the value of x in the function
evaluation is very large or small.

On the critical radius problem, inexact Newton performs the same as the original Newton
method:

In [5]: Radius = inexact_newton(Crit_Radius,120,L0UD=True)
print("The critical radius estimate is",Radius,
"\nf(",Radius,") =",Crit_Radius(Radius))

0

=

=120
1 =120 - 0.00010251745512686794 / -7.442742169100347e-06
133.77415108540026

X_ 2 = 133.77415108540026 - 1.3497426272372716e-05 / -5.599325256927523e-06
= 136.18469622307978

It took 2 iterations

The critical radius estimate is 136.18469622307978

f(136.18469622307978) = 3.1402569209483836e-07

I >

Notice that we get the same answer and it took the same number of iterations.

236 13. OPEN ROOT FINDING METHODS

BOX 13.2 NUMERICAL PRINCIPLE

Inexact Newton gives a way around the tive. The cost is an extra function evaluation
necessity of knowing the function’s deriva- at each iteration.

13.3 SECANT METHOD

The secant method is a variation on the theme of Newton’s method. It takes its name from
the fact that it constructs a straight line that intersects the curve at two points: such a line is
called a secant. In this case we use the previous two guesses to construct the slope:

fxi) = fxizn)

Xi — Xi—1

i)~

The benefit of this is that it does not require an additional function evaluation, nor do we
have to evaluate a derivative function. This will be a big savings if it takes a long time to
do a function evaluation. One issue is that we need two points to get started. Therefore, we
can use inexact Newton for the first step and then use secant from then on. In a graphical
demonstration, we first take a step of inexact Newton:

Guess 0 and | (Same as Newton)

80 -
— ¥
60 —~ y=0
--- Tangent at guess
40l AAA guess 0
*%« guess |
099 Root
~ 20} i
ol o __ g il o
-20} =
_40 ! ! ! ! ! |
0.5 1.0 1.5 2.0 2.5 3.0 35

Then we draw the estimate of the derivative using xo and x1, and find where this crosses
the x axis:

13.3. SECANT METHOD 237

80 - Guess | and 2

—

60 |

0.5 1.0 1.5 2.0 2.5 3.0 35

Notice that this estimate of the root behaves similarly to that from Newton’s method, with
only one function evaluation per iteration. A Python implementation of the secant method is
given next:

In [6]: def secant(f,x0,delta = 1.0e-7, epsilon=1.0e-6, LOUD=False):
"""Find the root of the function f via Newton-Raphson method
Args:
f: function to find root of
x0: initial guess
delta: finite difference parameter
epsilon: tolerance

Returns:
estimate of root
x = x0
if (LOUD):
print("x0 =",x0)
#first time use inexact Newton

x_old = x
fold = f(x_old)
fx = fold

slope = (f(x_old+delta) - fold)/delta
x = x - fold/slope

if (LOUD):
print("Inexact Newton\nx_",1,"=",x,"-",fx,"/",slope,"=",
x - fx/slope,"\nStarting Secant")
fx = f(x)

iterations =1
while (np.fabs(fx) > epsilon):
slope = (fx - fold)/(x - x_old)

fold = fx
x_old = x
if (LOUD):
print("x_",iterations+l1,"=",x,"-",fx,
"/",slope,"=",x - fx/slope)

x = x - fx/slope

238 13. OPEN ROOT FINDING METHODS

fx = f(x)

iterations += 1
print("It took",iterations,"iterations")
return x {ffreturn estimate of root

Running the secant method on the critical radius problem, we observe that it takes one
more iteration the Newton’s method:

In [7]: Radius = secant(Crit_Radius,120,L0UD=True)
print("The critical radius estimate is",Radius,"\nf(",Radius,
") =",Crit_Radius(Radius))

x0 = 120

Inexact Newton

x_ 1 = 133.77415108540026 - 0.00010251745512686794 / -7.442742169100347e-06
= 147.54830217080053

Starting Secant

X_ 2 = 133.77415108540026 - 1.3497426272372716e-05 / -6.462832322846442e-06
= 135.86262028870274

X_ 3 =135.86262028870274 - 2.0397790242225296e-06 / -5.486146135184707e-06
= 136.23442573718336

It took 3 iterations

The critical radius estimate is 136.23442573718336

f(136.23442573718336) = 4.8524539480966286e-08

Despite the fact that it took one more iteration, secant only required four function evalua-
tions to compute the root: one per iteration, plus one extra for the slope estimation in the first
step.

BOX 13.3 NUMERICAL PRINCIPLE

The secant method is a middle ground to approximate the derivative of the function.
between inexact Newton and Newton’s It does converge slightly slower than New-
method. It uses existing function evaluations ton’s method, however.

13.4 SLOW CONVERGENCE

Newton’s method, including its inexact variant, and the secant method can converge
slowly in the presence of the following:

1. Multiple roots or closely spaced roots,
2. Complex roots,
3. Bad initial guess.

13.4. SLOW CONVERGENCE 239

BOX 13.4 NUMERICAL PRINCIPLE

General nonlinear functions can behave in cal applications, finding a good guess at the
many different ways, and some of these be- root is often necessary to find a root effi-
haviors make root-finding difficult. In practi- ciently.

The function
fx)y=x
has multiple roots at 0: it converges slowly with Newton’s method.

In [8]: mult_root = Tambda x: 1.0xxxx7
Dmult_root = Tambda x: 7.0xx*%6
root = newton(mult_root,Dmult_root,1.0,L0UD=True)

print("The root estimate is",root,"\nf(",root,") =",mult_root(root))
x0 =1.0
x_.1=1.0-1.0/7.0=0.8571428571428572
x_ 2 = 0.8571428571428572 - 0.33991667708911394 / 2.7759861962277634

0.7346938775510204

_ 3 =0.7346938775510204 - 0.11554334736330486 / 1.1008713373781547
0.6297376093294461
4 = 0.6297376093294461 - 0.03927511069548781 / 0.43657194805493627

0.5397750937109538

I >

I >

_ 12 = 0.18347855622969242 - 6.9999864354836515e-06 / 0.00026706066395597614
0.15726733391116493

_ 13 = 0.15726733391116493 - 2.3794121288184727e-06 / 0.00010590810238531585
= 0.13480057192385567

It took 13 iterations

The root estimate is 0.13480057192385567

f(0.13480057192385567) = 8.088018642535101e-07

| > 0 > -

If we decrease the number of roots to 1,

f(x) =sin(x),
we see that a similar problem converges faster.

In [9]: mult_root = lambda x: np.sin(x)
Dmult_root = Tambda x: np.cos(x)
root = newton(mult_root,Dmult_root,1.0,LO0UD=True)

print("The root estimate is",root,"\nf(",root,") =",mult_root(root))
x0 =1.0
x_ 1 =1.0 - 0.841470984808 / 0.540302305868
= -0.557407724655
x_ 2 = -0.557407724655 - -0.52898809709 / 0.848629243626
= 0.0659364519248
x_ 3 =0.0659364519248 - 0.0658886845842 / 0.997826979613

240 13. OPEN ROOT FINDING METHODS

= -9.57219193251e-05

X_ 4 = -9.57219193251e-05 - -9.57219191789e-05 / 0.999999995419
= 2.92356620141e-13

It took 4 iterations

The root estimate is 2.92356620141e-13

f(2.92356620141e-13) = 2.92356620141e-13

For the case of complex roots we will consider a function that has complex roots near the
actual root. One such function is

fx)=x(x—1D(x—3)+3.
The derivative of this function is
f'(x) =3x> — 8x +3.

The root is at x = —0.546818.

In [10]: x = np.linspace(-1,4,200)
comp_root = Tambda x: x*(x-1)x(x-3) + 3
d_comp_root = lambda x: 3*x*%*2 - 8%x + 3
root = newton(comp_root,d_comp_root,2.0,L0UD=True)

print("The root estimate is",root,"\nf(",root,") =",mult_root(root))
x0 =2.0
x_1=2.0-1.0/-1.0=23.0
x_2=23.0-3.0/6.0=2.5
x_3=2.5-1.125/ 1.75 = 1.8571428571428572
x_ 4 = 1.8571428571428572 - 1.1807580174927113 / -1.5102040816326543

- 2.6389961389961383

X_ 42 = -0.6654802789331873 - -1.062614102742372 / 9.652434236412477
-0.5553925977621718

_ 43 = -0.5553925977621718 - -0.07133846535161004 / 8.368523595044415
-0.5468679799438203

x_ 44 = -0.5468679799438203 - -0.0004111366150030271 / 8.272137602014066

= -0.5468182785685793

It took 44 iterations

The root estimate is -0.5468182785685793

f(-0.5468182785685793) = -0.519972092294

I >

This converged slowly because the complex roots at x = 2.2734 + 0.5638; make the slope of
the function change so that tangents do not necessarily point to a true root.

We can see this graphically by looking at each iteration.

The first iteration moves in the wrong direction:

20

13.4. SLOW CONVERGENCE

Guess 0 and |

ftx)

y=0

Tangent at guess
guess 0

guess |

Root

Iterations two and three move in the correct direction:
Guess | and 2

20
15}
10+

y=0
Tangent at guess
guess 1
guess 2

Root

Guess 2 and 3

ftx)

y=0

Tangent at guess
guess 2

guess 3

Root

Step four then moves in wrong direction: it has been two steps forward, one step back:

241

242 13. OPEN ROOT FINDING METHODS

Guess 3 and 4

20 -
-
15} - oy=0
—— Tangent at guess
0099 guess3
lof g
** % guess4
®®¢ Root
> S+
o
-51
-10 ! ! L ! ! L |

The presence of the complex root causes the solution to oscillate around the local minimum
of the function. Eventually, the method will converge on the root, but it takes many iterations
to do so. The upside, however, is that it does eventually converge.

13.5 NEWTON’S METHOD FOR SYSTEMS OF EQUATIONS

Finding the root of a single function is interesting, but in general a simple problem. It
is very common that a problem you encounter will require the root of a multidimensional
function. This is the situation we analyze now.

Say that we have a function of n variables x = (x, ...x,):

filxt, ..., xn)
F(x) = : ,
faxr, o xn)

the root is F(x) = 0. For this scenario we no longer have a tangent line at point x, rather we
have a Jacobian matrix that contains the derivative of each component of F with respect to
each component of x:

af

9
3xl(xla---7xn) %(Xl,...,xn)
Jox) = : :
af af,
B{C’;(xla---axn) a}i:(xla-n»xn)

We reformulate Newton’s method for a single equation

_ S (xi)
Xipl =X —

)

13.5. NEWTON’S METHOD FOR SYSTEMS OF EQUATIONS 243

as

1) (xip1 — xi) = — f (xi).
The multidimensional analog of this equation is

Jxi) X1 — x;) = —F(x;).

Note this is a linear system of equations to solve to get a vector of changes for each x: § =
Xi+1 — X;. Therefore, in each step we solve the system

J(xi)8 = —F(x;),
and set
Xi+1 =X; + 8.

In multidimensional rootfinding we can observe the importance of having a small number
of iterations: we need to solve a linear system of equations at each iteration. If this system is
large, the time to find the root could be prohibitively long.

BOX 13.5 NUMERICAL PRINCIPLE

Finding the root of a multi-dimensional ~many dimensions are beyond the scope of
function is often computationally expensive. this work. Suffice it to say that these meth-
There is the additionally complication of de- ods are based on approximating the Jacobian
termining the Jacobian matrix. The efficient of the system with finite differences and em-
methods for finding roots of functions in ploying efficient linear solvers.

13.5.1 Rectangular Parallelepiped (Shoebox) Reactor Example

As an example of a multidimensional root finding problem, we will consider the problem
of designing a parallelepiped reactor. For this type of reactor the critical equation given by
one-group diffusion theory, i.e., when geometric and materials buckling are equal, is

T 2+ b4 2+ b4 2_U2f—2a
a+2D b+2D c+2D) D

where a, b, and ¢ are length of the sides. We will solve this with D = 9.21 cm, v¥¢ =
0.1570 cm™!, and ¥, =0.1532 cm ™.

To make this a system, we stipulate that the surface area should be 1.2 x 10% cm?, and that
a = b. This makes

2 2 2
Zi—Za
(afu)) +(b+712D> +(C+JTZD> —* fD
F(x) = 2(ab + bc 4 ac) — 1.2 x 10° ’

a—>b

with x=(a, b, ¢).

244 13. OPEN ROOT FINDING METHODS

The Jacobian is

21 2 21
(a+18.42)2 (b+18.42)2 (c+18.42)2
Jo=|20b+c) 2@+c) 2@+b)
1 —1 0

Start with an initial guess of a = b = 7000 and ¢ = 100 all in cm:

0.000292
F(xp) = | 9.96 x 107
0

Solving the system
J(x0)81 = —F(x0),

via Gauss elimination gives

—6357.33535866
&) = | —6357.33535866 |,
45.4741297

which gives

642.66464134
xi = | 642.66464134
145.4741297

Rather than continuing by hand, we will write a Python function to solve the problem. We
will define a function inside of our Newton function to compute the finite difference Jacobian
on the fly.

In [11]: #first import our Gauss Elim function
from GaussETim import =
def newton_system(f,x0,delta = 1.0e-7, epsilon=1.0e-6, LOUD=False):
"""Find the root of the function f via inexact Newton-Raphson method
Args:
f: function to find root of
x0: initial guess
delta: finite difference parameter
epsilon: tolerance

Returns:
estimate of root
def Jacobian(f,x,delta = 1.0e-7):
N = x0.size
J = np.zeros((N,N))
idelta = 1.0/delta
x_perturbed = x.copy() ffcopy x to add delta
fx = f(x) #only need to evaluate this once
for i in range(N):
x_perturbed[i] += delta

13.5. NEWTON’S METHOD FOR SYSTEMS OF EQUATIONS

col =
x_perturbed[i] =
J[:,i] = col
return J
x = x0
if (LOUD):

print("x0 =",x0)
iterations = 0
fx = f(x)

(f(x_perturbed) - fx) % idelta

x[i]

while (np.linalg.norm(fx) > epsilon):
J = Jacobian(f,x,delta)

RHS = -fx;
delta_x = GaussElimPivotSolve(J,RHS)
x = x + delta_x
fx = f(x)
if (LOUD):
print("Iteration",iterations+1,": x =",x,"

np.linalg.norm(fx))

iterations += 1

print("It took",iterations,"iterations")
return x ffreturn estimate of root

To use this function we have to define the function we want to minimize:

In [12]: def Reactor(x,

0D=9.21, nuSigf = 0.1570,

Siga = 0.1532):

"""This function is defined in the equation above

noun

answer = np.zeros((3))

answer[0] = (np.pi/(x[0] + 2%D))**2 +

(np.pi/(x[1] + 2%D))**2 +

(np.pi/(x[2] + 2xD))*x2 - (nuSigf - Siga)/D
answer[1] = 2x(x[0]*x[1] + x[11*x[2] + x[0]*x[2])-1.2e6
answer[2] = x[0] - x[1]

return answer

We can now set up our initial guess and then solve:

newton_system(Reactor,x0,LOUD=True, epsilon=1.0e-8, delta

norm(f(x)) =",

1.0e-10)

print("The surface area is",2.0x(x[0]xx[1] + x[11xx[2] + x[0]*x[2]1))

print("The geometric buckling is",(np.pi/(x[0] + 2xD))**2 +

0.1532;

(np.pi/(x[1] + 2%D))**x2 + (np.pi/(x[2] + 2xD))*=*2)

In [13]: x0 = np.array([7000.0,7000.0,100.01)

X =

ffcheck

0=9.21; nuSigf = 0.1570; Siga =

print("The materials buckling is",(nuSigf - Siga)/D)
x0 = [7000. 7000. 100.1

Iteration 1
norm(f(x)) = 24435316.3032

x = [642.66464134
1.08420217249e-19

Iteration 9 :
norm(f(x)) =

: x = [3457.80758198 3457.80758198

124.53337225]

642.66464134 145.4741297 1]

245

246 13. OPEN ROOT FINDING METHODS

It took 9 iterations

The surface area is 1200000.0

The geometric buckling is 0.000412595005429

The materials buckling is 0.0004125950054288814

The solution is that the a and b are about 642.66 cm and the height of the reactor is
145.47 cm. There are multiple solutions to the problem. We can change the initial condition
so that the method finds a reactor that is taller than this one by guessing a thin and tall paral-
lelepiped.

In [14]: x0 = np.array([100.0,100.0,10000.01)
x = newton_system(Reactor,x0,L0UD=True, epsilon=1.0e-8, delta = 1.0e-10)
fcheck
print("The surface area is",2.0x(x[0]xx[1] + x[1]xx[2] + x[0]xx[2]1))
D=9.21; nuSigf = 0.1570; Siga = 0.1532;
print("The geometric buckling is",(np.pi/(x[0] + 2xD))**2 +
(np.pi/(x[1] + 2+#D))**2 + (np.pi/(x[2] + 2xD))**2)
print("The materials buckling is",(nuSigf - Siga)/D)

x0 = [100. 100. 10000.1
Iteration 1 : x = [141.87143819 141.87143819 -1265.895191991]
norm(f(x)) = 1878122.47601

[teration 8 : x = [201.6439505 201.6439505 1386.94891624]
norm(f(x)) = 1.86264514923e-09

It took 8 iterations

The surface area is 1200000.0

The geometric buckling is 0.000412595005429

The materials buckling is 0.0004125950054288814

This reactor is almost 14 meters tall and has a geometric cross-section that is about 2 by
2 meters. The fact that there are multiple solutions to the problem is one of the features of
nonlinear root finding to be aware of. One of these solutions may be better for a particular
application, and picking a different initial guess will influence which root the method con-
verges to. Furthermore, in the presence of multiple roots, an initial guess in the middle of the
two roots may slow the convergence:

In [81]: x0 = np.array([421.0,421.0,750.01)
x = newton_system(Reactor,x0,LOUD=True, epsilon=1.0e-8, delta = 1.0e-10)
ffcheck
print("The surface area is",2.0x(x[01*x[1] + x[11xx[2] + x[01xx[21))
D=9.21; nuSigf = 0.1570; Siga = 0.1532;
print("The geometric buckling is",(np.pi/(x[0] + 2%D))**2 +
(np.pi/(x[1] + 2%D))**2 + (np.pi/(x[2] + 2%D))**2)
print("The materials buckling is",(nuSigf - Siga)/D)

x0 = [421. 421. 750.1]
Iteration 1 : x = [-403.19253367 -403.19253367 2792.77379015]
norm(f(x)) = 5378973.72321

Iteration 16 : x = [201.6439505 201.6439505 1386.94891624]
norm(f(x)) = 4.65661287308e-10

CODA 247

It took 16 iterations

The surface area is 1200000.0

The geometric buckling is 0.000412595005429

The materials buckling is 0.0004125950054288814

This guess basically doubled the number of iterations.

CODA

In this, and the previous lecture, we have discussed a range of rootfinding methods. Open
methods are good when you only have a single initial guess. These methods usually require
either a knowledge of the functions’s derivative or require an approximation to the deriva-
tive. Closed methods are more robust because the root estimate will always be in the initial
bounds. This robustness comes at the cost of determining bounds for the root.

In practice, the appropriate method will be problem dependent. With the root finding tools
we have covered, you have a rich toolset to find roots for just about any problem you will
encounter.

PROBLEMS

Short Exercises

13.1. Apply Newton’s method to the function f(x) = (1 — x)2 4+ 100(1 — x3)% =0, using the
initial guess of 2.5.

13.2. You are given a radioactive sample with an initial specific activity of 10* Bq/kg, and
you are told the half-life is 19 days. Compute the time it will take to get the specific ac-
tivity of Brazil nuts (444 Bq/kg) using Newton’s method, inexact Newton, and secant.

Programming Projects

1. Roots of Bessel Function
Consider the Bessel function of the first kind defined by

i (=" X\ 2m+o
Ja(x) ngzr(m fa+tl) (E) '

13.1. Write a Python code that prompts the user asks if they want to use bisection or New-
ton’s method. Then the user enters an initial guess or initial range depending on the
method selected.

13.2. Using the input find a root to Jy. Each iteration print out to the user the value of Jy(x)
for the current guess and the change in the guess.

13.3. For testing, there is a root at x ~ 2.4048. Also, math.gamma (x), will give you I" (x).

248 13. OPEN ROOT FINDING METHODS

2. Nonlinear Heat Conduction

We will consider heat conduction in a cylindrical nuclear fuel pellet. In order to simplify
the model, we will

suppose a steady state operation,

neglect the axial heat conduction,

suppose that the heat is uniformly generated radially,
neglect the presence of the clad.

Under these assumption, the heat conduction equation is:

10 oT
——rk(T)=—)| =—q” for0<r <R, (13.1)
ror ar

T(R) =Tk,
oT

il =0,
ar r=0

where T = T (r) is the temperature inside the pellet, k = k(T) is the temperature dependent
conductivity, in W/(m-C), and ¢"” is the heat source (W/m?). The temperature Ty is the tem-
perature at the surface of the pellet. Solving for the temperature distribution within the pellet
can be transformed into the following statement:

T(r) R2 _ 2
/ K(T)dT =¢" . (13.2)
Tx 4

Suppose you are given a formula for k(7). You can then compute the conductivity integral
(i-e., the antiderivative)

I(u) :/k(u)du +C.
Finally, the problem boils down to solving the following nonlinear equation of one variable:

2 I’2

4

I(T(r)=q" + I(TR).
If you solve the above equation at various radii r for 7 (r), you will then get the temperature
profile (i.e., the temperature at these different positions).

The data below (see Table 13.1) provides you with the conductivity formula k(7T') (which
is easy to integrate), the pellet radius R, and the boundary condition Tg. The rest of the data
will be useful to determine the average power density ¢’ (power per unit volume) for the
entire core. The core is a typical Westinghouse PWR reactor, containing a given number of
fuel assemblies. Each fuel assembly is loaded with a given number of fuel rods. Be careful
with your unit conversions.

PROBLEMS

TABLE 13.1 Problem Definition

249

Conductivity, W/(m-C)

k = 1.05 +2150/(T + 200)

Total power generated in the core
Number of fuel assemblies (FA)
Number of fuel pins per FA

Core height

Pellet radius R

Temperature at R

4200 MWth
205

264

14 ft.

0.41 cm
400°C

Your assignment

¢ Derive Eq. (13.2) using the heat conduction equation and it’s boundary conditions.
¢ Write a clean and clear Python code to solve the above problem using the following meth-

ods: (1) bisection and (2) Newton’s.

e Use 11 grids points for the temperature profile (i.e., r; = %R fori=1...11).
* Compare graphically your results with the case where the conductivity is assumed to

be the following constant:

k = k(500°C) = 4.12 W/(m - C).

Note that when the conductivity is constant, you have an analytical solution. Provide

the analytical solution 74 (r).

CHAPTER

Finite Difference Derivative
Approximations

OUTLINE

14.1 Taylor Series and Big-O Notation 252 14.7 Complex Step Approximations 262

14.2 Forward and Backward Coda 264

Difference Formulas 254 Further Reading 264
14.3 Higher-Order Approximations 255 Problems 265
14.4 Comparison of the Approximations 256 Short Exercises 265
14.5 Second Derivatives 257 Programming Projects 265
14.6 Richardson Extrapolation 258 1. Comparison of Methods 265

Différance is the systematic play of differences, of the traces of differences, of the spacing by means
of which elements are related to each other.
-Positions by Jacques Derrida

CHAPTER POINTS

e The definition of a derivative requires e The convergence of an approximate
taking an infinitesimally small derivative can be inferred theoretically
perturbation of a function. from the Taylor series and empirically from
e We cannot deal with infinitesimals on a the error on a log-log plot.
compute so finite difference formulae are e Using complex numbers allows the
commonly used. These can be derived derivative to be approximated to a high
from the Taylor series polynomial of the degree of precision by obviating the need
function. for taking differences of functions.

In introductory calculus, students are taught that the derivative of a function is defined via
the limit

/ df . flx+h)—fx)
o)=L = fim L2 TP
dx h—0 h
Computational Nuclear Engineering and Radiological Science Using Python
DOI: 10.1016/B978-0-12-812253-2.00016-9 25 1 Copyright © 2018 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-812253-2.00016-9

252 14. FINITE DIFFERENCE DERIVATIVE APPROXIMATIONS

On a computer we want to compute derivatives, but we cannot evaluate the derivative using
an infinitesimally small value for & due to finite precision arithmetic. In this chapter we will
derive formulas called finite difference derivatives because # will have a finite value rather
than an infinitesimally small one. In one formula we will approximate the derivative in the
same manners as the above equation using

LS =)

V€Y Y

The error we incur in doing so we also be discussed.

14.1 TAYLOR SERIES AND BIG-O NOTATION

We can approximate a function f(x) near a point x using the Taylor series

/ h2 /" h3 " h" (n)
S+ =f)+hf)+)+ = fT) -t)+

The Taylor series is an infinite sum. One way that this is commonly written is using a partic-

4

ular notation instead of the “...”:
h? 3
fx+h) = fx)+hf'(x)+ Tf//(x) + gfw(x) + 0 ().

What the O (h*) means that the rest of the terms will be smaller than some constant times 4%
as h — 0. We can see this through a simple example. Here we look at the approximation of

, h? h 4
cosh =cos0— hsin0 — ECOSO—l— FsmO—i— Oh™).

Below we plot the both the function and its approximation.
1.0
08
0.6

0.4

flx)

0.2

0.0/ — COSTx

= = 3rd order Taylor Series

_0.2 ! ! ! ! !
-1.5 -1.0 -05 0.0 0.5 1.0 1.5

X

14.1. TAYLOR SERIES AND BIG-O NOTATION 253

The absolute difference between cos’ and the third-order Taylor series as a function of 4
on a log-log scale is shown next. It appears to be a line with a slope that is approximately 4.

Absolute Error on Log-Log Scale

104 L

Error
=)
&

107 [

109 ‘ ‘
102 10-1 100

h

You might ask yourself, why is the slope 4? This can be answered by looking at the equa-
tion for the error:

2 3
fx+h)— <f(X) +hf'(x) + %f”(X) + %f”()ﬂ) =Ch*+ o),

in this equation we have used the fact that O (h4) means some constant, which here we call C,
times A*. The remaining terms we have written as O (hd).
When we take the absolute value and the logarithm of each side we get

h? 3
f(x+h)— (f(x) +hf/(x) + ?f/,(x) + g.f/”(x))‘ ~logy |C| +4loggh,

logg

which is a line with slope 4. The constant tells us what level the curve starts out at when
h = 1. This formula is approximate because we have left out the 4> and higher terms, which
we assume to be small since / is small in our demonstration above.

BOX 14.1 NUMERICAL PRINCIPLE

When plotting the error of an approxima- power. That is, if the slope in plot is m, then
tion as a function of a parameter /# on a log- we can estimate that the error is
log scale, the slope of the line is an approxi-
mation to how the error scales as h to some error = Ch™ = O(h"™).

The we have already seen the concept of Big-O notation when we discussed the scaling
Gaussian Elimination, saying that it scaled as O (n®) where n was the number of equations in
the linear system. One difference is that in the algorithm scaling discuss we were concerned
about the scaling as n — oo, whereas here we are interested in 4 — 0.

254 14. FINITE DIFFERENCE DERIVATIVE APPROXIMATIONS

14.2 FORWARD AND BACKWARD DIFFERENCE FORMULAS

From the Taylor series at x + &,

h? h3
fx+h)=fx)+hf'(x)+ Tf//(x) + gf”’(x) + 0 (%),

we notice that there is an f/(x) term in the equation. If we “solve” for this derivative by
subtracting f(x) from both sides and then dividing by & we get

Jx+h) - fx)

_ gt h " hz i 0/’13
3 =F @+ 5@+ 70+ 00,

or in shorter form

fx+h) — fx)

; = f'(x) + O(h).

Therefore the approximation

[— f)
W~ 2T

! h

is an order h approximation because the error is proportional to / as i goes to 0. This is called
a forward difference formula because the function is evaluated & forward of x to approximate
the derivative.

We did this using f(x + &) in our formula, but we could have also used f(x — &) which
has the Taylor series

h2 / h3 " 4
f(x—h)=f(X)—hf’(X)-lr?f’(x)—Ef’(X)-irO(h),
to get the formula

fe =Sl ,’:(x M pe+om.
Therefore the approximation
- —h
fl(x) ~ %

is also an order / approximation because the error is proportional to & as & goes to 0. This
formula is a backward difference formula because the function is evaluated / behind x.

14.3. HIGHER-ORDER APPROXIMATIONS 255

BOX 14.2 NUMERICAL PRINCIPLE

The forward and backward finite differ- and

ence formulas are first-order in 4 approxima- Backward Difference
tions to the derivative given by
—fx—h
Forward Difference fl(x)= % + O(h).
h) —
f/(x)z [+ ;l f) + oM,

14.3 HIGHER-ORDER APPROXIMATIONS

Both of these formulas for the derivative are first-order in 4. These formulas are fine, but
as we will see when we solve differential equations, first-order solutions typically have too
much error for our purposes. We desire a way of getting higher-order approximations to the
derivative.

Here we will derive a second-order approximation using both

h? h3
f@+m=funmﬁ&n~5ﬂu»+gf%m+0mﬁ
and

’ hz " h3 " 4
f(x—h)Zf(X)—hf(X)+7f (X)—gf (x) + O(h™).

Notice that if we subtract the f(x — &) equation from the equation for f(x + /) and then divide
by 2h we get

fa+h—fx—-h
2h

h2
=fu»wgﬂ%m+omﬁ

or in shorter form

Ja+h) —fx—h
2h

= f'(x)+ 0(?).
Therefore the approximation

S+ = fx—h)
.x)’\’)

I T

is an order 7% approximation because the error is proportional to h? as & goes to 0. This for-
mula is called a central-difference formula because the function is evaluated around a center
of x a value of / on either side. One thing to note is that the error terms in this approximation
only have even powers of /1 because of the way the odd powers cancel when combining the
two.

256 14. FINITE DIFFERENCE DERIVATIVE APPROXIMATIONS

With a second-order approximation, if we cut / in half, the error goes down by a factor
of 4, compared to a factor of 2 with a first-order method.

BOX 14.3 NUMERICAL PRINCIPLE

The central finite difference formula is Central Difference
a second-order in h approximation to the
h) — —h
derivative given by ()= Jath) - fa—h) + O0(h?).

2h

We could go through the process of obtaining even higher-order derivatives (third-order,
fourth-order, etc.), but in practice this is generally not useful because the formulas become
cumbersome and there are typically better ways of accomplishing higher-order accuracy. We
will see one of these ways shortly.

14.4 COMPARISON OF THE APPROXIMATIONS

Consider the function
f(x) = arctan(x) cosh(x)

and look at approximations to f’(x) at x = 1. The actual answer is f/(1) =
1.694541176517952557683135. In the following graph we show the error in the derivative
estimate as a function of 4 for the three methods we have seen so far on a log-log scale.

1ol Absolute Error on Log-Log Scale

®—@ Forward Difference
J0o | *—* Backward Difference
&—4A Central Difference

Error
=)
9

10-3

The central difference result has a slope of about 2, between the forward and backward
differences have a slope around 1 (1.01 and 0.989 between the last two points of each line for
the forward and backward difference, respectively).

In this example we see that the errors decay as expected for the two first-order methods
and the one second-order method. As we expect, as gets smaller the second-order method
wins out. Nevertheless, this does not mean that at a particular value of 7 the second-order
method will have smaller error. The graph above shows that at & = 2, the backward differ-

14.5. SECOND DERIVATIVES 257

ence approximation has the smallest error. This is due to the fact that order of the formula just
says how the error changes with /# and says nothing about the constant in front of the leading-
order term. Eventually, the second-order method will win, but we cannot say anything about
a particular point.

BOX 14.4 NUMERICAL PRINCIPLE

Just because a method has higher order ac- value of 2. What higher order accuracy means
curacy than another does not mean thatitwill is that the error will decrease faster as & — 0.
give a better approximation for a particular

14.5 SECOND DERIVATIVES

We may also want to compute the value of f”(x). To do this we start with the Taylor series
for f(x +h) and f(x — h):

h? h?
f+h)y=fO)+hf'(x)+ Ef//(x) + Z.fw(x) + oY,
and
/ h? ” h? 7z 4
fx—h)=fx)—hf (x)+?f (x) — gf (x)+ O*").
If we add these two equations together, notice that the 7 and 4? terms cancel:
FOtm+fx=h) =2f()+ 8 f"()+ 00,

Now rearranging this formula to solve for the second-derivative we get

JO+h) =2f)+ f(x—h)

¥ = f"(x) + O(h?).

That is, we can get a second-order in & approximation to the second derivative by evaluating
the function at f(x) and f(x & h).

BOX 14.5 NUMERICAL PRINCIPLE

A common formula for estimating a
second-derivative with second-order accu-
racy is

_Sath) -2+ fx—h)

s +0H?).

f@)

258 14. FINITE DIFFERENCE DERIVATIVE APPROXIMATIONS

Another derivative we may want to approximate in nuclear engineering is

d de

—D(x)—.

dx dx

This term appears in the diffusion equation for neutrons or other particles. To approximate
this, we first approximate D(x + h/2)¢'(x + h/2) using a central difference with /2 as

LAY AT hyox+h —¢(x) 2
D<x+2>¢<x+2>—D<x+2) W + O (h”).

Doing the same with D(x — h/2)¢'(x — h/2) gives

T W\ ¢ =g —h) o,
D(x—§>¢<x—5>_D(x—2) A + O (h7).

The final step involves writing

iD d_¢_l D _}.ﬁ / _}_ﬁ -D —ﬁ ! —ﬁ + O(h?
dx (x)dx_h(<x 2>¢<x 2) (x 2)¢(x 2)) .

which is a central difference formula as well. Putting all of our results together gives

d dp 1 h\ ¢(x+h)—¢(x) h\ ¢(x)—¢(x —h)
ED(X)E_E@(“FE)T_D()“E)T)'

With a constant value of D(x) this formula becomes

d dp D P 5

PO =7 @0+ h) = 20() + o(x —h)).
One outstanding question is what order is this approximation. It is fairly obvious that it is
second-order when D is constant. It is tedious, but straightforward, to show that the error is
second-order in & even when D is changing.

What about higher derivatives? As we did in the diffusion operator, we can just apply the
same formula over and over until we get a derivative of any degree we like. We will not go
further into the higher-degree derivative formulas here because the formulae are usually for
specialized problems and can be generated easily. One thing to note, as we saw when we
went from first to second derivatives (two points to three points), the number of points you
need to evaluate the function at grows with the derivative degree.

14.6 RICHARDSON EXTRAPOLATION

If we want high-order approximations to derivatives (or many other quantities), we can
use Richardson extrapolation. This idea goes back to Lewis Fry Richardson, one of the first

14.6. RICHARDSON EXTRAPOLATION 259

people to solve problems using computers. Though in his case in the early 1900s the comput-
ers were adolescent boys doing calculations on slide rules. This also is where the notion of
an expensive algorithm might come from because Richardson paid the “computeers” by the
operation.

In any case, Richardson extrapolation combines two approximations to get a more accurate
answer. To see how this works, we can look at a central difference approximation to the first
derivative using & and s /2:

fa+h) —fx—h
2h

h2
=f'(x)+ gf’”(x) + 0",

and

Jx+h/2) — f(x —h/2)
h

h2
=f'@)+ 5 f) + O(h%).
For simplicity we define

o fOth) — fGx—h)
- 2h ’

<

=

and

v J+h/2)— f(x—h/2)
Jup = h -

Notice that if we take the combination
4fnp = In

T =0+ o (hh).

This is a fourth-order approximation to the derivative as the error term scales as h* as h is
decreased. In this case we obtained two extra orders of accuracy by combining two second-
order approximations because the central difference approximation only has even powers of
h in its error term.

The same type of extrapolation can be done with the forward or backward difference
scheme. For the forward difference method we have

h) — h n
M =['@+ 5@+ @) + o),

and

JF(x+h/2) = f(x)
h/2

Y h " h2 1 0 h3
—f(x)+Zf (X)+gf (x) +O").
Now we can write

2fnn = Fr= 1)+ 00D,

where the f’s are now the forward difference estimates. Notice there that we only improved
the order of accuracy by one order this time. This is the most common case with Richardson
extrapolation.

260 14. FINITE DIFFERENCE DERIVATIVE APPROXIMATIONS

We can generalize what we did to get a general Richardson extrapolation formula. Call
Ri+1 the Richardson extrapolated quantity of order k + 1, and g a quantity estimated using
h and g/, a quantity estimated with the same method using //n. If the original method is
order k accurate, then the Richardson extrapolated estimate is

k ~ A
" 8h/n — 8h
Ript = —21 20 — ¢ 4 O (W)
nk —1
In the example above using central differences, n =2 and k = 2, that is why the 4 appeared in
the numerator and a 3 appeared in the denominator. In that example we had

Afpp=In
3=
We call this R3 even though we obtained fourth-order accuracy in this case because there are
no odd-order powers of & in the error term.

BOX 14.6 NUMERICAL PRINCIPLE

Richardson extrapolation applies anumer- To boot, you can apply Richardson extrapola-
ical approximation with several values of # tion repeatedly to get more and more accurate
and uses the knowledge for how the error approximations.
scales in & to cancel leading-order error terms.

We can continue that to even higher order by applying Richardson extrapolation multiple
times. As a test we will use our example function from above. The first thing we will do is
define a Richardson extrapolation function:

In [1]: def RichardsonExtrapolation(fh, fhn, n, k):
"""Compute the Richardson extrapolation based on
two approximations of order k
where the finite difference parameter h is used in fh and h/n in fhn.
Inputs:
fh: Approximation using h
fhn: Approximation using h/n

n: divisor of h
k: original order of approximation
Returns:

Richardson estimate of order k+1"""

numerator = nxxk * fhn - fh
denominator = nxxk - 1
return numerator/denominator

Using this function we can approximate the derivate using Richardson extrapolation. In
the following figure, the slope between the last two points in the Richardson extrapolation
estimate is 3.998:

10!
100 L
101 |
102}
103 |
104

Error

105 [
10-6 L
107 [
108
109

14.6. RICHARDSON EXTRAPOLATION 261

Absolute Error on Log-Log Scale

Forward Difference
Backward Difference
Central Difference
Richardson 4th Order

111

10-

2

o1

h

100 10!

Notice that there is one fewer point in the Richardson line relative to the other lines because
it takes two estimates to apply Richardson extrapolation.

We can apply Richardson extrapolation again to get a sixth-order approximation (note that
we skip 5 just as we skipped 3). That is we apply the Richardson extrapolation function to
the estimate we computed using Richardson extrapolation on the central-difference estimate.
The results from this double-extrapolation yield a slope of about 6, as expected:

101
100
10-!
10-2
103
10-4
10-3
10-6
10-7
10-8
102
10-10
10-11

Error

10-12

Absolute Error on Log-Log Scale

Forward Difference
Backward Difference
Central Difference
Richardson 4th Order
Richardson 6th Order

cIIIl

102

10-!

h

100 101

We can apply Richardson extrapolation again to get an eighth-order approximation:

100 L

Error

10-10

10-12

10-14

Absolute Error on Log-Log Scale

Forward Difference
— Backward Difference
&—a Central Difference
+—+ Richardson 4th Order
® @ Richardson 6th Order
* % Richardson 8th Order

10-2

10-!

100 10!

262 14. FINITE DIFFERENCE DERIVATIVE APPROXIMATIONS

In this case the slope between the last two points is 7.807. This is because floating point
precision is starting to affect the estimate.

The overall results are pretty compelling: the 8th-order approximation is about 10 orders
of magnitude better than the original central difference approximation at the finest level of 4.
The only trade-off is that the original central difference needs two points to approximate the
derivative and the eighth-order extrapolated value needs several central difference approxi-
mations to get the accurate answer it does.

Richardson extrapolation is a powerful tool to have in your numerical toolkit. All you need
to know is an estimate of the order of accuracy for your base method and the level by which
you refined &. Knowing this and computing several approximations, you can combine them
with Richardson extrapolation to get a better answer.

14.7 COMPLEX STEP APPROXIMATIONS

For functions that are real-valued for a real argument and can be evaluated for a complex
number, we can use complex arithmetic to get an estimate of the derivative without taking a
difference. Consider the Taylor series approximation of a function at f(x + ih):

. . / h2 7 ih3 " 4
f&x+ih) = f(x)+ihf (x)_ff (X)—?f (x) +O"™). (14.1)

The imaginary part of this series is

/’13
Im{f(x +ih)} =hf'(x) - gf”/(x) +om),

which leads to

Im{f(x +ih)}

2
7 + O (h7).

flx) =

This is the complex step approximation and it can estimate the derivative by evaluating the
function at a complex value and dividing by 4. This will be a second-order in 4 approximation
to the derivative. At first, this may seem like it is no better than the central difference formula,
and worse than our high-order Richardson extrapolation estimates.

Indeed, if we apply the complex approximation to the derivative on the function from
before and the same values of /1, we see that it does not perform noticeably different.

14.7. COMPLEX STEP APPROXIMATIONS 263

Absolute Error on Log-Log Scale

10! -
100 L
10-1 L
~
2 102}
w
103 L .
®—® Forward Difference
— Backward Difference
104} A—aA Central Difference
A A Complex
10-5 ! L |
10-2 10-! 100 10!

Nevertheless, if we let /i get even smaller, the central difference approximation reaches a
minimum error value before rising. This is due to the fact that the error in finite precision
arithmetic starts to dominate the difference between the function values in the central dif-
ference formula. In the complex step method there are no differences, and the error in the
approximation can go much lower:

Error

10-10 |

10-12

10-14

10-16

&

Absolute Error on Log-Log Scale

®—@® Forward Difference
A *—* Backward Difference

A—aA Central Difference
& A Complex

10-8

10-7 10-6 10-5 104 10-3 10-2 10-!
h

Though we have not shown it here, the Richardson extrapolation estimates based on the
central difference formula do not reach a lower error than the central difference approxima-

tions.

Finally, we will show that it is possible to get a fourth-order complex step approximation.
To do this we will combine Eq. (14.1) with the equation for a step of size h/2:

ih ih h2 'h3
f (x + %) = f@)+ S @) = =110 = S) + 06, (14.2)

264 14. FINITE DIFFERENCE DERIVATIVE APPROXIMATIONS

Inspecting these two equations, we can get an approximation for f’(x) without the f”(x)
term by adding —1/8 times Eq. (14.1) to Eq. (14.2) and multiplying the sum by 8/3 to get
f()—ilm f + —lf(+ih) {4+ 0%
Xx) = 7 flx > g x4+ .

This approximation requires two evaluations of the function, but as we can see it reaches the
minimum error with a relatively large value of :

Absolute Error on Log-Log Scale

10|

Error

10-10 | Forward Difference

Backward Difference

o8
., ek

10-12 1 2
A Central Difference
10-14 L 7 ;& A Complex
A *oxk Complex 4th Order
10-16 S S

. 2 ! ! ! ! ! |
108 107 106 105 104 103 102 [O-' 100 10! 102
h

The complex step method is a useful approximation to the derivative when one has a func-
tion that can be evaluated with a complex argument. As we have seen, it can be much more
accurate than real finite differences, including Richardson extrapolations of those approxima-
tions.

CODA

The flip side of numerical differentiation is numerical integration. This will be covered in
the next chapter. Whereas, in numerical differentiation the answers got better as the distance
between points became smaller, in numerical integration we will break a domain into a finite
number of subdivisions and the error will go to zero as the width of those subdivisions goes
to zero. The principle of order of accuracy and Richardson extrapolation will be useful in our
discussion there as well.

FURTHER READING

The complex step method dates back to the 1960s, but it has only found widespread appli-
cation in the past few decades [19]. There are also other methods of approximating derivatives
called differential quadrature methods [20] that are the derivative versions of the integral
quadrature methods that we will encounter in the next chapter.

PROBLEMS 265

PROBLEMS

Short Exercises

Compute using 7 =271,272,...275 and the forward, backward, and centered difference,
as well as the two complex step approximations the following derivatives.

14.1. f(x)=/x at x =0.5. The answer is f'(0.5) =271/2 2 0.70710678118.
14.2. f(x) = arctan(x? — 0.9x 4+ 2) at x = 0.5. The answer is f/(0.5) = 2?—2
14.3. f(x) = Jo(x), at x = 1, where Jo(x) is a Bessel function of the first kind given by

0 (=)™ X\ 2m+ta
Ja¥) =3 m\ T (m+a+1) <§> ‘

m=0

The answer is f’(1) &~ —0.4400505857449335. Repeat the calculation using the second-
order complex step approximation to get a Richardson extrapolated fourth-order esti-
mate. Compare this to the fourth-order complex step approximation.

Programming Projects

1. Comparison of Methods
Consider the function

=
[N

[N

fx)=e 2.
We will use finite differences to estimate derivatives of this function when o =0.1.

* Using forward, backward, and centered differences, and the two complex step approxi-
mations evaluate the error in the approximate derivative of the function at 1000 points
between x = —1and x =1 (np. 1 inspace will be useful) using the following values of 4:

h=202"12"2 277

For each set of approximations compute the average absolute error over the one thousand
points

N
1
Average Absolute Error = ¥ Zl | £ (xi) — fa’pprox x)],
i=

where f;pprox (x;) is the value of an approximate derivative at x; and N is the number of
points the function derivative is evaluated at. You will need to find the exact value of the
derivative to complete this estimate.

Plot the value of the average absolute error from each approximation on the same figure
on a log-log scale. Discuss what you see. Is the highest-order method always the most ac-
curate? Compute the order of accuracy you observe by computing the slope on the log-log
plot.

266 14. FINITE DIFFERENCE DERIVATIVE APPROXIMATIONS

Next, compute the maximum absolute error for each value of / as

Maximum Absolute Error = max | f/(x;) — fa’pproX x)].
l

Plot the value of the maximum absolute error from each approximation on the same figure
on a log-log scale. Discuss what you see. Is the highest-order method always the most
accurate?

* Repeat the previous part using the second-order version of the second-derivative approxi-
mation discussed above. You will only have one formula in this case.

e Now derive a formula for the fourth derivative and predict its order of accuracy. Then re-
peat the calculation and graphing of the average and maximum absolute errors and verify
the order of accuracy.

CHAPTER

15

Numerical Integration With

Newton—Cotes Formulas

OUTLINE

15.1 Newton—Cotes Formulas 268 Further Reading

15.1.1 The Midpoint Rule 268 Problems

15.1.2 The Trapezoid Rule 269 Short Exercises
15.2 Simpson’s Rule 274 Programming Projects
15.3 Romberg Integration 277 1. Inverse Fourier
Coda 284 Transform

284
284
284
284

284

Once the area is appointed,

They enclose the broad-squared plaza
With a mass of mighty tree-trunks
Hewn to stakes of firm endurance..

Alonso de Ercilla y Zuriiga, The Araucaniad, as translated by Charles Maxwell Lancaster and

Paul Thomas Manchester

CHAPTER POINTS

e Newton—Cotes rules perform polynomial e The range of integration is typically broken
interpolation over the integrand and up into several pieces and a rule is applied
integrate the resulting interpolant. to each piece.

e The midpoint, trapezoid, and Simpson’s e We can combine Richardson extrapolation
rules are based on constant, linear, and with Newton—Cotes rules to get highly
quadratic interpolation, respectively. accurate integral approximations.

In this and the next chapter we are going to discuss ways to compute the integral of a general
function numerically. In particular we are interested in ways that we can approximate an

Computational Nuclear Engineering and Radiological Science Using Python
DOI: 10.1016/B978-0-12-812253-2.00017-0 267

Copyright © 2018 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-812253-2.00017-0

268 15. NUMERICAL INTEGRATION WITH NEWTON-COTES FORMULAS

integral by a sum with a finite number of terms:
b L
[rwaxx Y weoseo.
4 =1

Such an approximate is called quadrature, but numerical integration is the more modern
term. The term quadrature arose from a process in ancient Greek geometry of constructing a
square (a quadrilateral) with the same area as a given shape.

Writing an integral as a finite sum is analogous to the definition of an integral as a Rie-
mann sum, when the number of intervals goes to infinity. Therefore, just as in finite difference
derivatives, we use finite mathematics to approximation the infinitesimals of calculus.

15.1 NEWTON-COTES FORMULAS

The Newton—-Cotes formulas are ways to approximate an integral by fitting a polynomial
through a given number of points and then doing the integral of that polynomial exactly.
(Clearly, Newton is the larger numerical luminary in the name of this method. One might
suspect that Cotes rode on Isaac Newton’s coat tails here.) The polynomial can be integrated
exactly because integration formulas for polynomials are straightforward. We will not delve
into the general theory of Newton—-Cotes formulas, rather we will give three important ex-
amples.

15.1.1 The Midpoint Rule

In the midpoint rule we approximate the integral by the value of the function in the middle
of the range of integration times the length of the region. This simple formula is

a+b b
Imidpoint:hf<))%/ f(x)dx,
a

where h =b —a.
To demonstrate this rule we look at a simple function integrated over an interval with the
midpoint rule:

250 Midpoint Rule

200+

150 |

ft)

100 |-

50+

15.1. NEWTON-COTES FORMULAS 269

From this demonstration, we see that the resulting approximation is not terrible, but there
are clearly parts of the function where the rectangle does not match the function well. We can
do better than a rectangle that approximates the function as flat. Namely we can approximate
the integrand as linear; we do this next.

BOX 15.1 NUMERICAL PRINCIPLE

The midpoint rule approximates the inte- b
grand as a rectangle that touches the function _/l; sl =in7 @),
at the midpoint of the interval of integration:
where h =b —a and ¢ = (a + b) /2.

15.1.2 The Trapezoid Rule

In this method we fit a line between a and b and then do the integration. The formula for
this is

I trap =

SRR

b
(f(a) + f (b)) %/ f(x)dx,

where i = b — a. Here is a graphical example.

250 - Trapezoid Rule

200 -

150

ft)

100 |

270 15. NUMERICAL INTEGRATION WITH NEWTON-COTES FORMULAS

BOX 15.2 NUMERICAL PRINCIPLE

The trapezoid rule approximates the inte- b h
grand as the area of a trapezoid with bases /a e = 2 (f@)+f®)),
that touch the function at the endpoints of the
interval of integration: where h = b — a.

Additionally, in this demonstration we can see where the rule gets its name. The approx-
imation to the integral is the area of a trapezoid. Indeed, the approximation formula is the
same as the area of a trapezoid found in geometry textbooks. We can also see in the figure
that the approximation is not exact because the trapezoid does not exactly follow the func-
tion, but if @ and b are close enough together it should give a good approximation because
any well-behaved function can be approximated linearly over a narrow enough domain.

That leads to a variation to the trapezoid rule (and any other rule for that matter). We can
break up the domain [, b] into many smaller domains and integrate each of these. Here is an
example where we break [a, b] into 4 pieces:

250 Trapezoid Rule with 4 pieces

200 |

150

fx)

100 s

50+

BOX 15.3 NUMERICAL PRINCIPLE

Commonly, the interval of integration is terval over which the approximation is ap-
broken up into many pieces and a quadra- plied. This application of a quadrature rule
ture rule is applied to each of the pieces. This over smaller ranges of the interval is called a
allows the user to control the size of the in- composite quadrature rule.

As you can see the approximation is starting to look better. We can write a trapezoid rule
function that will take in a function, a, b, and the number of pieces and perform this inte-
gration. Also, because the right side of each piece is the left side of the next piece, if we are

15.1. NEWTON-COTES FORMULAS 271

clever we can only evaluate the function N + 1 times where N is the number of pieces. The
following function implements the trapezoid rule.

In [1]: def trapezoid(f, a, b, pieces):
"""Find the integral of the function f between a and b
using pieces trapezoids
Args:
f: function to integrate
a: lower bound of integral
b: upper bound of integral
pieces: number of pieces to chop [a,b] into

Returns:
estimate of integral

integral = 0

h=»5b-a

#initialize the left function evaluation

fa = f(a)

for i in range(pieces):
ffevaluate the function at the left end of the piece
fb = f(a+(i+l)*h/pieces)
integral += 0.5%h/piecesx(fa + fb)
f#fnow make the left function evaluation the right for the next step
fa = fb

return integral

We can test this method on a function that we know the integral of

T
/ sinxdx =2.
0

In addition to the estimates, the approximations to the integral are plotted.
In [2]: integral_estimate = trapezoid(np.sin,0,np.pi,pieces=6,graph=True)
print("Estimate is",integral_estimate,"Actual value is 2")

integral_estimate = trapezoid(np.sin,0,np.pi,pieces=20,graph=True)
print("Estimate is",integral_estimate,"Actual value is 2")

Trapezoid Rule with 6 pieces

0.6}

ftx)

041

02}

0.0

272 15. NUMERICAL INTEGRATION WITH NEWTON-COTES FORMULAS

Estimate is 1.95409723331 Actual value is 2

Trapezoid Rule with 20 pieces

1.0+ T~

d N

0.8}

0.6

fx)

0.4}

0.2}

0.0

Estimate is 1.99588597271 Actual value is 2

We can run this multiple times and see how the error changes. Similar to what we did for
finite difference derivatives, we can plot the error versus number of pieces on a log-log scale.
In this case, & is the width of each of the pieces: as the number of pieces grows, the value of &

decreases.

Trapezoid Rule Error: slope = 2.05634769108

100 |

101 |

Absolute Error

102

10-! 100

The error in the trapezoid rule that we observe is second-order in /, because the slope of

the error on the log-log scale is 2.
We can see that this is the expected error in the estimate by looking at the linear approxi-

mation to a function around x = a:
(x —

2
fx) = f@+x—a)f(a)+ Ta)f”(a) + 0((x —a)*).

15.1. NEWTON-COTES FORMULAS 273

We can approximate the derivative using a forward difference:

b —
Fla)~ w + o),

where h = b — a. Now the integral of f(x) from a to b becomes

/f(x)dx_hf(a)+/ (x—a)f(a)dx+/ * f”(ydx + O(h%).
The integral

b b— b
/(x—a)f’(a)—(f()-—(M

h
W +0(h)> =§(f(b)—f(a))+0(h3)-

Additionally,

2 h3
/ (x a) f//()dx gf”(a)=0(h3)~

When we plug this into the original integral we get

b
h
/f(X)dx =5 @+)+ o).

This says that error in one piece of the trapezoid rule is third-order accurate, which means
the error can be written as Ch3 + O (h*). However, when we break the interval into N pieces,
each of size h = (b — a)/N, the error terms add and each piece has its own constant so
that

N
Y " Cih? < Nh*Conax = (b — @) Crnaxh®,
i=1

where Cax is the maximum value of |C;|. Therefore, the error in the sum of trapezoid rules
decreases as h%, which we observed above. This analysis can be extended to show that the
error terms in the trapezoid rule only have even powers of &:

Error = C2h2 + C4h4 +

We will use this later when we combine the trapezoid rule with Richardson extrapola-
tion.

274 15. NUMERICAL INTEGRATION WITH NEWTON-COTES FORMULAS

15.2 SIMPSON’S RULE

Simpson’s rule is like the trapezoid rule, except instead of fitting a line we fit a parabola
between three points, a, b, and (a + b)/2. The formula for this is

h h b
Isimpson = I3 (f(a) +4f (a + E) + f(b)) %/a fx)dx,

where = b — a. (This is sometimes called Simpsons 1/3 rule, because there is another Simp-
son rule that is based on quartic interpolation.) First, let’s examine how this rule behaves on
the integral of sinx with one piece:

Simpson's Rule

0.6

)

0.4

0.2

0.0

X

It looks like the function can be well approximated by a parabola.

BOX 15.4 NUMERICAL PRINCIPLE

Simpson’s rule approximates an integral = method is
by performing guadratlc 1.nter}.>olat10n l?e- b "
tween the endpoints and midpoint of the in- / f@)dx == (fa)+4f(c)+ fb)),
terval of integration. The formula for this @ ©

where h =b —a and ¢ = (a + b) /2.

Here is a function to perform Simpson’s rule just like we did for the trapezoid rule.

In [4]: def simpsons(f, a, b, pieces):
"""Find the integral of the function f between a and b
using Simpson’s rule
Args:
f: function to integrate
a: lower bound of integral

15.2. SIMPSON’S RULE 275

b: upper bound of integral
pieces: number of pieces to chop [a,b] into

Returns:
estimate of integral

integral = 0

h=>b-a

one_sixth = 1.0/6.0

#initialize the left function evaluation

fa = f(a)

for i in range(pieces):
ffevaluate the function at the left end of the piece
fb = f(at+(i+l)xh/pieces)
fmid = f(0.5x(a+(i+1)xh/pieces+ a+ixh/pieces))
integral += one_sixthxh/piecesx(fa + 4xfmid + fb)
j#fnow make the left function evaluation the right for the next step
fa = fb

return integral

We then use this function to estimate the integral of the sine function using two and twenty
pieces:

In [5]: integral_estimate = simpsons(np.sin,0,np.pi,pieces=2,graph=True)
print("Estimate is",integral_estimate,"Actual value is 2")

integral_estimate = simpsons(np.sin,0,np.pi,pieces=20,graph=True)
print("Estimate is",integral_estimate,"Actual value is 2")

Simpsons Rule with 2 pieces

0.8

0.6

ftx)

0.2

0.0

Estimate is 2.00455975498 Actual value is 2

276 15. NUMERICAL INTEGRATION WITH NEWTON-COTES FORMULAS

Simpsons Rule with 20 pieces

1.0 — T

T ™~

v N

0.8

0.6 -

ftx)

0.2

0.0

Estimate is 2.00000042309 Actual value is 2
Just like the trapezoid rule, we can look at the error in Simpson’s rule.

Simpson's Rule Error: slope = 4.09606210249

Absolute Error

10-7 L

10-8 ! ! |
102 10-! 100 10!

Simpson’s rule is fourth-order in the piece size. This means that every time I double the
number of pieces the error goes down by a factor of 2* = 16.
Before moving on, we will use Simpson’s rule to calculate r:

1
/ 41 —x2dx =m.
0

In [6]: integrand = lambda x: 4xnp.sqrt(l-xx*2)
simpsons(integrand,0,1,pieces = 8,graph=True) #actual value is 3.14159

15.3. ROMBERG INTEGRATION 277

Simpsons Rule with 8 pieces
4t
—
\\

34 \
&2

| 4

0 1

a b

OQutl6]: 3.1343976689845969

It looks like most of the error comes at x = 1. The reason for this is that function is changing
rapidly near x = 1 because there is a singularity in the derivative:

d 4x
—44/1 - P —
dx o «/1—x2

Note that the denominator goes to 0 at x = 1. We will revisit this integral later.

15.3 ROMBERG INTEGRATION

When we use trapezoid integration, we know that the error is second-order in the piece
size. Using this information we can apply Richardson extrapolation. We can combine the
approximation with one piece with that using two pieces to get a better approximation (one
that is higher-order). Then, we can combine this approximation with the estimate using four
pieces, to get an even better answer. To do this we need to use the fact that the trapezoid rule
only has error terms that are even powers of 4. To demonstrate this, we will compute the
integral

2 Inx
/ dx =0.1472206769592413 . .. (15.1)
1 1+x

The result from a one-piece trapezoidal integration is

In [7]: integrand = lambda x: np.log(x)/(1.0+x)
integral_estimatel = trapezoid(integrand,l,2,pieces=1,graph=True)
print("Estimate is",integral_estimatel,
"Actual value is 0.1472206769592413, Error is",
np.fabs(0.1472206769592413-integral_estimatel))

278 15. NUMERICAL INTEGRATION WITH NEWTON-COTES FORMULAS

Trapezoid Rule with | piece

020

0.151

fx)

0.10

0.05

0.00

X

Estimate is 0.115524530093 Actual value is 0.1472206769592413,
Error is 0.0316961468659

Then we use two-pieces

In [8]: integral_estimate2 = trapezoid(integrand,1,2,pieces=2,graph=True)
print("Estimate is",integral_estimate?,
"Actual value is 0.1472206769592413, Error is",
np.fabs(0.1472206769592413-integral_estimate2))

Trapezoid Rule with 2 pieces
025

020

0.151

ft9)

0.10

0.00

X

Estimate is 0.138855286668 Actual value is 0.1472206769592413,
Error is 0.00836539029095

We combine these estimates using Richardson Extrapolation. First, we need to define a
new function for Richardson extrapolation. Our new implementation will use floating point
numbers with higher precision than standard floating point numbers.

In [9]: import decimal
ffset precision to be 100 digits

15.3. ROMBERG INTEGRATION 279

decimal.getcontext().prec = 100
def RichExtrap(fh, fhn, n, k):
"""Compute the Richardson extrapolation based on
two approximations of order k
where the finite difference parameter h is used in fh and h/n in fhn.
Inputs:
fh: Approximation using h
fhn: Approximation using h/n

n: divisor of h
k: original order of approximation
Returns:

Richardson estimate of order k+1"""
n = decimal.Decimal(n)
k = decimal.Decimal (k)
numerator = decimal.Decimal(nxxk * decimal.Decimal(fhn)

- decimal.Decimal(fh))
denominator = decimal.Decimal(n*xk - decimal.Decimal(1.0))
return float(numerator/denominator)

To make Richardson work well with high-order approximations we use arbitrary precision
arithmetic using the decimal library.

BOX 15.5 PYTHON PRINCIPLE

The library decimal allows one to use digits of accuracy desired. Also, numbers that
higher precision floating point numbers than you want to be represented using this preci-
the standard floating point numbers in sion will need to be surrounded by the con-
Python. It is necessary to set the desired pre- struct

cision with the command
decimal.getcontext().prec = Precision deetnal, Bee el 1)

where Precision is the integer number of here N is a number.

We will apply this function to the approximations with the trapezoid rule above.

In [10]: Richardson2 = RichExtrap(integral_estimatel,integral_estimate2,n=2,k=2)
print("Estimate is",Richardson2,
"Actual value is 0.1472206769592413, Error is",
np.fabs(0.1472206769592413-Richardson?))

Estimate is 0.1466322055266186 Actual value is 0.1472206769592413,
Error is 0.000588471432623

By applying Richardson extrapolation, we improved the estimate by an order of magnitude.
Now if we use 4 points, we get

In [15]: integral_estimate4 = trapezoid(integrand,l,2,pieces=4,graph=True)
print("Estimate is",integral_estimated,
"Actual value is 0.1472206769592413, Error is",
np.fabs(0.1472206769592413-integral_estimate4))

280 15. NUMERICAL INTEGRATION WITH NEWTON-COTES FORMULAS

Trapezoid Rule with 4 pieces

020 /
P

0.151

ft)

0.05

0.00

X

Estimate is 0.145095533798 Actual value is 0.1472206769592413,
Error is 0.00212514316171

There are two Richardson extrapolations we can do at this point, one between the 4 and 2
piece estimates, and then one combines the two Richardson extrapolations:

In [11]: Richardson4 = RichExtrap(integral_estimate?,
integral_estimated4, n=2,k=2)
print("Estimate is",
Richardson4,
"Actual value is 0.1472206769592413, Error is",
np.fabs(0.1472206769592413-Richardson4))

Estimate is 0.14717561617394495 Actual value is 0.1472206769592413,
Error is 4.50607852963e-05

In [12]: Richardson42 = RichExtrap(Richardson2,Richardson4,
n=2,k=4)
f#fnote this is fourth order
print("Estimate is",Richardson4?2,
"Actual value is 0.1472206769592413, Error is",
np.fabs(0.1472206769592413-Richardson4?2))

Estimate is 0.14721184355043337 Actual value is 0.1472206769592413,
Error is 8.83340880792e-06

Notice that the error from combining the two extrapolations is 3 orders of magni-
tude smaller than the error using 4 pieces. We could continue on by hand, but it is
pretty easy to write a function for this. This procedure is called Romberg integration,
and that is what we will name our function. The function will return a table of ap-
proximations where the first column is the original trapezoid rule approximations and
the subsequent columns are a Richardson extrapolation of the column that came be-
fore.

In [13]1: def Romberg(f, a, b, MaxlLevels = 10, epsilon = 1.0e-6, PrintMatrix = False):
"""Compute the Romberg integral of f from a to b

15.3. ROMBERG INTEGRATION 281

Inputs:

f: integrand function

a: left edge of integral

b: right edge of integral

MaxLevels: Number of levels to take the integration to

Returns:
Romberg integral estimate

mwn

estimate = np.zeros((MaxlLevels,MaxlLevels))

estimate[0,0] = trapezoid(f,a,b,pieces=1)
i=1
converged = 0
while not(converged):
estimate[i,0] = trapezoid(f,a,b,pieces=2%x%7)
for extrap in range(i):
estimatel[i,l+extrap] = RichExtrap(estimate[i-1,extrap],
estimate[i,extrap],
2,2%x(extrap+l))

converged = np.fabs(estimate[i,i] - estimate[i-1,i-1]1) < epsilon
if (i == Maxlevels-1): converged =1
it+=1
if (PrintMatrix):
print(estimate[0:1,0:11)
return estimate[i-1, 1-11]

This function is defined to compute the integral estimate using a series of intervals and
can print out the intermediate estimates and the extrapolated values. We will test this on the
same integral as before.

In [14]: {this should give us what we got before
integral_estimate = Romberg(integrand,1,2,MaxlLevels=3, PrintMatrix=True)
print("Estimate is",integral_estimate,
"Actual value is 0.1472206769592413, Error is",
np.fabs(0.1472206769592413-integral_estimate))

[[0.11552453 0. 0.]

[0.13885529 0.14663221 0.]

[0.14509553 0.14717562 0.147211841]

Estimate is 0.14721184355 Actual value is 0.1472206769592413,
Error is 8.83340880792e-06

In [15]: #Now let it converge, don’'t set Max Levels so low
integral_estimate = Romberg(integrand,1,2,MaxlLevels = 10, PrintMatrix=True,
epsilon = 1.0e-10)
print("Estimate is",integral_estimate,
"Actual value is 0.1472206769592413, Error is",
np.fabs(0.1472206769592413-integral_estimate))

[[0.11552453 0. 0. 0. 0. 0.
[0.13885529 0.14663221 0. 0. 0. 0.

o O
[—)

282 15. NUMERICAL INTEGRATION WITH NEWTON-COTES FORMULAS

[0.14509553 0.14717562 0.14721184 0. 0 0. 0.1

[0.14668713 0.14721767 0.14722047 0.14722051 O. 0. 0.1

[0.14708715 0.14722049 0.14722067 0.14722067 0.14722067 0. 0.1

[0.14718729 0.14722066 0.14722068 0.14722068 0.14722068 0.14722068 0.

[0.14721233 0.14722068 0.14722068 0.14722068 0.14722068 0.14722068 0.147220681]]
Estimate is 0.147220676959 Actual value is 0.1472206769592413,

Error is 7.19035941898e-13

BOX 15.6 NUMERICAL PRINCIPLE

Romberg integration combines Richard- rule. It can produce integral estimates of high
son extrapolation with a known quadrature accuracy with a few function evaluations.

As one final example we will estimate 7:

In [16]: integrand = lambda x: 4*np.sqrt(l-x*%2)
integral_estimate = Romberg(integrand,0,1,MaxLevels = 8,
PrintMatrix=False, epsilon = 1.0e-10)
print("Estimate is",integral_estimate,
"Actual value is",np.pi,", Error is",
np.fabs(np.pi-integral_estimate))

Estimate is 3.14131611425 Actual value is 3.141592653589793,
Error is 0.000276539339068

One thing to note is that our implementation of Romberg integration is not the most effi-
cient. Technically, we are evaluating the function more times than we need to because when
we call the trapezoid rule function with more pieces we are evaluating the function again at
places we already did (for example, f(a) and f(b) are evaluated each time). However, mak-
ing the most efficient algorithm would not make the most useful teaching example. For our
purposes it suffices to know that this can be done in a smarter way if each function evaluation
takes a long time.

There also is no reason we could not use the Romberg idea using Simpson’s rule. Here is a
function for that.

In [17]1: def RombergSimps(f, a, b, MaxLevels = 10, epsilon = 1.0e-6,
PrintMatrix = False):
"""Compute the Romberg integral of f from a to b
Inputs:
f: integrand function
a: left edge of integral
b: right edge of integral
MaxlLevels: Number of levels to take the integration to

Returns:
Romberg integral estimate

nun

estimate = np.zeros((MaxLevels,MaxlLevels))

15.3. ROMBERG INTEGRATION 283

estimate[0,0] = simpsons(f,a,b,pieces=1)
i=1
converged = 0
while not(converged):
estimate[i,0] = simpsons(f,a,b,pieces=2x*i)
for extrap in range(i):
estimatel[i,l+extrap] = RichExtrap(estimate[i-1,extrap],
estimate[i,extrap],
n=2,k=2+2.0xx(extrap+l))

converged = np.fabs(estimate[i,7] - estimate[i-1,i-1]) < epsilon
if (i == Maxlevels-1): converged = 1
i+=1
if (PrintMatrix):
print(estimate[0:7,0:11)
return estimate[i-1, i-1]

Using this function we can get a good estimate of the integral of the rational function from
Eq. (15.1):

In [18]: {#this should be better than what we got before,

#Error was 8.83340880792e-06

integrand = lambda x: np.log(x)/(1.0+x)

integral_estimate = RombergSimps(integrand,1,2,MaxLevels=3,

PrintMatrix=True)

print("Estimate is",integral_estimate,
"Actual value is 0.1472206769592413, Error is",
np.fabs(0.1472206769592413-integral_estimate))

[[0.14663221 0. 0.]

[0.14717562 0.14721184 0.]

[0.14721767 0.14722047 0.1472206111]
Estimate is 0.147220608522 Actual value is 0.1472206769592413,
Error is 6.84372362669e-08

Applying this to estimate 7 using the default number of levels, we get

In [19]: integrand = lambda x: 4xnp.sqrt(l-xxx2)
fftrapezoid error was 0.00221405375506
integral_estimate = RombergSimps(integrand,0,1,MaxLevels = 8,
PrintMatrix=False, epsilon = 1.0e-10)
print("Estimate is",integral_estimate,
"Actual value is",np.pi,", Error is",
np.fabs(np.pi-integral_estimate))

Estimate is 3.14149721605 Actual value is 3.141592653589793,
Error is 9.5437540061e-05

To get 10 digits of accuracy we need 20 levels or 22 = 1 048 576 intervals:

284 15. NUMERICAL INTEGRATION WITH NEWTON-COTES FORMULAS

In [20]: integrand = lambda x: 4*np.sqrt(l-x**2)
integral_estimate = RombergSimps(integrand,0,1,MaxLevels = 20,
PrintMatrix=False, epsilon = 1.0e-14)
print("Estimate is",integral_estimate,
"Actual value is",np.pi,", Error is",
np.fabs(np.pi-integral_estimate))

Estimate is 3.14159265323 Actual value is 3.141592653589793,
Error is 3.63962637806e-10

CODA

Here we have learned the basics of numerical integration using Newton—Cotes formulas.
More importantly, we have shown how to combine these rules with Richardson extrapolation
to get accurate estimates. In the next chapter we will discuss other types of quadrature rules
and how to estimate multi-dimensional integrals.

FURTHER READING

The decimal package has a variety of further applications and can be a powerful tool. It
is covered in detail in the official Python documentation at docs.python.org.

PROBLEMS

Short Exercises

Using the trapezoid rule and Simpson’s rule estimate the following integrals with the
following number of intervals: 2,4, 8, 16, ...512. Compare your answers with Romberg in-
tegration where the maximum number of levels set to 9.

15.1. [T/ "% dx & 3.104379017855555098181.

15.2. f02‘405 Jo(x)dx = 1.470300035485, where Jy(x) is a Bessel function of the first kind given
by
o0
(_l)m X\ 2m+a
PRIyl i 4 L
a(x) n;Jm!F(m—i—a—i— H\2

Programming Projects
1. Inverse Fourier Transform

Consider the neutron diffusion equation in slab geometry an infinite, homogeneous
medium given by

d2
—DWMX) + Xap(x) =8(x),

PROBLEMS 285

where §(x) is the Dirac delta function. This source is equivalent to a planar source inside
the slab at x = 0. One way to solve this problem is to use a Fourier transform. The Fourier
transform of a function can be defined by

Flfoy=fk) = dx f(x)(coskx — i sinkx).

l oo
A/ 2 [oo
The Fourier transform of the diffusion equation above is

. 1
DI +) p(k) = ——.
(+ X))o (k) NiT

We can solve this equation for ¢ (k), and then apply the inverse Fourier transform:

F U k)= fx) = dk f(k)(coskx + i sinkx).

=R

This leads to the solution being defined by

. /Oo coskx dk n ,/°° sinkx dk
= — i —_—.
V=] iR+ 5y) 2 (DR + 55)

The imaginary integral is zero because ¢ (x) is real. You can see that this is so because the
integrand of the imaginary part is odd and the integral is symmetric about 0.

Your task is to compute the value of ¢ (x) at various points using D = X, = 1. Because you
cannot integrate to infinity you will be computing integrals of the form

L
/ fx)dx,
—L

15.1. Compute value of ¢ (x) at 256 points in x € [—3, 3] using Simpson’s and the trapezoidal
rule with several different numbers of intervals (pieces) in the integration and using
different endpoints in the integration, L. Plot these estimates of ¢ (x).

15.2. Plot the error between your estimate of ¢ (1) and the true solution of %e‘l. Make one
graph each for trapezoid and Simpson’s rule where the x-axis is 4 and the y-axis is the
absolute error. On each plot show a curve for the error decay for L = 10, 1000, 10°, 108.

15.3. Give your best estimate, using numerical integration, for the absorption rate density of
neutrons, X,¢(x), at x =2.

for large values of L.

CHAPTER

16

Gauss Quadrature and
Multi-dimensional Integrals

OUTLINE

16.1 Gauss Quadrature Rules 287 Short Exercises 298
16.1.1 Where Did These Points Programming Projects 298
Come From? 288 1. Gauss—Lobatto
16.1.2 Code for Gauss—Legendre Quadrature 298
Quadrature 290 2. Gauss—Hermite
16.2 Multi-dimensional Integrals 294 Quadrature 299
Coda 297 3. Integration and Root
Problems 298 Finding 299

They're two, they're four, theyre six, they're eight
Shunting trucks and hauling freight
—~Thomas and Friends “Roll Call”

CHAPTER POINTS

e Gauss quadrature is designed to integrate e Multidimensional integrals can be found
functions with a small number of points. by applying 1-D integrals.

e The idea behind Gauss quadrature is to
exactly integrate the highest degree
polynomial possible given a number of
function evaluations.

16.1 GAUSS QUADRATURE RULES

In the last chapter we saw that we can approximate integrals by fitting the integrand
with an interpolating polynomial and then integrating the polynomial exactly. In this chapter

Computational Nuclear Engineering and Radiological Science Using Python 2 8 7

DOI: 10.1016/B978-0-12-812253-2.00018-2 Copyright © 2018 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-812253-2.00018-2

288 16. GAUSS QUADRATURE AND MULTI-DIMENSIONAL INTEGRALS

we take a different approach that guarantees the maximum accuracy for a given number of
points. These types of methods are called Gauss quadrature rules. We will discuss the rule
for finite intervals.

Gauss quadrature rules re-write an integral as the sum of the function evaluated at a given
number of points multiplied by a weight function:

b L
/ fydx~ wef(xo),
a =1

where the weights w, and quadrature points x; are chosen to give the integral certain prop-
erties. There are several types of Gauss-quadrature rules, but the type we will cover in detail
is known as Gauss-Legendre quadrature. In particular this quadrature rule is for integrals of
the form

1 L
/ Fwdxx D we f (o).
- =1

The integral does not need to be limited just to the range, [—1, 1], however. If we want to
integrate f(x) from [a, b], we define a variable

a+b+b—a d b—a
X = y X =
2 2 °

dz,

to make the transformation

b b—a [! b—a a+b
/Gf(x)dx= 5 /—1f< 2 z+ 2)dz.

We still have not shown how to pick the weights, wg, and abscissas, x¢. These are chosen so
that the rule is as accurate as possible with L points. It turns out that we can pick the weights
and abscissas such that the Gauss-Legendre quadrature formula is exact for polynomials of
degree 2L — 1 or less. This should not be a complete surprise because the integral of a 2L — 1
degree polynomial is a degree 2L polynomial. Such a polynomial has 2L + 1 coefficients, only
2L of these depend on the original polynomial because the constant term is determined by
the integration bounds. Therefore, the integral has 2L degrees of freedom, the exact number
of degrees of freedom we have with our L weights and abscissas.

The weights and abscissas are given for L up to 8 in Table 16.1. Notice that the odd L sets
all have x = 0 in the set. Also, the sum of the w, adds up to 2 because the range of integration
has a length of 2.

16.1.1 Where Did These Points Come From?

One way to derive the Gauss-Legendre quadrature rules is by looking at the integral of
generic monomials of degree 0 up to 2L — 1 and setting each equal to the L point Gauss—

TABLE 16.1 The Abscissae and Weights for Gauss—

16.1. GAUSS QUADRATURE RULES

Legendre Quadrature up to L =8

L xy wy

1 0 2

2 £0.5773502691896257645091488 1

3 0 0.888888889
+0.7745966692414833770358531 0.555555556

4 £0.3399810435848562648026658 0.652145155
+0.8611363115940525752239465 0.347854845

5 0 0.568888889
+0.5384693101056830910363144 0.47862867
+0.9061798459386639927976269 0.236926885

6 £0.2386191860831969086305017 0.467913935
+0.6612093864662645136613996 0.360761573
+0.9324695142031520278123016 0.171324492

7 0 0.417959184
+0.4058451513773971669066064 0.381830051
+0.7415311855993944398638648 0.279705391
+0.9491079123427585245261897 0.129484966

8 £0.1834346424956498049394761 0.362683783
+0.5255324099163289858177390 0.313706646
+0.7966664774136267395915539 0.222381034
+0.9602898564975362316835609 0.101228536

Legendre quadrature rule:

and continuing until

L

1
/ dx aoxo =ay Z ng?,
-1

=1
L

1 =1

1
/ dxa1xl =aq Zwexg,

1 L
2L—1 201
/ dxay_1x =ayr_1| E wex, .
-1 =1

289

Notice that the a; constants cancel out of each equation so they do not matter. This system
is 2L equations with L weights, w¢, and L abscissas, x;. We could solve these equations to
get the weights and abscissas, though this is not how it is done in practice generally—this is
accomplished by using the theory of orthogonal polynomials.

290 16. GAUSS QUADRATURE AND MULTI-DIMENSIONAL INTEGRALS

BOX 16.1 NUMERICAL PRINCIPLE

Gauss quadrature rules pick the values of rule has 2L degrees of freedom (L weights
the points and weights in the quadrature rule and L abscissas), and can therefore integrate
so that the highest degree polynomial can a polynomial of degree 2L — 1 exactly.
be exactly integrated. An L point quadrature

16.1.2 Code for Gauss—Legendre Quadrature

We will now write a function that will compute the integral of a function from [—1, 1]
using these quadrature rules. For values of L beyond 2, we will use a NumPy function that
generates the points and weights. The NumPy documentation asserts that the rules for L >
100 have not been tested and may be inaccurate.

In [1]: def GLQuad(f, L=8,dataReturn = False):
"""Compute the Gauss-Legendre Quadrature estimate
of the integral of f(x) from -1 to 1

Inputs:

f: name of function to integrate

L: Order of integration rule (8 or less)
Returns:

mun

G-L Quadrature estimate
assert(L>=1)
if (L==1):

weights = np.ones(1)=2

Xxs = np.array([0])
elif (L==2):

weights = np.ones(2)

xs = np.array([-np.sqrt(1.0/3.0),np.sqrt(1.0/3.0)1)
else: ffuse numpy’s function

xS, weights = np.polynomial.legendre.leggauss(L)

quad_estimate = np.sum(weights*f(xs))
if (dataReturn):

return quad_estimate, weights, xs
else:

return quad_estimate

The weights and abscissas are shown in the following figure where the size of a point is
proportional to the weight:

16.1. GAUSS QUADRATURE RULES 291

Gauss-Legendre Quadrature Points
Size of point is weight

16 -
14 e 0o @ ©6 © © O © o o o o
ce 0o ®© © © © © o o o oo
12+ co 0 0o @ ° ° e o o oo
ceo O [] [) [) [] [] o oo
10+ co o ° [® ° o oo
o o [] [] [} [] [] e o
- 8 o o) [[] ° o o
e o [o [] e o
61 °) o [}) °
° L] [[] °
4+) [} [} ®
[[) [
21 {] ® {]
0 I I I I I |
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
X

As a simple demonstration of the Gauss-Legendre quadrature, let’s show that it integrates
polynomials of degree 2L — 1 exactly. Consider the integral

L 1
Wv/ ()C+1)2L_1d)€=1.
—1

In the following code we show that we integrate this function exactly (to floating point preci-

sion) using Gauss-Legendre quadrature:

In [2]: L = np.arange(1,12)
for 1 in L:

f = Tambda x: (x+1)**(2x1-1)*1/(2%*(2%1 - 1))

integral = 1.0

GLintegral = GLQuad(f,1)

print("L =", 1,"\t Estimate is",GLintegral,

"Exact value is",integral,
"\nAbs. Relative Error is", np.abs(GLintegral-integral)/integral)
L=1 Estimate is 1.0 Exact value is 1
Abs. Relative Error is 0.0
L =2 Estimate is 1.0 Exact value is 1
Abs. Relative Error is 1.11022302463e-16
L=3 Estimate is 1.0 Exact value is 1
Abs. Relative Error is 2.22044604925e-16
L =14 Estimate is 1.0 Exact value is 1
Abs. Relative Error is 7.77156117238e-16
L=5 Estimate is 1.0 Exact value is 1
Abs. Relative Error is 4.4408920985e-16
L =26 Estimate is 1.0 Exact value is 1
Abs. Relative Error is 1.99840144433e-15
L=17 Estimate is 1.0 Exact value is 1
Abs. Relative Error is 3.99680288865e-15
0

Estimate is 1.

Exact value is 1

292

Abs.
L:
Abs.
L:
Abs.
L:
Abs.

Relative Error is 2

Estimate is 1.0

Relative Error is 1
Estimate is 1.0 Exact value is 1

4

0

4

9

10

Relative Error is

11

Estimate is 1.
Relative Error is

16. GAUSS QUADRATURE AND MULTI-DIMENSIONAL INTEGRALS

.22044604925e-15
Exact value is 1
.33226762955e-15

.4408920985e-16
Exact value is 1
.21884749358e-15

As mentioned earlier, we are generally interested in integrals not just over the domain
x € [—1, 1]. We'll now make a function that does Gauss-Legendre quadrature over a general
range using the formula

In [3]:

b b—a (! b—a a+b
/af(x)dxz 5 f_lf(2 z+ 2)dz.

def generalGL(f,a,b,L)

"""Compute the Gauss-lLegendre Quadrature estimate
of the integral of f(x) from a to b

Inputs:

f: name of function to integrate
a: lower bound of integral

b: upper bound of integral

L: Order of integration rule
Returns:

nmun

G-L Quadrature estimate
assert(L>=1)

jfdefine a re-scaled
f_rescaled = lambda z: f(0.5%x(b-a)*z + 0.5*(atbh))
integral = GLQuad(f_rescaled,L)

return integralx(b-a)*x0.5

We can show that this version integrates polynomials of degree 2L — 1 exactly. Consider

the integral

In [4]:

L:
Abs.
L:
Abs.
|_:
Abs.

1

2

Relative Error is
Estimate is 1.
Relative Error is

3

Estimate is 1.0

Relative Error is 0
Estimate is 1.0 Exact value is 1

1

0

4

2L /2 2L—1
——— _ | «+1D dx =1.
9L _4L 3

L = np.arange(1,12)
for 1 1in L:

f = Tambda x: (X+1)**(2%1-1)*(2x1/(9xx1-4%x1))
integral = 1.0
GLintegral = generalGL(f,-3,2,1)
print("L =", 1,"\t Estimate is",GLintegral,
"Exact value is",integral,
"\nAbs. Relative Error is", np.abs(GLintegral-integral)/integral)

Exact value is 1
.0

.11022302463e-16
Exact value is 1
.4408920985e-16

',
Il

L =

Abs.

4

5

6

7

8

9

1

1

Estimate is 1.

Relative Error is

Estimate is 1.

Relative Error is

Estimate is 1.

Relative Error is

Estimate is 1.

Relative Error is

Estimate is 1.

Relative Error is

Estimate is 1.

Relative Error is

0 Estimate is 1.

Relative Error is

1 Estimate is 1.

Relative Error is

16.1. GAUSS QUADRATURE RULES 293

Exact value is 1
.66133814775e-16
Exact value is 1
.7763568394e-15

Exact value is 1
.44249065418e-15
Exact value is 1
.66133814775e-15
Exact value is 1
.33066907388e-15
Exact value is 1
.10862446895e-15
Exact value is 1
.4408920985e-16

Exact value is 1
.43929354283e-15

DO PO WOWOOIHTOMNOHOOO

So far we have only used Gauss-Legendre quadrature on polynomials, below we test it on
two functions that are not polynomials:

and

g
/ sin(x)dx =2,
0

1
f 41 —x2dx =m.
0

For the integral of sin(x) we get exponential convergence:

10-10

10-12

10-14

10-16

Absolute Error
=)
©

™
Estimate of / sin(z) dr =2
0

100 10!

Notice that we get to the smallest error possible by evaluating the integral at only 8 points.
This is much better than we saw with trapezoid or Simpson’s rules. The approximation con-
verges exponentially to the exact answer. What this means is that it error decreases faster than

294 16. GAUSS QUADRATURE AND MULTI-DIMENSIONAL INTEGRALS
a polynomial of the form L™". Exponential convergence can be seen in the plot of the error
because the error goes to zero faster than linearly.

This exponential convergence will only be obtained on smooth solutions without singular-
ities in the function or its derivatives. In the last chapter we discussed the integral

1
/ 41 —x2%2dx =m.
0

This integral has a singularity in its derivative at x = 1. Gauss-Legendre quadrature will not
have exponential convergence on this function.

100

1
Estimate of/ W1l-z?de=m
0

10-2 L

103}

Absolute Error

104

10 w
100 10’

Slope of line from L =8 to 11 is -2.81212265648

Not quite as impressive, but still pretty good considering that we only evaluated the func-
tion at 12 points. The difficulty in the obtaining a highly accurate solution is the same as with
Newton—Cotes: the function cannot be described well by a polynomial near x = 1.

There is a big difference between the exponential convergence we saw in the integral of
the sine function and the polynomial convergence in this problem. Even at a high rate of
convergence (order 2.8), the error converges slowly in that we are still only accurate to 3
digits at L = 13.

16.2 MULTI-DIMENSIONAL INTEGRALS

Up to this point we have only dealt with integrals in one dimension. In all likelihood,
the integrals that you will want to evaluate numerically will be multi-dimensional. We spent
the effort we did on learning 1-D integrals because these methods are crucial for multi-D
quadrature.

16.2. MULTI-DIMENSIONAL INTEGRALS 295

If we want to do a multi-dimensional integral, we can do this rather simply by defining
multi-dimensional integrals in terms of 1-D integrals. Consider the 2-D integral:

b d
/dx/ dy f(x,y).

If we define an auxiliary function,

d
g(x) =/ dy f(x,y),

then the 2-D integral can be expressed as a 1-D integral of g(x):

b d b
/dx/ dyf(x,y):/ dx g(x).

We could do the same thing with a 3-D integral. In this case we define

b d f b
[dx/ dy/ dzf(x,y,z)=/ dx h(x),

f
g(x,y>=/ dz f(x.y,2).

where

and

d
h(x) =/ dy g(x. y).

What this means in practice is that we need to define intermediate functions that involve
integrals over one dimension. We define a general 2-D integral where the 1-D integrals use
Gauss-Legendre quadrature.

In [5]: def GLQuad2D(f,L):
"""Compute the Gauss-Legendre Quadrature estimate
of the integral of f(x,y) from x = -1 to 1, y = -1 to 1

Inputs:

f: name of function to integrate

L: Order of integration rule (8 or less)
Returns:

"o

G-L Quadrature estimate
assert(L>=1)
f#get weights and abscissas for GL quad
temp, weights, x1 = GLQuad(lambda x: x,L,dataReturn=True)
estimate = 0
for 1 in range(L)
f_onevar = lambda y: f(x,y)
Jfset x so that when f_onevar is called it knows what x 1is
x = x1[1]

296

16. GAUSS QUADRATURE AND MULTI-DIMENSIONAL INTEGRALS

g = lambda x: GLQuad(f_onevar,L)
estimate += weights[1] = g(x1[11)
return estimate

This approach to computing 2-D integrals requires L? function evaluations because at each
of the L quadrature points in y it evaluates the integrand at L points.
The next step is to generalize this to any rectangular domain in a similar fashion as we did

in 1-D.

In [6]:

def generalGL2D(f,a,b,c,d,L):

"""Compute the Gauss-Legendre Quadrature estimate

of the integral of f(x,y) from x = a to b

and y = a to b

Inputs:

f: name of function to integrate

lTower bound of integral in x

upper bound of integral in x

Tower bound of integral in y

upper bound of integral in y

: Order of integration rule

Returns:

G-L Quadrature estimate

assert(L>=1)

ffdefine a re-scaled f

f_rescaled = lambda z,zz: f(0.5%(b-a)*z +
0.5%(a+bh),0.5%x(d-c)xzz + 0.5x(c+d))

integral = GLQuad2D(f_rescaled,L)

return integral*(b-a)*0.5%(d-c)*0.5

—Q 0O o

noun

To test this, we use the following integral

2L

3 3
201 217 _
_3(_1)2L+24L+3_5£2dxl) dy [(x+1) +O+D]—1-

We expect that this will be integrated exactly by a two-dimensional Gauss-Legendre quadra-
ture rule with L? points.

In [7]:

L=1

L = np.arange(1,12)
for 1 in L:

f = Tambda x,y: ((x+1)**x(2%1-1) + (y+1)**(2x1-1))*(2x1)/(-3%x(-1)**x(2%1)
+ 2%x%(4%1+3)-5)

integral =1
GLintegral = generalGL2D(f,-2,3,0,3,1)
print("L =", 1,"\t Estimate is",GLintegral,

"Exact value is",integral,
"\nAbs. Relative Error is", np.abs(GLintegral-integral)/integral)

Estimate is 1.0 Exact value is 1

Abs. Relative Error is 0.0

L=2

Estimate is 1.0 Exact value is 1

Abs. Relative Error is 0.0

L=23

Estimate is 1.0 Exact value is 1

CODA 297

.4408920985e-16
Exact value is 1
.4408920985e-16
Exact value is 1
.33226762955e-15
Exact value is 1

Abs. Relative Error is 4

L =14 Estimate is 1.0

Abs. Relative Error is 4

L =25 Estimate is 1.0

Abs. Relative Error is 1

L =26 Estimate is 1.0

Abs. Relative Error is 1.88737914186e-15
L=17 Estimate is 1.0 Exact value is 1
Abs. Relative Error is 4.66293670343e-15
L =28 Estimate is 1.0 Exact value is 1
Abs. Relative Error is 1.33226762955e-15
L=29 Estimate is 1.0 Exact value is 1
Abs. Relative Error is 1.33226762955e-15
10 Estimate is 1.0 Exact value is 1
Abs. Relative Error is 8.881784197e-16

L =11 Estimate is 1.0 Exact value is 1
Abs. Relative Error is 3.77475828373e-15

,,
Il

The method has successfully extended the properties from 1-D to 2-D.

As a further test of this consider a 2-D Cartesian reactor that is a reactor that is finite in
x and y and infinite in z (this is nearly the case in power reactors as the reactor is very tall
relative to the radius). The scalar flux in this reactor is given by

¢(x,y)::2><109[cos<%%%)cos<%%%)],

for x € [-50,50] cm and y € [—50, 50] cm. If X¢ = 0.1532 cm™!, what is the total fission rate
per unit height in this reactor?
The answer is

50 50
f dx f dy Ze (x, y) = 1.241792427 x 10'2.
—50 —50

In [8]: Sigma_f = 0.1532
phi = lambda x,y: 2.0e9 xnp.cos(np.pixx*0.01) * np.cos(np.pixy*x0.01)
FissionRate = generalGL2D(phi,-50,50,-50,50,6)*Sigma_f
print("Estimated fission rate per unit height is",
FissionRate,"fissions/cm")

Estimated fission rate per unit height is 1.24179242607e+12 fissions/cm

We get 9 digits of accuracy when we evaluate the integrand at only 42 points. This is a very
efficient way to evaluate an integral.

CODA

We have discussed two basic quadrature techniques: Newton—Cotes and Gauss quadra-
ture, and shown how to generalize them to multi-dimensional integrals. Between numerical
integration and differentiation we have the basic tools to solve calculus problems. When we

298 16. GAUSS QUADRATURE AND MULTI-DIMENSIONAL INTEGRALS

combine this with the linear algebra and nonlinear solver skills that we learned previously,
we will be able to solve systems of ordinary differential equations and partial differential
equations.

We start down this path in the next chapter when we discuss the solution of initial value
problems for ordinary differential equations.

PROBLEMS

Short Exercises

Using Gauss-Legendre quadrature estimate the following integrals with L =2,4, 6, 8, and
30.

16.1. [7/% eSin% dx ~3.104379017855555098181

16.2. [;*% Jo(x) dx ~ 1470300035485, where Jo(x) is a Bessel function of the first kind given

by

0 (=)™ X\ 2m+a
Ja(x)zzmlf(m—i—a—i—l)(E) '

m=0

Programming Projects

1. Gauss-Lobatto Quadrature

One sometimes desires a quadrature rule to include the endpoints of the interval. The
Gauss-Legendre quadrature rules do not include x = £1. Gauss—-Lobatto quadrature includes
both of these points in the set.

1. Derive the L =2 Gauss-Lobatto quadrature set. There is only one degree of freedom in
this quadrature set, the weight, and it needs to integrate linear polynomials exactly. This
quadrature rule will have the form

1
/1 fxydx =wf(=1) +wf().

2. Now derive the L =3 Gauss-Lobatto quadrature set. Now there are two degrees of free-
dom because the x’s must be £1 and 0. This rule will integrate cubics exactly and have the
form:

1
/1f(x)dx=W1f(—1)+w2f(0)+w1f(1)-

3. Implement this quadrature rule and verify that it integrates the appropriate polynomials
exactly.

PROBLEMS 299

2. Gauss-Hermite Quadrature
Other types of Gauss quadrature are possible. Consider integrals of the form

/00 f(x)e “dx.
0

These integrals can be handled with Gauss-Hermite quadrature.

1. Derive an L =1 quadrature rule (i.e., determine x; and wy) such that

/0 Fe ™ dx = w1 f(x),

is exact for any linear function f(x).
2. Derive an L =2 quadrature rule such that

/0 f@)e ™ dx =w f(x1) + w2 f(x2),

is exact for any cubic (or lower degree) polynomial f(x).
3. Implement these two quadrature rules and verify that they integrate linear and cubic poly-
nomials exactly.

3. Integration and Root Finding

Consider a 1-D cylindrical reactor with geometric buckling 0.0203124 cm~! and D =
9.21 cm, vX¢ = 0.1570 cm™!, and ¥, = 0.1532 cm~!. The geometric buckling for a cylinder

is given by
5 (2.405)2
B = ——
& R ’

1. Find the critical radius of this reactor, that is when B; = By, with

v¥i— X
2. Using the numerical integration method of your choice, find the peak scalar flux assuming
that power per unit height is 2 MW /cm. Use 200 MeV /fission = 3.204 x 1071 J.

3. Now assume the reactor has a height of 500 cm and a power of 1000 MW. What is the peak
scalar flux? You will need a multi-dimensional integral in this case.

CHAPTER

Initial Value Problems

OUTLINE

17.1 Forward Euler 302 17.6.3 RK4 for Systems 323
17.2 Backward Euler 305 17.7 Point-Reactor Kinetics Equations 324
17.3 Crank—Nicolson (Trapezoid Rule) 308 17.7.1 Rod-Drop 325
17.3.1 Comparison of the Methods 310 17.7.2 Linear Reactivity Ramp 327
17.4 Stability 311 Coda 329
17.5 Fourth-Order Runge—Kutta Further Reading 329
Method 313 Problems 329
17.5.1 Stability for RK4 314 Short Exercises 329
17.6 Systems of Differential Equations 315 Programming Projects 330
17.6.1 Stability for Systems 320 1. Point Reactor Kinetics 330
17.6.2 Crank-Nicolson for Systems 321 2. Iodine Ingestion 331

Maude: Lord. You can imagine where it goes from here.
Dude: He fixes the cable?

—from the film The Big Lebowski

CHAPTER POINTS

e Initial value problems require the e Implicit methods define the update in
application of an integration rule to update terms of the state at a future time. These
dependent variables. methods can take large steps, but may be

e Explicit methods use information from limited in accuracy. Implicit methods also
previous and current times to march require the solution of linear or nonlinear
forward in time. These methods have a equations for each update.
limited step size. e To solve systems of equations, we can

apply generalizations of the techniques
developed for single ODEs.

Computational Nuclear Engineering and Radiological Science Using Python
DOI: 10.1016/B978-0-12-812253-2.00019-4 301 Copyright © 2018 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-812253-2.00019-4

302 17. INITIAL VALUE PROBLEMS

In this chapter we will use numerical integration techniques to solve ordinary differential
equations (ODEs) where the value of the solution is specified at a single value of the inde-
pendent variable. Because these problems often correspond to time-dependent problems with
an initial condition, these are called initial value problems.

Consider the generic, initial value problem with a first-order derivative given by

Y ()= f(y, 1), y(0) = yo,

where f(y,?) is a function that in general depends on y and ¢. Typically, we call ¢ the time
variable and y our solution. For a problem of this sort we can simply integrate both sides of
the equation from r =0 to r = Az, where At is called the time step. Doing this we get

At
y(Ar) — y(0) = A f(y,t)dt. (17.1)

17.1 FORWARD EULER

To proceed we will treat the integral in the previous equation using a numerical integration
rule. One rule that is so basic we did not talk about in the chapters on numerical integration
is the left-hand rectangle rule. Here we estimate the integral as

At
/0 f(y,ydt = Atf(y(0),0). (17.2)
Using this relation in Eq. (17.1) gives us

y(At) = y(0) + Atf (y(0),0). (17.3)

This will give an approximate value of the solution At after the initial condition. If we wanted
to continue out to later times, we could apply the rule again repeatedly. To do this we define
the value of y after n timesteps, each of width At as

Y'=y(")=ymAr), forn=0,...,N. (17.4)
Using this we can write the solution using the left-hand rectangle rule for integration as
yn+1 — yn + Atf(y”, tn).

This method is called the explicit Euler method or the forward Euler method after the Swiss
mathematician whose name is commonly pronounced oi-ler, much like a hockey team from
Edmonton. The method is said to be explicit, not because sometimes it will make you want
to shout profanity, rather that the update is explicitly defined by the value of the solution at
time ¢". Below we define a Python function that for a given right-hand side, initial condition,

17.1. FORWARD EULER 303

and time step and number of time steps, N, performs the forward Euler method. This function
will take the name of the function on the right-hand side as an input.

BOX 17.1 NUMERICAL PRINCIPLE

An explicit numerical method formulates ~ ward Euler method which writes the solution
the update to time step n+1 in terms of quan- to y'(t) = f(y,1) as
tities only at time step n or before. The classi-
cal example of an explicit method is the for- YL =y L AL OT, 1) Forward Euler.

In [1]: def forward_euler(f,y0,Delta_t,numsteps):
"""Perform numsteps of the forward Euler method starting at y0
of the ODE y’(t) = f(y,t)
Args:
f: function to integrate takes arguments y,t
y0: initial condition
Delta_t: time step size
numsteps: number of time steps

Returns:
a numpy array of the times and a numpy
array of the solution at those times
numsteps = int(numsteps)
y = np.zeros(numsteps+1)
t = np.arange(numsteps+l)xDelta_t
y[0] = yO0
for n in range(l,numsteps+1):
y[n] = y[n-11 + Delta_t % f(y[n-11, tln-11)
return t, y

We will test this on a simple problem:

V(1) =—y(@), yo=1.

The solution to this problem is

t

y()y=e".

The following code compares the exact solution to the forward Euler solution with a time
step of 0.1.

In [2]: RHS = lambda y,t: -y
Delta_t = 0.1
t_final =2
t,y = forward_euler(RHS,1,Delta_t,t_final/Delta_t)
plt.plot(t,y,’ o-",label="numerical solution")
t_fine = np.linspace(0,t_final,100)
plt.plot(t_fine,np.exp(-t_fine),label="Exact Solution")

304

17. INITIAL VALUE PROBLEMS

Solution with At = 0.1

®—@ numerical solution

— Exact Solution

That looks pretty close. The numerical solution appears to be slightly below the exact solu-
tion, but the difference appears to be small. We could re-do this with different size time steps
and compare the solutions as a function of Az.

10 Solution with At = I. 05 025 0.125 0.0625 0.03125]
o—e At=1.0
*—% At =05
0.8 A4 At=025
e o At=0.125
061 - - At =0.0625
At =0.03125
Exact Solution
0.4}
02}
0.0
0.0 0.5 1.0 1.5 2.0

Also, we can compute the error as a function of Az. On a log-log scale this will tell us about
the convergence of this method in Ar.

Norm of Error

100 Slope of Error is 1.02206084732

10-3 L .
10-2 10-1 100

At

17.2. BACKWARD EULER 305

Notice that the error indicates that this is a first-order method in Az: when we decrease At
by a factor of 2, the error decreases by a factor of 2. In this case we measured the error with a
slightly different error norm:

N

1
Error = \/—N Z ()’gpprox - gxact)z’

n=1

where N is the number of steps the ODE is solved over.

One thing that can happen with the forward Euler method is that if the time step is too
large, it can become unstable. What this means is the solution diverges to be plus or minus
infinity (sometimes it goes to both). In our case, forward Euler is unstable if A7 > 2, as we will
prove later and demonstrate numerically here.

Solution with At =2.5

®—® Numerical solution
— Exact Solution

y(®
o N

The solution grows over time, even though the true solution decays to 0. This happens
because the magnitude of the solution grows, which makes the right-hand side for the next
update larger. This makes the solution grow in magnitude each step.

Stability is an important consideration, and we will talk more about it later.

17.2 BACKWARD EULER

We could use a different method to integrate our original ODE rather than the left-hand
rectangle rule. An obvious alternative is the right-hand rectangle rule:

yn+1 zyn + Atf(yn+1,l”+l).

This method is called he backward Euler method or the implicit Euler method.

306 17. INITIAL VALUE PROBLEMS

It is implicit because the update is implicitly defined by evaluating f with the value of y
we are trying to solve for. That means the update needs to solve the equation

yn+l _ yn _ Alf(yn+l , tn+]) — O, (175)

using a nonlinear solver (unless f is linear in y). Therefore, this method is a bit harder to

implement in code.

BOX 17.2 NUMERICAL PRINCIPLE

An implicit numerical method formulates
the update to time step n + 1 in terms of quan-
tities at time step n 4 1 and possibly previous
time steps. The classical example of an im-
plicit method is the backward Euler method
which write the solution to y/(t) = f(y, 1) as

yn+1 =yn + Atf(y"+1, tn—H)

Backward Euler.

A well-known second-order implicit method
is the Crank-Nicolson method. It uses values
at time step n + 1 and n:

1
Y =y A £OM M + FOL]

Crank-Nicolson.

The function below uses the inexact Newton method we defined before to solve Eq. (17.5).

In [3]: def backward_euler(f,y0,Delta_t,numsteps):
"""Perform numsteps of the backward Euler method starting at y0

of the ODE y’(t) = f(y,t)
Args:

f: function to integrate takes arguments y,t

y0: initial condition
Delta_t: time step size

numsteps: number of time steps

Returns:

a numpy array of the times and a numpy
array of the solution at those times

wnn

numsteps = int(numsteps)
y = np.zeros(numsteps+1)

t = np.arange(numsteps+l)*Delta_t

y[0] = y0
for n in range(l,numsteps+1):

solve_func = lambda u: u-y[n-1] - Delta_t*f(u,tln])
y[n] = inexact_newton(solve_func,y[n-11)

return t, y

Performing the test we did for forward Euler gives the following results.

17.2. BACKWARD EULER 307

0 Solution with At = I. 05 025 0.125 0.0625 0.03125]
0.9 o—o At=1.0
’ *—* At=05
081} A—A At =025
07l e @ At=0.125
- - At =0.0625
= 06 At =0.03125
= 051 Exact Solution
04|
03}
02}
0| L L L !
0.0 0.5 1.0 1.5 2.0
t
loo Slope of Error is 0.987408647622
L 101 E
0
i
s
£
o
Z j02|
10-3 ‘ ‘
10-2 10-! 100

There are several differences between the results from backward Euler and forward Euler.
The backward Euler solutions approach the exact solution from above, and the convergence
of the error is at the same rate as forward Euler. It seems like we did not get much for the
extra effort of solving a nonlinear equation at each step. What we do get is unconditional
stability. We can see this by using a large time step.

10 Solution with At = 2.5

®—@ Numerical solution

— Exact Solution

308 17. INITIAL VALUE PROBLEMS
The solution, though not very accurate, still behaves reasonably well. The exact solution

decays to 0 as t — oo, and the backward Euler solution behaves the same way. This behavior
can be very useful on more complicated problems than this simple one.

17.3 CRANK-NICOLSON (TRAPEZOID RULE)

We could use the trapezoid rule to integrate the ODE over the time step. Doing this gives
At
n+l _ n non nt+l n+l)
=y" 4+ — M+ Jt .
y Y+ (f O)+ f)

This method, often called Crank-Nicolson, is also an implicit method because y"*t1 is on the
right-hand side of the equation. For this method the equation we have to solve at each time
step is

At
Y=y = S (FOM N+ £ =0,

Implementing this method is no more difficult than backward Euler. The only change is
the function given to the inexact Newton method.

In [4]: def crank_nicolson(f,y0,Delta_t,numsteps):
"""Perform numsteps of the Crank--Nicolson method starting at y0
of the ODE y’(t) = f(y,t)
Args:
f: function to integrate takes arguments y,t
y0: initial condition
Delta_t: time step size
numsteps: number of time steps

Returns:
a numpy array of the times and a numpy
array of the solution at those times
numsteps = int(numsteps)
y = np.zeros(numsteps+1)
t = np.arange(numsteps+l)*Delta_t
y[0] = y0
for n in range(l,numsteps+1):
solve_func = lambda u:u-y[n-11-0.5*Delta_tx(f(u,t[n])
+ f(y[n-11,tln-11))
y[n] = inexact_newton(solve_func,y[n-11)
return t, y

On our test where the solution is e/, we can see the benefit of having a second-order
method:

17.3. CRANK-NICOLSON (TRAPEZOID RULE) 309

1o Solution with At = I. 05 025 0.125 0.0625 0.03125]
09 o—eo At=10
M *—* At=05
081 A4 At=025
o7l o @ At=0.125
- - At =0.0625
__06F At =0.03125
= 051l Exact Solution
041
03t
021
0.1 :
0.0 0.5 1.0 1.5 2.0
t
101 Slope of Error is 2.00466018269
102 L

Norm of Error
=)
o

104 |

10-5 L)
10-2 10-! 100

At

We do get the expected second-order convergence of the error as evidenced by the error
plot. In the comparison of the solutions, except for the large value of Az, it is hard to distin-
guish the approximate and the exact solutions.

In terms of stability, Crank—Nicolson is a mixed bag. The method will not diverge as Ar —
0o, but it can oscillate around the correct solution:

Solution with At = 4

®—@ Numerical solution

— Exact Solution

y(®)

15 20

310 17. INITIAL VALUE PROBLEMS

Notice that the oscillation makes the numerical solution negative. This is the case even
though the exact solution, e, cannot be negative.

17.3.1 Comparison of the Methods

We will compare the methods on a problem that has a driving term as well as decay:

fom o 1
Y= <t+ 2 1> y(1), y(0) = 5 (17.6)

The purpose of this exercise is to show that the issues of accuracy are even more important
when the solution is not a simple exponential.
The solution to this problem is

— 1 -t
y(l)—<l+§)€ .

We will start with a small value of At:

07 Solution with At = 0.1

—— Exact Solution

0.6 — Forward Euler
Backward Euler

05 \&4 ----- Crank-Nicolson

0.4

y(®

0.3

0.2

0.1

The two Euler methods are equally inaccurate, they just differ in how they are wrong
(above or below). Crank-Nicolson does a good job of following the solution, and is indis-
cernible from the exact solution.

With a bigger time step we can see the warts of the methods that we have presented:

17.4. STABILITY 311

Solution with At = |

= Exact Solution

— Forward Euler
Backward Euler

----- Crank-Nicolson

y(®

0.0
0

In these results we see that for a large time step, forward Euler completely overshoots the
initial growth, backward Euler just starts decaying, and Crank—-Nicolson starts off too high
before beginning to decay. It appears that even Crank-Nicolson is not accurate enough for
this problem with this large step.

17.4 STABILITY

There is a formal definition of stability for a numerical method for integrating ODEs. To
get to this definition, consider the ODE

Y1) = —ay(1). (17.7)
For any single-step method we can write
yn+1 — gyn.

A solution method is said to be stable if |g| < 1. Furthermore, a solution is said to be non-
oscillatory if 0 < g < 1. The quantity g is often called the growth rate.
We first look at forward Euler on this ODE:

Y =y —a Ay = (1 —aAn)y",
this implies that the growth rate for forward Euler is
gre=1—aAr.

To make sure that |g| < 1 we need to have aAr < 2. To be non-oscillatory we need oAt < 1.
This is why when we solved

Y () =—y(t)

with At =2.5, the solution grew in an unstable manner. Because there is a restriction on the
time step for stability, we call the forward Euler method conditionally stable.

312 17. INITIAL VALUE PROBLEMS

BOX 17.3 NUMERICAL PRINCIPLE

There are several types of stability that ® A method is conditionally stable if the

are important. These are usually discussed in growth rate has a magnitude greater than 1
how the update for the ODE, y' (1) = —ay (1), for certain positive values of the time step
is given. For any single-step method we can size.

write the update for this problem as ® A method is unconditionally stable if the

growth rate has a magnitude smaller than

n+l_ o .on or equal to 1 for all positive values of the
oo time step size.
¢ A method is non-oscillatory if the growth
Here g is the growth rate. rate is between 0 and 1.

The value of the growth rate for backward Euler can be easily derived. We start with
yn+1 — yn _ O{AlynJrl

which when rearranged is

n

o S
14+ aAt
This makes
1
8BE = 14+aAt’

For any At > 0, g will be between 0 and 1. Therefore, backward Euler is unconditionally
stable and unconditionally non-oscillatory.
The Crank—Nicolson method has

2 —aAt

SCN = 24+ aAt’

This method will be unconditionally stable because
li =-1
Azlinoo §eN

It is conditionally non-oscillatory because gcn < 0 for « Ar > 2. In the original example, we
had a Ar =4, and we saw noticeable oscillations.

In the contrast between the implicit methods, Crank-Nicolson and backward Euler, we
see a common theme in numerical methods: to get better accuracy one often has to sacrifice
robustness. In this case Crank—Nicolson allows oscillations in the solution, but its error de-
creases at second-order in the time step size. Backward Euler is non-oscillatory, but the error
converges more slowly than Crank—Nicolson.

17.5. FOURTH-ORDER RUNGE-KUTTA METHOD 313

17.5 FOURTH-ORDER RUNGE-KUTTA METHOD

There is one more method that we need to consider at this point. It is an explicit method
called a Runge-Kutta method. The particular one we will learn is fourth-order accurate in
At. That means that if we decrease At by a factor of 2, the error will decrease by a factor of
2% = 16. The method can be written as

1
y =y 4 ¢ (AY1+28y) +24y3 + Ayy), (17.8)
where

Ay = Atf (", "),

A At
Ayr = Atf (y” + l,tn + —),

2 2
A At
Ay3 = Atf (y” + % "+ 7) ,

Ays=Atf (y" + Ay, t" + At).

To get fourth-order accuracy, this method takes a different approach to integrating the right-
hand side of the ODE. Basically, it makes several projections forward and combines them in
such a way that the errors cancel to make the method fourth-order.

Implementing this method is not difficult either.

In [5]: def RK4(f,y0,Delta_t,numsteps):
"""Perform numsteps of the 4th-order Runge-Kutta
method starting at y0 of the ODE y’(t) = f(y,t)
Args:
f: function to integrate takes arguments y,t
y0: initial condition
Delta_t: time step size
numsteps: number of time steps

Returns:
a numpy array of the times and a numpy
array of the solution at those times
numsteps = int(numsteps)
y = np.zeros(numsteps+1)
t = np.arange(numsteps+1l)*Delta_t
y[0] = yO
for n in range(l,numsteps+1):
dyl = Delta_t = f(y[n-1], tln-11)
dy2 = Delta_t = f(y[n-1] + 0.5%dyl, tln-1] + 0.5%xDelta_t)
dy3 = Delta_t = f(y[n-1] + 0.5%dy2, tIn-1] + 0.5*Delta_t)
dy4 = Delta_t = f(y[n-1] + dy3, tln-1] + Delta_t)
y[n] = y[n-1]1 + 1.0/6.0%x(dyl + 2.0xdy2 + 2.0xdy3 + dy4)
return t, y

314

17. INITIAL VALUE PROBLEMS

We will first try this Runge-Kutta method on the problem with growth and decay given in
Eq. (17.6) with a large time step.

Solution with At = 0.5

0.7
—— Exact Solution
0.6 RK-4
4 Crank-Nicolson
05F
0.4
<

0.3
0.2
0.1
0‘0 L L L L |

0 | 2 3 4 5

It seems to do better that Crank-Nicolson with a large time step, but since it is an explicit
method, there are limits: with a large enough time step the solution will oscillate and can be
unstable.

2. Solution with At = 4

y(®

-60 |

-80l
— Exact Solution

-100

-120

RK-4

Crank-Nicolson

5 10 15 20

Therefore, we need to be careful when we use the RK-4 method that the time step is not

too large.

17.5.1 Stability for RK4

For the fourth-order Runge-Kutta method presented above, we can look at the stability
by examining how it performs on the problem y’(r) = —ay. On this problem the intermediate

values are

Ay; = —aAty",

17.6. SYSTEMS OF DIFFERENTIAL EQUATIONS 315

A
Ay) = —aAt <y” + %)

a At
——aAt(l——
A
Ays —ozAt(y”—l—%)
At At
—aar (1220 (1220)y,
2 2

Ays=—aAt (y" + Ays)

a At a At
=—aAt|{l—aAt|{]l——(1— — y".
2 2

Using these results in the update for y"*! in Eq. (17.8) gives

=

N 3A43 2042
ntl a” At a’ At a“At "
(24 6 T2 _estrlp
This implies that the growth rate for RK4 is
4Aph 3AE 282
a”At a’ At a”At
8RK4 = - + —aAt+1. (17.9)

24 6 2

This is a fourth-degree polynomial in e Ar. For a Ar > 0 the value of grks is positive. Addi-
tionally, the stability limit is

1 2 3
aAt <= [4—10) —=—— +2%2/3,/43 + 929 | ~ 2.78529356.
3 (\ 43 +9v29

This implies that RK4 is conditionally stable, and is non-oscillatory where it is stable. The sta-
bility criterion is less restrictive for RK4 than for forward Euler, and where Crank-Nicolson
is non-oscillatory, RK4 will be as well.

17.6 SYSTEMS OF DIFFERENTIAL EQUATIONS

Often we will be concerned with solving a system of ODEs rather than a single ODE.
The explicit methods translate to this scenario directly. However, we will restrict ourselves to
systems that can be written in the form

y' (1) = Ay + (1), y(0) =

In this equation A(r) is a matrix that can change over time, and ¢(¢) is a function of ¢ only. For
systems of this type our methods are written as follows:

316 17. INITIAL VALUE PROBLEMS

e Forward Euler
Yy =y 4+ AtAG@™M)Y" + Arc(t™).
e Backward Euler
Y =y ArAEHy™ 4 Are(),

which rearranges to
(1 - AtA(t”'H)) Yy =y + Arc™th).

Therefore, for backward Euler we will have to solve a linear system of equations at each
time step.
¢ Crank-Nicolson

At At At
(1 . 7A(r”“)) yH = <I + 7A(t")) Y+ (et + c(t")) .

This will also involve a linear solve at each step.
¢ Fourth-order Runge—Kutta

1
y il =y" + ‘ (Ay1 +2Ay, +2Ay3 + Ays),
Ayr = AtA(t")y" +c(t"),

At A At
Ayr = AtA (t” + 7) (y" + %) + Atc(t” + 7)

At A At
Ay; = AtA (t” + 7) <y" + %) + Atc(r” + 7)

Ays=AtA (1" + A1) (" + Ay3) + Ate(t” + Ar).

As noted above, the implicit methods require the solution of a linear system at each time step,
while the explicit methods do not.
We first define a function for solving forward Euler on a system.

In [6]: def forward_euler_system(Afunc,c,y0,Delta_t,numsteps):
"""Perform numsteps of the backward euler method starting at y0
of the ODE y’(t) = A(t) y(t) + c(t)
Args:
Afunc: function to compute A matrix
c: nonlinear function of time
Delta_t: time step size
numsteps: number of time steps

Returns:
a numpy array of the times and a numpy
array of the solution at those times
numsteps = int(numsteps)
unknowns = y0.size

17.6. SYSTEMS OF DIFFERENTIAL EQUATIONS 317

y = np.zeros((unknowns,numsteps+1))
t = np.arange(numsteps+l)*Delta_t
y[0:unknowns,0] = y0
for n in range(l,numsteps+1):
yold = y[O:unknowns,n-11]
A = Afunc(t[n-11)
y[O0:unknowns,n] = yold + Delta_t * (np.dot(A,yold) + c(tln-11))
return t, y

As a test we will solve the ODE:

Yy ==y»., yO0=1y(0)=0.
At first blush this does not seem compatible with our method for solving a system of equa-

tions. Moreover, we have not covered how to solve ODEs with derivatives other than first
derivatives. Nevertheless, we can write this as a system using the definition

u(t) =y (),

i (0)=0) 0)

We will set this up in Python and solve it with forward Euler. The solution is y(¢) = cos(t).

to get

In [7]1: #Set up A
Afunc = lambda t: np.array([(0,-1),(1,0)1)
#set up ¢
¢ = lambda t: np.zeros(2)
ftset up y
y0 = np.array([0,11)
Delta_t = 0.1
t_final = 8xnp.pi
t,y = forward_euler_system(Afunc,c,y0,Delta_t,t_final/Delta_t)

Solution with At = 0.1

— = Numerical solution

— Exact Solution I

y(®

318 17. INITIAL VALUE PROBLEMS

The error grows over time. What’s happening here is that the numerical error builds over
time and this causes the magnitude to grow over time. Using a smaller value of A can help,
but not completely remove the problem.

Solution with At = 0.01

Numerical solution
— Exact Solution

60 80 100

We have really just delayed the inevitable: the growth of the magnitude of the solution is
increasing.

To understand what is going on we will look a phase field plot for this ODE. The phase
field plot for this system tells us the direction of the derivatives of y and u given a value for
each. Using the phase field and a starting point, we can follow the arrows to see how the true
solution behaves. In the following phase figure, the solid black line shows the behavior of the
solution when y(0) =1 and u(¢) = y'(0) = 0. The solution starts at the solid circle and goes
around twice in the time plotted (1 = 0 to 4x).

Forward Euler

-2 -1 0 | 2

The solution looks like a circle in the phase field because of the repeating periodic nature
of the solution. However, the forward Euler solution has errors that grow over time, so that
each time around, the circle grows larger.

The backward Euler method is implemented next. To solve the linear system we will use a
Gaussian elimination function that we defined previously.

17.6. SYSTEMS OF DIFFERENTIAL EQUATIONS 319

In [8]: def backward_euler_system(Afunc,c,y0,Delta_t,numsteps):
"""Perform numsteps of the backward euler method starting at y0
of the ODE y’(t) = A(t) y(t) + c(t)
Args:
Afunc: function to compute A matrix
c: nonlinear function of time
y0: initial condition
Delta_t: time step size
numsteps: number of time steps

Returns:
a numpy array of the times and a numpy
array of the solution at those times
numsteps = int(numsteps)
unknowns = y0.size
y = np.zeros((unknowns,numsteps+1))
t = np.arange(numsteps+1l)*Delta_t
y[0:unknowns,0] = y0
for n in range(l,numsteps+1):
yold = y[0:unknowns,n-1]
A = Afunc(tl[nl)
LHS = np.identity(unknowns) - Delta_t * A
RHS = yold + c(t[n])*Delta_t
y[O0:unknowns,n] = GaussETimPivotSolve(LHS,RHS)
return t, y

Results with Ar = 0.1 show that error builds over time, but in a different way than forward
Euler.

Solution with At = 0.1

Numerical solution
Exact Solution

30 35 40

Now the numerical error builds over time, but the error causes the solution to damp out
over time. As before, decreasing At only delays the onset of the error.

The phase field plot shows that instead of the path growing, backward Euler’s path spirals
down to zero.

320

17. INITIAL VALUE PROBLEMS

Exact
Forward Euler

——- Backward Euler

2

Larger time steps make the solution decay to zero faster. If we take a small time step, the
decay is slower but still occurs.

1.0

0.5

Solution with At = 0.01

— = Numerical solution
— Exact Solution

10 15 20 25

30 35 40

The takeaway here is that first-order accurate methods have errors that build over time.
Forward Euler the errors cause the solution to grow, whereas, Backward Euler has the solu-

tion damp to zero over time.

17.6.1 Stability for Systems

For a system of initial value problems, the stability condition is derived by looking at the

problem

y =—Ay.

If we multiply both sides of the equation by a left-eigenvector of A, 1 with associated eigen-

vector o we get

where uy =1; - y.

/
W, = — Uy,

(17.10)

17.6. SYSTEMS OF DIFFERENTIAL EQUATIONS 321

Notice that each row of Eq. (17.10) is identical to the model equation we had for stability
for single initial value problems in Eq. (17.7). Therefore, we can replace the « in our equations
for the growth rate g by the eigenvalues of the matrix A. Then we can determine under what
conditions |g| <1 to find a range of stability.

In the example above where

0 -1
=)

the eigenvalues are +i. Using the growth rate for forward Euler, we get grg = 1 i Az, which
implies

lgrel = vV 1 + Ar%.

This result means that for any At, forward Euler will not be stable because any positive At
makes |gpg| > 1. This is what we saw in the example. Backward Euler, however, is stable
because

1

|gBE| = —/——=,
V14 Ar?

which is less than one for any positive At.

17.6.2 Crank—Nicolson for Systems

Now we will look at Crank-Nicolson to see how it behaves. A Python implementation of
Crank—Nicolson is given next:

In [9]: def cn_system(Afunc,c,y0,Delta_t,numsteps):
"""Perform numsteps of the Crank--Nicolson method starting at y0
of the ODE y’(t) = A(t) y(t) + c(t)
Args:
Afunc: function to compute A matrix
c: nonlinear function of time
y0: initial condition
Delta_t: time step size
numsteps: number of time steps

Returns:
a numpy array of the times and a numpy
array of the solution at those times
numsteps = int(numsteps)
unknowns = y0.size
y = np.zeros((unknowns,numsteps+1))
t = np.arange(numsteps+1l)*Delta_t
y[O:unknowns,0] = y0
for n in range(l,numsteps+1):
yold = y[O:unknowns,n-11]
A = Afunc(tlnl)
LHS = np.identity(unknowns) - 0.5xDelta_t * A
A = Afunc(tl[n-11)

322 17. INITIAL VALUE PROBLEMS

RHS = yold +
0.5*Delta_t = np.dot(A,yold) + 0.5*(c(tln-11) +
c(tlnl))*Delta_t

y[0:unknowns,n] = GaussElimPivotSolve(LHS,RHS)

return t, y

On our test problem Crank-Nicolson solution does not display the significant error that
the first-order methods did.

Solution with At = 0.1

- Numerical solution

— Exact Solution

25 30 35 40

The error build up is not nearly as large of a problem. Even if we look at the solution over
a much longer time, the error is not significant:

Solution with At = 0.1

1.0}

0.5
= - = Numerical solution
T 00H .

—-— Exact Solution
_05 L
-1.0}
0 20 40 60 80 100 120

The phase field plot demonstrates that the accuracy of Crank-Nicolson allows it to not
have any strange behavior in the phase field. The numerical solution appears as a circle in the

phase field:

17.6. SYSTEMS OF DIFFERENTIAL EQUATIONS 323

Exact

Forward Euler
—- Backward Euler
----- Crank-Nicolson

-2 =1 0 | 2

One can show that for this problem, Crank-Nicolson is unconditionally stable because
lgcn| =1 for any At. This also explains why the solution did not damp or grow over time.

17.6.3 RK4 for Systems

Finally, we generalize our implementation of fourth-order Runge-Kutta to handle systems
of equations.

In [10]: def RK4_system(Afunc,c,y0,Delta_t,numsteps):
"""Perform numsteps of the 4th-order Runge--Kutta method starting at y0
of the ODE y’(t) = f(y,t)
Args:
f: function to integrate takes arguments y,t
y0: initial condition
Delta_t: time step size
numsteps: number of time steps

Returns:
a numpy array of the times and a numpy
array of the solution at those times
numsteps = int(numsteps)
unknowns = y0.size
y = np.zeros((unknowns,numsteps+1))
t = np.arange(numsteps+l)*Delta_t
y[0:unknowns,0] = y0
for n in range(l,numsteps+1):
yold = y[0:unknowns,n-11]
A = Afunc(t[n-11)
dyl = Delta_t = (np.dot(A,yold) + c(t[n-11))
A = Afunc(t[n-1] + 0.5%Delta_t)
dy2 = Delta_t x (np.dot(A,y[O:unknowns,n-1] + 0.5%dyl)
+ c(tln-1] + 0.5%Delta_t))
dy3 = Delta_t x (np.dot(A,y[O:unknowns,n-1] + 0.5%dy?2)
+ c(tln-1] + 0.5«Delta_t))
A = Afunc(t[n] + Delta_t)

324 17. INITIAL VALUE PROBLEMS

dy4 = Delta_t = (np.dot(A,y[0:unknowns,n-11 + dy3) + c(tlnl))
y[0:unknowns,n] = y[O:unknowns,n-11 +
1.0/6.0*(dyl + 2.0xdy2 + 2.0xdy3 + dy4)
return t, y

Like Crank-Nicolson, RK4 does not display noticeable error on our test problem.

Solution with At = 0.1
1.0

0.5

-0.5

— - Numerical solution
— Exact Solution

0 5 10 15 20 25 30 35 40

On this simple problem, RK4 appears to be as good as Crank-Nicolson. The stability limit
for RK4 can be derived by replacing o with +i in Eq. (17.9). The result is that At < 2.78529356
will give a stable, if inaccurate, solution.

17.7 POINT-REACTOR KINETICS EQUATIONS

The simplest model to describe the behavior of the power in a nuclear reactor are the
point-reactor kinetics equations (PRKEs) with one delayed neutron precursor group. This is
an important model for the time-dependent behavior of nuclear reactors, and other nuclear
systems. See the further reading section below for suggestions on background references for
this model.

The PRKEs are a system of two ODEs:

P = #m FAC().

c'(t)= %p(t) —XC(2).

Here p is the number of free neutrons in the reactor, p is the reactivity

k=1
p="—
for k the effective multiplication factor, g is the fraction of neutrons produced by fission that

are delayed, A is the mean time between neutron generations in the reactor, A is the mean

17.7. POINT-REACTOR KINETICS EQUATIONS 325

number of delayed neutrons produced per unit time, and C is the number of delayed neutron
precursors (nuclides that will emit a neutron).
In our notation

y() = (p(), C(1))',

L.
wo=(7)

c(t) =0.

NS

and

Recall that at steady-state, (i.e. p’(r) = C’(r) = 0), to have a non-trivial solution p =0, i.e.,
the solution is critical. In this case, the solution to this system is

P=?-

We will need to know this for some of our test cases.
Also, some typical values for the constants are 8 =750 x 107>, A =2x 10735, A =10"! s~

17.7.1 Rod-Drop

Now we simulate the situation where we have a large amount of negative reactivity (a dol-
lar ($) is a reactivity unit, where one dollar of reactivity is equal to the value of 8 for the
system) inserted into a critical reactor, p = —2% = —28. This is the scenario that occurs when
a control is rapidly inserted into the reactor. The tricky part here is setting up the function for
A(r). We will start with RK4.

In [32]: #Set up A
pbeta = 705.0e-5
Lambda = 2.0e-5 fs
1 =1.0e-1 ffs#*-1
rho = -2.0xbeta
Afunc = lambda t: np.array([((rho-beta)/Lambda,l),
(beta/Lambda,-1)1)
ffset up ¢
c = lambda t: np.zeros(2)
ffset up inital vector
y0 = np.array([1,beta/(1xLambda)])
Delta_t = 0.001 #I1 millisecond
t_final =5
t,y = RK4_system(Afunc,c,y0,Delta_t,t_final/Delta_t)

326 17. INITIAL VALUE PROBLEMS

Solution with At = 0.001

-~ — power
09 = - - - precursors
0.8} T-=
0.7} =

0.6}

y(®)/y0

05}
04}

03

0.2 L . . . |
0

We look at the results on a semilog scale so we can see the prompt jump: the rapid decrease
in the neutron population after the control rod is inserted.

Solution with At = 0.001

— power S~
091 >
— - precursors N

08} A
07}

0.6

y(®

0.5}

041

10-3 10-2 10-! 100 10!

Notice that our time step is smaller than the prompt jump (as can be seen on the semilog
scale). With a larger time step, RK4 has problems. In fact with a time step of Ar =0.01 s, the
power is 103%% at 12 s. It seems that this time step is beyond the stability limit for RK4. This
can be checked by evaluating the eigenvalues of the A matrix for this problem and using the
formula for grxs. The stability limit is Az < 0.00247574 s.

Using backward Euler, we can take this larger time step safely:

17.7. POINT-REACTOR KINETICS EQUATIONS 327

Solution with At = 0.01

10-2 10-1 100 10!

Yes, backward Euler works with this time step size, where RK4 could not. It is here that we
see the benefit of implicit methods: with backward Euler we need 10 times fewer time steps
to get the solution. The price of this was that we had to solve a linear system at each step.

17.7.2 Linear Reactivity Ramp

In this case we will insert positive reactivity linearly, this could be done by slowly remov-
ing a control rod, and see what happens. We will have a linear ramp between p = 0 and
p =0.5% over 1 second.

In [331: #freactivity function
rho = Tambda t: (t<1)*betax0.5*t + betax0.5%x(t>=1)

0.5

o
i

o
w

Reactivity $

o
o

0.0 05 1.0 1.5 2.0
t(s)

The solution with backward Euler demonstrates two different growth rates: one corre-
sponding to the ramp, and another once the reactivity stops increasing.

328 17. INITIAL VALUE PROBLEMS

Solution with A¢ = 0.001

35,
— power
— ~ precursors
3.0
c 25}
9
5
)
20k
1.5} R
1.0 o= . . .
0 | 2 3 4 5

To make the scenario more complicated we will now look at a positive reactivity ramp that
is then has the control rod completely re-inserted at r = 1, and then instantly brought back to
critical at t = 2. The reactivity for this scenario looks like

0.5~

-0.5}

|
=)
T

Reactivity $

-2.0 n L L I
0

t(s)
We will compare backward Euler and RK4 on this problem with the same time step.

Solution with At = 0.001

25+
— power RK4
— - precursors RK4
2.0
¢ * power BE
precursors BE
c 1.5
k)
5
°
210 e
0.5}
0.0 ! ! ! ! |
0 | 2 3 4 5

CODA 329

The prompt jump is a wild phenomenon: the solution changes very rapidly during it and
the methods still keep up with a small enough time step. In this example, we cannot see on
the graph a difference between the solutions. Additionally, the precursors change very slowly
over the entire simulation.

CODA

We have discussed 4 classical techniques for integrating initial value problems: forward
and backward Euler, Crank-Nicolson, and fourth-order Runge Kutta. Through these meth-
ods we discussed the issues of order of accuracy, stability, oscillatory solutions, and the
building of error.

Initial value problems are only the first of the type of ODEs that we can solve using the
techniques we have covered up to this point. To solve initial value problems we appealed to
methods of doing numerical integration. In the next chapter we will solve boundary value
problems and use the techniques to evaluate derivatives numerically we discussed previ-
ously.

FURTHER READING

Although we have covered the majority of methods used in practice for the solution of
initial value problems, there are some modifications that are made to the implementation
that makes these methods more powerful. For example, adaptive Runge-Kutta methods take
time steps that are smaller when the solution changes rapidly, and larger when the solution
is slowly varying. Also there are other methods that we did not cover, including the back-
ward differentiation formulas, known as BDF formulas. The BDF-2 method is a second-order
implicit method, but it is less oscillatory than Crank-Nicolson.

For background on the PRKEs, see the reactor physics texts previously mentioned by Lewis
[7] and Stacey [10]. There has been much work on developing the best numerical methods for
the PRKEs. The recent method developed by Ganapol may be the most effective [21].

PROBLEMS

Short Exercises

Using the five methods we have presented in this chapter to compute the solution to the
following problems using the step sizes At =0.5,0.1,0.05,0.01. Give an explanation for the
behavior of each solution.

17.1. y'(t) = — [y(t)]2 for ¢ € [1, 10], and y(1) = 0.5. The solution to this problem is y(r) =
1/(t + 1). Hint: You can make the substitution { =t — 1 and reformulate the initial condition
in terms of f = 0.

330 17. INITIAL VALUE PROBLEMS

17.2. y'(r) =sin(¢)/t for t € [0, 10], and y(0) = 0. The solution to this problem is y(¢) = Si(¢),
where Si(z) is the Sine integral function.

17.3. y"(t) = (t —20)y for ¢ € [0, 24] and y(0) = —0.176406127078, and y’(0) = 0.892862856736.
The true solution to this problem is y(z) = Ai(t — 20), where Ai(¢) is the Airy function.

Programming Projects

1. Point Reactor Kinetics

Assume one group of delayed neutrons and an initially critical reactor with no extraneous
source. The point reactor kinetics equations under these assumptions are:

dP p—p

—=—P+AC,
dt A +
dcC
— = EP —AC,
dt A

with initial conditions: P(0) = Py and C(0) = Cop = %. Other useful values are g =750 pcm,
A=2x107s,2=10""s"".

At time r = 0 a control rod is instantaneously withdrawn and the inserted reactivity is p =
50 pcm =50 x 1073. Write a Python code to solve the PRKEs. Do not assume that reactivity
is a constant, rather allow it to be a function of ¢ so that you can do a ramp or sinusoidal
reactivity.

Your code will utilize the following methods:

¢ Forward Euler

¢ Backward Euler

¢ Fourth-order Runge Kutta
¢ Crank-Nicolson.

For each method provide plots for t =0...5 is using Ar ={1, 3, 5, 6 } ms.

® One plot with all the methods per time step size
® One plot with all time step sizes per method.

Make the axes reasonable—if a method diverges do not have the scale go to +oo.

Comment your results and explain their behavior using what you know about the accu-
racy and stability of the methods, including their stability limits. The explanation should
include justifications for convergence/divergence or the presence of oscillations. To answer
these questions you should look at the analytical solutions of the equations.

REACTIVITY RAMP
A positive reactivity ramp is inserted as follows:

p(t) = min(pmax?, Pmax)-

Pick a method and a time step size of your choice. Solve this problem for pmax = 0.58 and
Pmax = 1.18. Explain your choice and your findings.

PROBLEMS 331

SINUSOIDAL REACTIVITY
Try

p(1) = po sin(wt).

See if the reactor remains stable for any amplitude py and/or frequency w.

2, Iodine Ingestion

The diagram below shows the metabolic compartment model for the uptake of iodine in
the thyroid gland of an adult human. The goal is to calculate the fraction of the total ingested
activity present in the blood (compartment 2) and the thyroid gland (compartment 3) as a
function of time for an ingestion, at time 0, of 1 Bq of 13!1 (half-life of 8.04 days). In the diagram
below 1,1 represents the biological transfer into compartment 2 from compartment 1. All A’s
are expressed in days ™.

132 =0.8318

Azy = 0.05199 sz = 0.008664

Aes = 0.00578

* Write down the physical equations governing the conservation of iodine in each of the
following compartments: stomach, blood, thyroid, and body. This will form a system of
coupled ODEs. Remember that the substance is removed from a compartment by both
radioactive decay and transfer between biological compartments.

* Why is it enough to look at the conservation of iodine in stomach, blood, thyroid, and body
to get the answer?

* Your system of ODEs should have the following form:

Y =AY + B@t),

where B(t) represents the external source terms in your conservation laws. Only the com-
ponent corresponding to the stomach of B is nonzero. This component is the following

332 17. INITIAL VALUE PROBLEMS

function:
ht) = 1 1ft—0' ‘
0 otherwise
In practice you will let & be equal to 1/At in the first time step so that foAt h(t)dr = 1. After
that i will always be zero.
¢ Write a code to solve this system of ODEs. The function B should be a function of ¢ in your
code. Your code will utilize the following methods:
* Forward Euler
* Backward Euler
* Fourth-order Runge-Kutta
* Crank-Nicolson.
For each method provide plots for t =0. .. 1 day using the following step sizes:
* 0.5/24hr

e 1/24hr
e 14/24hr
e 2/24 hr.

Note: all A’s are in days~! so be careful about how you express At in your code.

* One plot with all the methods per time step size

* One plot with all time step sizes per method.

Make the axes reasonable—if a method diverges don’t have the scale go to £oo.
Comment your results and explain their behavior using what you know about the accu-
racy and stability of the methods, including their stability limits. The explanation should
include justifications for convergence/divergence or the presence of oscillations. To answer
these questions you should look at the analytical solutions of the equations.

CHAPTER

18

One-Group Diffusion Equation

OUTLINE

18.1 Discretizing the Steady-State 18.2 Python Code for the Diffusion
Diffusion Equation 335 Equation 340
18.1.1 The Diffusion Operator in 18.3 A Test Problem for Each Geometry 343

Different Geometries 336 18.3.1 Reed’s Problem 345
18.1.2 Interface Diffusion Coda 348
Coefficient 338 Problems 348
18.1.3 Boundary Conditions 338 Programming Projects 348
18.1.3.1 Types of 1. Code Testing 348
Boundary 2. Time-Dependent,
Conditions on Super-Critical
the Outer Surface 339 Excursion 349
18.1.3.2 Reflecting 3. Shielding Problem 350
Boundary

Condition at r =0 340

There is no real direction here, neither lines of power nor cooperation.

—-Thomas Pynchon, Gravity’s Rainbow

CHAPTER POINTS

e Boundary value problems specify the value e Time-dependent problems can be written
of the solution to the differential equations as the solution to a succession of modified
at multiple points. steady state problems.

e We develop a method for solving the
diffusion equation for neutrons in slab,
spherical, and cylindrical geometries.

In this lecture we will solve the one-dimensional (1-D), one-group neutron diffusion equation.
This is an example of a boundary-value problem. A boundary value problem is a differential

Computational Nuclear Engineering and Radiological Science Using Python
DOI: 10.1016/B978-0-12-812253-2.00020-0 333 Copyright © 2018 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-812253-2.00020-0

334 18. ONE-GROUP DIFFUSION EQUATION

equation or a system of differential equations that specifies the value of the solution or its
derivatives at more than one point.

In the previous chapter we dealt with initial value problems where the conditions for the
solution were prescribed at a single point that we called r = 0. In boundary value problems
we specify the solution at multiple points as we shall see. This means we cannot start at
one point and move the solution in a particular direction. Rather, we must solve a system of
equations to find the solution that satisfies the boundary values.

The general neutron diffusion equation for the scalar flux of neutrons, ¢ (r, 1), is given by

%% —V-D@)Vo(r,1) + Xa(r)gp(r,1) =vZe(r)p(r, 1) + Q(r,1).

Our notation is standard: v is the neutron speed, D(r) is the diffusion coefficient, ¥, is the
macroscopic absorption cross-section, X'y is the macroscopic fission cross section, v is the
number of neutrons per fission, and Q(r, t) is a prescribed source. The boundary conditions
we will consider for this equation are generic conditions,

A(V)¢(V,t)+8(r)fi—(f:C(r) forredVv.

The initial condition is
$(r.0) =" ().
We can eliminate the time variable from this equation by integrating over a time step from
" =nAtto "t =+ DAr:
1 el
~(¢ ' —¢"0) - f dt [V - DIV (1) + Sa(r)g(r,)]
tn

ln-H

:/ dt [vXi(r)o(r,t) + O(r,)], (18.1)
t

n

where ¢" (r) = ¢ (r, nAY).
Using the backward Euler approach to the integrals (that is the right-hand rectangle rule)
we get

1
— (¢) = 9" (1) = V- DOV 1) +)" () = v B8 (1) + Q" ().

The next step is to define a new absorption cross-section and source as

* L n+1,% _ n+l L n
g =2+~ QT (=07 () + = dn ().

With these definitions we get the following equation

—V-D()V" T () + ZE(r)" T () = v ()" () + 0T ().

18.1. DISCRETIZING THE STEADY-STATE DIFFUSION EQUATION

This is a steady-state diffusion equation for the scalar flux at time n + 1. Therefore, we can

335
focus our efforts on solving steady-state problems, knowing that to solve time-dependent
equations, we just have to redefine the source and absorption cross-sections appropriately.

18.1 DISCRETIZING THE STEADY-STATE DIFFUSION EQUATION

We begin with the steady-state diffusion equation with a reflecting boundary condition at
r =0 and a general boundary condition at » = R:

—V-D(r)Ve(r) + Xa(r)¢(r) =v2e(r)p(r) + Q(r),

d
@l o,
dr r=0
d¢
AR)P(R) +B(R) — =C(R).
dr r=R

We seek to solve this numerically on a grid of spatial cells
r=0 r=Ar r=2Ar r=iAr r=@G+1DAr r=(@G@+2Ar r=—-1Ar r=1IAr

[: — - - f— : — - - f— !

cell 0 cell 1 celli —1 cell i cell 1 —1
In our notation there will be I cells and I + 1 edges. The cell centers are given by
. Ar
ri =iAr + —,

i=0,1,....,1 -1,
and the left and right edges are given by the formulas

ri—12 =LA, riv12 = (i + 1D Ar,
and /.

i=0,1,....,71—1

We can construct a Python function that creates the cell edges and cell centers given R
In [1]: def create_grid(R,I):

"""Create the cell edges and centers for a
domain of size R and I cells
Args:
R: size of domain
I: number of cells
Returns:
Delta_r: the width of each cell
centers:

the cell centers of the grid
edges: the cell edges of the grid

336 18. ONE-GROUP DIFFUSION EQUATION

Delta_r = float(R)/1

centers = np.arange(l)*Delta_r + 0.5xDelta_r
edges = np.arange(I+1)xDelta_r

return Delta_r, centers, edges

Our problem will be set up such that inside each cell the material properties are constant
so that inside cell i,

D(r)y=D;, X(r)=2Xa;, Xi(r)=2X;, 0O@F)=0;, reri—1/2,tit1/2)-

18.1.1 The Diffusion Operator in Different Geometries
The definition of V - D(r)V in several geometries is given below:
4IDr4L 1-D Slab

VD)V = mgr’ D) g 1-DSphere
14 rp@ryL 1-D Cylinder

Also, the differential volume element in each geometry is
dr 1-D Slab

dV = {4mr’dr 1-D Sphere
2rrdr 1-D Cylinder

We define ¢; as the average value of the scalar flux in cell i. This quantity is given by
1 [li+12
b=y [aveo.
ri—1/2

where V; is the cell volume

Ar 1-D Slab
Vi = %n(er/z — rl.3_1/2) 1-D Sphere
JT(ri2+l/2 — rl.2_1/2) 1-D Cylinder

To develop the discrete equations we will integrate the diffusion equation term by term.
We first integrate the absorption term in the diffusion equation over cell i and divide by V;,

1 Tig1/2 XYai Tit1/2
v [av mmem == [av o) = s
Vi ric1)2 i Jricip

The fission term is handled in a similar manner
1 [ri+12

v dVvIir)¢(r) =vE ;.
i Jric1

18.1. DISCRETIZING THE STEADY-STATE DIFFUSION EQUATION 337

The source term is similarly straightforward because Q(r) is constant in cell i,

1 [fri+i2

o dv Q(r) = Qi.

Vi Jriy /2
The diffusion term is a bit trickier,

— & [qr er(r)qb(r)dr 1-D Slab

1 [ri+12 Vi Jri-1/2
v dVV -Dr)Ve(r) = “V” :’*l‘/;drw r2D(r)4¢(r) 1-D Sphere
s —2‘,—’[7 rr’J’l'//;dr der(r)drqb(r) 1-D Cylinder

To simplify these we can use the fundamental theorem of calculus to get

—V%. [Di+1/2%¢(h’+1/2) - Di—l/zf—,¢("i—1/2)]

1-D Slab
i _4An . 2 d . _D: 2 4 .
_i rH/deV D)V (r) = ‘Z [Dl+1/2ri+]/2dr¢(rl+l/2) Dz—l/Zri_l/Zdr¢(rl—l/2):|
ViJrisip 1-D Sphere

—ZV—Z.T [Dit12riv1 2L (riv1)2) — Dicijarioip ¢ (ric12)]
1-D Cylinder

(18.2)

Defining the surface area, S;+1,2 at the cell edge for each geometry will allow us to simplify
Eq. (18.2) further:

1 1-D Slab
Six1jp={4mrd, ;2 1-D Sphere
2mri+12 1-D Cylinder

Using this definition in Eq. (18.2) we get

1 d d
dV V- -D(r)Ve(r) = ~v Di+1/2Si+1/2d_r¢(ri+l/2) - Di—1/2Si—1/2E¢(ri—l/2)i|-
l

ri—1/2 L

1 Tit1/2

Vi

The final piece of the derivation is to write the value of the derivative at the cell edge using
the central difference formula. To do this we will have to interpret the cell average scalar flux
as the value of the scalar flux at the cell center:

i X P (ry).
With this definition we can write
d) ¢z+1 b 2
dr¢(h+1/2) A7 + O(Ar?).

338 18. ONE-GROUP DIFFUSION EQUATION

Therefore, the fully discrete diffusion term is

1 Tit1/2 1
_ dV V2¢(r) = v [D,+1/2S,+1/2¢

i ri— 1/2 1

< ¢t —D;_ 1/251 1/2¢ ¢t li|

Putting all of this together gives us the diffusion equation integrated over a cell volume:

Git1 — @i
Ar

1

1 | — Qi1
A |:Di+1/25i+1/2 - Di—l/zSi—l/ijlTr'} + (Zai —vZ)pi=0i. (18.3)

18.1.2 Interface Diffusion Coefficient

We need to define what we mean by D; 1,2 and D;_j,, because the diffusion coefficient
is only constant inside a cell. For these terms will define a diffusion coefficient so that the
neutron current is continuous at a cell face. In particular we define ¢; 1> so that

Qi+1 — Qi+1,2 Piv1 — i ¢1
2Djy —————~==0D;
i+l Ar H2TTA
and
Giv1/2 — bi hit1 — ¢l
oD, 2T p,
Ar i+12— Ar

These two equations state that we want to define D; /> and ¢;41,2 so that the current is the
same if we calculate it from the left or the right. We also get a similar system defining D;_ 5.
Solving these equations for D;; 1/, and D;_1,» we get

2D;Dj+
D; = 18.4
it1/2 Di+ D) (18.4)

This definition for the diffusion coefficient at the interface takes the harmonic mean of the
diffusion coefficient on each side and assures that the neutron current density is continuous
at the interface.

18.1.3 Boundary Conditions

We need to enforce our general boundary condition at » = R, that is

d
AR)S(R) + B(R) d—‘f _C(R).

r=R

To see how this is going to come into the equation, we examine at the equation fori =17 — 1,

o1 — P11
—— — Dy 318/
Ar 1-3/281-3)2

1
- [D11/2511/2 Ar

d1-1— P12
Vi :| + (Zar-1—vZ 1) ¢ = Q1-1.

18.1. DISCRETIZING THE STEADY-STATE DIFFUSION EQUATION 339

Notice that this equation has ¢;, which is the undefined value of the scalar flux outside
the domain. We need to create a value for this parameter that is consistent with the boundary
condition. To do this we will make the following approximations:

1
¢(R)~ §(¢1—1 +é1),

and
do
dr

¢1 ¢11

r=R Ar

Using these in our boundary condition, we get the final equation that we need

A B A B
(5——)@ 1-|—(2 E>¢I:

Here we have dropped the spatial dependence of A, B, and C in the boundary condition.

18.1.3.1 Types of Boundary Conditions on the Outer Surface

Using the general boundary condition, we can enforce a variety of boundary conditions
[22]. A Dirichlet boundary condition of the form

¢(R)=c,

can be enforced by setting A=1, B=0,and C =c.

An albedo boundary condition is used for the case where some fraction of the neutrons
that leave the system are reflected back. If we call this fraction that is reflected o, the albedo
boundary condition can be written as

(1—-a) D d¢

41+)¢('t 20’

where the diffusion coefficient is evaluated at » = R. This boundary condition is obtained by
setting C =0, and

(1 —a) D

T4l +a)’ T2

The reflecting boundary is a special case of the albedo condition with « = 1. For this bound-
ary condition weset A=C=0and B=1.

The final boundary condition that we consider is the partial current boundary condition,
also called a Marshak boundary condition. These allow us to specify the amount of neutrons
that enter the system from the edge, rather than just specifying the scalar flux on the boundary
as in the Dirichlet condition. At R = r the rate at which neutrons enter the domain per unit
area, (i.e., the partial current), is given by

. . . 1 d¢
incoming partial current = 4_1¢(R) + E d_

340 18. ONE-GROUP DIFFUSION EQUATION

Therefore, if we wish to set the incoming partial current into the system at a particular value,
Jin, we set our boundary constants to be

1 D
AZZ’ BZE’ C = Jin.
A vacuum boundary condition can be obtained by setting Ji, =0.

18.1.3.2 Reflecting Boundary Condition at r =0

At the r = 0 boundary we require a reflecting boundary in the curvilinear geometries
(spherical and cylindrical), and we want to specify the same for the slab. A reflecting bound-
ary has

d
545(0) =0.

It turns out that this is automatically enforced in the curvilinear geometries because S_1,» =0,
and the derivative at the inner edge of cell 0 is effectively zero. To enforce this in slab geometry
we just need to force S_;, =0 to make the equation for i =0

_DipSip ¢ —¢o

Vo ~ + (Za0 — vZ¢0) ¢o = Qo.

18.2 PYTHON CODE FOR THE DIFFUSION EQUATION

We have now completely specified the discrete equations for our diffusion problem. This
section will detail how to build the matrices and vectors.
There are I + 1 equations in our system:

1 i1 — bi
7 I:Di+l/2Si+1/2% —Di—128i-1)2

i=0,...,1—-1,

¢ — i1

A } + (Zai —vZ¢;) i = Qi

and

A B A B
<5—E>¢I—1+<E+E>¢I=C~

This is a system of equations to solve, to do this we first define our solution vector and
righthand side

®o Qo
?1 01
=|.1. b=] .

? 4

18.2. PYTHON CODE FOR THE DIFFUSION EQUATION 341

Our system will be written as
A¢ =b.

To define A, we will factor our equations to be

Diy128i+1)2 1
—#fl’iﬂ + AV (Dit1/2Si+1/2+ Di—12Si—12) + Zai —vZ¢; | bi
Di_1p28i-12 .
i Ve S Ve —0,..., 11,
ArV di—1 (0F l

and

A B A B
<§—E)¢11 +<3+E>¢I=C~

From these equations we get that the element of A in row i and column j is

[ﬁ (Di+1/2Si+l/2 + Difl/zsifl/z) + Xai — vEf,,-] i=jandi=0,1,...1 -1

_ﬁDi-i—]/ZSH-]/Z i+l=jandi=0,1,...1 -2

—ﬁDi_l/zsi_l/z i—l=jandi=1,2,...1—1
Aij = (é—%) j=I—1landi=1I '

(é"’%) j=Ilandi=1I

0 otherwise

We will now set up a function that

¢ builds the matrix A,
¢ builds the vector b,
* uses Gauss elimination to solve the system for the scalar fluxes ¢.

The code will call the grid function that we defined before. Additionally, our function will
take as arguments the name of a function that defines each of the material properties.

In [2]: def DiffusionSolver(R,I,D,Sig_a,nuSig_f, Q,BC, geometry):
"""Solve the neutron diffusion equation in a 1-D geometry
using cell-averaged unknowns
Args:
R: size of domain
I: number of cells
D: name of function that returns diffusion coefficient for a given r
Sig_a: name of function that returns Sigma_a for a given r
nuSig_f: name of function that returns nu Sigma_f for a given r
Q: name of function that returns Q for a given r
BC: Boundary Condition at r=R in form [A,B,C]
geometry: shape of problem 0 for slab
1 for cylindrical
2 for spherical

342 18. ONE-GROUP DIFFUSION EQUATION

Returns:
centers: the cell centers of the grid
phi: cell-average value of the scalar flux

wnn

jfcreate the grid
Delta_r, centers, edges = create_grid(R,I)
A = np.zeros((I+1,I+1))
b = np.zeros(I+1)
ffdefine surface areas and volumes
assert((geometry==0) or (geometry == 1) or (geometry == 2))
if (geometry == 0):
#in slab it’s 1 everywhere except at the left edge
S = 0.0xedges+1
S[0] = 0.0 #this will enforce reflecting BC
#in slab its dr
V = 0.0xcenters + Delta_r
elif (geometry == 1):
#in cylinder it is 2 pi r
S = 2.0xnp.pixedges
#in cylinder its pi (r~2 - r~2)
V = np.pix(edges[l:(I+1)Ix=*2
- edges[0:1]xx2)
elif (geometry == 2):
#in sphere it is 4 pi r°2
S = 4.0xnp.pixedges**2
#in sphere its 4/3 pi (r*3 - r*3)
V = 4.0/3.0%np.pix(edges[1l:(I+1)]**3
- edges[0:1]%%3)

f#Set up BC at R
ALT, 1] = (BC[OJx0.5 + BC[1]/Delta_r)
ALI,I-11 = (BCL[OJ*0.5 - BC[1]/Delta_r)

b[I] = BC[2]
r = centers[0]
DPTus =0

#7711 in rest of matrix
for i in range(Il):
r = centers[i]
DMinus = DPTus
DPlus = 2%(D(r)*D(r+Delta_r))/(D(r)+D(r+Delta_r))
ALi,1] = (1.0/(Delta_r = V[il)*xDPlus*S[i+1] +
Sig_a(r) - nuSig_f(r))
if (i>0):
Ali,1-11 = -1.0%«DMinus/(Delta_r = V[i])*S[i]
A[i,1] += 1.0/(Delta_r * V[i])*(DMinus*S[i])
A[i,i+1] = -DPlus/(Delta_r = V[i])*S[i+1]
b[i]l = QCr)

f#solve system

phi = GaussElimPivotSolve(A,b)

j#fremove last element of phi because it is outside the domain
phi = phi[0:1]

return centers, phi

18.3. A TEST PROBLEM FOR EACH GEOMETRY 343

18.3 A TEST PROBLEM FOR EACH GEOMETRY

Before we proceed, recall that the steady state diffusion equation will only have a solution
for subcritical problems with a source. If the system is critical or supercritical, there is no finite
steady state solution. We will discuss in future lectures how to solve these problems.

In an infinite, homogeneous medium all the spatial derivatives go to zero and the diffusion
equation reads

Q

¢(r)= DR

Therefore, we expect that if we make our problem have a reflecting boundary condition it
should reproduce this infinite medium solution.
To try this out we define functions for each of D, ¥,, vXs, and Q:

In [31: #in this case all three are constant
def D(r):
return 0.04;
def Sigma_a(r):
return 1;
def nuSigma_f(r):
return 0;
def Q(r):
return 1
print("For this problem the diffusion length is", np.sqrt(D(1)/Sigma_a(1)))
inf_med = Q(1)/(Sigma_a(1l) - nuSigma_f(1))
print("The infinite medium solution is",inf_med)

For this problem the diffusion length is 0.2
The infinite medium solution is 1.0

To compute the solution we call our DiffusionSolver function. In this case we set R =
10 and I = 10; this makes Ar = 1. We set the boundary condition parameter to be [0,1,0]
to make it correspond to the reflecting boundary condition discussed above.

In [4]: R =10
I =10
#Solve Diffusion Problem in Slab geometry
X, phi_slab = DiffusionSolver(R, I,D, Sigma_a, nuSigma_f, Q,[0,1,071,0)
#Solve Diffusion Problem in cylindrical geometry
rc, phi_cyl = DiffusionSolver(R, I,D, Sigma_a, nuSigma_f, Q,[0,1,0]1,1)
#Solve Diffusion Problem in spherical geometry
rs, phi_sphere = DiffusionSolver(R, I,D, Sigma_a, nuSigma_f, Q,[0,1,0],2)

344 18. ONE-GROUP DIFFUSION EQUATION

Infinite Medium Solutions

20
&—o Slab
— Cylinder
151 — = Sphere

Infinite Medium

0.5}

0.0 ! ! ! ! |
0

These results demonstrate that our method for solving the diffusion equation can solve the
simplest possible problem. This is an important test, however, because if our method cannot
solve this problem correctly, it is not likely to be able to solve more difficult problems.

Next, we test our implementation on a heterogeneous problem where the material prop-
erties are discontinuous at r = 5 with fuel from 0 to 5 and moderator from 5 to 10. If we are
solving for the thermal flux, there will be a source in the moderator.

In [5]: def D(r):

value = 5.0x(r<=5) + 1.0*(r>5)
return value;

def Sigma_a(r):
value = 1.0x(r<=5) + 0.1%(r>5)
return value;

def nuSigma_f(r):
value = 0.4x(r<=5) + 0.0*%(r>5)
return value;

def Q(r):
value = 0*x(r<=5) + 1.0%(r>5)
return value

Material Properties

6.
— D
5 -- X,
v
i Q
]
=3
>
2l
T
10
........................ i
0 w M R e -

18.3. A TEST PROBLEM FOR EACH GEOMETRY 345

Now, we use the DiffusionSolver function to solve this problem with a zero-Dirichlet
boundary conditions at » = R and a reflecting boundary at r =0:

In [6]: R =10
I =30
#Solve Diffusion Problem in Slab geometry
x, phi_slab = DiffusionSolver(R, I,D, Sigma_a, nuSigma_f, Q,[1,0,0],0)
#Solve Diffusion Problem in cylindrical geometry
rc, phi_cyl = DiffusionSolver(R, I1,D, Sigma_a, nuSigma_f, Q,[1,0,01,1)
#Solve Diffusion Problem in cylindrical geometry
rs, phi_sphere = DiffusionSolver(R, I,D, Sigma_a, nuSigma_f, Q,[1,0,0],2)

Heterogeneous Reactor

351
® @ Slab Num. - w
3.0F — Slab Exact * :k AL
A A Cyl.Num . A/
251 — - Gyl Exact

* * Sphere Num

Sphere Exact

In this figure the exact solutions are also shown. These can be found by solving the diffu-
sion equation in each region and joining the solutions by making the scalar flux and neutron
current continuous at r =5 [10]. For example, the slab solution is

(p(r) _ 0.181299670'3464“ (60.69282r + 1) r< 5
~]34.5868 sinh(0.316228r) — 35.3082 cosh(0.316228r) +10 r>5"

The numerical solutions seem to agree with the exact solutions, and indeed the difference
between the two decreases as I gets larger.

18.3.1 Reed’s Problem

Reed’s problem is a common test problem for numerical methods for solving neutron dif-
fusion and transport problems. It is a heterogeneous reactor problem that has several regions.
The material properties for our geometry (reflecting at » = 0 and vacuum at r = R) is defined
below.

In [71: #in this case all three are constant
def D(r):
value = (1.0/3.0x(r>5) +
1.0/3.0/0.001 *((r<=5) %= (r>3)) +
1.0/3.0/5.0 *((r<=3) % (r>2)) +

346 18. ONE-GROUP DIFFUSION EQUATION

1.0/3.0/50.0 * (r<=2))
return value;
def Sigma_a(r):
value = 0+(0.1x(r>5) +
5.0 x ((r<3) * (r>2))+
50.0 * (r<=2))
return value;
def nuSigma_f(r):
return 0x*r;
def Q(r):
value = 0 + 1.0x((r<7) * (r>5)) + 50.0*(r<=2)
return value;

Material Properties

50— — ===
1 — D/10
4of e 0
i
i
30+ !
o i
=]
= i
> i
20+ 1
i
i
i
10+ ;
| J—
0 L L T B B I) L 1
0 | 2 3 4 5 6 7 8 9

This problem is set up so that there is a

strong absorber with a strong source from r =0 to 2,
strong absorber without a source from r =2 to 3,
void from r =3 to 4,

scatterer with source from r =5 to 7, and

scatterer without source from r =7 to 9.

We approximate the void by having a very large diffusion coefficient and set ¥, = 0. The
solution to this problem using our DiffusionSolver function is given below.

40 Reed's Problem

— Slab LT
350 . Cylinder Sor TNy

30+

25

Notice that the scalar flux for the sphere is highest, followed by the cylinder, then the slab.
This is due to the fact that the leakage from the sphere is the smallest because it has the
smallest ratio of surface area to volume. The solutions we obtain are consistent with previous
solutions to Reed’s problem: the solution is flat in the void region, peaks in the scattering
region with source, and goes to a constant in the strong source and absorber region.

We can also solve Reed’s problem in time dependent mode. In this case we will set the
initial condition to have zero scalar flux everywhere, and solve a series of steady-state prob-
lems as we indicated at the beginning of the chapter. In the code below we solve this time
dependent problem in spherical geometry with Az =0.5 and v = 1. We then plot the solution

18.3. A TEST PROBLEM FOR EACH GEOMETRY

atr=1,10, 100.

In [8]: dt = 0.5
tfinal = 100
v =1
steps = np.linspace(dt,tfinal,tfinal/dt)
R=09
I =100
dx = R/I

phi_old = np.zeros(I)

ffdefine sigma_a star function

Sigma_a_star = lambda r: Sigma_a(r) + 1/(vxdt)
for step in steps:

Jfconstruct Q star function, needs to convert r to the cell index
Q_star = lambda r: Q(r) + phi_old[int((r-0.5+*dx)/dx-1)1/(v*dt)

#Solve Diffusion Problem in cylindrical geometry

rs, phi_sphere = DiffusionSolver(R, I,D, Sigma_a_star,
nuSigma_f, Q_star,
[0.25,0.5%D(R),01,2)

Jfupdate old solution

phi_old = phi_sphere.copy()

if (math.fabs(step-1) < dt):

plt.plot(rs,phi_sphere,label="t = " + str(step))
elif (math.fabs(step-10) < dt):
plt.plot(rs,phi_sphere,’-",label="t = " + str(step))
elif (math.fabs(step-100) < dt):
plt.plot(rs,phi_sphere,’-.’,Tabel="t = " + str(step))
45 Time Dependent Reed's Problem in Sphere
4ol — =10
-- t=100
35F --- t=100.0

3.0+ s s N

348 18. ONE-GROUP DIFFUSION EQUATION

In this problem, steady state is reached relatively quickly near the center of the sphere, but
the scattering region takes on the order of 100 seconds to reach steady state. I ran this problem
with a coarser spatial mesh because we are solving 1000 steady state problems (instead of just
one) to do the time dependent simulation.

CODA

In this chapter we have solved our first boundary value problem, and it is an important
one for nuclear engineering: the neutron diffusion equation with a source. To do this we used
a finite difference approximation to the second-derivative. Moreover, we have shown how to
solve the diffusion equation in multiple geometries and in steady-state and time dependent
modes.

The source-driven problems we solved here are important and can address many different
applications: from shielding analyses to reactor accident scenarios. Nevertheless, there is a
more important type of calculation we can perform: k-eigenvalue calculations to determine
the criticality of a nuclear system. We will demonstrate how to do this in the next chapter.

PROBLEMS

Programming Projects

1. Code Testing

In this exercise you will test the implementation of the slab geometry diffusion equation
solver. The first step is to develop two analytic solutions to the slab geometry diffusion equa-
tion with constant material properties.

QUADRATIC SOLUTION

The first problem we solve has ¥, = vX; = 0 with a zero Dirichlet boundary condition at
r = 1. The specific equation you need to solve is

d*¢
D —
dr? Q.
with boundary conditions
d
Yoo =0
dr r=0

Solve this problem for ¢ (r).

PROBLEMS 349

HYPERBOLIC COSINE SOLUTION

The second problem we solve has ¥, — vX¢ = 1 with a zero boundary condition at r = 1.
The specific equation you need to solve is

—Ddz—¢ +o(r)=0
dr? n=s
with boundary conditions
@ 0 sm=o.
dr r=0

Solve this problem for ¢ (r).

VERIFYING THE IMPLEMENTATION

Using the analytic solutions you calculated, compare numerical solutions to the exact an-
swer using several values of Ar. Demonstrate that the method is working correctly by

* Stating what the expected behavior of the error should be as Ar changes on each of the two
problems.

* Demonstrating that the observed behavior of the error as Ar changes is indeed what you
see.

2. Time-Dependent, Super-Critical Excursion

A burst reactor is constructed by building a sphere of plutonium-239 that has a cylindrical
hole inside which a slug of plutonium can be inserted. You will model this reactor as a solid
sphere with a radius of 7 cm when the slug is in the reactor and as a hollow shell with the
same outer radius and an inner radius of 2 cm when the slug is not present. For the plutonium
use the following cross-sections from the report Reactor Physics Constants, ANL-5800:

Quantity Value

of [b] 1.85
oa [b] 2.11
otr [b] 6.8

v 2.98

For the density of plutonium use 19.74 g/cm?; the diffusion coefficient is D = 1/3X},. In the
hollow area of the shell, use ¥; = vX¢ =0 and D = 100 cm. The average neutron speed in this
problem is v = 10* cm/s. Recall that the macroscopic cross-section for reaction i is X; = Noj,
where N is the number density of nuclei.

An experiment is performed where there is initially 1000 neutrons uniformly distributed in
the system at time # = 0 when the solid sphere is assembled. The sphere is solid until t = 0.1 s
at which time you can assume the reactor is a hollow shell. Use a vacuum boundary condition
on the edge of the sphere.

Your task is to compute the total number of neutrons that leak out of the sphere from time
t=0tot =1 s as well as the peak fission rate density in the reactor during the experiment.

350 18. ONE-GROUP DIFFUSION EQUATION

Finally, determine the maximum value of

Ing"*'(r) —Ing" (r)

d1¢()
—no(r)~
dt At

Note: The leakage rate from the sphere per unit surface area is

d
p|
dr r=7

and the fission rate density at any point in the system is X¢(r) ¢ (r).

3. Shielding Problem

You are tasked with shielding a spherical source of fast neutrons of radius 2.3 cm where
the source emits 10° neutrons per second per cubic centimeter. You are constructing the shield
out of iron and for fast neutrons the cross-sections for iron are (again from ANL-5800)

Quantity Value
oa [b] 0.006
D [cm] 0.1234567

The fission cross-section for iron is 0. Assume the source has the absorption cross-section
and diffusion coefficient of pure plutonium-239; ignore fission inside the plutonium (see the
previous problem for the cross-sections). Set the boundary condition outside of the shield to
have a zero incoming partial current.

How thick does the shield need to be so that no more than 10* neutrons leak out per
second? The density of iron is 7.874 g/cm?. Hint: This might be a good problem for a nonlinear
solver: you want to know when the leakage rate out of the reactor equals 10* as a function of the
thickness of the shield.

CHAPTER

19

One-Group k-Eigenvalue Problems

OUTLINE

19.1 Nuclear System Criticality 352 1. Reflector Effective
19.2 Inverse Power Method 353 Albedo 362
19.3 Function for Inverse Power 2. Spherical Plutonium
Iteration 355 Reactor
19.4 Solving 1-D Diffusion k-Eigenvalue 362
Eigenvalue Problems 356 3. Criticality for 1-D
19.4.1 Heterogeneous Problems 360 Heterogeneous
Coda 362 System Using the
Problems 362 1-Group Neutron
Programming Projects 362 Diffusion Equation 362

Ni vis humana quot annis
maxima quaeque manu legeret.

Put forth his hand with power, and year by year

Choose out the largest.
-Virgil, Georgics
CHAPTER POINTS
e We can adapt our fixed-source diffusion e To do this we use inverse power iteration,
method to find the criticality of a nuclear which requires repeated solution of a

system. diffusion system.

e This method gives us the fundamental
mode and ks for a nuclear system.

Computational Nuclear Engineering and Radiological Science Using Python
DOI: 10.1016/B978-0-12-812253-2.00021-2 35 1 Copyright © 2018 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-812253-2.00021-2

352 19. ONE-GROUP k-EIGENVALUE PROBLEMS

19.1 NUCLEAR SYSTEM CRITICALITY

In the previous chapter we solved steady-state problems in source-driven, subcritical nu-
clear systems. A different, and perhaps more common, situation is that we want to know the
degree of criticality, often quoted as ke or reactivity, of a system. In 1-D geometry with a
single energy group the k-eigenvalue problem is written as

—V-D(r)Ve(r) + La(r)g(r) =

@qﬁ(r),

with a vacuum, reflecting, or albedo boundary condition at the outer surface

.A¢(r)—|—l5’d—¢=0 for r =R,
dr

and a reflecting boundary condition at r =0
d
—¢@(r)=0 forr =0.
dr

Notice that at the outer surface, the boundary condition form is the same as that from the
previous chapter, except that C must be zero.
Note the differences from the equation we solved in the last lecture:

* We added the eigenvalue, 1/, to the fission term,
¢ Eigenvalue problems never have sources (Q(r) = 0), and always have vacuum, albedo, or
reflecting boundary conditions (i.e., C =0).

It is also useful to recall what the eigenvalue is doing physically in this equation. If the
system is supercritical, then k > 1 which depresses the rate at which fission neutrons are
produced in order to get a steady solution. On the other hand, if k < 1 the system is subcritical
and more fission neutrons are needed to make the system not decay to 0 at steady-state.
A critical system does not need more or fewer fission neutrons (i.e., k = 1).

Upon performing the integration over a cell inside a grid of cells, as we did last time, we
get the system

1 Piv1 — @i ¢i — di-1 VX
7 [Q‘H/z&‘ﬂﬂ% - Di71/2Si71/2# + Xk = T’l¢i,
i=0,...,1

-1, (19.1)
and
A B A B
(3 - E>¢1—1 + (3 + E>¢1 =0.
We can write this as a generalized eigenvalue problem

A¢ = 1B,

19.2. INVERSE POWER METHOD 353

where, in our case, A = 1/k, and the matrices A and B are defined by the discrete equations
above. In this case

UZf’l
0 sz‘z
B=1] o 0 :
0 0 cee VX
0 0 0 ... 0

The matrix A is defined in the previous chapter, without the fission terms.

The fundamental mode for the system is the largest value of k and its corresponding eigen-
vector. This eigenvalue has a special name: k¢¢r. We will now discuss a method for finding this
eigenvalue/eigenvector pair.

19.2 INVERSE POWER METHOD

If we consider the generalized eigenvalue problem,
Ax = ABx,

we can make it look like a standard eigenvalue problem by multiplying both sides by the
inverse of A and then rearranging a bit to get

i L
A7 Bx=—x.
A

In other words, the eigenvalue of the generalized eigenvalue problem is the reciprocal of
the eigenvalue to the eigenvalue problem

Cx =Ix,

where

1
C = A71 B, l = —.
A
We can sketch out a simple algorithm, and then we will show that it should give the largest
eigenvalue of C. This will be the largest value of k, which is the value of k. for the system.

Here are the steps in the algorithm.

1. Start with a random initial guess for x of unit norm, called xo, set i = 0.
2. Compute the product b;+; = Cx;,
3. Letli11 =1bit1ll,
4. Set
- b1
= ,
bl

and set i =i + 1 (this step normalizes x;; to be a unit vector),
5. if |l;+1 — ;] <€, then stop. Otherwise, go to step 2.

354 19. ONE-GROUP k-EIGENVALUE PROBLEMS

The final value of /;1; is an approximation to the maximum magnitude eigenvalue of C.
To decide if the eigenvalue is positive or negative we can look at the first index of b; 1| and
b;. The sign of the eigenvalue is equal to the sign of by ;+1/b1,i. Also, x;11 is the eigenvector
associated with eigenvalue /; ;.

Why might this algorithm work? To show that it is reasonable we will assume we know
the N eigenvalues [, and N eigenvectors u, of C, an N x N matrix. Using this information
we can write

N N
X; = E iUy, b, = E Bn,itn,
n=1

n=1

because we can decompose vectors in the range of C into a linear combination of eigenvectors,
which is what these relations say.
Using these relations we can write

N N
bi+1 = Zﬂn,i+lun = CXi = Cz‘xn,ium

Of course, Cu, = 1l,u,, so we get

N
bi+1 = Z Oln,ilnun-
n=1

If we assume, that the eigenvalues are numbered in decreasing magnitude, |I,—i| > |I,],
then we notice that b; | is larger in the u; component than any of the others because x; is a
unit vector. After many iterations of the algorithm, we can expect that

bit1 ~ oy iy, i> 1,
because this component grows each iteration and grows faster than the others. Therefore
[biy1ll =1,

because Xx; is a unit-vector by construction.

Therefore, we have the steps we need to find the largest magnitude eigenvector and its
associated eigenvector for the matrix C. Recall that to compute b;;; = Cx; we are actually
calculating

b+ =Cx; = AilBX,‘.

We do not want to explicitly compute the inverse of A, therefore we can solve the following
problem to compute b;41:

Ab,‘+] = BX,‘.

Notice that at each iteration we are solving a problem with the same matrix and a changing
right-hand side. This indicates LU factorization is the correct strategy. When we are solving

19.3. FUNCTION FOR INVERSE POWER ITERATION 355

a diffusion k-eigenvalue problem, this means we will have to solve a steady-state diffusion
equation with a known source at each power iteration.

Finally, we relate the eigenvalue / to the k-eigenvalue of the original problem. Recall that
I =1/) =k is the largest eigenvalue of C which is the largest value of k, and therefore the
fundamental mode of the system. Therefore, using inverse power iteration gives us the fun-
damental eigenvalue of the system, k¢, and the fundamental mode eigenvector.

19.3 FUNCTION FOR INVERSE POWER ITERATION

We can translate our simple algorithm above and translate it into python.

In [1]: def inversePower(A,B,epsilon=1.0e-6,L0UD=False):
"""Solve the generalized eigenvalue problem
Ax = 1 B x using inverse power iteration
Inputs
A: The LHS matrix (must be invertible)

B: The RHS matrix
epsilon: tolerance on eigenvalue
Outputs:
I: the smallest eigenvalue of the problem
X: the associated eigenvector
N,M = A.shape
assert(N==M)
fgenerate initial guess
X = np.random.random((N))
x = x / np.linalg.norm(x) ffmake norm(x)==
1_old =0
converged = 0
fcompute LU factorization of A
row_order = LU_factor(A,LOUD=False)
iteration = 1;
while not(converged):
b = LU_solve(A,np.dot(B,x),row_order)
1 =np.linalg.norm(b)
sign = bL0]/x[0]1/1

x = b/l
converged = (np.fabs(1-1_old) < epsilon)
1_old =1
if (LOUD):
print("Iteration:",iteration,"\tMagnitude of 1 =",1.0/1)

iteration += 1
return sign/1, x

To test this method, we can solve a very simple eigenproblem:

10 x =[x
0 0.1 -

The smallest eigenvalue is 0.1, and we will solve this using our inverse power iteration
method.

356

19. ONE-GROUP k-EIGENVALUE PROBLEMS

In [2]: {ffdefine A

A = np.identity(2)

Al1,1]1 = 0.1

f#define B

B np.identity(2)

1, x = inversePower(A,B,LOUD=True)
Iteration: 1 Magnitude of 1 = 0.168384028973
Iteration: 2 Magnitude of 1 = 0.100930486877
Iteration: 3 Magnitude of 1 = 0.10000934947
Iteration: 4 Magnitude of 1 = 0.100000093499
Iteration: 5 Magnitude of 1T = 0.100000000935
Iteration: 6 Magnitude of 1T = 0.100000000009

That test worked. Now we can use our method to solve for the eigenvalue of a 1-D reactor.

19.4 SOLVING 1-D DIFFUSION EIGENVALUE PROBLEMS

We will now modify our code from the previous lecture to deal with the differences in
eigenvalue problems. In particular we need to remove the sources, and move the fission terms
to the B matrix.

In [3]: def DiffusionEigenvalue(R,I,D,Sig_a,nuSig_f,BC, geometry,epsilon = 1.0e-8):

"""Solve a neutron diffusion eigenvalue problem in a 1-D geometry
using cell-averaged unknowns
Args:
R: size of domain
I: number of cells
D: name of function that returns diffusion coefficient for a given r
Sig_a: name of function that returns Sigma_a for a given r
nuSig_f: name of function that returns nu Sigma_f for a given r
BC: Boundary Condition at r=R in form [A,B]
geometry: shape of problem
0 for slab
1 for cylindrical
2 for spherical

Returns:
k: the multiplication factor of the system
phi: the fundamental mode with norm 1
centers: position at cell centers

wnn

ffcreate the grid
Delta_r, centers, edges = create_grid(R,I)
A = np.zeros((I+1,I+1))
B = np.zeros((I+1,1+1))
jfdefine surface areas and volumes
assert((geometry==0) or (geometry == 1) or (geometry == 2))
if (geometry == 0):
#in slab it’s 1 everywhere except at the left edge

19.4. SOLVING 1-D DIFFUSION EIGENVALUE PROBLEMS 357

S = 0.0xedges+1
S[0] = 0.0 ffto enforce Refl BC
#in slab its dr
V = 0.0%centers + Delta_r
elif (geometry == 1):
#in cylinder it is 2 pi r
S = 2.0*np.pixedges
#in cylinder its pi (r~2 - r~2)
V = np.pi*(edges[1:(I+1)]x*2
- edges[0:1]x%x2)
elif (geometry == 2):
#in sphere it is 4 pi r2
S = 4.0xnp.piredges**2
#in sphere its 4/3 pi (r~3 - r~3)
V =4.0/3.0%np.pi*(edges[1l:(I+1)]*=*3
- edges[0:1]x%3)

#Set up BC at R
A[CI,I] = (BC[OIx0.5 + BC[1]/Delta_r)
A[I,1-11 = (BCLOJ*0.5 - BC[1]/Delta_r)

#fill in rest of matrix
for i in range(I):
r = centers[i]
A[i,i]1 = (0.5/(Delta_r * V[i])*((D(r)+D(r+Delta_r))*S[i+1]) +
Sig_a(r))
B[i,i] = nuSig_f(r)
if (i>0):
ALi,1-11 = -0.5%x(D(r)+D(r-Delta_r))/(Delta_r = V[il])*S[i]
Ali,1]1 += 0.5/(Delta_r » V[il)*((D(r)+D(r-Delta_r))*S[i])
A[7,i+11 = -0.5%(D(r)+D(r+Delta_r))/(Delta_r * V[i1)*S[i+1]

#find eigenvalue

1,phi = inversePower(A,B,epsilon)

k =1.0/1

#remove last element of phi because it is outside the domain
phi = phi[0:1]

return k, phi, centers

To test this code we should compute the eigenvalue and fundamental mode for a homo-
geneous 1-D reactor. We will set up the problem with D = 3.850204978408833 cm, vXf =
0.1570 ecm™!, and ¥, = 0.1532 cm~!. We also know that in spherical geometry the critical
size can be found from

v — X, TN\2
D _<)’

which leads to
2 7D

T >

For this system the critical size is 100 cm.

358 19. ONE-GROUP k-EIGENVALUE PROBLEMS

When we run our eigenvalue solver on this problem, we should see that the eigenvalue
converges to 1 as the number of mesh points is refined, also the eigenvector should be the
fundamental mode, which has the shape

") A . (nr)
o(r " sin 7))
In [4]: nuSigmaf_func = Tambda r: 0.1570
D_func = Tambda r: 3.850204978408833
Sigmaa_func = lambda r: 0.1532
R =100
I =20
#solution in spherical geometry with 100 cells
k, phi,centers = DiffusionEigenvalue(R,I,D_func,
Sigmaa_func,nuSigmaf_func,
[1,01,
2, epsilon=1.0e-10)

Homogeneous sphere, Num. k = 1.00002955108

®—@ Numerical Solution
0.30 |- — Exact Solution

normalized ¢

0_00 ! ! ! ! |
0 20 40 60 80 100

r (cm)

The flux shape looks correct, but the eigenvalue is slightly off. We can see how the eigen-
value solution converges to the right answer.

In [5]: Points = np.array((10,20,40,80,160,320))
for I in Points:
k, phi,centers = DiffusionEigenvalue(R,I,D_func,Sigmaa_func,
nuSigmaf_func,[1,0],
2,epsilon=1.0e-9)

print("I =", I, "\t\tk =",k,"\tError =",np.fabs(k-1))
I =10 k = 1.00011764407 Error = 0.000117644067299
I =20 k = 1.00002956354 Error = 2.95635412424e-05
I =40 k = 1.00000740964 Error = 7.40964406831e-06
I =180 k = 1.00000186269 Error = 1.86269399705e-06
I =160 k = 1.00000047537 Error = 4.75371085829e-07
I =320 k = 1.00000012886 Error = 1.28862679416e-07

19.4. SOLVING 1-D DIFFUSION EIGENVALUE PROBLEMS 359

We can do the same check for slab geometry. In this case, the critical half-size of the reactor
is

7D

4R? = — ~
vXe— X,

)

giving a critical size of 50 cm.
The shape in this case is

Tr
¢(r) = Acos (?) .
The solution with 20 cells is

Homogeneous Slab, Num. k = 1.00001243892

®—® Numerical Solution

0.30 — Exact Solution

020

normalized ¢

0.00 ! ! ! ! |
0 10 20 30 40 50

r (cm)

Again, we match the exact solution pretty well with only 20 cells.
The final check is the cylinder. For a cylinder

, 2.405°D
v — X,

9

and the fundamental mode is

2.405r
¢(r)=Clo ())

where Jj is a Bessel function of the first kind. The critical size is about 76.5535 cm.
Once again, 20 cells gives us a reasonable approximation to the exact solution:

360

19. ONE-GROUP k-EIGENVALUE PROBLEMS

normalized ¢

Homogeneous Cylinder, Num. k = 1.0000225836

®—@ Numerical Solution
030 —_

0.00
0

10 20 30 40 50

r (cm)

80

We have not done enough homogeneous problems to call this a thorough verification of
the code, but we do have some confidence that the code is working correctly.

19.4.1 Heterogeneous Problems

Previously, we looked at a problem with fuel on the interior and a reflector on the outside.
The fuel extends from r =0 to r =5 cm and the reflector extends out to R = 10.

In [6]:

def D(r):
value = 5.0x(r<=5) + 1.0*(r>5)
return value;

def Sigma_a(r):
value = 0.5%x(r<=5) + 0.01*(r>5)
return value;

def nuSigma_f(r):
value = 0.7%(r<=5) + 0.0x(r>5)
return value;

Material Properties

6.
D
5 Ya
l/Ef
41
S
s 3t
s
2+
s
- oo i
0 ! !] L |
0 2 4 6 10

19.4. SOLVING 1-D DIFFUSION EIGENVALUE PROBLEMS 361

For this problem the eigenvalue in each geometry is found in the next code snippet. We
then plot the solution and compare it with the exact solution and its eigenvalue.

In [7]: R =10
I =200
#Solve Diffusion Problem in slab geometry
k, phi_slab,centers = DiffusionEigenvalue(R, I,D, Sigma_a,
nuSigma_f,[1,0]1, 0)
#Solve Diffusion Problem in cylindrical geometry
kc, phi_cyl,centers_cyl = DiffusionEigenvalue(R, I,D, Sigma_a,
nuSigma_f,[1,0], 1)
#Solve Diffusion Problem in spherical geometry
ks, phi_sphere,centers_sp = DiffusionEigenvalue(R, I,D,Sigma_a,
nuSigma_f,[1,0], 2)

Heterogeneous Reactor

1.2~
1.0 p—
08}
< 06f
L] Slab, k = 1.29524
— Slab Exact, k = 1.2955
04t o & Cylinder, k = 1.14068
- - Cyl Exact, k = 1.14147
021 » % Sphere, k= 0.95735
Sphere Exact, k = 0.95888

0.0 ! ! !
0 2 4 6 8 10

r

With 200 cells the eigenvalues are approximated to about 4 digits of accuracy. We see that
the eigenvalue goes down as we go from slab to cylinder to sphere. This is not a surprise
because the slab geometry is infinite in 2 directions, cylinder is infinite in 1, and the sphere is
a finite size. Therefore, the leakage goes up as I make the problem “smaller”.

One thing we should see is that the eigenvalue goes up as we make the moderator larger.
Doubling the thickness of the reflector should increase ke:

Heterogeneous Reactor

® @ Slab, k = 1.34273

1.0 p- — Slab Exact, k = 1.34278
A A Cylinder, k = 1.22121
— - Cyl. Exact, k = 1.22146

08f
* % Sphere, k = 1.03614
Sphere Exact, k = 1.03684
< 06f N
*
0.4
02}

0.0 !
0

362 19. ONE-GROUP &-EIGENVALUE PROBLEMS
This does depress the leakage and increases the multiplication factor, as expected. With

600 cells we get 5 digits of accuracy in the slab and 4 digits in cylinders and spheres for the
eigenvalue.

CODA

In this chapter we adapted our diffusion code for source driven problems to solve
k-eigenvalue problems to find the multiplication factor for a system. The basis for this is
inverse power iteration. At each step of the iterative process we have to solve a steady-state
diffusion problem where the source is the fission neutrons created by the previous iteration’s
solution.

Eigenvalue calculations are important in reactor design, but the one-group approxima-
tion is a bit dubious for thermal, light water reactors. A better model for these systems is a
two-group diffusion model where we solve for the scalar flux of fast and thermal neutrons
separately. This is done in the next chapter.

PROBLEMS

Programming Projects

1. Reflector Effective Albedo

For the heterogeneous reactor example used above, determine the effective albedo of the
reflector in the slab case. To do this you will solve for the eigenvalue of a slab reactor with R =
5 cm with an albedo boundary condition. Then your task is to find a value of «, the fraction
of neutrons reflected back, that produces a value of k. that matches that of the reactor with a
reflector. You can use a nonlinear solver to accomplish this by defining a function that calls the
eigenvalue solver with a particular value of « in the albedo boundary condition and returns
the difference between k¢ and the eigenvalue for the reactor with a reflector.

2. Spherical Plutonium Reactor k-Eigenvalue

For the burst reactor made of plutonium in the defined in the “super-critical excursion”
problem of Chapter 18, compute the value of kg with and without the plug inserted.

3. Criticality for 1-D Heterogeneous System Using the 1-Group Neutron Diffusion
Equation

Consider a 1-D heterogeneous cylinder of thickness R. The medium is made of 5 regions
10 cm thick (total domain size is R = 50 cm):

Region 1 2 3 4 5
Medium fuel 1 fuel 3 fuel 1 fuel 2 reflector 1

PROBLEMS

363

Use a uniform mesh size of Ar =1 cm (i.e., 10 cells per region, i.e., a total of 50 cells). Find
the value of kg for this reactor. Plot the solution for ¢ (r) in the reactor and comment on the

shape of the solution.

The data you will need:
Medium D (cm) Y, (em™1) vX¢ (em™1)
reflector 1 2 0.020 0
fuel 1 1.1 0.070 0.095
fuel 2 1.2 0.065 0.095
fuel 3 1.5 0.085 0.095

CHAPTER

20

Two-Group k-Eigenvalue Problems

OUTLINE

20.1 Two-Group Criticality Problems 365 Problems 378
20.2 Generalized Eigenvalue Problem 367

20.3 Inverse Power Method for the Programming P.mj ects 378
Two Group Problem 368 1. Effective Albedo
20.3.1 Inverse Power Iteration for Reflected
Function 369 Two-Group Reactor 378
20.4 Solving 1-D, Two-Group 2. 2-Group Heterogeneous
Diffusion Eigenvalue Problems 371 Reactor
20.5 Two-Group Reflected Reactor 375 Multiplication
Coda 377 Factor 378

You, precious birds: your nests, your houses are in the trees, in the bushes. Multiply there, scatter there,
in the branches of trees, the branches of bushes

—Popul Vuh, as translated by Dennis Tedlock

CHAPTER POINTS

e Two-group eigenvalue problems form a e The structure of two-group problems for
larger system of equations to apply inverse thermal nuclear reactor systems allows
power iteration. inverse power iteration to be applied by

solving two systems the size of a
one-group problem at each iteration.

20.1 TWO-GROUP CRITICALITY PROBLEMS

To this point we have only solved single-group problems. Next we will extend our capabil-
ities to two-group criticality problems. In this case we have two coupled diffusion equations
of the form

Computational Nuclear Engineering and Radiological Science Using Python 3 65

DOI: 10.1016/B978-0-12-812253-2.00022-4 Copyright © 2018 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-812253-2.00022-4

366 20. TWO-GROUP k-EIGENVALUE PROBLEMS

=V Di(r)Voi(r) + Zu(r)¢1(r) = Zsi»141(r)+

To»1¢2(r) + % v Z5 (1)1 (r) +vZp(r)g2(r)], (20.1a)
=V - Da(r)Veo(r) + Xp(r)¢a2(r) = Zs1-201(r) + Zspo¢2(r)+

ZZa)e10) +vZp0)b0), (20.1b)

with a vacuum, reflecting, or albedo boundary condition at the outer surface

doy _

Ag‘f’g(”) + Bg ar

0 forr=R, g=1,2,
and a reflecting boundary condition at r =0
d¢()—0 forr=0, g=1,2
270 = orr=0, g=1,2.

Note that the outer surface boundary conditions can be different for the different groups. In
these equations ¢; is the “fast” scalar flux and ¢, is the thermal scalar flux. The fraction of
fission neutrons born in group g is denoted by x,, X}, is the total macroscopic cross-section
in group g, v, is the product of the mean number of fission neutrons times the macroscopic
fission cross-section for group g, and Xs./_, . is the macroscopic cross-section for scattering
from group g’ to group g.

Two-group problems are usually set up so that the following simplifications can be made

There is no upscattering: ¥, .1 =0;

All fission neutrons are born fast: x» =0;

We define the removal cross-section for group 1: Xy = Xy — Xs11 = Za1 + Zs1-2;
We define the removal cross-section for group 2: Xy = Xy — X0 = Zao.

Upon making these simplifications system (20.1) becomes

1
=V -Di(r)Veéi(r) + X (r)p1(r) = X WX @)1 (r) +vEp()d(r)],

=V - Dy(r)Veo(r) + X (r)po(r) = Xs1 5201 (r).

These equations can be discretized use the same procedure we used for one-group equa-
tions. The only difference is that now we will have coupling between each equation in the
form of the fission terms and the downscattering.

If we apply our cell-centered discretization from the previous two lectures to the two-
group equations, we get for the fast-group equations

1
-V |:D1,i+l/2Si+l/2

1

Q1i+1 — P1,i h1i — P1,i—1
e Ar l_Dl,i—1/2Si—1/2# + Xr1id1

1 .
=z [VEfid1i +vERidai], i=0,...,1—-1,

20.2. GENERALIZED EIGENVALUE PROBLEM 367

and

A B A B
(7 - E) d1,1-1+ <7 + E) é1,1 =0.

The thermal group equations are

1 G2iv1 — P2,
— — | Dy S Foivl Vel
V. [2,i+1/25i41/2 A7

= 251-2,iP1.i, i=0,....,1—1,

02,0 — $2,i-1
- D2,i—1/25i—1/2# + X,

and

A B> Az B _
<7 - E) ¢2,1-1+ <7 + E) ¢2,1 =0.

These equations define our eigenvalue problem. Next, we discuss the particulars of this
problem and how it can be solved.

20.2 GENERALIZED EIGENVALUE PROBLEM

We can write the 2(/ + 1) equations as a generalized eigenvalue problem of the form
1
A®=-Bo,
k

as before. The difference is that in this case we will write the system in a bit of a different
form. First we define the solution vector ® as

?1,1
b1,2

D1, 1+1
o=|%
$2.1
2,2

02,141

The matrix A is what we call a block-matrix. That is a matrix that we define in terms of
other, smaller matrices. In particular,

Mi; 0
A= .
<M21 M22>

The matrix A isa 2(/ 4 1) x 2(I + 1) matrix with the M;; each being (I + 1) x (I + 1) matrices.
The M matrix is the left-hand side of the fast-group equation and My, is the left-hand side

368 20. TWO-GROUP k-EIGENVALUE PROBLEMS

of the thermal flux equation. We can write out the non-zero entries of these matrices explicitly
as

Vler Dy it1/2Si+1/2 = Dg,i-12Si-12] + Zrgi i =0...1—1

(Mgg)ii = [(% _) il ,

Dyit12Si .
(Mgg)i,i+1={—W i=0...1—1,

N I
Mgglii-1=1 (4, B, -
(T - E) L=
The matrix Mp; is a diagonal matrix for the downscattering terms:
—s1—»2,; 1=0...1—-1

Mzy);i = {0 i

With these definitions the larger matrix A is defined. Now to define the right-hand side
matrix B. This matrix is written in block form as

_ (P11 Pn
s (% 7).
The fission matrices, Pi, are (I 4+ 1) x (I 4+ 1) diagonal matrices of the form:

(Pig)ii = v, ;.

With these definitions we have now completely specified the generalized eigenvalue prob-
lem

Ad = 1B<I>.
k

20.3 INVERSE POWER METHOD FOR THE TWO GROUP PROBLEM

This eigenvalue problem has a particular structure that we can take advantage of. To use
the inverse power iteration, recall that we have to solve systems of equations of the form

AX,'_H = BX,'.

In our case we can solve the matrix using block-forward substitution. What this means is that
since our matrix A is of the form
M;; O
A= ,
(M2 1 M22>

20.3. INVERSE POWER METHOD FOR THE TWO GROUP PROBLEM 369

we can solve the generic system
My O yi_ (=
M1 Mxn/ \y2 7))’

-1
yi=Mj zi,

as

and
y2=My; (z2 — Maryi).

Therefore, instead of solving a large system involving A, we solve
My =z,

and
May: = (z2 — Maryi) .

That is, we solve two smaller systems. In particular we solve two, 1-group steady state dif-
fusion equations in each iteration. Therefore, we can use our 1-group steady-state diffusion
code from before, by modifying how it is called and what are the sources.

The benefit of solving a smaller system twice can be seen when we look at the scaling for
the time to solution for LU factorization. As previously mentioned, LU factorization scales as
the number of equations, n, to the third power: O (n?). This means that doubling the number
of equations increases the time to solution by a factor of 23 = 8. Solving the smaller system
twice takes twice as long. Therefore, we save a factor of 4 in time to solution by solving two
smaller systems. Also, the memory required is smaller because we do not form the matrix A
and the (1 + 1)? zeros in the upper right block.

20.3.1 Inverse Power Iteration Function

Before looking at two-group diffusion problems, we will first show how to compute the
eigenvalue of a block matrix system like the system above.

We now take our simple algorithm above and translate it into Python. This function will
use the LU factorization functions discussed previously.

In [1]: def inversePowerBlock(M11l, M21, M22, P11, P12,epsilon=1.0e-6,L0UD=False):
"""Solve the generalized eigenvalue problem
(MI1 0) (phi_1) =1 (PI1 PI12) using inverse power iteration
(M21 M22) (phi_2) (0 0)
Inputs
Mij: An LHS matrix (must be invertible)
Pl1j: A fission matrix
epsilon: tolerance on eigenvalue
Outputs:
I: the smallest eigenvalue of the problem
x1: the associated eigenvector for the first block
Xx2: the associated eigenvector for the second block

370 20. TWO-GROUP k-EIGENVALUE PROBLEMS

o

N,M = Mll.shape

assert(N==M)

jfgenerate initial guess

x1 = np.random.random((N))

x2 = np.random.random((N))

1_old = np.linalg.norm(np.concatenate((x1,x2)))

x1 = x1/1_old

x2 = x2/1_old

converged = 0

ffcompute LU factorization of MII1

row_orderll = LU_factor(M11,LO0UD=False)

ffcompute LU factorization of M22

row_order22 = LU_factor(M22,L0UD=False)

iteration = 1;

while not(converged):
#fsolve for bl
bl = LU_solve(Mll,np.dot(P11,x1) + np.dot(P12,x2),row_orderll)
#fsolve for b2
b2 = LU_solve(M22,np.dot(-M21,b1),row_order22)
ffeigenvalue estimate is norm of combined vectors
1 = np.linalg.norm(np.concatenate((bl,b2)))
x1 = bl/1
x2 = b2/1
converged = (np.fabs(1-1_old) < epsilon)
1_old =1
if (LOUD):

print("Iteration:",iteration,"\tMagnitude of 1 =",1.0/1)

iteration += 1

return 1.0/1, x1, x2

To test this method, we can solve a very simple eigenproblem:

0 0 0 0 1010
0 05 0 0 010 1
10 1 0 | ooo0o0l*
0 -1 0 01 000 0

The smallest eigenvalue is 55 ~ 0.0454545 ..., and we will solve this using our inverse power
iteration method.

In [2]: #define A
M1l = np.identity(2)
M11[0,0] = 10.0
M11[1,11] 0.5
M22 = np.identity(2)
M22[1,1]1 = 0.1
M21 = -np.identity(2)
j#define P
P11 = np.identity(2)
P12 = np.identity(2)
1, x1, x2 = inversePowerBlock(M11,M21,M22,P11,P12,epsilon=1.0e-8,L0UD=True)

20.4. SOLVING 1-D, TWO-GROUP DIFFUSION EIGENVALUE PROBLEMS 371

Iteration: 1 Magnitude of 1 = 0.0887392840225
Iteration: 2 Magnitude of 1 = 0.0454591935894
Iteration: 3 Magnitude of 1 = 0.0454545458387
Iteration: 4 Magnitude of 1 = 0.0454545454546
Iteration: 5 Magnitude of 1 = 0.0454545454545

Now that our test passed, we will use this function to solve for the eigenvalue of a 1-D
reactor.

20.4 SOLVING 1-D, TWO-GROUP DIFFUSION EIGENVALUE
PROBLEMS

We will now modify our code from the previous lecture to deal with two-group eigen-
value problems. Now we will need to define more matrices and call our InversePowerBlock
function.

In [3]: def TwoGroupEigenvalue(R,I,D1,D2,Sig_rl1,Sig_r2,
nu_Sigfl, nu_Sigf2,Sig_sl12,
BC1,BC2,
geometry,epsilon = 1.0e-8):
"""Solve a neutron diffusion eigenvalue problem in a 1-D geometry
using cell-averaged unknowns
Args:
R: size of domain
I: number of cells
Dg: name of function that returns diffusion coefficient
for a given r
Sig_rg: name of function that returns Sigma_rg for a given r
nuSig_fg: name of function that returns nu Sigma_fg for a given r
Sig_s12: name of function that returns Sigma_s12 for a given r
BC1: Boundary Value of fast phi at r=R in form [A,B]
BC2: Boundary Value of thermal phi at r=R in form [A,B]
geometry: shape of problem
0 for slab
1 for cylindrical
2 for spherical

Returns:
k: the multiplication factor of the system
phi_fast: the fast flux fundamental mode with norm 1
phi_thermal: the thermal flux fundamental mode with norm 1
centers: position at cell centers

noun

fcreate the grid

Delta_r, centers, edges = create_grid(R,I)
M1l = np.zeros((I+1,I+1))

M21 = np.zeros((I+1,I+1))

M22 = np.zeros((I+1,I+1))

P11 = np.zeros((I+1,I+1))

372

P12

20. TWO-GROUP k-EIGENVALUE PROBLEMS

= np.zeros((I+1,I+1))

jfdefine surface areas and volumes

asse
if (

elif

elif

##Set
M11L[
M11L[
M22L[
M22L[

il
for

rt((geometry==0) or (geometry == 1) or (geometry == 2))
geometry == 0):

#in slab it’s 1 everywhere except at the left edge

S = 0.0xedges+1
S[0] = 0.0 {to enforce Refl BC

#in slab its dr

V = 0.0xcenters + Delta_r
(geometry == 1):

f#in cylinder it is 2 pi r

S = 2.0xnp.pixedges

#in cylinder its pi (r*2 - r~2)

V = np.pi*x(edges[l:(I+1)]x*2
- edges[0:1]%%2)
(geometry == 2):

f#in sphere it is 4 pi r~2

S = 4.0xnp.pixedges**2

#in sphere its 4/3 pi (r"3 - r*3)

V = 4.0/3.0%np.pix(edges[1:(I+1)]x*3
- edges[0:1]%%3)

up BC at R

1,11 = (BC1[0Jx0.5 + BC1[11/Delta_r)
I,I-1] = (BC1[0]*0.5 - BC1[1]/Delta_r)
1,11 = (BC2[0]x0.5 + BC2[11/Delta_r)
I,I-1] = (BC2[0]*0.5 - BC2[1]/Delta_r)

I in rest of matrix

i in range(Il):

r = centers[i]

MI1[i,7]1 = (0.5/(Delta_r = V[i1)*x((D1(r)+D1(r+Delta_r))*S[i+1]1) +
Sig_rl(r))

M22[i,7]1 = (0.5/(Delta_r = V[i1)*x((D2(r)+D2(r+Delta_r))*S[i+1]1) +
Sig_r2(r))

M21[1,i] = -Sig_sl2(r)

P11[1,1] = nu_Sigfl(r)
P12[i,i] = nu_Sigf2(r)
if (i>0):

MI1[i,7i-1] = -0.5%x(D1(r)+D1(r-Delta_r))/(Delta_r * V[i1)*S[i]
M11[i,7i] += 0.5/(Delta_r = V[il)*x((D1(r)+D1(r-Delta_r))*S[il)
M22[1,7-11 = -0.5%(D2(r)+D2(r-Delta_r))/(Delta_r = V[i1)*S[i]
M22[1i,7i] += 0.5/(Delta_r * V[il)*x((D2(r)+D2(r-Delta_r))*S[i])
M11[i,i+1] = -0.5%(D1(r)+D1(r+Delta_r))/(Delta_r = V[i])*S[i+1]
M22[1,i+1] = -0.5%(D2(r)+D2(r+Delta_r))/(Delta_r = V[i])*S[i+1]

#find eigenvalue

1,ph
k =

il,phi2 = inversePowerBlock(M11,M21,M22,P11,P12,epsilon)
1.0/1

j#fremove last element of phi because it is outside the domain

phil
phi?2
retu

= phil[0:1]
= phi2[0:1]
rn k, phil, phi2, centers

20.4. SOLVING 1-D, TWO-GROUP DIFFUSION EIGENVALUE PROBLEMS

To test this code we will solve a 1-group eigenvalue problem and pretend it has two
groups. We will use the same case that we used for the fundamental mode for a homogeneous
1-group, 1-D reactor. We will set up the problem with D; = D, = 3.850204978408833 cm,
VY1 =X =0.1570 cm™!, and ¥, | = X2 = 0.1532 cm™ L. If we set X2 =0, there will
be no coupling from group 1 to group 2, therefore the scalar flux in group 2 will be zero ev-
erywhere and group 1 will be the same as that from the one group problem. Recall that for

1-group in spherical geometry the critical size can be found from

v — Xy (JT)2
D \R/’
which leads to

2 72D

T >

For this system the critical size is 100 cm.

We will run our eigenvalue solver on this problem. We should see that the eigenvalue
converges to 1 as the number of mesh points is refined, also the eigenvector should be the

fundamental mode.

In [4]: nuSigmaf_func = lambda r: 0.1570
D_func = lambda r: 3.850204978408833
Sigmaa_func = Tambda r: 0.1532
Sigmas_func = Tambda r: 0.0
R =100
I =20
#solution in spherical geometry with 100 cells
k, phi_f,phi_t,centers = TwoGroupEigenvalue(R,I,D_func,D_func,

Sigmaa_func,Sigmaa_func,
nuSigmaf_func,nuSigmaf_func,
Sigmas_func,[1,0,0]1,[1,0,0],

2, epsilon=1.0e-10)

Homogeneous sphere, Num. k = 1.0000295511 |

0.35
0.30f+
0.25+
-
o 020
()
N
)
£ 0.5}
o
o
0.10F
® @ Group |: Numerical Solution
0051 » Group 2: Numerical Solution
— Exact Solution
000f % * % % * * % % * * * % %k * * * * % *

0 20 40 60 80 100
r (cm)

374 20. TWO-GROUP k-EIGENVALUE PROBLEMS

The flux shape looks correct, but the eigenvalue is slightly off as we saw last chapter;
refining the mesh will improve the eigenvalue estimate. The thermal-flux for this problem is
zero everywhere as expected.

Another way to check a two group problem is to solve an infinite medium problem. The
formula for ko is

v + M\}EQ

Erz
oo Zf‘rl
Also, the ratio of the scalar fluxes will be
ﬂ _ ErZ
¢2 251—)2 ’

For our test we will use the following values for the cross-sections (all values in cm™!)

e X =0.0085

* J1-2=0.0241

e 3,1 =0.0121

o =212+ X3 =0.0362
* v =0.185

e Yn=Xp»=0.121

Using these values we get that ko, = 1.25268 and

il =5.021.

2

we will test our code using this solution. We will set D; = D> = 0.1 cm and we expect that
with a reflecting boundary condition at the outer surface that ko, — 1.25268 and the scalar
flux ratio goes to 5.021.

In [5]: nuSigmafl_func = lambda r: 0.0085

nuSigmaf2_func lambda r: 0.185

D_func = Tambda r: 0.1

Sigmarl_func = lambda r: 0.0362

Sigmar2_func = lambda r: 0.121

Sigmasl?2_func = lambda r: 0.0241

R=25

I =50

k, phi_f,phi_t,centers = TwoGroupEigenvalue(R,I,D_func,D_func,
Sigmarl_func,Sigmar2_func,
nuSigmafl_func,nuSigmaf2_func,
Sigmasl2_func,[0,1,0]1,[0,1,07,
2, epsilon=1.0e-8)

20.5. TWO-GROUP REFLECTED REACTOR 375

Homogeneous sphere, Num. k = 1.25268252483

0.14 -

— Group |: Numerical Solution
0.12L — - Group 2: Numerical Solution
0.10

normalized ¢
o
o
[e5)
T

o

=3

oS
T

0.04 |-

0.02 |
0

r (cm)

The eigenvalue is the value we expect, to within the iterative tolerance. We can also check
the ratios of the scalar fluxes. The ratio should be 5.021.

5.05. Homogeneous sphere, Num. k = 1.25268252483

5.04

5.03+

5.02

normalized ¢; /¢y

5.01

5.00 |
0

This is indeed what we see in the solution.

20.5 TWO-GROUP REFLECTED REACTOR

Bare homogeneous reactor calculations are not where the usefulness of a numerical
method is really needed as these problems can be solved by hand. A more complicated prob-
lem that we can use our new tool for is to analyze the increase in k¢ by surround the reactor
with a reflector. That is, a material that can scatter neutrons back into the reactor. We consider
a spherical reactor that has a reflector around it. As an example we set, for the reactor

e Di=D)=1cm
e V¥ =0.00085 cm™!

376 20. TWO-GROUP k-EIGENVALUE PROBLEMS

Y512 =0.001 cm™!

Y21 =0.009 cm™!

S =512+ a1 =0.01 cm™!
VX =0.057 cm™!

Yo =Xp»=005cm™!,

and for the reflector

Di=Dy=1cm

X =0.0cm™!

Y512 =0.009 cm™!

Y1 =0.001 cm™!

3 =Y152+ Ya1 =00l cm™!
V¥p =0.0cm™!

Yo = X =0.00049 cm~!.

The code to set up and solve this problem follows.

In [6]: R_reac = 50.0
nuSigmafl_func = Tambda r: 0.00085x(r<=R_reac) +
nuSigmaf2_func = Tambda r: 0.057*x(r<=R_reac) + 0.
D_func = lambda r: 1.0
Sigmarl_func = lambda r: 0.01
Sigmar2_func = lambda r: 0.01x(r<=R_reac) + 0.00049x(r>R_reac)
Sigmasl2_func = Tambda r: 0.001x(r<=R_reac) + 0.009%(r>R_reac)
R =100
I =100
k, phi_f,phi_t,centers = TwoGroupEigenvalue(R,I,D_func,D_func,

0.0
0

Sigmarl_func,Sigmar2_func,
nuSigmafl_func,nuSigmafZ_func,

SigmaslZ_func,
[0.25,0.5%D_func(R)1J,
[0.25,0.5+xD_func(R)1J,
2, epsilon=1.0e-6)

Reflected sphere, Num. k = 1.06508498598

— Group |: Numerical Solution

— = Group 2: Numerical Solution

normalized ¢
)
o
©

0.06
0.04
0.02
0.00 ~ ‘
20 40 60 80 100 120
r (cm)

The scalar fluxes in this problem have several noticeable features:

CODA 377

¢ The thermal scalar flux has a peak in the reflector. This is from fast neutrons leaking out of
the reactor and then slowing down in the reflector.

* The fast scalar flux has a peak toward the edge of the reactor. This peak is caused by ther-
mal neutrons leaking back into the reactor from the reflector. These neutrons then cause
fission in the reactor, producing fast fissions.

We can compare these results to an unreflected reactor of the same size.

In [7]: R_reac = 500.0
R =50
k, phi_f,phi_t,centers = TwoGroupEigenvalue(R,I,D_func,D_func,

Sigmarl_func,Sigmar2_func,
nuSigmafl_func,nuSigmaf2_func,
Sigmasl2_func,
[0.25,0.5%D_func(R) 1,
[0.25,0.5%D_func(R)1,

2, epsilon=1.0e-6)

Unreflected sphere, Num. k = 0.368702897492

— Group |: Numerical Solution

— = Group 2: Numerical Solution

normalized ¢

The eigenvalue decreased dramatically. This is due to the fact that the number of thermal
neutrons in the system has been severely depressed, and the fission cross-section is higher for
thermal neutrons. The implications of this phenomenon are explored in an exercise.

CODA

In this chapter we extended our reactor analysis capabilities to include two-group eigen-
value problems. We were able to apply this to a reflected reactor problem and observe some
important reactor physics phenomenon. This marks the end of our foray into numerical so-
lutions to the diffusion model of neutron transport. There is much more we could do: more
groups, more dimensions, etc.

Rather than going deeper into diffusion models, we will pivot now to solving the neutron
transport equation without making the diffusion approximation. We are going to investigate

378 20. TWO-GROUP -EIGENVALUE PROBLEMS

a tool that is crucial in many nuclear engineering and radiological health applications: Monte
Carlo calculations.

PROBLEMS

Programming Projects

1. Effective Albedo for Reflected Two-Group Reactor

The reflected two-group example discussed in the text above had the thermal flux peak
inside the reflector. Replace this reflector with an albedo boundary condition at » = 50 cm.
You can define a different value of « for the thermal and fast boundary condition. Using
numerical experimentation, determine values for these alphas that result in a match for the
eigenvalue of the reflected reactor, has the thermal flux have a maximum at r = 50 cm, and
has the fast flux peak near the edge of the reactor. Hint: Think about what it means physically
to have a reflector if a majority of the neutrons that leak out of the fuel are fast, and a majority
of the neutrons that return are thermal.

Discuss your findings and compare the arrived at eigenvalue with the infinite medium
eigenvalue of the reactor material. Does this explain why a vein of natural uranium in a mine
(something very large) is subcritical, but natural uranium surrounded by heavy water (as in
CANDU reactor) or graphite (as in the Chicago Pile) can be made critical?

2. 2-Group Heterogeneous Reactor Multiplication Factor

Consider the following 1-D cylindrical core consisting of 10 fuel regions + 1 reflector region
(each region is of width 20 cm, total domain size is R =200 cm).

Uodded M U M U M U M U R

In this table, R= reflector, U = UO;, M = MOX, U,y4ded = UO» + absorber. In this reactor
we assume that our groups are set up so that only down scattering can be considered and all
fission neutrons are born fast.

Write a Python code to solve this problem. Plot the solution for ¢ (r) for each group and
comment on the behavior. Also give the value of the multiplication factor, kf. For this reactor
give the ratio of the peak fission rate density to the average fission rate density over the fuel
regions (i.e., not including the reflector). This ratio is called the power peaking factor.

Then, consider the same reactor where the control rods are removed and the “U;ogdded”
region becomes a “U” region. Discuss the change in the eigenvalue and the shape of the flux.
The data you will need is below:

Material D; D, X P vZe vZp Y12

U 1.2 04 0.029653979 0.093079585 0.004567474 0.114186862 0.020432526
M 1.2 04 0.029653979 0.23633218 0.006851211 0.351903125 0.015865052
R 1.2 02 0051 0.04 0 0 0.05

URodded 12 04 0.029820069 0.098477509 0.004567474 0.114186862 0.02032872

PART III

MONTE CARLO METHODS

CHAPTER

21

Introduction to Monte Carlo Methods

OUTLINE

21.1 Analog Physics 382 21.11 Elastic Scattering 401
21.2 Probability Preliminaries 382 21.12 Lead Shielding of Reactor
21.3 The Exponential Distribution 383 Algorithm and Code 401
21.4 A First Monte Carlo Program 385 Coda 404
21.5 Isotropic Neutrons on a Slab 388 Further Reading 404
21.6 A First Monte Carlo Shielding Problems 405
Calculation 391 Short Exercises 405
21.7 Tracking in a Sphere 394 Programming Projects 406
21.8 A Real Shielding Problem 397 1. Monte Carlo
21.9 Rejection Sampling 399 Convergence 406
21.10 Looking Up Energies 400 2. Track-Length in Sphere 406

“Everything is composed of small particles of itself and they are flying around in concentric circles and
arcs and segments and innumerable other geometrical figures too numerous to mention collectively,
never standing still or resting but spinning away and darting hither and thither and back again, all
the time on the go. These diminutive gentlemen are called atoms. Do you follow me intelligently?”

—Flann O’Brien, The Third Policeman

CHAPTER POINTS

e Monte Carlo methods give us a way to e Rejection sampling is a technique for
simulate the behavior of radiation without drawing random numbers from
having to resort to discretized differential a distribution where we do not know
equations. the cumulative density function.

e Using sampling and tracking of individual,
simulated neutrons we can solve shielding
problems using realistic materials.

Computational Nuclear Engineering and Radiological Science Using Python
DOI: 10.1016/B978-0-12-812253-2.00024-8 381 Copyright © 2018 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-812253-2.00024-8

382 21. INTRODUCTION TO MONTE CARLO METHODS

21.1 ANALOG PHYSICS

In this chapter we will use Python to create synthetic neutrons. We will then follow these
neutrons to see what will happen in a system. The process of using simulated, synthetic par-
ticles that behave in a similar manner as actual neutrons (or other particles) is an example
of analog physics. This gives a retro-sounding ring to the process, like it is something that
goes along with vinyl records and vacuum-tube amplifiers. We mean here that our synthetic
neutrons are analogs of true neutrons.

The way we will deal with these particles is using random sampling of their interactions,
just as quantum mechanics governs the behavior of particles using probabilities. This is differ-
ent than what we did in diffusion methods for simulating neutron behavior: in those models
we derived differential equations for the expected behavior of a collection of neutrons. In ana-
log physics we simulate many particles and then we compute the mean behavior (or other
quantities that interest us).

These methods are called Monte Carlo methods. The first modern Monte Carlo methods
were developed by Stanislaw Ulam during the Manhattan Project, and Nicholas Metropo-
lis coined the name after a famous casino. One benefit of Monte Carlo methods is that they
require much less mathematics in the algorithms. Once we know how to draw random num-
bers appropriately, we just need to “roll dice” many, many times to get the answer.

21.2 PROBABILITY PRELIMINARIES

We will need to know a few things about probabilities before we begin. A cumulative
distribution function (CDF) is defined as a function F(x) that is the probability that a random
variable ¢, from a particular distribution, is less than x. In mathematical form we write this as

F(x)=P(c<x).

Because probabilities are always in the range [0, 1], the function F(x) € [0, 1]. As an example,
consider the random variable defined by the value of a roll of a single die. In this case, the
CDF is given by

0 x<1

% l<x<2

% 2<x<3
F(x)= % 3<x<4.

% 4<x<5

2 5<x<6

1 6<x

Using this definition, F(6.1) is 1, because it is certain that the roll will give a number less
than 6.1.

21.3. THE EXPONENTIAL DISTRIBUTION 383

The way that the CDF is defined leads to two important limits:

lim F(x)=1, and lim F(x)=0.
X—>00

X—>—00

Along with the CDF we will use the probability density function (PDF) , written as f (x).
The PDF is defined such that

f(x)dx = The probability that the random variable is in dx about x.

The PDF is the derivative of the CDF and they are related by

f(x):d—F, and F(x):/x f(xdx'.
dx o0

Also, from these relations we get

/ f(x)dx=1.

This relation shows that probability densities are normalized to 1 and can be interpreted as
the probability of the random variable being between —oco and oo is 1.

Going back to the roll of a single die, the PDF for this random variable is the sum of Dirac
delta functions because the value of a roll can only be the integers 1-6. This PDF is

1
f(X)=g[5(x—1)+8(x—2)+3(x—3)+5(x—4)+5(x—5)+5(x—6)].

Notice that the factor of one-sixth is required to satisfy the normalization condition.

Using the PDF we can find the expected value of some function of the random variable.
Consider the function g(x), the expected value of this function, E[g(x)], is defined by the
integral

Elg(x)] = f (o) £ () dx.

An important expected value is the mean of the random variable. The mean is found by
determining the expected value of the function g(x) = x. The mean is sometimes written as x
and it is defined as

)E:foo xf(x)dx.

—00

21.3 THE EXPONENTIAL DISTRIBUTION

The most important distribution for Monte Carlo methods for neutron transport is the
exponential distribution. This is because the probability that a neutron travels a number of

384 21. INTRODUCTION TO MONTE CARLO METHODS

mean-free paths in d about A before having a collision is given by
f)dr=e""dx, for x> 0.

This distribution tells us that if N neutrons travel A mean-free paths without a collision, then
we expect Ne~! neutrons to travel A + 1 mean-free paths. The average distance traveled by
a neutron without having a collision, in units of mean-free paths, based on this distribution
can be found via the integral
oo
i:/ re hdr=1.

0

This shows why we call A the mean-free path: it is the expected distance a neutron will travel
without having a collision.

Usually, we want to work in units of distance rather than mean-free paths. To convert the
exponential distribution to be a function of distance, rather than mean-free paths, we use the
total macroscopic cross-section for the material times a distance to write

Etx =)\., dr = Etdx.
Making this substitution we get the PDF for the exponential distribution as
fx) = T,

We can check that this is a proper PDF by integrating over all x and seeing that the integral
equals one

*© o
/ dx e 2 = — 672‘x|0 =1.
0
From this we can also define the CDEF:
X
F(x)= / dx Tpe 2 = — e_ztx|g =1—e ¥,
0

Below is a plot of the CDF and PDF:

Probability Density and Cumulative Distribution Functions

— PDF

Value

2 4 6 8 10
Number of mean-free paths

21.4. A FIRST MONTE CARLO PROGRAM 385

21.4 A FIRST MONTE CARLO PROGRAM

Now we would like to use Monte Carlo solve the following problem: a beam of neutrons
strikes a 3 cm thick slab of material with Xy = 2.0 cm~!. What fraction of the neutrons get
through the slab without a collision? Using the results from the previous section, we know
that the answer to this problem is defined by the integral

o
/ Sie T dx = e2%3 2 0.002478752177.
3

We would like to solve this problem with Monte Carlo using the following procedure

1. Create neutron.

2. Sample randomly a distance to collision from the exponential distribution.
3. Check to see if the distance to collision is greater than 3.

4. Go back to 1 until we’ve run “enough” neutrons.

At the end of this procedure the ratio of the number of neutrons that went through the slab
to those that we created is the fraction that we are looking for.

The hard part is that we do not know how to generate a random sample from the expo-
nential distribution. We do, however, know how to get a random number between 0 and 1
using NumPy’s random function or the functions from the random module. We also know
that the CDE, F(x), is always between 0 and 1. Therefore, the following procedure can give
me a random number from the exponential distribution:

1. Pick a random number between 0 and 1, call it 6
2. Invert the CDF to solve for x in F(x) = 6; this value of x is my random sample.

In our case we need to solve for x in
f=1—e >,

which gives us
—log(1—-196)
X=—a".
2
We can translate this algorithm to Python in a few short steps. The algorithm will require

the user to enter the number of neutrons requested, N, and the thickness of the slab and the
macroscopic cross-section for the material.

In [2]: def slab_transmission(Sig_t,thickness,N):
"""Compute the fraction of neutrons that leak through a slab

Inputs:

Sig_t: The total macroscopic x-section
thickness: Width of the slab

N: Number of neutrons to simulate
Returns:

transmission: The fraction of neutrons that made it through

386

o

thetas np.random.random(N)
x = -np.log(l-thetas)/Sig_t
transmission

21. INTRODUCTION TO MONTE CARLO METHODS

np.sum(x>thickness)/N

#for a small number of neutrons we’ll output a little more

if (N<=1000):

plt.scatter(x,np.arange(N))

plt.xTabel("Distance to collision")

plt.ylabel("Neutron Number")

return transmission

BOX 21.1 PYTHON PRINCIPLE

NumPy can generate random numbers
from a variety of distributions. The most
common two we use for Monte Carlo simu-
lations are np.random.random(N), which
gives N random numbers between 0 and
1, and np.random.uniform(lower, up-
per, N), which gives N random num-

bers between lower and upper. For both
of these there are single-value versions in
the random library: random. random() and
random.uniform(Tower, upper).In the
np.random and random libraries there
are more exotic distributions built-in as
well.

To test this function we will execute it with a small number of neutrons and look at where
the collisions take place. The function will make a graph showing where neutrons had a
collision if the number of neutrons is less than or equal to 1000. This initial run will use 1000
neutrons to test this feature.

In [3]: fftest the functionwith a small number of neutrons

Sigma_t = 2.0
thickness = 3.0
N = 1000

transmission slab_transmission(Sigma_t, thickness,

print("Out of",N,"neutrons only",int(transmissionxN),
"made it through.\n The fraction that made it through was",
transmission)

N)

1200 -
1000 |-
800 |
600 -

400 |

Neutron Number

L
1.0
Distance to collision

21.4. A FIRST MONTE CARLO PROGRAM 387

OQut of 1000 neutrons only 4 made it through.
The fraction that made it through was 0.004

Notice that most of the neutrons have a collision very close to the edge of the slab. Only
4 out of 1000 made it all the way through the slab (that is, only 4 had a distance to colli-
sion greater than 3). In this case we get a pretty good answer to our question (0.004 is off
by less than a factor of two), but we can check that it converges to the correct answer as
N — oo.

In [4]: neuts = np.array([2000,4000,8000,16000,32000,
64000,128000,256e3,512e3,1024e3,2056e31)
for N in neuts:
transmission = slab_transmission(Sigma_t, thickness, N)
print("Out of",N,"neutrons only",int(transmission*N),
"made it through.\n The fraction that made it through was",
transmission)

Out of 2000.0 neutrons only 6 made it through.

The fraction that made it through was 0.003

OQut of 4000.0 neutrons only 13 made it through.

The fraction that made it through was 0.00325

OQut of 8000.0 neutrons only 29 made it through.

The fraction that made it through was 0.003625

Out of 16000.0 neutrons only 47 made it through.

The fraction that made it through was 0.0029375

Out of 32000.0 neutrons only 73 made it through.

The fraction that made it through was 0.00228125
Out of 64000.0 neutrons only 165 made it through.
The fraction that made it through was 0.002578125
Out of 128000.0 neutrons only 341 made it through.
The fraction that made it through was 0.0026640625
Out of 256000.0 neutrons only 618 made it through.
The fraction that made it through was 0.0024140625
Out of 512000.0 neutrons only 1285 made it through.
The fraction that made it through was 0.002509765625
OQut of 1024000.0 neutrons only 2528 made it through.
The fraction that made it through was 0.00246875
OQut of 2056000.0 neutrons only 5176 made it through.
The fraction that made it through was 0.00251750972763

We need about 1 million simulated neutrons to get to two digits of the correct an-
swer. Also, if we ran this again we would get different answers because we are using
random numbers. The run-to-run variability in the answers is often quantified using the
standard deviation. This variability can be thought of as the error in the Monte Carlo cal-
culation. Practitioners often call this variability noise. The error will go down slowly be-
cause the way that Monte Carlo works. The standard deviation of the estimate when we
look at the run-to-run variability will decrease at a rate proportional to 1/+/N. This means
that to cut the error in half we need to quadruple the number of neutrons. Another way
to think about it is to say that Monte Carlo methods are one-half order accurate. The
1/+/N convergence is valid for large values of N and is a result of the central limit theo-
rem

388 21. INTRODUCTION TO MONTE CARLO METHODS

BOX 21.2 NUMERICAL PRINCIPLE

Running a Monte Carlo calculation mul- ability manifests itself as errors in the solution
tiple times, even with the same number of and, therefore, we want the standard devia-
neutrons, will give you different answers. The tion to be small. The standard deviation goes
standard deviation of this variability is pro- to zero slowly as N — oo: to cut the standard
portional to N_%, where N is the number of deviation in half, one needs to quadruple the
neutrons used in the calculation. This vari- number of neutrons.

21.5 ISOTROPIC NEUTRONS ON A SLAB

Even though it takes a lot of particles to make the error in Monte Carlo small, that does
not mean it is a bad method. In fact, the nice thing about Monte Carlo is that you have to
know very little about the mathematics of the system, all you have to do is be able to push
particles around and roll dice. To demonstrate this we will make our problem a little harder.
Now say that the neutrons hitting the slab are not a beam but a distribution of neutrons
where a neutron’s path of flight relative to the normal direction to the slab is measured by
the angle ¢. We say that the distribution of neutrons in angle relative to the slab is uniform in
the cosine of the angle ¢, i.e., the neutrons are isotropic in the cosine of the angle. The angles
¢ € [-m/2, m /2] point into the slab, this means that the quantity cos ¢ is uniformly distributed
between 0 and 1.

For a neutron traveling in direction ¢ the slab can look thicker than 3.0 cm, because if the
neutron is traveling at a grazing angle to the slab it will have to travel through more of the
slab to get to the other side. We can express this as

thickness(¢) = i
cos ¢

A quick check reveals that this gives us what we want: when ¢ = 0 the neutron is traveling
straight through the slab and the thickness to that neutron is 3 cm. Also, when ¢ = £7/2 the
thickness of the slab is infinite because the neutron is traveling parallel to the slab.

We can make the math easier by defining 1 = cos¢ and noticing that u € [0, 1]. To handle
our more complicated problem we make a small change to our Monte Carlo method to have
each neutron have its own angle of flight relative to the slab.

1. Create neutron with u sampled from the uniform distribution p € [0, 1].

2. Sample randomly a distance to collision from the exponential distribution.
3. Check to see if the distance to collision is greater than 3/u.

4. Go back to 1 until we have run “enough” neutrons.

The only change is that now we pick u uniformly between 0 and 1 (recall that each value
of the cosine of the angle was equally likely. That is why this is a random distribution). Fur-

21.5. ISOTROPIC NEUTRONS ON A SLAB 389

thermore, we check to see if the distance to collision is greater than 3/u. Those are the only

changes.
The solution to this problem is more complicated to find mathematically, but the answer is
expressed by the exponential integral function:

ld
transmission = f EM e 2 = By (Zx).
0

t

For our case of x =3.0 and X} =2 we get
E»(6) ~0.000318257.

Notice how the transmission went down because most particles will not have p = 1.

We can simply modify our function above to handle this case. We do this by modifying
the previous function to take as an input parameter whether the neutrons are isotropic in the
cosine of the incident angle.

In [5]: def slab_transmission(Sig_t,thickness,N,isotropic=False):
"""Compute the fraction of neutrons that leak through a slab

Inputs:

Sig_t: The total macroscopic x-section
thickness: Width of the slab

N: Number of neutrons to simulate

isotropic: Are the neutrons isotropic or a beam

Returns:
transmission: The fraction of neutrons that made it through
if (isotropic):
mu = np.random.random(N)
else:
mu = np.ones(N)
thetas = np.random.random(N)
x = -np.log(l-thetas)/Sig_t
transmission = np.sum(x>thickness/mu)/N

#rfor a small number of neutrons we’ll output a little more
if (N<=1000):
plt.scatter(x*mu,np.arange(N))
plt.xlabel("Distance traveled into slab")
plt.ylabel("Neutron Number")
return transmission

As before we will run the algorithm with a small number of neutrons and visualize where
the interactions take place. The figure will now show the distance the neutron travels before
a collision as measured from the face the of slab.

In [6]: {HHttestthe function with a small number of neutrons
Sigma_t = 2.0
thickness = 3.0

390 21. INTRODUCTION TO MONTE CARLO METHODS

N = 1000
transmission = slab_transmission(Sigma_t, thickness, N, isotropic=True)
print("Out of",N,"neutrons only",int(transmissionxN),
"made it through.\n The fraction that made it through was",
transmission)

1200 -
1000
800
600 |-

400

Neutron Number

200 |

-0.5 0.0 0.5 1.0 1.5 2.0 2.5
Distance traveled into slab

Qut of 1000 neutrons only 0 made it through.
The fraction that made it through was 0.0

When the neutrons enter the slab at different angles, fewer transmit through the slab with-
out a collision. In this case, none made it through the slab. Also, notice that the scale of the
figure changed because no neutron made it more the 2.5 cm into the slab. We can do the same
convergence study as before by increasing the number of simulated neutrons and looking at
the accuracy of the calculations.

In [7]: neuts = np.array([2000,4000,8000,16000,32000,
64000,128000,256e3,512e3,1024e3,2056e37])
for N in neuts:
transmission = slab_transmission(Sigma_t, thickness, N, isotropic=True)
print("Out of",N,"neutrons only",int(transmissionxN),
"made it through.\n The fraction that made it through was",
transmission)

Qut of 2000.0 neutrons only 0 made it through.
The fraction that made it through was 0.0

Qut of 4000.0 neutrons only 0 made it through.
The fraction that made it through was 0.0

Qut of 8000.0 neutrons only 3 made it through.
The fraction that made it through was 0.000375
OQut of 16000.0 neutrons only 3 made it through.
The fraction that made it through was 0.0001875
Qut of 32000.0 neutrons only 11 made it through.
The fraction that made it through was 0.00034375
Qut of 64000.0 neutrons only 20 made it through.
The fraction that made it through was 0.0003125
Qut of 128000.0 neutrons only 30 made it through.
The fraction that made it through was 0.000234375

21.6. A FIRST MONTE CARLO SHIELDING CALCULATION 391

Out of 256000.0 neutrons only 73 made it through.

The fraction that made it through was 0.00028515625
Out of 512000.0 neutrons only 140 made it through.

The fraction that made it through was 0.0002734375

Out of 1024000.0 neutrons only 324 made it through.

The fraction that made it through was 0.00031640625
Out of 2056000.0 neutrons only 717 made it through.

The fraction that made it through was 0.00034873540856

We do start to get to the correct answer, but since so few neutrons get through we have to
simulate a lot of them. Here is the result if we try 10 million:

In [8]: N = le7
transmission = slab_transmission(Sigma_t, thickness, N, isotropic=True)
print("Out of",N,"neutrons only",int(transmission*N),
"made it through.\n The fraction that made it through was",
transmission)

Out of 10000000.0 neutrons only 3164 made it through.
The fraction that made it through was 0.0003164

We are getting several digits of accuracy, but it took a lot of neutrons. Of course in real life
10 million neutrons is not very many. We typically talk about neutrons in numbers like 10!
or greater. This is the price to pay with analog physics: the number of our pretend neutrons
are always going to be smaller that the actual neutrons.

21.6 A FIRST MONTE CARLO SHIELDING CALCULATION

Both problems that we solved above can be solved pretty easily by hand. To make the
problem more difficult we can add some scattering. We want to know what fraction of the
neutrons get through the slab before being absorbed. This is a typical question in radiation
shielding.

In particular, say that the slab is made up of a material that has Xy =2.0 cm™!, X5 =
0.75 cm™!, and ¥, = 1.25 cm~!. Also, say that the neutrons are scattered isotropically when
they scatter, that is the direction can change to any other direction upon scattering. This prob-
lem cannot be solved very well by diffusion (remember diffusion is an approximation). We
can solve it by modifying our procedure from before.

We will need to add the fact that a collision can be a scatter or an absorption. We will still
sample a distance to collision using the exponential distribution and the total macroscopic
cross-section, Xy = X5 + X5, as before. The difference is that when the neutron collides, we
sample whether it is absorbed or scattered based on the scattering ratio: Xs/X. If it scatters,
we sample another p for it and keep following it. Otherwise, we stop following the neutron
because it has been absorbed.

The algorithm for this problem just builds on what we did before.

1. Create a counter, ¢ = 0 to track the number of neutrons that get through.
2. Create neutron with u sampled from the uniform distribution p € [0, 1]. Set x = 0.

392 21. INTRODUCTION TO MONTE CARLO METHODS

. Sample randomly a distance to collision, /, from the exponential distribution.

. Move the particle to x = x + I .

. Check to see if x > 3.If sot =1 4 1. Check if x <0, if so go to 2.

. Sample a random number s in [0,1], if s < Xs/%, the particle scatters and sample pu €
[—1, 1] and go to step 3. Otherwise, continue.

7. Go back to 2 until we have run “enough” neutrons.

SN Ul W

In this case we need to check to make sure that the neutron does not exit the slab at x = 0.
This is now possible because a scattered neutron can travel backwards toward the face of the
slab. If that happens, to our mind that is the same as absorption because that neutron is not
going to transmit through the slab.

Our algorithm is going to have to change a lot in this case. For each created neutron we
have to follow it until it leaks out of the slab or is absorbed. This could be many collisions
if the scattering ratio is high and X\ is large. Nevertheless, we can modify the steps of the
simple algorithm to simulate this more complicated scenario.

In [9]: def slab_transmission(Sig_s,Sig_a,thickness,N,isotropic=False):
"""Compute the fraction of neutrons that leak through a slab

Inputs:

Sig_s: The scattering macroscopic x-section
Sig_a: The absorption macroscopic x-section
thickness: Width of the slab

N: Number of neutrons to simulate

isotropic: Are the neutrons isotropic or a beam

Returns:
transmission: The fraction of neutrons that made it through
Sig_t = Sig_a + Sig_s
iSig_t = 1/Sig_t
transmission = 0.0
N = int(N)
for i in range(N):

if (isotropic):

mu = random.random()

else:

mu = 1.0
x =20
alive =1

while (alive):
Jfget distance to collision

1 = -math.log(l-random.random())*iSig_t
#move particle
X += Txmu

#still in the slab?
if (x>thickness):
transmission += 1

alive =0
elif (x<0):

alive = 0
else:

ffscatter or absorb

21.6. A FIRST MONTE CARLO SHIELDING CALCULATION 393

if (random.random() < Sig_s*iSig_t):
ffscatter, pick new mu
mu = random.uniform(-1,1)
else: fabsorbed
alive =0
transmission /= N
return transmission

As a test, this should do the same thing as the previous example, if we set X5 =0 and
%, = 2. The scattering ratio in this case is 0 so that all the collisions are absorption, and as
result, we just need to track distance to collision.

In [10]: N = 100000
Sigma_s =
Sigma_a =
transmissi

.0
0
n = slab_transmission(Sigma_s,Sigma_a, thickness, N,
isotropic=True)
print("0ut of",N,"neutrons only",int(transmission*N),
"made it through.\n The fraction that made it through was",
transmission)

o N O

Out of 100000 neutrons only 25 made it through.
The fraction that made it through was 0.00026

That seems to be working in that it is close to the answer we saw before. It would be a good
idea to run this with larger values of N to show we converge to the correct answer. Forgoing
that for now, we will try the problem with X5 =0.75 and ¥, = 1.25. In this case we would
expect the transmission rate to go up because the total macroscopic cross-section is the same,
but the scattering ratio is greater than zero.

In [11]: N = 1000000
Sigma_s = 0.75
Sigma_a = 2.0 - Sigma_s
transmission = slab_transmission(Sigma_s,Sigma_a, thickness,
N, isotropic=True)
print("Out of",N,"neutrons only",int(transmission*N),
"made it through.\n The fraction that made it through was",
transmission)

Out of 1000000 neutrons only 861 made it through.
The fraction that made it through was 0.000861

In this result we see about a factor of three increase. With scattering it takes much longer to
do the simulation because we might have to follow each neutron for several steps when we
follow it until it is absorbed or leaves the slab. An exercise at the end of the chapter explores
this further.

Slab transmission with scattering is a problem where we cannot write down the answer
easily. As I mentioned, diffusion cannot solve this problem accurately because it is a bound-
ary driven problem with, potentially, a small amount of scattering. To derive the full solution
to the transport equation is beyond the scope of this class, and requires sophisticated mathe-
matics such as singular eigenfunction expansions [23,24]. It is not a stretch to say in this case
that the Monte Carlo approach is much easier.

394 21. INTRODUCTION TO MONTE CARLO METHODS

21.7 TRACKING IN A SPHERE

We would like to be able to track in geometries other than slab geometry. One common ge-
ometry is a sphere. We will consider a spherical shell around an isotropic source and compute
the number of neutrons that escape through the outer radius. We have to be careful because
in this geometry a neutron that exits the inner radius will strike the shell on the other side.

Consider a spherical shell of inner radius, R;, and outer radius R,. Neutrons initially strike
R; with a direction given by the vector £2 = (0, ¢). These directions are defined so that

£2-X =sinfcos g, £2 -y =sinfsing,
2 -7=cosb.
The ranges of the angles are 6 € [0, 7] and ¢ € [0, 2] and %, ¥, Z are the unit vectors in the x,

v, and z directions. Using these definitions we know that if a neutron travels a distance s, its
position changes by

Ax = ssinf cos g, Ay = ssinf sing,

Az =5c0s0.

This coordinate system is shown in the figure below.

Z

X

One more geometric idiosyncrasy with spherical shells that we have to deal with is the
neutrons that cross the inner radius of the shell. They will strike the inner radius again at the
other side of the shell. To find where it will strike the inner radius again we need to find the
value of s such that

(x; + ssinf cosgo)2 + (y; + ssinf sin<p)2 + (z; —i—scos@)2 = Rl-z,

where (x;, yi, z;) is the point where the neutron is. We could solve this quadratic equation
for s, but this is an opportunity to use a root finding method (such as Ridder’s method) to
find s. I will choose a closed root finding method, like Ridder’s method, in this case because

21.7. TRACKING IN A SPHERE 395

the quadratic could have two solutions and I want to make sure that I get an answer be-
tween s = 0 and 2R;. I have saved the ridder function that we previously saw in the file
ridder.py, and I will import that function below.

We now have everything we need for our Monte Carlo program. We will create neutrons
initially at R;. Given the symmetry of the sphere we can set z = R; and y = x = 0 initially.
This will mean that the neutrons will have 6 € [0, 7/2] initially (otherwise the neutron will
not enter the shell). We then sample a distance to collision, s, much like we did before and
follow the neutron around. Now at each step we need to update x, y, and z, and check the
radius that the neutron is at to make sure it is still in the shell.

The code to do this is below.

In [12]:from ridder import ridder
def shell_transmission(Sig_s,Sig_a,Ri,Ro,N):
"""Compute the fraction of neutrons that leak through a slab

Inputs:

Sig_s: The scattering macroscopic x-section
Sig_a: The absorption macroscopic x-section
Ri: Inner radius of the shell

Ro: Outer radius of the shell

N: Number of neutrons to simulate
Returns:

transmission: The fraction of neutrons that made it through
Sig_t = Sig_a + Sig_s

iSig_t = 1/Sig_t

transmission = 0.0

N = 1int(N)

for i in range(N):
Jfget initial direction
theta = random.uniform(0,0.5xnp.pi)
phi = random.uniform(0,2*np.pi)

ro= Ri
z = Ri
x =0
y =20
alive =1

jfvector to keep track of positions

xvec = x*np.ones([1])

yvec = y*np.ones([1])

zvec = z*np.ones([1])

while (alive):
jfget distance to collision
s = -math.log(1l.0-random.random())*iSig_t
#move particle
z += sxmath.cos(theta)
y += s*math.sin(theta)*math.sin(phi)
X += s*math.sin(theta)*math.cos(phi)
xvec = np.append(xvec,x)
yvec = np.append(yvec,y)
zvec = np.append(zvec,z)

396 21. INTRODUCTION TO MONTE CARLO METHODS

r o= math.sqrt(zx*2 + yx*2 + x*%2)
f#still in the shell?

if (r>Ro):
transmission += 1
alive =0

elif (r<Ri):
#find s so that the neutron is on the other side of the shell
f = Tambda s: ((x + s*math.sin(theta)*math.cos(phi))x*2 +
(yts*math.sin(theta)xmath.sin(phi))**2 +
(z + s*math.cos(theta))**2 - Rix*x2)
= ridder(f,le-10,2%Ri,1.0e-10)
+= sxmath.cos(theta)
+= sxmath.sin(theta)*math.sin(phi)
+= sxmath.sin(theta)*math.cos(phi)
= Ri

SOX <K N O»

ffcheck that we are on the inner radius
assert(math.fabs(xxx2+ty**2+z%x*x2 - Rix*x2) < le-6)

else:
fscatter or absorb
if (random.random() < Sig_s*iSig_t):
ffscatter, pick new angles
theta = random.uniform(0,math.pi)
phi = random.uniform(0,2xmath.pi)
else: ffabsorbed
alive =0
transmission /= N
return transmission

We will simulate transmission through a shell of thickness 3 cm and inner radius 2 cm.
Also, we will visualize the tracks that the neutrons take through the shell.

In [137: N = 100

Sigma_s = 1.0
Sigma_a = 1.0
Ri =2

Ro = Ri + 3

transmission = shell_transmission(Sigma_s,Sigma_a,Ri,Ro,N)
print("0ut of",N,"neutrons only",int(transmission*N),
"made it through.\n The fraction that made it through was",
transmission)

21.8. A REAL SHIELDING PROBLEM 397

OQut of 100 neutrons only 1 made it through.
The fraction that made it through was 0.01

Notice that all the neutrons start at z = R; and x = y = 0 as prescribed in the code. We
can also see the fact that when a neutron re-enters the hollow center, it streams across to the
other side. This figure is also a way to check that the streaming through the hollow part of
the shell is handled correctly: we should not see any neutron tracks end in the hollow part of
the sphere (though this is hard to tell with a 2-D projection of the sphere). We can also see the
one neutron that escaped the sphere.

Upon increasing the number of neutrons, we expect to get a more accurate answer, though
we have not said what that answer is. With N = 10°> we get

In [14]: N = 10%%5
transmission = shell_transmission(Sigma_s,Sigma_a,Ri,Ro,N)
print("Out of",N,"neutrons only",int(transmission*N),
"made it through.\n The fraction that made it through was",
transmission)

Out of 100000 neutrons only 602 made it through.
The fraction that made it through was 0.00602

21.8 A REAL SHIELDING PROBLEM

We will now take a large step forward. We will try to solve the problem of designing a
lead-208 shield for a bare reactor made of uranium-235. We will use the full energy dependent
cross-sections for lead and the actual fission spectrum of U-235. To do this we will have to
read in the data for the lead microscopic cross-sections and the fission spectrum. We covered
how to do this in Section 5.1. Using that knowledge we can read in a csv file of the format:
incident neutron energy, cross-section in barns (1072* cm?). The code below does this. A plot
of the cross-sections follows.

In [15]: import csv
Tead_s = [] ffcreate a blank Tlist for the x-sects
lead_s_energy = [] ffcreate a blank 1ist for the x-sects energies
ffthis Toop will only execute if the file opens
with open(’pb_scat.csv’) as csvfile:
pbScat = csv.reader(csvfile)
for row in pbScat: fhave for Toop that Toops over each line
lead_s.append(float(rowl[1]))
lead_s_energy.append(float(rowl[0]))
lead_scattering = np.array([lead_s_energy,lead_s])
lead_abs = [] ffcreate a blank 1ist for the x-sects
lead_abs_energy = [] {ffcreate a blank 1ist for the x-sects energies
##this Toop will only execute if the file opens
with open(’pb_radcap.csv’) as csvfile:
pbAbs = csv.reader(csvfile)

398 21. INTRODUCTION TO MONTE CARLO METHODS

for row in pbAbs: fhave for Toop that Toops over each Iline
lead_abs.append(float(rowl[1]))
lead_abs_energy.append(float(row[0]))
lead_absorption = np.array([lead_abs_energy,lead_abs])

Absorption and Scattering Data for Pb-208

102 -
100 4
)
f=4
Kl
‘g 102
O
104
—— Elastic Scattering
Radiative Capture
10-° T T T |
1073 1072 1071 10° 10t

Incoming Neutron Energy (MeV)

For the fission spectrum we will use the Watt fission spectrum. This spectrum is the relative
likelihood of a fission neutron being born with energy E. The fission spectrum is typically
denoted as x (E) and given by

X (E) = 0.453¢~1036E ginh (¢2.29E) ,

with E given in MeV.

040 - Fission Spectrum for U-235

0.35
0.30
0.25
0.20

0.15

Relative Likelihood

0.10

0.05}

4 6 8 10
Fission Neutron Energy (MeV)

0.00
0

o

To solve this problem we will have to change our algorithm somewhat. Firstly, we will
have to generate neutrons with energies sampled from the fission spectrum and then evaluate

21.9. REJECTION SAMPLING 399

the cross-sections at the neutron’s energy. Secondly, we will have to change how we scatter
particles. When a particle scatters we will have to sample a new energy for the post-scattered
neutron. We will tackle each of these next.

21.9 REJECTION SAMPLING

Previously, we discussed how to sample from a distribution by inverting the CDF and then
using a random number between 0 and 1 to give us the inverse CDF value corresponding to
our sample. With the fission spectrum we cannot do this easily. We do not have a CDF, we
just have a distribution that gives a relative likelihood of a fission neutron being born with a
certain energy. To sample from this we use rejection sampling. The idea of rejection sampling
is to draw a box around the PDF of the distribution we want to sample from, and pick points
in the box. If the point is below the curve, we accept the point, otherwise we reject it and
sample again. The effect of this is that we will get more points where the PDF is large, and
few points where the PDF is small.

We will demonstrate the idea of rejection sampling with our fission spectrum data. To do
this we find the maximum and the minimum of the function over the energy range from the
minimum energy in the lead scattering table to 10 MeV. This allows us to define the box, and
we randomly pick points in the box. Then we check to see if a point is above or below the
function.

Fission Spectrum for U-235

040 ® @ Accepted

Relative Likelihood

Fission Neutron Energy (MeV)

The histogram of the accepted samples should look like the fission spectrum we wanted
to sample. The histogram will not be perfect because we have a finite number of sam-
ples.

400 21. INTRODUCTION TO MONTE CARLO METHODS

180

Number in bin

0 2 4

Histogram of Accepted Points

6 8 10

Neutron Energy (MeV)

BOX 21.3 NUMERICAL PRINCIPLE

To generate samples from a distribution
where you cannot invert the CDF, F(x), you
can use rejection sampling. To generate a

sample, first pick a value X randomly be-
tween the minimum possible and maximum

possible value of x. Then pick a value y ran-
domly between 0 and the maximum value of
the PDE. If y < f(x), where f(x) is the PDE,
then X is accepted as a sample. Otherwise, X
is rejected, and we try again.

21.10 LOOKING UP ENERGIES

To look up the cross-section for lead at different energies we need a function that can re-
turn the value of the cross-section for a given energy. We can make this happen by finding the
energy in the data set that is closest to the input energy. This can be done using the NumPy
function argmin. This function returns the index of a NumPy array with the smallest value.
Therefore, we pass to argmin the difference between a target energy and the vector of ener-
gies in the table. In effect for a given neutron energy this will give the point in the table closest

to that energy. We define such an energy lookup function below.

In [16]: def energy_lookup(data_set, inp_energy):
"""look up energy in a data set and
return the nearest energy in the table

Input:

data_set: a vector of energies
inp_energy: the energy to lookup

Output:

index: the index of the nearest neighbor in the table

wnn

f#argmin returns the indices of the smallest members of an array

21.11. ELASTIC SCATTERING 401

fhere we’ll Took for the minimum difference
J#between the input energy and the table

index = np.argmin(np.fabs(data_set-inp_energy))
return index

21.11 ELASTIC SCATTERING

When a particle scatters elastically, the energy of the scattered neutron, E’, of a neutron
with an initial energy E is governed by a probability given by

1 /
P(E— E)=|Fi-a @E=E<E
0 otherwise

where

(A-1)2
o=——7,
(A+1)2

with A the mass of the nucleus. Therefore, we can sample the value of the scattered neutron’s
energy from a uniform distribution from o E to E. The neutron’s angle would also be a func-
tion of the scattered energy, in order to preserve momentum. For simplicity we will say that
the neutron’s angle after the scatter is isotropic, though this is not completely correct. The
proper scattering would give a particular value of u for a given energy change.

21.12 LEAD SHIELDING OF REACTOR ALGORITHM AND CODE

The algorithm will be an enhanced version of the one before that concerned neutrons strik-
ing an absorbing and scattering slab. We will assume isotropic, elastic scattering and radiative
capture as the only reactions in the lead, though this simplification could be modified using
the additional cross-sections for inelastic scattering, (n, 2n) reactions, etc. The algorithm now
looks like:

1. Create a neutron with p sampled from the uniform distribution p € [0, 1] and an energy
sampled from the fission spectrum via rejection sampling. Set x = 0.

2. Sample randomly a distance to collision, /, from the exponential distribution.

3. Move the particle to x =x +/u.

4. Check to seeif x is greater than the shield thickness, if so stop following the neutron. Check
ifx <0,ifsogoto 1.

5. Sample a random number s in [0,1], if s < X5/, the particle scatters and sample u €
[—1, I]and an energy in based on the formula above and go to step 3. Otherwise, continue.

6. Go back to 1 until we have run “enough” neutrons.

The resulting function is given below.

402 21. INTRODUCTION TO MONTE CARLO METHODS

In [17]: def slab_reactor(sig_s,sig_a,thickness,density,A,N,isotropic=False):
"""Compute the fraction of neutrons that leak through a slab

Inputs:

S71g_s: The scattering microscopic x-section array in form Energy,
X-sect

sig_a: The absorption microscopic x-section

thickness: Width of the slab

density: density of material in atoms per cc
A: atomic weight of shield

N: Number of neutrons to simulate
isotropic: Are the neutrons isotropic or a beam

Returns:
transmission: energies of neutrons that leak through
created: energies of neutrons that were born
alpha = (A-1.0)*x2/(A+1.0)**2
Sig_s = sig_s.copy()
Sig_a = sig_a.copy()
Sig_s[1,:] = density/1le24%Sig_s[1,:]
Sig_all,:] = density/le24xSig_all,:]
Jmake rejection box
min_eng = np.min([np.min(Sig_s[0,:1),np.min(Sig_al0,:1)1)
max_eng = np.max([np.max(Sig_s[0,:]1),np.max(Sig_al0,:]1)])
max_prob = np.max(np.max(expfiss(Sig_al0,:1)))
transmission = []
created = []
N = 1int(N)
for i in range(N):
ftsample direction
if (isotropic):
mu = random.random()
else:
mu=1.0
ffcompute energy via rejection sampling
rejected =1
while (rejected):
#pick x
x = random.uniform(min_eng,max_eng)
y = random.uniform(0,max_prob)
rel_prob = expfiss(x)
if (y <= rel_prob):
energy = X
rejected = 0
#initial position is 0

x =10
created.append(energy)
alive =1

while (alive):
Jget distance to collision
scat_index = energy_lookup(Sig_s[0,:],energy)
abs_index = energy_lookup(Sig_al0,:],energy)
cur_scat = Sig_s[1,scat_index]
cur_abs = Sig_all,abs_index]

21.12. LEAD SHIELDING OF REACTOR ALGORITHM AND CODE 403

Sig_t = cur_scat + cur_abs

1 = -math.log(l-random.random())/Sig_t

f#fmove particle

X += T*mu

#still in the slab

if (x>thickness):
transmission.append(energy)

alive =0
elif (x<0):

alive = 0
else:

#scatter or absorb
if (random.random() < cur_scat/Sig_t):
f#scatter, pick new mu and energy
mu = random.uniform(-1,1)
energy = random.uniform(alpha*energy,energy)
else: fabsorbed
alive =0
return transmission, created

This algorithm will be more time consuming to run because tracking each neutron now
requires more work (e.g., we have to perform rejection sampling to get an initial energy), and
the fact that the scattering ratio for lead appears to be high from the figure above. We will run
the algorithm with only one million neutrons. Before running the code, we need to compute
the number density for lead-208 because the algorithm takes the microscopic cross-section as
an input and multiplies that by a number density to get the macroscopic cross-section.

In [18]: N = le7
density = 11.34/208x6.022e23
thickness = 150
transmission,created = slab_reactor(lead_scattering,lead_absorption,
thickness,density, 208, N,
isotropic=True)

The output of the function is an array of the transmitted particle energies and the initial
energies. The distribution of the transmitted energies is

105 Fraction of Neutrons Transmitted = 0.0377827

10-2 10-1 100
Transmitted Neutron Energy (MeV)

404 21. INTRODUCTION TO MONTE CARLO METHODS

The result is that about 3.77% of the incident neutrons transmit through the shield (making
this not a very good shield). There are some interesting phenomenon that we can observe in
the transmitted neutrons. In particular, the peaks and valleys of the radiative capture cross-
section are mimicked in the transmitted neutron energies.

The neutrons that entered the slab, as function of energy as sampled from the fission spec-
trum, are shown in the next histogram. With a logarithmic scale, the fission spectrum will
look a bit different.

Fission Neutron Energies

105

104

103

102

10!

100
10-3 10-2 10-! 100 10!

Initial Neutron Energy (MeV)

As we would expect, the transmitted energies are a blend of the incident energies and the
cross-sections. We could modify this problem by adding other materials, making the shield
thicker, or other modifications to improve the shield if we desired. The basics of the algorithm
will not change.

CODA

We have demonstrated that we can solve complicated problems by “rolling dice” if we roll
many, many dice and move particles around based on these random numbers. One feature
of this approach is that it requires little in the way of mathematical sophistication, with the
tradeoff that the convergence is slow (remember that the noise in the solution decays as the
number of samples to the negative one-half power). Nevertheless, Monte Carlo methods are
attractive and they are widely used in nuclear engineering and other fields. In the next two
chapters we will expand our Monte Carlo capabilities. In the next chapter we will go over
how to reduce the run-to-run variability of Monte Carlo calculations, and provide ways to
estimate the scalar flux of neutrons in a system.

FURTHER READING

The Monte Carlo method is a rich subject in nuclear engineering. For a more detailed cov-
erage of the topic we encourage the reader to read one of the monographs devoted to the

PROBLEMS 405

topic. Two good examples are the recent book by Dunn and Shultis [25] or the work of Kalos
and Whitlock [26].

PROBLEMS

Short Exercises

21.1.

21.2.

21.3.

Consider a beam of neutrons striking a slab of thickness 5 cm and X, = 1.0 cm~!. Com-
pute the transmission fraction and time how long the calculation takes using N = 10°
neutrons and several different scattering ratios: 0,0.1,0.5, 0.9, 1.0. Compare your com-
puted transmission fractions as a function of scattering ratio to the expected trend as
the scattering is increased.

Modify the shielding code to consider neutrons of a single energy impinging on the
shield and to tally the energy of the absorbed neutrons. Assume the neutrons are all
2.5 MeV and are produced from the fusion of deuterium. Plot the distribution of trans-
mitted and absorbed neutrons with a large enough number of sampled neutrons.

The Maxwell-Boltzman distribution, often called just a Maxwellian distribution, gives
the distribution of speeds of particles in a gas by the formula

[/ m \3 5 _m?
fw) = (2;1?) dmvce 2T

where m is the mass of the particles, T is the temperature, and k is the Boltzmann
constant. Consider a gas of deuterium at k7 = 1 keV = 1.60218 x 10719]. Sample parti-
cle speeds from the Maxwellian using rejection sampling. From your sampled points,
compute the mean speed and the square-root of the mean speed squared (i.e., compute
the mean value of the speed squared and then take the square root, aka the root-mean
square speed). The mean speed should be

/wdvvﬂv) = /3T
0 Tm

and the root-mean square speed should be

//mdvvzf(v)z,/%—T.
0 m

Compute these quantities using sample numbers of N = 10, 102, 10%, 10%, 10° and dis-
cuss your results.

406 21. INTRODUCTION TO MONTE CARLO METHODS

Programming Projects

1. Monte Carlo Convergence

In this exercise you will demonstrate the standard deviation of the estimates decays as
N~12_ Solve the problem of a beam striking an absorbing slab, Xy = ¥, = 1.0 cm~!, with
thickness 3 cm. Solve this problem with N = 102,103, 10%, 10°, 10°. At each value of N estimate
the solution 10 times, and take the standard deviation of the estimates. Plot the standard
deviation as a function of N on a log-log scale. Compare your results to the expected trend.

2. Track-Length in Sphere

Consider a solid sphere of radius R that has neutrons born isotropically in angle and uni-
formly in space inside of the sphere. Assuming that no neutrons collide in the sphere, using
Monte Carlo compute the average distance the neutron travels inside of the sphere before
exiting the sphere. Compute this for several values of R and see if you can find a trend.

CHAPTER

22

Monte Carlo Variance Reduction and
Scalar Flux Estimation

OUTLINE

22.1 Implicit Capture and Particle 22.4 Complete Monte Carlo Code for
Weights 408 Slabs 421
22.1.1 A Figure of Merit 411 Coda 423

22.2 Estimating Scalar Flux 412 Problems . 423
22.2.1 Collision Estimators 412 Sl Bt 423

Programming Projects 423
1. Iron-Shielded Reactor:
Implicit Capture 423
2. Iron-Shielded Reactor:
Scalar Flux 423

22.2.2 Track-Length Estimators 414
22.2.3 Geometric Dependence of

the FOM 416

22.3 Stratified Sampling 417

“Man, this place is way too analog.”

—“Trotter” in the television show The Upright Citizens Brigade

CHAPTER POINTS

e Abandoning analog tracking of simulated e To estimate scalar fluxes we use one of two
particles can have benefits for our techniques based on either collisions or the
calculations. track-length of particles in a mesh cell.

e Implicit capture allows neutrons to never e We can play games with our sampling to
be absorbed, rather we change a weight randomly sample “better”.

associated with the simulated particle.

In the last chapter we talked about how to construct particles using a computer program that
were analogs of real neutrons moving through a system. We saw that in many cases it took
very many simulated neutrons to get reasonable answers. In this chapter we will see that by
making our simulated particles behave in a non-analog way we can improve our answers.

Computational Nuclear Engineering and Radiological Science Using Python
DOI: 10.1016/B978-0-12-812253-2.00025-X 407 Copyright © 2018 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-812253-2.00025-X

408 22. MONTE CARLO VARIANCE REDUCTION AND SCALAR FLUX ESTIMATION

We will not improve the convergence rate of Monte Carlo methods. Recall that the statistical
error as measured by the standard deviation of the estimate converges as O(N~!/2), where N
is the number of simulated particles. This means that the standard deviation of our estimate
is, to leading order, CN —1/2 'What variance reduction does is reduce the magnitude of C, the
constant in the convergence.

22.1 IMPLICIT CAPTURE AND PARTICLE WEIGHTS

In problems where radiative capture is important, it can be beneficial to remove this
absorption process from the types of interactions considered via a process called implicit
capture. To do this we first introduce a particle weight, w. The weight is defined so that
each particle represents a collection of neutrons, rather than a single one. Consider a neutron
source in a volume, Q, with units neutrons per cm? per second. We will use N particles each
with a weight w; to represent this source in steady state calculation. The weights must satisfy

N
> w; =/ v Q.
i=1 v

From this relation we see that the units of w; are neutrons per second.

To use implicit capture, as a particle moves a distance s in a material, we reduce its weight
by a factor of exp(— X, s). This is done because this factor represents the likelihood of the neu-
tron traveling a distance s without having a radiative capture reaction. With implicit capture,
our simple shielding calculation has its procedure changed to be

1. Create a counter, 1 = 0 to track the number of neutrons that get through.

2. Create neutron with p sampled from the uniform distribution u € [0, 1]. Set x = 0. Set the
particle’s weight to be w = 1/N.

Sample randomly a distance to scatter, /, from the exponential distribution.

Move the particle to x = x + .

Reduce the weight of the particle by a factor exp(—X, s).

Check to see if x > 3. If so t =1 + w, and go to 2. Otherwise, if x < 0 go to step 2.

7. Go back to step 3.

oW

A couple of notes on this new algorithm. Now each particle has a weight and that is what we
sum up to get the fraction of neutrons that leak out per unit time. Also, when we sample a
distance to collision, we only sample a distance to scatter.

One drawback of implicit capture is that it can result in the tracking of particles that have
a very small weight. After traveling a large distance, the weight could be much less than
the initial weight and the particle could contribute only a small amount to the result. This
is wasted computational effort tracking these low weight particles; it would be better to stop
tracking them. For this purpose we introduce a cutoff weight. After decreasing from the initial
weight by more than the cutoff, we treat the particle using analog tracking so that it can die
via absorption.

22.1. IMPLICIT CAPTURE AND PARTICLE WEIGHTS 409

The code to implement implicit capture for the slab transmission problem is below.

In [1]: def slab_transmission(Sig_s,Sig_a,thickness,N,
isotropic=False,
implicit_capture = True,
cutoff = 1.0e-3):
"""Compute the fraction of neutrons that leak through a slab

Inputs:

Sig_s: The scattering macroscopic x-section
Sig_a: The absorption macroscopic x-section
thickness: Width of the slab

N: Number of neutrons to simulate

isotropic: Are the neutrons isotropic or a beam
implicit_capture: Do we run implicit capture
cutoff: At what Tlevel do we stop implicit capture
Returns:
transmission: The fraction of neutrons that made it through
imp_input = implicit_capture
Sig_t = Sig_a + Sig_s
iSig_t = 1.0/Sig_t
iSig_s = 1.0/(Sig_s + 1.0e-14)
transmission = 0.0
N = int(N)
initial_weight = 1.0/N
for i in range(N):
if (isotropic):
mu = random.random()
else:
mu = 1.0
x =0
alive =1
weight = initial_weight
while (alive):
if (weight < cutoffxinitial_weight):
implicit_capture = False

if (implicit_capture):
ffget distance to collision
1 = -math.log(l-random.random())*iSig_s
else:
ffget distance to collision
1 = -math.log(l-random.random())*iSig_t
f#tmake sure that 1 is not too large
if (mu > 0):
1T =min(L1,(3-x)/mul)
else:
T =min(LT,-x/mul)
f#move particle
X += T*mu
if (implicit_capture):
weight *= np.exp(-1xSig_a)
#still in the slab?
if (math.fabs(x-thickness) < 1.0e-14):
transmission += weight

alive = 0

elif (x<= 1.0e-14):
alive =0

else:

if (implicit_capture):
mu = random.uniform(-1,1)
else:
fhscatter or absorb
if (random.random() < Sig_s*iSig_t):
fkscatter, pick new mu
mu = random.uniform(-1,1)
else: ffabsorbed

410 22. MONTE CARLO VARIANCE REDUCTION AND SCALAR FLUX ESTIMATION

alive =0
implicit_capture = imp_input
return transmission

The example problem of a beam incident on a pure absorber should be exact using implicit
capture and only one particle.

In [2]: N =1
Sigma_s =
Sigma_a
thicknes

0

=2.0

S 3
transmissi

o I rvo

n = slab_transmission(Sigma_s,Sigma_a, thickness,
N, isotropic=False, implicit_capture=True)
print("The fraction that made it through using implicit capture was",
transmission, "with a percent error of",
np.abs(transmission - np.exp(-6))/np.exp(-6)*100,"%")
transmission = slab_transmission(Sigma_s,Sigma_a, thickness,
N, isotropic=False, implicit_capture=False)
print("The fraction that made it through using analog tracking was",
transmission, "with a percent error of",
np.abs(transmission - np.exp(-6))/np.exp(-6)*100,"%")

The fraction that made it through using

implicit capture was 0.00247875217667 with a percent error of 0.0 %
The fraction that made it through using

analog tracking was 0.0 with a percent error of 100.0 %

Indeed, implicit capture gave the correct answer For isotropic incident neutrons on the
same slab, we expect implicit capture to be better than analog tracking, but not exact. In this
test we will use 1000 simulated particles.

In [3]: true_sol = 0.00031825746369040646727
transmission = slab_transmission(Sigma_s,Sigma_a, thickness,
N, isotropic=True, implicit_capture=True)
print("The fraction that made it through using implicit capture was",
transmission, "with a percent error of",
np.abs(transmission - true_sol)/true_solx100,"%")
transmission = slab_transmission(Sigma_s,Sigma_a, thickness,
N, isotropic=True, implicit_capture=False)
print("The fraction that made it through using analog tracking was",
transmission, "with a percent error of",
np.abs(transmission - true_sol)/true_solx100,"%")

The fraction that made it through using implicit capture was 0.000308930894796
with a percent error of 2.93051065849 %

The fraction that made it through using analog tracking was 0.0
with a percent error of 100.0 %

Implicit capture reduces our error from 100% to less than 5% with only 1000 particles.
Previously, we needed about 2 million particles to get that accuracy.

The solution to the problem with scattering is below. In this figure we compare the results
using the two approaches and different numbers of particles, up to 10°.

22.1. IMPLICIT CAPTURE AND PARTICLE WEIGHTS 411

Convergence of Slab Transmission

0.0020 |- ®—@ implicit capture
— analog
E 0.00I5}
€
= 0.0010+
c
2
g
i
0.0005 |
0.0000L a
100 101 102 103 104 105 106

Number of Simulated Neutrons

These results indicate that implicit capture converges to the correct solution with many
fewer simulated particles. A reasonable question is whether extra effort in performing im-
plicit capture (because particles are not absorbed above the cutoff), is worth the cost.

22.1.1 A Figure of Merit

A way of measuring the benefit of a variance reduction technique is through the quantity
called the figure of merit (FOM)

Fom— L
o-T

It should be said that this is a figure of merit, not the figure of merit because others are pos-
sible. In the expression for FOM, o2 is the variance in an estimate and 7 is the time it takes
to get the estimate. The benefit of the FOM is that it gives us a way to decide if the cost of a
variance reduction technique is worth any increase in the computational time.

We can try this on our slab problem. We will run the problem 20 times with each num-
ber of particles, compute the time to solution, and the variance of the runs, and then plot
the FOM. Remember that a larger number is better (lower variance and/or time). We expect
that the implicit capture method should be better because it appears to give less error (see
above) and the exponentials we evaluate should not be costly relative to the particle track-
ing.

In [4]: import time
N_parts = [10,100,1000,2000,4000,8000,16000, 32000, 64000, 128000]
Ntimes = 20
solution_implicit = np.zeros((len(N_parts),Ntimes))
solution_analog = np.zeros((len(N_parts),Ntimes))
times_implicit = np.zeros(len(N_parts))
times_analog = np.zeros(len(N_parts))
var_implicit = np.zeros(len(N_parts))
var_analog = np.zeros(len(N_parts))
Sigma_s = 0.75
Sigma_a 2.0 - Sigma_s
count =
for N in N_parts:
for replicate in range(Ntimes):

[

412 22. MONTE CARLO VARIANCE REDUCTION AND SCALAR FLUX ESTIMATION

tmp = time.clock()
solution_implicitlcount,replicate] = slab_transmission(Sigma_s,Sigma_a,
thickness, N,
isotropic=True,
implicit_capture=True,
cutoff=le-2)
times_implicitlcount] += (time.clock()-tmp)/Ntimes
tmp = time.clock()
solution_analoglcount,replicate] = slab_transmission(Sigma_s,Sigma_a,
thickness, N,
isotropic=True,
implicit_capture=False)
times_analoglcount] += (time.clock()-tmp)/Ntimes
var_implicitlcount] = np.std(solution_implicitlcount,:])*x2
var_analoglcount] = np.std(solution_analoglcount,:])x*2

count +=1
1010 Figure of Merit for Slab Transmission
&
% 109 —@ |mplicit Capture
g *—#* Analog
B
.
108 . .) ‘ ‘
10! 102 103 104 105 106

Number of Simulated Neutrons

In this example, we see that the FOM for implicit capture is about an order of magnitude
larger than analog tracking. This means that implicit capture can get the same variance as
analog tracking in one-tenth the time.

22.2 ESTIMATING SCALAR FLUX

Now that we have introduced our first variance reduction technique, we will discuss scalar
flux estimators before moving on to other techniques. The first that we will consider is the
collision estimator.

22.2.1 Collision Estimators

Consider the reaction rate in a volume, defined by

R :f dV X(1r)¢(r).
1%

22.2. ESTIMATING SCALAR FLUX 413

If inside the region the cross-section is constant, we can compute the average scalar flux via
the relation

-1 J R
¢—V/V V¢>(1‘)—V—Et~
Therefore, if we sum, or tally, the weight from each collision inside the volume and divide
that count by the total cross-section, we get an estimate of the scalar flux.

Notice, however, that we cannot use this in voids. We can, however, use other processes to
estimate the scalar flux. For example, we could compute the scattering rate and divide by X,
for implicit capture this is what we will do.

The slab problem from above will be modified for this purpose. We will introduce a mesh
onto the problem and count the reactions in each mesh cell. Also, instead of a source on
the boundary we will add a volumetric source to the problem. The source will be uniform
between a and b. Therefore, we need to sample a position of the neutron’s birth as well as an
anglein p e [—1, 1].

We hold off showing the code for the collision estimator and all of the other features we
discuss until the end of the chapter in Section 22.4. This is done to avoid re-listing the code
repeatedly with only minor changes.

If we run a calculation with the collision estimator on a slab of thickness 3 with N = 1000,
Y5 =2.0, X3 =0.5, and the source between 1 to 2, we get the following results for analog
tracking and implicit capture with 100 mesh cells.

Scalar Flux from Collision Estimator

— Implicit Capture
\ — ~ Analog

0.5

Note that using implicit capture, the collision estimator uses only scattering collisions.
If we use fewer mesh cells, 30 in this case, the answer looks better because we are averaging
the scalar flux over a larger volume.

414 22. MONTE CARLO VARIANCE REDUCTION AND SCALAR FLUX ESTIMATION

Scalar Flux from Collision Estimator

20
15+
< 1.0
05}
— Implicit Capture
= = Analog
0.0 ! ! ! ! ! |
0.0 0.5 1.0 1.5 2.0 2.5 3.0

It is hard to tell which of the two methods (implicit capture or analog) is doing better. The
figure of merit can help, but we need to select what quantity to measure the variance in. We
could consider the variance in the scalar flux estimate in any of the cells as the quantity to
estimate the variance in. In the following figure we look at the variance in the scalar flux at
the left edge.

106 Figure of Merit for Flux Estimation

—@ |mplicit Capture
— Analog

105 |

Figure of Merit

104 ! ! ! ! |
10! 102 103 104 105 10¢

Number of Simulated Neutrons

On this problem there are few collisions near the edge of the problem, so we do not see a large
difference in the FOM. We expect implicit capture to outperform analog tracking because
analog tracking will kill particles before they reach the edge of the problem. Implicit capture
allows more particles to get to the edge, and therefore the estimation of the scalar flux will
be better. However, we need to use something other than collisions to estimate the scalar flux
here.

22.2.2 Track-Length Estimators

Another type of estimator for the scalar flux uses the definition of the scalar flux to esti-
mate it. Recall that the scalar flux is the rate-density at which neutrons generate track length.

22.2. ESTIMATING SCALAR FLUX 41 5

Therefore, for a given cell, every time a neutron moves inside it we sum the weight of the
neutron times its path length in the cell. We then divide this by the volume of the region. We
can write this in equation form as

- 1 .
o= v Z weight x pathlength.

neutrons

For implicit capture, the weight is changing while the neutron moves in the region. There-
fore, we integrate the weight over the track to decide the contribution. A neutron traveling a
distance s inside a region will contribute

§ / 1
contribution =f ds'woe™ > = —wg(1 — e~ >2%),
0 Xa

where wy is the initial weight before moving the track-length s.

To implement this estimator we will reformulate how we do our tracking. We will make
our method work by checking the distance to collision against the distance to the edge of
a cell. Whichever distance is shorter, that event occurs: either the neutron has a collision or
it moves to the next cell and a new distance to collision is sampled. This means that the
neutrons will step through the problem cell by cell. This will slow down the code, because
now the particles can only take steps limited by the width of the mesh cells.

Comparing the figure of merit of the track-length estimator to analog Monte Carlo we see
that, once again, on the edge of the problem the implicit capture result has a higher FOM.

105 Figure of Merit for Track-Length Estimation

104 L

Figure of Merit

©—@ |mplicit Capture
— Analog

103 . s \ \ |
10! 102 103 104 105 106

Number of Simulated Neutrons

Moreover, the FOM for track-length estimation is higher than that for the collision esti-
mator. In general, it can be beneficial to use both estimators for the scalar flux. By looking
at discrepancies between the two methods we can tell where the statistical variance in the
problem might be high.

416 22. MONTE CARLO VARIANCE REDUCTION AND SCALAR FLUX ESTIMATION

22.2.3 Geometric Dependence of the FOM

As alluded to above, the Figure of Merit can change based on where we look in the prob-
lem. In particular, when neutrons have to cross an absorber to get to a particular cell, few of
them will do that with analog tracking. Moreover, in a region of the problem where there are
many neutrons, analog tracking may have low variance. We can demonstrate this by defin-
ing a problem that has a slab of thickness 3 cm Y5 = 1 cm~! everywhere and £, = 0.1 cm™!
between x = 1 and x =2, and ¥, =2 cm~! otherwise. This problem has a strong absorber at
the edges and a scatterer in the middle. We will source neutrons in the middle between x = 1
and x = 2. The following figure shows the estimate for the scalar flux in this problem using
10* simulated particles.

Scalar Flux from Track Length Estimator

— Implicit Capture
6 - Analog

The figure of merit for this problem is quite different in the middle versus the edge.

Figure of Merit for Track-Length Estimation

105 | ®—@ |mpl. Capture, Edge
— Analog, Edge
® @ Impl. Capture, Center
104 L * % Analog, Center
£
]
>
5 103 L
2
3
.80
[V
102 L ,’(\ *
, I
¥ox e
\
ol e */"\ N A
Se % see® e
10! 102 103 104 105 106 107 108 10°

Number of Simulated Neutrons

22.3. STRATIFIED SAMPLING 417

In the middle of the problem there are many particles because that is where the source is.
Furthermore, the center region is scattering dominated so the difference between analog and
implicit capture is small in terms of the estimate. At the edge, the neutrons have to cross at
least two mean-free paths; this results in implicit capture having a higher FOM. This result
tells us that depending on what one cares more about, the Monte Carlo methods chosen may
have to change.

22.3 STRATIFIED SAMPLING

The idea behind stratified sampling is to control the randomness in the simulation. We
want to use random numbers to simulate neutron interactions, but there is no guarantee that
random numbers will not be close together. Stratified sampling is a way to spread out the
numbers.

It is easiest to think about stratification in terms of a single random variable uniformly
distributed between 0 and 1. There are several possible formulations, but the most straight-
forward to use divides the range between 0 and 1 into S bins of equal size. We then pick a
bin at random by generating a random integer between 0 and S — 1. Then inside that bin we
randomly pick a location. If we perform this sampling so that each bin has the same number
of samples, we expect that random samples will do a better job of filling the space between 0
and 1 than simple random sampling.

For this example, the code to produce the stratified samples is straightforward.

In [5]: def strat_sample(N,S):
N=N+(N9%S)

assert(N%S ==)

dS =1.0/S

bins = np.zeros(N,dtype=int)
count =0

for i in range(N//S):

bins{count:count+S] = np.random.permutation(S)

count += S
place_in_bin = np.random.uniform(-0.5%*dS,0.5*dS,N) + (bins+0.5)*dS
return place_in_bin

If we run an example with 100 samples and different numbers of strata, the histogram of
the samples that we get is

418 22. MONTE CARLO VARIANCE REDUCTION AND SCALAR FLUX ESTIMATION

100 Strata: Mean Abs. Dev. 0.0 10 Strata: Mean Abs. Dev. 0.0

Each of these histograms has 10 bars in the range from 0 to 1. Using 100 or 10 strata has
the samples uniformly distributed among these bars. The mean absolute deviation from the
mean for each of the bars is reported in the figure; this is a measure of how far away from 10
each of the bar heights are. When we have fewer bins, or do not use stratification, the samples
are not uniformly distributed and the average deviation from 10 is larger. This means that we
sample some parts of space more than others. The result for a particle transport calculation
means that there could be more variance if we use these unstratified samples in our Monte
Carlo code. Note that inside of the bins in this figure, the samples are randomly chosen. This
means we still have randomness, it is just controlled to live in a particular bin.

Using stratified sampling we can decrease the variance in our solution. This can be most
effective when the number of bins is equal to the number of samples. One can show that this
is the best case scenario for filling out the range because the farthest apart two samples can
be is twice the bin width, and maximizing the number of bins, minimizes the bin width.

Stratified sampling applied to the problem with a scatterer in the middle and an absorber
on the edges, results in the following FOM. The stratified results include the implicit capture
while the analog do not. In this case we used stratified sampling to choose the location where
the neutrons are born in the source region. This is will make the neutron birth locations more
uniform.

22.3. STRATIFIED SAMPLING 419

105 Figure of Merit for Stratified Sampling

104 W
©—@ Stratifed, Edge

3 103)
.,Z_o *—% Analog, Edge
o ® @ Stratifed, Center
Eo 102 L * % Analog, Center
- ke /‘/’**"*—_ _ 7
101 =~y = :,# R S o o
- -e - o
100 ! L |
102 103 104 105

Number of Simulated Neutrons

From these results, we can see that stratification provides an improvement in the FOM over
previous sampling strategies, especially in the center. The stratification makes the neutrons
be born more uniformly in the center of the problem. This makes the implicit capture results
competitive with analog tracking. For the particles at the edge, the stratification also provided
a benefit over the results from implicit capture with standard sampling.

We can generalize stratified sampling to multiple dimensions, though the number of strata
increases as S where D is the number of dimensions, if the number of strata in each dimen-
sion is S. This can make it difficult to match the number of samples to the number of strata.
The following code gives a stratification in two-dimensions. It will increase the number of
samples to match the desired number of strata, if needed. It also allows the number of strata
in each dimension to differ.

In [6]: def strat_sample_2D(N,S1,S2):
"""Create N samples in SI1*S2 strata.

Inputs:

N: number of samples

S1: number of strata in dimension 1

S2: number of strata in dimension 2

Returns:

samples: N by 2 numpy vector containing the samples

won

#number of bins is S1*S2
bins = S1%S2
f#make sure we have enough points
if (N<bins):
N = bins
N -= (N % bins)
Num_per_bin = N//bins
assert(N % bins == 0)
samples = np.zeros((N,2))
count = 0;
for bin_x in range(S1)
for bin_y in range(S2):
for i in range(Num_per_bin)
center = (bin_x/S1 + 0.5/S1,bin_y/S2 + 0.5/S2)
samplesfcount,0] = center[0] + random.uniform(-0.5,0.5)/S1
samples[count,1] = center[1] + random.uniform(-0.5,0.5)/S2
count += 1

return samples

420 22. MONTE CARLO VARIANCE REDUCTION AND SCALAR FLUX ESTIMATION

Sampling a 2-D space with 5, 10, and 50 strata in each dimension (for a total of 52 =725,
10? = 100, and 25% = 2500 strata), all with 2500 samples, are compared with unstratified sam-
pling in the following figure.

107 strata

In this figures we see the benefit of stratification in 2-D. The 50 strata case fills the space
nicely without the clumps that can be seen in the unstratified example. As such the 52 and
the 10% strata cases do not appear to be much of an improvement over the unstratified
case.

We can apply 2-D stratification by using it to pick the initial position and p for the source
particles in the slab. This should decrease the variance in our calculation when we increase
the number of neutrons sampled to have a large number of strata. On the problem with a
scatter in the middle and absorber on the edge, the FOM demonstrates that 2-D stratification
does best when the number of simulated neutrons is high.

22.4. COMPLETE MONTE CARLO CODE FOR SLABS 421

Figure of Merit for 2-D Stratified Sampling

105 _
104 M‘
o i/.\'\-ﬁhﬁ—"**
& 103 @@ Stratifed, Edge
% *—* Analog, Edge
o ® @ Stratifed, Center
EO 1024 % Analog, Center
Ao
[R .®--o
10 L ~ A
N - —_——
® -
100 L .)
102 103 104 105

Number of Simulated Neutrons

In these results, the FOM for stratified sampling is consistently higher at the edge of the
problem when using analog tracking compared with analog tracking. It does appear, how-
ever, that in the center there is less benefit due to the large number of neutrons that are born
here.

22.4 COMPLETE MONTE CARLO CODE FOR SLABS

The following code listing has all of the features discussed in this chapter.

def slab_source(Nx,Sig_s,Sig_a,thickness,a,b,N,Q,
implicit_capture = True,
cutoff = 1.0e-3,
stratified = [1,11):
"""Compute the fraction of neutrons that leak through a slab

Inputs:

Nx: The number of grid points

Sig_s: The scattering macroscopic x-section
Sig_a: The absorption macroscopic x-section
thickness: Width of the slab

a,b: Endpoints of Source

N: Number of neutrons to simulate
implicit_capture: Do we run implicit capture

cutoff: At what Tevel do we stop Timplicit capture

stratified: Use stratified sampling in space and angle
Specify a list of length two with the number of
strata in each dimension; default [1,1] for unstratified

Returns:
transmission: The fraction of neutrons that made it through
scalar_flux: The scalar flux in each of the Nx cells
scalar_flux_tl: The scalar flux in each of the Nx cells
from track length estimator
X: The value of the cell centers in the mesh
imp_input = implicit_capture

dx = thickness/Nx

X = np.linspace(dx*0.5, thickness - 0.5xdx,Nx)
scalar_flux = np.zeros(Nx)

scalar_flux_tl = np.zeros(Nx)

assert (Sig_s.size == Nx) and (Sig_a.size == Nx)

422

22. MONTE CARLO VARIANCE REDUCTION AND SCALAR FLUX ESTIMATION

Sig_t = Sig_a + Sig_s
iSig_t = 1.0/Sig_t
iSig_s 1.0/(Sig_s+1.0e-14)
iSig_a 1.0/(Sig_a+1.0e-14)
leak_left = 0.0
leak_right =0
N = 1int(N)
#make a vector of the initial positions and mus
samples = strat_sample_2D(N,stratified[0],stratified[1])
xs = samples[:,0]*(b-a) + a ffadjust to bounds of source
mus = (samplesl[:,11-0.5)%2 #shift to range -1 to 1
N = int(xs.size)
fthe initial weight does not change
init_weight = Qxthickness/N
for i in range(N):
mu = mus[i]
x = xs[i]
alive =1
weight = init_weight
f#twhich cell am I in
cell = int(x/dx)
implicit_capture = imp_input
while (alive):
if (weight < cutoff*init_weight):
implicit_capture = False
if (implicit_capture):
1 = -math.Tog(1l-random.random())*iSig_s[cell]
else:
ffget distance to collision
1 = -math.log(l-random.random())*iSig_tl[cell]
fcompare distance to collision to distance to cell edge
distance_to_edge = ((mu > 0.0)*((cell+l)*dx - x) +
(mu<0.0)*(x - cellxdx) + 1.0e-8)/math.fabs(mu)
if (distance_to_edge < 1):
1 = distance_to_edge
collide =0
else:
collide =1
x += 1xmu ffmove particle
fscore track length tally
if (implicit_capture):
scalar_flux_t1[cell] += weight*(1.0 -
math.exp(-1%Sig_alcell1]))*iSig_alcell]

else:
scalar_flux_t1[cell] += weightx]

if (implicit_capture):
weight *= math.exp(-1xSig_alcell])

#still in the slab?

if (math.fabs(x-thickness) < 1.0e-14) or (x > thickness):
leak_right += weight

alive =0
elif (x<= 1.0e-14):
alive =0
leak_left += weight
else:

cell= int(x/dx) #compute cell particle collision is in
if (implicit_capture)
if (collide):
mu = random.uniform(-1,1)
scalar_flux[cell] += weightxiSig_s[cell]/dx
else: ffscatter or absorb
scalar_flux[cell] += weightxiSig_tlcell]/dx
if (collide) and (random.random() < Sig_s[cell]lxiSig_t[cell]):
fscatter, pick new mu
mu = random.uniform(-1,1)
elif (collide): #absorbed

CODA 423

alive =0
return leak_left,leak_right, scalar_flux, scalar_flux_t1/dx, X, N

CODA

In this chapter we have expanded our Monte Carlo toolkit to estimate the scalar flux and
to make better estimates via Monte Carlo. These techniques, along with those in the previous
chapter, give us all the tools we need to solve source-driven neutron transport problems via
Monte Carlo. There is still an important class of problems that we do not have to tools to solve,
yet: k-eigenvalue problems. We will discuss Monte Carlo techniques for these problems in the
next chapter.

PROBLEMS

Short Exercises

22.1. Repeat Short Exercise 21.3 using the 2-D stratified sampling to pick the proposal points
with the number of strata being 52, 10?, 50%, 100?, and 200%. Only keep the accepted
proposed points (this will mean that you get fewer samples than the number of strata).
How do these results compare to standard rejection sampling?

Programming Projects

The problems below ask you to modify the iron-shielded reactor example from the previ-
ous chapter to include the methods discussed in this chapter.

1. Iron-Shielded Reactor: Implicit Capture

Modify the iron shielding code to include implicit capture. Compare the analog to the
implicit capture results with N = 10%,10°, 10%, and 10°. Compute the figure of merit for the
average transmitted energy per neutron for these values of N.

2. Iron-Shielded Reactor: Scalar Flux

Inside the shield compute the scalar flux of neutrons in the range 100 keV to 1 MeV and
the scalar flux of neutrons above 1 MeV. Compare the collision estimator and track-length
estimator for several different mesh resolutions.

CHAPTER

23

Monte Carlo Eigenvalue Calculations

OUTLINE

23.1 Fission Cycles 425 Problems 435
23.2 Fission Matrix Methods 430 Programming Projects 435
Coda 435 1. Pure Plutonium Reactor 435

‘Maybe that's what it is,” said Somers. “That’s a useful way of putting it. | can't help my aura colliding,
canl?”

-D.H. Lawrence Kangaroo

CHAPTER POINTS

e We can use Monte Carlo to calculate the properly defining weights, the ratio of
k-eigenvalues of a nuclear system. neutrons in successive generations is the

e One approach is to record where simulated estimate of kef.
neutrons have a fission event, and use e Another approach forms a matrix based on
those fission sites as the birthplace for a Monte Carlo simulation. The eigenvalues
neutrons in the next generation. By and eigenvectors of this matrix are the

k-eigenvalues of the system.

23.1 FISSION CYCLES

As we have discussed, we often want to compute the multiplication factor, i.e., the
k-eigenvalue, for a system under consideration. We can use Monte Carlo to do this. One
definition of the multiplication factor is the following limit

of neutrons in generation n

kefe = lim . - ,
n—oo # of neutrons in generation (n — 1)

where a generation is a step of the chain reaction, for example the neutron that started the
chain reaction is in generation 1 and the fission neutrons created from generation 1 neutrons

Computational Nuclear Engineering and Radiological Science Using Python 425

DOI: 10.1016/B978-0-12-812253-2.00026-1 Copyright © 2018 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-812253-2.00026-1

426 23. MONTE CARLO EIGENVALUE CALCULATIONS

are in generation 2, and so on. To complete this calculation we need to track neutrons in
generations to compute the ratio of neutrons in successive generations. To do this we use
fission cycles: that is we simulate generations of neutrons by tabulating where fissions take
place.

The idea of a fission cycle is that we have all of the fission locations from the previous
generation of neutrons. We then source neutrons from these locations with total weights that
sum to the number of fission sites times v, the average number of neutrons born per fission
event. We then track these neutrons to get the fission sites for the birth of neutrons in the next
generation. The ratio between the sum of the weights of neutrons born from fission between
these generations is an estimate of the eigenvalue. If we run enough cycles, we can get an
estimate of the eigenvalue.

One issue with this approach is the starting of the calculation. We typically will not know
where the fission sites are for the first generation. Therefore, we need to guess the initial
fission sites. If we guess these sites at random, and then run several cycles it is reasonable to
believe that the initial distribution of fission sites will not matter. In other words the fission
sites will relax to an equilibrium. The random initial sites are analogous to the initial guess
we used for the eigenvector when we used power iteration to solve diffusion eigenvalue
problems.

In practice, what we do is start with an initial distribution of neutrons randomly chosen in
the system. We then take some number of fission cycles that we do not use to estimate kg
These initial cycles that we do not use are called inactive cycles. The active cycles are those
cycles after the inactive cycles. From the estimate of k¢ from each cycle we compute the mean
kot and the standard deviations.

In the following code the value of ke for each fission cycle is calculated for a homogeneous
slab. It returns the estimate of k. for both in the inactive and active cycles.

In [1]: def homog_slab_k(N,Sig_t,Sig_s,Sig_f,nu, thickness,
inactive_cycles = 5, active_cycles = 20):
Sig_a = Sig_t - Sig_s
iSig_t = 1/Sig_t
iSig_a = 1/Sig_a
#initial fission sites are random
fission_sites = np.random.uniform(0,thickness,N)
positions = fission_sites.copy()
weights = nuxnp.ones(N)
mus = np.random.uniform(-1,1,N)
old_gen = np.sum(weights)
k = np.zeros(inactive_cyclestactive_cycles)
for cycle in range(inactive_cycles+active_cycles):
fission_sites = np.empty(1)
fission_site_weights = np.empty(1)
assert(weights.size == positions.size)
for neut in range(weights.size):
#grab neutron from stack
position = positions[neut]
weight = weights[neut]
mu = mus[neut]
alive =1
while (alive):

23.1. FISSION CYCLES 427

Jcompute distance to collision

1 = -math.Tog(1l-random.random())*iSig_t

#move neutron

position += 1*mu

ffare we still in the slab

if (position > thickness) or (position < 0):
alive =0

else:
Jfdecide if collision is abs or scat
coll_prob = random.random()
if (coll_prob < Sig_s*iSig_t):

fscatter
mu = random.uniform(-1,1)
else:
fiss_prob = random.random()
alive =0
if (fiss_prob <= Sig_f*iSig_a):
#rission
fission_sites = np.append(fission_sites,position)
fission_site_weights
= np.append(fission_site_weights,weight)
fission_sites = np.delete(fission_sites,0,axis=0)
jfdelete the initial site
fission_site_weights = np.delete(fission_site_weights,0,axis=0)

jfdelete the initial site
f#sample neutrons for next generation from fission sites
num_per_site = int(np.ceil(N/fission_sites.size))
positions = np.empty(1)
weights = np.empty(1)
mus = np.random.uniform(-1,1,num_per_sitexfission_sites.size)
for site in range(fission_sites.size):
site_pos = fission_sites[site]
site_weight = fission_site_weights[site]
positions = np.append(positions,
site_pos*np.ones((num_per_site,1)))
weights = np.append(weights,
site_weight % nu/num_per_sitesnp.ones((num_per_site,1)))
positions = np.delete(positions,0,axis=0) f#fdelete the initial site
weights = np.delete(weights,0,axis=0) f#delete the initial site
new_gen = np.sum(weights)
k[cycle]l = new_gen/old_gen
old_gen = new_gen
return k

To demonstrate how this works we will consider a homogeneous slab with single speed
neutrons where Xy =1 cm™!, X, =0.75 cm™!, ¥y =0.10285 cm™!, and v = 2.5. The value
of koo for this system is 1.0285. This critical thickness for a slab of this material 11.331 cm [24].

Now we run a k-eigenvalue calculation for a slab of this material that is exactly 11.331 cm
thick with 10* simulated neutrons per fission cycle and a slab thickness of 20. The expected
value of ke is 1. What we expect to see is that the estimate for ke will change between
iterations and that the early results could be far away from the results in later cycles because
of the random initial fission sites.

428 23. MONTE CARLO EIGENVALUE CALCULATIONS

The results for 10* simulated neutrons per cycle are given first. In the following figure
we show the ratio between the number of neutrons in successive generations as an estimate
of kegr. The vertical line serves to indicate where the inactive cycles stop and the active cycles
begin.

N=10* ke = 0.999727+0.01 1516

. 100 /v/w/\A/\/v\/J\/\/x\/\/\/

0 10 20 30 40 50
Cycle

In the title of this figure we give the mean of k estimates for the active cycles, as well as
the standard deviations. The estimate for keg, 0.999727, is within 27.3 pcm of the correct an-
swer; note that error in the estimate is much smaller than one standard deviation of the kg
estimates over the active cycles.

It is clear to see that early on in the calculation the estimate of k is away from the true value
and eventually settles into a range about the mean value. Had we included the inactive cycles
in the estimate of k¢, we would have had a much lower of an estimate of the eigenvalue in
this case.

Upon increasing the number of simulated neutrons per cycle by a factor of 10, we expect
that the estimate will get better. The next figure compares the fission cycles using 10* and 10°
neutrons per cycle.

— = N=10* kg = 0.99972740.011516
— N=10° ke = 0.99943640.004366

110}

1.05

(SN A . £ PN

0 10 20 30 40 50
Cycle

In these results we see that the estimate of ko went down, but the standard deviation
of the estimates per fission cycle went down by a factor of (0.011516/0.004366) ~ 2.64. This

23.1. FISSION CYCLES 429

decrease in the standard deviation is close to the expected decrease in the standard deviation
by increasing the number of simulated particles by a factor of 10: +/10 & 3.16. The decrease in
the variation in the estimate between cycles is obvious in the figure.

We can make the slab thinner and re-run the calculation. We would expect the solution
to have a smaller value for k¢ because more neutrons will leak out of the system. To have
a baseline for comparison, we can compare the Monte Carlo solution to another transport
calculation based on the discrete ordinates (Sy) method [27] with high resolution. We expect
that the Monte Carlo and Sy solution should agree to several digits. The Sy estimate of ke
for this problem with a thickness of 1 cm is 0.312001. The result with 10* neutrons per cycle
is shown next.

N=10* ke = 0.31198740.0065 14

0.34}

0.28}

0 10 20 30 40 50
Cycle

The result is ke = 0.311987. Given that this is such a leaky system (most of the fission neu-
trons leak out of the system), we may need more neutrons per fission cycle to suppress the
noise in the estimates (as observed in the figure). Also notice that in this system the number
of inactive cycles could be decreased because the eigenvalue seems to be near the mean from
the first cycle.

With 10° neutrons per cycle, the variation in the estimates of kg decrease:

— = N=10* ky = 0.31198740.0065 14

034l — N=10° ke = 0.3123354:0.002563
032}

x
1
030}
028}
0 10 20 30 40 50

Cycle

Once again, the decrease in the standard deviation is about a factor of +/10; in this case the
decrease is about 2.56.

430 23. MONTE CARLO EIGENVALUE CALCULATIONS

23.2 FISSION MATRIX METHODS

Another way of estimating the eigenvalue of a system would directly estimate the eigen-
values of the transport operator. In particular, we will discretize the system in space and then
use Monte Carlo to estimate the number of fission neutrons born in one region that cause fis-
sion in another. Upon tallying where neutrons are born and where they cause fission, we will
have what is known as a fission matrix. With this matrix we can use standard linear algebra
techniques to estimate the eigenvalues of that matrix.

The complete derivation of the fission matrix method is outside the scope of our study,
primarily because it involves a firm grasp of transport theory. Here we will give a rough
justification of the approach and rely on the numerical results to demonstrate the validity of
the approach faute de mieux.

We start by considering the integral operator # defined as

Hs(x, E):de’/ dV'F(X',E' -1, E)s(¥, E),
V/

where F(r', E' — r, E) is the expected number of fission neutrons created at position r and
energy E from a fission neutron born at ¥ with energy E’. In this sense, Hs(r, E) is the rate
density of neutrons born from fission at location r and energy E due to a generic density of
neutrons s(r, E).

Now, if s(r, E) gives the density of fission neutrons born in a generation, then we can write
the k-eigenvalue problem as

Hs(x, E) =ks(x, E).

Therefore, we could solve for k by computing

(Hs(x, E))

(s(r, E))

The angle brackets, (-) denote integration over space and energy. This is basically what we
did with the fission cycle calculation: we started with a distribution of neutrons for given
generation, computed the number of fission neutrons born in the next generation and looked
at the ratio.

An alternative approach would be to discretize the 7 operator in space by defining a mesh
of regions. We then can write the total number of fission neutrons in region i caused by
neutrons that are born in region j as

dede’fV[dv fv, dV'F{',E' — 1, E)§(¥, E)
ij =) =
de’fv_, dvV's(r, E)

The quantities H;; form a matrix. The elements of this matrix can be estimated via Monte
Carlo. Typically, one does this by assuming a flat fission source in each region of the problem.
This is equivalent to stating that the fission rate density is constant in the region. We can then

23.2. FISSION MATRIX METHODS 431

solve the eigenvalue problem
Hs = ks.

If the regions are small enough so that the error in making the source flat is negligible, then
we can interpret k as an eigenvalue of the system. This means that the dominant eigenvalue
k and its associated eigenvector are the fundamental mode for the system. We could also find
the other modes in the system this way.

With the knowledge of the fundamental mode eigenvector, we then know the steady-state
flux shape in the system. Furthermore, numerical experiments below demonstrate that the
magnitudes of the imaginary parts of the eigenvalues are a measure of the uncertainty in the
fundamental mode eigenvalue.

To compute the fission matrix we need to specify a mesh over the problem, and then emit
neutrons in each region, and count the number of fission neutrons born in each other region.
We will demonstrate this in our homogeneous slab problem.

In [4]: def fission_matrix(N,Sig_t,Sig_s,Sig_f,nu, thickness,Nx):
Sig_a = Sig_t - Sig_s
H = np.zeros((Nx,Nx))
dx = thickness/Nx
lTowX = np.linspace(0,thickness-dx,Nx)
highX = np.linspace(dx,thickness,Nx)
midX = np.linspace(dxx0.5,thickness-dx*0.5,Nx)
for col in range(Nx):
jfcreate source neutrons
positions = np.random.uniform(TowX[coll,highX[col],N)
mus = np.random.uniform(-1,1,N)
weights = np.ones(N)*(1.0/N)
j#track neutrons
for neut in range(positions.size):
#grab neutron from stack
position = positions[neut]
mu = mus[neut]
weight = weights[neut]
alive =1
while (alive):
Jcompute distance to collision
1 = -np.log(l-np.random.random(1))/Sig_t
#move neutron
position += 1xmu
jfare we still in the slab
if (position > thickness) or (position < 0):
alive =0
else:
jfdecide if collision is abs or scat
coll_prob = np.random.rand(1)
if (coll_prob < Sig_s/Sig_t):
ffscatter
mu = np.random.uniform(-1,1,1)
else:
fiss_prob = np.random.rand(1)
alive =0

432 23. MONTE CARLO EIGENVALUE CALCULATIONS

if (fiss_prob <= Sig_f/Sig_a):
#rind which bin we are in
row = np.argmin(np.abs(position - midX))
Hlrow,col] += weight*nu
return H, midX

With this function we will know how to build the fission matrix. Then we can use the
NumPy function, e g to find all the eigenvalues of the system and take the largest of these as
the value of k.. The other eigenvalues can be used to help analyze the behavior of the system
during transients. The thin slab reactor analyzed above with fission cycles will have its fission
matrix and eigenvalue computed in next. In the calculation we use 10° simulated neutrons.
From these results, we plot the entries of the matrix in a color map and the eigenvalues in the
complex plane.

Entries in matrix H

0.010
0.009
0.008
0.007
0.006
0.005
0.004
0.003
0.002

0.001

0 20 40 60 80 100

This plot of the matrix elements tells us about the physics of the reactor. The diagonal el-
ements have the largest magnitude, and these represent fission neutrons that are born and
cause fission in the same region. Also, the elements farther away from the diagonal are
smaller because these represent neutrons that travel far from the birth region before caus-
ing fission. Also, there is clear statistical noise in the matrix elements.

Next, we will look at the eigenvalues of the fission matrix:

0.0006 ket =0.31199
0.0004
0.0002

0.0000 [I [°

-0.0002

Imaginary part of k

-0.0004

_0.0006 ! ! ! ! L L I
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Real part of k

23.2. FISSION MATRIX METHODS 433

These are the eigenvalues in the complex planes. The fundamental mode eigenvalue is far
to the right and is purely real. Its value is 0.31199. Closer to zero there is a cloud of complex
eigenvalues. The actual k-eigenvalues of the system should all be real—the imaginary part
of these eigenvalues is due to noise in the calculation of the fission matrix. Notice that the
eigenvalue from the fission matrix agrees with the Sy transport calculation to five digits.

One benefit of the fission matrix approach is that we can also estimate the shape of the
fundamental mode scalar flux from np.eig.

Fundamental Mode Flux Shape

0.12

0.11

0.10

0.09

normalized ¢

0.08

0.0 0.2 0.4 0.6 0.8 1.0
x

The shape of the fundamental mode scalar flux is the basic shape we would expect: peaked
in the middle of the slab and falling off toward the edges of the slab. There is obvious noise
present as well.

If we modify the problem to be thicker, i.e., make the slab have a thickness of 11.331, with-
out increasing the number of regions, the noise decreases. This decrease is partially because
the thickness of each region is larger, as well as the fact that fewer fission neutrons leak out.
Recall that in this problem the exact answer is keg = 1.

Entries in matrix H

100
0.08
80 0.07
0.06
60 0.05
0.04

40
0.03
0.02

20
0.01
0 0.00

0 20 40 60 80 100

The matrix is more diagonally dominant, and neutrons appear to not move much between
regions before causing fission. The k. estimate we obtain close to 1: within 4 pcm of the

434 23. MONTE CARLO EIGENVALUE CALCULATIONS

actual answer. If we look at the spectrum of the eigenvalues in the complex plane, we see that
the imaginary part of the eigenvalues is still present.

0.0006 kot = 0.99996
0.0004

0.0002

0.0000

Imaginary part of k

-0.0002

-0.0004

_00006 L L L L I
0.0 0.2 0.4 0.6 0.8 1.0 1.2

Real part of k

The fission matrix calculated for this system have fewer complex eigenvalues, Also, notice
that the separation between the fundamental mode eigenvalue and the second largest eigen-
value is smaller than in the thinner system. This implies that power iteration for this problem
should converge more slowly than for the thin system. Indeed, we see artifacts of this in the
fission cycle calculation above: for the thicker system there was a clear need for several inac-

tive cycles to settle on the fundamental mode. The thin system had no such slow approach to
the fundamental mode.

014. Fundamental Mode Flux Shape

0.08

normalized ¢

0.06

0.04

0.02

As we saw with the fission cycles, there is less noise in the scalar flux for this thicker slab with
thicker regions.

There are several benefits to the fission matrix calculation. Firstly, it relies on Monte Carlo
to move the neutrons and linear algebra software to estimate the eigenvalues, whereas the
fission cycle calculation combines Monte Carlo and the eigenvalue estimation in the same
calculation. In the fission matrix calculation we can rely on well-tested linear algebra libraries
to get the eigenvalues after we use Monte Carlo to move neutrons around. As a result we
get more information including all the eigenvalues and eigenvectors. The downside of this
approach is that we must approximate the fission source as flat in each region.

CODA 435

CODA

Monte Carlo codes are an important tool in nuclear engineering and in any application
where radiation physics are important. In this chapter we applied the Monte Carlo principles
from the previous two chapters to solve eigenvalue problems. We neglected any energy de-
pendence and only solved homogeneous problems in the examples. It is straightforward, if
not simple, to make these extensions to the codes above. The codes and techniques we have
discussed here are only a sample of the features available in production Monte Carlo codes
such as MCNP, Geant 4, and keno. Nevertheless, the material we have covered will give the
reader a strong foundation to either explore Monte Carlo methods in more detail or to run
production codes confidently.

PROBLEMS

Programming Projects

1. Pure Plutonium Reactor

In Chapter 18 we defined a pulsed reactor made of pure plutonium with the following
cross-sections from the report Reactor Physics Constants, ANL-5800:

Quantity Value
og [b] 1.85
oa [b] 211
otr [b] 6.8

v 2.98

For the density of plutonium use 19.74 g/cm?; you may assume that o¢ ~ oy.

e Compute keg for a slab of thickness 7 cm made from pure plutonium-239 using fission
cycles and the fission matrix method.

* Compute ke for a solid sphere of plutonium-239 with a radius of 7 cm using either method
discussed in this chapter. You will have to modify the codes above to handle transport in a
sphere.

* Finally, compute ks for a spherical shell of inside radius of 2 cm and an outer radius of
6 cm. You may consider the hollow part of the shell a void. In this case you will have to
modify your code to handle the fact that a collision cannot take place in the hollow part of
the sphere.

Bibliography

[1] Scopatz A, Huff KD. Effective computation in physics. 1st ed. O'Reilly Media. ISBN 978-1-4919-0153-3, 2015.

[2] Guttag JV. Introduction to computation and programming using Python. MIT Press. ISBN 978-0-2625-2500-8,
2013.

[3] Bornemann F, Laurie D, Wagon S, Waldvogel J. The SIAM 100-digit challenge: a study in high-accuracy numer-
ical computing. SIAM e-books. Society for Industrial and Applied Mathematics. ISBN 9780898717969, 2004.

[4] Kalos MH, Whitlock PA. Monte Carlo methods. John Wiley & Sons; 2009.

[5] I&TEX: a document preparation system. 2nd ed. Pearson Education. ISBN 9788177584141, 1994.

[6] Kopka H, Daly P. Guide to IATEX. Tools and techniques for computer typesetting. Pearson Education.
ISBN 9780321617743, 2003.

[7] Lewis E. Fundamentals of nuclear reactor physics. Nuclear energy ebook collection series. Elsevier Science.
ISBN 9780080560434, 2008.

[8] Butcher P. Debug it!: Find, repair, and prevent bugs in your code. Pragmatic Bookshelf series. Pragmatic Book-
shelf. ISBN 9781934356289, 2009.

[9] Trefethen L, Bau D. Numerical linear algebra. Society for Industrial and Applied Mathematics.
ISBN 9780898713619, 1997.

[10] Stacey W. Nuclear reactor physics. John Wiley & Sons. ISBN 9783527406791, 2007.

[11] Li X, Demmel], Gilbert J, Grigori L, Shao M, Yamazaki I. SuperLU users’ guide. Tech. Rep. LBNL-44289,
Lawrence Berkeley National Laboratory; 1999. Available from: http://crd.Ibl.gov/~xiaoye/SuperLU/ [last up-
date: August 2011].

[12] Saad Y. Iterative methods for sparse linear systems. Computer science series. PWS Publishing Company.
ISBN 9780534947767, 1996.

[13] Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: data mining, inference, and prediction.
2nd ed. Springer series in statistics. New York: Springer. ISBN 9780387848587, 2009.

[14] Gelman A, Hill J. Data analysis using regression and multilevel/hierarchical models. Analytical methods for
social research. Cambridge University Press. ISBN 9781139460934, 2006.

[15] Taleb N. Fooled by randomness: the hidden role of chance in life and in the markets. Incerto. Random House
Publishing Group. ISBN 9781588367679, 2008.

[16] Taleb N. The black swan. A Random House international edition. Random House. ISBN 9780812979183, 2009.

[17] Taleb N. Antifragile: things that gain from disorder. Incerto series. Random House Publishing Group.
ISBN 9780812979688, 2014.

[18] Atkinson K. An introduction to numerical analysis. Wiley. ISBN 9780471029854, 1978.

[19] Martins JRRA, Sturdza P, Alonso JJ. The complex-step derivative approximation. ACM Transactions on Mathe-
matical Software 2003;29(3):245-62.

[20] Shu C. Differential quadrature and its application in engineering. London: Springer; 2000.

[21] Ganapol BD. A highly accurate algorithm for the solution of the point kinetics equations. Annals of Nuclear
Energy 2013;62:564-71.

[22] Brunner TA, Mehlhorn T, McClarren R, Kurecka C. Advances in radiation modeling in ALEGRA: a final re-
port for LDRD-67120, efficient implicit multigroup radiation calculations. Tech. Rep. SAND2005-6988, Sandia
National Laboratories; 2005.

[23] Case KM, Zweifel PF. Linear transport theory. Reading, Massachusetts: Addison-Wesley; 1967.

[24] Bell GI, Glasstone S. Nuclear reactor theory. Malabar, Florida: Robert E. Kreiger Publishing; 1970.

[25] Dunn W, Shultis J. Exploring Monte Carlo methods. Elsevier Science. ISBN 9780080930619, 2011.

[26] Kalos M, Whitlock P. Monte Carlo methods. Wiley-Blackwell. ISBN 9783527407606, 2008.

[27] Lewis E, Miller W. Computational methods of neutron transport. John Wiley and Sons; 1984.

437

http://crd.lbl.gov/~xiaoye/SuperLU/

Index

A Convergence, 158, 238
Accuracy difference from accuracy, 257
difference from convergence rate, 257 exponential, 293
Analog physics, 382 Gauss quadrature, 293
Arrays inverse power iteration, 358
NumPy, 54, 55 iterative linear solvers, 151, 158, 162, 166
complex numbers, 65 Monte Carlo, 387
iterating, 64 Newton-Cotes quadrature, 272, 276
slicing, 63 polynomial, 294
Assert statement, 99-103 rate estimation, 253
AssertionError, 99,102, 104 speed versus robustness, 223, 312
Crank-Nicolson, 306, 308-311, 314, 321, 322, 324,
B 329
Back substitution, 112, 114, 116 unconditional stability, 312
Backward Euler, 305-307, 316, 320, 330, 332,334 Criticality
unconditional stability, 312 bare cylinder, 359
Beefeaters’ hat, 28, 30-32, 50 bare slab, 359
Bessel, 190, 247, 265, 284, 298, 359 bare sphere, 218, 357
Big-O notation, 125, 153, 252 diffusion k-eigenvalue, 352, 356

comparison of algorithms using, 154, 160 esti.mation with qute Carlo, 426

estimating algorithm scaling, 126 k—elgenval.ue meaning, 352
Bisection method, 216 parallelepiped, 243

number of iterations, 216, 218 reflected reactor, 360

Boundary value problem, 333 two-group bare reactor, 374
Branching, 14 two-group reflected reactor, 375

Bugs, 6 Cub%c spline, }82
SciPy function, 187
C Curve fitting, 193
Cmath module, 11 hidden variables, 194
Comma-separated-values (CSV), 76, 397 D
Comments, 5 Decimal module, 278, 284
docstrings, 42, 43 Deer stalker, 32
Comparison operators, 15 Dictionaries, 76
Complex step derivative approximation, 262 Dirac delta function, 118
accuracy, 263 Discrete ordinates (Sy), 429, 433
Computational cost
history of, 259 E
Conjugate gradient, 163, 164 Edmonton Oilers, 302
graphical representation, 166 Eigenvalue, 320, 351, 352, 365, 371, 425
search directions, 165 generalized, 352
time to solution, 167 inverse power method, 353, 368

439

440

F

False position method (Regula Falsi), 219
linear interpolation, 220
number of iterations, 221
slow convergence, 222
Fedora, 28, 30-32, 50
File input, 49
reading with for loops, 49
Finite difference derivative, 234, 252
backward difference, 255
central difference, 255
comparison of approximations, 256, 257
diffusion operator, 258
forward difference, 254
higher derivatives, 258
second derivatives, 257
Finnegan's Wake, 193
Fission spectrum, 398
Floating point numbers, 8
finite precision errors, 33

Forward Euler, 302, 303, 305-307, 311, 315-321

conditional stability, 311
Functions, 37, 40

default arguments, 41

docstrings, 42, 43

lambda, 88, 89

name as a parameter, 84

parameters, 41

return values, 41

side effects, 86

G

Gauss quadrature, 288
accuracy on polynomials, 288
convergence on smooth functions, 293
derivation of rules, 289
Gauss-Legendre Quadrature, 288
multi-dimensional integrals, 296
table of weights and abscissas, 288
Gauss-Seidel method, 156, 157
fast implementation, 160
graphical representation, 159
time to solution, 159
Gaussian elimination, 112, 115
pivoting, 119, 120
round-off errors, 118
time to solution, 124

INDEX

H
Hello World, 4

I

Indentation, 7

Initial value problem, 302
error, 305, 309
explicit methods, 303
implicit methods, 306
non-oscillatory methods, 311, 312
stability, 311, 312

Initial value problems
higher derivatives, 317
stability

for systems, 320

systems of equations, 315

Integers, 8

J

Jacobi method, 146
fast implementation, 154, 156
graphical representation, 152
time to solution, 152
tri-diagonal version, 168, 169

Jacobian matrix, 242, 243

Joyce, James, 193

K

Kafka, Franz, 93
Keyboard input, 14
Kierkegaard, Seren, 5

L

Lagrange polynomials, 176
efficiency, 181

Lambda Functions, 88, 89

Linear solvers
direct versus iterative, 145, 146
iterations versus speed, 169
numerical versus algorithmic improvements,

163

Linspace, 56

Lists, 29
length, 31

Loops
for,24,26,28,49, 64,78
while, 16,17

LU factorization, 132, 354

pivoting, 137

relation to Gaussian elimination, 134
Lyotard, Jean-Fragois, 5

M

Major League II, 109

Math module, 9

Matplotlib, 66
IATEX annotations, 68

Matrix
banded, 141
block, 367
compressed storage, 168
conjugate vectors, 164
diagonal, 141
diagonal dominance, 146
positive definite, 163
range, 354
symmetric, 140
tri-diagonal, 141
tri-diagonal form, 168
triangular, 132

Moby Dick, 210

Modules, 47

Monte Carlo method
collision estimator, 412
convergence, 387, 429
error, 387
estimation of integrals, 27
figure of merit (FOM), 411
fission cycles, 426, 429
fission matrix, 430-435
implicit capture, 408
isotropic neutrons, 388
origin, 382
particle weights, 408
scattering, 391, 401
spherical geometry, 394
track-length estimator, 414
variance reduction, 407

Mutability
lists, 32
NumPy arrays, 61, 63, 87, 114
tuples, 32

N

Neutron diffusion equation

INDEX

1-D diffusion operator, 336
albedo boundary condition, 339
boundary conditions, 334
Dirichlet boundary condition, 339
discrete boundary conditions, 338
discretized equation, 338
harmonic-mean diffusion coefficient, 338
k-eigenvalue problem, 352
Marshak boundary condition, 339
quasi-steady form, 335, 347
source-driven problems, 343
steady-state form, 335
time-dependent form, 334
two-group model, 365
Newton-Cotes quadrature, 268
convergence, 272, 276
error, 272
midpoint rule, 268
Simpson’s rule, 274
trapezoid rule, 269
Newton’s method, 230
inexact version, 234, 236, 306, 308
initial guess, 232
Raphson’s association, 230
slow convergence, 238
systems of equations, 242
use of tangent, 230, 231

O

Operator overloading, 12
NumPy, 58

P
Pantheism, 230
Phase field, 318, 319, 322
Phrygian cap, 28, 30-32, 50
Point-reactor kinetics equations (PRKEs), 324
prompt jump, 326
reactivity insertion, 327
rod drop, 325
stability for RK4, 326
steady-state solution, 325
Polynomials
approximation properties, 175
efficient evaluation, 174
high-degree oscillations, 181
Lagrange construction, 176
uniqueness, 176
Porkpie, 28, 30-32, 50

442

Power law, 210
approximation by Gaussian distribution, 212
Print, 4
Probability
cumulative distribution function (CDF), 382
expected probability, 383
exponential distribution, 383
probability density function (PDF), 383

Q

Quadrature
classical definition, 268
composite form, 270
definition, 268
multidimensional integrals, 294

R

Random number generation, 26, 56, 385, 386
exponential distribution, 384
inverse CDF sampling, 385
rejection sampling, 399
stratified sampling, 417

Range, 25

Recursion, 45

Reed’s problem, 345
time-dependent, 347

Regression
coefficient interpretation, 201
least-squares formulation, 196
logarithmic transformation, 208
mean-absolute error, 204
NumPy function, 201
polynomial fitting, 206
R%,196
variable selection, 203

Residual, 19, 22, 119, 123, 146, 151, 163

Richardson extrapolation, 259
application to integrals, 277, 282
extra order of accuracy, 260
higher-precision arithmetic, 278
repeated use, 261
use by computeers, 259

Ridder’s Method, 223, 224, 226
extra function evaluation, 223

Romberg integration, 277, 282
efficient implementation, 282

INDEX

Root finding methods
closed, 216
comparison of closed and open, 232
cost, 218
exhaustive enumeration, 22, 24
open, 230
Roots
bracketing, 216
complex, 238, 240
definition, 215
multiple, 215, 216, 238, 239
Runge phenomenon, 181
Runge-Kutta method (fourth-order), 313
conditional stability, 314
systems of equations, 323

S

Scope, 44

Secant method, 236
starting, 236

Side effects, 114

Singular eigenfunction expansion, 393

Sombrero, 28, 30-32, 50

Spatial cells, 335, 352

Steak au poivre, 98

Strings, 11
subsetting, 12

Successive Over-Relaxation, 160
choice of relaxation parameter, 162, 163
graphical representation, 162
modification to Gauss-Seidel, 160
time to solution, 162

T

Tam o’shanter, 28, 30-32, 50
Toque, 30, 31

Trilby, 28, 30-32, 50

Try block, 102, 103

Tuple, 31, 32

U

Unicode characters, 5

A%

Weierstrass approximation theorem, 175

COMPUTATIONAL NUCLEAR ENGINEERING AND
RADIOLOGICAL SCIENCE USING PYTHON

Ryan G. McClarren

For decades the paradigm in engineering education, nuclear engineering in particular, was teaching Fortran
along with numerical methods for solving engineering problems. This has been gradually changing as
new codes have been composed utilizing modern languages such as Python, resulting in a greater need
for developing more current computational abilities and strategies. Computational Nuclear Engineering
with Python succeeds at embedding more modern computing techniques into current practices and teaches
numerical methods using a higher-level language. The book is especially unique in the market with its
implementation of Python into nuclear engineering methods, including the Monte Carlo method for particle
transport. The book seeks to do this by first teaching the basics of Python, then going through different
techniques to solve systems of equations, and finally applying that knowledge to solve problems specific to
nuclear engineering. Along with examples of code and end-of-chapter problems, Computational Nuclear
Engineering with Python is an asset to novice programmers in nuclear engineering and radiological sciences
for learning how to analyze complex systems using modern computational techniques.

Key Features
Offers numerical methods as a tool to solve specific problems in nuclear engineering.

- Provides examples of how to simulate different problems and produce graphs using Python.
Supplies accompanying codes and data on a companion website and provides solutions for end-of-
chapter problems.

About the Author

Ryan G. McClarren is an Associate Professor in the Department of Aerospace and Mechanical Engineering at
the University of Notre Dame. He has spent his professional career educating students in the mathematics
and computation required for modern engineering. His research centers around the study of uncertainties
in large-scale simulation and numerical methods for radiation transport problems. Additionally, he is the
author of 50 publications in refereed journals and has been the editor of a special issue of the journal
Transport Theory and Statistical Physics. He is well known in the computational nuclear engineering community
and has research awards and grants from the NSF, DOE, and three national labs.

Related Titles

Nuclear Energy, Seventh Edition, Raymond Murray and Keith Holbert, 9780124166547
Violent Python, TJ O'Connor, 9781597499576

Numerical Methods, Third Edition, George Lindfield and John Penny, 9780123869425

ENGINEERING / ENERGY

ISBN 978-0-12-812253-2

&

: An imprint of Elsevier
EL

ACADEMIC PRESS “
SEVIER elsevier.com/books-and-journals 9 7801281122532

	Front
Cover
	Half-Title Page

	Computational Nuclear Engineering and Radiological Science Using Python

	Copyright
	Dedication
	Contents
	About the Author
	Preface
	Acknowledgment
	Part I INTRODUCTION TO PYTHON
FOR SCIENTIFIC COMPUTING

	1 Getting Started in Python
	1.1 Why Python?
	1.1.1 Comments
	1.1.2 Errors
	1.1.3 Indentation

	1.2 Numeric Variables
	1.2.1 Integers
	1.2.2 Floating Point Numbers
	1.2.2.1 Built-in Mathematical Functions

	1.2.3 Complex Numbers

	1.3 Strings and Overloading
	1.4 Input
	1.5 Branching (If Statements)
	1.6 Iteration
	 The Great Beyond
	 Further Reading
	 Problems
	 Short Exercises
	 Programming Projects
	 1. Harriot's Method for Solving Cubics

	2 Digging Deeper Into Python
	2.1 A First Numerical Program
	2.2 For Loops
	2.3 Lists and Tuples
	2.3.1 Lists
	2.3.2 Tuples

	2.4 Floats and Numerical Precision
	 Further Reading
	 Problems
	 Short Exercises
	 Programming Projects
	 1. Nuclear Reaction Q Values
	 2. Calculating e, the Base of the Natural Logarithm

	3 Functions, Scoping, Recursion, and Other Miscellany
	3.1 Functions
	3.1.1 Calling Functions and Default Arguments
	3.1.2 Return Values

	3.2 Docstrings and Help
	3.3 Scope
	3.4 Recursion
	3.5 Modules
	3.6 Files
	 Problems
	 Short Exercises
	 Programming Projects
	 1. Monte Carlo Integration

	4 NumPy and Matplotlib
	4.1 NumPy Arrays
	4.1.1 Creating Arrays in Neat Ways
	4.1.2 Operations on Arrays
	4.1.3 Universal Functions
	4.1.4 Copying Arrays and Scope
	4.1.5 Indexing, Slicing, and Iterating
	4.1.6 NumPy and Complex Numbers

	4.2 Matplotlib Basics
	4.2.1 Customizing Plots

	 Further Reading
	 Problems
	 Short Exercises
	 Programming Projects
	 1. Inhour Equation
	 2. Fractal Growth
	 3. Charges in a Plane

	5 Dictionaries and Functions as Arguments
	5.1 Dictionaries
	5.2 Functions Passed to Functions
	5.3 Lambda Functions
	 Problems
	 Short Exercises
	 Programming Projects
	 1. Plutonium Decay Chain
	 2. Simple Cryptographic Cipher

	6 Testing and Debugging
	6.1 Testing Your Code
	6.2 Debugging
	6.3 Assertions
	6.4 Error Handling
	 Further Reading
	 Problems
	 Short Exercises
	 Programming Projects
	 1. Test Function for k-Eigenvalue

	Part II NUMERICAL METHODS

	7 Gaussian Elimination
	7.1 A Motivating Example
	7.2 A Function for Solving 3x3 Systems
	7.3 Gaussian Elimination for a General System
	7.4 Round off and Pivoting
	7.5 Time to Solution for Gaussian Elimination
	 Further Reading
	 Problems
	 Short Exercises
	 Programming Projects
	 1. Xenon Poisoning
	 2. Flux Capacitor Waste
	 3. Four-Group Reactor Theory
	 4. Matrix Inverse

	8 LU Factorization and Banded Matrices
	8.1 LU Factorization
	8.1.1 Forward and Backward Substitution

	8.2 LU With Pivoting, and Other Supposedly Fun Things
	8.3 Banded and Symmetric Matrices
	 Further Reading
	 Problems
	 Short Exercises
	 Programming Projects
	 1. Matrix Inverse via LU Factorization
	 2. Shielding a Radioactive Source
	 3. LU Factorization of a Tridiagonal System

	9 Iterative Methods for Linear Systems
	9.1 Jacobi Iteration
	9.1.1 Convergence of the Jacobi Method
	9.1.2 Time to Solution for Jacobi Method

	9.2 A Faster Jacobi Method
	9.3 Gauss-Seidel
	9.3.1 Convergence of Gauss-Seidel
	9.3.2 Time to Solution for Gauss-Seidel

	9.4 Successive Over-Relaxation
	9.4.1 Convergence of SOR
	9.4.2 Time to Solution for SOR

	9.5 Conjugate Gradient
	9.5.1 Convergence of CG
	9.5.2 Time to Solution for CG

	9.6 Taking Advantage of Tri-diagonal Form
	 Further Reading
	 Problems
	 Short Exercises
	 Programming Projects
	 1. Exiting Gracefully
	 2. Tri-diagonal Gauss-Seidel
	 3. 2-D Heat Equation

	10 Interpolation
	10.1 Polynomials
	10.2 Lagrange Polynomials
	10.2.1 Efﬁciency of Lagrange Polynomials
	10.2.2 The Runge Phenomenon

	10.3 Cubic Spline Interpolation
	 Coda
	 Further Reading
	 Problems
	 Short Exercises
	 Programming Projects
	 1. Root-Finding via Interpolation
	 2. Extrapolation
	 3. Moderator Temperature Coefﬁcient of Reactivity

	11 Curve Fitting
	11.1 Fitting a Simple Line
	11.1.1 Least-Squares Regression

	11.2 Multiple Linear Regression
	11.2.1 Example From Outside of Engineering
	11.2.2 Adding More Variables

	11.3 "Nonlinear" Models
	11.4 Exponential Models: The Logarithmic Transform
	11.4.1 Power Law Models

	 Coda
	 Further Reading
	 Problems
	 Programming Projects
	 1. Power Law Fit
	 2. Inﬂating R2
	 3. k∞ and Diffusion Length for a Water Balloon
	 4. Model Without a Constant

	12 Closed Root Finding Methods
	12.1 Bisection
	12.1.1 Critical Radius of a Sphere

	12.2 False Position (Regula Falsi)
	12.3 Ridder's Method
	 Coda
	 Further Reading
	 Problems
	 Short Exercises
	 Programming Projects
	 1. 2-D Heat Equation Optimization
	 2. Peak Xenon Time

	13 Open Root Finding Methods
	13.1 Newton's Method
	13.2 Inexact Newton
	13.3 Secant Method
	13.4 Slow Convergence
	13.5 Newton's Method for Systems of Equations
	13.5.1 Rectangular Parallelepiped (Shoebox) Reactor Example

	 Coda
	 Problems
	 Short Exercises
	 Programming Projects
	 1. Roots of Bessel Function
	 2. Nonlinear Heat Conduction

	14 Finite Difference Derivative Approximations
	14.1 Taylor Series and Big-O Notation
	14.2 Forward and Backward Difference Formulas
	14.3 Higher-Order Approximations
	14.4 Comparison of the Approximations
	14.5 Second Derivatives
	14.6 Richardson Extrapolation
	14.7 Complex Step Approximations
	 Coda
	 Further Reading
	 Problems
	 Short Exercises
	 Programming Projects
	 1. Comparison of Methods

	15 Numerical Integration With Newton-Cotes Formulas
	15.1 Newton-Cotes Formulas
	15.1.1 The Midpoint Rule
	15.1.2 The Trapezoid Rule

	15.2 Simpson's Rule
	15.3 Romberg Integration
	 Coda
	 Further Reading
	 Problems
	 Short Exercises
	 Programming Projects
	 1. Inverse Fourier Transform

	16 Gauss Quadrature and Multi-dimensional Integrals
	16.1 Gauss Quadrature Rules
	16.1.1 Where Did These Points Come From?
	16.1.2 Code for Gauss-Legendre Quadrature

	16.2 Multi-dimensional Integrals
	 Coda
	 Problems
	 Short Exercises
	 Programming Projects
	 1. Gauss-Lobatto Quadrature
	 2. Gauss-Hermite Quadrature
	 3. Integration and Root Finding

	17 Initial Value Problems
	17.1 Forward Euler
	17.2 Backward Euler
	17.3 Crank-Nicolson (Trapezoid Rule)
	17.3.1 Comparison of the Methods

	17.4 Stability
	17.5 Fourth-Order Runge-Kutta Method
	17.5.1 Stability for RK4

	17.6 Systems of Differential Equations
	17.6.1 Stability for Systems
	17.6.2 Crank-Nicolson for Systems
	17.6.3 RK4 for Systems

	17.7 Point-Reactor Kinetics Equations
	17.7.1 Rod-Drop
	17.7.2 Linear Reactivity Ramp

	 Coda
	 Further Reading
	 Problems
	 Short Exercises
	 Programming Projects
	 1. Point Reactor Kinetics
	Reactivity Ramp
	Sinusoidal Reactivity

	 2. Iodine Ingestion

	18 One-Group Diffusion Equation
	18.1 Discretizing the Steady-State Diffusion Equation
	18.1.1 The Diffusion Operator in Different Geometries
	18.1.2 Interface Diffusion Coefﬁcient
	18.1.3 Boundary Conditions
	18.1.3.1 Types of Boundary Conditions on the Outer Surface
	18.1.3.2 Reﬂecting Boundary Condition at r=0

	18.2 Python Code for the Diffusion Equation
	18.3 A Test Problem for Each Geometry
	18.3.1 Reed's Problem

	 Coda
	 Problems
	 Programming Projects
	 1. Code Testing
	Quadratic Solution
	Hyperbolic Cosine Solution
	Verifying the Implementation

	 2. Time-Dependent, Super-Critical Excursion
	 3. Shielding Problem

	19 One-Group k-Eigenvalue Problems
	19.1 Nuclear System Criticality
	19.2 Inverse Power Method
	19.3 Function for Inverse Power Iteration
	19.4 Solving 1-D Diffusion Eigenvalue Problems
	19.4.1 Heterogeneous Problems

	 Coda
	 Problems
	 Programming Projects
	 1. Reﬂector Effective Albedo
	 2. Spherical Plutonium Reactor k-Eigenvalue
	 3. Criticality for 1-D Heterogeneous System Using the 1-Group Neutron Diffusion Equation

	20 Two-Group k-Eigenvalue Problems
	20.1 Two-Group Criticality Problems
	20.2 Generalized Eigenvalue Problem
	20.3 Inverse Power Method for the Two Group Problem
	20.3.1 Inverse Power Iteration Function

	20.4 Solving 1-D, Two-Group Diffusion Eigenvalue Problems
	20.5 Two-Group Reﬂected Reactor
	 Coda
	 Problems
	 Programming Projects
	 1. Effective Albedo for Reﬂected Two-Group Reactor
	 2. 2-Group Heterogeneous Reactor Multiplication Factor

	Part III MONTE CARLO METHODS

	21 Introduction to Monte Carlo Methods
	21.1 Analog Physics
	21.2 Probability Preliminaries
	21.3 The Exponential Distribution
	21.4 A First Monte Carlo Program
	21.5 Isotropic Neutrons on a Slab
	21.6 A First Monte Carlo Shielding Calculation
	21.7 Tracking in a Sphere
	21.8 A Real Shielding Problem
	21.9 Rejection Sampling
	21.10 Looking Up Energies
	21.11 Elastic Scattering
	21.12 Lead Shielding of Reactor Algorithm and Code
	 Coda
	 Further Reading
	 Problems
	 Short Exercises
	 Programming Projects
	 1. Monte Carlo Convergence
	 2. Track-Length in Sphere

	22 Monte Carlo Variance Reduction and Scalar Flux Estimation
	22.1 Implicit Capture and Particle Weights
	22.1.1 A Figure of Merit

	22.2 Estimating Scalar Flux
	22.2.1 Collision Estimators
	22.2.2 Track-Length Estimators
	22.2.3 Geometric Dependence of the FOM

	22.3 Stratiﬁed Sampling
	22.4 Complete Monte Carlo Code for Slabs
	 Coda
	 Problems
	 Short Exercises
	 Programming Projects
	 1. Iron-Shielded Reactor: Implicit Capture
	 2. Iron-Shielded Reactor: Scalar Flux

	23 Monte Carlo Eigenvalue Calculations
	23.1 Fission Cycles
	23.2 Fission Matrix Methods
	 Coda
	 Problems
	 Programming Projects
	 1. Pure Plutonium Reactor

	Bibliography
	Index
	Back Cover

