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PREFACE

In Jaunching a new publication series at this time when publications
are appearing at an explosive rate it is of paramount importance to estab-
lish the necessity of the new venture. Obviously the strongest argument
for initiating a new publication is that it fills a void; that it performs a
function not accomplished by the existing literature. This is precisely the
reason for the appearance of the new Advances in Heat Transfer—it is
intended to fill the significant gap between the regularly scheduled jour-
nals, both national and international, and the university level textbooks
on the subject of heat transfer.

Research in heat transfer during- the past decade has grown at an
astonishing rate primarily.due to the problems associated with the growth
of the atomic energy industry, and the aerodynamics and astronautics
efforts throughout the world. During this period, development of new
mstrumentation and refinement of high speed computers have improved
our experimental and analytical capacities, and accordingly we have been
able to attack new and more complex problems as well as dissect classical
problems in a much more definitive fashion. The results of these research
efforts are normally published as individual articles in national and inter-
national journals. It is understandable that such journal articles, because
of space limitations, assume the reader to be well aware of the existing
state of knowledge, and so present in an abbreviated and concise manner
the new piece of information. It is extremely difficult for a nonspecialist to
make engineering use of individual papers appearing in such a journal,
It is clear from time to time—as a given area in heat transfer evolves to a
definitive state—that a review article or a monograph which starts from
widely understood principles and develops the topic in a logical fashion
would be of value to the engineering and scientific community. It is the
hope that Advances in Heal Transfer will fulfill this function.

T. F. InviNg, Jr.

J. P. HARTNETT
December, 1963
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I. Introduction

The interaction of radiation upon other modes of heat transfer (i.e.,
conduction and convection) is an area which has recently aroused con-
siderable attention. Basically, such interaction effects may be broken

1 A portion of the work described herein was supported by the National Seience
Foundation through Grant Number G-19189.
(1]
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down into two main categories. The first involves radiation passing
through an absorbing-emitting medium such as water vapor or quartz,
for which net radiant energy is transferred to or from each element of
the medium. Consequently, the conduction or convection process may
be thought of as one involving heat sources and sinks. Due to the fact
that the analytical expression for the source-sink effect must be formu-
lated in terms of emissive power, problems of this type are of course
nonlinear, In addition, radiation to or from an element will take place
over paths of finite length resulting in an integral expression for the
source-sink term, and consequently the equation expressing conservation
of energy will be an integrodifferential equation.

The second category involves radiation interaction through the
boundary conditions of the conduction or conveection process. One
example is transient conduction in a solid with radiation at the surface
as treated, for example, in (7), (2) and (3); while in convection processes
the boundary condition along the heated or cooled surface may be altered
due to radiation exchange.

It is not the purpose of the present article to furnish a comprehensive
survey of the literature, particularly since excellent summaries of existing
work on absorbing media have recently been compiled by Viskanta (4)
and Hottel (5). Instead, the aim is to illustrate only the most basic
effects of radiation upon the other modes of heat transfer, and to this
end extremely simple physical models will be employed. Admittedly, such
simplifications do not always correspond to reality. Since problems
involving radiation interaction generally contain a large number of
parameters, emphasis will often be placed upon evaluating only first-
order radiation effects. Although such results certainly do not give a
complete solution to the problem, they do serve the useful purpose of
indicating under what conditions radiation effects need even be considered.

II. Radiation Equations for Absorbing Media

Although energy transfer by radiation has been of interest to physicists
for a relatively long period of time, it is only recently that the fundamental
equations describing energy transfer in an absorbing medium have been
developed for application to engineering systems. Such derivations may
be found in the work of Viskanta (4), Usiskin and Sparrow (6), and
Goulard (7). A similar development will be given herein making use of
the simplifying assumptions as follow?:

(1) The medium ig gray; i.e., the absorption coefficient is independent
of wave length.

2 For a more complete development taking into account isotropic scattering and
an index of refraction other than unity, the reader is referred to (4).

(2]
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(2) The medium is nonscattering, is in “local thermodynamic equilib-
rium,” is a diffuse absorber and emitter, and has an index of refraction
of unity.

(3) The bounding surfaces are isothermal, opaque, gray, and diffuse
reflectors and emitters.

In addition, the development will be restricted solely to one-dimensional
energy transfer.

A. Basic EquaTioNs For ONE-DIMENSIONAL RADIATION

The physical model and coordinate system are illustrated in Fig. 1
and consist of two infinite parallel surfaces separated by an absorbing medi-
um. With the surfaces at different temperatures, radiant energy will pass
through the intervening medium, and the problem is to first evaluate
the local radiant energy flux ¢.(y). To accomplish this, let 7 be the inten-
sity of radiation passing through a volume element of length ds and unit
cross-sectional area as shown in Fig. 1.

Solid angle = dw
777777777 7777777 77777777777777777777777

Fra. 1. Physical model and coordinate system.

By the definition of the absorption coefficient a, the amount of inten-
sity I which is absorbed in passing through the length ds is

al ds 1)
Further, through use of Kirchhoff’s law the energy emitted by the volume

element is given by (8)
4ae ds

where it should be noted that ds also denotes the volume of the element.
Since the medium is assumed to be a diffuse emitter, then the energy
leaving the element through the solid angle dw is correspondingly

do\ aedsdw
4qe ds (E) = -

3]
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and the intensity of emission becomes

a.edg

— ()

kg

It is apparent that the intensity of radiation over the path ds is reduced
through absorption in the amount given by Eq. (1) and increased by
emission as given by Eq. (2). Thus, the change in intensity dI is simply
the difference of these quantities, yielding

Friai
Upon defining
T = o”ady, u = CO8 O
this results in
S ®)

Letting the radiosities of the lower and upper surfaces be B, and R,
respectively, the boundary conditions for Eq. (3) may be expressed as

I =—=; r=0, p>0
T

I=&; T=1, <0
x

where 7q = / 01, a dy. The solution of Eq. (3) is correspondingly

1=&exp(—l)+lfe(t)eXD(t_T)ﬂ; #>0  (4a)

T u T Jo b /o

[=Elexp('r°_7,)_}.-/ e(z)exp(t_r)g; g <0 (4b)
T B T J p /) on

The radiant heat flux may now be obtained through integration of
Eqs. (4) with respect to solid angle over the entire enclosing sphere;
ie., with dw = 2x sin © dO, then

gr = an/o'I cos O sin O d6

=2n [ Tude — 2x [T Tudu

and substituting Eqs. (48) and (4b) into the first and second integrals
respectively

14)
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¢r = 2R:E3(r) — 2REs(ro — 7)
+2 [ @B — ydt — 2 [ @Bt — 1)t (5)

This represents the desired result for the radiant heat flux. The functions
E.(t) are the exponential integrals defined as

E.() = A bt gy

and are tabulated by Kourganoff (9).

It follows that the radiant heat source per unit volume within the
medium is —dg,/dy or —a dg,/dr, and upon differentiating Eq. (5) there
is obtained

— % _ 3R\ By(r) + 2ReBa(ro — 1)

+2 ﬁ "e(®)Er(jr — t]) dt — 4e(r) (6)

Physically, the first and second terms in this expression represent the
energy absorbed by a volume element from the lower and upper surfaces
respectively. The third term denotes the energy absorbed from all other
elements, while the last term is the energy emitted by the element. One
may note that for isothermal conditions (R, = R, = e)

er = 2eE,(r) + 2eHy(re — 1) + 2¢ j{;ﬂ Ei(lr —t) dt — 4e

and since (1 0)
[) "B — i) dt = 2 — Es(r) — Ealro — 1)

then dg./dr = 0. This of course should be expected, since under isother-
mal conditions there can be no net radiation to or from any element of
the medium.

A further consideration in any heat transfer process is the net radia-
tion to or from the bounding surfaces. In the present situation the net
radiant transfer is obtained by evaluating Eq. (5) at either surface. For
example, the net radiant transfer from surface 1 is

g = Ri — 2RsEq(ro) — 2 [o’°e(t)E2(t) di )

noting that E;(0) = 14. Since the first term in this expression, R;, denotes
the radiant energy leaving the surface, then the sum of the second two
terms represents the radiation incident upon surface 1. The quantity
2R3 l3(ro) is the energy coming from surface 2, with 2E;(ro) being the

[5]
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attenuation factor due to the intervening medium. The energy radiated
by the medium which is incident upon surface 1 is 2 foﬂ e(t)E;(t) dt.

So far nothing has been said concerning the radiosities B, and R,
and these will not be known a priori. Consider first the lower wall. Since
the radiosity R, is the sum of the emitted and reflected energies from
surface 1, and recalling that the surfaces have been assumed to be gray
and opaque so that the reflectivity is (1 — €;), then

R, = ey + (1 - fl)Hl

where H, is the radiation incident upon surface 1, and from the discussion
following Eq. (7)

H, = 2R:Esr) + 2 [ e Bx(0)
Consequently

By = aer + 201 — &) [ RaBatr) + [ e Ea(t) dt] (8)
In a similar manner, consideration of surface 2 yields
By = es + 21 — &) [RiBstro) + [ e@Ealro — ) dt] ()

Equations (8) and (9) thus constitute two simultaneous equations for
R, and R, For black surfaces the simple results B, = e, and R; = e,
are obtained.

It may be noted from the preceding equations that dependence upon
the absorption properties of the medium oceurs solely through the dimen-
sionless distance 7. For a constant absorption coefficient, the dimension-
less thickness of the absorbing medium is r = alL, and this is commonly
referred to as the optical thickness. Further, as discussed in (7) the
quantity 1/a may be interpreted as the penetration length for radiation.
In other words, if the absorption coefficient is small, then a beam of
radiant energy will travel a large distance through the medium before
significant attenuation occurs; i.e., the penetration length will be large.
On the other hand, if a is large then the penetration length will be short.

From this it may be seen that the optical thickness 7, is the ratio of
characteristic length L to penetration length and that 1/a plays a role
analogous to a mean free path while 1/r; is analogous to the Knudsen
number. For r¢ << 1 the radiation process is referred to as optically thin,
whereas it is optically thick for ro >> 1.

The preceding discussion would indicate that possible simplification
of the governing radiation equations might result for the limiting cases
of an optically thin or optically thick medium. Fortunately, this is so,
and the optically thick approximation will be considered first.

(61
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B. OpricaLLy THICK APPROXIMATION

Providing the radiation process is optically thick, the penetration
length will be small compared to the characteristic length L of the
medium, and the radiation transfer will approach a diffusion process.
This ocecurs since the radiant energy emitted from an element will undergo
such rapid attenuation that the transfer process will be dependent solely
upon local conditions; i.e., the gradient of emissive power. There is of
course a direct analogy to heat conduction in a gas as treated by kinetic
theory, for which energy is considered to be transported by gas molecules
in traveling a mean free path which is assumed to be an incremental
distance. The radiation transfer process may in turn be visualized as
one in which energy is transported by photons traveling a ‘“radiation
mean free path’” or penetration length, and the penetration length is
taken to be the incremental distance. This leads to the so-called Rosseland
approximation for the radiant heat flux (11)

4 de 4 de

T T3y 3 {10

The coefficient 44 has been the subject of some controversy (5), and
perhaps the most straightforward derivation of Eq. (10) is simply a proof
that it follows from the asymptotic form of the governing radiation equa-
tions applicable to an optieally thick medium. For this purpose, consider
a slab of thickness L bounded by black surfaces and within which only
radiation transfer takes place. Hence, since there is no mechanism other
than radiation by which energy can be transferred te or from an element,
it follows that dg./dr = 0. Letting

. 8(1') — €é1
o(r) = o — o1

Eq. (6) may thus be expressed with the aid of (10) as

oo —DE@ dt + [ ol + DE0) dt
+ Eay(re — 1) = 2¢(r) (11)

In that Eq. (10) predicts the emissive power within the slab to vary
linearly with distance, a solution of Eq. (11) will be assumed of the form
¢ = r/7e. Upon substituting this into Eq. (11) and performing the indi-
cated integrations, the left side of Eq. (11) becomes

o [(ro = D) Esfro — 1) — € — 7By(r) + 671 + 2 7
0 T0
)



R. D. Cuss

In order for ¢ = 7/7¢ to be a solution of Eq. (11), the above quantity
in brackets must vanish. This is obviously not the case. However, the
bracketed term will vanish provided r and 7 — r are large, since for
t>>1 (10)

tE.(8) ~ et

So, the emissive power will vary linearly with distance providing the
medium is optically thick. It should be realized, however, that no matter
how optically thick the medium might be, the assumption that r and
re — 7 are everywhere large will always fail at the boundaries, and this
is a shortcoming of the Rosseland approximation.

To evaluate the heat flux across the slab, Eq. (5) may be expressed as

T~
0

e % o 2Es(ro — 1) + 2-/ 'qo('r + t)E(t) dt
-2 ‘Lﬂ o(r — ) Eq(t) dt

and substituting into this equation ¢ = /7, together with the asymptotic
expression tE,(t) ~ ¢, there is obtained
_da—a

Tg

qr =

Consequently, for an infinitesimal slab of thickness dr

which is precisely Eq. (10). It has thus been shown that the Rosseland
approximation is indeed an asymptotic form of the governing radiation
equations,

C. OrricALLY THIN APPROXIMATION

The optically thin approximation applies for ry < 1, and the radiation
equations derived in Section IT,A may be simplified through use of the
relations (9)

E)t) =14+ 0(), Ei(t) =3 — ¢+ 00 (12)

which are the first terms of the power series expansions of E.(f) and
E(t). For example, considering black surfaces (B; = e; and R; = e3)
Eq. (5) reduces to

gr = 01(1 - 27‘) - e,(l — 270 + ZT)
+2 [ ewd—2["ewd (13)
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and it follows that for black surfaces the source-sink expression becomes

dg.
— qu— = 2, + 25 — 4e (14)

The physical interpretation of Eq. (14) is readily apparent. The
quantity 4e represents the energy emitted per unit volume from an
element, since 4ae is the actual emission per unit volume (8). In turn,
2¢; and 2¢; denote the energy absorbed by the element from the lower
and upper surfaces respectively. Thus, under optically thin conditions
every element of the medium exchanges radiation directly with the
bounding surfaces and no intermediate attenuation of the radiant energy
takes place. An optically thin medium is therefore commonly referred to
as a medium with negligible self-absorption.

D. ABsorrTION COEFFICIENTS

Although a considerable amount of data has been obtained concerning
the emissivity of gases, very little information is available regarding the
mean absorption coefficient a. As illustrated by Goulard (7), the con-
version of emissivity data to absorption coefficients may be accomplished
in the following manner,

From the discussion following Eq. (7), the rate of energy per unit
surface area emitted by the gas slab and incident upon the lower surface is

4w = 2 [ OBt at (15)

Now, by the usual definition of gas emissivity, ¢, the energy emitted by
an isothermal slab of gas may be expressed by

Grg = oeT* (186)

with T the gas temperature. Thus, letting ¢ = 7' be a constant in Eq.
(15), and equating Eqs. (15) and (16)

2 fo" Ea(t) dt

or

1 — 2E;(r0) an

However, if this expression were employed to evaluate the absorption
coefficient from emissivity data, it would be found that a is dependent
upon the gas thickness L, whereas actually the absorption coefficient
depends solely upon the state of the gas.?

€

1 When the assumption of a gray gas is not applicable, ¢ will also depend upon the
incident radiation.
(9]
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At this point is should be reemphasized that the concept of gas
emissivity refers to an isothermal gas, and a radiating gas can approach
isothermal conditions only in the limit as ro— 0. Thus, from Eqgs. (12)
and (17) with 7, = aL, the relationship between gas emissivity and
absorption coefficient is found to be

a=14 (%)M (18)

The absorption coefficient may therefore be evaluated from emissivity
data through extrapolation of the quantity ¢/L.

2.4 T T T i T T T

Vi
/

Coefficient,

0.8 \

Absaorption

04 ‘- \

0 l 1 i L ! I 1 )
1000 2000 3000 4000 5000

Temperature, R

Fia. 2. Absorption coeflicient of water vapor at one atmosphere pressure.

This procedure has presently been applied both to water vapor and
carbon dioxide at a pressure of 1 atmosphere, and the results are shown
in Figs. 2 and 3. The emissivity data were taken from Figs. 4-13 and 4-15
of Hottel's chapter in McAdams (12), and Fig. 4-16 of (12) was utilized
to correct the pressure of the water vapor from 0 to 1 atmosphere.
Figures 4-14 and 4-16 of (12) may be employed in order to apply the
results of Figs. 2 and 3 to pressures other than 1 atmosphere.

Values of ¢/L for high-temperature air have been tabulated by Kivel
and Bailey (73), and since their results were obtained for optically thin
conditions, Eq. (18) may be applied directly with no extrapolation
necessary. These results are given in Fig. 4 where p, denotes standard
(10]
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235 T T T T T T T T
2.0
NG B
R \
E- - -
-
]
3 o N,
-]
5} \
= — —
2
a
H 0.5 \;
< \
o 1 1 1 L 1 . i ]
000 2000 3000 4000 5000

Tesmperaturs, R

F1a. 3. Absorption coefficient of carbon dioxide at one atmosphere pressure.

10

4

AR\

ANAN

10*

NEARNN

Absorption  Coefficient, a, '/"

10

- 8
T 10° 10

Temparature, ‘R

F1a. 4. Absorption coefficient of air.
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density. Further information on the emissivity of high-temperature air
has recently been summarized by Thomas (14).

III. Pure Radiation in an Absorbing Medium

Before considering the application of the foregoing radiation equations
to problems involving conduction and convection, the simpler situation
of pure radiation transfer in an absorbing medium will be investigated.
For convenience, radiation between parallel black plates which are
infinite in extent will be assumed. It is of interest to first note that if the
plates are separated by a nonabsorbing rather than absorbing medium,
the radiant heat transfer from one plate to the other is simply

G = €1 — £2

If the space between the plates is instead occupied by an absorbing gas,
the effect upon the net radiant heat transfer g, will be similar to that of
placing a radiation shield between the plates. One would thus expect the
heat transfer to be decreased as the absorption ability (or optical thick-
ness) of the intervening medium is increased.

Since radiation is assumed to be the only mode of heat transport or
addition within the medium, then from conservation of energy dg./dr = 0.
Again letting ¢ be the dimensionless emissive power of the gas defined as
_ e — e
T aa
Eq. (6) gives

fo eWBG = ndt+ [ e®Ft - 7) a
+ Bl — 1) = 26(r) (19)

It should be noted that Eq. (19) is linear in ¢ due to the neglect of
conduction or convection. The integral equation is, however, singular
gince E,(t) possesses a logarithmic singularity at the origin. Numerical
results for ¢(r) have been obtained by Usiskin and Sparrow (6) through
numerical integration of Eq. (19) using an iterative procedure, and by
Viskanta and Grosh (15) through application of the method of undeter-
mined parameters. The results of (16) are illustrated in Fig. 5, and the
limiting solutions for r = 0 and r = = readily follow from the optically
thin and optically thick approximations. From Eq. (14) for an optically
thin medium with dg,/dr = 0
e+ e
=5 20
such that ¢ = 3. Conversely, with ¢, constant Eq. (10) illustrates that
[12]
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the gas emissive power will vary linearly with distance between plates
for optically thick conditions such that ¢ = 7/7..

To evaluate the net radiant heat transfer from one wall to the other,
Eq. (7)*in terms of ¢(r) becomes

e = 2B +2 [ OB 1)
ey — €2 0

Thus, with ¢ known the radiant energy transfer may be evaluated
through integration of the above equation. This has been accomplished
in (6) and (16), and the results of (15) are illustrated in Fig. 6. As
expected, the heat transfer decreases with increasing optical thickness.

10 T T T T T T T
| Tzc0
10
0.8 /
2
L -
06 54 -
NN o]
ofdf [0}
L
- 0.4 —
0.2 .
P 4 TR KRR WOV S N R N B
[¢] 0.2 0.4 0.6 0.8 1.0
T,

Fra. 5. Variation of dimensionless emissive power between parallel black plates
from (15).

Following Hottel (6), optically thin and optically thick results are
also shown in Fig. 6. The optically thin expression for ¢, is obtained by
substituting Eq. (20) into Eq. (21), giving

S L S
€1 — €2

while the optically thick result
qr 4

€1 — ez 31'0

follows directly from Eq. (10). Figure 6 thus conveniently serves to
¢ The subscript 1 may be droped since ¢, is constant.

(13]
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illustrate the applicability of the optically thin and optically thick
approximations.

It should be noted from Fig. 5 that a discontinuity in emissive power,
and hence temperature, exists at the surfaces. This is due to the neglect
of conduction within the medium, conduction being the only process by
which continuity of temperature can be insured. This temperature jump
may be thought of as analogous to the discontinuity in velocity between
fluid and bounding surface which arises in nonviscous flow analyses, the
velocity jump resulting from the neglect of viscosity.

It is worth mentioning that nowhere in the preceding analysis has the
absorption coefficient been assumed to be independent of temperature.

10 T TTTT7T] I T T

\ — — — Optically Thin Approx. -
~

0.8 ~ — - — Optically Thick Approx. —
\\

L N \ |
os N S -

N

RNER

02 e S

'

I
[ i S ] Lty
o.| 1.0 10

Opticat Thicknaess, Te

F1a. 6. Heat transfer between parallel black plates from (15).

Actually, the results as presented are valid for any variation of the
absorption coefficient with temperature, and & given variation a(7) need
be utilized only in the evaluation of the optical thickness ro. If the
absorption coefficient is independent of temperature, then 7, = oL,
while if a is temperature dependent the relationship between L and 7o is

__ ™ dr
L= _A pa (22)

The conversion of a(7") to a(r) is accomplished through use of the known
emissive-power profiles, which yield 7'(s).

As a simple example, consider the absorbing medium to be water
vapor and the distance between plates to be sufficiently large such that
(14]
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the optically thick approximation may be employed. Thus ¢ = r/7q, and
from the definition of ¢

M
T = [w — (T = TaY r]
0

Over moderate temperature ranges, the absorption coefficient of water
vapor can be approximated by

a=CT™r
So, combining this with the preceding equation

7 |4
a = C [T]‘ - (Tl4 It Tg‘) ;_—]
0

and substituting into Eq. (22)

_(n+4CL (T* — T3
- 4 (T1n+4 _ T2n+4)

Letting 7', = 2000°R and T, = 1000°R, it is found from Fig. 2 that
C = 135,000 and n = 1.6. Further, taking L = 10 ft, the above expres-
sion yields 7o = 9.5. Assuming, on the other hand, a constant value of the
absorption coefficient corresponding to the mean temperature of 1500°R,
then ro = 12.0. The assumption of & constant absorption coefficient
evaluated at the mean temperature between plates thus leads to an error
of 269 for the optical thickness. Since under optically thick conditions
g» varies a8 1/7q, the heat transfer will be underestimated by 21 %, through
the assumption of a constant absorption coefficient.

Although the results of Figs. 5 and 6 are directly applicable only to
black surfaces, Viskanta and Grosh (1§) have discussed their extension to
gray surfaces through the following procedure. It is easily shown (15) that
Figs. 5 and 6 apply to gray surfaces through replacing e; and e; by R,
and R, respectively. Further, upon substitution of the emissive-power
profiles given in Fig. 5 into Eqs. (8) and (9), subsequent integration yields
two simultaneous algebraic equations for B; and R,. This determination
of the radiosities then gives all the necessary information for radiation
between gray surfaces.

Viskanta and Grosh have, in fact, recently applied this procedure to
the parallel plate system for the case of equal plate emissivities (e, = €;).
Their results, recast in terms of the present nomenclature, are listed in
Table I, and, as would be expected, illustrate a reduction in heat transfer
with decreasing plate emissivity.

An alternate approach to radiation heat transfer between gray plates
has recently been employed by Howell and Perlmutter (7). Instead of

[15)
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TABLE 1
HeAT TRANSFER RESULTS FOR RaDIATION
BETWEEN PARALLEL GRAY PLATES (16)

To € q./(ex - ez)

0.1 0.916
0.761
0.330

0.052

eeor
-0t 0O

1.0 0.553
0.493
0.265

0.050

coeo-
L~ U~ ]

10.0 0.109
0.107
0.090

0.038

coor
- e o

formulating the problem in terms of an integral equation, the Monte
Carlo method was applied. Heat transfer results were presented for the
two plates having equal emissivities, and these results are shown in
Fig. 7. The curve for ¢ = 1.0 is in excellent agreement with (15), while the
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Fi1a. 7. Heat transfer between parallel gray plates from (17).

results for ¢ = 0.1 are in corresponding agreement with Table I. For
o = 0, the values for ¢ = 0.1 and ¢ = 0.3 coincide with the well-known
expression (18)

g _ €
€1 —e 2 — e

[16]
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for parallel plates with equal emissivities and separated by a nonabsorb-
ing medium.

IV. Combined Conduction and Radiation in an
Absorbing Medium

The problem previously considered of heat transfer between infinite
parallel plates separated by an absorbing medium will now be extended
to include conduction as well as radiation within the medium. It will be
assumed that the absorption coefficient and thermal conductivity of the
medium are independent of temperature, and the plates will initially be
considered as black surfaces. The first complete formulation of this
problem was recently presented by Viskanta and Grosh (19).

The temperature distribution within the medium is described by the
energy equation as applied to simultaneous conduction and radiation,
and for the present one-dimensional problem with constant thermal
conductivity this is

a*T  dg, _

N T 28)
Correspondingly, employing Eq. (6) with B; = e, and B, = e, since the
surfaces are assumed black, the energy equation becomes an integro-
differential equation of the form

kaﬂ = 4e(r) — 2 /;'.e(t)Ex([r — ) dt

dr?
— 261E2(T) _ 2€2Eg('ro - T) (24)

Unlike the previous problem of pure radiation, which resulted in solely
an integral equation, the above equation necessitates two boundary
conditions. Since the inclusion of conduction requires continuity of
temperature, these conditions are

T=T1; y=0

It may further be noted that Eq. (24) is nonlinear as a result of the
conduction term appearing on the left side.

An additional quantity of importance is the net heat transfer from one
plate to the other. Because the system is in steady state, this may be
determined by evaluating the heat transfer from or to either surface.
Choosing the lower surface, the radiative contribution to the total heat
transfer is given by Eq. (7) with the R’s replaced by e’s, while the conduc-

(17)
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(T
' dy =0

The total heat transfer between plates may thus be expressed by

0= = (), +o - 2abicd —2 [Tk (29
Y Jumo 0

tive contribution is

Dimensionless quantities similar to those employed by Viskanta and
Grosh (19) will now be defined as

LI SRPR

N=orw T,

Equation (24) correspondingly becomes

_d®0
v dr?

= 04(r) — JgEa(r) — }802'Ka(ro — 1)

-3 o0 — a0
with the boundary conditions
6(0) = 1, 6(ro) = 6,

In addition, the equation for heat transfer between plates, Eq. (25), may
be expressed in dimensionless form as

G'Tq':—‘ = —4N (g?e),_o + 1 - 2(‘)2‘E3(‘Tn) -2 /;" 94(T)E2(T) dr (27)

Equations (26) and (27) illustrate that both the dimensionless tempera-
ture distribution, 6(r), and dimensionless heat transfer, q/¢ 7%, depend
upon three parameters; 5, 6, and N. The appearance of 9,, which was
not present in the preceding pure radiation solution, is a result of the
nonlinearity of the present problem, while N may be regarded as a measure
of the relative importance of conduction versus radiation. In the limit as N
goes to zero the present problem reduces to that of the preceding section,
while for large N the heat transfer process approaches that of pure
conduction.

Equation (26) has been solved numerically using an iteration procedure
by Viskanta and Grosh (19) for several combinations of the governing
parameters, and the heat transfer was subsequently evaluated using an
equation similar to Eq. (27). Their results, actually taken from (16), are
listed in Table II. Additional heat transfer results have recently been
presented by Einstein (20) for 6, of 0.2 and 0.8 with N and r, ranging up
[18]
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to 1.56 and 3.0 respectively. The geometry employed by Einstein actually
differed slightly from that considered here, in that the width of the plates
was taken to be finite and equal to ten times the spacing between plates.

It 18 again of interest to investigate the limiting cases of optically thick
and optically thin radiation. Consider first the optically thick situation.
Temperature profiles for combined conduetion and optically thick radia-
tion have been discussed by Viskanta and Grosh (27), while the local

Hzear TrANssFER REsuLTs FOR CoMBINED CONDUCTION AND

TABLE II

RADIATION BETWEEN Brack PraTes (16)

To (e N g/aT1* ¢/q(approx.)
0.1 0.5 0 0.859 1.00
0.01 1.074 1.01
0.1 2.88 1.01
1.0 20.88 1.00
10.0 200.88 1.00
1.0 0.5 0 0.518 1.00
0.01 0.596 1.11
0.1 0.798 1.11
1.0 2.600 1.03
10.0 20.60 1.00
1.0 0.1 0 0.556 1.00
0.01 0.658 1.11
0.1 0.991 1.08
1.0 4.218 1.01
10.0 36.60 1.00
10.0 0.5 0 0.102 1.00
0.01 0.114 1.10
0.1 0.131 1.07
1.0 0.315 1.04
10.0 2.114 1.01

heat flux is obtained by combining Eq. (10) with the conduction law,

yielding

q=—(k+

3a

16«1’-) dr

dy

Following Einstein (20), this may be integrated, recalling that g is a

constant, to give

Q= E(Ty~ T + o (Ta4 — T3

(19]
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or, in dimensionless form

To= AN~ 8:) + $4(1 — 659 (28)
One may note that the optical thickness 7, has been eliminated as a
separate parameter through combination with the dimensionless heat
transfer term.

A comparison of Eq. (28) with the results of Table II for 6; = 0.5
and 7o = 10 is shown in Fig. 8. The maximum discrepancy between the
two results is 23% for N = 0; i.e., for pure radiation. As N increases the
difference in turn decreases, with the error being only 14 % for N = 10.
The reason for this is that the optically thick approximation is concerned
solely with the radiation process, and any resulting error should diminish
with an increasing influence of conduction (increasing N).

0.4

Exact (i6)

— — — — Optically Thick Approx.

N= K@
40T}

Fia. 8. Heat transfer for combined conduction and radiation between parallel
black plates, 62 = 0.5 and r, = 10.

Turning next to the optically thin approximation, combination of
Egs. (14) and (23) with subsequent reduction to dimensionless form
yields

NI~ o0 140, ~ 34 (29)

as the equation describing the temperature profile within the medium.

The houndary conditions are again

0(0) = 1, O(re) = 6,
(20]
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while combination of Eq. (13) with the conduction law gives the heat
transfer between plates as

‘%ﬁ = —4N (3—?)7_0 + 1 — @41 ~ 2r) — 2 /; 0'(r) dr  (30)

Inspection of Eq. (29) reveals that the temperature profile, 6(r), for
optically thin conditions is no longer dependent upon three parameters,
but instead 7 and N combine to yield dependence upon the two parameters
ro/+/N and 6,. From Eq. (30), however, the dimensionless heat transfer
is still a function of three parameters.

To this writer’s knowledge, no solutions to Eqs. (29) and (30) are
presently available for comparison with the results of Table II. Numerical
results for an optically thin problem have been obtained by Goulard (7),
but these are based upon thermal conductivity and absorption coefficient
varying with temperature.

In addition to studying combined conduction and radiation between
black plates, Viskanta and Grosh (76) have extended their analysis to
include gray plates. It was assumed that the plates had equal emissivities,
and heat transfer results were presented for ¢ = 0.1, 0.5, and 0.9. These
results for the case of ¢ = 0.1 are illustrated in Table III.

At this point it is certainly evident that problems involving combined
conduction and radiation in an absorbing media contfain a multitude of
parameters, the number being four for gray plates with equal emissivities.
It would consequently be advantageous to have some sort of simplified
procedure available for estimating heat transfer, and one such method has
been proposed by Einstein (£0). This procedure simply assumes that the
two modes of heat transfer can be superimposed with no regard for their
mutual interaction, Thus, the radiation transfer g, is evaluated as though
there were no conduction taking place; in other words, from Fig. 6 for
black surfaces or Table I for gray surfaces. The heat transfer due to
conduction is in turn calculated as if there were no radiation transfer
occurring, so that

k
¢ =7 (Ty = Ta)
or, in dimensionless form

g _ 4N 4 _
O'Tl‘ To (1 e’)
The total beat transfer is then taken as the sum of the two separate heat
rates, ¢ = ¢r + g..
Einstein found that this approximate procedure, when compared to his
complete calculations for 8; = 0.2 and 0.8 with black surfaces, under-
[21]



R. D. Cess

predicted heat transfer by no more than 9%. A further comparison has
presently been made with the ¢ = 1.0 results of Viskanta and Grosh and
i8 illustrated in Table I1 by the column ¢/q(approx.), where g(approx.)
denotes heat transfer evaluated by the superposition approach. It may
be noted that the maximum diserepancy is roughly 11%, and this com-
parison lends further support to Einstein’s approach.

TABLE III
Hear TransrFER REsurrs FoR CoMBINED CONDUCTION AND
RApiaTIiON BETWEEN GRAY PLATES, ¢ = 0.1 (16)

7o 0: N g/eTy q/q(approx.)
0.1 0.5 0 0.049 1.00
0.01 0.267 1.07
0.1 2.078 1.01
1.0 20.08 1,00
10.0 200.08 1.00
1.0 0.5 0 0.047 1.00
0.01 0.156 2.33
0.1 0.393 1.59
1.0 2.245 1.10
10.0 20.25 1.01
1.0 0.1 0 0.051 1.00
0.01 0.22 2.55
0.1 0.591 1.44
1.0 3.752 1.03
10.0 36.22 1.00
10.0 0.5 0 0.036 1.00
0.01 0.080 2.37
0.1 0.115 2.05
1.0 0.297 1.26
10.0 2.107 1.03

The largest errors in the superposition method arise for intermediate
values of N. This should be expected, since in the limit of either very
small or very large N the heat transfer process approaches that of pure
radiation or pure conduction respectively, and the superposition pro-
cedure becomes exact. Table IT further illustrates that, with respect to
optical thickness, the largest differences between ¢ and g(approx.) exist
for intermediate values of ro. For 7o = 0 the heat transfer process is
again that of pure conduction, while for large »o Einstein has pointed out
that the superposition approach is exact since Eq. (28), which applies for
(22)
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optically thick conditions, simply represents the sum of pure conduction
and pure radiation heat transfer.

In order to assess the applicability of the superposition method to gray
rather than black surfaces, an additional comparison is illustrated in
Table III for the plates having an emissivity of 0.1. From this it is seen
that very substantial errors arise, and it would appear that the super-
position approximation is therefore applicable only for high surface
emissivities.

V. Laminar Flow of an Absorbing Gas
across a Flat Plate

As a final example of heat transfer in absorbing media, consideration
will be given to combined convection and radiation. The only basic
difference between this process and one of combined conduction and
radiation is that the medium is now allowed to move relative to the
bounding surfaces with some prescribed velocity distribution. Essentially,
convective heat transfer can be broken down into two general areas;
internal or duct flows, and external or boundary layer flows. A rather
detailed analysis pertaining to the first area, consideration of fully devel-
oped heat transfer for flow of an absorbing medium between parallel
plates, has been presented by Viskanta (22). The second area, boundary
layer flow of an absorbing medium, is not nearly as amenable to analysis,
and it is with this type of combined convection and radiation process that
the present section will be concerned.

Sidorov (28) has considered combined convection and radiation for
laminar flow across a flat plate, but obtains a solution in an extremely
approximate faghion. The optically thin approximation has been applied
to boundary layer heat transfer by several authors, for example, Howe
(24) and Koh and DeSilva (25). In these analyses the gas (high-tempera-
ture air) within the boundary layer was assumed to emit but not absorb
thermal radiation. This assumption is valid providing the surface and
the gas outside the boundary layer are relatively cold. Results based upon
the optically thick approximation have been presented by Viskanta and
Grosh (26) for laminar flow across a wedge. This analysis thus serves as a
limiting solution for the case in which the optical thickness of the bound-
ary layer is large.

In many situations involving boundary layer flow of absorbing gases,
the interaction between convection and radiation will not be appreciable.
To assess under what conditions this neglect of interaction effects is
permissible, the following analysis will deal with evaluating first~order
interaction effeets upon boundary layer heat transfer. The particular case
of laminar flow across a flat plate will be considered.

(23]
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A. TueorETICAL MODEL

The physical model and coordinate system are illustrated in Yig. 9.
Steady laminar flow of a constant-property fluid with negligible viscous
dissipation is assumed, and the boundary condition at the plate surface is
taken to be that of a constant temperature. In order to keep the number
of parameters to a minimum, it will further be assumed that the plate
surface is black. No appreciable difficulty would be encountered in
extending the analysis to a gray surface. As usual, the free-stream fluid is
considered to be infinite in extent. It should be emphasized, however,
that in the present situation “infinite in extent” additionally refers to
optical conditious. Thus, all radiation emitted by the plate must eventu-
ally be absorbed by the fluid, while the fluid will in turn be the sole source
of radiation incident upon the plate.

\— T, = Constant

Fia. 9. Physical model and coordinate system for boundary layer flow of an absorb-
ing gas.

Before discussing the mathematical model to be used in the present
analysis, it is of interest to investigate possible limiting solutions for the
case in which the fluid is a very weak absorber. Under such a condition,
it would be expected that absorption and emission effects within the
thermal boundary layer would exert a negligibie influence upon the con-
vection process. Correspondingly, the convective heat transfer g, at the
plate surface would be that for pure convection, and, expressing this in
terms of the convective Nusselt number, defined as

— Tewd
Nu - (Tw - Tm)k

and taking for example Pr = 1.0, one has the well-known result

Nu
4/ Re

where Re is the Reynolds number defined as Re = wu.z/».

To obtain an expression for the radiative heat transfer g,, at the plate
surface, it may be noted that under the condition of weak absorption the
radiation field will extend far out into the fluid since only gradual attenua-
tion of radiation occurs, and, correspondingly, temperature gradients will
(24]
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be small throughout most of the fluid. It may thus be assumed that as far
as radiation is concerned the fluid is essentially isothermal and at the
free-stream temperature T.. Equation (17) illustrates that the emissivity
of an infinite isothermal fluid is unity, and therefore the net radiation
exchange between plate and fluid is

Qro = €y — € (32)

First-order corrections to Eqs. (31) and (32) will now be considered,
and it will first be necessary to formulate the energy equation as applies
to the present boundary layer problem. Under the assumptions previously
mentioned, the complete energy equation is

aT aT . i
pcp<u%+va—y—> = — div §. — div §, (33)

where the bar denotes a vector quantity, and
o= —kgrad T

As is well known, if the Peclet number, defined as Pe = u.z/q, is suffi-
ciently large, then conduction in the a-direction will be negligible such
that div ¢, ~ dq.,/dy, where the subscripts z and y will be used to denote
the z and y components. Equation (33) then becomes

aT aT 9T .
pc,,(u55+v5?-/—)=kay—2—dlvq, (34)
A similar criterion for the neglect of radiation in the z-direction will
now be determined. Perhaps the simplest means of accomplishing this is
to investigate under what conditions radiation in the flow direction is
negligible compared to convection, since convection in the flow direction
will, under most conditions, be a predominate term in the energy equation.
The requirement is thus that
aT . 8q.

pCHU 3z > Y

(35)

The order of magnitude of ©67/dx is estimated in the usual manner to be

g—f ~ iy Lo = T) - T.) (36)

In order to predict the magnitude of d¢,./dz, it may be noted from
Fig. 6 that the optically thick approximation will overestimate radiation
heat transfer when applied to conditions which are not optically thick.
Thus, in the present situation a conservative criterion would at most
result through use of the optically thick approximation, The order of

(25]
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magnitude of 3¢,./3z will consequently be estimated from

_ _ 40 16eT70T
%= = T 309z 3a oz

giving

¢z ~ 16673 (T — Tw)
oz 3a z?

From this, together with Eqs. (35) and (36), the condition for radiation
transfer in the z-direction to be negligible is

(37)

Ul
16aT%/3apc,

As pointed out by Viskanta and Grosh (26), the quantity 1607%/3a can
be interpreted as a ‘‘radiative conductivity.” The dimensionless group
appearing above may in turn be considered as a ‘‘radiative Peclet
number."’

With radiation neglected in the z-direction, and again letting g,
denote radiation in the y-direction, Eq. (34) becomes

or _ &T _ a dg.
3y ~ oy e, or

>1 (38)

aT
Use + v (39)
The absorption-emission term, dg,/dr, is given by Eq. (6) with 70— o,
R, = e, and e(r) replaced by e(z,7), such that

- %(‘Ir—f = 2e.E(r) + 2/; e(z,)Ei(|r — t]) dt — 4e(z,7) (40)

It will now be assumed that thermal conduction within the fluid is
restricted to a thin region of thickness § adjacent to the plate surface,
which is simply the conventional thermal boundary layer, and that this
boundary layer is optically thin (i.e., s = aé <« 1). The optically thin
boundary layer, however, represents only a portion of the entire tempera-
ture field, since radiation emitted by the plate will pass virtually un-
attenuated through this layer. Consequently, it is necessary to consider
not only the boundary layer, but also an adjacent radiation layer which
is not optically thin and within which temperature gradients, and thus
conduction effects, may be assumed small.

In other words, it has been assumed that conduction within the fluid
is restricted to a thermal boundary layer whose thickness is small com-
pared to the penetration length. Adjacent to this boundary layer is a
radiation layer having a thickness of the same magnitude as the penetra-
tion length, and within which thermal conduction is neglected. In carrying
out the solution to this assumed model, the temperature profile within
[26]
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the radiation layer must first be determined. From this the temperature
at the outer edge of the thermal boundary layer is obtained, and the
boundary layer solution follows.

B. RApIATION LAYER

The energy equation applicable to the radiation layer is given by Egs.
(39) and (40) with u = u., ¥ = 0, and the conduction term in Eq. (39)
deleted. Thus

pc,;u,g_z_’ = 2e,Ex(r) + 2 /(;- e(z,)E(jr — ) dt — 4e(z,r) (41)

Since radiation transfer in the z-direction has been neglected, the bound-
ary condition for this equation is

T = Ta.; z=0

The solution of Eq. (41) may be accomplished through successive
approximations. In light of previous discussion, the first approximation
will be taken as T = T, and substituting this (i.e., ¢ = e,) into the
right side of Eq. (41) and performing the integrations, there is obtained

2az
T = Tw+ (6w — €)Ex(7) (pc,,u.,) + (42)
The second term on the right side of this equation thus represents the
change in fluid temperature due to radiation exchange with the plate,
Since only first-order effects are being considered, higher-order terms in
Eq. (42) will not be investigated.
Equation (42) may now be employed to evaluate the boundary condi-
tion at the outer edge of the thermal boundary layer. Letting this tem-
perature be 7, and since Ea(rs) = 1 + 0(r;) =~ 1, then

2azx
Ty = Te + (6w — €x) (pc,,u.,) + (43)
The fact that 7, differs from 7T, is the result of neglecting conduction
within the radiation layer. It may be seen that the solution for the
radiation layer is in a sense analogous to a potential flow solution, from
which the potential velocity at the surface is employed as the boundary
condition at the outer edge of the velocity boundary layer.

C. THERMAL BOUNDARY LAYER

In order to apply Egs. (39) and (40) to the optically thin boundary
layer (0 < r < 74), the integral appearing in Eq. (40) will be split into
[27]
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two parts giving
— a_q, = 2e.K:(r) + 2f e(x,)E (| — 1)) at

+ 2/ ez, ) Er(Jr — t|) dt — 4e(z,r) (44)
s
The emissive power occurring in the second integral corresponds to the

temperature distribution within the radiation layer. So, making use of
Eq. (42) there is obtained

e(@r) = €x + 4(ew — €a)Ea(r) (2%") + -

pUw

for r > 5. Upon substituting this into the second integral in Eq. (44)
and evaluating the integral for r < 7;, one has

) 3

J+om @
The second term on the right is neglected since the present analysis is
concerned solely with first-order radiation effects, while 0(r;) may be
neglected due to the fact that the boundary layer is assumed to be opti-
cally thin. Equation (45) thus gives the value of the second integral
appearing in Eq. (44), whereas the first integral is negligible under
optically thin conditions (see, for example, Section II,C). Since E,(r) ~ 1
for r < 73, the form of Eq. (44) applicable to the optically thin boundary
layer is therefore

— % = 26, + 20 — de(z) (46)

Comparing this with Eq. (14), it may be seen that the radiation layer
appears as a black surface at temperature T, as far as first-order radia-
tion effects within the boundary layer are concerned.

Upon substituting Eq. (46) into Eq. (39), the applicable form of the
boundary layer energy equation is

LI a—T—aﬂ+~—(T‘+T4—2T4) 47)

The boundary conditions for this equation are
T =T, y=20
T— Ty y— ®

where T, is a constant while 7 is given by Eq. (43). It will now be
convenient to define & dimensionless temperature difference and a tem-
(28]
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perature ratio as

T-T7T, _ T,
9 bt ‘_“—_'Tw — Ta;’ X - T;
and Eq. (47) becomes
20 30 _ 626
Yz TP T %
20070
14+ M —2[1 A — Do} 48
+ TSN LN = 2L+ (- D (48)
From Eq. (43) the boundary conditions transform to
6=1 y=0
o (M= 1) (20T, W (49)
)\ - 1 pcPuaw ’ y
New independent and dependent variables will now be defined as
_ U £ = 2a0T %
"IN YT Tocu.

where 7 is the familiar similarity variable for pure forced convection
from a flat plate, while { is an expansion parameter which arises since
the present convection-radiation problem does not reduce to a similarity
solution, The solution of Eq. (48) is now assumed to be of the form

0 =0o(n) +0.(ms+ - - - (50)

Recalling that the velocity components are given by
= uaf, v= 35\ f — ) (51)
where f(y) is the Blasius stream function (27), then upon substituting

Egs. (50) and (51) into Eq. (48) and collecting like powers of £, there is
obtained

1 ”n 7
F;eo + 1416y =0 (52)
1
ﬁex" + 140, — f'0;, = — g (63)
with
o0 = X—i——l (14 M= 201+ (A — DOJ4} (54)

[29]
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The boundary conditions upon 6,(s) and O;(y) are found from Eqgs. (49)
to be
0:(0) =1, Op(x)—>0

0:(0) =0, 61(w)— (;‘_—11)

As would be expected, the function O,(n) represents the convective
temperature distribution for the case of negligible radiation interaction
(¢ = 0), while the second term in Eq. (50) denotes the first-order radia-
tion effect upon the temperature profile within the boundary layer. To
determine the temperature distribution throughout the entire fluid (com-
bined boundary layer and radiation layer), Eq. (42) may be rephrased as

0 = 0i(=)E(r)E+ - - -
and it readily follows from combination of this expression with Eq. (50)
that
8 = 0o(n) + O:(ME:n)E+ - - - (55)
represents the temperature distribution throughout the entire fluid. In
making use of Eq. (565), it must be remembered that n — o« corresponds

to the outer edge of the thermal boundary layer where 7 is still sufficiently
small such that E,(r) ~ 1.

D. Hear TransFErR REsuLTs

It will be convenient to consider separately the radiation and convec-
tion contributions to the total heat rate per unit area at the plate surface.
To evaluate the radiation heat transfer, Eq. (7) with B; = ey, 7¢— =
and e(r) replaced by e(z,r) gives

Qre = €0 — 2 /o- e(z,7)Es(r) dr

or
Gro = (e — €a) — 2 [|” (e — e)Ea(r) dr (56)
At this point it should be noted that
T8 = Qb azr
‘ = r~)
4/ Re

and since the present analysis applies only for small r; as well as small
£, then any terms of O(rsf) are negligible in the same sense that 0(§?)
has been neglected. In line with this, evaluation of the emissive power
from Eq. (55) and substitution into Eq. (56) gives the radiation heat
(30}
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transfer at the wall as

Qrw =1 ar 2
lw — € vVRe/\M~—1

/:{[1+(>\—1)90]4—1}dn+ Cee (57

Comparison of the above with Eq. (32) illustrates that the second
term on the right side of Eq. (57) represents the first-order correction
to Eq. (32), and that this first-order effect depends upon the optical
thickness of the boundary layer but not upon ¢. It may be recalled that
Eq. (32) is based upon the assumption that the fluid is isothermal at
temperature 7., whereas the first-order correction in Eq. (57) corresponds
to the temperature profile ©¢(n). The subsequent departure from this
profile by the amount 6:(y) E2(r) ¢ as indicated in Eq. (55) would in turn
appear as a second-order effect in Eq. (57).

It may easily be shown that the quantity

(Xf‘z—“”i) ﬁ” {[1+ ( — 1)0g* — 1} dn

is positive regardless of the value of A (of course, A > 0). The effect of
the first-order term in Eq. (57) is thus to reduce radiation heat transfer
with respect to that predicted by Eq. (32). This is physically reasonable
since Eq. (32) assumes the fluid to be isothermal at 7., whereas the
fluid within the boundary layer (and also the radiation layer if higher-
order effects are taken into account) actually differs from the free-stream
temperature in the direction of T, such that radiation exchange between
this portion of the fluid and the plate is reduced.

Turning next to the convective heat transfer at the plate surface, this

is given by
T
ow = -k
e (ay >y=0

and combining the above with the definition of the Nusselt number

Nu ('3_9>
\/R—B an =0
so that from Eq. (50)
Nu
VRe
The first term in this equation corresponds to pure forced convection

and reduces to Eq. (31) for Pr = 1.0. It may be seen that the first-order
[31]
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radiation effect depends upon ¢ but not upon the optical thickness of
the boundary layer.

Although the foregoing heat transfer results were obtained under the
assumption of constant properties, they may be applied without modifi-
cation to the variable-property situation characterized by

pu = const pk = const
¢p = const a/p = const

This may easily be verified through use of Howarth’s transformation
together with the optical distance expression

T = [ 0" ady
for variable a.

With the exception of a/p = constant, the property variations described
above constitute a reasonable first-approximation for most gases. With
respect to a/p = constant, it may be recalled from Section III that for
water vapor in the temperature range 1000° to 2000°R the absorption
coefficient varies as 7-'¢ Consequently a/p varies approximately as
798 and this is a less severe dependence upon temperature than for a
by itself. On the other hand, for high-temperature air the ratio a/p will
vary more strongly with temperature than for a alone.

E. NumericaL REsuLTs FOR A — 1

Although numerical heat transfer results covering a range of values of
the parameter A were not available at the time of completion of this
article, illustrative results can be presented for the limiting case of A — 1
(small temperature differences). It may easily be shown that taking
A — 1 is the same as assuming linearized radiation.

Turning first to radiation heat transfer at the plate surface, Eq. (57)
with A — 1 becomes

Qrv azr *
e 12 Qodn + - - -
e — e (\/Re)ﬁ v+

Choosing Pr = 1.0, then from Reynolds’ analogy

fo' o dy = fo‘ (1 ~fdp= 1721

and

Gro az
— =1 —3.44 < 59
s ( _Re)+ (59)

To evaluate convective heat transfer the solution for 6:(n) is necessary,
and for A — 1 and Pr = 1.0 Eq. (53) and its boundary conditions reduce
(32]
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to
91" + }éfel’ b f'91 = 890 - 4
0.(0) =0, 6, (x)—>14
From this it may be verified that

0:(n) = 4[1 + o2(n) — a1(n)]
where
o/ + Y fei — flo1 = 0; 01(0) =1, o1()—0 (60)
and

o)’ + Y for' — flos = Oy 2(0) =0, o:(0)—0 (61)

Equation (60) eorresponds to forced convection with a linear variation
of surface temperature with z, and from (28) ¢1/(0) may be estimated
for Pr = 1 to be ¢:'(0) = —0.541. Further, Eq. (61) has been solved in
(29) with application to a nonsteady convection problem, giving
a2’ (0) = —0.876 for Pr = 1.0. Thus 6,(0) = —1.34, and for Pr = 1.0
Eq. (58) yields

Nu
vRe

The fact that convection heat transfer is increased due to the inter-
action of radiation ean be explained by investigating the sign of the
absorption-emission term - d¢./dr. For example, if the plate is heated
(T, > T,) it may be seen from Eq. (46) that —a¢,/dr will be negative
near the surface of the plate and positive within the outer portion of
the boundary layer. The effect of radiation is thus to impose an effective
heat sink within the fluid near the surface, which in turn tends to inerease
heat transfer from the plate surface. For the opposite extreme of an
optically thick boundary layer, Viskanta and Grosh (26) have shown that
an increase in convective heat transfer occurs only for A < 14.

VI. Boundary Condition Effects upon Forced Convection

=0332+ 1348+ - - - (62)

The foregoing sections have dealt exclusively with the influence of
radiation upon conduction and convection heat transfer as the result
of absorption and emission within the medium. In all cases the bounding
surfaces were taken to be isothermal, and there was no alteration of the
boundary conditions due to the presence of radiation. The present sec-
tion considers the reverse situation. The medium is assumed to be non-
absorbing, and the only influence of radiation is through altering the
boundary conditions of the heat transfer process.

The particular situation to be considered is that of laminar forced
convection across a flat plate. Steady flow of a constant-property fluid
which is transparent to thermal radiation is assumed, and the physical
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model and coordinate system are illustrated in Fig. 10. Heat transfer at
the surface takes place through the combined processes of convection
with the fluid which has a constant free-stream temperature 7. and
radiation with the environment which is at temperature T,.

Consider first the case in which the surface temperature is a prescribed
function of z. With this type of boundary condition the fluid is completely
oblivious to the presence of radiation since there is neither absorption
within the fluid nor does the radiant heat exchange affect the surface
temperature T,(z). Thus, for a prescribed surface temperature there will
be no interaction between the two separate modes of heat transfer. The
local convective heat transfer coefficient (or convective Nusselt number)
can be evaluated by standard methods (30 and 31), while the radiation
heat transfer is evaluated in the usual manner.

The situation is considerably different, however, for the inverse prob-
lem in which the surface heat rate per unit area is a prescribed function
of z. Once again there are standard methods available for evaluating

Environmant, T,

—_— y
—_— x

q,= Constant

Frc. 10. Physical model and coordinate system for boundary condition effects
upon forced convection.

the convective Nusselt number corresponding to a given g.(z). However,
with radiation present the heat rate distribution along the surface which
the fluid actually observes may be quite different from that which is
prescribed. This is due to the fact that part of the prescribed g.(z) leaves
the surface as radiant energy and in an amount which varies with loca-
tion. It is thus possible for the convective heat rate to vary with z in a
completely different manner than the total prescribed quantity g¢u(z),
and this results in a mutual interaction between the two modes of heat
transfer.

In the present analysis the particular case of a constant surface heat
flux is considered, and results will be given for the convective Nusselt
number. Once this is known, the surface temperature can readily be
obtained through an energy balance.

For laminar flow of a constant-property fluid across a flat plate with
negligible viscous dissipation, the energy equation is of the form

aT T

aT
ub_".;+v:9?—a5b‘i (63)

[34]



HeaT TRANSFER INTERACTIONS

As mentioned above, the surface heat rate is taken to be constant, and
the boundary conditions for Eq. (63) become

E= LTy y-0 (642)
T— T, Yy— ® (64b)

where ¢ is the plate emissivity.

The solution of Eq. (63) subject to the boundary conditions (64) may
be obtained in the following manner. Two new independent variables
will be defined as

Yo oeT' o}

n=Y Z, E= k

U
where 7 is the similarity variable ag used previously, while the expangion

parameter { is defined differently than before. In addition, the fluid tem-
perature will be expressed by the series

T — T,,° = T,[alel(n)f + azeg(ﬂ)fz + - ] (65)

with the requirement that 6,(0) = 6,(0) = - =1
Upon substitution of Eq. (65) into Eq. (63) and collecting like powers
of ¢, the quantities ©,(n) are found to be the solution of

1 " 4 n 7, p—
520x" + $4f0,' — 28, = 0 (66)

satisfying the boundary conditions
0,(0) =1, 6,(x0)—0

The Blasius stream function (27) is again denoted by f(5). It should be
noted (28) that Eq. (66) is identical to that representing the fluid tem-
perature for a surface temperature varying as £ (or z#/?). Such a result
should be expected since the energy equation is linear.

It remains fo evaluate the constants a;, as, . . . , and from Eq. (65)
To — To = Tulab + a2+ - - ) (67)

d
()., - wer@ +apr@r+ 1 @)

Substituting these expressions into Eq. (64a) and collecting like powers
of £, the constants a, may be determined. In the following, however, it
will be necessary to know only the ratio as/a;, for which it is found that

G2 4

a1 - 63' (0)

(69)
[35]
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The foregoing results may now be expressed in terms of the convective
Nusselt number, recalling that

N = chx —_ = z 2@
Nu (Te — To)k (Ty — Ta) (6y>v—0

Combining this definition with Eqs. (67) and (68) and dividing one series
into the other, there is obtained

Nu

4/ Re
The quantities 6,'(0) and 6,'(0) have been evaluated by Donoughe and
Livingood (28) for Pr = 0.7, giving

0,/(0) = —0.4059, ©,(0) = —0.4803

= —0,(0) —Z—j[ez'(O) — 0/ + - - - (70)

So, combining these results with Eqs. (69) and (70), the final expression
for the Nusselt number with Pr = 0.7 becomes

Nu
+vRe
As would be expected, the value 0.406 represents Nu/+/Re for a con-
stant surface heat flux with no effect due to radiation. The second term
in Eq. (71) correspondingly denotes the first-order influence of radiation.
It is interesting to note that this first-order term does not depend upon

either T, or q,. However, these quantities enter into the second and
higher-order terms in the form of the additional parameter

= v T\
= gel ot + (T,,) (72)
As discussed in (32), there appears to be little use in evaluating higher-
order terms in Eq. (71) due to the slow convergence of the series. An

alternate approach is to obtain a solution applicable for large § and it
was found that an asymptotic expansion exists of the form

T — Tow~ Tulbodo(n) + bia(m)&t 4+ - - 7] (73)

where ¢¢(0) = ¢:(0) = - - - = 1 have been chosen for convenience. The
functions ¢.(4) and constants b, are evaluated using essentially the same
procedure as in the previous solution for small &

Upon substituting Eq. (73) into Eq. (63) and collecting like powers
of £ there is obtained

= (0.406 — 0.620¢ + - - - (71)

1 .
1'3; ¢n” + }‘2f¢n’ + gf’¢n =0
$.(0) = 1, ¢u(®)—>0

(74)
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and this is the same as Eq. (66) except that the sign of n is reversed.
From Eqs. (64a) and (73) it is found that

b _ ¢/(0)
bo 48%

where g is defined by Eq. (72), while from (28)% for Pr = 0.7
& (0) = —0.2027, ¢,/(0) =0

The asymptotic expansion for the Nusselt number is in turn found to be

1
! 75
TR~ WO+ RO (75)
such that for Pr = 0.7
0.0214 |
e 7
\/e ~0.208 + —g— £ + (76)

This obviously applies only for 8 > 0. For 8 = 0 an asymptotic solution
can be obtained by expanding in reciprocal powers of £* as done by
Lighthill (33). Further, for pure radiation the wall temperature is given

by

Tw _ Qw T\ % — Ak

T. = ["——T t (T_> ] =6 @0
and consequently, at least in the limit of large £ 8 < 0 is not physically
possible.

One may note that the first term in Eq. (76) is the value of Nu/+/Re
for pure convection with a constant surface temperature. This is entirely
reasonable on physical grounds, since in the limit as ¢ becomes large
(radiation predominates) the surface temperature will approach the con-
stant value given by Eq. (77). Thus, the mazimum effect that radiation
can exert upon the convection process is to reduce Nu/+/Re from 0.406
to 0.293.

The limiting results for small and large £ as given by Eqgs. (71) and
(76) are illustrated in Fig. 11 together with Lighthill’s results (33) for
B8 = 0. Also shown in Fig. 11 is a straight-line fairing between the two
limiting solutions, and this should be regarded only as a very crude
interpolation.

The fact that the maximum influence of radiation upon convection is
to reduce the Nusselt number from that for a uniform surface heat rate
to the value for a uniform surface temperature has particular significance
with regard to turbulent flow. If the flow is turbulent, this difference is
only about 4%, and it may therefore be concluded that for turbulent

§ $1’(G) = O for all Pr.
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0.45 T " T T 1 T

3z

T ] ; T ] li
————— Lighthiti, B=0
0.40 -—— -~ —— Faired
0.35¢ -
0.30
0.25L ; | L ; . 01| { i oL
0.01 0.1 1.0 10
_O€R fix
Un

Fi1a. 11. Variation of the Nusselt number for laminar flow across a flat plate,
Pr =0.7.

flow across a flat plate any radiation effects upon the surface boundary
condition will have slight effect on the Nusselt number.

VII. Boundary Condition Effects upon Free Convection

As a second example of the influence that radiation may have upon
altering convective boundary conditions, free convection from a vertical
flat plate will be considered. It is again assumed that the fluid is non-
absorbing and that the surface heat flux is uniform. To further simplify

>
s

(S

|- Ambient, Tgq

.
§ AT
& — Environment, Ty
o
U _4 .
L Gravity
g —t- -
A Field, @
“4x
-
¢ y
Lo

SR,

F1a. 12. Physical model and coordinate system for boundary condition effects
upon free convection.
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the problem, the ambient temperature of the fluid and the environment
temperature for radiation exchange will be taken as the same value 7.
The physical model and coordinate system are illustrated in Fig. 12 for
a heated plate. For a cooled plate the gravity force is reversed. In addi-
tion to analytical predictions, experimental results have been obtained
using ambient air as the nonabsorbing fluid.

A. ANALYSIS

For laminar free convection of a constant-property fluid along a vertical
surface, the boundary layer equations are

o v

Fre + i 0 (78)
du ou u
u$+va—y—v——2+gﬁ(T—Tw) (79)
aT 82T
+ Yoy T Yoyt (80)
and the boundary conditions become
oT Gw |, O€
MR CAVERANY L X
3y kT % ¢ )}; y=0 (81a)
u=v=20
T—>T., u—0; y— © (81b)
Introducing the stream function ¢ by the customary definition
_w %
T8y T oz

then Eq. (78) is automatically satisfied. New independent variables will
now be defined as

T R (82)
and solutions of Eqs. (79) and (80) are assumed to be
¥ = Cox{Fo(n) + Fi(tm)¢ + - - ] (83)
T. - 7= %2100 + 0@E+ - - ] (84)
where
@) a-() @

(39]
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F¥or ¢ = 0, Eqgs. (82) through (85) reduce to the similarity transformation
for free convection in the absence of radiation as considered by Sparrow
and Gregg (34).

Upon substituting Egs. (83) and (84) into Egs. (79) and (80) and col-
lecting like powers of £, ordinary differential equations deseribing F,
O, F1 and 0, are obtained as

Fwolll _+__ 4F0F0H —_ 3(Fol)2 = 80
L 00" + 4F0¢ — Fy/0, = 0 (86)
ﬁ ] oo oY =
Fll” + 4FOF1” — 7F0’F1, + 5F0“F1 = 91
1 * ' ¢ ' 4 [ 7 (87)
ﬁel +4F091 - 2F091 = F160 - DFIOO

The boundary conditions for these equations are determined in essentially
the same manner as in the preceding case of forced convection. Combining
Egs. (83) and (84) with Eqgs. (81) gives

Fof0) = Fi'(0) = 0, 64(0) =
(0) (0) =0, 6,(0) 1} (88)
Fi(»)—(0), 6¢(x)—0
F10=F1,0=, 1,0':40
0) 0) =0, 6/(0) G(O)l (89)
Fy'(o)—0 0:(0) — 0

The foregoing results may now be expressed in terms of the convective
Nusselt number and Grashof number, where

Gr = gﬂxa(Tw - T.)

p2

From Eq. (84), recalling that 6, (0) = 46,(0)

Ty — T, = — %% (9,00) + €:(0

w T w — Clk [90( ) + 1( )E + ot ]
Ty _ _ @ , .
(55), - — 00 + - - 1

and combining these with the definitions for Nu and Gr

Nu 1 _ 560 .
<Gr>%‘5%[—eo(0>]%‘1+[49°(°> z::eo«»]f+ l %0)

Results for 64(n) and Fy(y) have been presented by Sparrow and Gregg
(84) for Pr of 0.1, 1, 10 and 100. For purposes of the present analysis,
[40]
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Eqgs. (87) subject to the boundary conditions (89) were solved numerically
on an IBM 7090 digital computer for Pr = 1.0, and the pertinent results
are

8,(0) = —1.357, 6,(0) = 5.463

In addition, the functions F¢’, F.’ and 0, 0; are illustrated in Figs. 13
and 14 respectively. For Pr = 1.0, Eq. (90) thus gives

Nu

Gn¥ = 0.456 — 0.180¢ + - - - 91)

The first term is again the result for pure free convection with no influence
of radiation.

In order to make a comparison later with experimental data, it would
be advantageous to extend the present analysis to a Prandtl number

C4— T T T T T T T T 1

N2

Fi1a. 13. The functions Fo(y) and Fi(n) for free convection.

more closely representing that of air. One way to do this, of course,
would be to resolve Egs. (86) and (87). However, from the analysis of
Sparrow and Gregg (356) it may be found that at least within the Prandtl
number range of 0.7 to 1.0 the effect of Prandtl number upon Nusselt
number is virtually independent of the surface boundary condition. From
the uniform surface temperature results of Ostrach (36) the Nusselt
number for Pr = 0:.72 is found to be lower by the factor 1.12 than for

[41)
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Pr = 1.0. Thus, applying this factor to Eq. (91) there is obtained for
Pr =072
U 0407 — 0.1618 + - - - (92)
(Gr)*

It is interesting to note what form the preceding results would take if
linearized rather than fourth-power radiation had been assumed. Factor-
ing the fourth-power temperature difference in the usual manner, the

6 f | t i 1 T i | 1

8

"=

F1c. 14. The functions 64(n) and 6:(n) for free convection.

radiant heat transfer between surface and environment may be expressed
as
Qrw = O'E(Tw2 + Tmz)(Tw + Tm)(Tw - Tac)

and providing T, does not differ too greatly from T, this may be
approximated by

Gro = 40€T 3 (T — T)

So, assuming linearized radiation the boundary condition at the plate
[42]
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surface becomes

ﬂ’ o _+_4nyeT,°3

dy k k

If Eq. (93) rather than the first of Eqgs. (81a) had been employed in
the foregoing analysis, the same results would still have been obtained.
In other words, the term denoting first-order radiation effects is the same
whether fourth-power or linearized radiation is employed, and this holds
for forced convection as well. If higher-order terms were considered in
Egs. (91) and (92), the additional parameter

Qw

aeT 4

(To —Ts); y=0 (93)

would arise for fourth-power radiation, whereas this would not be the
case if linearized radiation were assumed.

As in the previous section dealing with forced convection, attention
will now be directed towards determining asymptotic results for large
values of the radiation parameter £ To further simplify the problem
linearized radiation will be assumed, and the thermal boundary condi-
tion at the plate surface is taken to be that given by Eq. (93). As just
discussed, the small £ results are equally applicable to this situation.

A solution of Eqs. (79) and (80) in the form of an asymptotic expan-
sion will now be assumed as

¥~ 40 x¥[Go(§) + GO EH + - - 1] (94)
T = T~ golis [606) + 61@E% + - - ] (95)
where
_ Cay _1{ gBq, \*
£= 7 Co = §(aeTw3v2) (96)

For £ = 0, this reduces to the similarity transformation for free con-
vection from an isothermal plate with the temperature difference between
plate and ambient equal to ¢.,/4oeT.2

Upon substituting Egs. (94) and (95) into Eqgs. (79) and (80) and
collecting like powers of §, there is obtained

G + 3GGY — Z(Go’)z = —¢
97)
1—}; ¢o’' + 3Gops = 0
Gy + 3GGY — 3G/GY + 2G'Gy, = — ¢
1., Ny ) (98)
Pr &1 + 3G’ + Go'dr = —2G 190
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The boundary conditions are easily found to be

m@=m@=am@=w |
(99)
Go(=) =0, ¢/() >0
')/4
G1(0) = m@~0m@-~m®} (100)
G (2)—0, ¢/'(x)—0

Heat transfer results may now be determined in eactly the same
manner as before. By incorporating Eq. (95) into the definitions for Nu

0.3 I T T T I f T

¢- Gy

X'7e

F1a. 15. The functions G4(§) and Gi(¢) for free convection.

and Gr, there is obtained

%& V2W@+mw 5460 (0)1(0)E% + - - -} (101)

It is readily observed that, as for forced convection, the first term in
the above expression represents heat transfer from a constant-tempera-
ture plate.

Tabulated values of Gy(n) and ¢o(n) given by Ostrach (36) for Pr = 0.72
were used as input data in solving Eqs. (98) numerically on an IBM
1620 digital computer. The results of primary interest are

¢¢'(0) = —0.505, ¢/(0) = 0.042
[44]
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and the functions Gy, Gi' and ¢,, ¢: are illustrated in Figs. 15 and 16
respectively. It follows that for Pr = 0.72 the Nusselt number expression
becomes
Nu
(Gr)*#

Equations (92) and (102) thus represent for Pr = 0.72 the solutions for
small and large £ respectively. It should be emphasized that if fourth-

~ 0.357 + 0.007&% 4+ - - - (102)

1.00 T T T I I i I i ]

0.75— |
0.50 |- ¢. —

0.251~ -

-0.25[ ]

104,
-0.50 -

T
i

-0.75|— ]

ool L1
o]

p-SL
x4

F1a. 16. The functions ¢4(¢) and ¢:(¢) for free convection.

power rather than linearized radiation had been employed, the additional
parameter

Qw
gel !

would appear in the coefficient of the second term in Eq. (102).

B. EXpPERIMENTAL RESULTS

To augment the foregoing analytical results, an experimental investi-
gation was undertaken concerning free convection from a vertical flat
plate having a uniform surface heat flux. Free convection rather than
foreed conveetion was chosen solely as the result of the lesser equipment
requirements of the former as compared to the latter. On the other hand,
the analyses have indicated that the influence of radiation through
altering the convective boundary conditions is considerably less for free
rather than forced convection. Consequently, the advantage of experi-
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mental simplicity is somewhat offset by the fact that a smaller effect
had to be observed.

It was decided to use room air as the nonabsorbing fluid and to employ
moderate temperature differences so that the assumption of linearized
radiation would be appropriate. From the previous section it was shown
that the influence of radiation is dependent upon the parameter ¢ defined
as

£=

oeT 3% _ ael' .3 (51{:1}21:)%
kC, k 9B

With the ambient temperature 7. fixed, the only way of varying £ for
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Fra. 17. Free convection apparatus.

a given plate emissivity would be to vary either x or g,. However, since
these quantities are raised to the 1§ power in the above expression,
significant variations in ¢ could not easily be obtained in this manner.
It was thus decided to produce the main variations in ¢ through altering
the emissivity of the surface.

The experimental apparatus consisted of a vertical test plate as illus-
trated schematically in Fig. 17. The test plate was constructed of 26
(46]
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gage (0.018 inches thick) type 304 stainless steel. An identical stainless
steel sheet was used as a guard plate and was separated from the test
plate by a one-inch-thick fiberglas insulation board.

Both the test and guard plates were heated by passing an alternating
current through them, thus producing a locally uniform heat generation
within the plates. The two plates were connected in series by a one-inch-
square copper bus bar as shown in Fig. 17. The plates were checked for
uniformity in thickness and no variations greater than 19, were found.
Power to the test plate was measured by a Weston Model 432 wattmeter,
and the voltage taps for the wattmeter were soldered to the inside sur-
face of the plate as shown in Fig. 17.

Surface temperatures were measured by copper-constantan thermo-
couples located vertically along the center of the test plate and soldered
to the inside surface. Additional thermocouples were located on both
the test and guard plates to serve as a check on horizontal and transverse
temperature gradients. Thermocouple emf was measured by a self-
balancing Leeds and Northrup K-3 potentiometer.

The radiation environment for the test plate consisted of a four-foot-
square plywood box open on one side. The test plate was then located
so as to face into the box, and the minimum gray-body view factor was
calculated to be 0.99¢ with ¢ plate emissivity. Thus, the box was suffi-
ciently large to closely approximate an infinite environment, since the
gray-body view factor between the plate and an infinite environment is
¢. The combined ambient-environment temperature 7., was taken to be
the average of the inner surface temperatures of the box.

Three surface finishes on the plate were employed; polished stainless
steel, bronze radiator paint, and black lacquer. The emissivity of these
surfaces was measured using a radiometer similar to that described in
(37), giving the following values in the temperature range of 100° to
140°F':

Polished stainless steel ¢ = 0.20

Bronze radiator paint ¢ = 0.52

Black lacquer e = 0.96

The apparatus was operated at a surface heat rate of 46 Btu/hr ft2,
which corresponds to a current of approximately 240 amps. The tempera-
ture difference between plate surface and ambient ranged from 28° to
61°F depending upon location and surface emissivity. In evaluating the
convective heat transfer coefficient (and hence Nusselt number) the only
additional information required was the convective heat rate from the
plate surface, and this was determined by subtracting the radiation heat
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rate oe(T,* — T.,%) from the total. In reducing the data to the form
Nu/Gr¥ as a function of £ the air properties, with the exception of 8,
were evaluated at the loeal reference temperature

T, =T, ~038(Ty — T.)

while the coeflicient of thermal expansion was taken to be 8 = 1/T..
This is the procedure that has been recommended by Sparrow and
Gregg (35).

The experimental data are illustrated in Fig. 18 and correspond to a
Grashof number range of 1.6 X 107 to 1.3 X 10° Also shown in Fig. 18
are the limiting solutions for small and large £ Egs. (92) and (102), as

048 1 T 1 T 17 ! T
L ] ¢ = 0.96
| L~ Qu* Const. 4
e . o € = 0.52
040_4:______._.._ o € =020
Y S :
o~ — ——— gired
Nu B "o T E ——— ;.
(6r)'74 o T —]
Q O — ]
035k g T
Ty = Const. -—
0.3 R N A 1 [ N R A
0.02 0.1 1.0

g. S8 (¥
KC,

F1ce. 18. Comparison of experimental and theoretical results for free convection
from a vertical plate.

represented by the solid curves, while the broken curve denotes a straight-
line fairing between the two limiting solutions. It may be seen that the
datsa are in reasonably good agreement with the analytical and faired
curves, the maximum discrepancy being 8%,

SyMBOLS
a absorption coefficient L  distance between plates
¢p  specific heat at constant pressure Nu Nusselt number, g..x/(Tw — T o)k
P black-body emissive power, ¢7¢ Pr Prandtl number v/«
Gr  Grashof number, g8zXT. — T.)/»? ¢ heat rate per unit area
H  incident radiation R radiosity, total radiant energy
I intensity of radiation, time-rate of leaving a surface per unit time per
radiant energy transfer per unit unit area (i.e., sum of emitted and
solid angle per unit area normal to reflected radiation)
pencil of rays Re Reynolds number, u.z/»
k thermal conductivity t dummy variable of integration
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absolute temperature T Stefan-Boltzmann constant
velocity component in z-direction . . v
velocity component in y-direction optical distance, / 0 ® dy
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distance measured normal to surface "° optical thickness, [ o & dy
thermal diffusivity w  solid angle
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kinematic viscosity w  wall
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I. Introduction

The field equations which deseribe a physical phenomenon are fre-
quently nonlinear. However, the analytical investigator linearizes them
whenever possible in order to take advantage of the principle of super-
position. The linear representation is an approximation, and can be
expected to reproduce the true behavior fairly well whenever the non-
linearities are weak in some sense. Conversely, if the nonlinearities are
strong, they must be included in order to explain the observed behavior.
An example of the latter case, taken from the field of mechanics, is the
hard or soft spring. Examples from the field of fluid mechanies are bound-
ary layer growth and shock wave propagation.

In the field of heat transfer, and more especially heat conduction, the
transient heat conduction equation is linearized by assuming the thermal
properties to be independent of temperature; furthermore, the boundary
conditions are also taken to be linear. When dealing with heat conduction
in solids, the linear approximation is often quite acceptable. As a matter
of fact, virtually all of the well-known treatise of Carslaw and Jaeger (1)
is devoted to a presentation of solutions of linear transient heat conduc-
tion problems. However, if the temperature in the solid varies over s
wide range the thermal properties become temperature dependent, the
field equation becomes nonlinear, and the solution cannot be obtained
by any of the elegant methods which Carslaw and Jaeger demonstrate.
On the other hand, if the temperature level itself becomes high, radiation
or change of phase may ocecur, and, as a consequence, the boundary con-
ditions become nonlinear, and once again the elegant methods fail. The
purpose of this chapter is to present a mathematical technique, called
the integral method, by which approximate solutions to nonlinear tran-
sient heat conduction problems can be obtained. Such problems need
not be linearized, because the technique is elastic enough to encompass
all nonlinearities. The integral method reduces the nonlinear boundary
value problem to an ordinary initial value problem whose solution can
frequently be expressed in closed analytical form. The integral method
can also be used to obtain approximate solutions to linear problems with
complicated spacially-dependent thermal properties, and problems where
convection as well as conduction is involved. The versatility of the
method will be demonstrated by the presentation of many examples in
the subsequent text.

In order to introduce those concepts which are basic to the integral
method, we will use the method to obtain the solution to a very simple
linear problem. Let us assume there is a semiinfinite slab extending over
positive . Initially, the temperature T'is — T, and at the surface z = 0
[52]
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the heat flux, F(¢), is given for time ¢ > 0. If « is the thermal diffusivity,
the heat conduction equation is

T oT

QW:—W’ .’17>O, t>0 (1)

If £ is the thermal conductivity, the boundary condition is

aT

ko= —F®) ©=0, t>0 )

We now define a quantity 6(t) called the penetration distance. Its
properties are such that for x > 8(¢) the slab, for all practical purposes,
is at an equilibrium temperature and there is no heat transferred beyond
this point. The penetration distance is analogous to the boundary layer
thickness in fluid mechanics. If Eq. (1) is multiplied by dz and integrated
from 0 to §, the resulting equation is called the heat-balance integral.
The temperature will be compelled to satisfy the heat-balance integral,
but not the original heat conduction equation, Eq. (1). The heat conduc-
tion equation will, thereby, be satisfied only on the average. This averaged
equation is analogous to the momentum integral in boundary layer
theory. Integral methods were first introduced by von Karman and
Pohlhausen (2) in order to solve nonsimilar boundary layer problems
in fluid mechanics. A modern account of the Karman-Pohlhausen method
and a bibliography may be found in Schlichting (3). The method is,
however, equally appropriate for solving any problem governed by a
diffusion-type equation. Such problems as the nonsteady heat conduc-
tion in solids, the nonsteady flow of fluids through porous media, the
mixing of two species, and (in the social sciences) the spreading of rumors
all obey equations of this type. The integral method will be developed
here in the context of heat transfer. The solutions thus obtained, although
not exact, are often sufficiently accurate for engineering purposes.

The heat-balance integral obtained by averaging Eq. (1) in the manner
described, becomes

d _Ter oT
a0+ 1) —a| @0 - 55 00] ®
where
0=AMTM @)

But, since there is no heat transferred beyond z = §,

Ton=o0 ®)
(53]
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Let us assume that T can be represented by a second-degree poly-
nomial in z of the form: T = 8y + Biz + B8:2?, where the coefficients 3;
may depend on ¢. Applying Eqgs. (2, 5) and the condition

T, = —T. (6)

the temperature profile must take the form

R @

Substituting into Eq. (4), it is seen that
82F
8= —T.6 4 o (8)
Introducing Egs. (2, 5, 8) into the heat-balance integral, Eq. (3), gives

the following ordinary differential equation to be solved for §:

1d, , -
¥ 0 F) = of (9)
By virtue of the initial condition, 8{(0) = 0,

%

5 = /(6a) [F%) ﬁ Pt dtl] (10)

If F(t) is constant this reduces to
6 = v/ (6at) 1y
The surface temperature is obtained by setting z = 0 in Eq. (7) and

applying Eq. (10). The result is

TOYl=2 = ~Ta + VO Va [FO) [[Feyau]"/k (12

If F(t) is constant this reduces to
= ~Te+ V3% VaFVi/k (13)

The exact solution of this problem is given on page 75 of (), and for
a constant value of F, the result is

T = —Ta + V&/7) Ve F Vi/k 14

By comparing Eqgs. (13) and (14) it is seen that the results are of the
same form, differing only by a numerical factor. Since v/(4/x) = 1.13
and +/(34) = 1.23, the error is about 99%. This error can be reduced
by using a less primitive temperature profile than that represented by
[54]
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Eq. (7), and also by using other methods which will be presented in
the sections below. However, considering the crudity of the method, and
of the assumed profile, it is remarkable that Eqgs. (13) and (14) agree
as well as they do. At interior points, where the temperature is lower,
the per cent error is necessarily greater, but the temperatures are still
fairly well represented.

It will be required, for subsequent development, to know the value of
5 when z = 0. From Eqgs. (10, 12) the result is

S = 2T K/ F (t) ' (15)

where ¢, is the time at which z = 0 occurs, and can be obtained from
Eq. (12) for variable heat flux, or from Eq. (13) for constant heat flux.
Using Eq. (13), the result is

2Tk

tm = 3 af? (16)

All of the fundamental concepts basic to the integral method appear
in the simple example presented above. Much of the material presented
below will be devoted to the demonstration of the proper application of
the method for various practical heat transfer problems. Included are
problems in both conduction and convection, problems involving a change
of phase, problems with polar and spherical symmetry, problems with
nonlinear boundary conditions, and problems with temperature-depend-
ent thermal properties,

Historically, the first applications of the integral method to solve the
diffusion equation, Eq. (1), were made by Landahl (4) in the field of
biophysies. Landahl was specifically concerned with the spread of a con-
centrate. In all the problems with which he dealt, the profile was chosen
to be linear, and this is, of course, the most primitive profile possible.
(An exception is one case which used an exponential profile, but the end
result was dismissed as being no significant improvement over the result
obtained using a linear profile.) Landahl subsequently applied his version
of the integral method to a variety of nonlinear problems governed by
an equation of the diffusion type (5, 6). The case of concentration-
dependent properties was discussed by Macey (7) but still using a linear
profile. A presentation of some of this early work appears in Rashevsky
(8).

A more sophisticated approach was adopted by Veinik (9) in applying
the integral method to heat conduction problems. He always assumed the
profile to be a polynomial, and applied the integral method to a great
number of cases. None of these early investigators were concerned with a
rational approach toward improving the accuracy of the integral method.

[55]
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Although we will also apply the integral method to a number of cases,
nevertheless, the objective of this article is to acquaint the reader with
the integral method as a mathematical technique. With this purpose in
mind, the applications will be used primarily for illustrative purposes.
The integral method has been advanced beyond the rudimentary stage
by virtue of the efforts of many investigators whose work will be dis-
cussed. Thus, in addition to presenting examples of the application of
the method, we will also present techniques for improving the accuracy
of the method; we will compare the method with other related methods;
we will demonstrate the limitations of the method, and suggest how
these limitations may be overcome.

II. The Linear Heat Conduction Equation with
Fixed Boundaries

In this section, we will consider problems involving the transient heat
conduction equation in one space variable. Thermal properties will be
taken to be constant so that the governing equation is linear. Both
linear and nonlinear boundary conditions will be considered. The crude
second degree polynomial for the temperature profile, which was assumed
in the example problem presented in Section I, will usually be discarded
in favor of a more convenient or appropriate profile.

A. THE SEMIINFINITE SLAB

The temperature distribution in a semiinfinite slab, initially at zero
temperature [T, = 0] and subject to a very general boundary condition,
has been obtained by Goodman (10) [see also (I7)] using the integral
technique. In Section I the solution was obtained assuming the surface
heat flux to be a prescribed function of time. A generalization of this
condition is the assumption that the heat flux is a preseribed function
of surface temperature and time:

oT
5;; (O)t) = _f[zyt] (17)

The temperature profile will be taken to be a cubie, in which case four
conditions are required to determine the four constants. Three of these
conditions are Eqgs. (5, 6, 17) which are the natural conditions, An addi-
tional derived condition can be obtained by differentiating Eq. (6) with
respect to time and applying Eqgs. (1, 5). The resulting derived condition
is

a:T

Equation (I8) is sometimes called the smoothing condition because it
{56]
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tends to make the profile go smoothly into the ambient temperature.
Clearly, the cubic profile must take the form

T = 32-3(5 — 2)8 (19)

where
8

32/f(z,t) (20

Equation (20) expresses a relationship between surface temperature
and the penetration distance. As a consequence, there is really only one
unknown function of time in Eq. (19), and this will be obtained from the
heat-balance integral. Upon integrating Eq. (1) fromz = 0 to 2z = § and
applying Eqgs. (5, 17) we obtain

_de

By substituting Eq. (19) into Eq. (4) and performing the integration, we
obtain the quantity 6 in terms of z and §. After eliminating 5 by using
Eq. (20), we obtain the following ordinary differential equation for z:

e/ = 3 (75 (22)

The >proper initial condition is 2 = 0 when ¢ = 0. If the function f(z,t) is

dependent on both z and ¢ Eq. (22) must be integrated numerically.

However, there are two cases for which Eq. (22) can be integrated

analytically: when f depends solely on 2, and when f depends solely on .
Case (a)—If f is independent of ¢, the solution is

[221f(21) — 2% (21)] d2a
% ot = / ' oG @3)

Case (b)—If f is independent of z, the problem becomes identical to
the one solved in Section I, except that the profile in Section I is a
quadratic, whereas here it is a cubic. We are therefore able to compare
the results obtained using a quadratic profile with those obtained using
a eubic profile. The result is

2= [$5 o0 [ 1) du]” (24)

which is, of course, the cubic profile equivalent of Eq. (12).

1. Applications of Goodman’s Solution
If f is constant, Eq. (24) reduces to

2= V%IVt (25)
[67]
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which is the cubic profile equivalent of Eq. (13). Since 4/44 = 1.15, and
the exact factor /4/xr = 1.13, the error has been reduced from 99, to
29%, by using a cubic instead of a quadratic profile.

As an example of Eq. (23) suppose

@) =% -2 (26)

where h and 2’ are constants and represent, respectively, the heat transfer
coefficient and the ambient temperature of the surrounding medium.
The result is

4 [h\? 1 1 ’

The exact solution is given both analytically and graphically on page 72
of (7). To the scale of the graph presented there, it is impossible to
detect any error in Eq. (27).

Equation (23) may be applied to a nonlinear problem. Suppose

flz) = (H/k)(z + To)* (28)

This represents a slab of absolute temperature 7', radiating into a sink of
ahsolute temperature zero. The result is

atH!Te _ 3 [n* 39, 17, 1
2 “27,8[6 7 +Z]+56 (29)
where

p=142/T, (30)

This problem has been solved by Jaeger (1) by numerical integration of
the heat conduction equation. In this case also, it is impossible to detect
any error in Eq. (29) when it is superimposed on the graph which Jaeger
presents,

Schneider (12) has generalized the solution given by Eq. (29) to a slab
of finite thickness (plate) radiating into a sink of finite temperature. The
case of zero sink temperature can be expressed in closed form; other
cases must be integrated numerically. For further details see Schneider’s
paper. (See Section II, B, however, for a general discussion of slabs of
finite thickness.)

Chambre (13) has considered, from a different point of view, the semi-
infinite slab with a boundary condition of the form of Eq. (17) without ¢
dependence (although there is no reason, in principle, why ¢ dependence
could not have been included). Since the field equation is linear, the
surface temperature can be expressed as a convolution-type integral in
[58]
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terms of the surface heat flux using standard methods (e.g., LaPlace
transforms). Then, by virtue of Eq. (17), Chambre is led to the following
nonlinear integral equation for the surface temperature:

2(t) = 2o +\[ / ! f(_’)f)ﬁ (31)

where z, is the initial temperature of the slab [= —T,]. Upon substitut-
ing an approximate solution into the right-hand side of Eq. (31), he is
led to an improved solution which he again substitutes into the right-
hand side. By continuing in this way, very accurate results can be obtained
after only a few iterations, provided, of course, that the initial guess is
reasonably accurate. It is clear that this method of attack could be used
for any problem in which the nonlinearities appear only in the boundary
conditions; for, if the differential equation is linear, an integral equation
can always be derived. Schapker (74) has discussed the derivation of
such integral equations. In using the integral equation approach together
with an iteration procedure, two questions arise: the convergence of
the iteration procedure, and the choice of the initial guess. For the
semiinfinite slab, Chambre has outlined the convergence proof and the
conditions under which it is valid. The best choice for the initial guess,
as suggested by Chambre, is the solution obtained by the integral method.
Thus, the iteration scheme becomes a technique for improving the inte-
gral method. Arbarbanel (15) has also used the integral equation approach,
together with an iteration procedure. He has applied the technique to
the slab of finite thickness and the sphere, each of which is subjected
to the radiation boundary condition. He does not, however, use the inte-
gral method to obtain the initial guess in the iteration procedure.

2. The Step in Surface Temperature

A case of special interest is the semiinfinite slab initially at zero tem-
perature whose face is suddenly raised to temperature 7',. Applying Eqs.
(5, 6, 18) with T, = 0, together with the boundary condition

T(Oyt) =T, (32)
the cubic profile must take the form
T = T,[1 — z/5]* (33)

Substituting into Eqgs. (3, 4) we are led to a differential equation for &
whose solution is

= v/24at (34)
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The surface heat flux is, therefore,

LOT| _ _ VHTA
az Vat

The exact solution of this problem is given on page 63 of () and is
identical to Eq. (35) except that the numerical factor /3¢ = .602 is
replaced by \/1/x = .564. The error is about 7%. Reynolds and Dolton
(16) have used the integral method to analyze this problem, but their
result differs from the one presented here because of a different selection
of the derived condition on the cubic profile. Instead of using the smooth-
ing condition, Eq. (18), they obtain a derived condition by differentiating
Eq. (32) and applying Eq. (1). They are then led to a surface heat flux
of the form of Eq. (35) except that the numerical factor is replaced by
vV'%, = .530. The error in this case is about 69%. This difference in
approach is illustrative of a general property of the integral method; viz.,
the choice of profile is never unique, and the error in the final solution
depends, to a large extent, on a judicious choice of the profile. Thus,
there is a certain ambiguity in the method, which can only be resolved
by investing it with mathematical rigor. For those problems to which
it applies, Chambre’s iteration scheme (13) is precisely the rigor required;
for, by virtue of the convergence proof, we have a guarantee that, what-
ever the assumed profile, we can come as close to the correct solution as
desired. For the particular case under consideration, the iteration can
be said to converge in one step; for, by substituting Eq. (35) (which
has the same form as the exact solution) into Eq. (31), the surface tem-
perature is seen to be indeed a constant, but the wrong constant. It
may then be adjusted, and the iteration is complete.

The solution for the step in temperature given by Eqs. (33, 34) can
be used to generate an approximate solution for the semiinfinite slab
with arbitrary time-dependent surface temperature 7.(t) by use of
Duhamel’s integral:

T(zt) = T.(O)[1 — z/6(1)]° + / T/ — /8t — 1)]*dr  (36)

(35)

where 8({) is given by Eq. (34).

3. Internal Heal Generation

Suppose there is internal heat generation ¢(¢) per unit time per unit
volume, and the surface temperature is fixed at zero. Initially, the slab
is at zero temperature. Equation (1) is replaced by

aT T q(t)
A% e (87)
[60]
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Assume once again a cubic profile. Two of the natural conditions are:
Eq. (5), and Eq. (32) with T, = 0. The third natural condition is obtained
by applying Eq. (37) far from the boundary where no temperature
gradient exists:

T4 = Q(t) f o(0) dt (38)

The derived condition can be obtained by differentiating Eq. (38) and
applying Eqgs. (5, 37). The result is once again Eq. (18), and the heat
balance integral takes the form

d Qs _ Qz
The temperature profile is
= 20— - o/ (40)
The solution is
2a [ Qdt]”
ke

B. THE Svas oF FiniTE THICKNESS

Goodman (17) has obtained the temperature distribution in a slab of
thickness [, initially at zero temperature, and subject to boundary con-
dition Eq. (17) at £ = 0 and to the isothermal condition at z = {:

Tt =0 (42)

Initially, the effect of the boundary condition at z = [ is not felt, and
the slab behaves as though it were semiinfinite. For this initial stage,
therefore, Eq. (22) applies. As soon as § = [, however, the initial stage
is complete, and the time at which this occurs can be obtained by setting
6 = [ in Eq. (20). In the second stage, the concept of penetration dis-
tance has no meaning, and, consequently, only three conditions are
required to specify the coefficients of the cubic profile. Two of these
are the two natural conditions, Egs. (17, 42). The third condition can
be derived by differentiating Eq. (42) with respect to time and applying

Eq. (1):
(l t) = (43)

6x2
The cubic temperature profile must then take the form:

r-(3-3)a-a+gm(r-e-r @
1]
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The surface temperature, z, will be determined from the heat-balance
integral, where, in this case, the integration extends from 0 to /. We are
then led to the following differential equation for z:

Helren =3 - 455 - reo] 45)

Onee again, there are two cases for which the equation can be integrated
directly: when f depends solely on 2, and when f depends solely on 1.
Case (a)—If f is independent of {, the solution is:

RN
12a \
(b=t = / fz) — 2/l dzi, 12t (46)

The constants ¢, and z, define the end of the initial stage and the
beginning of the seeond stage. These constants may be determined from
the semiinfinite slab solution when ¢ = [. Explicitly, set § = [ in Eq. (20)
to determine zo, and set z = zo in Eq. (23) to determine ¢,.

Case (b)—If f is independent of z, the solution is:

=§ﬂn+[%—iﬂm]KMMWHw
480‘ —(12a/512) (t—ty)
+ f(t Ye vdty  t>te  (47)

The constants ¢, and z, in this case are determined by setting § = [
in Eq. (20), and ¢ = ¢, in Eq. (24).

1. Application of Goodman’s Solution

Only one simple application of the general formulas will be presented,
viz. the case f = constant. Equation (47) then reduces to:

= fl[1 — .814 exp (—2.4at/1%)] I > to (48)

The exaet solution appears on p. 113 of (Z) in terms of an infinite series
of eigenfunctions. For large time, it is sufficient to retain only the first
eigenfunction. If this is done, the result is:

8 2
z = fl [1 — 3 eXp — 7i—ozt/l"’] (49)

By comparing Egs. (48) and (49), it is seen that the exact value of the
eigenvalue is 72/4 = 2.467 instead of 2.4, while the exact coefficient of
the exponential is 8/7? = 811 instead of .814. In Section VII it will be
demonstrated how the integral method may be used to generate the
(62]
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higher eigenfunctions and eigenvalues, while simultaneously improving
the accuracy.

2. The Step in Surface Temperature

Reynolds and Dolton (16) have carried out the calculation of the
temperature in a finite slab initially at zero temperature, whose surface
temperature is suddenly raised to 7., and whose far surface, (x = 1),
is insulated:

% a8 =0 (50)

The derived condition for the cubic profile is obtained by differentiating
Eq. (32) and applying Eq. (1):

a:T
a 0 =0 (61)
The profile is then of the form:
T z 1fz\?
?,;—~1+'Y[_Z‘§('§)] (52)
where the parameter v satisfies the differential equation:
dy , 12a
b7 + FTRY = 0 (53)

which is obtained from the heat-balance integral. The initial condition
which we will apply to Eq. (53) is slightly different from the one used by
Reynolds and Dolton (16) because the solution in the initial stage is
different (see Section II, A, 2). By equating the surface temperature
gradient with that for the initial stage at the time when & = [, we are
led to the condition y(fs) = —3. The complete solution is:

y = —3e~D3@/i=Ho) (54)

The exact solution appears on page 101 of (I) in terms of an infinite
series of eigenfunctions. The first term of the series is:

y = _7{;%1 (0,8) = —2eCr9 it (55)

A numerical comparison between Eqgs. (54, 55) demonstrates the accuracy.
C. ProriLES REPRESENTED BY FUNCTIONS
OteEr THAN POLYNOMIALS

Up to this point, all profiles have been represented by polynomial
expressions, It is sometimes more advantageous to use some other type
‘ (63]
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of profile which invariably takes the form of a nonalgebraic function
multiplied by a polynomial. The advantage of so doing lies in the greater
accuracy achievable. This will be illustrated by three examples.

1. Polar and Spherical Symmetry

Lardner and Pohle (18) have demonstrated that, for problems involv-
ing polar or spherical symmetry, the polynomial representation of the
profile is inappropriate because the solution does not tend to the proper
form of the steady state solution in the limit for large time. They argue
that the volume into which heat diffuses does not remain the same for
equal increments of r (radius) as in the planar case, and, as a conse-
quence, a modification in the assumed profile is necessary. Indeed, in
the case of polar symmetry, the heat conduction equation becomes:

3 af aT o
a—t (TT) = o 5; (1‘ W) (')b)
The heat-balance integral becomes:
de aT *
Et— = IXTE: . (57)
where
6 = [a" rT dr (58)

and the suggested form of the profile is:
T = (polynomial in r) inr (59)

Similarly, in the case of spherical symmetry, since the steady state solu-
tion is proportional to 1/r, the suggested profile is:

_ (polynomial in »)
r

T

(60)

Lardner and Pohle then proceed to solve an explicit case having polar
symmetry using both a polynomial profile, and a profile in the form of
Eq. (539). By comparing the results with the known exact solution of the
problem, they clearly demonstrate the superiority of Eq. (59). For fur-
ther details, the reader is referred to Lardner and Pohle’s paper.

2. One Fluid Heat Exchanger

Reynolds and Dolton (76) have applied the integral method to the
transient cooling of a single-fluid heat exchanger. The exchanger consists
of a tube of length [ through which the fluid flows. At time zero-minus,
the exchanger is in steady state, with the wall temperature held at
[64]
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T = T; by an appropriate heat source. At time zero, the heat source is
removed and the exchanger cools. It is assumed that conduction is absent
in both the tube and the fluid, and the heat which is exchanged between
them is proportional to the temperature difference. The wall and fluid
temperatures are then functions only of time (¢) and the longitudinal
distance along the tube (z). An energy balance in the solid leads to the
equation:
d [t 1
—-/dex+ﬂ/(Tw—Tf)dx=0 (61)
dt Jo 0
where T is the temperature of the fluid. The energy balance in the fluid
is obtained assuming that the change of energy storage in the fluid is
small compared with the energy transferred to it from the wall:

aT,y _« ' _
a2 =1 (Tw — Ty) (62)

If the wall temperature were constant, the solution would be:

T; — Ty = Tigmosht (63)
This steady state solution suggests we assume a profile of the form:

T; — Ty = Tieosht (64)

where a is a time-dependent parameter to be determined. This assumed
form is chosen in the same spirit as Lardner and Pohle’s profiles for polar
and spherical symmetry. In both cases, the form is suggested by the
steady state solution. If the wall temperature is also assumed to have
an exponential profile, such that Eq. (62) is satisfied uniformly, it must
take the form:

T,— T, =T, (1 - Z-) g—all (65)

Substituting Eqs. (64, 65) into Eq. (61), Reynolds and Dolton are led
to the following differential equation for a:
1 e 1 e* {da k6 B _

(;"’ a(l——e““)+al—e‘“}3t—+c—x_0 (66)
subject to the initial condition a(0) = «. From a graphical comparison
of the exact solution [see page 123 of Bateman (79)] with the one obtained
by integrating Eq. (66), they conclude that the results agree quite well
for & < 5, which is the range of most practical heat exchangers.

[65]
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3. Heat Conduction itn Rods

The heat conduction equation in a rod of constant cross section is
given, for example, in Chapter IV of (Z):

=y T (67)

where » is related to the heat transfer coefficient between the rod and
its surroundings. The steady state solution for a semi-infinite rod whose
end z = 0 is maintained at constant temperature 7'; is:

T = Tae‘\g“’ (68)

Now suppose that at time zero-minus, the rod is at zero temperature,
and at time zero, the end temperature is suddenly raised to 7. We
assume a profile of the form

T = Tye=it (69)

which is suggested from the steady state solution, Eq. (68). Upon inte-
grating Eq. (67) fromx = 0 to x = <o, the heat balance integral becomes

ad oT
WS % 0,t) — »6 (70)

where

0=Lme (71)

After performing the indicated operations, there is obtained the following
differential equation for b:

== b (72)
subject to the condition b(0) = 0. The solution is

b= iV T (73)
The temperature gradient at x = 0 is

v
T EJ;

3 N1 = e (74)

The exact solution of this problem is given on p. 135 of (Z). The exact
[66]
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temperature gradient at z = 0 is given by:

aT v e

R A @)
Equations (74, 75) are shown plotted in Fig. 1. The accuracy of the
approximate solution can be improved by using a profile consisting of

a polynomial multiplied by an exponential, where additional constraints
can be derived by differentiating the boundary condition at = 0.

3.0

25F

l—lx
LB

~p 1.5

K]
l\ Approximate
j 10
Asymmote/

05

1 1 i i 1 J
o] 0.2 0.4 0.6 o8 1.0 12
vt

Fie. 1. Temperature gradient time history at the end of a semiinfinite rod with
isothermal end—comparison between exact and integral solution.

D. CoNcLUDING REMARKS

The examples presented above are not intended to be exhaustive, but
merely illustrative of the manner in which the integral method reduces
a heat transfer problem to an ordinary differential equation. As pointed
out by Reynolds and Dolton (76), the integral method is really a generali-
zation of the ‘“lumped parameter’” method in which the temperature
of the thermal capacitor is no longer idealized as constant, but is allowed
to have some spatial distribution.

In all the problems considered in this section, the initial temperature
has been assumed to be constant or, more usually (and with no loss in
generality), zero. No consideration has been given to problems in which
there is an initial distribution of temperature. The reason for this is
that the integral method, as presented, cannot deal with problems of
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this type. One possible approach to this type of problem is to utilize a
theorem of Goodman (20) which states that the solution of any linear
problem can always be expressed in terms of its adjoint; the adjoint is
merely another heat conduction problem with time running backwards
which always has zero initial temperature. The integral method can thus
be employed indirectly to solve linear problems with nonuniform initial
temperature; for, by solving the adjoint problem using the integral
method, and then applying Goodman’s theorem which relates the actual
problem to its adjoint, the solution to the actual problem may be obtained.
Other approaches which are applicable to both linear and nonlinear
problems will be presented in Section VII where generalizations of the
integral method are presented.

III. Temperature-Dependent Thermal Properties
When the thermal properties depend on temperature, Eq. (1) is replaced

by
aT i aT
pC _67 = 5 (k ;9;) (76)

Both k£ and pc are here assumed to be temperature-dependent. At this
point, we make a transformation of the dependent variable as suggested
by Goodman (21):

p = /OTpc aT 77

The quantity » is a single valued function of the temperature 7. In
terms of the new variable, the heat conduction equation, Eq. (76),
becomes

o 7]

w
e @®)
A. TrE SEMIINFINITE SLAB

The slab is assumed to be initially at zero temperature. At the surface,
either the temperature or the heat flux is prescribed:

T=T, z=0 (79a)
. ay' — P A B —
kS = ~F@) =0 (79b)

The designations a and b will continue to refer, respectively, to the case
of prescribed surface temperature and prescribed surface heat flux.
[68]
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In terms of the transformed variable v, the boundary condition becomes

U= v, z=0 (803)
% _ _Frwy =0 (80b)
a = — Qg T =

We will adopt a cubic profile for ». The assumption that v is a poly-
nomial does not lead to the correct steady state limit; however, the poly-
nomial representation is adequate provided the thermal properties of the
material do not vary rapidly with temperature. This characteristic applies
to most materials. The cubic must take the form

v =10 — z/8)* (81a)

b= g (1 = 2/5) (81b)

Upon integrating Eq. (78) from z = 0 to x = § and applying Eqgs.
(81), we obtain the following heat balance integrals:

do

7= Bav./ b (82a)

dg _

7 F(@) (82b)
where, in both cases,

0= / 05 vdx (83)

Substituting Eqgs. (81) into Eq. (83), and using the results in Eqs. (82),
we obtain the following differential equations for §:

d (v.8\ _ 3o,
d(Fe\ _
- (1—27> =F (84b)

Notice that only the thermal properties at the surface are involved
when the problem is cast in terms of the transformed variable ». The solu-
tions of Eqs. (84), subject to the initial condition §(0) = 0, are

5= 2—;'/—6 [At av,? dt]% (85a)
5=2 \@[% [,’th]” (85b)

[69]



TaEODORE R. GoODMAN

Equations (77, 81a, 85a) comprise the solution for prescribed surface
temperature in terms of quadratures. For prescribed surface heat flux,
the solution would correspondingly be given by Egs. (77, 81b, 85b),
except that the diffusivity at the surface ., is given in terms of the surface
temperature which is not yet known. However, v, may be determined
in terms of § by setting z = 0 in Eq. (81b). Upon eliminating & between
the resulting equation and Eq. (85b), the following transcendental equa-
tion for v, is obtained:

Vv = /3 F% [ fo‘ F dt]” (86)

Once v, and therefore «, has been determined as a function of time by
solving Eq. (86), the complete solution is given by Eqs. (77, 81b, 85b).

As an application of Eq. (85a), suppose the prescribed surface tempera-
ture is a step, so that v, is constant. Since o, depends solely on v;, a, is
also constant, and Eq. (85a) reduces to

8 = V/24ait (87)

which is a generalization of Eq. (34). Upon substituting into Eq. (81a)
we obtain

v _[y—-—=_F
Vs 2 v/ Ba,t

Suppose that pc is constant. By virtue of Eq. (77), v is then proportional
to u. At the same time, let k = ko(1 + aT/T,) describe the temperature
variation of the thermal conduetivity. It follows that a, = ko(1 + a)/pc.
Let y = 2 v/pc/2 ko, and Eq. (88) then becomes

(88)

7= veas)

This closed form solution is plotted in Fig. 2, and compared with the
exact solution of Yang (22). Also shown in Fig. 2 is a comparison of
—d/dy (T/T,) y = 0 as caleulated exactly by Yang, and as calculated
approximately from Eq. (89). The heat flux at the surface is directly
proportional to this quantity.

(89)

B. OrHErR GEOMETRIC CONFIGURATIONS

The transformation given by Eq. (77) is generally applicable to all
problems with temperature-dependent thermal properties. For example,
upon applying the transformation to problems with polar symmetry we
{70]
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obtain
0 d v
5 (rv) = P (a?’ &> (90)

The finite slab with variable thermal properties and an insulated far
boundary has been analyzed by Koh (23) using the integral method.
Koh assumes an exponential profile, although there does not appear to
be any rationale for so doing.

10§

Exoct
————— Approximate

AR
dy| TgJy=0

a Exact Cubic
+05 0863 1.00
0 1.128 123
-05 1.859 174

08

06

T/Tg

a
+05
04 0

0.2

-~ > —
—~—

0 1.0 20

Fie. 2. Temperature profiles in a semiinfinite slab with linear dependence of thermal
conductivity on temperature—comparison between exact and integral solution using
cubic profile (21).

IV. Problems Involving a Change of Phase

Problems in which melting or freezing occur fall into two categories.
For some materials, there is no distinct line of demarcation between the
liquid and solid phases. These materials are called glassy, and the two
phases are distinguished mainly by a gradual change in the physical
properties of the material. If the fluid phase can flow, the problem becomes
one of fluid mechanics with a coupling between the energy and momen-
tum equations because the viscosity is strongly temperature-dependent
and increases rapidly into the ‘‘solid” phase. Such fluid flow problems
are beyond the scope of the present article and will not be considered.
Other materials possess a definite line of demarcation between the liquid
and solid phases, called the melt line. Typical of such materials are the
metals and ice. We will deal exclusively with materials of this type.
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In addition to melting, heated materials may also vaporize by passing
through a liquid phase or by sublimating, provided the temperature
becomes high enough or the vapor pressure is low enough. When vapori-
zation oceurs there is always a vaporization line. Examples of all of these
cases will be presented, and we will concentrate on problems in one
space dimension. It will be assumed in all problems that the thermal
properties in each phase are constants, but they will, in general, be dif-
ferent constants in each phase. Conditions in the solid phase will be
designated by a subscript 2, and in the liquid phase by a subscript 1.
The field equation in each phase will be Eq. (1) with the appropriate
subseript. Throughout these problems, a quadratic profile in each phase
will be used. Let 2 = s(f) define the location of the melt line. The melting
temperature will always be taken to be zero, thus,

Tls(®),]] =0 91)
From a heat balance across the melt line
5 6T2 N aTl _ ds _ P
kg Tx— k1 —‘é; = isz 'd-t) r = S(t) (92)

where L is the latent heat of melting, and the upper sign is to be taken
for freezing problems and the lower sign for melting problems. This
equation states, in mathematical terms, that the difference between the
heat flux entering and leaving the melt line equals the latent heat absorbed
or emitted.

Goodman (24) has solved a number of problems involving a change
of phase, some of which will now be presented. All of these problems
have one feature in common: viz., there is a temperature variation in
only one phase. This feature offers tremendous mathematical simplifica-
tions in the analysis. Some of the problems are correctly formulated in
this way, while for others this formulation constitutes an approximation.
In the latter case, Evans ef al. (25) have presented a discussion of the
effect of the approximation on the meaning of the results,

A. MELTING OF A Sorip WITH STEP IN SURFACE TEMPERATURE!

In accordance with the approximation mentioned above, it will be
assumed that the solid is at the melting temperature. Equation (92)
then simplifies to

ds

oT
‘5;’ (S,t) = Al zi—t‘ (93)

where A, = pL/k, and the subsecripts have been dropped since there is

I The solution is equally applicable to the freezing of a liquid.
[72]



InTEGRAL METHODS FOR NONLINEAR HEAT TRANSFER

only one phase. The condition at the surface is Eq. (32). Equations
(1, 32, 91, 93) constitute a complete statement of the problem. Upon
integrating Eq. (1) from 2 = 0 to z = s, and applying Eq. (93) we are
led to the following heat balance integral:

de ds . oT
EZ = —a [Ala—t + ;3—‘,; (O;t)] (94)
where

6= [""Tdr (95)

Let T be represented by a second-degree polynomial in z. Two of the
three conditions required to determine the constants are Eqgs. (32, 91).
The third condition is Eq. (93). But in its present form, Eq. (93) is not
suitable because the coefficients in the polynomial would involve ds/dt.
In turn, # would involve ds/dt, and the heat-balance integral would
then be a second-order differential equation for s(f), whereas there is
only one initial condition for s, namely, s(0) = 0. To circumvent this
difficulty, we will cast Eq. (91) into a different form. By differentiating
Eq. (91) with respect to { we obtain:

oT'ds , 9T _
%a'f"—a?-—@ (96)

Upon eliminating ds/dt between Eqgs. (93, 96), it follows that

a7\? 8T
(E) = Al‘:-)? 97

But a partial derivative with respect to time is inadmissable for deter-
mining the constants in the polynomial because the constants would
then be determined from a differential rather than an algebraic equation.
Therefore, we eliminate 7 /3¢ between Eqgs. (1, 97). The third condition

then becomes
2 2
(QT) — ad, ix_T = s(8) (98)

With the third boundary condition in this form, the nonlinearity of the
problem becomes self-evident.
If the temperature distribution is given by

T =alzx — s) + bz — s)? (99)
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the quantities ¢ and b are determined by

A )

= =20~ (4 +
as + T, (100)

b= =
s
where
27,

= e (101)

Upon substituting this profile into Eqgs. (94, 95) we finally obtain the
following differential equation for s:

(@5 _ Gl = (1+ % + 4]

= 102
i~ B Rt AFR" (102

The initial condition $(0) = 0 leads to the solution
s =K/t (103)

where
K 5 1"(1+u)”+nr’

; = /3 (104)

2V [5+(1+M)”+u

The exact solution is given in the form of Eq. (103) by Carslaw and
Jaeger (I). A graphical comparison of Eq. (104) with the true variation
between K/2 v/« and u is given in (24) snd shows that the error is about
7% for u = 2.8, the largest value of p considered. For smaller values of
u, the per cent error is less.

B. MevtinGg oF A SorLip witH GiveN SurrackE Hear Frux?

The problem is identical to the preceding one except that the condi-
tion at the surface, Eq. (32), is replaced by Eq. (2). The heat-balance
integral becomes

g-t 6 + adis) = aF()/k (105)

where 6 1s given by Eq. (95). Upon integrating and applying the initial
condition s(0) = 0, we obtain

¢
0+ ads = ‘]f ﬁ F(ty) di (106)

Once again, we assume 7' to be in the form of a second-degree polynomial.
The three conditions for determining the constants are Eqs. (2, 91, 98).
After carrying out the required elementary steps we obtain the following

2 The solution is equally applicable to the freezing of a liquid.
(74]
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relationship between the location of the melt line and time:

r=2lo 5+ (1+ 40 (107)
where
_ F@) [?
= s |, F di (108)
Pt
- = aézz (109)

The exact solution for F = constant is given in (25) in the form of a
Taylor series for ¢ in terms of . By expanding Eq. (107) in the same form,
it is shown in (24) that the coefficients of the first four terms of the series
agree, and that the error in the coefficient of the fifth term is about 4%.

The temperature-time history on the surface is given parametrically
by Eq. (107) and the following equation:

O, _
Ala -

_ i + i (1 + 40)% + /2 (110)

C. MELTING OF A SorLip wiTH CoMPLETE REMOVAL
oF Meur (ABLATION)?

In the preceding two problems, a temperature distribution was
assumed to exist only in the liquid phase, and the temperature in the
solid phase was approximated by a constant. In the present case, since
the liquid is immediately removed on formation, there is a temperature
distribution in the solid phase only, and this does not constitute an
approximation.

It is assumed that the semiinfinite solid slab has been heated by appli-
cation of a constant heat flux F at the boundary = = 0. At time ¢ = 0
the melting temperature T = 0 is reached on the boundary, and at that
time the penetration distance is given by Eq. (15). For positive time the
solid melts, and all the melt is immediately swept away by some undis-
closed mechanism. (For the case in which the mechanism is aerodynamic
shear and pressure forces, Goodman (26), by analyzing the fluid flow
in the liquid phase, has determined the conditions under which complete
removal of melt is a good approximation.) The boundary and melt lines
are now indistinguishable and are both located at z = s(f). According
to Eq. (92), the boundary condition is

aT ds
F+k'a—x——ch%'7

3 The solution is equally applicable to a sublimating solid with complete removal of
vapor.

z = 8(t) (111)
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Once again, the subscripts have been dropped since there is only one
phase. The temperature distribution in the solid is represented by a
quadratic which satisfies Eqs. (5, 6, 91). This leads to the following

distribution:
- _— 2
o[22y o

The heat balance integral is obtained by averaging Eq. (1) from s to
3. After applying Eq. (111), we obtain

d pLas\ _ oF .
7 (0 + 7.6 + T) =7 (113)

where
6 = [f T dx (114)

Upon substituting Eq. (112) into Eq. (114), and applying the result in
Eq. (113), we obtain

- 8 ds
3‘} + T 1+ ) (115)

where
n = apL/kT, (116)

There are two unknowns in Eq. (115), and consequently another rela-
tionship between § and s is required. This relationship can be obtained
from the condition at the melt line. Upon substituting Eq. (112) into
Eq. (111) we obtain

(117)

Equations (115, 117) are two simultaneous differential equations for s
and (6 — s). The initial conditions are s(0) = 0, §(0) = 27T .k/F. Assume
that this pair of equations possesses a steady state solution, i.e., assume
ds/dt has a constant value w. It follows from Eq. (117) that 6 — s is
constant, and from Eq. (115), it is seen that

- aF / Tk
1+V1

(118)

This value of w is precisely the same as obtained by Landau (27) using
the exact system of equations.
To solve the complete transient equations, eliminate ds/d¢ between
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them and let
- F(B - 8)

C=—75 (119)

The result is a differential equation for {. Let
Q = F/pLkT, {120)

The solution of the differential equation is

Q=14 [s* — 2420+ w) In 2—(1%:‘—):—‘“] (121)
1
Upon substituting Eq. (121) into Eq. (117), and defining
_ 8F
S = U (122)
we obtain
S=-13 [s‘ — 24 2 in g(i‘%:l);‘f] (123)
1

Equations (121, 123) are the equations for the melt line in parametric
form. Landau (27) has obtained the exaet solution for the melt line by
integrating the heat conduction equation numerically; it is impossible
to distinguish his results, on the scale to which they are plotted, from the
solution presented here.

If the applied heat flux is due to aerodynamie friction, and the solid
sublimates, the gaseous vapor which is produced will mix in the boundary
layer and have a cooling effect. This results in a modification of the
boundary condition, Eq. (111). By drawing on the literature of transpira-
tion cooling Adams (28) has shown that this modification manifests itself
in an effective increase in the latent heat. Otherwise, the problem remains
the same. Sutton (29) has applied the integral method with the Adams
modification, and has assumed a profile in the form

T = —Tu{l — exp[—~(zx — 8)/3]} (124)

It can be shown that the form of this profile approaches the exact steady
state value in the limit for large time. Hence, this form may be expected
to be more accurate than the polynomial form. Sutton’s solution for the
loeation of the melt line is given parametrically by

- S SR £
1 1

[77]
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where, in this case, ¢ is defined to be
¢ =kT./Fz 127)

Economos (80) has carried out experiments in a hypersonic wind tunnel
using teflon and lucite hemispherical models and has obtained good
agreement with the theoretical values caleulated by Sutton.

Blecher and Sutton (37) have considered the ablation problem with
a pulselike heat input typical of that experienced by a reentry vehicle.
By comparing results obtained from the integral method with more
simple-minded methods (e.g., a quasi-steady approximation), they con-
clude that all methods will predict the transient ablation rate fairly well,
but that the simpler methods do not predict the temperature profiles
correetly. It is difficult to justify this victory for the integral method
on the basis of this comparison because no exact solution was calculated,
and also because the integral method itself appears to give spurious pro-
files for pulselike inputs (see Section VI). On the other hand, Altman
(32) also considered the ablation problem for pulselike inputs and, using
polynomial profiles, obtained good agreement with solutions based on
finite difference calculations. The spurious results which occur for other
problems with pulselike inputs apparently do not take place in the
ablation problem; the reason for this remains obscure.

D. OraEr Cases

Goodman (24) has presented the solution to two other cases which
will only be mentioned here. One case is the melting of a solid due to
aerodynamic heating or radiation. This case is similar to those presented
in IV,A except that the boundary condition at the surface is given
by

aT
bz =HT—Td, z=0 (128)

where h and T, are constants. The second case is the vaporization of a
melting solid. Here the solid is assumed to be at the melting temperature
and the vapor is immediately removed. Thus, a temperature distribu-
tion exists only in the liquid phase. Goodman and Shea (33) have con-
sidered the melting of a finite slab with temperature distributions in
both phases. At the surface £ = 0 the heat flux is specified to be a con-
stant. The far surface is either insulated or isothermal. Quadratic profiles
are assumed in each phase, giving rise to six unknown constants. In
addition, the location of the melt line is also unknown. The seven condi-
tions which are used to determine these unknowns are: the two boundary
conditions at either end of the slab; Eq. (91) in both phases, Eq. (92),
{78]
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and the heat balance integrals in each phase. It is interesting to observe
that, for the case of the insulated far boundary, the results indicate that
the temperature in the solid reaches the melting temperature very
rapidly, thereby justifying the approximation, which was made in Sec-
tion IV,A that the temperature in the solid is equal to the melting
temperature from the outset.

Van der Velden and Schaffers (34) have independently devised a
version of the integral method and applied it to a freezing problem with
polar symmetry. They assumed logarithmic type profiles in accordance
with the rule presented in Eq. (59), and they report that their results
differ by only a few per cent from more exact results.

V. Related Methods

The heat-balance integral technique is not, of course, the only approxi-
mate method available to the analytic investigator. We will now briefly
consider some other analytical methods which bear a resemblance to
the integral method in that they utilize the concept of penetration dis-
tance whenever appropriate, and that they are applicable to linear and
nonlinear problems alike. The results of these related methods, when
applied to some simple cases, will be compared with the corresponding
results obtained using the integral method. Two such methods will be
presented: Biot's method and Shvets’ method.

A. Bior’s MerHoD*

Variational principles have been used in mechanics for many years.
Recently, applied mathematicians have turned their attention to the
formulation of variational principles in heat conduction. Many varia-
tional formulations have been published in the decade between 1950 and
1960 [see (35) for a bibliography]. The formulation of Biot is remarkable,
however, because it constitutes a thermodynamic analogy to Hamilton’s
principle in mechanies, and thereby leads to the thermodynamic equiva-
lent of Lagrange’s formulation of Newton’s laws in terms of generalized
coordinates. In a series of elegant papers, Biot has developed and applied
his variational principle and the Lagrange equations (36, 37, 38, 39, 40,
41). We are not primarily concerned here with the derivation of the
method, but, rather, with its application.

Let H represent a heat flow vector whose time rate of change H is
the heat flux across an area normal to H. Conservation of energy then
requires

—pcT =divH (129)

+ Most of the material presented in this section was taken from a report by Lardner
(36).
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Let E represent the thermal potential energy, D the dissipation function,
). the generalized foree, and ¢; the generalized coordinate, where

E = }«j/pﬂ”dv

D = %/MHIZ dv (130)
dH
Q; = / T 7 dS

The volume integrals are understood to extend to the penetration dis-
tance for those problems for which the concept of penetration distance
has meaning. The Lagrange formulation of the thermal balance is

aE
aa Qs (131)

where the dot denotes time differentiation.

1. The Semiinfinite Slab

Equation (131) can be applied to solve the problem of a semi-infinite
slab with constant heat flux F, applied to its surface. Biot has suggested
that for the boundary condition of prescribed heat flux two generalized
coordinates be used, one being the penetration distance and the other
being the surface temperature. One Lagrange equation with respect to
either coordinate together with a constraint preserving the overall heat
balance will yield two coupled equations for the generalized coordinates.
It might be noted that the constraint is identically the heat balance
integral. An alternative approach will be presented in which only one
generalized coordinate, the penetration distance, appears. The heat flux
field can be made to satisfy the boundary conditions H(5,1) = 0 and
H(0,f) = F if we choose a temperature profile in the form

W\ 2
i’g’ (1 - %) (132)

H has only one component for a one-dimensional problem, and by apply-
ing Eq. (129) we obtain

3
H=Ft (1 ~ %) (133)
from which the heat flux field becomes
. z\* , 3Fiz ; r\?
H—F(l—s) +]§2—5(1_§> (134)
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Upon substituting Eqgs. (132-134) into Eqs. (130, 131) we obtain

o(345)88t + (342)8% = (Ho)t (135)
The solution of this equation is
o = 281 vVat (136)
The surface temperature is
_3Ft _ F—

Similar analyses can be performed using cubic, exponential, and other
profiles. It is not always possible to choose a temperature profile which
enables the heat flux field to satisfy the required boundary conditions.

TABLE 1
Resurtrs FOR CoNSTANT Frux Casgke

Surface Penetration
Profile® temperature distance % Difference
1. Parabolic
A 1.065 2.81 -5.6
B 1.157 2.59 +2.0
C 1.120 2.68 -0.7
I1. Exponential
A 1.225 0.816 +8.6
B 1.220 0.895 -0.7
C 1.152 0.866 +2.3
II1. Cubic
A 1.105 3.62 -2.0
B 1.14 3.52 +1.0
C 1.123 3.56 —-0.5
IV, Heat balance integral
Parabolic 1.225 2.45 +8.6
Cubic 1.15 3.45 +2.0
V. Exact 1.128

s Data from Lardner (35).

v A = Heat flow satisfies flux condition.
B = Independent generalized coordinate = surface temperature.
C = Independent generalized coordinate = penetration depth.

In this case, one must fall back on the approach which utilizes two
generalized coordinates. In general the penetration distance will be of
the form & = ( ) v/of, and the surface temperature of the form
z = ( )(F/k) \/at. Table I presents the values of the bracket for all
possible cases together with the exaet solution and the result obtained
using the integral method. It can be seen that all solutions give results
which are accurate to within a few per cent.

[81]



TaeoporE R. GoODMAN

2. Melting of a Solid with Complete Removal of Melt

Biot and Daughaday (4I) have used Lagrangian methods to solve the
problem of the melting solid with complete removal of melt which is
solved in Section IV,C using the integral method.® In their analysis,
Biot and Daughaday assume the slab to be initially at zero temperature,
and the melting temperature is consequently T, a constant. We shall
adopt this view. The volume integrals, Eq. (130}, must extend from
x = stox = 8. We choose a cubic temperature profile and let the pene-
tration distance be the generalized coordinate.

T = Tm[l - (;’ - z>]3 (138)

The heat flow field is obtained by applying Eq. (129):

H= Pcfm [1 - ;”—:-2]4 65— 3) (139)

Upon substituting into Eq. (130) we obtain the following Lagrangian heat
flow equation:

4 d 11 ds] _ 5

A second relationship between s and 6 is derived from the heat-balance
integral, Eq. (113). Because the initial temperature is zero and the
melting temperature is T.,, Eq. (113) is slightly modified to:

d

pLas\ afF .
Whence,
P ) pLa\ds aF
1/ E dl _— Latnnby 0= I

Equations (140) and (142) must be solved simultaneously for (5 — s)
and s. The initial conditions are derived from a Lagrange analysis prior
to melting, specifically the solution III,C of Table I. It is possible to
obtain a closed-form solution in parametric form which is similar to that
obtained using the integral method, but this will not be carried out.
The numerical results show satisfactory correlation with the exact results
of Landau (27).

5 Lardner (42) has carried out this calculation independently. In the same report
Lardner has also used Lagrangian methods to solve the problem presented in Section
IV,C, and compared the results both with the exact solution and with the solution
obtained using the integral method.
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Biot has applied Lagrangian methods to problems with variable ther-
mal properties, and to problems with a variety of nonlinear boundary
conditions. He has also generalized the method to those problems for
which the thermal and elastic behavior is coupled. We will not, however,
present any additional examples.

B. SuveErs’ METHOD

An iteration scheme for solving Eq. (1) has been proposed by Shvets
(43). Consider a semi-infinite slab initially at zero temperature, and sub-
jected to a step of unit temperature at its surface. Let the nth approxi-
mation be given by

n

Tr = T (143)
2,
where the partial solutions satisfy
asz _ aTk_l
aag = 5 (144)
and the sequence is started by
T, _
e 0 (145)

Define a penetration distance by the condition 7'(s,f) == 0. Then, T,

must take the form
To= (1 — z/8) (146)

Upon substituting into Eq. (144) and applying the conditions 7'(5,t) = 0,
T(0,t) = 1, we obtain, to the first approximation,

T=1—§+%5(’;—:—1) (147)
where the dot denotes differentiation with respect to «af.
To determine 8, we apply Eq. (5), which leads to the following equation:
86 =3 (148)
The penetration distance thus becomes
8 = 2.45 /ot (149)
and the surface heat flux becomes

aT 0.61k

— | = 150
az o \/Zi (150)
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As noted below Eq. (35), the exact solution is of the same form, except
that the numerical factor 0.61 is replaced by 0.564. Shvets’ method may
be carried out to higher approximations, resulting in higher order dif-
ferential equations for & and polynomial profiles of higher degree. The
differential equation for § is always determined by applying Eq. (5)
after all the partial solutions have been obtained.

Suppose we wish to apply the same technique to a semiinfinite slab
for which the surface heat flux is specified as in Eq. (17). Squire (44)
has discussed the application of the Shvets method to this problem.
The surface temperature 2z is now unknown, and Ty may take any one
of three forms:

To =2(1 — x/8) (151a)
To = flx — &) (151b)
To=2— fx (151¢)

Thus, there are three possible ways to proceed. Forms a and ¢ imply a
two-parameter profile, the parameters being the surface temperature z
and penetration distance 8. For form b, there is but a single parameter:
the penetration distance. The possibility of having three choices of profiles
and procedures arises here for the same reason that it arose in using
Lagrangian methods.

In procedure (a) T satisfies the conditions 7,(0,f) = 0, 7':1(5,t) = 0.
Two simultaheous equations for the two parameters are derived by
applying the boundary conditions Egs. (5, 17). In procedure (b) T,

.\ aT .
satisfies the conditions - — 0,t) =0, T.«(8,)) = 0. The equation for

ar
the penetration distance is derived by applying the boundary condition
Eq. (5). In procedure (¢) T satisfies the conditions 7,(0,) = 0,
aT . .
551 (0,t) = 0. Two simultaneous equations for the two parameters are
derived by applying the boundary condition 7(5,t) = 0 and Eq. ().
For constant heat flux F, the penetration distance will take the form
3 = () v/al and the surface temperature will take the form

z=( YF/b) o

Table IT presents the value of the brackets for the three possible cases
together with the exact solution and the results obtained using the inte-
gral method. It can be seen that the results obtained using Shvets’
method for constant heat flux are not very aceurate. This is in contrast
to the results obtained using Shvets’ method for the step in surface
temperature where the accuracy was quite acceptable. Of course, higher
order approximations are available in order to improve the accuracy,
[84]
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TABLE I1
Resvrrs rorR ConsTanT FLux Case
Surface Penetration
Solution temperature distance % Difference
Case a 1.000 2.000 —13
Case b 0.707 1.414 —-37
Case ¢ 1.000 2.000 -13
Heat-balance integral
Parabolic 1.225 2.45 +8.6
Cubic 1.15 3.45 +2.0
Exact 1.128

although they soon become rather tedious. The method can, of course,
be used to solve nonlinear problems, and Shvets himself has done so by
applying it to solve some boundary layer problems, achieving acceptable
accuracy in the first approximation.

VI. Pulselike Inputs

Although there are many problems which can be solved successfully
by using the integral method, there is a class of problems for which the
method provides spurious answers. After we discuss the reason for the
failure of the integral method in solving this class of problems we will
present the extended integral method which is a method specifically
designed to be applied in cases where the ordinary integral method is
inapplicable.

In order to appreciate the limitations of the integral method, consider
Eq. (12) which expresses the surface temperature in terms of a general
time-dependent surface heat flux for a semiinfinite slab. We will assume
T, = 0 with no loss in generality. Suppose the heat flux F(f) to be pulse-
like, i.e., suppose it rises to a maximum, falls to zero, and then remains
zero. According to Eq. (12) the surface temperature rises to a maximum
some time after Frnay, falls to zero at the same moment that F becomes
zero (heat shut-off), and remains zero. However, the exact solution to
this linear problem is known, and according to the exact solution, or
by physieal intuition, we know that for a pulselike surface heat flux, the
surface temperature must rise to & maximum and then decay gradually,
approaching zero asymptotically. Thus, it is seen that Eq. (12) deviates
from the correct value sometime after Fn.x, and is completely spurious
just prior to heat shut-off. The same type of failure would occur if a
pulselike surface temperature were prescribed and the surface heat flux
were sought.
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The reason for the failure of the method is clear: the assumed tempera-
ture profile, Eq. (19), does not resemble the actual profile when the sur-
face heat flux is pulselike. According to Eq. (19), the profile is monotonic
with no inflection points. This is a reasonable profile for an increasing
heat flux. When the heat flux is pulselike, on the other hand, the profile
will tend to be nonmonotonic after Fu.., and there is no way in which
the form assumed in Eq. (19} can accommodate itself to this tendency.

What is required is a temperature profile which possesses two (or
more) time-dependent parameters to be determined by two (or more)
conditions. With this view, the heat-balance integral would be one such
condition. The totality of conditions would then result in sufficient
simultaneous equations to determine all the parameters.

Goodman and Ullah (45) have developed a two-parameter method in
which one parameter is the penetration distance of a fictitious problem
and is known, while the other parameter is determined from the heat-
balance integral. Thus, the two parameters are determined successively
rather than simultaneously, and the heat-balance integral alone is suffi-
cient to determine both the parameters. This technique will become
clearer by the presentation of a simple example.

A. SEMUNFINITE SpaB wWITH A PurseELike HEAT FLUX

Consider a semiinfinite slab initially at zero temperature, and assume
that the temperature satisfies Eq. (1) together with the boundary condi-
tion, Eq. (2). A sketch of F(¢) is shown in Fig. 3 as the curve ABCD,

F
A
/
Frax[ ==~ —=== ‘B ¢
i
|
i
! C D
A 1 —t
Y tmox to

Fia. 3. Sketch of pulselike heat flux.

and the pulselike character of this function will be noted. For simplicity,
we will use quadratic temperature profiles. Then, for 0 < ¢ < fmax, the
heat flux is increasing, and the solution presented in Section I obtains.
In the interval ¢ > f..x We assume the temperature to consist of two
parts:

T(’C,t) = T;(x,t) + Tz(.’l?,t) (152)
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where T satisfies the conditions of a fictitious problem with boundary

condition

aT _
k '&;‘ = —'Fmax, z=0 (153)

In other words, T'; is the analytic continuation of the solution obtained
in the first interval assuming that the heat flux follows the curve ABC’
which is monotonic. We denote the penetration distance associated with
T: by 81; then, an analytical expression for §; can readily be obtained
from Eq. (10):

B ba fmax _ ¥
8 = ‘/ y— { /) F(t) dt + Frax(t tmax)] (154)

We now assume that the surface heat flux associated with 7'; is negative
and monotonic and begins at fmqx in such a way that the total heat flux
follows the curve ABCD, which is the true boundary condition. Asso-
ciated with the temperature T'; is a second penetration distance 8, < §;
which begins to propagate at ¢{ = {max. In other words, T, must take the
form

— (Fmax - F) _ 2
T2 = '—“*—‘*’—2]062 ((II 52) zr < 52

=0 Tz > 82
We now calculate

& 81 .23
0=/ de=f Tl'dx-l-/ T, dx
0 0 0

= o Puusdi? — (Faue — F)at] (156)

(155)

The heat balance integral gives

g =2(" Foya 157
ﬁ(tmnx) h —k_ j;mnx () ¢ ( )
or
¢ ["pa
=12 ﬁ ’ (158)

Upon equating Eq. (156) and Eq. (158) and eliminating 8, with the aid
of Eq. (154), we obtain the value of é,:

6a ¥ ¢ &
= () o e =0 2] e
(87]
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Hence, the surface temperature for ¢ > tm.x is given by

— fmax i
Z2 = \/g \/g Fmax% {/ (F - Fmax) dt + Irmaxt}
2Nk 0

e (Faue — F)% { / " (Foee — ) dt}%], >t (160)

max

For ¢ > 1y, the surface temperature can be obtained by setting F = 0
in Eq. (160). This results in

e tmax *
y = Jg’ \/EF‘L“ / (F — Frmax) dt + Fmaxt}
2 k 0

to

— {anx(t_tmax) —/ th” t>t (161)

{max

For large time Eq. (161) yields the following asymptotic formula:

1\/:3 Va [’”
— Az — F dt t>t 162
‘T3 2kt Jo ’ (162)

If, instead of assuming quadratic profiles, we assume cubic profiles
which satisfy the smoothing condition, Eq. (18), the results given in
Eqgs. (160-162) will remain unaltered except that the numerical factor
/%% will be replaced by 1/%4.

Tigures 4 and 5 show the surface temperature obtained by using the
extended integral method for parabolic and triangular heat pulses. The
exact solutions of these problems are also known, and the comparisons
demonstrate satisfactory agreement.

If the thermal properties are temperature-dependent, the transforma-
tion, Eq. (77), can be applied. In this case, the fictitious solution ¢,
cannot be obtained explicitly because it depends on the diffusivity which,
in turn, depends on the actual temperature, not the fictitious temperature.
Nevertheless, the analysis can be carried out symbelically, in which case
it is found that for ¢ < lm.. the solution is given by Eq. (86), and for
£ > tmax the solution is given by

Ve = VG [ Frae { [ (F = Fuug) dt + Faust}”
~ Foas = P { [ (Faux = F) aif*] aes)

max

where quadratic profiles have been assumed. The effect of using cubic
profiles can again be obtained by replacing /34 by +/44. Equation
(88]
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F1a. 4. Temperature time history at the surface of a semiinfinite slab with parabolic
surface heat flux—comparison between exact and integral solution with two different
profiles (45).
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Fi1a. 5. Temperature time history at the surface of a semiinfinite slab with triangular
surface heat flux—comparison between exact and integral solution with two different

profiles (45).
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(163) is the generalization of Eq. (160) for temperature-dependent ther-
mal properties, and is a transcendental equation to be solved for the
surface temperature,

B. SEMIINFINITE SLAB WITH PULSELIKE HEAT GENERATION

We will reconsider the problem presented in Section ILA,3, and
generalize it in two ways: the thermal properties will be taken to be
temperature-dependent, and the cumulative heat generated, @(t), will
be taken to be pulselike, so that heat is first added and then withdrawn.
Equation (37) is replaced by

aT a aT
i = (k) = 4 (164
Upon applying the transformation, Eq. (77), we obtain
o1 3 ov
o2 (a Eo) = 4() (165)

The problem will now be transformed into one satisfying a homogeneous
equation with a nonhomogeneous boundary condition. Let

v=Q 4 (166)

The quantity v’ then satisfies Eq. (78) with « dependent on v, and the
boundary condition becomes

v'(0,8) = —Q(@1) (167)

In the interval before @ = Qum.x, the ordinary integral procedure is valid,
and the profile is given by

v = —Q1 — z/8)* ! < tmax (168)

The heat balance integral becomes

4 s = —a 2 (0 (169)
dt o IR ™

This yields a differential equation for §, the solution to which is
2Ua, [ Q2 1]
8 = — g t < tmax (170)

It is to be noted that sinee the surface temperature of the original prob-
lem for v is constant, «, is constant.
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When ¢ > fmax the extended integral method must be used. Accord-
ingly, let
v = ui(x,t) + valz,t) (171)

where v; satisfies the conditions of a fictitious problem which is the
analytic continuation of the solution given above with @ = Qum.z. The
penetration distance &,, which is associated with vy, is obtained by sub-
stituting @ = Qmax in Eq. (170):

61 = [24‘18] [/ Q2 dt + sza.x(t max)] (172)

The profile for v, must then be

= (Q - Qmax)[l - 112/52]3 < 62
= x> 52

(173)

where 8, begins to propagate at { = lm.x. The heat balance integral is
obtained by integrating Eq. (78) from 0 to 8;:

81 a2
%[/o vldx—}-ﬁ vzdx] = —a, [%-‘_%l (174)

Upon subtracting Eq. (169) (with é = &, v’ = v1) we obtain a differential
equation for §, the solution to which is

Ua, [ Y (Quex — Q2 dt|”
b= O = Q) (175)

The complete solution in the second time interval is then given by

= ~Quax(l — 2/861) — (@ — Qumax) (1 — 2/82)* + Q@ (176)

where it is understood that the first term vanishes for z > §,, and the
second term vanishes for z > 8;. The solution after heat shut-off can
readily be derived as the analytic continuation of Egs. (175, 176}, by
setting @ = 0. The surface temperature gradient is shown plotted in
Fig. 6 for the triangular heat pulse which is sketched in Fig. 5. In per-
forming these calculations, constant thermal properties have been
assumed in order to be able to compare the results with those of an exact
solution which is also shown. The comparison indicates that the approxi-
mate solution is quite satisfactory. Some temperature profiles for the
interval ¢/2 < t < f, are shown plotted against the dimensionless dis-
tance & = /2 \/af, in Fig. 7. Note the reverse profiles for the larger
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F1a. 6. Surface temperature gradient for semiinfinite slab with triangular cumulative
heat generation—comparison between exact and extended integral solution.
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Fia. 7. Temperature profiles during the interval when heat is withdrawn for a semi-
infinite slab with cumulative heat generation—comparison between exact and
extended integral solution.
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values of {, and also note how well the extended integral method repre-
sents such profiles.

It might be noted in passing that Eq. (164) bears a resemblance to
the momentum equation which governs a steady incompressible laminar
boundary layer. In this analogy, = and ¢ become the normal and longi-
tudinal coordinates, respectively, T becomes the longitudinal velocity,
k becomes the coeflicient of viscosity, g is the density, ¢ becomes the
pressure gradient (@ becomes the pressure), and the condition of zero
surface temperature becomes the no-slip condition. Furthermore, in order
to cast the momentum equation into the form of Eq. (164) it is necessary
to make an Oseen-type approximation in which momentum is transported
with an average velocity ¢, and the normal velocity is identically zero.
The point of zero surface heat flux, which is marked with an asterisk (*)
in Fig. 6, then corresponds to the point of separation in the analogy, and
a condition for separation can be determined by performing elementary
operations on Eq. (176), and applying Egs. (172, 175). The result is

Qex [ @uax — @2t = @nax = Q[ [[™7 @2t + Qrnan(t — tuwr)|
@177)

A superior separation condition can undoubtedly be derived by applying
the extended integral method to the exact boundary layer conditions.
Furthermore, the extended integral method also gives promise of being
able to predict the flow in the separated region itself. But these problems
are beyond the scope of the present article.

tmax

C. Finite SpaB witH TrRIANGULAR HEAT PULsE

Suppose we apply the triangular heat flux as sketched in Fig. 5 to
the end 2 = 0 of a finite slab of length ! which is insulated at the far end.
We assume #,/2 to be greater than the time needed for the thermal
layer & to become equal to [. Assuming that the profiles are quadratic,
it is seen that as long as § < ! the solution is given by Eq. (12) which,
for zero initial temperature, becomes

%
z=x/3ZA,cit% 0 <t <t < to/2 (178)

where #; is the time at which § = [, and is given by
i = 1?/3a (179)

When ¢ = ¢{; the temperature distribution in the slab is given by

T(e,t) = % @ — D) (180)
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which serves as the initial condition for the next time interval. For
t > 1; the solution is affected by the insulation condition at x = I:

aT
The heat balance integral can be derived in the next time interval, and
the temperature profile turns out to be

Aat

At
T(z) = o =

-+ W, <t<t/2  (182)

For t > to/2 the heat flux starts decreasing, and it is necessary to use
the extended integral method. Proceeding as in the previous examples,
we seek the solution T of a fictitious problem for which F = F,., = Aty/2,

which is the analytic continuation of Eq. (182). The solution is

Atn

@ — 1)? +‘i}’c‘§°< ;—0——1!6> > t/2 (183)

The solution to the actual problem is then assumed in the form
T = Ti(x,t) + Ta(z,t) t > to/2 (184)

For time immediately subsequent to #/2 there is a penetration distance
8, associated with T',, and T'; takes the form

Taat) = — AU 02 (@ e (185)

The heat balance integral then yields

= /3a(l = to/2) (186)

and the complete solution is given by

() = Ao 2 4. Al (2t b t.,)

ol & 0Tt o 3
_ At — t0/2) (z

2% v/3all — 1/2)
As soon as 3; = [, the form of T'; assumed in Eq. (185) becomes inappro-

priate because the boundary condition at the far end then begins to
affect it. The time at which this occurs is denoted by t,, and is given by

— V3alt — 1/2))* (187)

ts, = s + 10/2 (188)
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When ¢ > t;,, Eq. (185) must be replaced by

. - Al = 1/2)

T, = 2kl

(2?2 — 2lx) (189)

where @ is an unknown parameter to be determined by applying the
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Fic. 8. Temperature time history at the surface of a finite slab with the triangular
surface heat flux sketched in Fig. 5 and insulated far end—comparison between
exact and extended integral solution (afy/212 = 0.6) (45).

heat balance integral. The solution turns out to be

A v -ve- Aoto o,
T = 3 Go = D@ = D*+ 520 @1 — 1)
~ AW ), h<i<t (190)

Since T: and T both satisfy the same boundary conditions applied at
the same place, namely Egs. (2, 181), it is not really necessary to use the
extended integral method to derive Eq. (190); the ordinary integral
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method suffices. However, the initial condition for the solution in this
interval must be taken from Eq. (187) which does require the extended
method for its derivation.

When ¢ > ¢, the heat is shut off and 7' becomes constant and uniform:
Aat02
4kl
A plot of the surface temperature, obtained from Eqs. (178, 182, 187, 190)
is presented in Fig. 8 for the special case afy/2(? = 0.6. The exact solu-

tion obtained from (46) is also shown for purposes of comparison, and
agreement is seen to be quite satisfactory.

T = 1>t (191)

D. Concruping REMARKS

The extended integral method has been presented and applied to a
number of cases involving pulselike inputs. The same technique can be
used to generate solutions to problems for inputs which are oscillatory
in character simply by allowing a new penetration depth to begin propa-
gating at each maximum and minimum of the input. In practice, the
required mathematical manipulations become quite tedious, and no
demonstration will be given here.

It might be pointed out that the extended integral method is eminently
suited to problems which involve melting and subsequent refreezing,
such as those that arise during welding.

VII. Improving the Accuracy

Every solution thus far obtained using the integral method, for which
an exact counterpart was available, has been seen to contain small but
irrevocable errors in the final numerical results. The question naturally
arises as to how to eliminate, or at least reduce, these errors and thereby
improve the accuracy. One simple and obvious way which might be used
to improve the accuracy is to increase the order of the polynomial used
to represent the profile. Each additional parameter which is thereby
introduced is then determined from an additional derived constraint
applied at the ends of the profile. The smoothing condition, Eq. (18),
is typical of such derived constraints. Goodman (21) has applied this
concept to solve a nonlinear problem, and has demonstrated the improved
accuracy achievable using a fourth-degree polynomial over that which
can be achieved using a third-degree polynomial. The flaw in this concept
is that there is no a priori guarantee that increasing the order of the
polynomial will improve the accuracy. Although the accuracy is fre-
quently improved with this technique, it can be demonstrated, none the
less, that there are cases for which it actually worsens. An example is
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the problem presented in Seetion II,A,2; in this case a quadratic profile
provides a more accurate surface heat flux than a cubic profile. However,
because the concept is simple and easy to apply, cubic profiles are gen-
erally to be preferred to quadratic profiles, and quartics to cubies.

A much better way to improve the accuracy is to use the iteration
scheme of Chambre which has been presented in Section II,A,1. In
this case we are guaranteed improvement by virtue of the convergence
proof. However, Chambre’s method has two unattractive features. The
first of these is that the method can be used only for those cases for which
an integral equation can be derived. This restricts it to problems with
a linear field equation, and allows nonlinearities to appear only in the
boundary conditions. The second unattractive feature is that an integral
equation must be solved instead of a differential equation. An integral
equation is more awkward to solve on a high-speed digital computer
than a differential equation, principally because the integral equation
contains both fixed and running variables.

We will now present three techniques for improving the accuracy of
a solution obtained using the integral method. These techniques can be
applied when the nonlinearities appear in the field equation or the bound-
ary conditions or both. The details of these techniques can become rather
involved and, due to space limitations, they can be presented only in
broad outline. In each technique the improvement is effected by solving
an initial value problem involving ordinary differential equations. Such
problems are readily adapted to high speed computers.

A. Tue MerHOD OF WEIGHTED RESIDUALS

Consider a field equation described by a nonlinear operator L:
L(T) =0 (192)

Specifically, of course, we are concerned with some form of the heat
equation. An approximate solution, T,, when substituted into the left-
hand side of Eq. (192) will result in a residual e,,

L(T.) = € (193)

We seek a solution which makes ¢, small in some sense. We multiply it
by a weighting factor w;, and average over-all space. Upon setting the
average equal to zero we obtain

Jw,L(T,)dv =0 §=1,2,...n (194)

Our solution will be made to satisfy Eq. (194) instead of Eq. (192).
The form of T, will be taken in such a way as to satisfy the boundary
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conditions and to contain # unknown parameters C,,. By choosing n
different weighting factors, there will result precisely the same number
of equations as unknowns.

For different selections of the forms of the weighting factor, the
method is known by different names. When w; = A(x — z;) [A is the
Dirac delta function], the method is called collocation. If 7', is a linear
function of the parameters C,, and w; = d7,/3C,,, the method is called
Galerkin’s method. When w; = 7 or T.7, it is called the method of
moments. For the special case of one parameter and w; = 1, Eq. (194)
becomes the heat balance integral, and the method of weighted residuals
reduces to the integral method. We will be concerned primarily with
the application of these methods to nonlinear problems.

1. The Method of Collocation

Collocation is probably the crudest of all methods for solving a dif-
ferential equation, and is not really a technique for improving the inte-
gral method. Nevertheless, it is a special case of the method of weighted
residuals, and it does have inherent within it the possibility for self-
improvement. The collocation method can be applied to problems having
nonzero initial conditions as will be demonstrated. If the boundary condi-
tion is such that the temperature is specified, then no collocation point
may lie on the boundary. Otherwise the location of the collocation points
can be freely chosen. To demonstrate how the method of collocation is
to be applied, we will present an example.

Consider a finite slab of length I. The temperature obeys Eq. (1)
together with the boundary conditions

aT oT
= 0, =0, s @) = —f(Tyt)

where T is the temperature at x = [. The initial temperature distribu-
tion is T(x,0) = g(x). The boundary condition at =z = [l is seen to be
nonlinear. Assume a biquadratic profile which automatically satisfies the
symmetry requirement imposed by the boundary condition at z = 0:

T = A+ Bzt + Cx? (195)

By satisfying the condition at x = [ the parameter B can be eliminated,
with the result,
_{(f 4+ 4Cy)

T=4 37

z? + Ozt (196)
There are two remaining parameters in Eq. (196), and therefore two

collocation points are required. We arbitrarily select these points to be
(98]
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z = 0 and z = I. The second derivative of T evaluated at each colloca-
tion point is:

2T _ (T .
(W)_o - ( + 401 (107)
azT _ ({1, .
(Wl-z = (——~l— + 8Ci (198)
The temperature evaluated at each collocation point is
To=A (199)
T,=A — f(T,)l/2 — Ci* (200)

where T, is the temperature at 2 = 0. We now satisfy Eq. (1) at each
of the collocation points. Thus, substituting Eqs. (197, 199) and then
Eqgs. (198, 200) into Eq. (1), we obtain the following two ordinary dif-
ferential equations:

(f TwY) | 4012> dA (201)

—a (’lTl—’t—) — sczz> -4 (A _ @ - 014) (202)

Eqgs. (200-202) constitute a set of three simultaneous equations for
the three unknowns A, C, T:. The two initial conditions which must be
satisfied are

To=A4=90); Ti=g0 (203)

It is seen that the original distribution of temperature is accounted for,
but only very crudely.

Consider the special case f = constant, g(x) = 0. In this case, all of
the steps can be carried out analytieally, and the final result is

7 —laft 47l {1 — ?é(x/l)i’ — 14[1 — 6(z/D) + 3(:1;/1)4]6"12“'”2} (204)

The exact solution to this problem is given on p. 112 of (Z). A comparison
shows that the underlined terms are reproduced exactly, and we may,
therefore, expect the longtime solution, as obtained by the method of
collocation, to be quite accurate. The remainder of the exact solution is
comprised of a series of eigenfunctions. The first eigenvalue is —=2a/I?
which is approximated in Eq. (204) by — 12a/12. The first eigenfunction
is 1/7% cos wz/l which is approximated in Eq. (204) by ¥[1 — 6(z/1)2 +
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3(z/1)4]. Plots of the approximate and exact first eigenfunction are pre-
sented in Fig. 9.

The early time solution, obtained by the method of collocation (or
by any form of the method of weighted residuals, for that matter), will
never be as accurate as the longtime solution. This shortcoming can be
overcome by using the concept of penetration distance for those problems
with zero initial temperature. With this view, the time domain will always
be divided into two intervals: the interval before the penetration dis-
tance reaches the far end, and the interval after this occurrence. As

0.3['

02

(2/7%)cos 7 x/t

X/1

02 04

-02f
(1/6)[1-6(x/112 +3(x/1)]

<O3-

..04_

Fic. 9. Approximate and exact first eigenfunction for a slab with constant surface
heat flux and insulated far end.

forfeit for the improved accuracy in the first time interval, the solution
in the second time interval will be less accurate than the solution obtained
without using the concept of penetration distance.

We can, of course, improve the overall accuracy by including addi-
tional collocation points. Suppose, for example, we add another term,
Dz?%, to the temperature profile in Eq. (195). We can now collocate at
the interior point z = 1/2 as well as at the boundaries. This results in
an additional differential equation, and, for the case f = constant, g = 0,
we obtain approximations to the first two eigenfunctions. Furthermore,
the accuracy of the first eigenfunction and eigenvalue is improved over
that given in Eq. (204). To this approximation, the first two eigenvalues
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are —9.50a/I? and —50.5a/!%, which are to be compared with the exact
values —=2a/l? and —4x2a/l?, respectively. The additional collocation
point also allows for an improved representation of the initial temperature
distribution. It can be seen that the more collocation points, the better
the representation of the solution. Clearly, this method is not restricted
to problems in one space dimension. However, in two space dimensions
it becomes more imperative to saturate the spacial domain with colloca-
tion points.

In one dimension, the method of collocation is analogous to the prob-
lem of curve fitting, where the fit is effected by compelling the assumed
analytical representation to pass through the true curve at a specified
number of points.

2. The Method of Moments

An early, yet quite sophisticated application of the integral method
to solve the nonlinear heat conduction equation is presented in a paper
by Fujita (47) who credits Yamada (48) with the original conception.
Consider the one-dimensional heat equation with temperature-dependent
properties, and let w; = z7 in Eq. (194). If the spacial domain is the
interval ¢ < z < b, Eq. (194) becomes

[ oLz =0, i=0,1,2...n (205)

By virtue of the theorem of moments, any function T, which satisfies
this set of n equations makes L(7T,) vanish at least » times in the interval
a < z < b. Hence if T, further satisfies any given initial or boundary
condition, such a function may be considered to be an approximate
solution of Eq. (192), and we may improve the accuracy by making n
moderately large. In practice, of course, n is limited because the calcula-
tions become too tedious. The case n = 0 is identically the integral
method which, as has been amply demonstrated, yields reasonable
accuracy whenever it is applied to problems with monotonic inputs.

It has been stated previously that the accuracy of a solution obtained
using the integral method might be improved by increasing the order
of the polynomial used to represent the profile and applying derived
constraints at the ends of the interval. However, as was pointed out,
there are cases for which the accuracy actually worsens using this pro-
cedure. On the other hand, suppose that we increase the order of the
polynomial and only use the natural constraints. The additional param-
eters can then be determined by using the higher moments. Thus, by
virtue of the theorem of moments, we can expect an improved solution.

For example, for the case of temperature-dependent thermal properties,
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Eq. (78) is the basic field equation. Then, for j = 1 the weighting factor
is z. After integrating by parts we obtain

[ [}
(—%/; dr = —ﬁa%dz (206)

where a semiinfinite slab has been assumed, and we have utilized the
concept of penetration distance. Equation (206) together with the usual
heat balance integral will permit the determination of two parameters
in the profile. Notice that in this approximation, the variation of the
diffusivity throughout the slab appears, and not merely the diffusivity
at the surface.

Fujita has used the method of moments to solve the heat equation
with a linear dependence of thermal conductivity on temperature. Ini-
tially, the slab is at zero temperature. He divides time into the usual
two intervals and employs the concept of penetration distance. The
procedure is straightforward and will not be presented here inasmuch
as Fujita’s complete analysis has been reproduced by Crank (49) in a
readily accessible reference. It is interesting, however, to compare
Fujita’s constant diffusivity result in the first interval with the result
using only the heat balance integral and a quadratic profile. The latter
result for a cubic profile is presented in Section II,A,2, and it is shown
there that the surface heat flux is proportional to the numerical factor
.602. For a quadratic profile, the factor is .576. Fujita also obtains .576
using zerot* and first moments and a cubic profile. Thus, the loss in
accuracy which occurs in going from a quadratic to a cubic profile in the
earlier method does not take place with the method of moments,

Suppose the initial temperature were not zero. In this case the concept
of penetration distance cannot be applied. However, as in the method of
collocation, we can account for nonzero initial conditions by abandoning
the concept of penetration distance; but, by doing so, we will forfeit
some accuracy in the early time. If the initial temperature is 7'(z,0) = g(z),
then, upon applying the method of moments, we obtain

fab 2T (2,0) dz = /ab zig(x) dx, i=012 ...n (207)

These equations can be used to generate sufficient initial conditions for
all the parameters.

Another possible way to apply the method of moments is to weight
the equation with the dependent variable instead of the independent
variable:

[: wWL(T)dz =0, =012 ...n (208)
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The advantage that Eq. (208) has over Eq. (205) is that the differential
operator is weighted most where the temperature difference from ambient
is greatest. Thus, regions of greater activity are considered to be more
important than regions of lesser activity. As an example, for the case of
temperature-dependent thermal properties, Eq. (78) is the basic field
equation, Then for j = 1, we take the weighting factor to be v. After an
integration by parts, we arrive at

[} [} 2

% gi -/(; vidz = v,a, (g_::). — [) av) (gg) dz (209)
where a semiinfinite slab has been assumed and we have utilized the
concept of penetration distance. Equation (209) together with the usual
heat balance integral will permit the determination of two parameters
in the profile. This two-parameter technique was introduced by Tani
(60) to solve a boundary layer problem. As in the case of Eq. (206),
the variation of the diffusivity throughout the slab appears, and not
merely the diffusivity at the surface.

3. Galerkin’s Method

Galerkin’s method is another variation of the method of weighted
residuals and is mainly applicable to linear problems. It can be applied
with ease to complicated two- and three-dimensional regions, and to
cases where the thermal properties are neither isotropic nor homogenous.
A presentation of the Galerkin method as applied to slabs is given by
Schmit (61). A proof of the convergence of the method is given by Green
(62). We will illustrate the method by applying it to solve for the tem-
perature in a circular region of radius a initially at temperature p(r).
At the boundary r = a the temperature is maintained at T = T,. We
assume a solution in the form

T = To+ ) aulgs) (210)
1

where g:(a) = 0 so as to satisfy the boundary condition. The temperature
satisfies Eq. (56). Upon multiplying by g;(r) and applying the condition
that the weighted residual must be zero, we obtain

/;agj(r) [a%(r %—Z:) — r%?] dr=0 (211)

If Eq. (210) is substituted into Eq. (211), and the first term is integrated
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by parts, we obtain

i & /;)u gger dr + & 5: de /oa rgi'gy’ dr = 0 (212)
1 1

where the prime denotes differentiation.
The initial condition is satisfied by setting 7'(r,0) = p(r) in Eq. (210),
resulting in

T+ ) o:(0)a(r) = p(r) (213)
1

Upon multiplying Eq. (213) by rg;(r) and integrating over the interval,
we obtain

To [ rgpdr + 6u0) [, ramdr = [Cog)dr  (214)

Equation (212) is an eigenvalue problem. The characteristic numbers
and vectors can be obtained in standard fashion by letting ¢r = Aie“.
Equation (214) represents n simultaneous equations for the n initial
values ¢,(0). If the functions g, are orthogonal, Eq. (212) will appear
in canonical form; that is, the derivatives will be solved for in terms of
other quantities; at the same time, in Eq. (214), the initial conditions
will be given directly.
Suppose we choose n = 1, and seleet the funection g, to be

g1 = (r? — a% (215)

This selection does not comply with the form suggested by Lardner and
Pohle for problems with polar symmetry (see Eq. (59)). However.
Lardner and Pohle’s rule must be obeyed only when the concept of
penetration distance is being adbered to, which is not the case here.
With g, given by Eq. (215), Eq. (212) becomes

az
¢ 1) + a1 =0 (216)

Upon choosing p(r) = 0, Eq. (214) becomes

To a? _
~Tta0F=0 @17)
The solution is, therefore,
3T .
b=t (218)

[104]



INTEGRAL METHODS FOR NONLINEAR HEAT TRANSFER

Upon substituting into Eq. (210), the temperature is seen to be
r2
T=7T,— 34T, (1 - a_’) g fatla’ (219)

Figure 10 shows the axis temperature as obtained from Eq. (219) and
compares it with the exact solution. As in the other forms of the method
of weighted residuals, the errors are seen to be largest for early time.

1.0
Approx:
Exact
0.5 (
°
%
—
~
Lod
o 1 1 L 1 1 !
0.2 04 0.6 0.8 1.0 1.2
at/a?
-05

F1g. 10. Axis temperature time history for a circular region of radius a with constant
surface temperature—compsarison between exact and Galerkin’s solution.

These errors can be reduced by using the concept of penetration distance
[for p(r) = 0]. For a one-parameter profile, such as the one assumed in
the foregoing example, Galerkin’s method reduces to the equation of
the first moment as exemplified by Eq. (209), except that in this case it
must be modified to account for polar symmetry. For constant thermal
properties the result is

a—3 a—9d 2
%%/ rT2dr = aToa %_Z-' (a) —- a/ r (Z_Zj) dr (220)

The appropriate one parameter profile which satisfies Lardner and Pohle’s
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rule for problems with polar symmetry is

~ ” Inr/a
T =T, {1 + [(;—_—',g —1-inQ - 5/“)] In (1 = 6/a)lé}’
a—s<r<a (221)

The carrying out of the solution is left to the reader.

B. THE METHOD OF YANG

In a series of papers, K. T. Yang (583, 4, 56, 66) has developed and
demonstrated an improved integral method, and also an error criterion.
He has applied the improved integral method to boundary layer problems.
steady convection problems, and unsteady conduction problems. The
final formulation of the improved method is presented in (56), and the
description which follows is taken from that paper. We will present
the method exclusively in the context of unsteady heat conduction.

The basic aim of the improved integral method is to use the solution
obtained from the heat-balance integral to achieve an improved profile.
Then, having improved the profile, we can solve the heat-balance inte-
gral over again. In theory, the procedure may be repeated as many times
as desired. After each iteration, a certain quantity J is calculated. J is
defined in such a way that if the solution were exact, J would be zero.
By monitoring the magnitude of J at each iteration, we can discover
how much our solution has improved. At first glance, it would seem to
be superfluous to have such an error criterion, because it might be thought
that the quality of the solution after n iterations could be judged by
observing whether or not there was a large change from one iteration to
the next. But, in practice it becomes necessary to stop after one iteration,
and we would like some indication of the improvement effected by this
iteration. Hence, the error criterion is an important part of the method.

With these preliminary remarks out of the way, we can now describe
the improved integral method in detail. As developed originally by Yang,
the method is to be applied only to those cases for which the concept
of penetration distance has meaning, i.e., only to semiinfinite slabs with
uniform initial temperature. We will restrict our attention to such cases.

Consider the heat equation L{u) = 0. Averaging from zero to infinity
we obtain

It+Iu=0 (222)

where
1 =
L= [ Ldy, In=["Lan (223)

and q = z/8. To determine the basic integral solution, we let 7' be
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described by a polynomial (say) in the interval 0 <7< 1,and 7 =0
in the interval 1 < 9 < . Thus, I11 is zero in the first iteration, and
Eq. (222) defines the usual heat-balance integral from which the basic
integral solution may be obtained.

In the improved integral procedure and in subsequent iterations, the
thickness 6(¢) is treated as an auxiliary function defined by the solution
to Eq. (222) with Iy included. The improvement in the profile is accom-
plished by first transforming the independent variables from (z,t) to (n,).
For the heat equation with variable thermal properties, Eq. (78), we
obtain, in terms of the transformed variable v,

9% [6_517 Ei.‘?ﬁ] g _ 8 (224)
on? a a oy

where the dot denotes differentiation with respect to time and the prime
denotes differentiation with respect to v. We now evaluate the coefficient
of dv/dn and also the right-hand side of Eq. (224) by using the results
already at hand from the basic integral solution. Equation (224) then
becomes an ordinary linear differential equation in terms of y with time
entering only as a parameter. For brevity, we rewrite Eq. (224) as

2
%%+P1%=P2 (225)

When P, and P; take values from the basic integral solution they will
be denoted by P, and P,, respectively. Equation (225) is readily inte-
grated to yield an improved profile v;, where the subsecript refers to the
first iteration. However, both P, and P, involve v, and v has a composite
structure; therefore, Eq. (225) must be integrated separately for the two
intervals 0 <7 <1 and 1 <3 < «. Using the subseripts 1 and 11 to
designate the two intervals, Eq. (225) may be written as

d? v,l dv1I d? vln dvy, _

+ Py, gt = Pu,  (226)

+ PIQI P2°X;

which can be solved explicitly. Four constants of integration will appear
in the solutions, and these may be determined from two matching con-
ditions at 4 = 1, viz.,

dvy, = @u_

dn dp " 1 (227)

vy = Vi,

together with the prescribed conditions at n = 0 and n = «. The new
profiles must now be resubstituted into the integral equation, Eq. (222),
and an improved variation of §, viz. 8, obtained. When §,(f) is sub-
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stituted in 5, v; becomes a known function of z and ¢ and the improved
integral solution is complete. The steps may, of course, be repeated
treating », as the basic solution, and this results in an iteration procedure.

In applying Eq. (225) we evaluated P; and P, from the solution
obtained in the previous iteration. However, after the solution is at
hand we may evaluate the quantity

dv,

_ v, dn
_ 2

dﬂ’ + Pl.

€n — P,, (228)
where the P’s are now evaluated from the solution obtained in the current
iteration. The smallness of ¢, will be a measure of the error, and, if the
iteration procedure converges, ¢» may be expected to approach zero for
all n. In order to account for both positive and negative values of e,

in the interval 0 < n < = the following error criterion is used:
@ 1 »
L0 = [ atdn = [ erdi+ [T eldn (229)

Separate calculations for the two intervals 0 <7 <land 1 <9< »
are necessary in view of Eq. (226). In the actual evaluation of ¢, in the
nth iteration, Eq. (228) may be simplified by eliminating the second
profile derivative as follows:

altn) = (Pans = Pr) + (Prn = Prnt) 30 (230)
By comparing successive values of J, the question of convergence may
be readily answered.

As an illustration of the rapidity of the convergence of his method,
Yang has “improved” the integral solution for a semi-infinite slab with
step-wise surface temperature change and linear variation of thermal
conductivity with temperature. The basic solution to this problem is
given by Eq. (88) [or Eq. (89)] for an assumed cubic profile. For a quartic
profile with an additional derived constraint the solution has been given
by Goodman (21), and it is this quartic integral solution that Yang uses
as the basic solution to start his iteration procedure. The three cases
a = +.5, 0, —.5 shown in Fig. 2 were chosen, and the iterated values
of —d/dy(T/Ts)y-0, 83 shown exactly in Fig. 2, were determined
together with the J values. The results are presented in Table III.
Notice the large reduction in J from the integral solution to the first
iteration. This is significant for the following reason: The sample problem
is of the type known as self-similar, i.e., the temperature is a function
of the one variable x/+/t, and not a function of z and ¢ separately.
Because the sample problem has this property it is a simple matter to
[108]



INTEGRAL METHODS FUR NONLINEAR HEAT TRANSFER

iterate as many times as desired. Most problems which are encountered
are not self-similar, and for those cases, Eq. (225) must be solved repeat-
edly for each value of the time. Because of the enormous amount of
numerical work involved in such a program, it is not practical to carry
out Yang’s iteration scheme beyond the first improvement. Hence, it is
important that a large improvement be effected in the first iteration.
The large reduction in J in the first iteration of the sample problem
attests to the utility of the method.

TABLE III
REsvrrs OBTAINED BY F1vE SuccEssIVE APPLICATIONS OF YANG's METHOD®

d ( T
a Tterations J Ty \T /0
0.5 0 0.23920 0.865
1 7.0916 X 105 0.8631
2 5.7466 X 107 0.8631
3 5.0310 X 1077 0.8632
4 5.0157 X 107 0.8632
5 4,9970 X 1077 0.8632
0 0 0.25687 1.095
1 6.7926 X 10~¢ 1.1284
2 1.5519 X 10~ 1.1284
3 1.5457 X 10¢ 1.1284
4 1.5407 X 1075 1.1284
5 1.5366 X 10~¢ 1.1284
-0.5 0 0.21789 1.789
1 5.0568 X 10-* 1.8603
2 1.7631 X 10-8 1.8596
3 9.9195 X 10— 1.8596
4 9.4097 X 10~ 1.8596
5 8.4550 X 10~11 1.8596

e Data from Yang (56).

C. Tee MErHOD OF DORODNITSYN

A generalization of the integral method has been described by
Dorodnitsyn (67) in which the usual integral method is considered to be
the first approximation. Subsequent approximations are obtained by
dividing the interval into two or more strips and averaging over each
strip. Thus, the values of the dependent variable at the boundary of
each strip can be taken as the unknowns, and the number of unknowns
is exactly equal to the number of heat balance integrals. Dorodnitsyn
(58) has generalized this method further by introducing weighting func-
tions in the integral relations in each strip. He has applied the technique
to solve a boundary layer problem, but not to solve the (mathematically
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simpler) heat equation. Sokolova (69), on the other hand, has applied a
method similar to Dorodnitsyn’s first method to the semiinfinite slab
using two intervals 0 < z < (§/2) and (§/2) < z < 4. Parabolic profiles
are used in each interval. (Higher order polynomials would require derived
constraints which are inadmissable.) Thus, seven parameters arise: three
from each parabola plus the penetration distance. The seven conditions
which completely define the solution are: the given boundary condition
at the surface z = 0; the zero temperature and zero heat flux condition
at r = §; the continuity of temperature and heat flux at £ = (6/2); and
the two heat balance integrals in each interval. Much improvement in
accuracy is reported over the results obtained using but one interval
Goodman and Shea (33) used much the same technique in solving for
the melting of finite slabs, but here the division into two intervals arose
naturally because of the two phases. Also, the location of the melt line
which divides the two intervals was an additional unknown.

The same technique can be applied to a slab of finite length, . For
the linear problem presented in Section II, B, 1, it was shown that the
first eigenfunction of the exact solution is reproduced approximately
when one interval is used. If we use the two intervals 0 < z < (I/2)
and (I/2) < z < I, the first two eigenfunctions will be reproduced approxi-
mately. The approximate first two eigenvalues in this case turn out to
be —2.597 and —31.7, which are to be compared with the exact values:
—2.467 and —22.2. It is clear that the number of eigenfunctions which
can be reproduced approximately will equal the number of intervals
which are used. Also the numerical values of the solution will tend to
improve as the number of intervals increases.

Landahl (4) has also reported improved accuracy using two intervals
(for the semiinfinite case) in his applications, but he does not present
any details.

VIII. A Nonsteady Convection Problem

Thus far, we have used the integral method to solve various forms of
the heat equation in one space dimension only. The field equation in
these cases was always reduced to an ordinary differential equation. At
this point, we will apply the integral method to a problem in forced con-
vection that was originally solved by Goodman (60). This problem
involves two space dimensions and time, and the integral method reduces
the field equation to a partial differential equation in one less independ-
ent variable.

The problem to be considered is the temperature response of an incom-
pressible fluid due to a wall temperature which is uniform but unsteady.
The approach adopted uses the integral method to solve for the response
[110]
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due to a unit step in wall temperature, and then uses Duhamel’s integral
to generalize to arbitrary wall temperature.

In this section the (z,y) components of convection velocity will be
denoted by (u,»). Neglecting viscous dissipation, and assuming constant
thermal properties, the temperature is found to obey the following

equation:
aT , T T

Taking the external temperature to be zero, and assuming a penetra-
tion distance §(z,t), we find, upon integrating Eq. (231) from y = 0 to
y =9,

a [? I
52/(; pcT dy +5—5[) pcuT dy = —q, (232)

where ¢, is the surface heat flux, and the continuity equation for the
velocities has been used. We now adopt the approximation that the
veloeity profile is linear and is given by the first term of a Taylor series
expansion near the wall. This approximation can be expected to have
greatest validity when the Prandtl number is large, because in that case
the penetration distance will be small in comparison with the boundary
layer thickness. In practice, the approximation is found to be acceptable
when the Prandtl number is of the order unity.

uz($>y=2y (233)

where 7, is the wall shear stress and u is the coefficient of viscosity. Upon
applying Fourier’s law, and substituting Eq. (233) into Eq. (232), we

obtain
9 [? 9 [PeeryT . _ _ - ‘3__2
a-tﬁ pcT dy + axﬂ) P dy g = —k , (234)

We now assume a cubic profile which obeys the constraints: 7'(z,8,t) = 0;
oT/dy(x,6,t) = 0; T(z,0,t) = T,; 02T /3y*(x,0,f) = 0. The last condition
is a derived constraint, and makes use of Eq. (231) at ¥y = 0 and the no-
slip conditions. The temperature profile is seen to be of the form

ALED-CY] e

Upon substituting into Eq. (234), we obtain

k
5 (236)
[111]
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where
1 .
a=1y [ ndnl30 =W = (L= m¥ = bro
1
B=14i [, 30 — 07— (1 — D)¥dn = 3
Thus, Eq. (236) simplifies to

E 55 .
3z (r.8?) + 4 T (237)

We now restrict our attention to a flat plate, in which case

rn = Ki/Vz (238)
where K, is given, for example, by Schlichting (3, Chapter VII1I):
K, = 0.332pU \/v/U (239)

and U is the free stream velocity, »(=u/p) i8 the kinematic viscosity.
Equation (238) becomes

5Ky @ LEL
154 3z (\/x) tia = ° (240)

Since the wall temperature is uniform, & always starts at z = 0, and
hence, & similarity solution is possible. Let

¢ = (3:',(“‘0,)M 5z (241)
F = 4a (33(‘ ) t/z (242)

Assume ¢ = ¢(F). Then Eq. (240) reduces to the following ordinary
differential equation:
dF
dé

This equation is linear if F is taken to be the dependent variable. Apply-
ing the initial condition ¢(0) = 0, we obtain the solution,

(1—-¢")=—4¢F + ¢ (243)

¢ ¢1d¢y
= (1 — &N\% . ek &
F=Q-e) | a=enm (244)
which is shown plotted in Fig. 11.
The equation
=1 (245)
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is a singular solution of Eq. (243); this solution does not satisfy the initial
condition, but is a steady state solution. The complete solution must
begin for small ¥ on the curve represented by Eq. (244), and end for
large F on the curve represented by Eq. (245). However, the curve of

1.0

0.9

0.8 /

04

L/
A/
/i

1
0O 04 .08 A2 16 20 24 % -28 3R 36

F
F

Fie. 11. Transient growth of penetration distance for forced convection on a flat
plate with step in surface temperature (60).

Eq. (244) turns back on itself, so that for some values of F (time) it is
double-valued. This is impossible physically, and somewhere before turn-
ing back on itself the solution must jump to ¢ = 1. This jump will be

called a heat wave.
The heat wave must occur at some constant value of F, say I'*. In
[113]
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order to calculate the value of F* we must obtain a conservation law
across the wave. Such a law can be obtained from Eq. (243). Setting
F = F*, and integrating, it is found that

139t — 44¢7F" (246)

is conserved across the wave. On the side of the wave where Eq. (244)
is applicable, let ¢ = ¢*. On the side of the wave where Eq. (245) is
applicable, let ¢ = 1. Hence, applying the conservation law, we obtain

(1 + ¢*)

* _ . ————
¥rom the numerieal solution of Eq. (244) it is found that
F* = 0.266 (248)

Now it is clear that for F > F* the steady state solution prevails, whereas,
for F < F* the solution is transient. Thus, a step in surface temperature
will give rise to a starting heat wave which propagates from the leading
edge, and whose trajectory is given by F = F* After this wave has
passed any particular station, the heat flux is steady at that station. In
order to define the trajectory of the wave more explicitly, substitute
Eq. (239) into Eq. (242), and let F = F*. After some simplification we
obtain

Ut/z = 1.33Pr* (249)

where Pr(=puc/k) is the Prandt] number. Hence, the larger the Prandtl
number, the slower the wave, and the longer it takes to achieve steady
state.

The surface heat flux response to a step in surface temperature can
now be determined, and the result is

T _ 0334k, Y Pr”% (250)

[ vI

N

Q: =

which may be compared with the steady state solution presented by
Schlichting (3, Chapter XIV). In order to obtain the response to an
arbitrary wall temperature variation, we apply Duhamel’s integral, with
the result that

_ [T FdT.(Fy) T.<0)]
9. = 0.334k \/E Pr”[ o oF — F + o) (251)

The definition of F, Eq. (242), may be simplified with the aid of Eq.
[114]
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(239). After some manipulation, it is seen that

0.20U¢

F= Prisg

(252)
Finally, it should be mentioned that Cess (61) has solved the same prob-
lem by use of La Place transforms. He overcomes the intractability of
Eq. (231) by constructing two solutions in the LaPlace transform domain
which have the proper behavior for small and large values of the LaPlace
transform variable respectively, and then patching them.

IX. A Two-Dimensional Problem

Consider a cylindrical prism having a square cross section bounded
by the isothermal surfaces

Co(z,y) = (2* — a)(¥* —a*) = 0 (253)

The region is assumed to contain liquid at the melting temperature 7' = 0,
and the surfaces are maintained at the temperature T = — 7'y, During the
period of solidification the location of the melt line will be described by
the line Cx(z,y,f) = 0 which is an isothermal on which 7 = 0. The heat

conduction equation is
T | 9T oT
a (W + 5’_&7) =5 (254)

The boundary conditions are

T=—ToonCo(z,y) =0, t>0

(255)
T =0on Crlz,yt) =0
The initial eonditions are
T=0andCr=Co=0, t=0 (256)

Let V(Cr, Co) be the volume of solidified material at time ¢ per unit
depth of boundary in the axial direction. Thus in time Af the volume of
solid increases by an amount AV (C,,Co), and there will be set free an
amount of heat.

AQ = pLAV(Cr,Co) (257)

This must escape by conduction through the solidified material in such
a way that the amount of heat that flows outward is

AQ = —k ( g% ds) Al (258)
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where s is the distance measured along the contour Cy = 0 in a counter-
clockwise direction, and » is the normal. Thus, in the limit as At becomes
vanishingly small

Wy ar , dV (Cr,Co) .
k 4;0"0 G ds = —pl =7 (259)
where como oo
V(CrCo) = [[ory dzdy = [[,7 a8 (260)
Upon introducing the dimensionless variables
_T+Te ,_ ola
b="7," P=%7,
ta %
T = "1—'2 v = Eﬂ
1 =3 -8 (261)
a 7T @
x=2 y="Y
- a a?

the above boundary value problem may be written

026 a8 ae PR
ax: T am = 5 (262)

F=00onCX,)Y)=(X2—-1)(Y2-1)=0, >0
(263)
0 =1onCpe(X,Y,r) =0
o0 dv
Peroand = B (264)
where
Co=0
WCrCo) = [[ory do
§=1 =0 (266)

G. Poots (62) has solved the above two dimensional heat conduction
problem using an integral method. The success of the solution he obtains
depends, to a large extent, upon his ability to make intelligent guesses
for the shape of the solidification front (melt line) for all time, and for
the temperature profiles. Because the problem which he poses contains
many symmetries the guesses are likely to be nearly correct.

Note, that at the beginning

Cr X, Yr)=Co=(X2-1D)(Y2—-1)=0, 7=0 (267)

1t is plausible to assume that for small time C; will be in the shape of a
[116]
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square with rounded corners, and must become circular, i.e., of the form
X? + Y? — f(r) = 0, for times near the finish of the solidification period.
Moreover, at the end of the solidification period the solidification front
lies on the axis of the prism, X = ¥ = 0. It is thus reasonable to assume
the following shape

CrX,)Yr) = (X2 - 1)(Y?—1) —e(r) =0 (268)

where ¢ is an unknown function of time. The initial condition, Eq. (266),

is now replaced by
e=0atr=20 (269)

and, by virtue of Eq. (268), e = 1 at the instant of complete solidification
of the prism.

The heat balance integral is derived by integrating both sides of Eq.
(262) over the solidified phase bounded by the contours C; = 0 and
Cr = 0. Applying Green’s theorem to the resulting equation and using
the boundary condition Eq. (264), we obtain

do odg
05+ eroi® = [fors B @0

We assume for the solidified phase, the one-parameter temperature
distribution
(X2 —1)(¥* - 1)

€

8= (271)

which satisfies, by virtue of Eq. (267), the boundary conditions, Eq.
(263). Upon substituting Eq. (271) into the heat-balance integral, Eq.
(270), there results a first order differential equation for e(r) to be solved
subject to the initial condition Eq. (269). The solution is

r= [ (34840 + 429} de (272)
where
A = —ef’d—“ (273)
€
and
A= Y (4 - 3") (274)
Defining

(275)
[117]
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the required integrals

L= [V R ax (276)
and
Vite ,
L= /o (2 — 2X? + RY dX (277)
can be expressed in terms of complete elliptic integrals. The results are
Is = E — K
I =13{(4 + 9FE — (2 + 39K} (278)

where the modulus is /1 — ¢. Upon using the rules for differentiating
E and K we obtain

Ao = 15K (279)

The functions A, and A, are tabulated in Table I'V correct to six decimal
places.

TABLE 1V
Tue FuncTioNs A, AND A, (62).
€ Ao A]
0.00 0.000000 0.000000
0.04 0.060322 0.012226
0.08 0.107342 0.021931
0.12 0.149558 0.030715
0.16 0.188741 0.038914
0.20 0.225720 0.046685
0.24 0.260979 0.054122
0.28 0.294833 0.061284
0.32 0.327503 0.068213
0.36 0.359154 0.074943
0.40 0.389913 0.081496
0.44 0.419880 0.087893
0.48 0.449136 0.094149
0.52 0.477748 0.100276
0.56 0.505772 0.106287
0.60 0.533256 0.112190
0.64 0.560241 0.117994
0.68 0.586764 0.123705
0.72 0.612855 0.129329
0.76 0.638542 0.134872
0.80 0.663849 0.140339
0.84 0. 688800 0.145734
0.88 0.713413 0.151061
0.92 0.737706 0.156323
0.96 0.761696 0.161524
1.00 0.785398 0.166667

[118]



INTEGRAL METHODS FOR NONLINEAR HEAT TRANSFER

The analysis presented above differs in its application of the integral
method from that presented in Section IV in one fundamental respect
(aside from the additional dimension). The temperature profile in Sec-
tion IV possesses two parameters [see e.g., Eq. (99)] one of which is elimi-
nated by applying the heat flux boundary condition at the melt line in
a modified form, viz., Eq. (98). The profile in Poots’ analysis contains
only one parameter ¢, and it does not satisfy the heat flux condition at
the melt line. We may, therefore, expect the results of Poots’ analysis
to be less accurate than the solutions presented in Section IV. An exact
numerical solution of the melting square prism has been obtained by
Allen and Severn (63) using the method of relaxation for the special
case B = 1.5613. According to this solution the nondimensional time
required for the complete solidification of the prism is » = 0.60. From
the integral method Poots obtains 7 = 0.35. The integral solution appears
to lose accuracy for late time, which accounts for this discrepancy. The
solution can, of course, be improved, by using a two-parameter profile
together with another condition; for example, the two-dimensional analog
of Eq. (98) could be used. Poots recognized the need for an improved
solution and chose for his second condition the first moment equation
as exemplified in one dimension by Eq. (209). The late time accuracy
is considerably improved using this scheme, and the nondimensional
time required for the complete solidifieation of the prism becomes
7 = 0.52. For the details of this improved solution the reader is referred
to Poots’ paper.

X. Concluding Remarks

The integral method and related methods have been presented with
emphasis on application to nonsteady heat conduction in one space
variable. Examples have been chosen to illustrate various aspects of the
method.

There are still questions left unanswered, however. For example, it is
not clear how the concept of penetration distance should be used for
problems in more than one space variable. The problem presented in
Section VIII, while dealing in two-space variables, bypasses this question
because the space variable z in that problem is really time-like. The
problem presented in Section IX also bypasses the question by utilizing
the symmetry properties of the geometry. Another unanswered question
is how to use the penetration distance concept when the initial tempera-
ture is nonuniform. Questions of convergence, while not altogether
ignored, have not been emphasized. In most cases, no convergence proof
exists in the literature, and this is especially so for nonlinear cases. It is
hoped that, in the course of time, light will be shed on all of these problems.
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SymBoLs
n radiuy of circle: also see Eq. (64); ¢ time
also parameter T temperature
A slope of linear heat input (see Fig. 7'.  negative of initial temperature
5); also parameter u velocity
A oL/k U free stream velocity
b parameter » see Eq. (77); also velocity in
B parameter Section VIII
¢ heat capacity; also parameter w; weighting function
¢ parameter a spacial coordinate
D parameter Y spacial coordinate in Section VIII
S see Xq. (17) z surface temperature
F surface heat flux; also see Eq. 2’ ambient temperature of surround-
(242) in Section VIII ing medium
g(z) initial temperature distribution @ diffusivity (= k/ac) also param-
gx(r) see Eq. (210) eter in Eq. (62)
k heat transfer coeflicient ¥ parameter
H heat flow vector 5 penetration distance
J see Eq. (229) €n residual
k thermal conductivity v; z/85; also see Eq. (30)
l length of slab ] see Eq. (4); also"see Eq. (261) in
L Iatent heat of melting Section IX.
Pr Prandt! number (= ge/k in See- coefficient of viscosity
tion VIII) v see Eq. (67); also kinematic
¢ internal heat generated per unmit viscosity (= u/p) in Section VIII
volume per unit time; also heat see Kq. (116)
flux in Section VIIT p density
Q see Eq. (38) T, surface shear stress
T radial coordinate Subseript s refers to surface value
s melt line
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I. Introduction

Heat and mass transfer between capillary-porous bodies and surround-
ing incompressible liquid accompanied by a change of phase is not only
of theoretical interest but also of great practical importance for some
technological processes. As is shown below, phase changes (evaporation
of a liquid or ice) essentially influence the intensity of heat and mass
transfer between a body surface and the surrounding medium (external
heat and mass transfer). Heat and mass transfer inside a porous body
(internal heat and mass transfer) also has its unique character.

Even now the mechanism of heat and mass transfer in evaporation
processes is scantily studied, and analytical investigations do not, there-
fore, lead to reliable results. The main part of this paper is devoted to
the experimental study of heat and mass transfer in evaporation processes.
To elucidate peculiarities of heat transfer with simultaneous mass trans-
fer, a dry body (pure heat transfer) and a moist body (heat transfer in
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the presence of mass transfer) were investigated simultaneously. Such
a comparison makes it possible to establish relations for interconnected
heat and mass transfer processes.

II. External Heat and Mass Transfer in Evaporation
Processes

Heat and mass transfer between a body surface and a liquid are fre-
quently described by empirical relations of the following form:

Nu, = APrmRe"; Nun = A’Se™Re” (1)

where the constants A, 4’, m, m/, n and n’ are determined experimentally
and depend bdth on liquid properties and on the range of the Reynolds
number (laminar or turbulent liquid flow).

Investigations of Lebedev (1), Polonskaya (2), Sergeyev (3) and others
show that for capillary-porous bodies containing a liquid, relations of
the type shown in Eq. (1) are inapplicable. In this case the dimensionless
Gukhman number has to be introduced, characterizing the capacity of
a moving gas to evaporate liquid. The Gukhman number is a generalized
variable which determines the peculiarities of simultaneous heat and
mass transfer processes with evaporation.

For more detailed investigation into heat and mass transfer between
capillary-porous bodies and humid air, extensive experiments under the
various conditions considered below were conducted at the Heat and
Mass Transfer Institute.

A. EXPERIMENTAL PROCEDURE

Experiments were carried out in a wind tunnel, 30 meters long with
an octahedron-shaped cross section 0.22 square meter in area. The cham-
ber where experiments were conducted is a part of the wind tunnel. The
air motion was induced by a fan, the velocity of air motion ranging from
1 to 22 meters per second. Dynamic head was measured by a Pitot tube;
exchange of the circulating air in the wind tunnel was made by means
of slide valves and an additional channel.

The air was heated by an electric air heater 100 kw in power which
consists of eight parallel sections. Two of them were switched into an
electrical network to provide automatic control of temperature. Thermis-
tors were used for temperature measurement. The automatic system was
of 0.1°C accuracy. Air temperature changed between 25° and 150°C. Air
humidity in the tunnel was maintained constant with the help of a
special automatic-control system. Relative air|humidity varied from 5
to 809%,.

Uniformity and stability of an airflow in the tunnel working section
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were thoroughly studied. In the wind tunnel there were settling screens
which removed the larger eddies and secured a uniform temperature
distribution in the airflow. The length of the stabilization portion, i.e.,
the distance from the screens to the working section, was 4 meters.
Velocity and pressure fields were measured by three-channel eylindrical
and five-channel spherical probes. The nonuniformity of the velocity
field did not exceed 1.0-1.59, of the flow velocity on the axis. The
divergence of velocity-vector angles in horizontal and vertical planes
was no more than +1.5° (within a flow core). Flow turbulence was also
measured with the help of the Loitsyansky-Schwabe version of the hot
wire anemometer. The degree of turbulence was 2.5%. Consequently,
the wind tunnel secured rather high stability and uniformity of a flow.

To minimize the value of radiant heat transfer, the air at a given
temperature circulated over an additional airpipe which was in the work-
ing section of the tunnel (See Fig. 1). This arrangement kept the test
section walls at the same temperature as the test body. The automatic-
control system maintained constant wall temperatures within 10%,. The
working section of the wind tunnel had glass doors (7) and (8); all the
measuring devices were inserted into the tunnel through a bushing (9),
placed far from the bodies investigated. The wind tunnel and additional
airpipe were insulated thermally from the outside.

1. Ezxperiments on Liguid Evaporation from Free Surface

Initially experiments on heat transfer between the heated air and
liquid surface were carried out along with those on heat transfer between
the air and a dry body. The liquid was poured into a 45 X 100 X 76 mm
metallic pan made of stainless steel. The dry body was made of the
same steel in the shape of a hollow parallelepiped 45 X 100 X 76 mm
in size. From a vessel [Fig. 1b (4)] water entered this parallelepiped
and passing through it into a tank (18) which was weighed.

The experimental procedure was as follows: a dry body (15) and a
pan (14) with a liquid, which flowed from a vessel (12), were placed into
the working section of the wind tunnel (see Fig. 1b).

Evaporation of various liquids: water, acetone, benzol, and butanol
was investigated. Aerodynamic wedges (16) made of heat-insulating
material were placed in front of the pan and the dry body. The non-
heated length was 176 mm long. The amount of heat transferred from
the air to the body was determined by the water rate entering into the
metallic parallelepiped (dry body) and by the measured inlet and outlet
water temperatures.

The test liquid was supplied to a burette (5), which in turn supplied the
liquid to the pressure vessel (12).
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21

F1g. 1. Schematic drawing of test units for heat and mnass transfer investigation.
8. Supplementary air line for radiant heat transfer control: 1-—electric air heater;
2—slide valve; 3—heat insulation; 4—additional air pipe; 5—internal surface;
6—external surface of working chamber; 7 and 8—glass doors; 9—bush for installa-
tion of measuring devices; 10—contact thermometer for air temperature control in
additional pipe. b. Schematic drawing of working section; 1—direction of air flow
in tunnel; 2—galvanometer; 3-—galvanometer scale; 4 —pressure tank for water cool-
ing dry body; 5—measuring burette; 6—water cock; 7—overflow pipe; 8—water
hose or calorimeter of dry body; 9—outlet of water from calorimeter; 10—commuta-
tor; 1l—measuring cylinder; 12—pressure vessel; 13—~-water hose for liquid feed
into pan; 14—pan with liquid; 15—dry body; 16—aerodynamic wedges; 17—hot
junctions of thermocouples; 18-—balance for water; 19—supplementary air pipe;
20—heater; 21—low-pressure fan; 22—connecting pipe; 23—galvanometer; 24—heat
insulation; 25—wall of the working section; 26—potentiometer; 27—Dewar flask for
cold junctions of thermocouples.
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The pressure vessel (12) was connected by a pipe (13) with the pan
and an overflow pipe (22) located at the same level as the test surface
allowed the maintenance of the same liquid level both in the vessel and
in the pan during the whole evaporation process. The small amount of
overflow was collected in a measuring cylinder (11). The amount of the
evaporating liquid from the pan (14) was determined by readings on
the measuring burette (5) and the eylinder (11). The supply of liquid
through a hole in the bottom of the pan provided uniform temperature
over the pan height.

The temperature of the body surface was maintained constant and
equal to that of the evaporating liquid in the pan. Thus, the surface
temperature of the liquid and dry body was the same.

The surface temperature of the liquid was measured by three special
thermocouples. The temperature was also measured over the liquid
height. The heat-transfer coefficient hy between the dry body and the
air was determined according to the rate of water m which passed through
the body for the definite time 7 and according to the difference of inlet
and outlet water temperatures: ( )

mty — i
ha = St =t @)

where S; is the heat-transfer surface.

In most cases the contribution of radiant heat transfer is small in
comparison with that of convective heat transfer so that it may be
neglected. The coefficient hq is, therefore, equal to the coefficient of con-
vective heat transfer.

In some experiments a correction for radiant heat transfer was intro-
duced which was found both theoretically and from experiments with
the additional airpipe (see Fig. la).

The heat-transfer coefficient h. with liquid evaporation was defined
by the following formula:

= ge
he o Sc(ta - ta) (3)
where S, is the free liquid surface.

The magnitude of the convective heat flow ¢. was determined by the
amount of the evaporated liquid with the correction for the value of
radiant heat transfer between the bottom, side pan surfaces and the
wind-tunnel walls.

The mass-transfer coefficient h,, was found according to the amount
of the evaporated liquid m for the time

m

hn = e —
TSe(pva - pvs)

)
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The partial vapor pressure p,, close to a liquid surface was assumed
to be equal to that of a saturated vapor at the surface temperature.
The partial pressure of water vapor p.. in the air was determined by the
psychrometric method. When acetone, alcohol and other liquids evapo-
rated, p.. was defined by an aspirational method (by the sampling
method).

2. Experiments on Drying of Moist Solids

The aim of this experimental set was to compare heat transfer of a
dry capillary-porous body with that of a moist capillary-porous body
being dried. Dry and moist bodies, each of the same shape of a rectangular
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Fiu. 2. Distribution of pore radii of porous ceramic bodies with fineness of 1-10 %;
2-29,. Here r is the pore radius in microns and D is the ratio of the pore volume to
the body volume.

parallelepiped, 25 X 100 X 187.5 mmn, were taken instead of metal
models and placed into the wind tunnel.

The capillary-porous bodies were made of porous ceramies which was
prepared in the following way: the mixture was composed of chamoite!
(759%), kaolin (12.5%), clay (129%), and liquid glass (0.5%,). Particles
8-10 u in size were obtained after milling the above components. Then
dross (suspension of 379% moisture) was made of this mixture which was
a material for a ceramic body. The latter was dried first at a temperature
of 80°C for 48 hours followed by 8 hours kilning at 1200°C.

Porosity of the ceramics obtained was uniform. The distribution of

! A refractory material with a high content (759%) of Al;O,.
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pore radii is depicted in Fig. 2 as differential curves which show that
about 70% of the pores are 0.6-0.8 4 in radius, depending on fineness.
Such ceramics may be machined easily and are capable of absorbing
large quantities of water (moisture of about 19-20%,).

A moist capillary-porous body was shaped as a solid parallelepiped
(2 brick) and a dry body was a rectangular parallelepiped (a box) made
of sheet copper and covered by a thin layer of porous ceramic (see Fig. 3).
The water was supplied to the box, which served as a cooler, through
connecting pipes. The water temperature was raised by heat transferred

¥
a

Fra. 3. Dry and moist capillary-porous bodies.

from air to the cooler surface through the layer of porous ceramic and
the metal wall of the cooler. The temperature of water in the connecting
pipes was measured by thermocouples. Aerodynamic wedges made of
the same porous ceramic were located at the frontal part of the models.
The length of the unheated wedge was equal to that of the parallelepiped.
A teflon packing was inserted between the wedge and the models. The
models were machined by a grinder and a shaping machine, and then
twelve thermocouples (copper-constantan) were installed in every body
to measure the surface temperatures. To decrease heat loss through the
wire thermocouples, they were installed in a large section of an isothermal
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surface. The thermocouples were calibrated after installation in the body
surface to eliminate errors which may have occurred in the process of
installation.

In a typical run, dry and wet bodies were placed together in the working
section of the tunnel. The surface temperature of the body was controlled
to be the same as the wet-bulb temperature by adjusting the amount
of cooling water passing through the cooler of the dry body. The moist
body was preheated to the wet-bulb temperature and then placed into
the tunnel. The body was weighed to determine the amount of the
evaporated moisture. For this purpose an automatic balance was used
as described by Smolsky (4). The accuracy of weighing was +0.1%.
The rate of drying was constant. The moisture of the body ranged in
the drying process from 19 to 7-9%.

Heat transfer coefficients hy and h, and mass transfer coefficient h.
were determined in a similar way. The degree of uncertainty (maximum
relative error) was + 6.59, allowing for all the errors.

3. Ezperiments on Porous Cooling

The process of drying of moist ceramics is unsteady since the moisture
content of the body is continuously decreasing. Evaporation does not
always occur on the surface. Under severe conditions of drying, even
with constant evaporation rate, evaporation takes place inside the body
at a certain depth. Hence, comparison of heat transfer of a dry capillary-
porous body with that of a moist one with continuous supply of liquid
is of great interest. In this case the process will be stationary (the moisture
content of the body is maximum and constant) and heat transfer between
such a moist body and heated air will be referred as porous cooling by
evaporation.

The experiments were carried out in the above tunnel with the same
parameters of the heated air. Bodies made of the same porous ceramics
were used as models. They were shaped as a sphere, cone, cylinder, and
disc. Every body was hollow and detachable and composed of two sec-
tions which provided more accurate installation of thermocouples and
uniform water supply. The sections were assembled in two ways. One
of these methods is depicted in Fig. 4. The joint surfaces of two halves
of a body were ground, holes 5 mm in depth were drilled in the walls
for pins of a frame inserted between the halves. Liquid cement-phosphate
was used to joint the halves with the frame. This method proved of
particular value for bodies of revolution. The halves of & body with a
slightly curved surface should be jointed by means of a cross and a pin
coupling and this is more reliable for bodies of such a shape. The model
was placed into the wind tunnel and the surface temperature at various
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points as well as the amount of the evaporated liquid was recorded
during the run.

B. INTERPRETATION OF DATA

The Nusselt numbers Nu, and Nu,, were calculated from the experi-
mental data. The thermal conductivity of humid air was found by the
formula of Nesterenko (5).

The question of proper selection of the physical properties of humid
air is of great importance for analysis of the experimental data. These
coefficients (k, », D, a) are variable and depend on temperature and air
humidity. Some investigators assume the temperature of the wall to be

F1a. 4. Schematic drawing of porous body: 1—half of ceramic body; 2—plastic frame
with pins; 3—holder; 4—thermocouples; 5—drain.

the characteristic value for evaluating the properties, while others use
the mean temperature of the boundary layer, and a third group prefer
the temperature outside the boundary layer. In the present work, trans-
fer coefficients were based on the temperature outside the boundary
layer ¢, (t. = {.). This method proved to be the best one for correlation
of the experimental points.

1. Liquid Evaporation from a Free Surface

At first it was determined that the heat transfer coefficient with
evaporation h, is greater than that without evaporation hq (heat transfer
coefficient for a metal body). The ratio h./hs ranges between 1.2 and 1.6,
depending on temperature ¢, and relative air humidity ¢. Table I gives
data on h./hg for several air temperatures. From Table I it is seen that
the value of h./hs increases with the air temperature for all the liquids
tested. Consequently, heat transfer with liquid evaporation from a free
surface has its own peculiarities, different from that with injection of

{131]



ErrecT oF AIR TEMPERATURE {4 ON h,/hs oF VARIOUS LIQUIDS

A. V. Luigov

TABLE 1

Air temperature °C

Liquid (h./ha) 40° 50° 70° 90° 120°
Benzol 1.40 1.44 1.581 1.51 1.63
Acetone — 1.43 1.47 1.52 1.56
Butanol 1.40 1.44 1.51 1.57 1.60
Waters 1.46 1.48 1.51 1.55 ——

« Constant relative air humidity ¢

= 169,.

an inert gas into a boundary layer through a porous wall. Let us con-

sider this in detail.

In the excellent text by E. Eckert and R. Drake (6) it is shown that
the heat transfer coefficient with gas injection into a boundary layer &
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Fig. 5. Relative heat and mass transfer coefficients for laminar flow on flat plate

according to E. R. G. Eckert.

is less than the value without injection h,. The ratio h/h, decreases with
increase in the parameter Z = (w,/ws) \/Re, (see Fig. 5). In the case of
liquid evaporation from a free surface the velocity of convective mass
transfer w,, normal to the wall on its surface, is equal to the evaporative
mass flux j, (kg/m?h) divided by the humid-air density p (kg/m?), i.e.,

W, = jS/P-
[132]
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In our case with water-evaporation from a free surface the evaporative
mass flux changed from 0.65 to 15.0 kg/m?h and Re., from 4.10* to
16.10% Then, the parameter Z will vary between 0.0007 and 0.09.

Figure 5 shows that for such values of the parameter Z the ratio k/h,
will be equal to 0.99 and 0.83, respectively, i.e., the heat transfer coeffi-
cient h will decrease by 179, at most.

We do not deny either the effect of mass transfer on temperature and
velocity profiles in a boundary layer in evaporation processes or the theory
of injection into a boundary layer through a porous wall. However, under
the present conditions this effect was apparently suppressed by other
effects which lead to an increase in the heat transfer coeflicient with
evaporation, as compared with dry wall heat-transfer.

It should be noted, however, that the comparison of the present data
with those in Fig. 5 is not completely valid. In these experiments heat
and mass transfer occurred on a flat plate and on a liquid surface in a
turbulent flow while Fig. 5 illustrates results for a laminar boundary
layer. Such a discrepancy made us conduct some additional research, the
results of which will be considered below.

From these additional experiments it was found that the mass transfer
coefficient A, (kg/m?h mm Hg) depends on the molecular weight of the
evaporating liquid M (see Table II). The mass-transfer coeflicient

TABLE IT
ErrecT oF MoOLECULAR WEIGHT ON Mass TRANSFER COEFFICIENT k.,

h,, kg/m?h mm Hge

M We = 5 we =9 w, = 14
Liquid kg/mole m/sec m/sec m/sec
Water 0.018 0.125-0.185 0.181-0.232 0.269-0.377
Acetone 0.058 0.243-0.271 0.343-0.351 0.489-0.505
Butanol 0.074 0.329-0.366 0.439-0.472 0.570-0.710
Benzol 0.078 0.330~-0.370 0.410-0.470 0.729-0.788

a Limiting values of mass transfer coefficient, obtained at various air temperature
(27°C < t < 120°C), are presented.

increases with the molecular weight of the evaporating liquid under
other similar conditions. The Nusselt numbers Nu, and Nu,, are calcu-
lated according to the values of A, and A,,.. Calculation results are shown
in Fig. 6, from which it follows that the relative humidity ¢ is an important
independent parameter. The slope of the straight lines is equal to 0.8
(n = n' = 0.8). If the Gukhman number which accounts for the influence
of the relative humidity is introduced, experimental points lie on one
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F1a. 6. Heat and mass transfer with water evaporation from free surface (Sergeev’s
experiments). (a) Nu, - 10~2/Pr®# and (b) (Num/8c?3) - 1072 are included in vertical
line.

straight line lg(Nu/Re"*) = f(lg Gu). The exponent for Gu is equal to
0.2. The experimental data on evaporation of all the test liquids are
presented in Fig. 7, on the basis of which the following relations may
be written:

Nu, = 0.086Pr*%*Re®3Gu®? (5)
Nu, = 0.0045¢%23Re®3Gu0? (6)
Range of validity: 2:10* < Re < 2-10°

002 < Gu < 0-19

Nesterenko and Dokuchaev (7) obtained similar relations for Re between
3 X 10% and 3 X 10° (see Fig. 8).
Consequently, Gu characterizes the peculiarities of heat and mass

transfer in liquid-evaporation processes. In such processes the thermal
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F1@. 7. Heat and mass transfer with liquid evaporation from free surface according
to Sergeev’s data: 1—water; 2—acetone; 3—benzol; 4—butanol. (&) Nu, - Pr¥sGu® ?
and (b) —Nuw/Se’Gu®? are included in vertical line.

conductivity and diffusion coefficients depend on vapor fraction in the
air, i.e., on temperature and relative air humidity. In Sergeyev’s experi-
ments the thermal conductivity coefficient of the humid air was calcu-
lated by the Nesterenko formuls:

k = k, + 0.0041¢ ™

where k, is the thermal conduectivity of the dry air.

However, the thermal conductivity of the humid air depends to a
greater extent on temperature than that of the dry air. Zakharov (8)
carried out experiments to determine the heat conductivity of humid air
over a temperature range from 20° to 60°C. Experimental results are
presented in Table III, from which it is seen that at ¢ = 1009, the
conductivity changes from 0.0208 keal/m h°C, at t = 20°C up to 0.0478
keal/m h°C, at ¢ = 60°C, i.e., 2.3-fold. With increase in temperature
from 20° to 60°C the thermal conductivity of the dry air (¢ = 0) varies
only 1.23-fold.

If the Gukhman number appeared only in the relations for the heat
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data by: 1—A. V. Nesterenko; 2—N. F. Dokuchaev; 3—G. T. Sergeev.

transfer Nusselt number, then it might be argued that it characterizes a
change in the thermal conductivity of the humid air in the boundary
layer. However, the Gukhman number also enters into the formula
for Nup.

‘The hypothesis on volumetric evaporation is the most possible explana-
tion of the physical meaning of the Gukhman number Gu. The essence
of this hypothesis lies in the fact that from the free liquid surface fine
liquid droplets penetrate into the boundary layer. Heat fluctuations of

TABLE III
THeErMAL CoNpUcTIVITY OF HUMID AIR
k - 102(KCAL/M H GRAD)

t°C

¢% 20 40 60

0 1.78 2.02 2.20
20 1.84 2.29 3.05
40 1.90 2.54 3.74
60 1.96 2.78 4.26
80 2.02 3.00 4.51
100 2.08 3.20 4.78
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a liquid-molecule complex (the Papaleksi effect)? favors the evacuation
of liquid droplets into a boundary layer. The interaction between a
humid airflow and liquid surface is, however, the major reason for the
removal of liquid droplets.?

According to the dynamic-adsorption theory of de Boer (9) an evapora-
tion process is a dynamic process of evaporation and condensation. Liquid
molecules not only leave the liquid surface (evaporation) but also return
continuously from the air (condensation). The evaporation rate is pro-
portional to the difference of the flow of molecules leaving the surface
and those returning to the surface. On the basis of Fedyakin’s investiga-
tions (10) condensation occurs nonuniformly along the liquid surface. In
the process of condensation there takes place incomplete wetting of the
liquid surface by the adsorbed layer of liquefied vapor. In this case on
the liquid surface there are droplets which are not firmly bound and
consequently are removed by the airflow.

It is of interest to make an approximate calculation of the lifetime
of such a droplet in a boundary layer.

Designate the droplet radius by R, then the time necessary for the
droplet evaporation, r (lifetime) will be equal to

_ Lp.R _ Lp.R?
TThaAt T 2%kA @)

where L is the latent heat of evaporation, At¢ is the temperature drop
between the droplet surface and the air.

Transmission of heat from the air to a droplet proceeds mainly by
heat eonduction. So the heat transfer coefficient 4 will be equal to
h = Nuk/R = k/R, since the Nusselt number for a spherical droplet
is unity when the radius is used as the characteristic length. Droplet
evaporation occurs under adiabatic* conditions, therefore the droplet

2 See N. D. Papaleksi, “Collected Works,”” Vol. 1, Published by Academy of Sciences
of the U.8.8.R., 1948.

3 The editors suggest, and the author agrees, the increase in heat transfer may be
due to an instability phenomenon. Chandrasekhar (“Hydrodynamic and Hydro-
magnetic Stability,” Oxford Univ. Press, 1961) predicts that surface waves occur for
airflow over water for an air velocity of 21 feet per second (approx. 6.5 meters per
second). The theory reportedly has been verified experimentally by Francis (“Wave
Motiong on a Free Oil Surface,” Philosophical Magazine, Series 7, Vol. 45, p. 695,
1954). Since many of the reported experiments were above this critical value, it is
suggested that surface waves were present—thus increasing the area of heat transfer.
The presence of waves would also explain the entrainment of & substantial amount of
water in the boundary layer, just as the wind blowing over the waves on an ocean or
lake carries a substantial spray of water.

¢« By this we mean that the heat required for evaporation is transferred from the
surrounding air by convection.
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temperature is equal to the wet-bulb temperature. If it is assumed that
At = 2°C, L = 580 keal/°C, then for the droplet with the radius 2 = 0.01
mm its lifetime will be of order r = 0.004 second. In reality, however,
it will be less because in the process of evaporation the droplet radius
continuously decreases. For a droplet with B = 0.001 mm its lifetime
will be 100 times less, since 7 is directly proportional to the square of
the radius.

Liquid-droplet evaporation in a boundary layer is called volumetric
evaporation. It is volume-vapor source in a boundary layer and a heat
sink, For a flat plate the laminar boundary layer equations for transfer
of a two-component mixture (humid air) will be as follows:

Continuity

d(pws) | d(owy) _
ox +- oy =0 )
Momentum?®
ow; dw. a aw:
it =z = 10
ows o oo =5 (n ay) (10)
Diffusion
dp1o dpo _ 9 dpro
pws o + Py By ay(Dp——ay>+1 (11)

Heat transfer

pur g+ i gy = 3 ( 3g) + #Dn = ) 14 1102

where subscript 1 designates vapor and 2, dry air.

It is assumed that the pressure gradient is negligible (dp/dx = 0) and
thermal diffusion effects are assumed to be negligibly small.

The system of differential equations (9-12) differs from an ordinary
system of equations by the presence of additional terms I (vapor source)
and LI (heat sink).

With the help of the methods of the similarity theory from Eq. (12)
we find a dimensionless variable K

2
K = % (13)
where the length of an evaporation surface [ is the characteristic dimen-
sion and the absolute air temperature T, is the determining temperature.

The value LI is equal to the heat necessary for volumetric evapora-
tion. Designate the amount of droplets per unit volume of a boundary

® The effect of evaporation on the momentum equation is neglected.
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layer through N, and their mean radius, through R. Then, it may be
written in the following form:

LI = 4xR*N ,h At = 4xRN ,k Al (14)

where At is the difference between the air temperature in a boundary
layer t(z,y) and the wet-bulb temperature #[Af = t(z,y) — #].
Consequently, we have

K = 4«RN,1=—§—‘ (15)

The value 4rRN.l? depends on physical liquid properties and fluid
dynamics of a flow. The dimensionless value Af/T. determines the relative
intensity in volumetric evaporation. It changes along z—y coordinates.
The maximum value of this quantity is equal to Gu = (T, — T4)/T..

From this viewpoint the Gukhman number shows whether the humid
air may evaporate in volume (evaporation of fine droplets in a boundary
layer).

The Gukhman number should be in formulas for Nu, and Nu,, since
it characterizes a vapor source in a boundary layer.

The hypothesis on volumetric evaporation needs to be proven by direct
experiments. Such experiments are being conducted at the Heat and Mass
Transfer Institute.

One may, however, come to the conclusion that a heat and mass
transfer process with liquid evaporation from the free surface differs
from that with the injection of an inert gas into a boundary layer.

2. Drying of Capillary-Porous Bodies

As was already mentioned above, two sets of experiments were carried
out. For the first set, plates were used at a temperature from 30° to 90°C
with relative air humidity from 5 to 809%,. Air velocity in the wind tunnel
ranged from 3.0 to 15.0 meters per second.

Experiments with dry bodies of porous ceramics and metal bodies were
made to compare heat transfer in the presence of drying with that of a
dry body. First of all it should be noted that the results of the experi-
ments with the reference standard bodies made of porous ceramics and
of sheet steel are similar (see Fig. 9). A rough surface of porous ceramic
has therefore no effect on heat transfer.

The solid line in Fig. 9 corresponds to the equation

Nu = 0.037Pr032Re0*

which correlates the data with a maximum deviation +69%. All the coeffi-
cients entering Nu, Pr, and Re were based on the ambient temperature.
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Experimental data on drying of the moist porous plate were correlated
in the same way as those on evaporation of water from the free surface.

The temperature of the moist plate was found to be the same at all
the points of the surface. The heat transfer coefficients h, were larger
for the moist plate than those for the dry one (h, > hs). The maximum
difference between h, and hq {(h./hs = 1.15) is found with a small relative
air humidity ¢. With high ¢ the ratio h,/hs approaches unity (h./hs = 1.05).
Similar ratios h./h; were found in Lebedev’s experiments on drying of
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F1c. 9. Plot of Nu/Pr®3 versus Re for: 1—metal plate; 2——dry plate or porous
ceramics. Equation Nu = 0.037Pr*Re?* is represented by a solid line.

clay (1). Thus, for instance, a decrease in relative air humidity from 60
to 109, caused a 159, increase of ..

Comparison of heat and mass transfer Nusselt numbers shows that
Nu, > Nu, and with an increase in the relative humidity ratio Nu,./Nu,
approaches unity.

The data were correlated by the following formulas:

Nu, = 0.083Pr%#Re*Gu®-10 (16)
Nu, = 0.1108c¢%3Re¥Gu? 14 )

over the range of Reynolds numbers between 2.5 X 10% and 1.6 X 108
and Gukhman number between 0.014 and 0.17 with a maximum devia-
tion of +7.59%.

Comparison of formulas (16) and (17) with similar formulas (5) and
(6) shows that an exponent of the Gukhman number with drying is
less than that with evaporation from a free surface. Assuming the
Gukhman number to characterize the intensity of volumetric evaporation,
a conclusion may be drawn on the decrease in droplet evacuation into the
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boundary layer with drying of a capillary-porous body (an average pore
radius is about 0.5-0.8 u) in comparison with evaporation from a free
surface. This conclusion qualitatively agrees with the physical mechanism
of droplet formation in a boundary layer.

The modified Gukhman number Gu’ = 7./T, may be used instead of
Gu. Then formulas (16) and (17) become

Nu, = 0.057Pr**Re¥(T./T,) " (18)
Nu,, = 0.063Sco#Re*(T,/Ts)2° (19)

These are more convenient for engineering calculations.

Consider tests on drying of moist porous ceramic bodies of different
shapes (sphere, cylinder, disc, cone) carried out by 8. S. Chervyakov.
To compare heat transfer with drying of moist bodies with that of dry
bodies of the same shape, we refer to Shchitnikov’s data (11). For this
research sheet copper models 1.5 mm in thickness were used. Tube spirals
were installed inside the bodies, which were of a spherical shape and of
a cylindrical shape. Tube grids were inserted into the plate and disc.
Holes 0.5 mm in diameter were drilled in these tubes. Cooling water
was supplied through a pipe, connected with the spiral or the grid. The
amount of heat transferred into the air from a heated body was deter-
mined by water rate and by the difference between the inlet and outlet
temperatures of the water. The wall temperature of a body was measured
by thermocouples at fourteen different positions.

The experiments were carried out in the wind tunnel with the air
velocity varying from 2.5 to 18.0 meters per second which made it possible
to cover a range of Reynolds numbers from 2 X 10* to 1.5 X 105 The
air temperature ranged from 60° to 140°C and the surface temperature
was uniformly equal to 32.7° + 0.3°C. The experimental data were corre-
lated by a plot g Nu = f(lg Re). They also gave the values of constants
A and n for Nu = 4 Re~.

The deviation of experimental points from the plot was small, the
maximum deviation e being +3-69%. The experimental data are sum-
marized in Table IV. Formula Nu = f(Re) may be plotted based on
values of A and n for comparison with the similar plot for moist bodies.

It should be noted that the experiments by Shehitnikov were carried
out carefully as confirmed by his data for a plate with fairing. The values
of A and 7 are in good agreement with those obtained by the well-estab-
lished conventional empirical formula Nu = 0.032 Re®® for the case of
a flat plate in an airflow (13, 14).

In 8. 8. Chervyakov’s experiments, the relative air humidity was
unchanged (¢ = const). The value of Gu™ was, consequently, almost
constant. Experimental data were therefore presented as empirical
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TABLE 1V
Heat Transfer of Differently Shaped Metal Bodies in a Heated Aiv Flow
Charac-
Size teristic
Body shape and orientation to air flow (mm) size, I A n (%)
@ d =120 l=d 0.190 0.64 +4
}
i
! a=10 1=d 0.118 0.67 £4
A
!
!
L k=170 l=d 0.123 0.68 +5
d =120
h =180 1=1 0.128 0.65 +6
1=190
d=120
h =180 1=1 0.057 0.74 +6
a) b) 1=190
d=143.7
o 1 o 27 I-d 0.028 0.77 +3
! (3
3 g
? [}
2 b) d=187 1. 0.017 0.88 23
a = 160
P A b =100 I=a 0.107 0.70 5
' h=125
‘L
tl_
i B a=160
b =100 I=a 0.290 0.58 +5
a} b} h=25
a= 160 _
b= 100 l=a 0.031 0.80 +3
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formulas
Nu, = A4 Re" and Nu,, = A’ Re" (20)

Constants 4, A’, n, n’ are compiled in Table V. Orientation of the body
to the flow is the same as in Table IV,

The heat transfer performance Nu = f(Re) is plotted in Fig, 10 for
heat and mass transfer of a cylinder being dried, and Shehitnikov’s data
are presented for comparison. Figure 10 shows that Nusselt number Nu,

TABLE V
Hear aANpD Mass TrRaNsFER WiTH DRYING (2.5 X 104 < Re < 7.2 X 104)

Body shape and its orientation

to flow A n A’ n’
Cylinder (orientation a) 0.167 0.65 0.090 67
Sphere 0.114 0.70 0.132 0.63
Cone (orientation b) 0.077 0.80 0.0815 0.76

» 1t should be emphasized that these results were obtained by Chervyakov and that
the A’ and n’ refer to a Nusselt number for mass transfer defined by Eq. (23); that is

Nun' = A'Re™
A Jll
when Nu,' = Dap,

lg Nu
24 //i:,/
23 / é - -
T //// - o

-
22 - [0
/ Ml/q I L - —
- - x/
2.1 — e "
3 / ]
"

e X
Ny ol
¢z
19 %
)‘ /

3

1.8
44 45 4.6 47 4.8 lgRe

Fra. 10. Plot of Re versus Nu (Nu, and Nu,) for cylinder in cross flow with
1—drying, 2—porous cooling, 3—theoretically predicted values for dry heat transfer.
(Note that Nu, for Case 1, drying is actually defined by Eq. (23) and should rigorously
be identified as Nun,’)
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with drying is about 149, larger than Nu with heat transfer of a metal
cylinder over the range of Re from 104 to 10% In comparison with
Sergeyev’s data, the mass-transfer Nusselt number is less than the
heat-transfer Nusselt number (Nu, < Nu,). One of the sources of such
a divergence is a different method for calculation of the mass-transfer
Nusselt number. Sergeyev found Nu,, by the following formula

Jd hml

Nu, = ApD, = D, (21)

where D, is the diffusion coefficient based on the pressure difference
{kg/m h mm Hg) and related to the conventional coefficient D(m?/h) by

b .
Dy = B (22)
In this case all the transfer coefficients, including the diffusion coefficient,
were determined at the ambient temperature (7' = 7%,).

S. 8. Chervyakov obtained mass-transfer Nusselt number by the
formula

.oe_ Jd o hyl

l\u,,. = Dz—p‘l = “ﬁ“ (23)
where mass-transfer coefficient h.’'(m/h) is based on the difference of
vapor fractions in the air Ap;. A diffusion coefficient was found at the
ambient temperature as well.

Comparing formulas (21) and (23) and keeping in mind formula (22),
one can see that Nu, > Nu,'. As an example, in one of the experimental
runs j, = 0.5 kg/m*h, Ap, = 9.85 mm Hg, Ap; = 0.0108 kg/m? then
hn = 0.051 kg/m h mm Hg and h,’ = 46.5 m/h, h.RT/M = 55 m/h.
Hence, ratio Nu,/Nu,' = 1.18. Thus, Nu, is about 189, larger than
Nu.'. Besides, in S. S. Chervyakov's experiments temperature head At
was small. The surface temperature (wet-bulb temperature) was therefore
15°-20°C lower than that of air.

Comparison of Tables IV and V indicates that in all the cases heat-
transfer Nusselt number Nu, with drying is larger than Nusselt number
with dry heat transfer. The difference is from 12 to 50%, depending on
Re and a body shape.

3. Porous Cooling

Experiments on porous cooling, described in Section 1I,A point 3, were
carried out by Mironov (12) with the same relative humidity. Experi-
mental data were therefore correlated by empirical formula (20). Con-
stants A, A’, n, and »n’ are compiled in Table VI. Comparison of Tables
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TABLE VI
HEAT AND MAss TRANSFER IN THE Process or Porous CooLiNG
(2.5-104 < Re < 7.2 X 10%

Shape and orientation Size
to flow (mm) A n A’ n'

Sphere d =102 0.277 0.630 0.020 0.81

Cylinder (orientation a) d =168 0.073 0.75 0.0142 0.835
d= 84

Disk (orientation b) d= 23 0.121 0.725 0.0237 0.830
d =135

Cone (orientation a) d =178 0.161 0.67 0.0122 0.84
d =110

1V and VI shows that with porous cooling heat-transfer Nusselt number
is also larger than Nusselt numbers with pure heat transfer. This differ-
ence is even greater than that with drying and in some cases reaches
709% over the range of great Reynolds numbers. The values of Nu = f(Re)
for a cylinder in a cross flow are also plotted in Fig. 10 for comparison
{curve 3). Figure 10 shows that Nu, with porous cooling is larger than
that with drying. This difference increases with Reynolds number Re.
Mass-transfer Nusselt number Nu,, with porous cooling is smaller than
Nu,, with drying. In this case the difference between them decreases
with increase of Re.

This trend is caused by the mechanism of heat and mass transfer of
moist capillary-porous bodies. With porous cooling evaporation occurs
at a body surface or in a layer close to it. With drying of a moist body
evaporation takes place at a certain depth even at constant rate of drying.
Increase in air velocity is known to move the evaporation zone into the
interior of the body.

Since the experiments by Mironov and Chervyakov were carried out
with bodies almost equal in size, the air velocity is proportional to
Reynolds numbers. With increase in Reynolds numbers mass-transfer
mechanism of drying becomes therefore similar to that of porous cooling.

Since the amount of heat spent for evaporation is determined by the
amount of moisture evaporated and the water supply with porous cooling
is constant (a moisture content of the body is constant below the evapora-
tion zone), a conclusion may be drawn that Nu, with drying should be
smaller than that with porous cooling over the range of great Reynolds
numbers.

These experiments indicate that heat and mass transfer between moist
capillary-porous bodies and ambient air has its own peculiarities. The
orientation and, consequently, the structure of the evaporation zone of
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a capillary-porous body are of great importance. Heat required for
evaporation is transferred to the evaporation zone not only through a
boundary layer at the surface, but also through a very thin layer of the
body. This thin layer has a capillary-porous structure through which
heat and mass are transferred by conduction and diffusion. This heat
and mass transfer through the body layer has a direct effect on distribu-
tion of temperature and vapor fraction in a boundary layer of humid air.
Smolsky has shown that temperature and concentration profiles in a
boundary layer depend on porous structure, with velocity, relative
humidity, temperature and, consequently, temperature head being equal.
Colloid bodies, for example, produce ¢(y) and p:(y) profiles different from
those for g capillary-porous body. Mel'nikova has found that constants
A4 and A’ entering formula (20) depend on porosity and capillary strue-
ture of a body. External heat and mass transfer depend, therefore, on
heat and mass transfer inside the body (internal heat and mass transfer).

The effect of mass transfer on heat transfer with evaporation of liquid
from capillary-porous bodies mainly results in the change of heat and
mass transfer mechanism due to the deepening of the evaporation sur-
face into the interior of the body. The present author’s experiments (15)
have shown that mass transfer does not effect the air velocity profiles
in a boundary layer.

To analyze a complex problem of heat and mass transfer with tran-
spiration cooling we shall avail ourselves of the Krischer method. The
essence of the methed is in the following,

If the influence of the mass cross flow is neglected, the differential
equation for heat transfer in the boundary layer with a laminar flow
over a flat plate may be written as®

ot 2%
Wz E =a W (24)
The boundary conditions are:
at y = 0:1(x,0) = t,; atz =0, 0,y) =1
at y — <z, <) =1, (25)

The flow velocity w, is the function of coordinates and is determined
by solving the equation of motion. The Krischer method assumes w,
to be constant and equal to the average flow velocity in the boundary
layer (w. = w:). In actual processes a constant velocity takes place
only in a flow of liquid without friction, i.e., when the coefficient of inter-
nal friction is very small. In the case of viscous fluid such an assumption

s Heat transfer due to vapor diffusion may be neglected as a small value.
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(w, = ¥, = const) allows the solution of the problem of heat transfer
in a boundary layer.

In the case of a flow over an infinitely long plate (! — =) the solution
of the differential Eq. (24) subjected to boundary conditions (25) has
the form:

t(xsy) — L = er Y '\/73:‘
ta—t, ° f(z \/Ei) (26)

The local Nusselt number Nu, is

_ z  0t(z,0)
Tk (t. — &) 9y

27)

Differentiating the solution (26) with respect to y and assuming y = 0,
we obtain

AL 1 _
N z = | —— = = P z
wo () - e vEe @)
The average Nusselt number over the surface is
b1 2 =
Nu=1/—Nu,dx=—_VPe (29)
[ 0 X '\/1!‘

In order to compare the obtained results with the known formulas
for the Nusselt number with the laminar flow over a plate it is necessary
to determine the value of .. If the profile of the velocity w.(y) is taken
for a cubic parabola, the average integral velocity . will be

_ 1 /® 5

W =Wa= | w{y)dy = - Wa (30)
d /o )

where & is the boundary-layer thickness. Then for moist air (Pr = 0.7)

we shall have

Nu = 0.625 2= \/Pe = 0.74 vRe (31)
vV

This result differs from the known analytical solution Nu = 0.60 v/Re
only by 239%. Thus, the assumption that the velocity . is constant
when solving a differential equation of the boundary layer is quite justified
as the method of solution. It gives satisfactory results.

The present problem on evaporation porous cooling may be stated as
follows.

The differential equation for heat transfer remains the same [see Eq.
(24)].
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The boundary conditions will be as follows:

t0,y) = ta; t(x, ) = ta; t(x,—&) = &, = const (32)

M0 @0 _ ks

—k 2 Ve = p w0 ~ ol (33)

And it is assumed that the temperature on the surface of evaporation is
equal to the wet-bulb temperature. Due to the small boundary-layer
thickness of the body the distribution of temperature in it proceeds
according to the limit law.

In this case the boundary condition (33) may be written as

_ 9t(z,0)

ay + H{t(z,0) — ] = 0 (34)

where /I = ky/kt is some value similar to the relative coefficient of heat
transfer.

The solution of differential Eq. (24) subjected to boundary conditions
(32) and (34) has the form

tHz,y) — b _ erf (y \/’u?z)
ta — b 2 Vaz

+ exp (Hy + H? Z—”) erfe (; yj_x + H Zﬁ) (35)

From Eq. (35) we obtain Eq. (26) as a specific case. If evaporation takes
place on the surface of a body (¢ = 0), the second term of the right-hand
side of (35) is equal to zero, as at £ — 0, then H — =,

The temperature on the surface of the body (3 = 0) will not be con-
stant but will change along the axis «

Lt )en(nF) @

Near the edge of the plate (z = 0) the temperature of the surface of
the body ([t. = t(z,0)] is equal to the air temperature ¢, = ., while at
a considerable distance (z — <«) the temperature of the surface is equal
to the wet-bulb temperature (f, = #,). Hence, the temperaiure head
At (At = t, — t.) changes from zero near the edge of the plate to the constant
value (t. — ty). It is a very important fact which determines the rela-
tionship of heat and mass transfer when the surface of evaporation
deepens inside the body. If evaporation takes place on the body surface,
then under adiabatic conditions its temperature is constant and equal
to the wet-bulb temperature,
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It is known from the general theory of heat transfer that if the tempera-
ture head At increases in the direction of flow, the heat transfer coefficient
is higher than that at constant temperature. Hence, when the surface of
evaporation deepens the heat transfer coefficient 1s higher than that with
evaporation on the surface. If as the first approximation we assume that
the heat transfer coefficient with evaporation on the surface of the body
is equal to the heat transfer coefficient of a dry body, then at drying with
deepening of the surface of evaporation the heat transfer coefficient will be
higher than that of a dry body. This increase in the heat transfer coefficient
should be reflected in calculation formulas Nu = f(Re) by introducing
an additional dimensionless argument. Since Af is a cause of the change
in the heat transfer coeflicient, it is natural that Gu or (7./T») will be
the generalized variable. Let us consider it in more detail.

The local Nusselt number will be:

z At(z,0)

z = = P - 2 — 9 -1
Nus =5 t(x,0)] dy V/Pe, KexpKerfcK|[1 — expKerfcK]
(387)

where the dimensionless variable K is equal to

H, ks lax
K=t =2 % 38
VPe, k& Vg, (38)

It characterizes the effect of the deepening of the evaporation surface
on heat and mass transfer of capillary-porous bodies.
Let us designate

f(K) = /7 KexpKZrfcK (39)
Then we shall have
_ V7 Nu, _ 1 -1
N = VI = ) [1 - wa(K)] (40)

From Eq. (40) we shall obtain Eq. (28). If evaporation takes place on
the surface (K = »), N = 1 since f(K) = 1, i.e.,

Nu, = :}1:‘_ \/ Pe,

and this finally coincides with Eq. (27). Thus the dimensionless value
N characterizes a relative increase in the local Nusselt number with
evaporation of moisture from capillary-porous bodies, as compared to
moisture evaporation on the surface of the body.
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It is seen from equation (39) that the value of N decreases with the
increase in K gradually approaching unity.

In the range of values of K from 0.1 to 5 (0.1 < K < 0.5) the relation
Nu = f(K) may be approximated by the relation

N = 131K%12 (41)

Itis known from the theory of drying of moist materials that the distance
of the evaporation surface from the surface of the body during the constant
rate of drying in the first approximation is proportional to the psychro-
metric difference At (At = {, — f;). Then the dimensionless variable K
will be inversely proportional to ({. — #,) and, consequently, to the
Gukhman pumber (K ~ Gu™!). From this it follows that the number
N will be proportional to Gu®! (N ~ Gu®!') and this takes place in
experiments on heat and mass transfer in the process of drying.

Only during the constant rate of drying the temperature of the evapora-
tion surface {(x,— &) is constant. Beginning from the eritical moisture
content its temperature increases with time of drying gradually approach-
ing the air temperature, which is reached by it at the equilibrium moisture
content. From this it follows that the Nusselt number Nu. during the
falling rate of drying will decrease gradually approaching with time the
Nusselt number for a dry body.

It is of interest to determine approximately the value of N. For porous
ceramics (k, = 0.2 keal/mh°C) at Re = 6.10* and for z = 20 mm for
the parameter K = 1.5 the value £ = 0.5 mm. In this case, according
to Eq. (33), the coefficient N = 1.23, i.e., the heat transfer coefficient
with drying is higher by approximately 259, than the heat transfer coef-
ficient for a dry body if it is considered that heat transfer with evapora-
tion on the body surface is identical with heat transfer of a dry body.
For parameter K = 0.25 the value { =3 mm, and the coefficient
N = L.53, ie., the heat transfer coefficient is approximately by 509,
higher with drying as compared to that of a dry body.

It is quite natural that at small values of £ it is practically impossible
to fulfill an exact measurement of the body-surface temperature. Thermo-
couples imbedded on the “surface’”’ of the body practically show the
wet-bulb temperature. Therefore, the heat transfer coefficient is calculated
as the ratio of a heat flow to the psychrometric difference (t. — &)

=1
hay = = (42)
Then the local Nusselt number will be equal to
hax z dt(z,0)

Nus = 4 “ G- o 43)
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Upon simple transformations we obtain

‘\/1_I' N Uzp
V/'Pe,

where N, is the coefficient which shows a relative change in the number
Nu, and, consequently, in the coefficient h., due to the deepening of
the evaporation surface. It is seen from Eq. (44) that with increase in
K the coefficient N decreases.

Since the dimensionless K is inversely proportional to the psychro-
metric difference (¢, — %), the Nusselt number will decrease with the
increase in (f, — %) or in the Gukhman number.

In a small range of K the relation Nu, = f(K) may be given in the
form of relations

Ny = = f(K) (44)

Ny = BK™ (45)

where B and m are constants (0 < m < 1).

For example, in the range (0.3 < K < 1.5) the constants B and m
are equal to 0.73 and 0.46, respectively, while in the range (1.5 < K < 5)
B = 0.80 and m = 0.15,

Henee, in the range (0.3 < K < 1.5) the coefficient N, will be propor-
tional to Gu=%4% A similar relation was observed in a number of works.

Equation (24) is a particular case of Eq. (12) when the transverse
velocity is zero (w, = 0). Equation (12) may be solved if w, = 1, = const
and w, = j,/p = const are assumed. The solution of BEq. (12) with
boundary conditions (25) is of the form

tzy) — b =1-— [erfc( \/w, - % a_z)

fa = s 2 \/~ 2a
Wy - '\/7714-?/ Wy '\/(?U)
+ p( y)”‘“‘ (2 Var | 2, | @

From the above solution the local Nusselt number is obtained

Peff) _ %pe,* erfe (M4Pe*//Pe)  (47)

Nu, = —= \/ Pe, exp ( i

\/_

where Pe.* = w,z/a = jsx/pa is the local Peclet number for transverse
transfer. If the effect of transverse heat transfer along y is neglected
(Pe.* = 0), then from Eq. (47) formula (28) is obtained. If the evapora-
tion rate is lower than 20 kg/m?h (4, < 20), then for a wet plate in a
laminar airflow (Pr = 0.7), when Re < 8.10¢ Pe,* < 25. Hence the
second term of Eq. (47) is less than 5% in relation to the first one, and
the value of exp (—Pe,*?/4Pe,) is practically unity.
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The solution of Eq. (12) with boundary conditions (32-33) is of the
form

(v
Hay) — b _ 2a/ exp [(H"’ — {i_wﬂ)f_‘.l
ta — & (H _ 'ﬂ,) a ] W

b e (1~ ) 2] Lo (32 - V)

Hexp< 3)erfc o (48)
(1D

If we assume @, = 0, then from Eq. (48) the solution (35) will be
obtained. From Eq. (48) the following formulas are obtained

N = Nuz '\/7_" ___ (p(K,B) - }é '\/7_7 BCTfCVB - (49)
o VB (1B - e - L Bl 5]
K K~/= "’ 2 K 2
where
¢(K,B) = <1 — %%) /1 Kexp(K? — BK)erfc( —;—B) (50)
Hx Pe.* w, 2z
K = » B = = F
+/Pe, vV Pe, (61)
For N, B
r Nug 1 1 - 1
N, = \/\/r?);_i — <1 - E) [gp(K,B) ~3 L Berfc§B] (52)
K

If the effect of transverse mass transfer is neglected (B = 0), then from
formulas (49) and (52) we obtain formulas (40) and (44), respectively,
since

o(K,0) = /1 KexpK?2erfcK = f(K) (53)

With no deepening of the evaporation surface (¢ = 0, K = =) we obtain
from formulas (49) and (50)

2
N =N, = exp( B ) \/1r Berfc (54)
This 13 Eq. (47), since
BZ
I )
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Over the range 0.5 < K < 5 and with the above values of Re and
evaporation rate j, 1/2(B/K) < 0.06. Thus for approximate calculations
which are sufficient for engineering practice, the effect of transverse mass
flow may be neglected.

III. External Heat and Mass Transfer with Sublimation

The above experiments do not yield a clear understanding of the
complicated process of combined heat and mass transfer in a boundary
layer of an evaporating liquid. Therefore, experiments on heat and mass
transfer with sublimation of solid materials carried out by Novikov (16),
Heat and Mass Transfer Institute, Minsk, are of great interest.

The solid material investigated was naphthalene. This substance has
great evaporative capacity, its physical constants being known. Air
pressure ranged from 760 to 0.07 mm Hg which permitted the study of
the pressure effect on heat and mass transfer. To compare the process of
naphthalene sublimation with evaporation of moisture from a capillary-
porous body, a porous ceramic body soaked with water and a body made
of moist gelatine were taken, the latter being chosen for comparison
of heat and mass transfer of a typical capillary-porous body (moist
ceramics) with a colloid one (gelatine). Sublimation of frozen moisture
(ice) occurred only at low air pressures, at slight rarefactions liquid
evaporation taking place.

A, EXPERIMENTAL PROCEDURE

Experiments on sublimation in vacuum are usually carried out under
free convection. Since the main aim of the present studies was to compare
the processes of evaporation with sublimation in forced convection, a
special unit was designed for vacuum experiments in both free and forced
convection. This was achieved by setting the model in motion. Its velocity
changed in a wide range from 0.0 to 50.0 meters per second.

A schematie drawing of the test unit is depicted in Fig. 11. A vacuum
chamber (1) was a steel cylindrical vessel 350 mm in height and 415
mm in diameter. The cylinder was provided with steel covers with rubber
packings. The chamber was heated by an electrical heater allowing the
air temperature in the chamber to range from 20° to 100°C. The chamber
was thermally insulated from the outside. There was a glass window
150 mm in diameter in the top cover through which changes in the mass
of the body of interest were recorded. This cover was provided with
packing sleeves which connected a vacuum pump (18), pressure gauges
(23) and (24), a vacuum gauge (19), air line (20), and thermometers
(the hole for thermocouple wires). Through a hole in the bottom cover
o shaft was inserted rotated by a direct-current motor (7). The shaft
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was in bearings connected with the cover by rubber packings. There
was a special prechamber for gasketing the shaft lead, covering the
bearings. The prechamber was coupled with the vacuum pump, its capac-
ity being 0.7 liter per second (in Fig. 11 it is not shown).

The shaft was a steel rod 7 mm in diameter and 200 mm in length
with a holder (2) on it. The holder was a hollow duralumin cylinder
180 mm in length.

A steel spring was inserted inside the holder for measuring the mass
of the body. One end of the spring was fixed, the other being connected

Fic. 11. Schematic drawing of test unit for heat and mass transfer experiments
in vacuum (I6): 1-—chamber; 2—steel holder; 3—reference standard body; 4—auto-
type transformer; 5—voltage stabilizer ; 6—rectifier; 7—direct current motor; 8—stro-
boscope; 9-—thermocouple installation in a model; 10—thermostat with melting ice;
11—thermocouple switch; 12—potentiometer; 13-—normal element; 14-—storage
battery; 15—null galvanometer; 16-—oil pump; 17—galvanometer; 18—oil pump;
19—thermocouple vacuummeter for pressure range from 1 to 102 mm Hg; 20—air
line with diaphragms; 21—trap; 22—mercury discharge lamp; 23—vacuum gauge
for pressure range from 760 mm Hg to 1 mm Hg; 24—compression pressure gauge;
25—cylindrical receiver.

with a body by a rod. When the body rotated, the spring stretched by
centrifugal force. This stretch was recorded on the scale adjusted to the
same holder. Readings of the scale were made by a stroboscope. A beam
was mounted on the other (short) end of the holder which was composed
of a set of lead washers and a screw plug. The whole unit was balanced
statically and dynamically. The centrifugal force stretching the spring
was proportional to the mass. Decrease in mass with evaporation caused,
therefore, displacement of the body along the holder, which was registered
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by a pointer of the spring balance. The pointer was observed by means
of the stroboscope.

There was a set of springs which were used depending on the number
of rotations of the body. Relation between the mass of the body and
readings of the spring balance was linear. The required vacuum in the
chamber was created by the vacuum pump (18) 7 liters per second in
capacity.

The vacuum pump was connected with the chamber by a vessel (25)
which served as a receiver for pulsation absorption. Pressure in the work-
ing chamber was controlled by a special air line (20). Its design allowed
the maintenance of a definite air onflow into the working chamber by means
of a set of diaphragms made of thin brass foil. A supplementary steam-
oil pump 250 liters per minute in capacity was engaged at high rarefaction.
Pressure in the chamber was measured by a U-tube with a mercury
column (23) over the pressure range from 760 to 1 mm Hg. A compression
gauge (24) was used to measure partial pressure of dry air from 1 mm Hg
and lower. The pressure gauge was coupled with the working chamber
by two traps. One of them was filled with calcium chloride (21), the other,
with liquid nitrogen. The total pressure over the range from 1 to 10?
mm Hg was measured by a thermocouple vacuum gauge (19).

Thermocouples (copper-constantan) 0.1 mm in diameter served as
thermometers for air in the chamber, the walls and the model. The
temperature of the fixed body was measured by a thermocouple with a
hot junetion adjusted near the surface. The temperature of the rotating
body was measured by a special alcohol thermometer, a thin rod with
a spherical end. The bulb was covered with melted naphthalene. Then
it was placed in the holder and set in rotation. Readings were made on
the thermometer scale and through the stroboscope. The thermometer
had been calibrated beforehand without naphthalene under the condi-
tions of rotation. These tests allowed a correction for centrifugal force.

Models were prepared in the following way: a textolite sphere 10 mm
in diameter was covered by a melted naphthalene. The sphere was sub-
merged into melted naphthalene, and on cooling down, the naphthalene
layer was ground and shaped as a concave hemisphere 12.6 mm in diam-
eter. Thus, the textolite sphere was covered with a naphthalene layer
1.3 mm in thickness. A hole was made in the sphere for adjustment to
the holder. A thermocouple was inserted in this hole to measure naphtha-
lene temperature.

The second model was a sphere 15 mm in diameter made of the same
porous ceramics as in the experiments on porous cooling. Before the
experiment this sphere was soaked with water as deseribed above (Sec-
tion IL,A).
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The third model was made of moist gelatine which is a typical colloid.
It is shaped as a parallelepiped, 10 X 10 X 5 mm. This shape was chosen
because of difficulty in manufacturing a spherical body. The experimental
procedure and units are described in detail in Novikov’s work (16).

The experiments were carried out under stationary conditions when
the body temperature was constant in time. Therefore the total heat
transferred to the body was spent on evaporation. Consequently, heat
flux ¢, (keal/m?h°C) is equal to the product of a specific heat of evapora-
tion L (keal/kg) by evaporation intensity j, (kg/m?h), ie., ¢, = Lj..
The total heat transfer coefficient h.,, including heat transfer by convec-
tion and radiation, was defined by formula

_ ¢ . Lj
hea = tj—:{b - ta — ta (55)
Radiant heat transfer coeflicient A, is caleulated by the conventional
formulas and additional experiments were carried out to find emissivity
of naphthalene, moist porous ceramics, and gelatine. Convective heat
transfer coefficient is defined by formula h, = h., — h,, mass transfer
coefficient for a viscous region is found by formula

J
hm = — 56
Pvs — pva ( )

and for a molecular-viscous’ region by formula

_ o — 0.583p.(M/T)s
pva - pmz

Pm (57)

where p., is a partial vapor pressure at the body surface.

B. INTERPRETATION OF THE DATA

The pressure effect on evaporation intensity at various velocities is
depicted in Fig. 12 for three models.

In free convection, evaporation for all the bodies increases to a maxi-
mum value with pressure decrease and then it decreases. Maximum
intensity jmax for naphthalene is 0.57 kg/m?h at a pressure of 0.5 mm Hg,
for gelatine jmae = 0.5 kg/m?h at a pressure of 1 mm Hg (lg p = 0), and
for moist ceramics jmax = 0.46 kg/m?h at 0.5 mm Hg.

In forced convection, evaporation intensity varies with material prop-
erties. For naphthalene j, changes with lg p in forced convection in a
similar way as in free convection. Maximum evaporation intensity for

7 Here we define molecular, viscous, and molecular-viscous as follows: If (1) k > d,
molecular region; (2) k « d, viscous region; and (3) k ~ d, molecular-viscous region.
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naphthalene is found at 1 mm Hg, for porous ceramics it is at 100 mm
Hg (lg p=2), and for gelatine, at 4 mm Hg. The shape of curves j, = f(Ig p)
over the pressure range from 500 to 1 mm Hg depends on the body struc-
ture. For gelatine evaporation intensity decreases with pressure falling
from 500 to 100 mm Hg (lg p = 2), while with porous ceramics it increases.

/

100 V7
o e
. /;ﬁ:ﬁg/
| — =
l.OOf 0 2 T
el ZaN\PP ™
ol AN
N

Fi1a. 12. Effect of pressure p (mm Hg) on evaporation intensity j (kg/m?h) for a)
gelatine; b ) moist porous ceramics; ¢) naphthalene.

Thus, the general trend is similar to that with drying of moist bodies
at normal barometric pressure. Heat and mass transfer coefficients are
summarized in Table VII. The heat transfer coefficient of a colloid body
(gelatine) and a typical capillary-porous one (ceramic) are close to each
other only at extreme pressures—740 mm Hg and 0.17 mm Hg. In the
rest of the pressure range (740 < p < 0.17) heat transfer coefficients A,
for gelatine are larger than those for ceramics.

To illustrate this, take the data for a pressure of p = 100 mm Hg and
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TABLE VII

PressurRe ANDp Bopny VELocIiTY

Naphthalene

Moist ceramics

Gelatine

h,

b

ha

hm

ke

hm

P w keal/m?h°C kg/m?h  keal/m?h°C keal/m?h  keal/m? kg/m?h
mm Hg m/sec mm Hg mm Hg h°C mm Hg
742 0 3.0 0.11 — — 20.6 0.018

10 23.0 — — - 83.5 0.075
20 32.0 — — — 100.6 0.075
30 45.0 — — — 115.6 0.085
40 54.0 — — — 122.6 0.090
50 67.0 — — — 128.6 0.093
500 0 2.0 0.17 11.8 0.014 — _—
10 18.8 — 42.6 0.043 — —
20 25.0 —_— 55.1 0.056 — —
30 31.3 —_ 62.6 0.063 — —
40 39.7 — 69.6 0.070 — —
50 43.8 — 74.6 0.075 — —
300 0 1.6 0.28 9.8 0.022 156.5 0.037
10 15.1 — 31.2 0.065 40.5 0.083
20 21.5 — 38.7 0.074 45.5 0.092
30 27.8 — 43.2 0.082 48.5 0.098
40 34.0 — 46.2 0.087 50.5 0.100
50 40.2 — 49.7 0.093 51.5 0.103
100 0 1.1 0.3 6.6 0.050 15.3  0.046
10 3.1 1.9 20.8 0.130 30.3  0.078
20 4.8 2.7 23.8 0.146 34.3 0.088
30 6.4 3.6 25.8 0.157 38.3 0.096
40 7.6 4.4 27.3 0.168 41.3 0.100
50 9.1 4.3 28.3 0.175 42.3 0.105
40 0 0.7 0.89 — — —_ —
10 5.7 4.0 — — _— —
20 7.6 5.5 — _— e e
30 9.2 7.1 — — — —
40 10.6 8.8 — — — —_
50 12.6 10.5 — — —_— —
4 0 4.65 7.8 10.5 0.100 11.7 0.113
10 9.45 17.3 12.6 0.115 15.4 0.140
20 10.75 22.2 14.9 0.130 18.4 0.163
30 11.85 26.0 16.6 0.150 22.0 0.190
40 12.65 29.4 19.4 0.165 25.4 0.215
50 13.45 33.0 21.4 0.180 28.3 0.236
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TABLE VII (Coniinued)

1 0 5.32 26.0 6.4 0.250 11.2 0.152
10 8.52 44.5 6.9 0.280 13.3  0.173
20 8.58 58.0 7.5 0.300 14.8 0.188
30 8.97 66.0 8.0 0.310 16.8 0.206
40 9.34 76.0 8.5 0.330 18.8  0.225
50 9.4 79.5 9.0 0.350 21.8 0.245
0.5 0 6.37 31.7 6.6 0.35 — —
10 8.31 43.5 6.9 0.36 — —
20 8.57 56.0 7.2 0.38 — —
30 8.45 62.0 7.5 0.39 — —
40 8.30 70.0 7.8 0.40 — —
50 8.40 75.0 8.3 0.42 — —
0.27 0 4.95 36.6 — — — —
10 5.88 54.5 — — — —
20 6.33 60.5 — — — —
30 6.50 79.0 — — — —
40 6.65 83.5 — — — —
50 6.70 86.0 — — — -—
0.18 0 — — 5.2 0.33 3.8 0.130
10 — — 5.5 0.35 4.3 0.140
20 — — 6.0 0.36 4.7 0.145
30 — — 6.4 0.37 5.3 0.155
40 — — 6.6 0.39 5.9 0.163
50 — — 7.0 0.40 6.4 0.175
0.11 0 1.46 33.2
10 1.52 35.4
20 1.64 38.7
30 1.72 41.6
40 1.82 44.3
50 1.92 47.1
0.09 0-50 1.98 40.2
0.07 0-50 1.98 59.0

a velocity of w = 50 meters per second. Under these conditions evapora-
tion intensity of water from gelatine and ceramics are almost the same
(for gelatine j, = 0.84 kg/m2h, and for ceramics j, = 0.86 kg/m?h).
However, heat transfer coefficient h, for gelatine is 42.3 keal/m?2h°C,
and h. = 28.3 keal/m?h°C for ceramics, i.e., heat transfer coefficient for
gelatine is 509, larger than that for ceramies. A similar relation is found
for other pressures. In natural convection a heat transfer coefficient for
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gelatine is 15 keal/m?h°C, and k, = 6.5 keal/m2?h°C for ceramics at the
same pressure (p = 100 mm Hg). Thus, in the latter case the heat trans-
fer coefficient is as much as 2.3 times that of ceramics. It is interesting
to note that the general trend is quite different with mass transfer coef-
ficients. At the same pressure 100 mm Hg mass transfer coefficient for
gelatine h,, = 0.105 kg/m?h mm Hg (w = 50 meters per second), and
for ceramics A» = 0.175 kg/m?h mm Hg. Thus, mass transfer coefficient
for gelatine is 1.65 times smaller.

The surface temperature for gelatine was 9.5°C, and for ceramics
—3.2°C. Sinee the ambient temperature was uniform (f, = 20°C, resist-
ance to heat transfer to a ceramic body is large compared with that for
gelatine. Assume evaporation of moisture to take place at a certain
depth £, but not at the surface. Then heat flux ¢, and mass flux j, will be

g: = h.'At; js = hn'Ap: (58)
where heat and mass transfer coefficients h,” and %,,’ will be

1 1

Ry Wy L Sl v/ v

(59)
respectively.

ky is thermal conductivity of a surface layer, a., is a moisture diffusion
coefficient based on the pressure difference.

Since the layer thickness ¢ is small, the distribution of temperature
and partial vapor pressure may be assumed linear. The thermal conduc-
tivity k; of the body increases with moisture content. The initial moisture
content of the gelatine is considerably greater than that of porous ceram-
ics. The thermal conductivity of the ceramic is, therefore, small compared
with gelatine. However, the main difference in thermal resistance (¢/k,)
of the surface layer is caused by different values of ¢. For a capillary-
porous body ¢ is considerably greater than that for a colloid body. The
thermal resistance (£/ks) of a gelatine surface layer is, therefore, smaller
than that for a ceramic one. Thus, the heat transfer coefficient k. for
gelatine is large compared with porous ceramics. The moisture diffusion
coefficient of capillary-porous bodies is as much as 100 times that of
colloid bodies. For example, moisture diffusion coefficient a,, for gelatine
is 0.03 X 1075 m?/h, and for capillary-porous bodies it is from 2.10-%
to 8.107% m2/h with 400-800% of moisture content.® Therefore, though

* The moisture diffusion coefficients for gelatine are reported in Drying Engineering,
Proceedings of the Cinema and Photo Institute, Moscow, 1962; while the data for
ceramics are from ‘“Transport Phenomena in Capillary Porous Bodies,”” by Luikoyv,
Gosenergoizdat, 1954.
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a boundary layer for a gelatine body is extremely small, its resistance
to mass transfer will be larger than that for a ceramic body. As a result
magss transfer coefficient h,’ for gelatine is small compared with that for
porous ceramics.

In view of the above pattern, heat and mass transfer coefficients acquire
the meaning of heat and mass exchange coefficients. A boundary layer
consists of vapor-air mixture adjacent to the body surface and of a thin
layer of the body itself, £ in thickness. Thus, external heat and mass
transfer is inseparably linked with the internal process since moisture
evaporation takes place inside the body.
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Fia. 13. Effect of pressure p (mm Hg) on heat transfer coefficient A, (kcal/m2h°C)
for naphthalene in free convection according to the data by 1—P. A. Novikov (16);
2—theoretically predicted values for dry heat transfer.

Turning to heat transfer with sublimation of naphthalene, the effect
of pressure on the heat transfer coefficient h, in free convection is illus-
trated in Fig. 13. A pressure drop from 742 to 40 mm Hg (lgp = 2.6)
causes decrease in h, from 2.5 to 0.8 kcal/m?h°C. Then k., increases and
reaches a maximum value (h, = 6.3 kecal/m?h°C) at 0.5 mm Hg. As the
pressure continues to drop, heat transfer coefficient becomes less and at
pressure of 0.1 mm Hg it is 1.4 kcal/m?h°C. Figure 13 illustrates also
variation of heat transfer coefficient A represented by

Nu = 1.18(Gr Pr)0-125 1.10~% < Gr Pr < 5.102 (60)

For the case of heat transfer in the absence of mass transfer, coefli-
cient h continuously decreases with decreasing pressure from 3.4 to 0.3
keal/m2?h°C. Thus, k. is larger than h over the pressure range from 10
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to 0.1 mm Hg. At 0.5 mm Hg ratio h./h = 10.6, i.e., heat transfer
coefficient h, with sublimation is as much as about 11 times h. This
increase in h, can be explained in the following way. As a solid material
evaporates into the surrounding medium over the pressure range of about
10-0.1 mm Hg, its volume becomes 10%-10¢ times larger. The mass of
vapor in this vast volume (compared with the model) leaves the surface
and penetrates the surrounding medium. Evaporation is nonuniform over
the whole surface, but it takes place in the form of jets escaping from
numerous discretely located centers of evaporation. The theory of dis-
crete evaporation is confirmed by the fact that with sublimation of ice
in vacuum the surface layer of ice becomes porous.

These jets quickly rush into the medium, producing strong turbu-
lence. A very complicated and random movement arises, caused by circu-
lation streams, multiplied by these jet streams. To get an idea of the
magnitude of the circulation multiplication factor n, one can use the
following approximation.

Assume the total heat required for evaporation of the material, to be
transferred by radiation and direct exchange between the medium and
the body surface. Then, from the equation of thermal balance we may
write

Lj, = g = cafata — t:)(n + 1) (61)

where ¢, is a heat flux by radiation. This is about 30 to 50% of the total
heat Lj, required for evaporation. In this case evaporation is assumed to
be uniform over the whole surface of the body and heat transfer to be
purely turbulent. From formula (61) it follows that at pressure of 0.5
mm Hg n = 34 for naphthalene, and n = 36 for porous ceramics (for
ice, evaporating from porous ceramics).

Thus, the heat transfer is accompanied by a complicated turbulent
transfer, caused by discrete evaporation of solid material from the surface
which takes place repeatedly.

In the case of ice sublimation vapor pressure p., at the body surface
is larger than the ambient pressure p(p.. > p). According to the experi-
mental data ratio p/p.. is about 0.3-0.4, i.e., it is supercritical.

Under these conditions vapor escapes from discrete evaporation sites
with extremely great velocity. The vapor in the form of jets rushes into
the surrounding medium and causes ejection of vapor-air mixture between
the sites.

Heat transfer rate by convection is proportional to volumetric heat
capacity cpp. Since the density of the medium decreases with pressure,
the convective heat transfer becomes of less significance over the pressure
range p < 0.5 mm Hg.
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In addition, at small pressures at the surface a layer arises close to
the wall with a thickness comparable to a mean free molecular path
which is inversely proportional to the pressure. In this layer no turbu-
lence oceurs and heat is transferred by molecular transfer alone. This
results in a decrease of the heat transfer coefficient h, with pressure. Over
the pressure range 0.1 < p < 0.5 molecular-viscous heat exchange is
gradually changed to a purely molecular one.

This conclusion is confirmed by the experimental data on the velocity
effect on heat transfer coefficient h, (Table VII). At a pressure of 1 mm
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F1a. 14. Effect of velocity w (m/sec) on surface temperature ¢ (°C) of naphthalene
sphere at air pressure in chamber ranged from 300 mm Hg to 0.11 mm Hg.

Hg, an increase in velocity from 0 m/sec (a motionless body) to 50 m/sec
causes an increase in &, from 5.32 to 9.4 kcal/m?h°C (1.95 times increase),
while at a pressure of 0.5 mm Hg this increase is 1.31, and at 0.09 mm Hg,
the coeflicient h, is actually independent of velocity.

The above conclusions are confirmed by the analysis of temperature
change at the sphere surface made of naphthalene with the velocity at
various pressures of the medium (see Fig. 14). At a pressure of 300 mm
Hg surface temperature f, is actually independent of the velocity. At
pressures from 100 to 0.5 mm Hg increase in the velocity causes decrease
of the body temperature. The value of this temperature change increases
with pressure decrease. With further pressure decrease (p < 0.5 mm Hg)
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the value of ¢, change decreases and at 0.11 mm Hg the surface tempera-
ture is actually independent of the velocity.

The effect of the body size on evaporation intensity and heat transfer
coefficient is of some interest. The data are presented in Fig. 15 for
naphthalene spheres with various diameters. As expected, evaporation
intensity and heat transfer coefficient become smaller with increase of
the body surface (of a sphere diameter).

We have attempted to consider the nature and the effect of evapora-
tion on the process of convective heat transfer under various conditions.
The following conclusions may be drawn from the investigations:

Heat transfer with simultaneous mass transfer due to a new gas phase
formation involves a great number of phenomena which are inseparably
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Fi1c. 15. Effect of surface S (m?) on evaporation intensity j (kg/mh) and heat
transfer coefficient k. (kcal/m?h°C) of a naphthalene sphere in free convection (w = 0
and 10 meters per second).

interconnected. Investigation into this process will be successful only if
the process is considered as a whole, as the sum of all the interconnected
phenomena involved. It does not appear possible to utilize existing expres-
sions based on a heat transfer-mass transfer analogy. Rather, quantita-
tive relations must be obtained which correspond to the actual physical
process.

IV. Internal Heat and Mass Transfer in
Capillary-Porous Bodies

Transfer of noncondensing gases, vapor, and liquid may occur in a
capillary-porous body. Transfer of vapor and inert gas proceeds in differ-
ent ways: by diffusion and effusion (molecular transport) and by filtra-
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tion under the pressure gradient (molar transport). Transport of a liquid
occurs by diffusion, capillary absorption, and by filtration. Consequently,
the derivation of mass-transfer relations in capillary-porous bodies on
the basis of a molecular and molar transport mechanism involves great
difficulties. These relations may serve to analyze a qualitative mass-
transfer pattern and to find out the character of a change in transfer
coeflicients, depending on moisture content and body temperature. Heat
and mass transfer coefficients are determined experimentally for various
bodies.

A, ANavLyTicaAL HEAT AND MASs TRANSFER THEORY

Consider a system: a capillary-porous body and a substance bounded
within it. At a positive temperature (¢ > 0°C) the bound substance con-
sists of a liquid, vapor, and inert gas. At a negative temperature (¢ < 0°C)
it consists of ice, supercooled liquid (water), vapor, and gas. Depending
on the energy of binding between the moisture and the body, the freezing
temperature of water changes over a wide range. Thus, in most cases
there is always some amount of a supercooled liquid in capillary-porous
bodies at the negative temperature.

The second peculiarity of mass transfer in capillary-porous bodies is
the partial filling of pores and body capillaries with a gas and moisture
(vapor, water, or ice) i.e., a part of a capillary is filled with water or ice
and the remainder, with a vapor-gas mixture (humid air),

Steamlike moisture (vapor) is designated through 1; water, through 2;
moisture in a solid state (ice), through 3, inert gas (dry air), through
4 and a body skeleton, through 0. As a result, a moist capillary-porous
body is a multicomponent system containing the bound substance
(k = 1,2,3,4) and a dry body skeleton (k = 0). The volume concentra-
tion of the bound substance (dry air, vapor, water, and ice) is equal to
the relation of the mass m of this substance to the body volume, V:

w=%=%zmk=2wk (62)

where m; and w; are the mass and concentration of the Ath component
(k = 1,2,3,4), respectively. The quantity w; may be expressed in terms
of px and porosity IT of a body (pore volume per unit of a body volume),

W = % = p;,ku (63)

where pi is the density of the bound substance (p; and p, are fractions
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of vapor and dry air in the humid air, respectively; p; is the density of
water; p; 18 the density of ice®).

In the first approximation the quantity of filling of capillaries b is
equal to the relation of the volume of the bound substance in the state
k to that of capillaries. According to the filtration theory in porous
media by is referred to as a saturated state. In the present case such a
determination of the coefficient b, is, however, conditional, since moisture
may be bounded by adsorptive and osmotic forces not only within the
walls of capillaries but also with the internal wall surfaces of a capillary.
Equality (63) shows that the volume concentration w; depends not only
on p; and II but also on b, which varies in the process of mass transfer.
Consequently, filtration equations in porous media are inapplicable for
moisture transfer in capillary-porous bodies since according:to the filtra-
tion theory the value of by is assumed to be unity.

The volume of a moist body depends on moisture content, therefore,
instead of the volume coneentration it is better to use the relative con-
centration w,;, determined by the formula:

uk=%=ﬂ (64)

mo Po

where po 1s the density of the body itself.
4

The relative concentration of the bound body u = z u; is equal with
k=1

great accuracy to the sum of relative concentrations of water u; and
ice ua(u = u2 + u3), as the mass of vapor and dry air in pores and
capillaries of the body is negligibly small, as compared with that of water
and ice. Acecording to Posnov’s calculations (17) at the normal pressure
(p = 760 mm Hg) and at ¢ = 20°C for a maximum-porosity body the
mass of the humid air in body pores make-up 10-39, of that of water,
corresponding to equilibrium moisture-content. And so the relative con-
centration u is equal to:

s
u = Uy = U + u (65)
kzl k 2 3

and is called moisture content of a body.

In the heat and mass transfer theory for capillary-porous bodies rela-
tion (65) is of great importance as it allows to make some simplifications
and transformations.

In & eapillary-porous body moisture moves slowly. The temperature

? With adsorption p; is the density of adsorbed water.
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of water and humid air in body pores and capillaries is practically equal
to that of their walls. Vapor in capillaries is in thermodynamic and
molecular equilibrium with liquid. The partial vapor pressure in a hygro-
scopic body state depends on temperature and moisture contents of a
body;

Do = fu,T) 8t 0 < 4 < Uym (66)

where u,, is the maximum moisture content of the body reached by
sorption.

In the moist state (4 > w.m) the partial pressure of vapor is equal to
the pressure of a saturated vapor p,. Consequently, p, depends only on
temperature:

Py =0 = f(T) at u > tim (67)

1. Differential Heat and Mass Transfer Equations

Molecular and molar transport of vapor, air, and water proceed simul-
taneously in a capillary-porous body. All these types of transfer may be
conditionally called diffusion. Here by diffusion is meant molecular diffu-
sion, capillary diffusion (capillary absorption) and convective diffusion
(filtration).

If we designate the density of a mass flow of the kth component of a
bound substance in the state k(k = 1,2,3,4) through ji, then the differ-
ential mass transfer equation may be written as:

d(pour) _

) = —divj + L (68)

where I, is the strength of the mass source or sink of the kth component.
Summing Eq. (68) over all the kth components (k = 1,2,3,4), we obtain
the following differential equation:

4
"(‘"’") 2 divis (69)
-]

since the sum of all the mass sources and sinks is equal to zero:

4

Iy=20 (70)

k=1

A differential heat transfer equation is obtained from that for enthalpy
transfer of the present system. At constant pressure the local derivative
of the volumetric enthalpy concentration is equal to the divergence of
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an enthalpy flow
4 4
d . .
3 (hopo + 2 b Pouk) = —div (q -+ z hk]k) (71)
k=1 k=1

where ¢ is the heat flux; h is the specific enthalpy.
Designate the specific heat capacity at the constant pressure through
cpx = (dhi/dl), then we shall have:

4 4
g
(CUPU + E Pocpkuk) g; + z b _(thzti)_
k=1 k=1
4 4
= —divg — z CorJiVE — z hi divie  (72)

k=1 k=1

Multiply Eq. (68) by h: and summarize over k& from 1 to 4

4 4 4
z e (’(La‘:‘_"_) = — z hidivie + z hal (73)
k=1 k=1 k=1

Hence from Egs. (72) and (73) we obtain the differential heat transfer
equation:
4

4
cpo:—;t = —divg — z hel — z CorfeVe (74)
k=1 k=1

where ¢ is the total specific heat of a body:
4

c=2c + 2 CpikUk (75)
k=1

From Eq. (74) the Fourier-Kirhoff equation for a moving liquid may
be obtained as a particular case. Assume k = 2

CPo = Cp2poUz = Cp2pP2; J2 = paw (76)
then we have
at .
CorP2 5 + epapawVt = —divg 77

We now examine Eq. (74) in more detail. In capillary-porous bodies
in the absence of filtration the convective component of heat transfer
(168]



CArILLARY-POorROUS BODIES

4
is small compared with the conductive one. The term z cpJrVE may,
E=1

therefore, be neglected.
If there are no chemical conversions connected with the formation of
a noncondensing gas (dry air), the source I, is equal to zero (I, = 0).
Differential Eq. (74) may be written as follows:

3

ad .
Cpoa—j — —divg — Z hals (78)
k=1

Equations (78), (68), and (69) represent a system of differential equa-
tions for heat and mass transfer with sources of mass I; and heat hcly,
accounted for by phase conversions. In order to complete these equations
it is necessary to determine sources I; and flows of heat and mass.

a. The Mass Sources. If the body temperature is above zero (¢ > 0°C),
moisture inside it is composed of two phases (liquid and vapor). In this
case we obtain from relation (70)

I, = -1, (79)

Since the mass of vapor in capillaries is negligibly small compared with
that of liquid (u2>> u1), we may assume u; = 0. Then it follows from
Eq. (68):

o)) _ _ piyis + 1 = 0 (80)
ar

Hence the expression for a liquid source is
12 = —Il = ——divj1 (81)

If the body temperature is below zero (¢! < 0°C), the moisture inside
it is composed of vapor and ice or saturated liquid. No mass transfer
of the solid state occurs (j; = 0). Then for a two-phase system we obtain
from Eq. (68)

8 (pous) =7

) 1 (82)

Usually, considering dispersed media containing ice, the notion of ice
content factor ¢;, is introduced, which is a ratio of the mass of ice and that
of moisture (water and ice). In the present symbols

Uz

= =] ,.u_:_; K
€ uz + us ’U, (83)

If a body does not contain ice (u; = 0), factor €. is zero (e, = 0). When
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the whole of water converts into ice (u2 = 0), e = 1. In most cases ¢;
is less than unity (0 < €. < 1). According to Tsitovich (18) the factor
¢ is independent of moisture content u, but it depends on the temperature
alone. We may, therefore, write

du; = & du (84)
Then source I; will be
13 €ic 6u2 ou

= 1 _E‘_c¥P0=€-‘cPo(:;

(85)

A similar relation may be obtained for the source I, at a temperature
of the body ¢t > 0°C. Changes in the mass of the liquid may be caused
by transfer (d.u») and phase conversion du., 1.e.,

dus = dauy + dus (86)

Denote relation dwuy/deus through B:(8: = dwus/d.uz). This value ranges
from (8 = 0) when no phase conversions occur (das = 0), to infinity
(B2 = =), when all the changes of mass are caused by phase conversion
alone (d.u: = 0). Therefore, introduction of a new value e, is advisable,

Ba
“TI+h 87)
which is referred to as a phase conversion coefficient. This coefficient
ranges from zero to unity (0 < e¢; < 1). The case ez = 0 corresponds to
absence of phase conversions (8 = 0), and when & = 1{(8: = =), no
mass transfer occurs.
Then relation (86) may be written as

dus = (1 + ﬂz) dotiz =

B (88)
l — €3

Consequently, a diffusion equation of mass transfer will be

a .. a
po%z = —d’w_]z + €200 ai: (89)

Comparing Eq. (89) with (68), we obtain (since u, = u for { > 0°C)

d d
Iz = eapo 3’? = €2p0 ;u (90)

The following formula may, therefore, be written for the source I;.(k = 2,3)

&
[k = €&pPo a:’f (91)

Thus, ice content factor e. is a phase conversion coefficient e;(e;.. = e3).
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The physical meaning of this factor may be explained in the following
way.

Allowing for 8u;/dr = 0, it follows from Eqs. (68) and (69) at
t > 0°C, that

In= —1I, = e,pog—’: — —diyj; = —ea(divys + divjs) (92)

Hence
_ d’l:l)j1
7 divj, + divgs (93)
If we assume for approximation e; = const, we get from Eq. (91) for
one dimensional problems (div = d/dz), i.e., when vectors j; and j: are
parallel or unparallel

_ |71l
S A PN (84)

Consequently, coefficient ¢; determines the amount of vapor transferred
in a body in relation to the whole vapor and liquid flow.

b. Calculation of Heat and Mass Flows. Vapor in the interior of a
capillary-porous body is transferred by molecular transport.’® It is in
thermodynamic equilibrium with liquid. A mass flow of vapor is

jl = —EpDVpln = —a...lpoV'u. —_ a,,.{"pth (95)

where ¢ is 2 dimensionless factor characterizing resistance to vapor dif-
fusion in a moist body.
The vapor diffusion coefficient of a moist porous body is equal to

— p P (90
Om1 = eD P ( u )T (96)
and thermal diffusion coefficient a..,T of a moist body is
an? = D P (2P0 ©o7)
! Po aT 1"

In the moist state of a body (u > ua) the coefficient a.; is zero, since
(dp10/du)r = 0, and a.;T is

M d 2
a1 = epDp ﬁl d—’}- (98)

The liquid transfer in a capillary-porous body may be described in an

10 Molar transport of water will be considered below.
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analogous manner, as functions of moisture content v and body tempera-
ture T. We obtain

jz = —a,,.mnVu — a,,.z"pth (99)
The diffusion coefficient a,; and the thermal diffusion coefficient @,
of liquid in a porous body are not constant, but depend on temperature

and moisture content of the body.
The heat flux according to Fourier’s law is

= —kVt (100)

The coefficient of heat conduction k¥ of & moist body depends on both
u and T.
Using relations (95), (99) and (100) we get a set of transfer equations

‘3—': = divlan(Vu + 6V1)] (101)
o du
Cpoa—T = dw(kVt) + Lepogr- (102)

where a,, is a total moisture diffusion coefficient am = (@1 + am2); 8 is

a thermal gradient coefficient

5 = AT + ama”
Am1 + Qo

(103)

L is a specific heat of phase transition equal to the difference of specific
enthalpies Ly; = (hy — hi).

In the case of liquid evaporation (a moisture sink) or ice melting posi-
tive sign in Kq. (102) before Lepy d1/dr should be replaced by a negative
sign.

All the transfer coefficients (a., k, ¢, ¢, 8) are variables. For a short
range of Au and At, they may be assumed constant for approximation.
Then accounting for relations (81) and (91) Eqs (101) and (102) may
be written as

Y V% 4 k¥ (104)
or
at
E = an’u + Kzgv’t (105)

where the transfer coefficients xu(k, 1 = 1,2) are

K11 = Qm = (aml + am!); K12 — ams = (amlT + am2T) (106)

K21 = %am; Kea = @ + %amﬁ (107)
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c. Heat and Mass Transfer with Filtration. At intense heating of a
moist body above 100°C there appears a pressure gradient due to liquid
evaporation. A pressure gradient (Vp = 0) may also take place at tem-
perature less than 100°C due to effusion of the humid air through micro-
capillaries inside a body. The presence of Vp inside a capillary-porous
body causes filtration of vapor and liquid. This mode of transfer is
described by the Darcy law:

jr= —k/Vp (108)

where k; is the total filtration-coefficient.
In this case the system of differential equations for heat and mass
transfer in a capillary-porous body is as follows (19):

du

or = xuV’u + mV’t + xuV’p (109)
at

5; = an’u + mV’t + KzaV’p (110)
op . 2 3

; = K31V U + xant + Kuv y/ (111)

where coefficients

K13 = a,,.a,, K23 = eLa—"-l 6,; K3z = (a,r - Gim 6,);
¢ C;

K31=—‘eg—:; Ksz=—*a7'5,

as = ky/Csp and is the coefficient of filtration diffusion, C,!! is the body
capacity for the humid air with filtration, 8, = k;/Gmp..

2. Boundary Conditions

Space boundary conditions reflect the law of interaction between a
body surface and the surrounding medium. This interaction implies
transfer of energy and mass. If the transfer of energy and mass occurs

11 ¢, is similar to ¢a.. It represents the change in vapor concentration in capillaries
of a body with specific pressure of humid air. Or it is a capacity of a porous body related
to the quantity of vapor in capillaries. C; is defined by

d(lh + ‘M‘) = C’, dP
If we assume humid air is governed by the equation for ideal gases, then from Egs.
(62) and (63)
RTp,
b,

Cy

where R is & gas constant for humid air.
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according to the convective transfer law, then at the constant pressure
(p = const) boundary conditions may be written in such a way:

Ampo(V)s + @nT(VE), + ju(r) = 0 (112)
—~(k + Lane")(Vt)e — Lampo(Vu), + ¢u(r) = 0 (113)

Equation (112) represents a mass balance close to a body surface
(subscript s). The moisture amount, supplied to a body surface as a
result of thermodynamic forces Vu and V¢ is equal to that which left
the body surface for the surrounding medium j(r). Equation (113) is
the energy (heat) conservation equation. The amount of heat, supplied
to the body surface g.(r), is equal to that which penetrated inside a body
(—kVi), and that, spent for liquid evaporation (subscript 2), the flow
of which depends on Vu and Vi.

If j.(+) and ¢.(r) are given as time functions, then Eqs. (112)
and (113) are boundary conditions of the second kind. When a moist
body interacts with the heated air, flows j,(r) and ¢,(r) are equal to

Ju(7) = Bpo(us — ua) (114)
qt(f) = h(t. — t,) (115)

where 8 is the mass transfer coefficient based on the difference of mois-
ture content and u. is the equilibrium moisture content.

The mass transfer coefficient h,, in the diffusion Nusselt number, Nu,,
is determined from the relation h, = j./Ap:.

In the hygroscopic state of a moist body there exists a definite relation
between the mass transfer coefficients h, and 8. The vapor fraction in
the humid air is a funection of the relative humidity ¢ and of the air
temperature T'. At an isotherm it follows that the definite moisture con-
tent of the body u corresponds to the given value of ¢ and 7. In the moist
body state the intensity in liquid evaporation j7,(r) will be constant
(j» = const) and Eq. (114) does not apply (is not valid) in this case.

For one-dimensional problems (V = 4/dx) the boundary conditions
may be written as follows:

Qmpo (%l—;) + amped(VL)s + jo(r) = 0 (116)

3. Dimensionless Heatl and Alass Transfer Variables

From the system of differential Egs. (104) and (105) and boundary
conditions (112) and (113) we obtain generalized arguments and functions.
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The Fourier numbers for temperature and moisture content fields are
determined by the following relations:

Foo=2. Fop,=27 (118)

Between these dimensioniess arguments there exists an interrelation made
by the Luikov number, Lu, (Fo, = Fo,Lu), where Lu is equal to

Lu = %m (119)

The Luikov number characterizes the veloeity of an equal moisture
content surface with respect to the velocity of an isothermal surface.
For the majority of moist bodies Lu < 1 since the moisture content field
changes slower, as compared with a change in a temperature field.

The Kossovich number, Ko, determined by the relation

_LaAu

Ko c At

(120)

is equal to the ratio of heat spent for moisture evaporation (L Au) to
that spent for body heating (¢ Af).’

The Posnov number, Pn, determines the effect of a temperature field
on a moisture content field. It is equal to the relative moisture content
drop, caused by the temperature difference:

o At

Pn = - (121)

On the basis of the boundary conditions (112) and (113) we obtain two
dimensionless arguments, Kirpichev numbers Ki, and Ki,.

The Kirpichev heat and mass transfer numbers are equal, respectively
to

. gl . gl ,
Ki, = YL Ki, = tope BE (122)

If flows ¢(+) and j(+) are determined by relations (114) and (115),
then instead of Ki, and Ki,, we obtain the heat and mass transfer Biot
numbers:

. hl . Bl
Bi, = % Bi, = ‘% (123)
The values of At and Au are chosen in accordance with the conditions of
a specific problem,
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4. Solutions of Heat and M ass Transfer Equations

Differential equations (104) and (105) with boundary conditions (114)
and (115) and (116) and (117) may be solved. These solutions are given
in monograph (19).

The dimensionless temperature t*(t* = t/f,} and moisture content of
a body w*(u* = u/u,) are functions of generalized variables and heat
and mass transfer similarity numbers:

w* = F(% Fo,, Lu, Bi,, Bim, ¢ Ko, Pn) (124)

t* = (% o, Lu, Bi,, Bin, ¢ Ko, Pn> (125)

where u, is the initial moisture content and ¢, is the initial temperature
of a body. The analysis of solutions shows that not all the variables
equally influence a process. The mass transfer arguments Bi,, and Pn
mainly influence a moisture content field, and the heat transfer argu-
ments Bi, and Ko, a temperature field. It was determined that calcula-
tions may be considerably simplified, and the following relations:

u* = F(glf Fo,, Lu, "BITI;‘:‘) (126)
t* = f(?lf Fo,, Lu, ;%) (127)

may be used instead of relations (124) and (125). Thus, the complex
dimensionless argument Bi,/¢Ko influences heat transfer of a moist body
and Bi,./Pn, mass transfer.

Under the boundary conditions of the third kind the heating of a dry
body is determined by the dimensionless arguments Fo, and Bi,. The
heating of a moist body will be defined by three arguments: Fo,, Lu and
Bi,/eKo. From these dimensionless arguments the Luikov number is the
parameter of interaction between moisture content and temperature
fields. The dimensionless argument Bi./eKo reflects the relation between
heat supplied to a body and that spent for internal moisture evaporation.

Consequently, in the presence of heat transfer with simultaneous mass
transfer the number of dimensionless arguments increases by one (instead
of two arguments we have three).

The solution of the system of differential equations (113-115) under
the corresponding boundary conditions are presented in monograph (19).
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B. EXPERIMENTAL INVESTIGATIONS

Experimental procedure for the study of moisture and heat transfer
in moist capillary-porous bodies are deseribed in monographs (20, 21).
In these monographs experimental methods for determining the moisture
transfer coefficients (a.,6) and the heat transfer coefficients (k,a) are
expounded. Since the moisture transfer coefficients are of great interest,
Table VIII illustrates these coefficients for some building materials.

TABLE VIII
Morsture TrRANSFER COEFFICIENTS
i u [2 7% 6102
Material (°C) %% m2/h 1/deg
10 1.9 0.40
Autoclave concrete 20 20 2.0 0.80
po = 400 kg/m m? 30 2.5 0.92
40 4.0 0.96
10 1.4 0.54
Asbestoscement slabs 20 20 3.2 1.14
po = 390 kg/m? 30 6.2 0.88
40 7.9 0.42
50 8.3 0.21
60 8.3 0.14
20 0.9 0.92
Mineral wool 20 100 3.9 0.92
po = 200-280 kg/m?3 140 4.8 —
180 5.6 —
10 1.0 0.50
Diatomic slabs 20 20 3.5 0.52
oo = 500 kg/m? 30 7.0 0.35
40 9.1 0.25
50 9.1 0.17
10 0.18 1.0
Wood (pine) 40 25 0.46 2.0
30 0.62 2.0
75 0.62 0.6

For the majority of materials the moisture diffusion coefficient a.,
continuously increases with moisture content. In the moist state for some
bodies the diffusion coefficient a, changes negligibly, so it may be con-
sidered constant,.
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The diffusion coefficient a., increases with the body temperature which
is approximately proportional to 7. For ceramic bodies the exponent
n = 14 according to Miniovich’s (22) data and for wood » = 10 accord-
ing to Sergovsky’s (23) data.

The thermal gradient coefficient § also depends on moisture content.
At first § increases with moisture content, becomes maximum and then
decreases. With the total saturation by water the coefficient § is equal
to zero.

For many thermal insulating materials the change in the coefficient §,
depending on u, is well described by the Dubnitsky formula (24)

5 = Au?exp (— Bu) (128)

The constants A and B are determined experimentally.

The coefficient & depends only slightly on temperature, therefore in
engineering calculations it may be considered to be independent of
temperature.

For some materials (clay, quartz, sand, peat) Lu is a linear function
of moisture content.

Experimental investigations show that the moisture content of the
body u is not a potential of moisture transfer. The equality of transfer
potentials of contacting bodies in thermodynamic equilibrium is the main
property of a transfer potential of any substance. The moisture content
does not satisfy this property. For instance, if plates of moist peat and
paper are contacted, then in the equilibrium state the moisture content
of peat will be 2109, and of paper, 509, Consequently, at the border
of their contact there takes place a jump in the moisture content from
50 to 210%. A similar jump of enthalpy (heat content) occurs when two
digsimilar metallic plates come into contact. If one plate is made of lead
(c = 0.3 keal/grad) and another of iron (¢ = 0.11 keal/grad), then their
contact at the temperature of 30°C enthalpy will be 1.5 keal/kg for lead
plate and 5.5 kcal/kg for the iron plate. As is known, the temperature
is potential of heat transfer. The temperature of both plates in the equi-
librium state is, therefore, the same and equal to 50°C.

Moisture transfer under isothermal conditions in a uniform body occurs
from the great moisture content to the small one. However, when two
dissimilar bodies come in contact, a contrary process may take place.
For example, if a bed of moist peat (x = 3009%) is spread over that of
moist quartz sand (v = 10%,), then transfer of moisture will occur from
sand to peat, i.e., from a body with the small moisture content to that
with the great one.

These experimental facts served as a basis for introduction of the mois-
ture transfer potential. At first the moisture transfer potential in a
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capillary-porous body was introduced purely empirically. It was deter-
mined by the value of the moisture content of a reference standard body.
The maximum moisture content for a reference standard body u,m,
achieved in the process of sorption of water steam was assumed to be
100 mass transfer degrees (100°4). Then the moisture transfer potential
8 of the body of interest was determined by the moisture content value
of the reference standard body u,, being in the thermal dynamic equilib-
rium with the body investigated

8 = -2 . 100°M (129)

am

Such a determination of the potential 8 resembles an elementary experi-
ment on determining the heat capacity of a body by the calorimetric
method. Usually water, the heat capacity of which is approximately
equal to unity (¢ = 1), is taken as a calorimetric liquid. In the equilibrium
state the temperature of the body of interest and of water is just the
same. Since the heat capacity of water is equal to unity, the body tem-
perature is numerically equal to enthalpy (heat content) of water (of
reference standard liquid).

After the analogy of this experiment, in the equilibrium state of con-
tacting moist bodies (reference standard and investigated) the moisture
transfer potential is the same, ie., 6, = 6, and moisture contents are
different, i.e., u1 # u..

By analogy with the specific heat of a body the concept of the iso-
thermal specific mass capacity ¢, was introduced according to the fol-

lowing relation:
du
Cm = (-a-a)r (130)

If over some range of the moisture content Au the mass capacity ¢, is
assumed to be constant, then the relation between the moisture content
and moisture transfer potential will correspond to the linear law:

w=A+ b (131)

where A is a constant and ¢, is the average specific mass capacity.

If a filter paper is taken as a reference standard body, then in the moist
body state (6 > 100°M) for some materials the relation between u and
0 is represented by a straight line. For example, for wood (pine at ¢ = 60°C)

&n = 0.21 X 102 kg/kg°M, A = 0.042 and for milling peat

n = 0.51 X 10-2kg/kg°M, A = 0.066
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In the hygroscopic state the relation between u and 8 is also linear.
However, with some moisture contents the mass capacity é, of a body
changes unevenly. This moisture content corresponds to the moisture
of polymolecular adsorption. For instance, for the above wood over the
range 0 < 6 < 40°M ¢, is equal to 0.380 X 102 kg/kg°M and over the
range 40 < 6 < 100°M &, = 0.270 X 10~? kg/kg°M. (See Table IX.)

TABLE IX
IsoraErMAL Speciric Moisture Caracity oFr MoisT Bopies ar 25°C
Cm X 102~
Material 0<0<6, 8, <6 <100°M 6 >100°M

Foam concrete (o, = 700 kg/m3) 0.110 0.040 —
Peat slabs 0.074 0.052
Wood (pine) 0.380 0.270 0.210
Fibrolite 0.130 0.090 —
Red clay 0.180 0.180 0.030
Peat — 1.200 0.510
Red Brick 0.004 0.009 —_
Gelatine — 0.700 —

a g, is the moisture transfer potential corresponding to polymolecular adsorption.
It depends on body properties.

Consequently, the isothermal mass capacity characterizes the binding
energy between moisture and a capillary-porous body. This binding
energy between moisture and a capillary-porous body is determined by
the work of separation of mass unit of moisture in an isothermal reversi-
ble process. This work is equal to a change in the free energy E in the
isothermal process (T = const).

(%)T = — %Zlncp (132)

In this case the relative air humidity is equal to the ratio of pressure
of moisture vapor in a body p, to that of saturated vapor p, at the given
temperature (¢ = p./p.). In the hygroscopic state the moisture content
of any body including the body, chosen as a reference standard, is deter-
mined by the relative air humidity and its temperature u = f(e,T).
Consequently, the potential of moisture transfer 8 thermodynamically
is the function of binding energy alone between moisture and a capillary-
porous body [8 = f(E)].

Filter paper was chosen as a reference-standard capillary-porous body
as it contains all the types of relations between moisture and moist bodies
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(adsorption, capillary and osmotic moisture). The main praperty which
establishes the applicability of the filter paper for a reference standard
body lies in the fact that its relative moisture content u,./u,» (the ratio
between equilibrium u.. and maximum sorption of moisture content u,m)
is independent of temperature over the range from 20° to 80°C.

It is of some interest to compare the potential of moisture transfer 8
with that of transfer applied in agrophysics. In the works of American
investigators the value of pF, equal to the logarithm of the value of the
suction force F, is assumed to be the potential of moisture transfer in
grounds, In the hygroscopic state the suction force F is determined by
the value of RTlng, i.e., it is proportional to free energy of moisture
mass unit (dE/dm)r. Consequently, here potential pF is proportional
to the logarithm of the moisture transfer potential 8(pF ~ Inf). In the
moist state the suetion force F is proportional to capillary pressure deter-
mined experimentally. In the moist state (8§ > 100°M) the potential pF
for a reference standard capillary-porous body (filter paper) was defined
by special tests, From these experiments the relation was obtained
between pF and 8, which may be presented as the following empirical
formula:

pF =3.66 — 1.5-107% at 6> 100°M (133)

The peculiarity of the moisture transfer potential 6 lies in the fact
that it characterizes transfer of moisture in a capillary-porous body both
as liquid and vapor. It follows from the fact that according to relations
(95) and (99) liquid and vapor transfer is determined by two thermo-
dynamic forces (Vu and Vf). Under isothermal conditions (T = const)
the density of a moisture flow is equal to

. 3
j= —ampoVu = —ampo ((—3_1;)1' Vo (134)

as at a constant temperature » = f(f). Since the value (du/d6)r is equal
to the isothermal specific mass capacity (moisture ecapacity) then rela-
tion {134) may be written as:

j= —kavo (135)

where k. = Qupitm is the coefficient similar to that of heat conduction
(k = apec) and it may be referred to as the moisture conduction coeffi-
cient (kg/mh°M).

As in the moist bady state the specific mass capacity is constant for
many moist bodies, the moisture conduction coefficient will change with
moisture content of a body just in the same way as the moisture diffu-
sion coefficient changes.
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At present there is a number of experimental methods for determining
diffusion coeflicients of liquid, moisture, moisture transfer potential, and
specific moisture capacity in moist bodies (23).

The romplex of these physical values will be referred to as mass transfer
characteristics of capillary-porous bodies. Heat transfer characteristics
(coeflicients of heat conduction and thermal diffusivity) alongside with
mass transfer ones completely determine physical properties of capillary-
porous bodies,

The ubove experimental relations cogently demonstrate the interaction
of heat and mass transfer. This interaction for capillary-porous bodies
extends over heat and mass transfer between a body surface and sur-
rounding medium and over that inside a capillary-porous body.

In order to deseribe quantitative relations it is, therefore, necessary
to have a method of analysis which makes it possible to consider the
interaction of the heat and mass transfer processes. One such method
is the thermodynamics of irreversible processes (26). The present experi-
mental data well confirm the mathematical theory of thermodynamics
of irreversible transfer processes.

NOMENCLATURE
A constant value in empirical formulas
“ thermal diffusivity (m2/h)
m diffusion coefficient of moisture in a capillary-porous body (m?2/h)

a7 thermal moisture diffusivity in a body (m?2/h°C)

ay coefficient of filtration diffusion in a porous body (m2/h)

¢ specific heat (keal/kg°C)

¢y specific isobaric heat of humid air (keal/kg°C)

Cm specific isothermal mass capacity (moisture capacity) of a moist body (kg/kg°M )

b diffusion coefficient of vapor into air {(m?/h)

h heat transfer coefficient (kcal/m?h°C) or specific enthalpy (kcal/kg)
ho mass transfer coefficient (kg/m2h, mm Hg)

J evaporation intensity or moisture-flow density (kg/m?h)

k thermal conductivity (keal/mh°C)

ky filtration coefficient (kg/m h mm Hg)
L specific evaporation heat (kcal/kg)

! characteristic body dimension (m)

M molecular weight (kg/mole)

m mass (kg)

P pressure in surrounding medium (mm Hg)

Ps pressure of saturated vapor (mm Hg)
q specific heat flow (kecal/mth)

4 universal gas constant (mmHg m3?/°K mole) or radius (m)
8 surface area (m?)

t temperature (°C)

T absolute temperature (°K) (T = 1 4 273.16)

u moisture content of a body (kg/kg)

V volume (m?)
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w air velocity (m/sec)
8 mass-transfer coefficient based on moisture-content difference (m/h)
5 thermal gradient coefficient of & moist body (1/°C)
€ phase conversion coefficient
€ic ice-content factor
u dynamic viscosity coefficient (kg/m sec)
v kinematic viscosity coefficient (m?/sec)
9 density (kg/m3)
P10 relative vapor concentration (p1c = p1/p)
T time (h)
6 moisture transfer potential (°M)
@ relative air humidity
w moisture concentration in a body (kg/m3)
Subscripts
a surrounding medium (humid air)
b state of adiabatic air saturation
c values, corresponding to convection
d dry body
e evaporation or moist body
I filtration characteristics
m mass-transfer characteristics
0 relative value or state of absolutely dry body, or initial state
q heat-transfer characteristics
r radiative characteristics
s body surface or saturation state
v vapor
1 vapor
2 liquid
3 ice
4 dry air in pores and capillaries of a body
°M  moisture-transfer potential unit in a moist body (mass transfer degree)
Dimensionless Numbers
Nu, ki/k Nusselt number for heat transfer
Num hml/D, Nusselt number for mass transfer (D, is a diffusion coefficient based
on pressure difference)
Nu., h.z/k, local Nusselt number
Gu (Ts — T3)/Ts Gukhman number
Pr v/a Prandtl number
Se v/D Schmidt number
Pe —t—l Peclet number
Pe. ;”;I local Peclet number
Fo ar /[ Fourier number
Lu  am/a Luikov number
Ko Lau Kossovich number
cAt
Pn L Posnov number
Au
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iy quil Kirpichev number for heat transfer

Ki, jr)l/ampedu Kirpichev number for mass transfer

Bi, '~:—I Biot number for heat transfer

Bin t-!-l Biot number for mass transfer

-
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I. Introduction

A. HISTORY AND APPLICATIONS

When heat is transferred to a liquid which is at or near its saturation
temperature, there may be a phase change of some of the liquid into the
vapor state. The applications of such boiling heat transfer are many, not
only in apparatus whose primary purpose is to vaporize a liquid, such as
steam boilers, but also in situations where it is desired to remove heat
from a surface at a high rate with the lowest possible surface temperature,

Historically, the engineer’s primary interest in the transfer of heat to a
boiling liquid has been toward the generation of steam for power produc-
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tion, either electrical, propulsive, or both. To this need was added, at a
fairly early date, that of the manufacturing chemist, whose production
processes required the vaporization of numerous liquids in distillation and
other routine operations.

Starting around 1948, extcnsive research and development directed
toward nuclear power generation for ship propulsion got under way.
Since the first plant was to be a pressurized water reactor for the sub-
marine Nautilus, it was imperative that design criteria in water heat
transfer technology be firmly established. To the student of boiling
technology, it is interesting to observe the impetus given to research in
this field by the development of the pressurized water reactor, which was
itself carefully designed to avoid boiling of the coolant. Since that period,
of course, reactors have been built in which steam generation takes
place in the core, in direct contact with the nuclear fuel clements, and
these have proved eminently successful.

Before the feasibility of the boiling reactor principle was demonstrated,
however, it was thought that the variations in moderator density caused
by vaporization in the core might cause power transients which would
threaten the opcrational stability of the plant. Consequently, the early
boiling water research for pressurized water reactors was intended to
delineate the permissible range of heat flux and the minimum velocity
and subeooling required to insure the presence of the primary coolant in
the liquid phase only.

From the standpoint of heat transfer to the boiling liquid, it is almost
incidental that the energy source in these reactors comes from nuclear
fission. Similar plates, tubes or rods resistively heated by an electrical
current would produce much the same heat transfer situation. Quite a
different method of steam formation occurs in & homogeneous reactor,
however, in which the fissionable material is chemically combined in a
salt, such as uranyl sulfate, and carried in aqueous solution. If such a
device were permitted to boil, steam formation would take place through-
out the fluid volume rather than at a heating surface, as with hetero-
geneous reactors. Similar vapor formation takes place when a liquid at or
slightly above saturation temperature is heated internally by infrared
radiation from an ocutside source, such as a heating lamp.

B. SaTturaTED BolLING

In many ways, it is advantageous to regard boiling as a special case of
convection, either free or forced. To appreciate this similarity, consider a
simple heat transfer situation, that of an electrically heated, cylindrical
metal tube immersed in a few inches of water. Passage of current through
the tube produces thermal energy which raises its temperature, and
[186]
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convective heating of the water takes place. If quantitative measurements
are made when the water just reaches saturation temperature and when
the heat input is small, it might be expected that vapor bubbles would
form at the heated surface and that these bubbles would rise to the water
surface and escape. That this is not the case has been shown by careful
measurements (1), and, in fact, what happens is that the liquid near
the heater reaches & temperature slightly in excess of saturation. This
superheated liquid is less dense than the lower-temperature saturated
liquid, and it therefore tends to rise to the free surface, where vaporiza-
tion takes place. In spite of the fact that there is vaporization at the
water-air interface, this mechanism is simply natural convection insofar
as conditions at the heater are concerned. The temperature driving force
at the heater required to produce a certain heat flux is predictable from
natural convection correlations.

As the heat flux is increased, the water superheat increases to an
amount which permits the formation of vapor bubbles on the heater
surface. It will be observed that there are preferred locations where
bubbles form, and the bubbles form in columns at these places, which are
known as nucleation centers, For low heat flux, relatively few such centers
will be observed, but an increase in heat transfer is accommodated by an
increase in the number of bubble columns. Since the vapor bubbles so
formed detach from the heater and rise in the superbeated liquid, and
since the vapor is not itself superheated, there is heat transfer to the
bubbles from the liquid as they rise to the surface. Experiments have
shown that, contrary to intuition, most of the vapor formation in this
type of nucleate boiling takes place after the bubble leaves the heating
surface. Consequently, most of the heat transferred from the surface
during nucleate boiling goes to the superheated liquid adjacent to the
heater and not directly to the vapor bubbles which grow on the surface.
Figure la shows nucleate boiling from a 1g-inch diameter tube at low heat
flux with relatively few nucleation centers.

Figure 2 shows the variation of heat flux with the temperature driving
force, which may be taken for present purposes as the heater surface
temperature minus bulk liquid temperature, for an electrically heated
platinum wire (2, 3). A similar variation has been measured with the
apparatus shown in Fig. 1.

At very low heat flux, the curve is a straight line on a log-log plot,
which indicates a functional relation of the type

q" = h(ts — t,)

where the coefficient, k, is simply the convective conductance, and is
proportional to the }4 power of the temperature difference for natural
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{

Fra. 1. (For descriptive legend see page 189)
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Fia. 1. (a) Pool boiling of water at atmospheric pressure and a heat flux of 15,000
Btu/(hr)(sq ft). The bubbles collapse soon after leaving the heating tube because
the bulk temperature is only 208° F. (b) Vigorous nucleate boiling at a heat flux
of 171,000 Btu/(hr)(sq ft) and a bulk temperature of 210° F. (c) Transition to
film boiling with melting of the heating tube (4).

convection in the laminar range. Consequently, the heat flux is propor-
tional to the 34 power of the temperature difference (1) in the region
A — B.

At heat input sufficient to produce bubble formation on the surface,
which is the nucleate boiling regime B — C shown in Fig. 2, the rate of
increase of ¢/ with temperature difference is much greater than before,
and, as can be deduced from the graph, very large heat transfer rates are
possible with a relatively small temperature driving force. This is of
great practical advantage in many situations where a cooling problem
exists but where the maximum surface temperature is limited by metal-
lurgical or other considerations.

As the heat flux is increased in the nucleate boiling regime, more nuclea-
tion centers are activated and there is more and more vapor in the vicinity
of the heated surface. At some critical point (C, Fig. 2), the nucleate
boiling mechanism can accommodate no additional heat transfer. At this
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point, a vapor blanket forms over the entire surface, and the heat transfer
mechanism changes completely. Figure 1b shows nucleate boiling at a
flux slightly less than that which produces vapor blanketing.

Beyond the peak heat flux just described, the film boiling regime is
encountered, as is indicated in Fig. 2. The very large heat transfer rate
must be accomplished through a vapor film, which requires a much
larger temperature difference than existed at almost the same heat flux in
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Fiu. 2. Boiling of water at 212° F on an electrically heated platinum wire. Data
of Nukiyama (2) as presented by McAdams (3).

nucleate boiling. With water, the required surface temperature is greater
than the melting points of the common metals and alloys. Consequently,
the phenomenon of a sudden transition from nucleate to film boiling at
nearly constant heat flux is frequently called burnout. Figure lec shows
the failure of a stainless steel heating tube when the peak heat flux is
reached (4).

For certain fluid-surface combinations, it is possible to operate in the
film boiling regime without damage to the surface. In such cases, the
entire curve in the film boiling region may be obtained experimentally.
1t can be seen from Fig. 2 that with water, for example, the temperatures
are such that radiation from the surface to the liquid, through the film,
will play an important part in the film boiling heat transfer mechanism.

There is a fairly wide interval in temperature between the nucleate
boiling peak and the minimum stable condition at which film boiling can
be sustained. This region is usually termed unstable film boiling and is
characterized by the alternate growth and collapse of a vapor film. It can
be deduced from the graph that this type of boiling will not occur in a
{190}
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device which has relatively constant heat input, because an increase
through nucleate boiling to the peak heat flux will cause a sudden “jump’’
(along a horizontal line on the graph) to a corresponding point which is
well into the film boiling regime. Similarly, during operation in stable film
boiling, a decrease in heat flux below the relative minimum in the curve
produces a jump to a point in the nucleate boiling region which is well
below the peak heat flux.

With a different kind of heating, however, operation in the unstable
film boiling regime becomes quite feasible. If, instead of heating the tube
shown in Fig. 1 electrically, it is heated internally by the flow of a hot
fluid, then any desired value of surface temperature can be maintained.
If the thermal capacity of the heating medium is large enough, its
temperature change will be small as it passes through the tube, and the
entire outer surface of the tube can be held at practically the same
temperature.

C. SuscooLeED BoiLinag

Before examining the mechanism of nucleate boiling in greater detail, a
distinetion needs to be made according to whether the main body of
liquid in the vicinity of the heater is at or slightly above saturation
temperature, as described above, or at a lower temperature. In the latter
case, which is called subcooled boiling or, sometimes, local boiling, vapor
bubbles form at a surface because it is substantially above saturation
temperature, but the bubbles either collapse without leaving the surface
by transfer of heat to the adjacent subcooled liquid, or else they leave the
surface and then immediately collapse. In either case, the heat transfer is
materially improved over convection without phase change because of
the violent agitation of the liquid in the boundary layer by the growing
and collapsing bubbles.

Suppose liquid at constant pressure and at temperature ¢, is pumped
upward past the heater in Fig. 1 at a constant velocity, V, and that the
thermal capacity rate, mc, is sufficiently large that the liquid temperature
rise is small. Consider first the forced convection region, where the surface
temperature is below f.;. Unlike its situation with natural convection,
the heat transfer coefficient is now independent of the temperature
difference, and it may be calculated from an equation of the following
form if the effects of fluid property variation across the boundary layer

are neglected.
D _ C DVp\° fcu\
E i k

Sinece & is defined as ¢''/A¢,

q" = (C’CNR,_."NP,b) At/D
[191]



. 8Ty (urYsa £M

HEAT FLUX

T

4

G. Lerpert anND C. C. PiT1s

where the terms in the parentheses are functions of velocity and bulk
temperature only. Figure 3a shows this relationship as a log-log plot of

unit slope.

Now consider what happens when the heat flux is increased until the
surface temperature exceeds the saturation temperature of the liquid.
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FiG. 3. (a) Variation of heat flux during forced convection and subcooled boiling
at different liquid subcoolings and at atmospheric pressure. (b) Variation of heat

Aux with Al instead of At

{c) Variation of heat flux during forced convection and

subceooled boiling at different velocities and at atmospheric pressure. The subcooling

is 25° F.

As with pool boiling, bubble formation requires a finite positive surface
temperature excess, Al,.,. When nucleate boiling first starts, most of the
heat is still being transferred by forced convection. However, as the heat
flux is increased still further, the nucleate boiling mechanism begins to
predominate, and the effect of convection becomes unimportant. Figurce
3a shows curves for nucleate boiling at a given velocity with different
bulk liquid temperatures and, therefore, different subcoolings.

It has been shown in many experiments that, over most of the nucleate
boiling range, the surface temperature excess above saturation is a fune-
tion of heat flux only, regardless of the subcooling. The nucleate boiling
curves in Fig. 3a may be represented quite satisfactorily by a single line

(192]

100



BoIiLing

from which the subcooling, and therefore the bulk temperature, has been
eliminated, by plotting ¢’/ vs. Al instead of At.

Figure 3b shows the curves of Fig. 3a replotted in this manner, from
which it can be seen that the new curve has the same coordinates as the
zero subcooling curve in Fig. 3a. Since values of bulk temperature below
saturation cannot be represented on the logarithmic scale of At the
forced convection portions of these curves have little meaning and have
been included mainly for the sake of completeness. However, they are
useful for predieting where boiling starts at various subcoolings with the
velocity chosen.

The effect of liquid velocity will next be examined. Figure 3¢ shows the
idealized curve of Fig. 3a for one value of subcooling, to which has been
added two additional curves at higher velocities. These curves illustrate
the relative independence of nucleate boiling on velocity except near the
region of initiation of nucleate boiling.

Two additional remarks need to be made about these curves. In the
first place, the transition from forced convection to nucleate boiling does
not occur with discontinuous slope, as the straight-line portions of Fig. 3.
would suggest, but smoothly, through a transition region where both
effects are important. Secondly, velocity and subeooling have a significant
effect on the peak heat flux, but this portion of the curve is not shown
in the figures.

D. Tue MEgcHANISM OF NUCLEATE BoiLing

It was pointed out earlier that in the regime of most practical impor-
tance, nucleate boiling, the heat transfer from a surface takes place
chiefly by a convective process to the liquid. The high transfer rates can
be achieved with fairly small temperature differences because of the very
high turbulence level produced in the liquid by the vapor bubbles growing
and leaving the surface.

However, the greater complexity of nucleate boiling compared with
convection without change of phase may be appreciated by a considera-
tion of the pertinent factors affecting the two mechanisms. Whereas the
viscosity, density, thermal conductivity and specific heat of the fluid can
be used to describe single-phase heat transfer, in nucleate boiling many
additional properties are relevant. The surface tension, latent heat of
vaporization, saturation temperature, liquid and vapor densities, and
other properties of both phases must be introduced. As with ordinary
convection, the configuration of the flow channel and the flow rate must
also be considered, but in addition the type of metal, the surface roughness
and the presence of adsorbed gas have all been found to affect boiling heat
transfer.
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A lucid description of the mechanism of nucleate boiling from a sub-
merged heater in a liquid pool was given by the late Max Jakob (7).
In 1949 Professor Jakob, who, together with co-workers in Germany
and, later, in the United States, made many important contributions to
the understanding of boiling heat transfer, had this to say about saturated
boiling:

“Summarizing our knowledge of the mechanism of nucleate boiling on
a clean, smooth or rough, heating surface, it can be said that only a very
small part of the heat produced in a heater is directly transferred to the
interior of bubbles adhering on the surface. The main part of the cnergy
makes a detour through the liquid. The prerequisite of boiling is forma-
tion of a thin, considerably superheated layer of liquid on the heating
surface and slight superheating of the bulk of the liquid. Vapor bubbles
originate on roughnesses or from gas bubbles which exist at the heating
surface. The bubble develops first by evaporation because of the con-
siderable temperature excess of the liquid layer mentioned over the
saturation temperature. The bubble breaks off when its volume has grown
so much that the buoyancy exceeds the capillary forces which bind it to
the heating surface. In the ensuing rise of the bubble through the bulk of
the liquid, the excess of liquid temperature and the coefficient of heat
transfer on the bubble surface are smaller. However, this surface and the
time available for heat transfer are so much greater that the vapor forma-
tion is largest during the free rise of the bubble. Vapor bubbles sub-
sequently originating on the same spot form a sort of swaying column;
with increasing heating energy and temperature excess spots of smaller
roughness satisfy the capillary conditions of bubble formation and start
as new sources of vapor columns.”

It is to be expected that nucleate boiling from a heater cooled by a
subcooled liquid will differ in some important respects from the mecha-
nism just deseribed. In the first place, if there is to be a condition of
steady state, some means must be provided to introduce subcooled liquid
at an unchanging temperature and to remove heated fluid. Consequently,
interest in subcooled boiling is usually confined to forced convection.

In the second place, the vapor bubbles which grow and leave the sur-
face in subcooled boiling immediately find themselves surrounded by
liquid colder than themselves. Instead of growing during a buoyant rise
through the liquid to a free surface, the bubbles immediately collapse
in the stream of subcooled liquid. Whether the vapor bubbles actually
become detached from the heater before collapsing, or do so while still
attached to the heater, depends upon such conditions as fluid velocity
and subcooling.

In spite of these rather significant differences, the mechanism of
(194]



BoiLinag

nucleate boiling in the vicinity of the heated surface appears to be rela-
tively independent of the bulk fluid temperature. Rohsenow and Clark
(6) have studied high speed motion pictures of subcooled nucleate boiling
in order to estimate the net heat transferred to vapor bubbles compared
to the total heat transferred from the surface. They found that only a
very small part of the total was represented by the latent heat of the
growing and collapsing bubbles. Consequently, the high rate of heat

A VOLUME Vs OF HOT
LIQUID 1S PUSHED INTO
THE BULK.

THE BUBBLE IS DETACHED AND THE BUBBLE HAS COLLAPSED
A VOLUME OF COLD LIQUID RE- AND A VCLUME OF COLD LIQUID
PLACES THE BUBBLE AT THE 1S BROUGHT IN CONTACT WITH
HEATING SURFACE. THE HEATING SURFACE.

F1c. 4. Schematic diagram of nucleate boiling model of Forster and Greif (6).
Lower left, vapor bubble leaves surface; lower right, bubble collapses without leaving
surface,

transfer associated with subcooled nucleate boiling was attributed by
them to violent agitation of the liquid adjacent to the surface.

A significant refinement of this model of nucleate boiling heat transfer
is described in a paper by Forster and Greif (6), in which they attribute
the increased heat transfer to a “pumping action” caused by the growth
and collapse of vapor bubbles. Their model, which will be described
briefly, appears to yield useful quantitative results and to agree with
observations in several important respects. However, it should be
regarded as a modification and amplification of the mechanism already
presented, since it is in no way contradictory.

Figure 4 shows schematic diagrams of the heat transfer mechanism
as conceived by Forster and Greif. After its initiation on the heating
surface, which is at temperature f,, the bubble grows to a volume V.
As a result of this growth, an equal volume V, of hot, superheated liquid
is forced out of the sublayer into the main stream, which is at a lower
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temperature, t,. When drag and/or buoyant forces cause the bubble to
be detached from the wall or to collapse at the wall, its place next to
the wall is taken by cold liquid. If the temperature £, is below saturation,
the bubble collapses, and if ¢, is above saturation, it grows in the main
stream, but in either case its place next to the wall is taken by liquid
at temperature near ¢, This model appears to explain the high heat
transfer rates which are obtained with nucleate boiling, and it may go
a long way toward explaining quantitatively the nearly complete inde-
pendence of heat transfer rate on main stream veloecity and subcooling
over a wide range of the boiling regime.

E. Fruip Frow witH BoiLing

In most design problems where boiling occurs, the determination of
the heat transfer coefficient or, what is equivalent, the variation of sur-
face temperature with heat flux, is only part of the information required.
Data which may be of even greater importance are the peak heat flux;
the static pressure drop in the flow channel; the stability of nucleate
boiling and of the flow; and the density of the liquid-vapor mixture,
The mixture density is especially important in natural eirculation sys-
tems, where it controls the flow rate, and in nuclear reactors, where the
reactivity may be a sensitive function of the moderator density.

Several different regimes of boiling flow are of interest and can be
delineated. Most common, perhaps, is the situation in which either sub-
cooled or saturated liquid is brought under pressure to the entrance of
a heated channel. For convenience of discussion, it will be supposed that
the channel is a round tube, but the phenomena which will be deseribed
are not confined to this configuration.

As the liguid flows through the heated tube, its temperature increases,
and, if conditions described earlier are appropriate, nucleate boiling starts.
At moderately high heat flux, the surface temperature excess, Alya, 18
sufficient to produce boiling even before the bulk temperature reaches
saturation, and subcooled boiling occurs. Static pressure and density
variations in subcooled boiling flow are not yet predictable from analysis,
nor is there much reliable empirical information. However, it is known
that static pressure gradients may be several times as great as with
similar subcooled liquid flow without vapor formation.

Further along the length of the heated tube, the bulk liquid tempera-
ture may reach saturation, and additional heating will cause the forma-
tion of vapor which, unlike that in the situation just discussed, will not
condense in the main stream. Consequently, a two-phase mixture of
liquid and vapor will flow in the tube from this point until the exit is
reached or until all the liquid is vaporized.
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It will be appreciated immediately that flow conditions are drastically
changed from those prevailing earlier, before boiling began. Because of
the usually large (sometimes enormous) specific volume of the vapor
phase compared to that of the liquid, flow continuity requires accelera-
tion of the fluid mixture. The magnitude of this acceleration may be
quite small with subcooled boiling, especially in channels of at least
moderate size, but large increases of momentum must be expected with
saturated boiling.

Frictional forces between the fluid and the walls of the channel are
naturally quite dependent on the velocity of the flowing mixture. The
force which is required to accelerate the fluid and to overcome this
increased wall friction is supplied at the expense of Static pressure. For
a flow channel which is not horizontal, a further change in static pressure
occurs because of the change in elevation. In order to predict the magni-
tude of this effect, the density of the two-phase mixture must be known.

A different application of boiling flow from that in a heated channel
is adiabatic flow of a saturated mixture. If liquid at saturation tempera-
ture is flowing in an insulated channel, its static pressure tends to decrease
because of frictional effects. If heat losses are small, the temperature
at first remains constant and the liquid becomes superheated because of
the pressure decrease. With sufficient superheating, vapor begins to form.
As in the case of boiling flow in a heated channel, acceleration and
increased frictional effects must be made up by the continuing decrease
of static pressure along the channel. Sometimes called flashing flow, this
phenomenon is of practical interest in many engineering applications.

F. BomLine TerMINOLOGY

There is not yet agreement among workers in the field on terminology
for various types of boiling heat transfer, but suitable deseriptive terms
have been used by various authors, and a consistent terminology is
evolving. One basic distinction is between surface boiling and volume
boiling, i.e., whether vapor bubbles form originally at a heated surface
of macroscopic size or whether they form spontaneously in the liquid.
Volume boiling, which is relatively uncommon, occurs in pure liquids
heated by radiation, and in solution-type nuclear reactors in which heat
generation occurs in the bulk of the fluid.

There is no difficulty in distinguishing between nucleate boiling and
film boiling. As was pointed out earlier, the mechanisms of heat transfer
are completely different in these two regimes, with the most obvious
difference being that with nucleate boiling from a surface, most of the
heat transfer is to the highly agitated liquid. When film boiling takes
place, on the other hand, the heater is blanketed with a layer of super-
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heated vapor. Much less is known about unstable film boiling, but its
practical importance is limited by its difficulty of achievement except
by so-called constant temperature heaters.

When the heat transfer rate is increased to the critical heat flux,
nucleate boiling can no longer exist, and the surface becomes covered
with an insulating film of vapor. Various other terms have been applied
to this heat transfer rate, including burnout, transition heat flux, and
peak heat flux. Closely related to these terms is the concept of “‘departure
from nucleate boiling’”” (DNB) which is defined as the point on the
nucleate boiling curve (Fig. 2) at which a noticeable variation from
linearity occurs as the critical flux is approached.

The distinction hetween saturated boiling and subcooled boiling has
been made in some detail in the preceding discussion. The most common
instance of saturated boiling is pool boiling, which occurs when a heater
is immersed in a relatively large quantity of liquid which would be
stagnant except for the natural convection currents set up by the heating.
After an initial transient period during which the heat added brings
the liquid to the boiling point, subsequent heat addition results in satu-
rated boiling. If the liquid, subcooled or saturated, is forced to flow past
the heated surface while it is partially or wholly evaporated, forced con-
vection boiling is said to take place.

From the qualitative discussion which has been presented above, it
may be scen that the subject of boiling heat transfer may be divided
into two general areas: one, which is concerned primarily with conditions
at or near the heating surface, includes nucleation, bubble growth, peak
heat flux, and film boiling theory; the other, for heated or unheated
channels with vapor and liquid in coexistence, is one of two-phase fluid
flow and hydrodynamic instability analysis. Various aspects of these sub-
jects will be examined in detail in succeeding sections, and both theoretical
analvsis and empirical correlations will be presented.

II. Nucleation and Bubble Dynamics

A. NUCLEATION FROM A SoOLID SURFACE
1. Thermodynamic Equilibrium at a Curved Interface

Although heat transfer does not occur in a system which is in equi-
librium, it is possible to derive useful limiting conditions for heat transfer
from equilibrium considerations. For example, the physical properties
which are utilized in heat transfer calculations are reported for equilib-
rium conditions, although we apply them with more or less success to
highly nonequilibrium systems.
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In particular, thermodynamic analysis leads to three criteria for equi-
librium between a pure liquid and its vapor (7):

(a) The temperature must be uniform throughout both phases.

(b) The chemical potentials (for a pure substance, identical with the
Gibbs free energies) of the two phases must be equal.

(c) If the interface is spherical, the pressures in the liquid and in the
vapor are related by

2
pv_pl:';?‘. (1)

Equation (1) can also be derived readily from a foree balance on a hemi-
spherical segment of a vapor bubble which is in dynamic equilibrium
with surrounding liquid. The liquid pressure and the effect of surface
tension combine to balance the vapor pressure, which must therefore
exceed the liquid pressure.

The saturation states of liquid and vapor which are ordinarily tabulated
(e.g., 8) are for equilibrium at a plane surface. If the interface is curved,
as would be the case with a vapor bubble surrounded by liquid, a liquid
droplet surrounded by vapor, or a column of liquid in a capillary tube
in equilibrium with vapor, Eq. (1) shows that the phases must be at
different pressures if they are in equilibrium.

vapor
. .
LW %

_pm’ y
Pyat f Eﬂ

liquid

Fia. 5. Liquid rise in a capillary tube due to surface tension.

Perhaps the most graphic demonstration of this situation can be given
by considering liquid which has risen in a capillary tube, Fig. 5. When
this system reaches equilibrium, its temperature must be uniform
throughout according to the criteria we have accepted earlier. The pres-
sures of liquid and vapor at the plane surface must be the same and
equal to saturation pressure for the system temperature. From hydro-
statics we may write expressions for the vapor and liquid pressures on
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either side of the curved interface:

_ __ PGy
pv‘r psat gc
1

plr = psat - plggc‘!

Consequently, at the curved interface both the liquid and the vapor are
superheated, since each phase is at a pressure less than the saturation
value for the system temperature. The amount of vapor superheat may be
negligible eompared to that in the liquid, since ordinarily p; > p,.

!
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Fre. 6. Variation of pressure with chemical potential for a single-component Liquid
in equilibrium with its vapor (9).

For a round capillary tube, the interface will be approximated by a
portion of a sphere, the radius of which is determined by the surface
tension. Consequently, equilibrium thermodynamic states derivable from
this illustration will apply to any spherical liquid-vapor boundary,
inceluding vapor bubbles and liquid droplets.

Instead of pursuing this example further, however, let us take a more
general approach and apply the conditions of equilibrium directly to
vapor bubbles (9). Figure 6 shows the variation of pressure with chemical
potential (or free energy) for a typical, single-component liquid in equi-
librium with its vapor. Isotherms in both vapor and liquid regions have
positive slopes, with a discontinuity in slope at the saturation line.

For a fixed liquid pressure p”/, all possible liquid states lie along the
line a”’¢” or its extension. Equilibrium at a plane interface (r — ) is
represented by the point a” on the saturation line, while, for a finite
radius of curvature, 7, for example, the vapor pressure exceeds p’’ by an
12001
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amount specified by Eq. (1), which therefore specifies the pressure
coordinate of the vapor state b’.

The other coordinate ({) of the two phase states b’ and b” is deter-
mined by the requirements that they be at the same temperature and at
the same free energy. It is again apparent that both phases are super-
heated, but the locations of b’ and b’ on their respective isobars must be
found by trial. The superheated liquid point, ", is on the projection of
the isotherm #, (not yet determined) from the liquid region (7, p. 433),
while b’ must lie on the superheated vapor portion of the same isotherm.
Consequently, the conditions of equilibrium and the equation of state of
the fluid are sufficient to determine the vapor and liquid states for a
bubble of any given radius when the liquid pressure is specified.

To apply these observations to nucleate boiling, suppose a very small
vapor bubble exists at a heated surface where it is largely, if not entirely,
surrounded by liquid. Merely to avoid collapse, the vapor bubble must be
at a higher pressure than the liquid. Since the vapor superheat is usually
very small, and since its existence merely strengthens our argument, let
us neglect it and assume the vapor to be at saturation temperature for its
pressure. The liquid temperature must be at least as great as this or else
the bubble size will diminish through condensation at the interface. For
nucleate boiling, and therefore bubble growth, to occur, the liquid must
be superheated even more than the equilibrium diagram (Fig. 6) would
indicate.

One further observation may be made of the nature of Eq. (1): as the
radius of a bubble approaches zero, the vapor pressure apparently
approaches infinity. Such a situation is meaningless physically, of course,
and a consideration of the derivation of the equilibrium criteria, including
Eq. (1), will show them to be valid only for bubbles which are large
compared to molecular sizes and distances. Nevertheless, the equation
predicts, and experiment confirms, that very high liquid superheats can
occur if great care is exercised to remove favorable nucleation centers
before heating. For example, Kenrick et al. (10) reported 306° F superheat
in water at atmospheric pressure in a capillary tube, which corresponds
to a saturation pressure of 800 psia and a calculated bubble radius from
Eq. (1) of 0.6 X 10~¢ inch.

Since we know from experience that nucleate boiling of water oceurs
quite readily at superheats of the order of 0.1 of the above value, say
30 to 50° F, we can deduce that much larger nuclei (of the order of
10-*inch) are normally available in engineering systems. The next section
will present the results of recent research which demonstrates that minute
pits and crevices in a heating surface can entrap gas and vapor, thereby

providing nucleation centers of such a size.
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2. Swrface Variables

For a long time there has been interest in the nature of those preferred
loeations on heating surfaces at which columns of bubbles form, the
nucleation centers. Jakob observed that the temperature difference
required between a vapor bubble and the superheated liquid layer next to
the surface depends mainly on the radius of the bubble, and that this
radius Is influenced by the roughness of the heating surface (7). He also
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Fre. 7. Nucleate boiling of n-pentane on nickel polished with various grades of

emery paper; 1. 4/0.~polished nickel; 2. 2/0-polished nickel; 3. 0-polished nickel;
4. 1t -polished nickel; 5. 3-polished nickel (1.

pointed out that the mean size of the originating bubbles is controlled by
a statistical mean of the roughness of the heating surface, an observa-
tion which later research has amplified considerably (11, 12).

Corty and Foust have reported the effects of surface roughness and
surface aging on the boiling curve (Fig. 2) and on the bubble contact
angle for several fluid-surface combinations (/7). Electron micrographs,
photomicrographs, and profilometer roughness measurements were made
of the heating surfaces, while bubble shape, size, and population were
determined from enlargements of short-exposure (10 usee) motion
pictures. In these experiments, saturated, pool boiling of ethane, normal
pentane, and Freon-113 was performed from an upward-facing, horizontal
plate which had first been plated with either copper or nickel, then
[202]



BoLina

roughened by rubbing with one of various grades of emery paper (4/0,
2/0, 0, 1, and 3).

Figure 7 shows five curves obtained with n-pentane boiling from nickel
with different finishes, from which it is evident that successively rougher

Fic. 8. Electron micrographs of collodian replicas of boiling surfaces. Dow latex
yardstick balls are approximately 10-microinch replicas shadow cast at arctan 13
(11). (a) 4/0-polished nickel. (b) 2/0-polished nickel. (c) 1-polished nickel.

Fr1c. 9. Photomicrographs of collodian replicas of boiling surfaces (17). (a) O-pol-
ished nickel. (b} 1-polished nickel. (¢) 3—polished nickel.

finishes required successively smaller temperature differences for a given
flux, as one might expect from Eq. (1). Electron micrographs of three of
the surfaces are shown in Fig. 8 while photomicrographs are shown in
Fig. 9. Observe that Figs. 8¢ and 9b are of the same surface. The scratch
marks left by polishing with emery paper appear from the micrographs
to be from 10 to 1,000 microinches wide, while a diamond-tip profilometer

gave readings of 2.2 to 23 microinches (rms).
Figure 10 shows an idealized conical cavity which may be used to
compare the bubble radius, r, predicted by Eq. (1) to the observed rough-
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ness, expressed as the eavity radius, R. From the figure we see that
r= Ricos (¢/2 — p3)

and therefore, from Eq. (1),
_ 20 cos.(¢,,«2 —B)
pv - pl

R (2)

Corty and Foust arbitrarily assumed a constant value of 120° for the

Fi. 1. ldealized conical cavity and vapor bubble,

angle ¢, since the electron mierographs showed the grooves to be quite
flat, while observed values (44 to 60°) of the contact angle, 8, were used.
Evaluating the pressure difference from the observed surface superheat
and the surface tension at saturation temperature, they caleulated cavity
radii of 3.7 to 9.8 microinches for the 4/0-roughened surfaces.

It might be observed at this point that the very flat grooves which the
polishing apparently produced are relatively ineffective in trapping and,
especially, in retaining vapor. This aspect of nucleation will be discussed
further in reporting Bankoff’s work (13), but should be born in mind when
considering the hysteresis effects observed by Corty and Foust and
presented below.

The boiling curves in Fig. 7 illustrate another significant effect of the
surface condition in that their slopes vary somewhat with roughness and,
particularly for the rougher surfaces, that their slopes are much greater
(13 to 25) than is usually found with unprepared surfaces (3 to 5).
Apparently the careful roughening of these surfaces replaced the fairly
broad size distribution function of the typical “as-received” metallic
surface with narrow distributions whose peaks were closely related to the
grade of emery paper used.

3. Hyslerests

Some of the most interesting observations made by Corty and Foust
had to do with the difference in behavior of nucleation centers under
certain conditions depending upon whether the heat flux was increasing
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or decreasing. Curve abe in Fig. 11 represents the variation of ¢’ with At
for free convection in & pool without boiling, while curve bde is the normal
nucleate boiling curve which was obtained when the heat flux was
decreased from a region where the surface was densely covered with
bubble columns. As the flux was reduced, more and more of these bubble
columns disappeared, until the free convection curve was reached and no
vapor was being produced. If the surface was then kept free of bubbles
for at least 10 to 15 minutes, subsequent increase of flux took place along
the free convection curve abe, with surface superheats of 40 to 50° I

log q”

log AT

F1c. 11. Hysteresis in nucleate boiling.

being accommodated entirely by free convection and without bubble
formation. Finally, at a point such as e, vigorous nucleate boiling began
suddenly and the superheat dropped to about 25° F at point d. Corty and
Foust observed that when this occurred, the first bubble formed at some
random point on the surface, and nucleation then spread concentrically.
If the heat flux was increased from the point b immediately upon the
cessation of nucleation, instead of waiting as before, the start of nuclea-
tion was not random, but began with the nuclei which had most recently
been active. Nucleation spread from these points in patchwise fashion as
the heat flux was further increased, until vigorous nucleate boiling was
again reached over the entire surface. Curve bfc illustrates this condition,
while bge shows the case of increasing the heat flux while a few nucleation
centers per square inch are still active. Temperature readings taken at
three locations, 0.19 inch below the heater surfaces, led to the observation
that the surface temperature in the boiling patches was characteristic
of the nucleate boiling curve bde, while the bare spots were at a con-

siderably higher temperature such as represented by the point e.
Another interesting facet of the hysteresis effect is that the surface
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roughness was found to influence the maximum surface superheat which
could be obtained by free convection before nucleation started. The point
¢ in Fig. 11 for the smoothest surface (2.2 microinches by profilometer)
oceurred at a superheat of 35° F, while the roughest surface could sustain
52° F superheat before boiling began. This suggests some of the smaller
cavities were more effective in retaining entrapped vapor after boiling
has stopped. Furthermore, very large cavities would be unlikely to trap
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Fi16. 12, Influence of prepressurization of water to 15,000 psia on the maximum
surface superheat obtained before incipient boiling (14).

vapor even when vigorous boiling occurred, sinee the liquid would tend to
penetrate such cavities completely.

Sabersky and Gates (74) found an even greater temperature overshoot
when heating water which had been prepressurized to 15,000 psia for not
less than 15 minutes. Resistance-heated wires of 0.010-inch diameter were
used, with typical results as shown in Iig. 12. The very large superheats
which they obtained in free convection without bubble formation are of
the same order as those which ean be obtained with clean water without
any foreign surfaces, which indicates that the prepressurization treatment
eliminated the more effective nucleation sites, i.e., those of larger diam-
eter. Once the entrapped gas had been dissolved or the vapor condensed
at these sites, subsequent reduction of pressure did not cause their
reactivation. These results give additional weight to the supposition
that the start of nucleation normally occurs at preexisting cavities in
which gas or vapor is entrapped.

4 Vapor Trapping

The vapor trapping mechanism has been analyzed in more detail by
Bankoff (18), who considered the conditions under which gas will he
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trapped in a V-shaped groove by a liquid front advancing normal to the
groove, as well as the mechanism by which gas would be displaced by
such a front. These arguments apply qualitatively to conical, eylindrical
and other cavity shapes as well as to grooves. Consider Fig. 13a, from

(b)

Fic. 13. Idealized vapor trapping model (13). (a) Vapor displaced by liquid
front advancing normal to V-shaped groove. (b) Liquid displaced by vapor front
advancing normal to V-shaped groove.

which it can be seen that no gas will be entrapped if
B< ¢

because the liquid will completely fill the bottom of the groove by the
time it reaches the opposite wall. If, as Fig. 13a illustrates,

B> ¢ (3)

some gas will be trapped in the bottom while the rest of the groove fills
with liguid.

Now consider the opposite problem of displacing liquid from the groove
by gas, as shown in Fig. 13b. The angle which the gas-liquid interface
makes with the solid as it advances down the right-hand wall is 8, the
contact angle, and this interface will be parallel to the left-hand solid
face if

8 =180 — ¢
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Consequently, at this or at any smaller value of g the liquid will not be
completely displaced before the interface transfers to the left-hand wall,
and the criterion that liquid be left in the groove as the gas sweeps over
it is

B8 <180 — ¢ 4)

On the basis of inequalities (3) and (4), Bankoff divides the surface
roughnesses in any particular system into four classes:

(a) Those which obey (3) but not (4). These occur when the solid is
poorly wet (3 > 90°) and the grooves are relatively shallow (¢/2 = 45°).
Such grooves are stable when completely filled either with vapor or with
liquid, and can be refilled with vapor even if they become filled with
liquid. Consequently, this class of roughness favors nucleation.

(b) Those which obey (4) but not (3). These occur with good wetting
(8 «< Y0°) and when ¢ is not too close to 180°. Liquid can completely fill
these grooves, and it will not be displaced later by a vapor front. In both
of these first classes of roughness, it is possible to switch from vapor to
liquid or from liquid to vapor, which ean account for the hysteresis
effects discussed earlier.

{e) Those which obey both (3) and (4), when g is not close to zero and
/2 & 45° are very steep and, once they are filled with either liquid or
vapor, cannot be completely purged by the opposite phase.

(d) Those which obey neither (3) nor (4), when 3 is not close to zero
and ¢.2 3> 45°, are very shallow and cannot trap vapor.

Bankoff has also extended the thermodynamic nucleation theory of
Volmer (75, 16) and Fisher (17) to consider wetted and unwetted surface
projections, plane surfaces and cavities (Z8). As we have noted earlier,
very large superheats can be sustained by a pure liquid in contact only
with smooth, elean, wetted surfaces. Bankoff shows that the superheat
required for the formation of a vapor nucleus of critical size (i.e., large
enough to grow spontaneously) on a plane surface is a function of fluid
properties and of the tendency of the liquid to wet the surface. The poorer
the wetting, the lower the required superheat (or excess pressure), but
even for water on paraffine, commonly considered nonwetting, the contact
angle 8 is only 95°, and a theoretical pressure of about 800 atmospheres
would be required. Since this is far in excess of observed values, it is
concluded that nucleation from a plane surface, like nucleation in the
pure liquid, is of no importance in surface boiling.

It has long been supposed that surface projections, as well as pits and
seratches, serve as nucleation centers (7). However, Bankoff’s analysis
demonstrated that a surface projection is, if anything, inferior to a plane
surface in minimizing the work of forming a vapor nucleus. Consequently,
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only surface cavities should be of importance as nucleation centers, and
even these are effective only if poorly wetted by the liquid or if they
contain an incondensable gas. Eventually, the incondensables will diffuse
into the liquid phase and the cavity will fill with liguid unless boiling
is maintained, in which case such a cavity may continue to nucleate
from the entrapped vapor.

Experimental verification of some of these conclusions has been
reported by Clark, Strenge and Westwater (19). Photographs of the
nucleate boiling of diethyl ether and of normal pentane were made through
a mieroscope. Clean, polished heating surfaces of both zine and aluminum
alloy were used. Twenty nucleation sites were observed: 13 were identified
as pits in the surfaces: 3 were scratches; 3 occurred at the boundary
between the metal heater and a plastic cement used as a sealant against
the surrounding packing material; and 1 was on a shifting speck of
unidentified material which appeared briefiy on one of the surfaces. The
active pits were from 0.0003 to 0.0033 inch in diameter and were nearly
circular, while the active scratches were about 0.0005 inch wide.

The possibility that grain boundaries might also act as nucleation
centers was explored in two ways: by a comparison of the bhoiling curve
obtained from a heating surface of polyerystalline zinc with that obtained
from a single crystal, and by direct microscopic observation of nucleation
on numerous polyerystalline surfaces. No significant difference could be
observed between the boiling curves, nor was any grain boundary seen
to be acting as a nucleation center.

5. Size Range of Cavities and Critical Radius

Another useful concept, that of the critical radius, can be illustrated
with the aid of the equilibrium theory presented earlier and the idealized
sketch in Fig. 14a. Suppose vapor to be trapped in the bottom of this
cavity, with the liquid-vapor interface initially in the spherical segment
labeled 7y and with a constant contact angle of 90° with the solid. The
three equilibrium ecriteria stated in Section I1,A,1 and illustrated in Fig,.
6 are assumed to be satisfied, so the system is in a stationary state.
In order to disturb this state and to cause the vapor volume to increase,
we may either add heat or reduce the pressure level of the entire fluid
system, thereby increasing the superheat of both phases. Imagine that
we carry out the latter process slowly, so the system temperature remains
nearly uniform but changes with time according to the equilibrium re-
quirements and the equation of state. Evaporation will occur at the inter-
face and the vapor mass will increase.

Now consider the variation of the liquid superheat (or, what amounts
to the same thing, Ap), as the vapor volume increases. Figure 14b shows
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how the reciprocal of the radius, which is just Ap/2¢ at equilibrium,
deereases as the amount of vapor increases. After state 1, when the
interface reaches the mouth of the cavity, further growth results
in a decrease in the radius, and therefore in an increase in the super-
heat, until the contact angle with the solid surface outside the cavity
reaches its characteristic value (assumed 90° for this illustration),
after which further growth again increases the radius and thercfore
decreases the superheat. Observe that there is a minimum radius r*
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Fie. 14, (a) Idealized conical cavity with a 90° contact angle.  (b) Variation of the
reciprocal of 7 with bubble volume. The r* is the critical value and has associated with
it the critical aAf (12).

whenever the contact angle is equal to or greater than 90°, and there
is a corresponding maximum superheat. This minimum is called the
eritical radius because, although a smaller bubble can exist and even
increase in volume, its growth will be stopped before it reaches this
eritical size if the liquid superheat is not sufficient to carry it through
this stage.

Griffith and Wallis (/2) have found that the nucleating properties of
a conical cavity ean be characterized by a single dimension under certain
conditions. They also found that boiling would not occur at the desired
sites (i.e., they were not stable) if the water had been degassed prior
to the test. The degassing of the water apparently resulted in the removal
of all gas from the cavities before boiling began. Furthermore, they
observed that the conical cavities were not stable for much subcooling
and that unwetted eavities were more stable than wetted ones, all of
which observations are consistent with the earlier analysis of Bankoff
and others.

Instead of examining the Griffith and Wallis results in greater detail,
let us now consider a more recent analysis by Hsu (20) based on the
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nucleate boiling model of Hsu and Graham (21). Assume a bubble nucleus
exists at the mouth of an active cavity such as is illustrated in Fig. 15a.
The previous bubble has just departed and relatively cool liquid at
temperature £, now occupies the region, as indicated by the temperature
profile (8 = 0) shown in Fig. 15b. Also shown is a broken line, § = 65,
from the wall to the extremity of the bubble representing the vapor
temperature, which is uniform.

In Hsu’s model, it is assumed that a liquid layer of thickness § is heated
by transient conduction from the wall, but that beyond this layer, eddy

8= LIMITING THERMAL LAYER THICKNESS
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Fig. 15. Model for calculation of the waiting period with typical temperature
profiles (20). (a) Bubble nucleus at cavity mouth. (b) Temperature profileatr = 0.
At the beginning of the waiting period, 8 = 0 at all z except at the wall (xz = 3).
(¢) Temperature profile at 0 < 7 < r,. During the waiting period, the surrounding
liquid is cooler than the bubble interior. (d) End of the waiting period; 6 (z) curve
reaches point (6, z3).

diffusivity is controlling and the liquid is at the bulk temperature. In
the boundary layer, then, we have a simple transient conduction problem
with either a step change in temperature at the wall (constant surface
temperature case) or else a sudden start of heating at the wall (constant
heat flux case), both solutions being available in the literature (22). For
the sake of brevity, the present treatment will be confined to the constant
surface temperature case, while both cases are treated by Hsu (20).
Figures 15¢ and d show schematically how the temperature excess,
8(z,r) = t(x,7) — lo, builds up as heating of the boundary layer progresses,
until in the latter curve the temperature in the liquid is everywhere
equal to or greater than the vapor temperature. This is equivalent to
stating that 8(z,7) = 8 at + = & — b at the end of the waiting period,
.. A more complete way to represent the transient solution is shown in
Tig. 16, in which the dimensionless liquid temperature group £ is plotted
as a function of the dimensionless distance group » with a dimensionless

time group as the parameter.
Also shown in Fig. 16 is a typical curve of £ vs. 5 derived from Eq.
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(1), in which Ap is replaced by a corresponding temperature difference
from the Clapeyron equation, i.e.,

tsntvfg
Eqguations (1) and (5) yield
20t X
b fone = B0 = B = "xc;‘zé )

where R is the cavity radius and the condition vy, =2 1/p, is met. Although
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F16. 16. Dimensionless temperature varistion with dimensionless distance for con-
stant surface temperature with the dimensionless time group, ar/8?% as a parameter
(2. £ = 0/8,, 7 = x/8.

the contact angle 8 and the slope of the cavity mouth vy are unknown,
a simple but reasonable assumption is that the bubble height, b = 5§ — w,
is equal to the cavity diameter, 2R, which leads to an expression for the
bubble radius r in terms of b (20). With this substitution, then, Eq. (6)
may be nondimensionalized to give

) 0, . 3. 20t 1
&, = — = L. + Z —le
g, ( Ap,60; ) (1 — m> ™)
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Hsu’s model requires that this equation, which is plotted in Fig. 16 for
typical values of fluid properties and &, be satisfied at the end of the
waiting period. The intersections of this & vs. 5 curve with the transient
conduction curves give the waiting periods for bubbles of various sizes.

It is immediately clear that for a cavity to be effective, its waiting
period must be finite. Therefore, the intersections of this infinite time
curve (£ = u) in Fig. 16 with the typical & vs. n, curve provide minimum
and maximum values of 7;, as shown, and only cavities within this size
range can be effective. Expressed algebraically, these limiting radii are

. Osat \/ _ Osat : _ 80'Cstsat

Ruux = 201 [1 - + <1 8, ) X 86,0 (Sa)
3 ) . Bsz.t - J — 0sat : _ Mstsat

Bnin = 507 [1 B, (1 9, ) X 505, (8b)

where C; and C; are functions of the angle 8 + v (Fig. 15a) and the
cavity radius R (20).

Not all sites within the limits given by Egs. (8a) and (8b) are active,
since there may be two cavities very close together, of which only the
one with the shorter waiting period will be active at a given surface
temperature (or heat flux). From these equations it may also be deduced
that nucleate boiling is impossible if there are no real roots, i.e., if

Bsat 2 Saostsat
(-5 -] <o

Therefore, the temperature difference of incipient boiling is predicted
from this inequality to be

40-tggtc3 \/ ZG'tBa(;C ) (20’ tSBgC;g)
0 = Blat + + 2 ( sat + >\Pv )\p,,ﬁ (9)

This expression is significant because it relates the condition of incipient
boiling, which can be estimated in various ways (e.g., Fig. 3), to the
boundary layer thickness é.

Hsu (20) has compared the incipient nucleate boiling data reported
by McAdams et al. (23), with the pressure and subcooling dependence
predicted by Eq. (9). A reference point was chosen to evaluate §/C;
from a measured value of 6,,, after which 6,, was calculated for a wide
range of boiling conditions with the same value of 6/C;. Equations (8a)
and (8b) were also tested against the temperature and cavity size meas-
urements of Clark, Strenge and Westwater (19) and of Griffith and
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Wallis (12). In all cases, the calculated results from the nucleate boiling
model of Hsu and Graham were consistent with experimental observations.

B. HoMoGENEOUS NUCLEATION AND RADIATION EFFECTS

Nucleation from a homogeneous liquid phase is relatively rare, because
long before the very large liquid superheats which would be needed are
attained, heterogeneous nucleation usually occurs. In nearly all engineer-
ing systerns, there will be gas entrapped in the container walls, gas bubbles
in the liquid, or suspended solids, perhaps very small, which provide
nucleation sites. However, it is possible in the laboratory, if extreme
care is taken, to achieve very high degrees of superheat in liquids before
nucleation and bubble growth occur.

The theory of homogeneous nucleation has been reviewed in detail by
Westwater (24) and will not be discussed here. Classical thermodynamics
and the reaction rate theory of Eyring seems capable of explaining some
of the main features of this phenomenon, but Westwater concludes that
considerably more work needs to be done in this area.

We have referred earlier to a solution-type nuclear reactor as a prac-
tical example of homogeneous nucleate boiling, but it is clear that homo-
geneous nucleation is not likely to oceur in such a device. However, this
application is interesting to the present discussion because of the high
density of ionizing radiation which is likely to be present.

Fast and slow neutrons, gamma rays, beta particles, protons and even
fission products can conceivably contribute to nucleation in a superheated
liguid, and, in fact, the well-known bubble chamber invented by D. A.
Glaser (25, 26) for the detection of nuclear particles depends upon this
process for its operation. According to a model proposed by Seitz (27),
most bubble nuclei formed in a bubble chamber are produced when
incident particles (e.g., protons or pions) transfer energy by Rutherford
scattering to electrons in the superheated liquid. These electrons rapidly
lose this kinetic energy, which is of the order of kilovolts, to the molecules
in their path, and this energy reappears chiefly in the form of heat.

In order for such an excited electron to form a nucleus of sufficient
size that a macroscopic bubble will be formed, the electron must have
a range of the same order of magnitude as the radius demanded by Eqg.
(1) for the particular values of surface tension and superheat which are
used. That is, within a distance approximately equal to 2r = 40/Ap, the
eleetron must transfer enough energy to produce a bubble of radius ».
A static bubble of this size represents an energy investment of

E. = 4arie + 4mrip,N/3 (10)

where the first term is the energy required to create the vapor-liquid
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surface and the second represents the latent heat. Seitz shows that the
static energy demanded by Eq. (10) is exceeded by an order of magnitude
by the energy which would be lost within a range of 2r by 10 kev electrons,
so the process is feasible from. this standpoint. This phenomenon which
results in a substantial and rapid energy transfer in a very small region
is known as a ‘“‘thermal spike.”

It is essential that the nucleus be formed in a period of time which
is short compared to the time in which the heat would diffuse through
the liquid. This criterion is found to be met by average bubble growth
velocities of the order of 0.1 the speed of sound. Seitz further considers
in an approximate way the additional energy required to accelerate the
liquid and to overcome resistance of viscosity. Although viscous effects
are apparently negligible for liquid hydrogen, which has a very low coef-
ficient of viscosity (about 10~* poise), they may be appreciable in propane
and similar liquids with viscosities near 102 poise.

Because of the scarcity of experimental data on bubble production by
ionizing radiation, as well ag the approximate nature of certain aspects
of the analysis, these results must be considered somewhat tentative.
Nevertheless, they present a consistent picture of the processes which
seem to be taking place and agree with the limited experimental data
which are available.

C. BussLE Dynamics

1. Introduction

Having considered the circumstances which control the nucleation of
vapor bubbles at a heated surface or, oceasionally, within a bulk liquid
phase, we may now turn our attention to the conditions which govern
the subsequent growth of these nuclei into vapor bubbles of macroscopic
size. The simplest form that this problem can take is that of a spherical
bubble growing in a large volume of uniformly superheated liquid. This
situation might be approached not only in homogeneous boiling, such
as in a bubble chamber or in a homogeneous nuclear reactor, but also
in certain surface boiling situations.

In pool boiling, for example, bubbles experience a relatively small frac-
tion of their growth while they are attached to the heated surface. As
we have discussed earlier, most of the heat transferred from the heater
goes to the liquid in the pool and thence to the vapor bubbles during
their ascent to the free surface. Another important instance of a vapor
bubble growing in uniform!ly superheated liquid occurs when the pressure
is suddenly reduced in an isothermal liquid system which is at or near
its saturation temperature. Nearly uniform superheat can be achieved
and bubbles can grow at such nucleation sites as may be present.
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Considerably more complex is the problem of bubble growth in a non-
uniform temperature field, such as exists in the thermal boundary layer
during surface boiling. This is the problem in pool boiling from the time
of formation of the nucleus of critical radius until detachment of the
bubble from the heated surface. Similar but still more difficult is the
analysis of the bubble growth rate during subeooled surface boiling, when
the nucleus grows in a superheated layer near the heater, but collapses
when it contacts subcooled liquid a short distance away. The bubble
may or may not detach and move into the main stream before collapsing.
The dynamic analysis of bubble detachment in these various surface
boiling situations is, itself, a subject of considerable interest.

Valuable reviews of bubble dynamics have been published by Jakob (1),
Westwater (24), Zuber (28) and Hsu and Graham (21). Much of the
material in the following paragraphs was drawn from these sources.

2. Bubble Growth in a Uniformly Superheated Liquid

According to Bosnjakovie (29), the thermal resistance to bubble growth
may be considered to be concentrated in a thin layer of liquid next to
the growing bubble. The vapor in the bubble, and therefore the surface
layer of liquid molecules, is nearly at saturation temperature during
most of the bubble growth period. Therefore we denote the conductance
of the boundary layer, k/§, by &, and obtain an energy balance at the
interface

h(to — teas) = Np. dr/dr 1)

From measurements of the bubble growth rates obtained from high-speed
motion pictures, Jakob and others () found values of h from Eq. (11).
For water in pool boiling at atmospheric pressure, values of h as high
as 40,000 Btu/(hr)(sq ft)(F) were observed in the initial transient when
the bubbles formed. After 10 millisec, this value decreased to about 4,000
and then to about 3,000 for most of the 200 millisec observation. After
about 2) millisec, the average bubble left the surface and began its free
ascent through the superheated liquid.

Fritz and Ende (30) treated this problem by numerical integration of
the heat equation, assuming the newly created vapor-liquid interface
acted as a plane wall of temperature 4., bounding a semiinfinite slab of
liquid initially at ¢,. Formulated mathematically, this partial differential
equation for ¢ = {(x,7) is

a_ o
ar dx?

(12)
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subject to the initial and boundary conditions that
t(x,O) = {1
t(O,T) = t“,g fors > 0

lim t(x;r) = {
T

An energy balance at the interface then provides the coefficient h:

at
to =t = (51)

where z is measured from the interface into the liquid and where the
derivative is obtained from the transient solution. Reasonably good
agreement was found between values of h from this calculation and
those found from the photographic measurements.

This transient conduction model was later refined by Plesset and
Zwick (31) and Forster and Zuber (32), who combined the equation of
motion with the transient heat conduction equation. This approach starts
with Rayleigh’s equation for the growth of a spherical bubble in an
infinite liquid medium

2 2 -
dr " g(dr> n 20g. _ P — P (13)

" dr o pi/ge

The pressure excess which is assumed to produce the bubble growth may
be written in terms of the Clapeyron equation

p — g = Mo =l (14)
satVfg

where the vapor pressure and temperature are functions of the radius,

according to Eq. (1), and therefore of time. Note that temperature

is not the temperature of the liquid, but rather is the saturation tempera-

ture which corresponds to the liquid pressure. Finally, the energy equa-

tion in spherical coordinates is written as

% 29t at ot dr
“(5;% +;5;)—a7+a73; (15)
At the start of bubble growth (r = 0), the temperature everywhere in
the liquid is constant at some known degree of superheat, and the liguid
temperature far from the interface remains at this superheat. These two
boundary conditions, together with an instantaneous energy balance at
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the liquid-vapor interface, can he expressed as follows:
z(T,O) = {
lim {(r,7) = to

L dr
ar pvdT

The thin thermal boundary layer assumption of Bosnjakovic (29) is
retained to simplify the integration.

Although somewhat different procedures were followed by the authors
of references (31) and (32) in obtaining solutions to these equations,
both found that bubble growth is limited by the rate of heat diffusion
to the interface, and that the effects of liquid inertia and surface tension
are small and can be neglected. The predicted growth rate is expressed
by the asymptotic solution

dr _ /3 k(b — )

=L 16
dr Apw \/1roz‘r (16)

which is in good agreement with the experimental measurements of
Dergarabedian (33).

G. Birkoff et al. (34), obtained an asymptotic solution to Eq. (15) by
a similarity assumption which does not require the thin boundary layer

approximation. They showed that Eq. (16) is a good approximation
whenever the dimensionless group

Ny = o= fudoe oy
Apy

A similar observation had been made earlier by Gnffith (35). First Savic
{(86) and later, Zuber (28) have called this dimensionless group the
“Jakob number” in honor of the late Professor Max Jakob.!

A further contribution to the theory has been made by Secriven (37),
who solved the equations of continuity, momentum and energy not only
for single-component systems but also for binary systems. His results
for single-component systems are consistent with those of Plesset and
Zwick (31) for large values of the Jakob number. While heat diffusion is
the limiting process for bubble growth in the single-component case,
both heat and mass must diffuse to the vapor-liquid interface in the
two-component case. If the more volatile component does not diffuse

tIn a personal communieation Professor S. P. Kezios has informed the authors that
Mr. Savie proposed to him that this dimensionless group be named the Jakob number
some years prior to the publication of reference (36).
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with sufficient rapidity to the interface, the boiling temperature increases
in that vicinity and bubble growth ig inhibited.

From the above discussion it is clear that the theory of bubble growth
in an infinite liquid medium at uniform superheat is well advanced,
especially in the period after the first instant when surface tension and
liquid inertia become unimportant. One circumstance which is not con-
sidered by these theories, however, is that there may be turbulence in
the liquid which will increase the effective diffusivity of both heat and
mass. Much more complex is the problem of bubble growth in a non-
isothermal liquid layer, which will we discussed in the next section.

3. Bubble Growth on a Heated Surface

Recognizing the fact that in surface boiling a bubble grows in a liquid
which is not uniformly superheated, but of varying temperature, Griffith
(85) obtained a numerical solution of the transient conduction problem
for nonuniform liquid temperature. Utilizing the results cited earlier that
surface tension and liquid inertia are negligible during the later and more
important stage of bubble growth, he combined Eq. (15) with an energy
balance at the liquid-vapor interface and with a velocity expression
obtained from the continuity equation. The distinctive feature of this
analysis is the use of a linearly varying liquid temperature in the boundary
layer next to the heating surface as an initial condition.

Perhaps the most serious limitation of Griffith’s analysis is the difficulty
of predicting suitable values of the boundary layer thickness. Further-
more, no attempt was made to predict bubble collapse rates in subcooled
boiling, presumably because Eq. (15) is written for laminar flow, while
a high degree of turbulence is likely in the collapse process. Nevertheless,
Griffith’s analysis prediets a number of interesting trends:

(a) For increasing pressure and decreasing values of the Jakob number,
the growth velocity decreases.

(b) The maximum size attained by bubbles at small Jakob number is
independent of the Jakob number and depends only on the thickness of
the superheated boundary layer.

(¢) The average growth velocity of bubbles with a smaller maximum
size is greater than for those with a larger maximum size for the same
Jakob number.

Bankoff and Mikesell (38) showed that the nearly symmetrical bubble
growth and collapse curves which have been obtained experimentally by
Gunther (39) and Ellion (40) with highly subeooled surface boiling would
not occur if the limiting process were entirely transient conduction as
expressed by Eq. (15). They postulated a turbulent convective mecha-
nism for that part of the bubble which projects into the turbulent core
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of subecooled liquid. Thus, evaporation in the laminar flow region near
the base of the bubble may continue even while rapid condensation
oceurs where there is contact with the highly subeooled turbulent core.
The use of an empirical expression for the turbulent flow heat transfer
resulted in qualitative agreement with experiments in which heat flux,
liquid bulk velocity and liquid subcooling were independently varied.

In another paper, the same authors (41) extended the laminar flow
analysis of Plesset and Zwick (31) to the case of a bubble growing in
a non-uniform liquid layer of either a linear or an exponential tempera-
ture profile. In this model, it is assumed that the bubble initiates in a
superheated layer at the surface, but that its growth forces a thin layer
of superheated liquid into the main stream (ef. Fig. 4). The results of
the computation are expressed parametrically in terms of the volume of
the bubble boundary layer, which in turn was obtained empirically from
experimental bubble growth data. Agreement with the trends exhibited
by bubbles growing in saturated surface boiling is good, but not in sub-
cooled boiling. The authors attribute the latter disagreement to inaccuracy
in the assumed temperature distribution or to turbulent heat transfer
between the vapor bubble and the subeooled bulk fluid.

Experimental measurements of bubble growth rates in the pool boiling
of distilled water and methyl alcohol have been reported by Staniszewski
(42). Although most of these observations were made with upward-facing
horizontal plates, two runs were with a vertical plate. System pressure
was varied from 1 atmosphere to 40 psia, the pool depth to as little as
1 inch, and the heat flux from 15 to 809 of the critical value. High-speed
movies were analyzed to obtain bubble diameter as a funetion of time
from the instant of first visibility until that of detachment from the
surface.

Although the usual statistical variation among growth curves was
obsgerved, the growth rate proved to be almost independent of the sys-
tem pressure. However, both the bubble frequency and departure diam-
eter are smaller at higher pressure. At the highest heat flux, the departure
diameter tends to increase, while the bubble frequency correspondingly
decreases. Changing the heater orientation from horizontal to vertical
had no pronounced effect on the departure diameter, but did result in
slower bubble growth.

Staniszewski found that if the growth curves are written in the form

r = Cm an

the exponent m varies from a value of 0.5 to 1 early in the growth period,
with a subsequent decrease to a value of about 14. The analysis of Bankoff
and Mikesell (41) most nearly fits the curves, but suffers from the dis-
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advantage of requiring an empirical constant which depends upon experi-
mental conditions. When Griffith’s numerical results (35) were fitted to
an equation of the form of Eq. (17), the exponent varied from about
0.5 in the early growth stage down to 0.22 to 0.35 for larger bubbles.
Consequently Griffith’s theory underestimates the growth in the early
stage, but agrees well in the later part of the period. The constant-super-
heat theories (31, 32), with their constant exponent of 0.5, do not agree
very well with the experimental results.

—— ts. INITIAL TEMPERATURE
- DISTRIBUTION IN THE F
- THERMAL BOUNDARY

(a) (b)

Fra. 17. Jakob’s analytical model of a bubble growing in a nonuniform tempera-
ture field (28). (a) Initial temperature distribution. (b) Temperature distribution
for a growing bubble.

The bubble diameter at detachment was compared by Staniszewski
with the approximate formula derived by Fritz (43) from a balance of
buoyant and surface tension forces acting on typically shaped bubbles:

209,

D, = 0.014 \/—-——
» = 0.01488 i

o — p) (8 in degrees)

This formula overestimates the mean values of observed data and the
scatter is considerable. It was observed that faster growing bubbles
attained a larger breakoff diameter, which fact was incorporated into a
formula for D,

_ 209,
D, = 0.007138 \/—_—ﬁg(pz — (1 4+ 0.073 dr/dr) (18)

where dr/dr is in ft/sec. Eq. (18) agrees within +259%, with all the experi-
mental observations of D, which Staniszewski made.

In his dissertation (28), Zuber treats the problem of bubble growth
in a nonuniform temperature field by extending the Bosnjakovie-Jakob
model which we have discussed earlier. Figure 17a shows an idealized
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initial temperature distribution in a thermal boundary layer of thickness
i, just as a microscopic bubble is formed but before its growth has begun
to cool the boundary layer. In Fig. 17b, the bubble has grown and the
adjacent temperature distribution has changed as a result of the diffusion
of thermal energy toward the interface. Within a layer of thickness §,
the heat flow is from the hotter liquid to the interface, while beyond §,
heat continues to flow toward the bulk liquid. To describe this situation,
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Fiq. 18. Ellion’s experimental data for bubbles growing and collapsing in subcooled
water at atmospheric pressure (40). The heat flux is 147 Btu/(sec)(sq ft) and the bulk
temperature 135° F.

Zuber modifies Eq. (16), which was obtained for a uniformly superheated
liquid, by equating the transient heat transfer rate to the sum of the
rates of latent energy increase and heat transfer to the bulk liquid (¢"’):

dr 1rq” ‘R'k(t, — tsnt)
Aoy 4 Th = T~ fent)
P dr + 2 2 \/mwar

(note that the coefficient 7/2 has been substituted for its near equal,
/3, which appears in Eq. (16)). The quantity ¢’ is assumed by Zuber
to be equal to the average heat flux from the heating surface on the
grounds that the average temperature gradient in this portion of the liquid
is not distorted greatly by the appearance and growth of the bubble.
The integrated form of Eq. (19) is

_ pic(ts — lsas) \/7?; q’ '\/7;‘1; ]
r(r) = == [1 = B =t (20)

(19)
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Zuber found good agreement between the bubble sizes predicted by
Eq. (20) and measurements made by Fritz and Ende (30) of the diameters
of vapor bubbles at the time of departure from a heated surface in pool
boiling. A further check was made against experimental bubble growth
curves obtained by Zmola (44), again with close correspondence.

Zuber also treats the problem of bubble growth and collapse in a sub-
cooled liquid and compares the predictions from the extended Bosnjakovie-
Jakob model with Ellion’s experimental data (40). Figure 18 shows radius-
time data obtained by Ellion, while Fig. 19 presents the same data

0.75

0.50

=

'0.25

Fia. 19. Comparison of theoretical bubble growth and collapse curves (28) with
subcooled boiling data of Ellion (40).

normalized on the maximum radius r,, and the time at which this radius
is reached, 7m.

From Eq. (19), the maximum bubble radius occurs when dr/dr = 0,
i.e., when

\/’;ET:;; = k(t. - tsat)/q” (21)
Equation (20) may then be written

) = B b Vaor (g [T (22)

and the maximum radius is

_ pie(te — teas) VTOTn
" 2p,\

(23)

Dividing Eq. (22) by Eq. (23) gives an expression for r/r,:

t/tn = V1/tn @ = V/7/tm) (24)
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Figure 19 shows that this equation successfully predicts the observed
bubble growth, but not the collapse, which occurs much more rapidly
than the theory predicts.

Reasoning that the heat transfer mechanism in the liquid near the
inferface is much more favorable during collapse than during growth
because of deformation and motion of the bubble, as well as turbulence,
Zuber has obtained a solution to the collapse phase of the problem by
assuming isothermal conditions. Unlike the growth phase, inertial effects
are now controlling, and the Rayleigh equation becomes

ar g (9 P~ m
rd72+/2(d7) N p1/ge

where surface tension effects are again ignored and the right-hand side
is constant for the isothermal case. The solution to this equation is (28):

T /o (1 /1) YA (r/Tm) L (r/rm)¥d(r/rm)
— =2 — A Sr ol e, O oot 25

for r/rm 2> 1

Equation (25) is also shown in Fig. 19 for comparison with Ellion’s data.

Hsu and Graham (27) have evaluated the terms in Eq. (19) somewhat
differently than did Zuber. In the first place, they have calculated the
heat transfer rate to the bulk liquid (¢"’) by means of a solution to the
transient equation for heat conduction in a flat plate. The liquid layer
temperature is assumed initially to vary linearly from the wall to the
bulk liquid at the edge of the thermal boundary layer (z = 85). The
transient which follows is caused by the sudden drop in temperature
from £, to f:a at the surface of the “liquid slab” which is bounded by the
newly formed and growing bubble. These initial and boundary conditions
for Eq. (12) can be written as follows:

t((x,0) = &, — ¢"z/k;, 0 <z < s
10,7 = tas forr > 0
t{8s,7) = toforr > 0

where z is measured from the wall and ¢” is the heat flux from the wall.
The transient flux to the bubble, ¢,”, can then be found from the solution
to Eq. (12) with these boundary conditions, and this flux is analogous
to the two corresponding terms in Eq. (19). However, these terms in
the latter equation have been multipled by 7/2 to correct for the sphericity
of the interface, and a similar correction will be applied to ¢.”.

The other refinement which Hsu and Graham applied to Zuber’s analy-
sis was to include a term which accounts for heat transfer through the
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base of the bubble, which had been ignored. The latter flux is assumed
equal to the flux from the heated surface, ¢/, and a heat balance on the
bubble may be written

Apo * dmr2dr/dr = ¢ Awe + Cq,"" A, (26)

where C = 1 for the flat film approximation and =/2 for a spherical film.
The geometrical problem of relating the base area to the bubble wall
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Fi1a. 20. Comparison of theoretical bubble growth predictions (21, 28) with boiling
data for water at 18° F subcooling, atmospheric pressure (21).

area was resolved by recourse to the calculations of Bashforth and Adams
(46), from which it was found that for very small bubbles, As = A4,,
while for larger bubbles (r > 1 mm), 4, = A,/4.

Finally, Eq. (26) can be integrated to find the radius as a function of
time. This integration is performed in two parts, according to the two
ranges of bubble size just mentioned, with the results shown in Fig. 20.
Bubble growth curves are shown with and without the sphericity correc-
tion for both Zuber’s and Hsu and Graham’s calculations. The experi-
mental data in the illustration were reported by Hsu and Graham for
distilled, degassed water in pool boiling at atmospheric pressure with a
subcooling of about 18° F.

An interesting feature of the bubble growth analysis of Hsu and
Graham is its dependence on the thickness of the thermal boundary
layer (8s) which exists in the liquid at the end of the waiting period
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{ef. Section I1,A,5). Consequently, a larger, faster-growing bubble would
be expected after a long waiting period than after a short one, and this
behavior was observed experimentally. The nucleation characteristics of
the surface influence the waiting period (Section I1,A,5) and can there-
fore be considered in the bubble growth calculations.

III. Nucleate Boiling

The nucleate boiling process is too complex to have yielded to adequate
representation by a mathematieal model and, therefore, to satisfactory
analysis. For saturated pool boiling, Jakob (7) showed that only a small
fraction of the heat passes from a surface directly to the vapor, while
both Gunther and Kreith (46) and Rohsenow and Clark (5) made similar
observations for forced convection, subcooled boiling. Therefore, the pri-
mary nucleate boiling mechanism is apparently one of conveetion from
the hot surface to superheated liquid, with vapor bubbles serving to
promote mixing of the liquid near the surface. However, the exact
mechanism by which the bubble action increases the heat flux is not
clearly understood.

A. CoNVECTION ANALOGIES

Gunther and Kreith (46) have described the nucleate boiling process
as ‘“‘microconvection in the sublayer.” They hypothesize that the growth-
and-collapse cycling of bubbles introduces subcooled liquid into the sub-
layer and excites oscillating local velocities. Shadowgraphs which they
presented of the convection currents induced by surface boiling tend to
support this hypothesis. Using reasonable values for equivalent diameter,
local velocity and liquid temperature in the Sieder-Tate equation they
showed that the proposed mechanism could accommodate the high heat
transfer rates observed in nucleate boiling.

Rohsenow (47) proposed a different analogy between nucleate boiling
and single-phase forced convection heat transfer based on the common
form of nonboiling convection correlations

hD DG ue

Since the controlling resistance to heat transfer in surface boiling is
postulated to be in the liquid, the properties &, p and ¢ in Eq. (27) are
chosen as those of saturated liquid corresponding to the local pressure.
The characteristic length, Dy, on the other hand, is related to an average
vapor bubble on the heated surface, as is the mass flux, Gb, since it is
the bubble growth characteristics which determine the amount of local
agitation in the liquid sublayer.
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The growing bubbles are not ordinarily spherical, but a characteristic
length can be conveniently defined as the diameter of a sphere having
the same volume as an actual vapor bubble when it breaks away from
the surface. Denoting this length hereafter by D,, Fritz’s formula (cf.
Section II,C,3) can be written

2g.0
D,=C \/ < ; 0<p<L140°
TN =yt 0P S
The bubble diameter is, therefore, a function of saturation pressure only
for a given solid-liquid combination.

The volume of an actual vapor bubble is #D:?/6, and the mass rate
of vapor leaving per unit heater area is

D,3
Gb=p.,7rben

where n = number of nucleation centers per unit area
f = frequency of bubble formation at a nucleation center.
Furthermore, Jakob showed that, for pool boiling, the product fD; is a
constant at a given pressure and at low to moderate heat flux (7).
Next consider the rate of heat transfer to the vapor bubbles while
they are attached to the surface, i.e.,

7 =6 = |3l D0 T | (28)

All quantities in the brackets are constant or are functions of the satura-
tion pressure only, so ¢,” varies linearly with n at a given pressure.
However, Jakob found that the number of nucleation sites on a surface
in pool boiling is proportional to the total heat flux, and an increase in
the heating rate is accompanied by a proportionate increase in the num-
ber of bubble columns. Consequently, at a given pressure the total heat
flux is also proportional to n, the nucleation site density, and therefore

= Cogy”’ (29)

where C; may be a function of the pressure. Let us now solve Eqs. (28)
and (29) for the bubble mass velocity

o’ _ ¢
G =X =ra
The bubble Reynolds number is, then,

_ DGy _ ng 2g.0 L Ciq” \/ g.o
™ m Ngloi — po) Coh wh Ng(or — po)
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where (; = 18 v/2/C: The contact angle has been absorbed into the
coefficient C; because of lack of data on the variation of this quantity
with pressure and with surface condition.

Many investigations have shown that the heat flux in nucleate boiling
depends upon the excess of surface temperature over local saturation
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F1a. 21. Rohsenow’s correlation (47) of Addoms’ pool boiling data (48).

temperature rather than over a local bulk liquid temperature. Conse-
quently, the bubble Nusselt number is defined as
q”Db

NNu.b = klAtant

which will be found to be equally applicable to subcooled nucleate boiling
and to saturated boiling.

We now have the three dimensionless groups in Eq. (27) expressed
in terms of usually measured variables, and we can try to obtain a corre-
lation of nucleate boiling heat transfer in terms of these groups. Instead
of using the bubble Nusselt number as the dependent group, however,
it is more convenient to use the group

ggNBe,bNPr,l _ C1ALqt

NNu,b X
and to seek a correlation of the form
CiAlss
'lv)\"—t = ¢2(NRrepy Nrrt)

The data of Addoms (48) were selected for this purpose because of
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the wide pressure and heat flux ranges covered. Figure 21 shows Addoms’
results at various pressures from 14.7 to 2465 psia, which are correlated

by
CiAlsat q”’ g )% 0.33 /e \ 17
actet o) 2 YT padlad
A ! [uzk g(pr — pv) ki (30)

where C; is 0.013, and the data spread by approximately +209%.

The correlation Eq. (30) has also been applied to the data of numerous
other experimenters. Values of the coefficient C,, for various fluid-surface
combinations are listed in Table I (47).

TABLE I
VaLuks of Csy FOR SoMme SurraceE-FLuip COMBINATIONS

Surface-fluid combination Ceor
Water-Nickel 0.006
Water-Platinum 0.013
Water-Copper 0.013
Water-Brass 0.006
CCl,-Copper 0.013
Benzene-Chromium 0.010
n-Pentane-Chromium 0.015
Ethyl alcohol-Chromium 0.0027
Isopropyl alcohol-Copper 0.0025
35% K,CO;-Copper 0.0054
50% K,COs-Copper 0.0027
n-Butyl aleohol-Copper 0.0030

Rohsenow found the exponents of 0.33 and 1.7 adequate to correlate
a wide range of data for single component liquids boiling on clean surfaces.
For dirty surfaces, the 0.33 exponent on the bubble Reynolds number
was still adequate for most of the data, but the best Prandtl number
exponent varied from 0.8 to 2.0.

Since the contact angle g is seldom known, it is difficult to assess the
significance of the absorption of this factor into the coefficient C,;. How-
ever, it is presumably this step in the analysis which makes C,; so depend-
ent on the fluid-surface combination.

Another difficulty with this correlation lies in the Prandtl number
effect which it predicts. If we write the correlation in the form of Eq.
(27) we obtain

NNu,b = Cif (NRe.b) 0'67(NP1'.Z)—0'7

Cor@”' Dy _ [ DG\ [ ki \*7
kiAtsas _< Hy ) (clﬂl) (31)
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In no other forced or natural convection correlation does the Nusselt
number diminish with increasing Prandtl number. If we examine Eq. (31)
we see that the negative exponent merely intensifies the dependence of
q"'/Ateas on the liquid conductivity, k;, and on the viscosity, w. The
only aspect of the situation which is disturbing is the prediction that
q"'/ Aty 1s diminished by an increase in the liquid specific heat, which is
contrary to reason and to the prediction of Reynolds analogy.

Rohsenow’s correlation has been applied to a variety of liquids cover-
ing a wide range of fluid properties and appears to be the most successful
correlation which has been developed to date. It permits the caleulation
of the heat flux which can be accommodated by nucleate boiling for a
given temperature difference, Afy,, at various system pressures, once the
coefficient C,; has been found by a suitable experiment.

Forster and Greif (6) have used the vapor-liquid exchange model which
has been discussed in some detail in Section I,D to derive a correlation
for nucleate boiling:

lea Ctnta% U [} 5 714 b4

"= 1.2 X 1073 2Pt BT (EENT (ap)?

¢ Taoo /o | T0w | \w) (k) 4P

This is the same as a correlation derived earlier by Forster and Zuber
(49), who used a model much the same as Rohsenow’s except that the
radial bubble growth rate was used as the characteristic velocity in the

Reynolds number and a bubble radius obtained from bubble dynamics
was used as the characteristic length in the Nusselt number.

B. ErrEcts oF SURFACE ROUGHNESS

It has been shown that surface roughness influences not only the
intercept of the boiling curve but also its slope (Fig. 7). Rohsenow’s
correlation permits adjustment of the intercept by proper choice of the
constant C,;. However, all of the correlations which have been discussed
so far ignore the dependence of the slope of the boiling curve on surface
conditions and hence on the size distribution of active nucleation sites.
This is undoubtedly due, at least in part, to the difficulty of describing
surface roughness mathematically.

Kurihara and Myers (50) were the first to attempt to incorporate
surface effects quantitatively into a correlation of nucleate pool boiling
heat transfer. Their experiments show that the average boiling coefficient,
ha., varies approximately as n* for n > 200 per sq ft, where n is the con-
centration of nucleation sites. This type of relationship has since been
confirmed by Tien (§7), who found that the exponent on n varies from 0.3
to 0.5 for data taken with several liquid-solid combinations. For n < 200
per sq ft the average boiling coefficient appears to be nearly independent
of n.
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Using the Reynolds, Nusselt and Prandtl numbers as defined by
Rohsenow (47), Kurihara and Myers employed dimensional reasoning
to arrive at the equation:

%
1;;—" = 820 (ﬁ) nHAN 2,089 (32)
where h,, is in Btu/(hr)(sq ft)(F). They also presented a method for
calculating the number of nucleation sites as a function of surface super-
heat provided that one experimental point of n vs. Ak, is known. Their
predicted relations show reasonably good agreement with the experi-
mental data for n > 200 per sq ft.

Tien (51) proposed a new model for the nucleate boiling mechanism
in which the bubble columns rising from the heated surface induce a
flow pattern similar to axisymmetrical stagnation point flow. Solutions
for this flow pattern which are available in the literature are used to
derive the following relationship for nucleate pool boiling:

h = 61.3Np3km08

This equation does not correlate the available data as well as Eq. (32),
perhaps, as suggested by Tien, because the properties of the vapor phase
have been neglected.

C. THErMAL BOUNDARY LAYER

In their measurements of the temperature distribution over a heater
in nucleate boiling, Gunther and Kreith (46) observed that there is a
thermal boundary layer near the heated surface. The existence of this
layer was confirmed by Yamagata et al. (62) who used an optical method
and later by Hsu and Graham (21) who used shadowgraph and schlieren
photography. Hsu and Graham have discussed the role of this thermal
boundary layer in the heat transfer process and have shown that the
ebullition cycle consists of three stages:

(a) The development of a thermal layer next to the heated surface.

(b) The growth of the bubble which pushes the surrounding liquid
radially outward. The area of influence of each bubble has a diameter
about twice that of the bubble.

{¢) The destruction of the thermal layer due to the replacement of
hot fluid from the bulk liquid.

D. Mass TRANSFER MODEL

Recently Bankoff (63) has questioned the generally accepted idea that
latent heat transport plays a minor role in nucleate boiling heat transfer
at a heated surface. If the high heat fluxes found in nucleate boiling are
caused only by the bubble stirring action, similar action should be
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accomplished by generating inert gas bubbles at the heating surface.
However, experiments by Mixon et al. (54) show that even with high
rates of bubble generation, the resulting heat fluxes are in the range of
the lower limit of nucleate boiling. Bankoff suggests therefore that the
mechanism of latent heat transport is significant for high heat transfer
rates, and that it consists of simultaneous evaporation near the base of
the bubbles and eondensation at the top.

Bankoff and Mason (6§5) have performed experiments to measure the
heat transfer coefficients at the surfaces of single steam bubbles in a
turbulent stream of subcooled water. Using these results they calculated
that the mechanism of latent heat transport could account for the major
fraction of the total heat flow in subcooled boiling and that it is, in fact,
the dominant process near the eritical heat flux.

IV. Critical Heat Flux

The heat flux at which nueleate boiling fails and at which a heating
surface becomes partially or entirely blanketed with vapor is of great
practical interest to the engineering designer. Furthermore, the mecha-
nism by which this transition occurs is of considerable theoretical interest.
Nevertheless, the complexity of the hydrodynamic and thermodynamic
processes which oceur at very high nucleate boiling rates are such as to
have defied even approximate analysis.

Consider again the boiling curve shown in Fig. 2, in which the heat flux
variation with the temperature difference A¢ is shown. In most of the
nucleate boiling regime, columns of discrete bubbles originate from
specific nucleation sites, and a relatively large increase in heat flux is
provided by a small increase in the surface temperature. As the flux is
increased above the value marked “DNB,’”” however, there is an increasing
tendency for bubbles to coalesce near the surface. This tendency may be
traced not only to the crowding of more vapor columns into the same area
as new sites are activated, but also to the increased likelihood of coales-
eence of successive bubbles from the same nucleation site as the waiting
time diminishes.

Boiling at luxes between DNB (departure from nucleate boiling) and
the peak value is characterized by a pronounced two-phase boundary
layer near the surface and by oscillating, nonuniform surface tempera-
tures caused by local insulation by patches of vapor. As long as these
patches are unstable, however, there is a tendency toward their immediate
replacement by liquid, and nucleate boiling continues. Consequently,
the stability of vapor-liquid interfaces is an important consideration in
most of the successful theoretical work which has been reported. In
succeeding sections we shall consider both theoretical analysis and
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experimental correlations of the eritical heat fluxes which have been
observed in pool boiling, flow inside heated channels, and forced con-
vection normal to heated cylinders.

A. Poor Borning

1. Dimensional Analysis

Kutateladze (56) has treated the failure of nucleate boiling as a purely
hydrodynamic problem, hypothesizing that the ecritical flux is reached
when the stability of the two-phase boundary layer, characteristic of
the region between DNB and critical heat flux, is destroyed. This layer
remains stable as long as the kinetic energy of the vapor leaving the heated
surface is low enough that the liquid can penetrate the layer and cool
the surface. Near the critical flux the vapor and liquid are in such violent
agitation that viscous drag is negligible, and the occurrence of instability
is equally probable for any part of a sufficiently large surface. Conse-
quently, the critical heat flux should be independent of heater dimensions
except for fine wires, for example, when the heater diameter is of the
same order as the bubble sizes.

With this model as a basis, Kutateladze nondimensionalized the equa-
tions of motion and the equations of dynamic interaction of the vapor
and liquid phases and arrived at the single dimensionless group

qcll
K =
Apo*ilog g.(pr — po)]%

The value of K was found by comparison with data from several sources
to vary from 0.095 to 0.20 depending on the surface roughness and the
liquid-surface combination. Sterman (567) derived this same parameter
using the principles of similarity.

Borishanskii (58) included the effects of viscosity in his dimensional
analysis and arrived at two dimensionless groupings, K and N, where
K is the same as Kutateladze’s parameter and N is expressed as

_ plgeo)®
N = G — P

The following functional relationship was found by comparison with data
K = 0.13 + 4N—0¢ (33)

A somewhat simpler semiempirical correlation has been derived by
Rohsenow and Griffith (59) using vapor binding of the surface as a
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eriterion for critical heat flux

qL”_ _ 143 P — Po 0.6 —g— 0.26
pA P do

where the constant coefficient has the units of ft/hr and the gravity
ratio was added (60) to encompass the data of Usiskin and Siegel (61).

2. Stability of a Liquid-Vapor Interface

An idealized hydrodynamic model of vapor-liquid flow conditions at
the peak heat flux has been described and analyzed by Zuber et al. (62,
63, 64). Visualize an agglomerate of vapor bubbles over a heating sur-
face which is submerged in a pool of saturated or slightly superheated
liquid and which is operating just below the peak flux. Vapor is fed into
the agglomerate, chiefly by the capture of additional bubbles from nearby
nucleation sites, while one or more jets of vapor flow upward through the
liquid and corresponding jets of liquid flow downward.

For purposes of analysis, the main liquid-vapor interface is at first
imagined to be horizontal and nearly plane, with insufficient disturbance
to overcome surface tension forces and permit the vapor to pass upward
into the more dense liquid. This condition of metastable equilibrium is
similar to that in the air-water interface below an inverted tumbler of
water covered by gausze. In the idealized boiling model, it is hypothesized
that such an interface fails by Taylor instability, and that this results
in a definite two-dimensional pattern of vapor jets flowing upward and
liquid flowing downward.

Since the upward flow rate of vapor increases with heat flux, and since
the downward-flowing liquid must compete with the vapor for the
available flow area, it is hypothesized in this second phase of the analysis
that the critical condition oecurs when the relative velocity of the two
phases becomes sufficient to prevent further increase of the heat flux.
Known as Helmholtz instability, this condition can also be analyzed in
terms of the minimum wave length of a disturbance which will result
in the destruction of the vertical interface between the counterflowing
vapor and liquid. Both the Taylor and the Helmholtz instabilities are
discussed by Lamb (65) and will be analyzed in the paragraphs to follow.

Let us first consider the Taylor instability, for which we visualize a
horizontal liquid-vapor interface in the plane y = 0. For potential flow
it can be shown that the velocity potentials are given by

&, = Cem cos mrcoswr, y <0 (34a)
& = C'e™veosmreoswr, y >0 (34b)

where x is measured in the plane of the interface. These potentials are
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solutions of Laplace’s equation and satisfy the conditions for simple
harmonic deformations of the interface which damp out far from the
interface. The corresponding perturbations at y = 0 are given by

€ = a cos mz sin wr (35)

Kinematic conditions which must be satisfied at the interface are
de b _ _ 3%,

- Ty - T (36)
while a force balance there yields the static relationship
pv—pz+agxi:=0 37)
Euler’s equation must be satisfied in the liquid and the vapor:
= 6§"+gch—V7”2 (38a)
02 =y gy - IF (38b)

If the velocity effects are assumed to be small and the body force per
unit mass, Y, is set equal to —g/g., Eqs. (34) through (38) will yield
the frequency

_ am®g. A & .
¢ (Pz +p0 mt oo gm) (39)
The wave number m is related to the wave length L by

L =2r/m (40)

The criterion for a stable interface is that » must be real, since otherwise
a disturbance would grow exponentially with time. Therefore the eritical
wave length is found by setting w = 0 in Eq. (39) and is given by

Ly =2 ,f_"_-‘hm 41
o "Nt — po)g (1)

The wave length which would give the maximum growth rate is found
by maximizing » with respect to m and is

3ag.
Ly = 2 — 42
= TN — pg (42)

Zuber et al. term this the most dangerous wave length and assume that
there is a spectrum of probable unstable values given by Lo, where

Lyy £ Lo £ Lge (43)
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Because of Taylor instability, therefore, it is postulated that the hori-
zontal liquid-over-vapor interface tends to break up in a square, two-
dimensional pattern of side length L,. From each unit cell of area L2
rises a circular vapor column of diameter Lo/2 or of area wL,?/16. This
choice of diameter, while somewhat arbitrary, is not unreasonable, since
it represents the distance between the inflection points of a two-dimen-
sional sinusoidal disturbance of wave length L,. Furthermore, this wave
length is now seen to be dependent only on the fluid properties (Eqs.
(41) and (42)), which are constant at a given pressure for saturated
boiling. Consequently, the vapor generation rate at the critical flux,
which is limited by the Helmholtz instability condition, will depend only
on the maximum permissible frequency of bubble emission, which will
next be considered.

Visualize now a plane vertical interface at y = 0 (note the previous
z, ¥ coordinates have been rotated 90°), which is a considerably simplified
representation of the flow pattern already described. Let us again use
potential theory, after Lamb (65), to find the minimum frequency of a
disturbance which will grow with time. If the liquid and vapor velocities
away from y = 0 are V,; and V,, the velocity potentials are

b, =—-Vat+d, y<O0 {44a)
(191 = Vz:l? + ‘I’u, Yy >0 (44b)
where
®,, = Cemutiter—ma)

&y = (g—mvtilor—ma)
Corresponding perturbations at the interface are given by
€ = gelwr—mz) (45)
Kinematic conditions which must be satisfied at y = 0 are

__6<I> e

y 61 or (462)
OB _ e o, 9e
o "o Vg (46b)

Since there are no body forces in the y direction, Eqs. (38) become,
with the omission of second order terms,

gc%’ aq’"’ + V., aq>1, (47a)
g 2= ‘E’H — y, %% "‘I’" (47b)
/M or
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Solving Egs. (37) and (44) through (47) at y = 0 yields the expression
for the frequency of a disturbance at the interface in terms of the wave
number m:

o = m(p, Ve — oV " [ gom®  mip.o(V, + Vl)z]”
oo+ o) oo+ o) (oo + m1)?

The condition of stability of the interface is that w must be real, so the
critical condition is

gom® _ mipop(Vy + Vi)? _
oy + p1 (oo + p1)?

For the square matrix of vapor columns described earlier, the equation
of continuity requires that

0 (48)

(49)

Equations (48) and (49) may be solved for the critical vapor velocity

_ {geom\* (16 — ) R A%

Ve = ( ps ) [91(16 ~—m+ Pvr] ( o > ©0
The product of the last two terms is approximately equal to 1 over the
entire pressure range of interest, and these two terms are therefore

omitted hereafter from the expression for critical vapor velocity.
Rayleigh’s analysis (66) of a circular gas jet in a liquid shows that
axially symmetric disturbances with wave lengths larger than the cir-
cumference of the jet are unstable for all vapor velocities. From Eq. (40)

and the assumed jet diameter of Lo/2, therefore, we find the wave num-
ber, m, to be 4/Ly, and the critical vapor velocity from Eq. (50) becomes

Vv = \/40%/ PvLO
The heat flux carried by the vapor in saturated boiling is
q¢" = p, A, V,/A = wp,\V,/16

Thus, with the spectrum of possible wave lengths given by Eq. (43),
the critical heat flux is determined within the limits

Qc’,
0.16 > > 0.12 51
- )‘Pv%[a'ggc(f’l - pv)]"(1 - ( )
This dimensionless group is identical to Kutateladze’s parameter K, and
the agreement of the range of constants with those found experimentally
by Kutateladze is very good. Furthermore, this model and the analysis

lead one to expect the critical heat flux to span an uncertainty band,
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approximately + 14% with the assumptions just reported. Consequently,
the well-known lack of reproducibility of experimental burnout data may
well be inherent in the process rather than a sign of inadequate control
over the variables (63).

Figure 22 shows the variation of K with N as reported by Borishanskii
(68) for water and 5 organic fluids. In addition to the best-fit curve
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Fig. 22. Correlation of critical heat flux data for various liquids in pool boiling.
The solid line is the best fit curve (58) represented by Eq. (33) and the range of K
predicted by Eq. (51) is shown by the broken lines (64).

represented by Eq. (33), the range of K predicted by Eq. (51) is shown
by the broken lines. Since some of the assumptions in the analysis are
somewhat questionable, this close agreement may be fortuitous, but this
mode! appears nevertheless to represent quite well the general features
of the critical heat flux phenomenon in pool boiling.

3. Pool Boiling Experiments

Experimental data for the peak flux in pool boiling exhibit wide scatter,
even when taken under apparently similar conditions. This may be
traced, at least in part, to variations in surface conditions of the heaters,
especially for constant heat flux systems. If the heater surface is rough,
nucleation sites are plentiful and the boiling process is even and regular.
However, if the surface is smooth, high superheat is required to nucleate
a bubble, and when a bubble finally does form, a relatively large quantity
of the highly superheated liquid can vaporize almost instantaneously
(the familiar “bumping’’ which oceurs when liquid boils in a clean glass
container) and blanket a local region of the surface with vapor. Since
the energy generation rate is a constant the surface may overheat locally
and the vapor blanket spread. In a constant temperature system, on
the other hand, the surface will recover, since the localized vapor blanket
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cannot produce a temperature excursion. Bonilla and Perry (67),
Kutateladze (56), and others have found that surface conditions signifi-
cantly affect the critical flux in a constant heat flux system, while
Berenson’s experiments (68) show that it is relatively unimportant for
constant temperature heaters.

The critical heat flux in pool boiling varies considerably with pressure,
tending toward zero both as the pressure approaches zero and as it
approaches the thermodynamic critical point, as both Cichelli and
Bonilla (69) and Kazakova (70) have reported. A maximum value oceurs
at about 14 the critical pressure for water and for several organic liquids.
Addoms (48) also investigated eritical heat flux from platinum wires in
boiling water over a wide range of pressures. He found that the peak in
the curve of critical heat flux versus pressure occurred at approximately
14 the critical pressure for small diameter wires (<0.024 inch).

With the advent of space travel and the possibility of using boiling
liquids to cool various components of space vehicles, there has been
considerable interest recently in the effects of gravity on the boiling
process. Usiskin and Siegel (61) have investigated critical heat flux in
reduced and zero gravity fields using a free-fall apparatus. Although the
transients involved in their experimental procedure make the data some-
what difficult to interpret, the ¢g** variation of critical flux predicted by
Kutateladze (56) and Zuber et al. (62, 63, 64) appears to be reasonable.

Costello and Adams (71) have investigated the critical flux from a
cylindrical heater placed in a centrifuge, with accelerations up to 44
times earth’s gravity directed normal to the axis of the cylinder. They
found that the critical flux increases slightly with acceleration up to
g/go = 10, and for higher accelerations varies approximately as g*. Their
experiments indicate, however, that there is a heater size effect, and for
larger diameter cylinders higher accelerations would be required to attain
the ¢* behavior.

Ivey (72) has determined the critical flux in pool boiling in the range
1 < g/go < 160. His experiments show that the critical flux varies as
¢*?73 which is in reasonably good agreement with the predicted g*
variation.

Several papers on the critical heat flux in binary mixtures of water
and organic liquids have been presented by van Wijk, von Stralen and
Vos (78, 74, 76, 76, 77), and by Fastovskii and Artym (78). They found
that the critical flux with small diameter wires { <0.4 mm) increases with
concentration of the organic component to a maximum value and then
decreases. In some cases the maximum value was several times the critical
flux attained with either pure component. Owens (79) has conducted a
similar investigation using a 3{g-inch diameter tube and found that the
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addition of organic liquids to water tended to decrease rather than
increase the critical flux. Each of these investigators observed that the
size of the vapor bubbles was much smaller in the binary mixtures than
in either pure component, as did Leppert, Costello and Hoglund (4) in
forced convection boiling. Although this phenomenon is not clearly
understood, it appears that the inerease in critical heat flux for small
diameter wires in binary mixtures may arise from the fact that in the
pure component a relatively large vapor bubble can completely surround
the heater and blanket it locally. In the binary mixtures the small bubbles
do not lead to this local blanketing and a higher critical heat flux can be
attained.

B. INTERNAL FrOW

1. Flow Palterns

Tippets has recently presented the results of a study of critical heat
fluxes and flow patterns for high-pressure, steam-water mixtures in heated
rectangular channels (80, 81). Photographic observations were made with
a high speed moving picture camera sighting across channels of either
0.25- or 0.50-inch thickness which were 2.10 inches in width and 37
inches long. Simultaneous records of power and coolant flow rate were
made on an oscillograph, while the critical flux was determined by means
of a “burnout detector’” which compared the electrical resistance of two
4lg-inches-long sections at the outlet of the heated channel. Since the
resistance of the heater element increased with temperature, a tendency
toward overheating at the exit could be detected by an imbalance in
the resistances of these sections.

Tippets reported the following visual characteristics of the flow at
1000 psia for flow rates of 50 to 400 lb/(sec) (sq ft) and for fluid states
at the observation window from 170 Btu/lb subcooled to saturated boil-
ing at a maximum quality of 0.66.

(a) For subcooling greater than 20 Btu/lb, flow rates from 100 to 400
Ib/(sec)(sq ft) and heat flux much less than eritical, an irregular, frothy
layer of growing and collapsing bubbles was observed to slide along the
heated surface at a velocity slightly less than the mean channel velocity.
Away from the heated surface, the flow was nearly pure liquid.

(b) For low subcooling (up to 20 Btu/lb) and flow rates from 200 to
400 Ib/(sec)(sq ft), and for saturated boiling at low qualities (up to 0.10)
and a flow rate of 100 lb/(sec)(sq {t), heat fluxes below the critical value
produced a frothy mixture of large and small bubbles in a continuous
liquid phase. Next to the heated surface was a highly agitated layer of
tiny bubbles in liquid, while at a flow of 100 Ib/(sec)(sq ft) there were
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slight fluctuations in the pattern which suggested a tendency toward
slug flow.

(¢) At somewhat higher qualities (0.10 to 0.30) and low flow rates
(below 100 Ib/(sec)(sq ft)), a slug flow pattern developed. This appeared
to consist of a finely divided froth of vapor and liquid alternating periodi-
cally (0.05 to 0.10 sec) with a thick layer of liquid against the wall and
high vapor concentration in the middle of the channel. This pattern was
not observed at the higher mass velocities, and it became indistinct and
disappeared at the higher qualities even at lower flow rates.
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Frc. 23. Simplified representation of flow pattern observed by Tippets (82) for
saturated boiling in a rectangular channel.

(d) The predominant flow pattern which occurred at all the observed
critical flux conditions consisted of an irregular, wavy liquid film along
the walls, flowing with the stream, and a dispersion of liquid droplets
in a continuous vapor core, or, at the lower qualities, a vapor-liquid
emulsion in the core. The liquid film was considerably more agitated at
the heated surfaces than at unheated surfaces, with irregular streamers of
vapor or bubbles forming at the heater and issuing into the liquid film.
This flow pattern was also observed at fluxes less than critical for a flow
rate of 400 Ib/(sec)(sq ft) at all qualities; for 200 to 400 Ib/(sec)(sq ft) at
qualities above 0.10; and for 50 to 200 Ib/(sec)(sq ft} at qualities above
0.30. Figure 23 is a simplified representation of this flow pattern.

2. General Trends in Saturated Boiling

From his own observations with water at 1000 psia, as well as from
those of other investigators who measured the critical flux with high
pressure water in forced convection, Tippets presented a summary of
major trends:

(a) g,/ decreases with increasing mass velocity for bulk boiling and
increases with increasing mass velocity for subcooled boiling.
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(b) ¢.” decreases monotonically with increased steam quality or specific
enthalpy for stable, steady flow and may have a maximum with respect
to steam quality in conditions of bulk boiling if the flow is unsteady or
oscillating,

(e) q.” decreases monotonically as pressure is increased above about
600 psia.

(d) ¢.” increases slightly as the characteristic duct size b (the radius
of a circular tube, 14 the hydraulic diameter for annuli and rectangular
ducts) increases from 0.024 to 0.084 inch then decreases as the duct size
increases further to 0.24 inch.

(e) ¢.” is virtually independent of duct length-to-diameter ratio for
ratios greater than about 100, but increases for ducts shorter than this.

(f) ¢.” increases with increasing ratio of heated surface to total surface.

3. Analysis

From the flow pattern which he observed at the critical flux condition,
depicted in Fig. 23, Tippets constructed a simplified flow model which
could be analyzed (80, 82). The first element in this analysis consists of
a potential flow solution to find the maximum liquid film thickness which
can remain stable with the dynamic force of the vapor acting against
the stabilizing effect of surface tension in the liquid (Helmholtz insta-
bility). A critical wave length L. is thereby obtained which represents
the limit beyond which small disturbances will grow exponentially with
time. This wave length is

L, = p211;a [coth (ml’") + Pe tanh (ma)]

where V,; is the effective core to film relative velocity, m is the wave
number, § is the mean thickness of the liquid film and I is the half-
width of the zone of influence at the interface. Figure 24 shows the
idealized system used for this analysis.

In the next step of the analysis, Prandtl’s mixing length theory is
used to relate !” to & and to evaluate the relative velocity V. This
term is then eliminated through the introduction of the parameter ®rpr
from the two-phase flow correlations of Martinelli ef al. (83) to obtain
an equation for the liquid film thickness

2K3K40’p1(1 + Pt/Po)
= ; 2r K K; < 3 52
Srerf/GH1 + i/ py)? " : i 2

In this equation, K; lies between 2r, for the critical wave length, and 3,
for the wave length of the disturbance with maximum growth rate
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(cf. Section IV,A,2). The quantity K, is an unknown dimensionless con-
stant and f; is the Fanning friction factor.

In Tippets’ model, therefore, the liquid film thickness varies around
the mean value given by Eq. (52) as liquid is exchanged between the
film and the vapor core. When the film tends to thicken, unstable dis-
turbances grow more rapidly and increase the liquid entrainment, thereby
reducing the film thickness. When the film is thinner than 8, the entrain-
ment diminishes and liquid capture by the interface from the core
dominates, thereby increasing the film thickness.

CORE
(NEGLIGIBLE
LIQUID}

F1a. 24. Idealized system for film stability analysis of critical heat flux (82).

The onset of the critical condition is supposed to occur when the liquid
vaporization rate in the film exceeds the net liquid supply rate from the
core. If all of the heat transferred from the wall is used to vaporize liquid
in the film, the net liquid supply rate to the film must be ¢”’/\ at steady
state (¢’ < ¢.’). According to Tippets, this liquid flux consists of three
components: turbulent diffusion from the core to the interface; liquid
carried from the interface region to the core by the vapor current; and
entrainment, the liquid torn from the interface by the vapor when the
film is unstable. Only the first of these is a supply term, while the last
is assumed to be negligible when the critical condition is approached,
since the film is then thin and, therefore, stable.

The two liquid diffusion terms are evaluated from mixing length theory,
while the average velocity of the vapor near the interface is caleulated
from a power-law variation, in analogy to single-phase flow. The results
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of these calculations give the following working equation for the critical
flux:

Qc” — C”¢a/£ (53)
_ opi(l + pi/py)
where v = PrerfG%H(1 + pi/po)?
C'X: \ ;m
E___1+(1+1_X°);’

(p1®rerfs/ py) G

The coefficients ', C’" and a are determined by fitting Eq. (53) to experi-
mental data, while b is the characteristic channel dimension mentioned
earlier (the radius of a circular tube, 13 the hydraulic diameter for annuli
and rectangular ducts). Reasonably good correlation of a wide range of
data was found with

a = 0.75

(¢’ = 1.00 (fraction of channel heated, 0.80 to 1.0)
= 6.5 (fraction of channel heated, 0.23 to 0.40)
C” = 0.53 (b > by = 0.084 inch)

= 0.53 (b/by)"**(b < by = 0.084 inch)

4. Comparison with Experimental Data

Tippets (80, 82) has applied Eq. (53) to 80 of his own data points
and to 742 selected experimental points by other investigators. These
data were selected, whenever possible, on the basis that the critical heat
flux had actually been experienced or else that the detector mentioned
earlier had tripped, indicating a marked tendency toward overheating
at the end of the channel. Since the region between DNB and the critical
flux is characterized by temperature fluctuations which increase in ampli-
tude as the flux is increased, it can be said with certainty that the detector
will operate somewhere in this region, but not that it will trip precisely
at the peak flux.

Figure 25 shows the variation of the critical flux with quality for vari-
ous flow rates, heater element widths and thicknesses, and channel
equivalent diameters for Tippets’ data. Similarly good agreement was
found with the measurements of Janssen and Kervinen (84) which were
taken in an annular duet with the inner walls heated. In this case, how-
ever, the coefficient ¢’ in Eq. (53) had a value of 6.5. The data of Aladyev
el al. (85) for flow in a circular tube were well correlated, but the coefficient
(" had to be adjusted to 0.74. Tippets suggests the small length-to-
diameter ratio (twenty) of the heated tube as the cause of this adjustment.
[244]
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Fig. 25. Comparigson of film stability analysis, Eq. (53), with critical heat flux
data for water (82).

Some of the data of DeBartoli et al. (86); Bennett et al. (87); Silvestri
(88); and Berkowitz et al. (89) are not as well correlated by Eq. (53),
even when the coefficients C’ and €’ are determined from the data itself.
Some of the deviation may be caused by the faet that two-phase mixtures
rather than pure liquids entered the heated channels in some of the latter
tests. This might inhibit the attachment of the liquid film to the wall
and result in lower peak fluxes (80, §2).

C. ExXTERNAL FLow

1. Flow Paiterns

Vliet and Leppert (90, 91) have described the flow conditions for the
nucleate boiling of water at atmospheric pressure flowing normal to an
electrically heated tube. Figure 26 shows schematically a uniformly
heated cylinder with nearly saturated water flowing upward around it.
Nucleation starts first on the rear half of the cylinder at seemingly
random locations. As the heat flux is increased the density of sites
increases and becomes more uniform, and nucleation spreads to the for-
ward half of the cylinder. Bubbles thus initiated on the forward half
grow and move around the cylinder as a result of liquid drag and buoyant
effects. They then separate individually from the cylinder somewhere
downstream of the 90° position, as shown in Fig. 26a. The bubbles tend
to grow momentarily while in the superheated liquid near the cylinder,
but soon collapse if the liguid above is even slightly subcooled.
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With still further inerease in the heat flux, the percentage of vapor
it the two-phase mixture in the cylinder wake increases to the point
that a vapor cavity forms in this region. Initially, the eavity is not
continuous aloug the length of the eylinder, but is broken by liquid which
extends down to the cylinder at intervals along its length, as sketched

Individual Vopor Bubble . © "

Vapor Cavity
with Liquid
Droplats

Liquid Boiling

on Surface of
Cylinder

Liquid

Vopor

Fii. 26. Schematic diagrams of boiling pattern for nearly saturated water flowing
normal to a heated cylinder (90). (a) Low heat flux. (b) High heat flux. (¢)
Broken cavity formation.

in Pigs. 26b and 26c. The transition from individual bubble separation
to this type of cavity formation takes place gradually. Even though a
vapor cavity exists in the wake, liquid continues to be supplied to the
hack of the eylinder. This liquid apparently flows through the breaks
in the eavity and between the bubbles as they move around the eylinder.

The reason for the formation of the cavity may be more fully under-
stood from the following reasoning. For single phase flow about bodies
of this type, a separated region (backflow of the fluid) can occur where
the fluid encounters a positive pressure gradient which arises from decel-
[246)
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eration of the flow. For a cylinder, this position varies between 70 and
120° from the forward stagnation point, depending on the cylinder
Reynolds number. For nucleate boiling at low heat fluxes, the amount
of vapor in the ecylinder wake is insufficient to allow the liquid to move
past the cylinder without decelerating or causing a backflow region to

F1a. 27. (a) (For descriptive legend see page 249)

form. However, as the heat flux increases, a condition arises where the
amount of vapor is sufficient to allow the liquid to continue in a diree-
tion tangential to the 90° position, leaving a separated region of vapor
which is similar to the separated region of single phase flow.

There is a further reason for the formation of the cavity. If the liquid-
vapor mixture tends to follow the surface, as on the front half, a centrifu-
gal force, arising from the inward centripetal acceleration, is created
which acts radially outward on the mixture. Because of the difference
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in densities between liquid and vapor, there is a separating tendency
which is analogous to the buoyant force of gravity. Near the 90° position
the effect is accentuated somewhat by the higher velocity demanded by
potential flow. Thus, as the mixture passes the 90° position, the vapor

T Gk e GRS e PR gt T LARAD A o Br e ) Sroaa - b

Fra. 27, (b) (For descriptive legend see page 249)

tends to move into the wake region, and the liquid tends to continue
i a tangential direction—upward, in this case.

At these heat fluxes the rate of formation of vapor is apparently
insufficient to maintain the liquid walls uniformly along the length of
the cylinder, and there are intervals where the vapor is pinched off by
liquid which therefore extends down to the cylinder, Since all the vapor
which s formed either condenses at the cavity walls or leaves as the
eavity breaks up above the cylinder, the area of the cavity exposed to
the liquid increases as the heat flux increases and the breaks in the
cavity become less well-defined. Once the liquid no longer extends down
{248]
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to the cylinder, the only liquid which enters the cavity is that slower-
moving liquid which exists between the vapor bubbles and the heater
surface as the bubbles enter the cavity near the 90° position. The rear
half of the eylinder is cooled by boiling of this liquid which is in contact

.
P g e s Py A ey WL TR NS N R S

F1a. 27. Effect of heat flux on the boiling pattern of nearly saturated water (4° F
subcooling) from a 3{e¢-inch tube at 2 ft/sec (90). (a) 21% of critical flux. (b)
479, of critical flux. (¢} 849 of critical flux.

with it. For heat fluxes below the critical value, more liquid than necessary
is carried into the cavity and the excess is lost by entrainment at the
cavity walls. Liquid droplets, thrown off by the violent boiling of the
liquid on the rear heater surface and from the upward-moving liquid
walls, are observed throughout the cavity.

For still further increases in heat flux, there is an abrupt increase in
the length of the cavity which results in a very uniform vapor sheet
formation. The cavity wall interfaces exhibit criss-cross wave patterns,
the angles of which vary with liquid velocity. These angles apparently
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depend upon the relative magnitudes of the local liguid velocity and the
velocity of propagation of surface waves caused by bubble growth. The
shape of the cavity is similar to that illustrated in Fig. 26h for the broken
cavity, hut it is considerably longer.

.Y .
ol Nty Y0 g %
N T N b s Wbt
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F1a. 28. (a) (For descriptive legend sce page 252)

Gireater heat flux causes no significant change except for a decrease in
the number and size of liquid droplets in the cavity and the amount of
liquid on the heated surface. This decrease in the amount of liquid in
the region bounded by the cavity walls and the heater is evidence of
decrease in the excess liquid carried into the region. Increase in the heat
flux causes less liquid to be carried into the cavity because of more
closely packed bubbles at the position of separation, while simultaneously
requiring more liquid for cooling the rear half of the cylinder. Soon the
flux increases to the point where the liquid carried in is insufficient to
produce the necessary cooling of the top half of the cylinder. The critical
(250]
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condition has therefore been reached, starting at the top of the cylinder
and, since the surface is electrically heated, rapidly overheating the
entire cross section. Once the cavity is formed, so that liquid ean enter
only along the heated surface, the eritical condition is well defined,

.

LT IR e Sld P I } : \
g, 2w o < L R S E
) a0 ) ’

-,

Fia. 28. (b) (For descriptive legend see page 252)

because more liquid is required to produce the necessary cooling on top,
but less enters because of the more closely packed vapor bubbles,
Therefore, two factors should govern the magnitude of the eritical
heat flux for low subcooling: the area per unit length of the rear half
of the cylinder and the amount of liquid carried into the cavity along
its surface. The first factor is essentially a funection only of the cylinder
diameter, whereas the second is a function of the diameter, liquid velocity
and liquid and vapor thermal properties.
Tigure 27 shows a series of photographs indicating the effect on the
boiling pattern of increasing heat flux for water with 4° F subcooling
[251]
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flowing at 2.3 ft’/see. The broken cavity formation is disappearing at
0.21 ¢."” (first photograph) and the last two pictures indicate little effect
on eavity shape for ¢’ > 0.5 ¢.”'. Figure 28 is a series of photographs
near the critical heat flux showing the effect of velocity on the boiling
pattern for nearly saturated boiling.

Fra. 28. Effect of velocity on the boiling pattern of nearly saturated water (4° F
subeooling) from a 1¢-inch tube at 90¢, of eritical flux. (a) 1.2ft/sec. (b) 2.4 ft/sec.
(o) 4.7 ft/sec.

Observation of the two-phase flow pattern with subcooled boiling at
atmospheric pressure (97) indicates that the mechanism of failure when
the subcooling is approximately 30° ¥ or less is similar to that for saturated
boiling. A definite vapor cavity is again formed in the wake of the cylinder
when the heat flux is large, and the liquid which cools the rear half of
the eylinder enters the cavity between the vapor bubbles in the two-
phase boundary layer.
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For subcooling greater than about 30° F there is insufficient vapor
to form such a cavity because of the rapid condensation which occurs.
The two-phase boundary layer on the rear half of the cylinder which
is now bounded by liquid rather than vapor, continues around the
periphery of the cylinder nearly to the 180° position. An irregular and

Fic. 29. (a)_ (For descriptive legend see page 256)

unstable accumulation of vapor in this region leads to the interruption
of nucleate boiling. The mechanism of failure is probably similar to the
low subcooling case except that the region occupied by vapor is smaller,
less well-defined, and appears to be time-variant.

Figure 29 presents a series of photographs which illustrates the effect
of increased subcooling on the boiling pattern at a liquid velocity of 2
ft/sec. The vapor cavity clearly exists up to 20° F subcooling, while
at 30° T it has almost disappeared. At 50° F subcooling the pattern is
reduced to an irregular accumulation of vapor near the 180° position.
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2. Analysis

A simplified physical model has been proposed (90) of the mechanism
of failure of nucleate boiling when a vapor cavity exists behind a cylinder,
e.g., when the subcooling of water at atmospheric pressure is less than

Fia. 29. (b) (For deseriptive legend see page 256)

about 30° ¥. Shown schematically in Fig. 30, this model assumes that
the nucleate boiling crisis is caused by a deficiency of liquid entering
the cavity between vapor bubbles at the angle 6, from stagnation. If
the hguid enters the cavity at saturation temperature and all of it is
vaporized in cooling the top of the cylinder, the eritical heat flux is

"o I{Kl)\Pl
7 = D(‘Il' - 05)

where W is the volumetric inflow of liquid per unit length of cylinder.
The analysis consists largely of evaluating this liquid flow rate into the
eavity.

[254]
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The liquid which enters the cavity is assumed to be that liquid in the
two-phase boundary layer which flows between a surface through the
centers of average sized bubbles and the heater surface as the bubbles
pass the angle 8, The precise value of 6, is difficult to determine, but
observation of the boiling pattern indicates it is approximately = /2.

Mﬁh\‘ﬁ.‘l’ M—.. ,w
e a s C N T e

o T g o+

Fr1a. 29. (¢) (For descriptive legend see page 256)

The liquid velocity on the front half of the cylinder just outside the
boundary layer can be obtained from potential theory, while a linear
veloeity profile is assumed for the two-phase boundary layer in that
region. It is then possible to approximate the liquid flow rate in the
boundary layer at the location 6, with the result from Eq. (54)

1.083k Atyas \ﬁ/ _
cII 5:)
! ~J+/a ND (55)

The quantity f is the integrated average value from the stagnation point
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to 8, of the fraction of the surface heat flux which goes to the production
of vapor in the boundary layer. This quantity may be a function of
velocity and tube diameter, but would he expected to be dependent
chiefly on the fluid properties. It will be retained for the present as an

(d)

Fic. 29. Effect of subcooling on the boiling pattern for water from a lg-inch tube
at approximately 809, of critical flux (91). The velocity is 2.35 ft/sec. (a) 4° F
subcooling and 228 Btu/(sec)(sq ft) heat flux. (b) 20° F subcooling and 255 Btu/
(sec)(aq ft) hecat flux. (¢) 30° F subcooling and 266 Btu/(sec)(sq ft) heat flux.
(d) 50° I subcooling and 311 Btu/(see)(sq ft) heat flux.

unknown parameter to be evaluated from experimental data for the
critieal flux.

3. Faperimental Data

The effect of velocity on the critical flux for water at atmospheric
pressurc is shown in Fig. 31, which includes three points obtained by
Beecher (92) for saturated water with 0.024-inch diameter wires and
seven points by Vliet and Leppert (90) for 3 to 5° I' subeooling with
0.125-inch diameter tubes. A dimensional expression for the velocity
dependence is

¢’ = 1781, Btu (sec)(sq ft) (H6)

where 17, is the average liyuid velocity at the heater in ft/sec (90).
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Critical flux was also measured for nearly saturated water (3 to 5° F
subeooling) over a heater diameter range of 0.010 to 0.189 inch. Figure
32 shows these results, together with saturated boiling data of Beecher
(92) for a 24-mil wire, from which can be deduced a weak diameter

:] Liquid
Vapor
Heater

Fia. 30. Proposed model for forced-convection boiling of a saturated liquid from
a uniformly heated cylinder (90).

dependence of the form
g~ 1/Do1s

for boiling with very low subecooling.

The analytical prediction of the effects of velocity and diameter may
be compared with experimental data by inserting the fluid properties,
k and «, as well as expressions for the temperature difference At and
the fraction f into Eq. (55). Alternatively, since the fraction f is unknown
and too complex to analyze at present, we can evaluate the other param-
eters in Eq. (55) and then see whether the required variation and magni-
tude of f is physically reasonable.

The average heater surface temperature was measured at numerous
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Fig. 31. The variation of critical heat Aux with velocity for nearly saturated water
flowing normal to a heated tube (90).
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Fi6. 32, The variation of critical flux with heater diameter for the forced convection
of saturated water at atmospheric pressure (90). Seven points shown at 0.024-inch
diameter are from Beecher's results (92).

values of the nucleate boiling heat flux up to the eritical value for a num-
ber of velocities. The empirical relationship which fits these data for
water at atmospheric pressure is

¢' = 0.105(Al,)?° Btu, (sec)(sq ft) (77)
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This dependence on the temperature difference, though in exact agree-
ment with a prediction of Forster and Greif (6) is somewhat weaker
than the third-power variation found by Rohsenow (47) from the data
of Addoms and others. For other boiling situations, values of 4 to 6 for
this exponent are not uncommon.

If Eq. (57) is used to eliminate At in the analytical prediction (Eq.
(55)) and if the values 1.1 X 10~* Btu/(sec)(ft)(°’F) and 1.8 X 10~°
ft2/sec are substituted for k and «, (8) we obtain

n _ 0075

fz
For agreement between this result and the Y4-inch tube experimental
data (Eq. (56)), it is necessary that

c

(g) Btu/(sec)(sq ft)

7= 0.207%

This indicates that f varies from 0.20 to 0.36 over the velocity range
from 1 to 10 ft/sec.

Jakob (1) and Rohsenow and Clark (4) reported values below 0.10
at fluxes well below the peak, while the flat plate, pool boiling analyses
of Kutateladze (56) and Zuber et al. (62, 63, 64) include the assumption
that the entire flux evolves as latent heat of vaporization at the eritical
condition, in which case the fraction is unity. The value of f required
in the present analysis refers to the front half of the cylinder, while the
transition to film boiling invariably occurs in the rear half. Consequently,
the front half could sustain a higher flux before transition, and a value
of J less than unity but greater than 0.10 is to be expected.

The experimental results shown in Fig. 32 indicate a trend of the peak
flux to decrease with increasing heater diameter, which is qualitatively
consistent with the analysis. However, the dependence predicted by the
analysis is much stronger than the experiment seems to indicate. Further
consideration of this discrepancy suggests that as the tube diameter
becomes smaller, the fraction of surface covered by the bubbles may
become larger, since the bubble size is determined by the nature of the
surface and by the liquid properties, not by the tube diameter. The frac-
tion of heat transferred to the vapor may therefore become larger, and
it is reasonable to suppose that the fraction f is a weak inverse function
of diameter as well as a function of velocity. It is necessary for the
fraction f to have a dependence of f ~ D~%42 to agree with the empirical
results.

The effects of velocity and heater diameter have also been determined
for subcooled boiling of water from cylindrical tubes (91). Figure 33
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shows the results of 60 burnout tests made with 0.125-inch o.d. by 0.10-
inch wall, type 347 stainless steel tubes. The curves which have been
drawn through these points show that the critical flux varies approxi-
mately linearly with subcooling except at the higher velocities, where
there is little effect of subcooling below 20 to 30° F. The trends are con-
sistent except for an inversion of the generally positive effect of velocity
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F1a. 33. The variation of critical flux with subcooling and velocity for water flowing
upward across }g-inch tubes (91).

in the range from 2 to 6 ft/sec. The reason for these anomalously low
values obtained at 4.75 ft/sec and high subcooling is not known, but
may have been caused by a change in the flow pattern between 2 and 6
ft/sec which was not observable by the methods employed in the
investigation.

Kezios and Lo (93) have obtained critical heat flux data for 0.125-inch
diameter stainless steel rods which show a similar dependence on the
subcooling to that in Fig. 33, but only qualitative agreement with the
velocity dependence. A possible explanation for the discrepancy may lie
in the corrections for channel blockage by the heater tubes, since the
tubes occupied a larger fraction of their channel flow area than did the
solid rods.
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Figure 34 presents all the data of Vliet and Leppert, including not
only the 64 tests with 0.125-inch tubes, but also 38 tests with wires and
tubes from 0.010 to 0.189-inch o.d. The data, when correlated in this
form, can be represented by

g’ = 140 + 24V, + 3.9A¢,.1, Btu/(sec)(sq ft) (58)

with a mean deviation of 129%,. The data of Kezios and Lo can be repre-
sented by the following equation which differs from Eq. (58) only in
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Fra. 34. Correlation of critical heat flux measurements for cylinders at various
velocities, subcoolings, heater diameters and wall thicknesses (91) including data of
Kezios and Lo (93).

the constant term
g’ = 70 + 24V, + 3.9Aku, Btu/(sec)(sq {t)

This linear variation of critical heat flux is in agreement with the experi-
ments and analyses of numerous investigators.

Investigation of the effect of heater diameter on the peak heat flux
in subcooled boiling was made for several liquid conditions over a range
of diameters from 0.010 to 0.189-inch, using type 321 stainless steel
tubing of 0.010-inch wall thickness for diameters greater than 0.020-inch
and stainless steel wire for diameters less than or equal to 0.020-inch.
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In general, the variation can be represented at a given approach velocity
and subcooling by

([(‘" ~ l_/D.' (59)

where v is a positive exponent which depends on the liquid velocity and
subcooling. For the nine liquid conditions investigated, the exponent y
is plotted as a function of velocity with subcooling as a parameter in
Fig. 33, and the estimated constant subcooling lines are indicated.
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Fic. 33, Variation of the diameter exponent in Eq. (59) with water velocity at
various subeoolings (91).

The inverse variation of the critical flux with heater diameter at a
given liquid approach velocity and subcooling is consistent with the
direct dependence of the critical flux on subcooling. For flow across a
heated element the effective subcooling varies over the surface in the
flow direction, the lowest value occurring at the farthest point down-
stream. Therefore, the larger the test section the lower is the effective
subcooling in the liquid near the element at a given heat flux, and the
lower is the critical flux.

The saturated, forced convection boiling data of Beecher (92) for
0.024-inch diameter wires, when compared to the results for 0.1253-inch
o.d. tubes, indicates a diameter exponent of 0.15 over the entire velocity
range from 1.2 to 10 ft/sec. This result is also shown in Fig. 35.
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NOMENCLATURE
area ¢  heat flux to a bubble across the
surface area of the base of a bubble liquid-vapor interface
attached to a surface r bubble radius
surface area of the liquid-vapor R cavity radius
interface of a bubble attached toa ¢ temperature
surface ts surface temperature
specific heat to bulk liquid temperature
diameter tat  saturation temperature
hydraulic diameter At ty — to
acceleration of gravity Algyy  Es — Laay
dimensional constant relating force  Afaun st — &0
and mass in Newton’s law of vse  specific volume change by vapori-
motion zation
standard acceleration of gravityat V velocity
the earth’s surface X.  steam quality at critical heat flux
mass flux Y body force per unit mass in the y
convective heat transfer coefficient direction
average boiling heat transfer o thermal diffusivity
coeflicient B contact angle
mechanical equivalent of heat ¢ chemical potential
thermal conductivity A latent heat of vaporization
wave length m viscosity
- wave number p density
Jakob number, (fo — tt)pic/Nov 7 surface tension
Nusselt number, 2D /k T time
Prandtl number, cu/k P velocity potential
Reynolds number, DVp/u ®rpr  two-phase friction multiplier
pressure @ disturbance frequency
pressure difference corresponding  Subscripts
to superheat, ¢ — Zy.¢ ! liquid
heat flux v vapor
critical heat flux
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I. Introduction

Electromagnetic phenomena in rigid conductors have been studied
ever since the time of Faraday. It has not been until fairly recent years,
however, that the interaction of electromagnetic fields and electrically
conducting fluids has attracted much attention. Probably the largest
incentive toward an understanding of such phenomena came from the
field of astrophysics. It has long been suspected that most of the matter
in the universe is in the plasma or highly ionized gaseous state. Much
of the basic knowledge in the area of electromagnetic fluid dynamics
evolved from these studies.

The field of plasma physics has now grown from these scholarly begin-
nings to include problems in such widely diverse areas as geophysics
and controlled nuclear fusion. Most of the recent impetus toward the
establishment of a firm theoretical basis for this discipline has, in fact,
been due to the requirements of modern fusion reactor design.

As a branch of plasma physies, the field of magnetohydrodynamics
{MHD) consists of the study of a continuous, electrically conducting
fluid under the influence of electromaguetic fields. Originally, MHD
included only the study of strictly incompressible fluids (hence the
“hydro”), but today the terminology is applied to studies of partially
ionized gases as well. Other names have been suggested, such as magneto-
fluid-mechanics, or magnetoaerodynamics, but the original nomenclature
has persisted. The essential requirement for problems to be analyzed
under the laws of MHD is that the continuum approach be applicable.

A. MHD axp Heat TRANSFER

With the advent of hypersonic flight the field of MHD as defined
above, which had heretofore been associated largely with liquid-metal
pumping and flow velometry, attracted the interest of aerodynamicists.
The possibility arose of altering the flow and heat transfer around high-
velocity vehicles provided that the air were sufficiently ionized. Further-
more, the invention of high-temperature facilities such as the shock tube
and plasma jet provided laboratory sources of flowing, ionized gas, which
provided an incentive for the study of plasma accelerators and generators,
[268]
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As a result of this, many of the classical problems of fluid mechanics
were reinvestigated. Some of these analyses arose out of the natural
tendency of scientists to investigate a new subject. In this case it was
the academic problem of solving the equations of fluid mechanics with
2 new body force and another source of dissipation in the energy equation.
Sometimes there were no practical applications for these results. For
example, the natural-convection MHD flows of Section I1I have been of
interest to the engineering community only since the introduction of
liquid-metal heat exchangers, although the thermal-instability investiga-
tions of Section III are directly applicable to problems’in geophysics
and astrophysics.

The study of channel-flow heat transfer discussed in Section IV has
many applications to the propulsion and power-generation field. The
pioneer work in channel flow was done by Hartmann and Lazarus (1, 2)
in their studies of liquid-metal pumps. Many of the one-dimensional
heat-transfer analyses today are extensions of the early Hartmann flow
problem. In reality, however, the assumption of continuum flow is not
always justified in flows of partially ionized gases under both electric
and magnetic fields. This particular limitation of classical MHD will be
discussed further in Section I,B.

But it was in the field of aerodynamic heating that the largest interest
was aroused. Rossow (3) presented the first paper on this subject in
1957. His results, for incompressible, constant-property flat-plate
boundary-layer flow, indicated that the skin friction and heat transfer
were reduced substantially when a transverse magnetic field was applied
to the fluid. This encouraged a multitude of analyses for every conceivable
type of aerodynamic flow; most of the research centered on the stagnation
point where, in hypersonic flight, the highest degree of ionization could
be expected. The results of these studies were sometimes contradictory
as to the amount by which the heat transfer would be reduced. (Some
of this was due to misinterpretations and invalid comparisons.) Even-
tually, however, it was concluded that the field strengths necessary to
provide sufficient shielding against high-heat fluxes during atmospheric
flight were not competitive (in terms of weight) with other methods of
cooling (4). However, the invention of new, lightweight, superconducting
magnets has recently revived interest in the problem of providing heat
protection during the very-high-velocity reentry from orbital and super-
orbital flight (5).

The present study is divided into several sections, each dealing with
a particular classical heat-transfer problem. The simple one-dimensional
flows {Poiseuille and Couette) will be discussed at some length in Sections
IV and V in order that the behavior in more complex flow problems can
be more easily interpreted. In each case the effects of the magnetic and
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electrie fields will be assessed in the light of analyses available in the
published literature.

We shall also be dealing almost exclusively with laminar flow problems.
Because of the semiempirical techniques used to analyze the turbulent
houndary layer, it is necessary to rely on accurate experimental measure-
ments to obtain certain constants in the skin-friction laws. In ordinary
fluid mechanics, Reynolds' analogy can often be used to obtain heat-
transfer coeflicients from the variation of shear stress. But Reynolds’
analogy will not be applicable in MHD flows, and it will therefore be
necessary to measure both skin friction and heat transfer to determine
the empirical constants. To date, the experiments in MHD turbulent
flow have been confined primarily to studics of skin-friction drag and
transition from laminar to turbulent flow in insulated channels. As a
result, the heat-transfer portion of the theory has not yet been developed
to the extent that realistic analyses of turbulent heat transferare available
in the literature (see, e.g., Section 1V ,B,1.),

This study assesses the effects of externally applied electromagnetic
fields on heat transfer to electrically conducting continuous fluids. In
order to present a logical exposition of this broad subject, the basic equa-
tions are developed first and various classical problems are discussed,
such as free convection and heat transfer in channel flow and at a stagna-
tion point. Each of the areas discussed is of practical import in the
engineering field of today. The simple one-dimensional flow of Section
I'V illustrates many of the heating problems associated with some modern
generators and accelerators. Similarly, the plane shear flow of Section
V serves as a representative example of the more sophisticated flows
arising in the study of aerodynamic heating. The limitations of the
continuum approach demonstrate the outstanding problems which remain
in each of the subject areas discussed.

It is shown that this field of heat transfer contains problems of two
general types: those in which the heating is a consequence of electro-
magnetic fields applied to the fluid for purposes of generating power or
pumping, and those in which the electromagnetic fields are used primarily
to control the heat transfer (i.e.. at the stagnation point of a blunt
body or in natural convection flows.)

The extreme heating rates associated with the first area are due pri-
matrily to the presence of large electrie fields in the fluid and the attendant
Joule heating. In the second, the ponderomotive force on the fluid caused
by the interaction of the flowing conductor and unapplied maguetic field
controls the motion of the fluid and reduces the heat transfer. Although
this technique is limited in application by the large magnetic field
strengths necessary to affect the flow of naturally ionized air, the develop-
{270]
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ment of superconducting magnets holds promise for future utilization in
the reduction of aerodynamic heating, especially for reentry at super-
orbital speeds.

This survey of electromagnetic effects on heat transfer indicates that
the most serious lack in this field today is experimental verification of
the existing theory.

B. Limitations N Crassic MHD THEORY

Every mathematical description of a natural phenomenon contains
certain approximations. The concept of a continuous fluid is one which
serves quite well in determining the gross behavior of a gas, as long as
the mean free path is small compared to the characteristic length in
the flow. In accordance with this assumption, it is generally specified
in MHD analyses that the electronic mean free path is small compared
to such characteristic lengths in the problem.

It is also assumed that the fluid will not support any excess of charge—
1.e., that it is electrically neutral in a local sense. This condition is easily
satisfied when the fluid is a continuum and isunbounded. Near boundaries,
where strong concentration gradients exist, it is necessary to examine
further the concept of charge neutrality.

1. Wall Effects

The currents in a gas are determined by the motion of the charge
carriers relative to the mean velocity of the gas. If we assume either
thermal equilibrium or ion generation by the action of externally pro-
duced electromagnetic fields, then, because the electrons are much lighter
than the ions, their thermal velocities are much higher. In an unbounded
gas without concentration gradients, the region of excess of charge in a
unit volume is determined by the electron Debye length, which is pro-
portional to the square root of the ratio of electron kinetic energy to the
electron density (6). In essence, an ion will not “see’” an electron over a
distance larger than a Debye length. A gas in which the continuum
property is upheld, therefore, will not tolerate an extensive space charge,
and is said to be quasi-neutral.

To insure quasi-neutrality in the presence of concentration gradients
and electromagnetic fields, it is necessary to specify further that the flux
of charge into any volume equals the flux of charge out of it. The physical
process which regulates the charge density in this case is referred to as
ambipolar diffusion (7). The ambipolar-diffusion coefficient is so defined
that the flux and the number density of charges of opposite sign are equal;
hence, where it is assumed that ambipolar diffusion oceurs the concept of
quasi-neutrality is automatically satisfied.
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This difusion process is best deseribed as a limiting situation, in which
clectrons leaving a volume element will initially diffuse to the walls more
rapidly than will the ions. They will set up near the wall, by this motion,
a negative space-charge field that repels further electrons and attracts
the ions. Qutside the space-charge sheath, electrons and ions will diffuse
at the same rate and, by definition of the diffusion coefficient, the charge
density will be zero. The dimensions of the sheath will again be governed
by the clectron Debye length. For the case of electrically insulating
houndaries in continuum flow, the sheath is of negligible extent and is
unimportant as far as the heat transfer is coneerned,

In the prescnce of strong electrie-field gradients, such as found near an
clectrode, conditions at the sheath may seriously affect the heat transfer
to the electrode. This problem, which will exist in many low-density
MHD generators, has not yet been assessed at any length in the litcrature
(see, e.g., Sections IV,B, and VI,B.).

2. High-Field Effects

Unlike the formation of the sheath, which is due to the high thermal
veloeity of electrons, another restriction in the application of continuum
magnetohydrodynamics to problems involving ionized gases arises
because of the directed motion of charged particles in electric and mag-
netic fields. The former will occur in any bounded system of low-density
plasma; the latter will exist at pressures which are normally (in the zero-
field case) sufficient to insure the continuum approach. These effects,
which can be loosely termed as “‘high-field”’ effects, will not be covered at
any length here because they oceur outside the range of continuum MHD
in the strictest sense.- They are, however, of sufficient importance to
practical engineering problems in modern MHD devices that this brief
description is warranted.

a. Hall Currents. In a gas which is sufficiently dense, the electron-atom
collision frequency, v, is large enough so that the tendency for free
electrons to spiral around the magnetic field lines is suppressed. If the
applied ficld is large or the gas density low so that the cyclotron fre-
yuency, @ = eB: m, exceeds the collision frequency, the electron can make
a number of eyclotron orbits between collisions and will drift in a direction
perpendicular to the direction of the magnetic and electric fields. T'his
drift produces a current (the Hall current), and the gyromotion decreases
the electric conductivity of the gas (7). Referring ahead to Ohm’s Law
[Eq. (9)], we can include the contribution to the current due to the Hall
effect, namely

j= 2~ |E4+vXB- -'_>_<_§] (1)

1+ (9)[ e

Ve
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where the conductivity ¢ is reduced by the factor (1 -+ (w/».)?) and where
the last term in the brackets is the Hall current, ju.

By lowering the conductivity, the Hall effect thus reduces the current
in the direction of the electric field and causes a current to flow normal
to both E and B. While it is obvious that any DC power generator
or accelerator will become inefficient in high field strengths unless it is
designed to operate in the Hall mode, the Hall effect also influences the
flow, and hence the heat transfer, in a direct manner. It can be shown
from Eq. (1) and the discussions of Section II,B, that this current will
interact with the applied magnetic field to induce a transverse motion of
the fluid. For example, a given two-dimensional flow would become three-
dimensional. The Hall effect therefore places a serious restriction on the
regime of applicability of many solutions in which partially ionized gases
are analyzed using continuum MHD. The limits of validity for solutions
of this sort will be noted when appropriate.

b. Ion Slip. When the ratio w/». becomes very large, the electromagnetic
field can force both the ions and eleetrons to produce a relative drift
between them and the neutrals. This drift is called “ion slip” and is of
course negligible for highly ionized gases. Brunner (8) has investigated
both the Hall and ion-slip effect for equilibrium air and concludes that
for low-pressure conditions and an applied field of 10* gauss (1 weber/m?)
the conductivity is reduced materially by as much as a factor-of 10° at
operating pressures of 102 atm.

Since both the Hall effect and ion slip will oceur in low-pressure,
moderately-high-temperature environments, they will affect the heat
transfer in both a generator/accelerator and a boundary layer. To the
author’s knowledge the heat transfer under such conditions has not yet
been investigated. It can, however, be predicted that these problems will
form the next generation of MHD-heat-transfer studies.

II. The Basic Equations

The governing equations of magnetohydrodynamics result from a com-
bination of two disciplines: electromagnetic theory and fluid mechanies.
Extensive derivation of the equations is beyond the scope of this article;
instead we will make use of rather general, fundamental laws and refer
the reader to the cited literature for a more comprehensive treatment.

A. THE ELECTROMAGNETIC SYSTEM

According to electromagnetic theory (9), the forces on a conducting
fluid at rest are of the following types: ponderomotive, magnetostrictive,
electrostrictive, and electrostatic. The ponderomotive force is the force
on a volume distribution of current in a magnetic field. Magnetostriction
and electrostriction are both defined, for a nonferromagnetic medium, as
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elastic deformation of the fluid under the influence of electromagnetic
fields. They are important in & medium where the magnetic permeability
and electric susceptibility are functions of the fluid density. The electro-
static force is the usual body force on free-charge carriers in the fluid.

It is usually assumed in MHD that the permeability p. and the dielec-
tric constant e are constant; displacement and polarization eurrents are
neglected; and, in accordance with the continuum approach, the net-
charge density, p., is zero. Justification for the neglect of these terms
depends, of course, on the physical properties of the gas as well as on the
nature of the applied electromagnetic fields. I'or example, we will be
discussing time-independent fields exclusively in this article, so that
plasma oscillations, for example, will not be considered and the dis-
placement current can be neglected. The validity of these assumptions
depends further on the relative size of the electromagnetic forces com-
pared to the fluid-dynamice forces in a given fluid. Lykoudis (10) has
pointed out that for electrostatic free-convection problems in polar liquids
or gases the electrostrictive force can be on the same order as the buoyant
forces (Section III,A). But this situation will be the exception rather
than the rule in the MHD problems likely to be encountered, for the
ponderomotive force and inertia or shear terms are usually large enough
to justify the above assumptions,

This leaves the ponderomotive force as the only remaining electro-
magnetic force on the system at rest. In order to assess the interaction of
the applied fields with a moving fluid, it is convenient to transform the
system to the same frame of reference in which the basic thermomechani-
cal laws are used. Maxwell’s equations for time-independent fields in a
system at rest are

VXH=]j 2
VXE=0 (3)
V-B=V-D=20 (4)

where
D = ¢E and B=H (5)

and where H is the magnetic field strength, j, the current density, B,
the magnetic induction, and D, the dielectric displacement. The above
equations are written in the MKS (m-kg-sec) system of units. Conversion
tables between these and the cgs system are given in most textbooks (9).
Under a Lorentz transformation for nonrelativistic velocities, Eqgs. (2)
to (5) still hold in the fluid, but the field vectors E and H are replaced by
E;=(E+ VXB)and H = (H— V X D), so that Egs. (2) and (3)
become
VXH-VXD) =j 6)
VX(E+VXB) =0 )
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where V is the center-of-mass velocity of a fluid element; B, D, aund j are
unchanged, as are the differential operators, when V is much less than the
speed of light and p, = 0.

Equation (7) establishes that an electric field will be present in the
fluid due to the motion of the current-carrying conductor through the
magnetic field. It can be written for a constant-density fluid (V- V = 0)
as

VXE=®B-W - (V-V)B (8)

which is often called Faraday’s law of induction for a moving medium (9).
Equation (8) is not valid unless the density of the fluid is constant.
Since this electromagnetic system is now at rest in the fluid, we can
apply the phenomenological laws for a medium at rest and obtain Ohm’s
law
j=dE -+ V XB) 9
and Joule’s law

Qi =j*/o = o(E + V X B)? (10)

Ohm’s law now includes the current induced by the motion of the con-
ducting fluid through the magnetic force lines. The heat due to electrical
dissipation in a conductor is given by Joule’s heating law. Again, the fluid
flow will contribute to the heat through the induced field. The con-
ductivity in Egs. (9) and (10) is assumed to be scalar, as discussed in
Section I,B,2.

B. Tue MAGNETOHYDRODYNAMIC EQUATIONS

It is now possible to derive the conservation equations for MHD flow
by the usual method of balancing across differential fluid elements.
Although these equations are written for generality for time-dependent
flows, we shall be considering only the steady state in this study.

The electromagnetic field cannot create mass, and the continuity
equation remains unchanged in form:

LR -
TV V) =0 (11)

where p is the fluid density and V is the velocity. For reacting gases, the
continuity of each species should be considered.

It is a ecomparatively simple matter to derive the momentum equation.
Starting with Newton’s law

dVv
pgr = F (12)

where F is the sum of all the forces acting on the fluid, we need only
congider which forces arise from the electromagnetic field. The usual
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flutd-dynamic forees are
Fm = —VP + Tij + f (13)

where r;; is the viscous stress

9 du; , du; Lo
ax; [” (31’;' o T e 6”)]

and where f is due to gravitational and buoyancy forces.

The electromagnetic force which acts in Eq. (12) is the usual pondero-
motive force discussed earlier, where the fluid is considered a rigid
current-carrier moving in a magnetic field; that is,

F.=jXB=¢(E+VXB)XB (14)

part of which would exist if the fluid were at rest, and part of which is due
to the current induced by the motion through the magnetic field. ‘The
force ¢E X B will accelerate or decelerate the flow, depending on the
direction of E, B, and V; the “back” emf ¢V X B will provide a current
whose interaction with B will always decelerate the flow.

With the forces of Egs. (13) and (14), the momentum equation becomes

p‘-f,}'=—Vp+r,-,-+f+a(E+VxB>xB (15)

where ddl is the substantial (Eulerian) derivative.

A derivation of an energy equation for MHD should take into account
the electromagnetic theory for a moving medium and the thermodynamics
of an electrically conducting gas. The most rigorous and complete deriva-
tion in the literature is that of Chu (11). Other derivations (12, 13),
which satisfy the first law of thermodynamics by physical reasoning based
on Maxwell’s equations at rest, are shown by Chu to be correct (although
difficult to interpret) as long as p. and ¢ are constant.

The difficulty encountered in writing an energy equation for a gas in
which ¢ = ¢(p.T) and u, = u.(p,T) arises when the constituents of the
energy balance given by the first law are separated into mechanical and
electromagnetic parts. The reader is referred to (11) for a complete
treatment of this particular case, since with the exception of Section
I11,A, we shall not be concerned with problems where the electromagnetic
parameters u. and ¢ are variable.

From the first law, the energy balance can be written

dle = dW, + dWa + dQ (16)

where U, is the internal energy per unit mass, W, the reversible work, W,
the energy dissipated internally, and @ the heat flux. Chu writes the
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internal energy and the pressure as the sum of mechanical and electro-
magnetic components; however, when e and u, are constant, these electro-
magnetic terms are balanced by the electromagnetic contribution to the
reversible work; i.e., if

_ L(D L B, T (10 1om
u‘_C”T+['2’,3(7+I>+2p(eaT+p,aT)]

p,=pRT+%(B-H+D-E)+%p[m%‘§+m§§]

and dW,=p;d<—l—>—H-d<]—?’>—E-d<2>
) p P

then only the mechanical contributions remain in Eq. (16) when ¢ and g,
are constant. It can also be shown (Section IIT A) that this is true even
when ¢ and y, are variable; however, this result depends on the particular
law by which these quantities are related to temperature and density.
It should also be specified again that the momentum balance, Eq. (15),
is also affected when e and u, are variable, because of the entrance of
electromagnetostrictive forces.

The remaining terms in Eq. (16) are the dissipative energy given by
viscous dissipation and Joule heating, and the heat flux due to diffusion,
conduetion, and external sources. Using Eq. (10), we can therefore write
for the energy equation

[FHrg()]--va+erar.@rvxm ay
where now U and p are the ordinary state variables given by the first
terms in Eq. (17), §is the heat flux due to conduction and diffusion, and &
the viscous dissipation 7,;0u;/dx;. The heat flux will be discussed further
in Section ILE,1.

It is convenient at this time to present alternate forms of Eq. (18).
TFor an incompressible fluid, dll = ¢dT, where ¢ is the specific heat.
Then Eq. (18) becomes

4T
Pe G

since the work due to compression is zero.
When the fluid is compressible, dUl = dh — d(p/p) so that Eq. (18) is
written in terms of enthalpy as

dh _dp . "
p = Vet e+ @+ (20)
This form is often useful in a dissociated or ionized gas. If we define the
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stagnation enthalpy as h, = h 4+ V2/2 in the usual manner, and eliminate
the pressure term by using the momentum equation, then

P = S 4+ Qt @+ V) +E (21)
and the stagnation enthalpy is increased by the power energy addition
j - E. This would be expected, for in the fluid at rest, j = ¢E and the ohmic
heating does not vanish. When there is no electric field applied, the
stagnation enthalpy is unchanged explicitly by the presence of the
magnetic field, although magnetic effects enter implicitly through the
viscous term. It is thus convenient to use I5q. (21) for compressible-flow
problems when the applied electric field is zero, for example, at the
stagnation point of a blunt body (Section VI).

Oue final equation is needed to complete the system hydrodynamically.
This involves the magnetic field which appears in the ponderomotive-
force term in Eq. (15) and the Joule heating term in Eq. (18). It is obvious
that the magnetic field when applied to the fluid will alter the flow pattern
through these coupling terms. In much the same manner, the fluid will
react on the applied field through Ohm’s law to relieve these forces. Thus
the magnetic field which appears in the MHD equations is the resultant,
or total magnetic field present in the fluid. Its behavior is determined by
Faraday’s law of induction, Eq. (2), from the total of currents acting in
the system, including those, if any, which generate the applied field.
Using Eq. (9), and letting jo denote the current in an external solenoid,
we can write for B

V X B = pjo+ po(E + V X B) (21A)
where VXE=0 (22)

As it stands, Eq. (21A) contains the electric field and is not easy to solve.
If, however, the gas is such that ¢ and p are constant, then the continuity
equation, along with Eq. (22), may be used to give

1
V-V)B=B )W+ —W 2:
(V-¥)B = (B- V)V + — VB (23)

where the conductivity of the coil has also been taken as constant.
Equation (23) determines the magnetic field in the fluid when ¢ and p
are constant and illustrates the coupling which can exist between the
hydrodynamic and electromagnetic fields. Fortunately, it is often possible
to linearize the magnetic terms in the system of equations. This will
become evident when the magnitude of these terms is discussed in
Section II,D.
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C. Bounbary CoONDITIONS

The fluid and thermometric boundary conditions are unchanged by
the addition of electromagnetic fields. For continuum flow the tangential
and normal velocities vanish at solid boundaries, while the fluid tempera-
ture must be continuous.

The electromagnetic equations must be satisfied in the region outside
the moving fluid. In this region, say, for example, in the walls of the
container, it may be necessary to use the complete Maxwell equations.
As we pass from the vacuum to the walls to the fluid, it will be necessary
to satisfy the following conditions at the boundaries (9): the normal
component of B is continuous and the tangential component of E is
continuous. If there is a charge layer on the surface, the discontinuity in
D is equal to the surface charge density, and if a surface current exists,
then the discontinuity of the tangential component of H is equal to the
current density at the surface. The latter condition of surface currents
will not exist if the conductivity of both media are finite, in which case
the tangential component of H is continuous. In some problems in MHD,
however, it is often assumed that the conductivity of the walls is infinite
in order to simplify the analysis of the problem. In this case, the first
condition must be satisfied. Finally, everywhere in the vacuum, walls, and
fluid, the conservation of charge for steady currents, V- j = 0, demands
that the lines of current density form closed loops. These loops may be
closed outside the fluid by the use of electrodes and wires,

The induced magnetic field is often neglected in MHD flows, so that the
boundary conditions for this component are rarely mentioned in the
literature. Its value at the fluid boundary can be ascertained by consider-
ing the flowing fluid as a carrier of current sheets, each of which will
generate a B-field. When the flow is symmetric, the induced magnetic
field will be symmetric. It will not necessarily vanish at infinity unless
the current acts as a line or point source. It is thus not possible to discuss
the boundary conditions on the induced magnetic field without a con-
sideration of the flow problem, which is a further coupling of the equa-
tions. For this reason we will present a more complete discussion of the
induced field for several flow configurations (Sections IV,A 2, and V,A 1).

D. DIMENSIONLESS PARAMETERS

In ordinary fluid mechanics, dimensionless parameters which delineate
flow regimes evolve from the transformation of the basic equations to
dimensionless form. The same is true in MHD flows, where the magnitude
of the electromagnetic parameters dictates the amount of interaction
between the fields and the flow.
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We will choose as reference conditions those constants which typify
the flow in a designated problem. These will be given the arbitrary
subseript o but they will, of course, depend on the particular problem
under analysis. With the buoyant foree included, the momentum equation
becomes

*
p‘_iy_:—V*+—0+ ‘Tu

dt Re?
+ SK(aE* X B*) + S(@V* X B* X B*) (24)

where the starred quantities are now dimensioniess; the pressure, p* is
as usual referred to the dynamie pressure, p,V,2. The dimensionless
temperature is

0= (T —T)/(Ts — Ty (25)

where T, and 7'; are arbitrary constant temperatures. The air properties
have been taken as variable for generality.
Most of the parameters in Eq. (24) are familiar. These are

Re = poVols _ Reynolds number = %ﬁ)rce (26)
He viseous foree
Gr =" po’gBLT, (T =T L3 = Grashof number
#0
buoyani force X 1pertxa force @7)

viscous force viscous force

where 8 is the coefficient of expansion and L is the characteristic length.
The new parameters in Eq. (24) are

2
= ”;BIO[L = magnetic-interaction parameter
oY o
- pon@eron}otwe force (28)
inertia force
and
_ Ee _ .. applied electric field
K = VB~ generator (pump) coefficient = = duced slestric field (29)

The sign of K is determined by the direction of the applied field. It is
negative when the applied field is in the opposite direction to the induced
field. Both S and K determine the magnitude of the ponderomotive
force in the general sense, for one can think of S as determining the
induced ponderomotive foree due to the interaction of the flow with the
field and SK determining the applied force, which would act even if the
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system were at rest. As such, in an inviscid flow, if either S or SK is
larger than one, the velocity will be affected.

When viscous forces normally predominate, as in a boundary layer,
either of the quantities SRe and SKRe should be of order one for the flow
to be affected by the fields. The product SRe defines one of the most
important parameters in MHD

, _ bonderomotive force

SRe -
viscous force

=M (30)

_ UoBozL2
M

By convention, M is called the Hartmann number, although M? is
certainly the more natural parameter (10).

Turning now to the energy equation, let us consider the compressible
case. Equation (18) becomes, for a perfect nonreacting gas and an iso-
thermal wall,

e S R Ry
+ V*-vp* + &88{a(KE + V* X B*)?2} (31)

where Q* = QL/psVs® is a dimensionless heat source. The usual
parameters in Eq. (31) are

Pr = X2 oy Prandtl number = So8Y dissipated (32)
ko energy conducted
_ Vol _ __ kinetic energy
&= Co(T: — Ty) Eckert number = 7 ool energy (33)

The others are defined above,
The Joule dissipation term in Eq. (31) will vanish only if

KE* = —V* X B*

i.e., “only if the electric field as seen by an observer moving with the velocity V*
vanishes. It is difficult to determine a priori when the Joule dissipation
will contribute significantly to the temperature distribution and the heat
transfer at the wall. In general, however, when an electric field is applied,
the term is not negligible. In fact, even when K = — 1, which corresponds
to the case of electrically insulated walls, the Joule dissipation is not
negligible. This is a result of the fact that when K = —1, the mean
current vanishes, but there remain circulating currents ¢*V* X B* which
can inﬂuence:the heat transfer (Section IV,A,3).

So far we have not mentioned the influence of the hydrodynamic flow
on the magnetic field. In order to determine this, consider Eq. (23),
remembering that both ¢ and p are constant. In dimensionless form, this
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equation becomes

(V¥ V)B* = (B* - V)V* 4+ ——— V2B* (34)
aope Vol
Equation (34) indicates the magnitude of the induced field—i.e., the
amount of bending of the applied field lines by the flow. The dimensionless
parameter in Eq. (34) is

Re,, = VoLoou, = magnetic Reynolds number (35)

in which 1/egu, can be thought of as a “magnetic kinematic viscosity.”

Notice that Eq. (34) is remarkably similar to the vorticity equation.
(Imagine that B* is replaced by Q.) The magnetic Reynolds number acts
in the same way a Reynolds number does: when Re,, is zero the field lines
are undisturbed by the flow, but when Re,, — « the lines are frozen into
the fluid. The induced magnetic field vanishes when Re, = 0, and the
notion equations ean be solved independently from Maxwell’s equations.
This is a strong assumption to make, but it is useful since first-order
influences of magnetic forces still are included.

Let us assume that Re,, < 1 so that the induced field B; is much less
than the applied field B. This corresponds to a weak interaction, which is
often the case in engineering MHD. Then the ponderomotive-force term
in Eq. (15) is determined by B, alone, where the current depends only on
the applied field. Equation (23) or (34) become superfluous, since the
induced field can be determined from Eq. (2) and Ohm’s law. It is often
useful to find B; when Re,, << 1 in order to verify that the assumption is
justified.

E. TRANSPORT PROPERTIES

In order to determine the heat transfer, suitable assumptions will have
to be made to account for the variation of transport properties of the
various working fluids. For liquid metals such as mercury or sodium the
transport properties are well-established and are tabulated in most
handbooks. It is not possible to make such a definitive statement about
ionized gases. Only the electrical conductivity has been measured at
high temperatures; for the remainder of the transport properties, it is
necessary to rely on calculations. It should be mentioned again that
when the magnetic field strength is large, the possibility exists that the
transport coefficients will be nonisotropie, as discussed in Section I1,B, in
which the Hall current was defined. We will, however, only be concerned
here with cases where the transport properties are scalar.

Since gases other than ionized air will be encountered in this article, we
do not have space to present values for the various transport properties.
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The literature cited in this section will provide a guide, if not a definitive
answer, to the problem of their determination.

1. The Heat-Fluzx and Thermodynamic Coefficients

The heat flux, §, in Eq. (18) consists of heat conducted through the
fluid element and chemical heat transported by diffusion of the reacting
species. In accordance with kinetic theory (14, 16), we may write

= —KVT + ) phuVi (36)
E=1
where & is the coefficient of thermal conductivity (usually referred to as
the “frozen” conductivity) and p:, h:, and V, the density, specific
enthalpy, and diffusion velocity of the kth species, in an n-species gas.
In writing Eq. (36) we have neglected thermal diffusion and pressure
gradients, as is usually done. Evaluation of the second term in Eq. (36)
is exceedingly difficult unless the mixture is a simple binary gas.
For a binary nonionized gas, Fick’s law gives

kak = —poVCk, k= 1, 2 (37)

where ¢; is the mass-fraction concentration of the kth species and D;; is
the binary-diffusion coefficient. A Lewis number can be defined as

- PDm-CTp-
k

where C, is the average specific heat. Using the above definition, Eq. (36)

can be written
2
= —kvT 'po (1 - I%) Z thCk] (39)

Le (38)

The Lewis number thus determines the amount of heat transported by
diffusion. When Le = 1, the heat flux is independent of the diffusing
species.

For a multicomponent nonionized mixture one can assume (14) that
the various Dy; are similar and use an average diffusion coefficient. This
cannot be done when the gas is ionized or not in thermal equilibrium
because the electrons then have a higher diffusion velocity than all the
other particles.

The transport coefficients &, u, and Dy, are difficult to determine for a
multicomponent, reacting, partially ionized gas. Caleulations have been
made, using the standard techniques of kinetic theory, but these differ in
their results because of various assumptions made as to the collision cross
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sections. It is felt that calculations using the low-temperature cross
sections, for example, (14) or (15), are as reliable as any others at the
present time. A good summary of all high-temperature transport proper-
ties is given in (I8). One remark should be inserted here about the
diffusion coefficients, however.

2. Diffusion in Ionized Gases

In high-temperature air, good agreement between theory and experi-
mental values of heat transfer in the absence of applied fields has been
found when the gas is assumed to be a binary mixture such that Dy
i the binary-diffusion coefficient. The Lewis number assumes values
(17) near Le ~ 1.4 for T < 9000°K. For other mixtures at high tempera-
tures where measurements are not available, a kinetic-theory approach
such as that described in (14) is adequate.

The theory of (14) considers an unbounded medium where the diffusion
of electrons and ions takes place independently, i.e., free diffusion. It was
pointed out in Section 1,B,1, that this is not possible near a boundary
where concentration gradients will lead to gross space charge if the ions
and electrons move at different velocities. The kinetic theory of a parti-
ally ionized three-component gas is given in some detail by Finkelnburg
and Maecker (1), but it is too lengthy to reproduce here. It can be
shown, however, that in the absence of strong normal electric fields the
diffusion of charged particles (as a group) to the wall obeys essentially
the same law as does the binary gas of Eq. (39). In the presence of strong
fields the electrons are accelerated to very high thermal velocities, and
the gas is unlikely to be in thermodynamic equilibrium.

3. Electric Conductivity

The electric conductivity, which determines the heat transport in an
indirect manner, is one of the best-defined of the transport properties
because it is relatively easy to measure.

When Hall effects are not considered, ¢ is a scalar function of tempera-
ture and density. Lamb and Lin (18) have measured ¢ for high-tempera-
ture air at various pressures. Among others, Brunner (8) has calculated ¢
for air when Hall effects and ion slip are important; his equations are
based on kinetic theory and are hence applicable to other gases. In many
cases it is desirable to seed the gas with some low-potential ionizing agent;
Brunner’s methods also apply in this case and he has calculated o for air
seeded with 19, potassium.

The natural variation of ¢ with temperature (or degree of ionization)
follows an easily remembered pattern. For degrees of ionization less than
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0.19%, ¢ is an exponential function of T, rising rapidly; as the ionization
exceeds this value, o ~ T%,

F. Résumt

Before embarking on a survey of the classical MHD heat-transfer
problems, let us summarize briefly the following pertinent facts which
have emerged from this section.

First, the ponderomotive force o(V X B) X B which is caused by the
interaction of the magnetic fields and the velocity always acts in a direc-
tion which will decelerate the flow. We may therefore expect an increase
in drag (considered as, say, ‘“magnetic’’ drag) whenever the pondero-
motive coefficient S is greater than 1, Conversely, the friction drag would
decrease because the velocity is lower.

The ponderomotive force due to the applied electric field ¢E X B will
accelerate the flow if E is opposite in direction to the induced electric
field ¢V X B. Otherwise, it will decelerate the flow whenever SK is
greater than 1.

The deceleration of the flow will always cause a decrease in heat
transfer if the Joule dissipation term is zero. This term vanishes only
when E = —V X B, or, equivalently, when V X (V X B) = 0. For an
incompressible fluid this reduces to the condition that

B-V)V=(V-V)B

i.e., a condition which depends on the geometric relation of the velocity
and field which cannot be determined a priori. When an electric field is
applied the Joule heating is, in general, significant.

The magnetic field will have no explicit effect on the stagnation
enthalpy when the applied electric field is zero. It will, however, affect
the magnitude of the viscous dissipation and should cause a reduction in
heat transfer since the friction drag is less, although one would not expect,
a priori, Reynolds’ analogy to apply in MHD flow.

The magnetic field induced by the current J = ¢(E + V X B) will be
generally assumed to be zero in most problems discussed here. To be
neglected, however, its magnitude should be small in comparison with
both the applied field and other forces in the momentum equation.

The parameters of most importance in this analysis are the interaction
parameter, S, the Hartmann number, M, and the generator coefficient, K.
Other parameters will arise during the course of the investigation, some
in conjunction with a special flow configuration. Others, which are
pertinent to ordinary heat transfer (Nusselt number, Stanton number),
are not changed in definition by the electromagnetic field.
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We will henceforth be discussing flows in which the Reynolds number is
moderate (laminar flow), and the magnetic Reynolds number is small.
Equations (11), (15), (18), and (23), or their dimensionless counterparts,
constitute the basic set of equations, along with an equation of state,
transport properties, and boundary conditions.

When boundary-layer problems are considered, the above equations,
with the exception of the additional MHD terms, will assume their
usual forms in the boundary-layer approximation. The methods of
solving the MHD boundary-layer equations are straightforward. Tech-
niques involving similar solutions or series expansions are employed just
ag in the field-free case. Because the reader is assumed to be familiar with
such procedures, these solutions are not discussed in detail.

III. Free Convection

Among the classical hydrodynamic flows which already contain a body
force are those associated with natural convection. When MHD became a
popular subject, it was only normal that these flows be investigated with
the additional, ponderomotive, body force as well as the buoyant force.
At first glance there seems to be no practical application for these MHD
solutions, for most heat exchangers utilize liquids whose conductivity is
so small that prohibitively large magnetic fields are necessary to influence
the flow. But some nuclear power plants employ heat exchangers with
liquid-metal coolants, so the application of moderate magnetic fields to
change the convection pattern appears feasible.

Another classical natural convection problem is the thermal instability
which occurs in a liquid heated from below. This subject is of natural
interest to geophysicists and astrophysicists, although some applications
might arise in boiling heat transfer.

Before these topics are discussed, it is worthwhile to mention another
free-convection problem in which electric forces, rather than the usual
MHD forces, play a significant role.

A. Free ConvEcrioN 1IN ELEcTrOsTAaTIC FI1ELDS

The ponderomotive force is by no means the most important of the
electromagnetic forces in free convection. It was pointed out in Section
I1,A, that the electrostrictive forces would be neglected in this treatment
of MHD flows because they were small. This is not necessarily true in a
heated, low-velocity fluid subjected to an electric field. In liquids or gases
with polar molecules, for example, the dielectric susceptibility will depend
on both the density and the inverse power of temperature, so that the
resulting force due to an electric-field gradient behaves much like the
buoyancy force in pure convection,
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The electrostrictive effect was first noticed by Senftleben and Braun
(19) in 1936. They were studying the free convection of gases in a hori-
zontal cylinder with a heated wire placed along the cylinder axis. When
an electric field was applied between the wire and the cylinder, the heat-
transfer rate increased by as much as 509, if the working fluid was
paraelectric (i.e., the molecules carry a permanent dipole moment).
Theoretical predictions of the Nusselt number, based on similarity
arguments, were found to be inadequate when later workers extended
the experimental domain. Studies recently made at Purdue University
(20) determined the Nusselt number semianalytically and found that the
increase in Nusselt number due to the electrostrictive force was a function
of the Prandtl number, the Grashof number, the Senftleben number, and
an empirical eonstant depending on the ratio of wire to cylinder diameters.
The Senftleben number behaves in much the same way as the Grashof
number of Eq. (27); if the gravitational force g is replaced by vE.2/d one
obtains the Senftleben number. Here v specifies the temperature depend-
ence of the electric susceptibility, F, is the electric field at the surface of
the wire, and d is the wire diameter. The analytic results compare well
with the experiments when the product (Senftleben) (Grashof) is small;
the comparison is better for gases than in liquids. It is also shown in (20)
that the energy equation retains its usual form [Eq. (18)] if the elec-
tric susceptibility and magnetic permeability are given by the Debye
theory.

Other electrostatic effects have been noticed in the natural convection
of a liquid in strong electric fields. For example, Schmidt and Leidenfrost
(21) found that the heat transfer in certain noncondueting oils (paraffin,
beeswax, and castor oil) was greatly increased when an electric field was
applied. These increases could not be attributed to the electrostrictive
effect, but were shown to result from the formation of electrically charged
“balls’’ of fluid which wandered in an irregular manner between the
electrodes. An electrohydrodynamic model of this phenomenon does not
presently exist, but one would suspect that the oil became charged
through friction and that the electrostatic body force contributed to the
peculiar convection patterns which evolved.

The essential element in considering these usually neglected forces is
their magnitude in comparison to the inertia and shear terms in the
momentum equation. In a forced convection flow these forces would be
too small in magnitude to ever influence the flow.

B. THERMAL INSTABILITY

Cowling (22) attributes to Walén the idea that a magnetic field will
inhibit the onset of convection in a liquid heated from below, The
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prineiple, for a high magnetic Reynolds number, is that when convection
tends to bend the magnetic-force lines, the associated tension u H? leads
to a volume force opposing any further bending.

Lehnert and Little (23) gave a striking demonstration of the ability of
the applied field to arrest the formation of convection cells, a demonstra-
tion in which both a pure-conduction region and a cellular-convection
region appeared in the same liquid. This was made possible by placing a
container of heated liquid mercury on the edge of the magnetic pole piece
so that part of the liquid was in a normal field and part was in an oblique
field. The liquid subjected to the strong vertical magnetic field remained
stable, while the other portion exhibited typical Benard cells.

The theory of thermal stability for a wide variety of configurations was
developed by Chandrasekhar (24), who showed that the critical Rayleigh
number at which convection first occurs is a function only of the boundary
conditions at the surface of the heated liquid and the Hartmann number
defined as

M = B cos 6d \/‘% (40)

where d is the depth of the liquid and 8 is the angle of incidence between
the magnetic field and the Liquid surface. The ecritical Rayleigh number
was found for three cases of a horizontal layer heated from below in a
transverse field: (a) both surfaces free, (b) one free, one rigid, (¢) both
surfaces rigid. In all cases as M — «, Ra, = #*M*, where the Rayleigh
number is defined in the usual sense as Ra = (Pr)(Gr).

Chandrasekhar’s theory was verified for M > 10 and case (¢) by
Nakagawa, who performed a series of experiments (26, 26, 27, 28) with
various magnets. Although the upper surface in Nakagawa’s experiments
was “free,”’ a contaminant film that prevented any motion of the surface
formed on the surface of the heated mercury. The data from Nakagawa's
experiments are given in Fig. 1 with the theory for rigid boundaries and
the asymptotic prediction. Figure 1 shows good agreement over a wide
range of Hartmann numbers and liquid-layer depths, although there is
some divergence for d = 0.06 m.

The region to the left of the curve in Fig. 1 is unstable. For M = 0,
Ra, = 1708, so that an appreciable increase is gained in the maintenance
of a pure conduction mode by the application of even moderate magnetic
fields. Even after convection is established, the magnetic field influences
the transport of heat in a favorable manner. This was predicted and
experimentally verified by Nakagawa (28, 29), who established that the
convective heat transport is characterized by a linear function of the
temperature difference between the upper and lower surfaces, at least for
[288]
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values of Rayleigh number near Ra. and for large values of the Hartmann
number. This relationship can be written in terms of the Nusselt number

as

Nu = 1 (Ra < Ra,)
Nu=1+¢(1-2%)Ra> Ray (41)
u= Ra °

where the Nusselt number for the pure-conduction mode was normalized

7
10" - |
- T~ Rap~ rim?
0
E ., i
N \Y,
==
d44
N & /
1o}
2 . Y
& B v/ Ref.
= — 4:0.03m A (25)
& - o A (28)
E i A (27)
€ I Ja A (26)
E-
3 d=0.04m ® (25)
5 ?7 O (26)
x
— d=0.05m V (25)
3 '05 Unstable ﬁ v (26)
z . // g=006m W (25)
Stable 0 (26)
N cy’
)ﬁ[\\L Theory (24)
/ (rigid boundaries)
0 A‘ 2 Ll l 1 Llady ) [

10 10? 10° 10
Hartmonn number, M

F1a. 1. Variation of critical Rayleigh number with Hartmann number for liquid
mercury heated from below.

for convenience by Nakagawa to eliminate the dependency on Rayleigh
number. We have plotted the factor C in Fig. 2 as a function of Hartmann
number; Figs. 1 and 2 permit Eq. (41) to be evaluated for any given

magnetic field.
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The experimental agreement with Eq. (41) is best for M > 100; below
that value, the observed heat transport is less efficient than the relation
indicates. This is attributed by Nakagawa to the fact the the convection
cells are larger for small values of M, and that the development of the
amplitude of convection might be delayed by frictional effects in the
experiment (the liquid layer was only 0.03 m deep). For large values of
the Hartmann number, the magnetic field decelerates motion normal to it
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F16. 2. Theoretical variation of convective-heat-transport function with Hartmann
number for a liquid heated from below (29).

and stretches out the convection cells longitudinally, hence permitting a
more efficient transport of heat in the upward direction.

C. SEveraL Naturar ConvecrioN Frows

1. Heated Vertical Plate

Among the many geometries associated with classical natural convec-
tion flows is the heated vertical plate. Here, the heat from the surface is
transferred to the fluid, which causes a decrease in the fluid density and a
subsequent flow upward due to buoyant forces. When a magnetic field is
applied normal to the plate, the ponderomotive force will act in a down-
ward direction to inhibit the flow and to reduce the heat transfer to the
fluid.
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The basic equations of Section II B, indicate that this problem is
rather formidable if the momentum, energy, and magnetic equations
remain coupled. In practice, assumptions are made which facilitate the
solution. These are

(a) The magnetic Reynolds number is small

(b) Viscous and Joule dissipation are neglected

(¢) The fluid is semiincompressible: the density is constant except in
its contribution to the buoyant forces; the fluid thermodynamic
properties are constant

(d) The applied electric field is zero

Assumption (a) uncouples the momentum and magnetic equations;
assumptions (b) and (¢) uncouple the momentum and energy equations;
assumption (d) is physically realistic for a single plate.

The assumption that Re, = 0 is probably more justified in free-
convection flow than for any other case discussed in this article. This
occurs because the veloeity is much lower. Poots (30) has shown for the
free-convection flow between heated vertical plates that when

B, = 0.0384 weber/m? (384 gauss)

the induced field is less than the value of the earth’s magnetic field!
Since this field is neglected in all practical MHD problems, it seems
justified to ignore the effect of the induced field in the momentum equa-
tion even for strong applied fields.

The generalized conditions under which it is possible to neglect viscous
and Joule dissipation have already been discussed in Section II,D. For
the mean viscous dissipation to be unimportant, the Eckert number must
be small. This is certainly true in a low-velocity heated fluid. The mean
Joule dissipation is small when M2(K + 1)? < 1/&. If the system is
short-circuited to satisfy the electromagnetic boundary conditions, then
M? < 1/8, which is again true for relatively high magnetic fields.
Finally, assumption (c¢) is generally made for natural-convection flows,
and there is no reason to disregard it now that magnetic fields are present.

We should say a word about the boundary conditions in this type
of flow. First, the usual thermofluid-dynamic conditions of continuity
and no slip will hold. As far as the electromagnetic conditions are con-
cerned, when no electric field is applied only the induced current will be
present. It will flow in closed loops transverse and parallel to the plate.
Continuity will be established only & infinity, although in practice a short
circuit could easily be arranged. The applied magnetic field will have only
the normal component, which must satisfy Maxwell’s equations.
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Under these assumptions, Egs. (11), (15), and (18) can be written in
terms of the plate length and conditions at the edge of the layer as

M+ =0 42)
oU 1 02U B\
+ Vv 3y — Re“’ o+ Re ReaY? U(E) 8 (43)
1 a2
+ VP aY PrRe 37* (44)

where X = x/L is along the plate and Y = y/L is normal to it. The
reference conditions on temperature are the adiabatic temperature and
the wall temperature. Equations (42-44) are of the usual thermal-
boundary-layer type with the exception of the additional force terms
for the electromagnetic fields. Equations of this sort are generally solved
by a series expansion when B is constant or by application of the method
of similar solutions. In this case B(z) must vary in a manner specified by
the similarity transformation. (See Section I1I,C,1.)

a. Constant Magnetic Field. Sparrow and Cess (31) obtained a solution
by series expansion in powers of the parameter AX? when B, is constant,
where
2M? ponderomotive force

A= A/Gr [buoyant force X inertia force]*

(45)

This parameter, which has been called the Lykoudis number, will
generally be of order one, depending on the magnetic-field strength, since
the Grashof number must be of order (Reynolds number) for the buoyant
forees to induce convection.

Their results for heat transfer can be written in terms of the mean
Nusselt number over the plate

Nu N

(Gr)# — (Gr)#
where Nu, = —0.4046, (Gr)¥* is the mean Nusselt number without a
magnetic field, and ' is the temperature gradient at the wall. Solutions
were obtained for Pr = 10, 0.72, and 0.02. The first two values correspond
to, say, electrolytic solutions and partially ionized air, and the last to
liquid metals and highly ionized air. The conductivity for electrolytes
(e.g., salt water) is on the order of 10 mho/m, while that for liquid
mercury is about 106 mho/m. It is evident that very large magnetic fields
(on the order of 1 weber/m? or 104 gauss) would be necessary in the case

of salt water if the parameter A is to be on the order of one.
[292]
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We have plotted Eq. (46) in Fig, 3 for Pr = 0.72 and 0.02, along with
another solution of this problem, which will be discussed shortly. It is
obvious from Fig. 3 that the magnetic field reduces the heat transfer to
the fluid and inhibits the growth of convection. In fact, if M is large
enough, Nu = 0, which would imply that the magnetic field has effec-
tively stopped convection. The solution for A >> 1 may be invalid because
of the series truncation in Eq. (46).

b. Variable Magnetic Field; Similar Solutions. It is of interest to com-
pare this solution with one in which the field varies along the plate. A
variation in B could be imposed arbitrarily, like the experiment by
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Fia. 3. Variation of the mean heat transfer with magnetic field for a heated vertical
plate, showing the effects of Prandtl number and two different field configurations.

Lehnert (23) for demonstrating convection patterns. More often, how-
ever, the field is made variable because the governing equations cannot be
golved in closed form unless B = B(x).

Lykoudis (32) derived the conditions on n for B = By(z)" such that
Eq. (43) will have similar solutions (i.e., will be independent of z under a
similarity transformation). He showed that it is necessary for n = —14
in order that the free-convection case may become independent of z.
Gupta (33) obtained a similarity solution using integral methods.
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The technique of obtaining similar solutions to the momentum equa-
tion is used quite often in ordinary fluid mechanies. Its application to
MHD problems follows a tradition of somewhat unfortunate impositions
on the boundary conditions which cannot always be simulated in practice.
For example, the similar solutions to boundary-layer mass-transfer
problems demand that the wall velocity vary as 2", which is not success-
fully met experimentally with a uniformly porous plate except far down-
stream from the leading edge. When similar solutions are obtained for
the MHD case, the applied magnetic field must also vary in a way which
may be difficult but not impossible to meet experimentally.

Even more important, the use of similar solutions in MHD, which is
also discussed in Sections V and VI, has aroused some criticism because
the magnetic field does not satisfy Maxwell’s equations. To be sure,
Eas. (2-5) are not satisfied exactly when B = B(x) alone, but neither are
they satisfied exactly when the induced field is neglected. By proper
design of the magnet the variation in B normal to the plate can be made
small and, in the mean, it can be said to vanish, which is a valid approxima-
tion to Maxwell’s equations in the same manner by which an integral
method can be used to satisfy the boundary-layer equations. The same
comment applies to the neglect of the induced field in the fluid, for that
also approximates Maxwell's equations in much the same sense that the
houndary-layer equations are an approximation to the Navier-Stokes
equations.

Again we will be interested in solutions for low Prandtl numbers.
Lykoudis obtained both analytic and machine solutions for the heat
transfer when 0.01 < Pr € 0.73. We have shown the results of his
machine calculations in Fig. 3. It appears that the mean heat transfer is
not reduced so much, or the flow decelerated so effectively, when the mag-
netic field is variable. This is espeecially true at low Prandtl numbers and
A'< 1, which is the region of most validity of the series solution of (31).

Sparrow made a comparison of the local heat transfer, Nu(z), at a given
station for these two solutions under the condition that the local magnetic
fields were the same at the station under consideration. He found that
the local heat-transfer coefficients were in close agreement for all values of
AX? up to and including unity, basing his comparison only on the data
available to him for Pr = 0.73. For higher values of AX?, the results of the
constant field solution were lower. He attributed this deviation to either
upstream influence or, perhaps, to the series approximation made in his
solution. Figure 3 indicates that the deviation is most likely due to up-
stream influence which becomes more important as the Prandtl number
decreases, i.e., as the boundary layer becomes more transparent to heat.
On a physical basis, this difference might be due to the fact that the large
(294
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magnetic field at the leading edge of the plate has little effect on the heat
transfer to the fluid because the velocities there are so low. Farther up
the plate, where velocities have increased, the magnetic field strength has
dropped below the constant value assumed by Sparrow, and the pondero-
motive force is again less than it would be for the constant-field case.
The upstream heat transfer is therefore greater than that caleulated for
the constant magnetic field, and the net heat transfer to the fluid is
larger.

2. Convection Between Parallel Vertical Plates

A slightly more complex situation arises when the flow between
two heated plates is examined, since an additional parameter (the
wall-temperature difference) enters. However, this geometry permits a
one-dimensional flow problem to be studied. Poots (30) has made an
exhaustive analysis of this case, including the Joule heating, viscous dissi-
pation, and internal heat sources in the energy equation. Gershuni and
Zhukhovitskii (34) have treated the situation where the walls were at
equal temperatures, but did not include the dissipation terms in their
analysis.

In Poots’ investigation, the parallel plates are combined with elee-
trically insulated walls to form a channel. The induced current will then
flow in closed loops parallel and transverse to the plates as long as an
electric field is applied to the walls so that the mean current flow across
the plates is zero. This condition implies that the induced magnetic field
vanishes at the vertical plates, an implication which is consistent with
the boundary conditions discussed in Section II,C. The configuration is
identical to that of the Hartmann channel-flow problem discussed in
Section IV, A, The heat transfer depends, in his study, on four parameters:

Twr— Ta . .
A= o the plate-temperature-difference ratio
* Qa’
O T — T2

M = Boa \/o/n, the Hartmann number

» the dimensionless heat source

PrGr %@, a dimensionless heating parameter where
? @ is the distance between the plates.

=
Il

(The difference between these numbers and those of Section II,D, evolves
from a different dimensional analysis.) A series expansion was made in
powers of «; for liquid mercury or sodium this is reasonable, for although
Pr - Gr is generally large, the coefficient Bga/C), is small so that « < 0(1).
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Poots verified that the trends for M = constant were the same as for
the magnetic-free case: an increase in A or Q* increased the mass flow and
temperature; and the viscous dissipation affected the velocity and tem-
perature; profiles, for as « increased (\, @* constant), the velocity increased
and the heat transfer to the fluid was altered. By letting \, Q*, and «
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Fia. 4. The reduction in dissipative heat transfer with increase in magnetic fields
for plates of equal temperature (30).

remain fixed, and by varying M, he showed that the velocity and tem-
perature were reduced, due to the downward ponderomotive force.
Numerous tabulated results for heat transfer and mass flow are given in
(30) for various A\, Q*, «, and M. They indicate that for moderate values
of « the dissipative terms in the heat-transfer equation can be neglected,
especially as M increases.

This trend is quite apparent in Fig. 4, where we have plotted the dis-
sipative portion of the total heat transfer as a function of Hartmann
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number and internal heat load for the case of plates at equal tempera-
tures. The Nusselt number in Poots’ analysis

Nu = Nu, + «Nug + 0(x2) 47)

consists of that due to pure conduction, Nu.(@* N), and that due to dis-
sipation, Nus(@*, A, M). Since Nu. can be quite large (Nu. ~ 50 for
Q* = 100) and « is on the order of one, the heat transfer is primarily due
to conduction, even at M = 0.

It is not possible to make any general comparisons between the solu-
tions of Section III,C,1 and the tabulated values for A # 1 provided
by Poots. This is due to the fact that the solutions of Section III,C,1,
assumed that the applied electric field was zero, while Poots’ solution is
for the insulated case, where £ = —¢uB,, and where 4 is the mean
velocity in the channel.

3. Other Solutions

Poots (30) also considered a problem which has no classical fluid-
dynamic analog; that is, the problem of natural convection in a hori-
zontal tube in which an axial current is flowing (see Fig. 5). The equations
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Fia. 5. Free convection in a horizontal tube in an electrostatic field; (a), Electro-
magnetic configuration; (b), Convection pattern.
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for the central portion of the tube are the same as for the vertical plates
with @* = 0; the electromagnetic field is identical with that for an
infinitely long cylindrical current-carrying wire, He again employed a
series-expansion technique and found that the Oth order solution gave
a temperature distribution and magnetic field identical to the classical
Joule heating problem in a long eylindrical wire. But in a fluid the tem-
perature gradients induce a nonuniform motion which modifies the cur-
rent density and field structure in a manner shown in Fig. 5. These cells
would be set up, as « increases, so that an isothermal core would exist
with flow traveling up the center and around the side in a boundary
layer. Whether or not this flow is stable was not discussed. It should
also be mentioned that in this particular problem the electrostrictive
forces may become important (see Section II1,4).

Cramer (35) has investigated the free-convection flow in a vertical
isothermal pipe in a transverse field, but he does not discuss heat transfer
explicitly. Lu (36) examined free-convection flow past a porous plate
with suction; but again the heat transfer is not given in easily accessible
form. Reeves (37) has inspected qualitatively the combined effects of
nonuniform wall temperature and magnetic field on the heated vertical
plate. Mori (38) also solved the vertical-plate problem, but there appears
to be an error in the governing differential equations (32).

D. CoNSEQUENCES AND IMPLICATIONS

It was shown in this section that the application of a magnetic field
normal to a heated wall reduced the heat transfer from the plate to the
fluid but also decreased the fluid velocity. This will affect the hydro-
dynamic stability of the flow. Gershuni and Zhukhovitskii (39) have
calculated the critical Grashof number for flow between parallel vertical
plates and Pr = 0.02. They show that the minimum eritical Grashof
number increases from 405 to 4500 as M increases from 0 to 10. However,
in the case of a single plate, the magnetic field may produce inflection
points in the velocity profiles. This destabilizing effect may actually
lower the transition point (10).

The decrease in fluid velocity is not necessarily beneficial. If these
devices are used as heat exchangers in nuclear reactors, it may be expe-
dient to circulate the radioactive metal by other means, possibly by
pumping.

Lykoudis (32) showed that it was feasible to study free-conveection
problems in the laboratory by utilizing liquid mercury. This is one of
the few MHD heat-transfer problems which adapts itself to a ‘“clean”
experiment. Experiments of this type are now in progress at Purdue
(40).
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IV. Heat Transfer in Channel Flow

The analysis of magnetohydrodynamic flow through ducts has received
considerable attention. This class of flow has many applications in the
design of MHD generators, cross-field accelerators, shock tubes, pumps,
and flowmeters. In many cases the flow in these devices will be accom-
panied by heat, either that dissipated internally through viscous or Joule
heating, or that produced by electric currents in the walls.

Internal MHD flows fall naturally into categories which depend on
their field configuration. For example, in a typical MHD generator a de
magnetic field is applied normal to the moving fluid. When electrodes
are connected to the walls, perpendicular to B and V, the induced electric
field will cause currents to flow through the plasma and an external load.
These electrodes serve the same purpose as does a brush in an ordinary
generator. Energy is transferred to the load at the expense of kinetic
energy of directed motion of the fluid. Such a device would be used in a
heat eycle, which would be conventional except for the high temperatures
involved. It would take over the functions of both the turbine and the
generator in the cycle.

An MHD power generator has no moving parts, other than the fluid.
But the temperatures of the working fluid will be high in order to obtain
adequate o; if it is seeded it may be contaminated with alkali metals
and be subject to corrosion problems; and, finally, it is difficult to obtain
adequate velocities without long entrance lengths. In a generator, the
power output per unit volume varies as ou?, while the heat generated
per unit length varies as ou. Thus one or the other will have to be mini-
mized (41) for a given reservoir temperature to obtain an optimum
output.

The MHD accelerator works in the opposite sense to a generator. By
application of an external field opposite to the direction of the induced
field, energy is transferred to the gas by Joule heating and the pondero-
motive force. Both the generator and the accelerator are limited by high
temperatures, the Hall effect, and sheath formation at the electrodes,
since operation at low pressures is usually desirable to decrease the heat
transfer.

A device which is not plagued by these high-temperature problems is
the liquid-metal Aowmeter (42). It utilizes the voltage induced in the
flow by the applied field. The potential difference measured between the
electrodes will indicate the flow rate. Heat transfer is not likely to be
an outstanding problem here unless the flowmeter is used in heat
exchangers. The same remarks can be applied to liquid-metal pumps.

Most research effort has been directed toward one-dimensional incom-
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pressible laminar flows with transverse magnetic and normal electric
fields. The popularity of this model is due primarily to its mathematical
simplicity, since in actual operation the flow will most likely be turbulent,
two-dimensional, and, if the working fluid is a gas, compressible. Flows
with parallel magnetic fields, such as a circular channel with an axial
magnetic field, have found application in shock-tube studies. In a one-
dimensional flow, the parallel field does not influence the velocity distri-
bution, but it will in theory delay transition to turbulent flow and tend
to prevent the transport of heat and momentum across the field lines.
An axisymmetric flow with a normal field, such as a pipe flow in a radial
magnetic field (43), is difficult to study experimentally.

It is possible, because of the simplicity of the one-dimensional equa-
tions, to establish trends with M and K that will apply in a general
sense to the more complex situations associated with two-dimensional or
compressible flows. Therefore, the classical Hartmann channel-flow prob-
lem is discussed in some detail in the next section.

A. OneE-DiMENsioNAL INcOMPRESSIBLE FLow

The Hartmann problem (I, 2) and extensions of it involve strictly
one-dimensional flows between parallel plates of spacing 2q, as sketched
in Fig. 6. A channel is formed by placing the side walls at a distance

L ! =|
t
By

D -

Fic. 6. One-dimensional flow.

2d >> 2a apart. The channel is long enough that the flow is fully developed
and no axial currents exist. A constant magnetic field is applied normal
to the plates, and an electric field is applied normal to the side walls.
In the following discussion, the plates will not be considered to be elec-
trically conducting. When they are, the problem is exceedingly difficult
and can only be solved in special cases (44).

1. The Basic Equations

Under the assumption that there is only one velocity component, and
that no axial or transverse variation of any parameter is permitted (with
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the exception of pressure), the electromagnetic equations ecan be written

0=j, — oE, = j, = oE,

. (48)
J: = o(E, + uB,)
9E, _ OE,
0= 3~ oy (49)
9B, . _
—a‘y‘ = Melzr = 0
0= l‘ejy (50)
3B, _ .
ay - #6]:

from Egs. (9), (3), and (2), respectively. It is easily deduced from Eqs.
(48) and (49) that E. = E, = 0 and E, = constant = E, everywhere.
For the magnetic field, B, = constant, from Eq. (50). But B, = 0 out-
side the fluid so B, = 0 everywhere. Since a normal field B, is applied
at infinity, B, = B, by reasons of continuity. (We shall defer discussion
of B, until Section IV,A,2.)

The MHD equations are now written in dimensionless form, referring
all parameters to the reference conditions By, E,, % (the mean velocity),
and a, the channel radius. The momentum equations are

_ _9p* _ 1 a2U
0= X SK SU+R_e(_i_I—’E (51)
— op* *
0= 37 + J.SB, (52)
and
1 dB.*
R A T 53)

where j, = j./ouB,, and where the generator coefficient, K, the pon-
deromotive coefficient, S, and the two Reynolds numbers were defined
in Section II,D. The continuity equation is automatically satisfied for
one-dimensional flow, and the energy equation will be deferred until
Section IV,A,4. The induced magnetic field B, does not enter into Eq.
(51), since the flow is one-dimensional and B, does not interact with the
fluid to generate a current in the z-direction. If the relation given in
Eq. (50) for j, were used, then the derivative of B, would be present
rather than the applied field B,. We have therefore not assumed any-

thing about Re,, other than the fact that B, <« B, at infinity.
The solution of Eq. (51) for the usual fluid-dynamic boundary condi-
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tions that U(+1) = 0 is

1 ap*/oX __cosh MY -
U= { K- —S_—; [1 cosh M‘] (54)

where M is the Hartmann number of Eq. (30). The average velocity in
the channel is written in dimensional form as

o1t __ |Ee  ép/dx _ tanh M
so that
_g _9p*/eX _ (, _ tanh M\~
K _~§"_~(1 ™ (56)
or

U =

M [ __cosh MY] 57)

M — tanh M “cosh M
Both Eqgs. (54) and (57) are of interest. Equation (54) shows the effect
of changing the pressure head, ponderomotive force, and generator coef-
ficient on the velocity profile for a constant mass flow, while Eq. (57)
gives an equivalent relationship in terms of Hartmann number.

The current is obtained from Eqs. (53) and (57). Let J be defined as
the mean current

J=15 [ J.ay =K +1 (58)

from Eq. (563). Then the total current can be written as the sum of the
mean current and a circulating current, J,, as

J.=K+U=J-Q0-U)=J+J, (59)
where J, = — (1 — U). It is immediately obvious that the mean current
vanishes when K = —1. This corresponds to a channel in which the

walls are electrically insulating (i.e., in which the only currents flowing
are circulatory). When K = 0, there is no applied electric field and a
mean current equal to the electromotive current exists everywhere in
the channel. This corresponds to the electrically short-circuited case.
The maximum operating condition for a generator occurs when K = 1.
Equations (54) to (59) provide the information necessary for assessing
the effects of the electromagnetic fields on the flow and heat transfer.

2. The Induced Magnetic Field

While we will not be further concerned with the induced field, we
should aseertain the conditions under which it can be neglected. This
{302]
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particular flow also offers an opportunity for discussing the boundary
conditions on the induced field (see Section II,C) in a simple low problem.
Writing the integral of Eq. (53) in the form

1
B*(&) = — :%/E J.dY — Ren szYl, —-1<¢e<1 (60)
2 -1 2 £
we find that
M sinh MY
B.* = —Ren ‘KY + M — tanh M (Y " M cosh M)} (61)

where B.*(0) = 0, B,*(1) = —Re,(K+ 1),and B.*(—1) = + Re (K + 1).
It is apparent that the boundary conditions on B, are determined entirely
from the mean current across the channel; this is physically realistic
when the channel is thought of as a sequence of current sheets, each
with its own induced field. This interpretation would imply that the
induced magnetic field should vanish at the boundary only when there
is no net current interior to the region, i.e., only if J =0 or K = —1,
which is substantiated by Eq. (61). From a consideration of the fields
outside the fluid, we see that B,* = constant satisfies both

VXB=V:-B=90

Hence the induced field is given by Eq. (61) inside the fluid, and by
the boundary values exterior to the fluid.

The fact that B.*(Y) is symmetric with respect to the origin is of
importance when the forces in the Y-direction are considered. Since J,
is symmetriec about the z-axis, we can immediately conclude that the
net ponderomotive force in the Y-direction vanishes, i.e.,

[l JB.ay =0 (62)

and that the induced field will not impose a net pressure in the Y-direc-
tion. Therefore the only importance the induced magnetic field has in
one-dimensional channel flow is its influence at infinity;i.e., its magnitude
compared to the applied field B, must be small,

The magnitude of B.* at infinity will be, by continuity, its value at
the wall for a two-dimensional current sheet. In absolute units

B.*(®») = |K + 1| Ren (63)

When K = —1, B,*(») vanishes, regardless of the magnitude of Re,,.
For other values of K, we must specify that |K + 1| Re, < 1 for B,*
not to influence the applied field direction. For liquid mercury

IK + 1] Rew = |K + 1] 1.63a7  (MKS) (64)
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and for ionized air, it is orders of magnitude less. It appears that under
practical operating conditions this condition can be fulfilled easily.

3. Flow Characteristics

The response of the total mass flow to the ponderomotive force and
electric field is evident either from Eq. (55) or, in a dimensionless form,
from Eq. (56). For a zero electric field and a given pressure head, the
flow will decelerate as M increases, due to the ponderomotive force uB,?.
This deceleration is even more significant when E, > 0, the generating
mode. In the pumping mode, E, acts in the opposite direction and power
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F1c. 7. Velocity distribution in one-dimensional channel flow.

is added to the fluid instead of being extracted. This flow will accelerate
in regions where the current is in the same direction as E,, a condition
which is met in the whole channel when K is larger (negatively) than — 1.

The shape of the velocity distribution will not change with K since
the electric field provides a constant body force on the fluid when the
induced magnetic field is neglected. Equation (57) indicates that if the
same mass flow is maintained in the channel as M varies, an increase
in the magnetic field will increase the ponderomotive force and flatten
the velocity profile. We have plotted U for various values of M in Fig. 7.
For M = 0, the profile reduces to plane Poiseuille flow; for M — o, it
approaches slug flow. The shape of the profile as M increases will affect
[304]
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the heat transfer by increasing the convection near the wall and by
increasing the viscous dissipation.

The current flow will be unidirectional throughout the entire channel
only if K 4+ Umax > 0, or, since

M 1
Unax = UO) = yr—fannn X [1 ‘m]
the condition on K is
M{cosh M — 1)

K+McoshM-—sinhM>0 (65)

In all other cases the current will change direction at some point. As
M increases, this location moves closer to the wall, setting up what
Hartmann called a ‘“magnetic boundary layer.”

The particular Y values where J, reverses (since J, is symmetric there
are two of them) are given by the points at which U(Y) = —K. Since
these points move closer to the wall as M increases, we can expect larger
gradients to exist in J, close to the wall, and, as a result, we also expect
an increase in Joule heating.

These effects will be seen more clearly if we turn now to the energy
equation for this geometry.

4. Heat-Transfer Characteristics

In order to establish trends with M and K it is necessary to define
the reference conditions with which any comparison will be made. These
are perfectly arbitrary, but the most natural ones for MHD channel flow
are the following:

(a) Constant mass flow (# = constant), which means that the pres-
sure drop is adjusted as M and K vary

(b) As M changes, K remains constant; this implies that the applied
electric field varies in such a way that the parameter

an '\/;/’le '\/-[I

remains constant as M — 0 or M — o, These definitions should be kept
in mind throughout the following discussion.

The energy equation for a one-dimensional flow of a constant-density
fluid is written from Eq. (18) in dimensionless form (A7 here is an
arbitrary, constant, temperature difference)

a0 1 9% | M2 & (dU\?
Usx = PrRear T Re /" T 'R—e(d—y) (66)
when the internal heat source is zero and where § = —kV7T. Since U
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and J, do not vary with axial distance, the internal heat generated at
each axial station is identical. A heat balance on the moving fluid gives

& ! dU\*
20 =A=m[) [M’J,"’-P(B-Y.)]dY

ax P + g* (67)

where § = pci AT and ¢* = ¢/§ is any heat added externally. Looking at
Egs. (66) and (67), we can list the following items, resulting from the
applied fields, which will influence the temperature response and heat
transfer to the wall: (a) convection: A U(Y); (b) internal heat distribution:
J2 and (dU/dY)?; and (c) total heat input: §4 — ¢*. This list does not
contain the usual fluid parameters, such as Reynolds and Prandtl num-
bers, since they will be unaffected by the applied fields when the mean
flow is constant.

a. Convection. We have already shown in Fig. 7 that as M increases
the convection will be larger elose to the wall, If there where no internal
heating, the temperature in the fluid would tend to become uniform in
response to any external heat load as M increases. This situation could
exist in very-low-velocity flows, where both the ohmic and viscous heat-
ing are small (45). This term vanishes, of course, when the wall tempera-
ture is constant.

b. Internal Heat Dustribution. The internal heat distribution due to
viscous dissipation depends only on M. From Eq. (54), the ratio of viscous
dissipation to the mean viscous dissipation in the channel is

dU\: M sinh? MY
dY) (M — tanh M)? cosh* M

The viscous dissipation is plotted in Fig. 8 as a funetion of Y for various
magnetic-field strengths. It is at maximum at the wall and increases
with M. This will enlarge the heat flux near the wall.

It is more difficult to assess the ohmic heating because it is a function
of both M and K. When K = —1, however, the net current vanishes
and only the circulating current contributes to the heating. Using Kq.
(59), the Joule heating for this case (divided by the mean viscous dissipa-
tion and M?) is given in Iig. 9. It appears that this mode of operation
{electrically insulated walls) produces internal heat very close to the walls.
In fact, for large magnetic-field strengths, the viscous and ohmic dissipa-~
tion are of the same order of magnitude at the walls:

(dU/dY)? 1 2
[“57 ) ”<—*1—)2"’ PN

(68)

(69)

1 -5
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F1a. 8. Comparison of dimensionless viscous dissipation in one-dimensional channel
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Fia. 9. Ohmic heating for electrically insulated walls in one-dimensional channel
flow. .

It can be shown, however, that the mazimum ohmic dissipation is
larger than the mean viscous dissipation by a factor of M?, which has
prompted some authors to neglect the viscous dissipation in their analyses.
Both Alpher (46) and Siegel (47) solved Eq. (66) for K = —1 under
this assumption. They found that when M became sufficiently large the
ohmic heating could exceed the energy supplied to the fluid by an external
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source ¢*, and the fluid temperature could surpass the wall temperature
(i.e., there was heat conduction out of the fluid). Alpher's solution of
Eq. (66) gives, in the limit of large M
- la 1#%u
To~Trg— M @0
where T is the bulk temperature. Addition of the viscous heating to
this analysis should cause the crossing point to occur for lower values
of M.
The current at the wall vanishes only when the device is short-circuited,
which is evident from Eq. (61) when K = 0. We have plotted the ohmic
heating distribution for K = 0 in Fig. 10. Most of the heat release is
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F1a. 10 Ohmic heating for short-circuit mode in one-dimensional channel flow.

in the center of the channel, and as M increases the profile becomes
more uniform.

In the short-circuit case, it is possible to neglect the viscous dissipa-
tion as long as M is large enough. For large values of the magnetic field,
both the maximum viscous and maximum ohmic dissipation approach
the same value: M2/(1 — 1/M)?. However, the ohmic heating occurs
throughout a large portion of the channel, while the viscous dissipation
is confined in the magnetic boundary layer near the walls. The net result
of this combination at high Hartmann numbers is a uniform heat source
throughout the channel. This problem has not been solved except in
the special case of thermally insulated walls, although the solution could
be obtained without too much difficulty. Perlmutter and Siegel (45) show
that the difference between the wall and bulk temperature is a minimum
(308]
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when K = 0 and the walls are thermally insulated. As M increases,
T, — T approaches zero, as would be expected.

For other values of K the ohmic heating will dominate the viscous
heating, and the distribution will depend on the particular value of K.
For negative K the bulk of ohmic heating will still take place at the
walls, so the conclusions drawn for K = —1 still hold. For K > 0, the
heating will be larger in the center of the channel as M — ,

c. Heat Transfer. While it requires considerable algebra to find the
mean temperature for the case of variable wall temperature or external
heating, we can show the variation in heat transfer when the wall tem-
perature is constant merely by integrating Eq. (67). This yields

M sinh 2M — cosh 2M + 1
2(M cosh M — sinh M)?

which reduces to go = 3u%?/a when M = K = 0. We have plotted the
ratio ¢q/go in Fig. 11 for various values of K. The dashed lines in Fig. 11
are values of this ratio when the viscous-dissipation term is omitted in
Eq. (66), since this is often done in practice (46, 47).

When M — «

¢ =22 LK + 1)+ 71)

.g_ ~ 2 _hﬁ I\_/I.

7 (K+1) 3 + 19 + 0(1/M) (72)
when the viscous dissipation is included. When it is omitted

g M2 M

P (K +1)* ==+ 35 + 0(1/M) (73)

Thus for K # —1 both solutions approach the same value as M increases.
But when the wall is insulated, the heat transfer when viscous dissipation
is neglected is lower by a factor of 2. This is evident in Fig. 11, where
the behavior at large Hartmann numbers is already evident for M > 5.
The neglect of viscous dissipation is therefore not justified when the wall
is insulated (K = —1).

For other values of K, the ohmic heating is quite pronounced, for
9/qo increases rapidly with M. Notice also in Fig. 11 that the heating
in the accelerator mode is equal to that in a generator mode with a lower
coefficient; the curves for K = —3 and K = 1 are equal, for example.
This implies that generators with practical efficiencies (say, for K ~ 0.8)
the heating problem may be as severe as in an aceelerator in which con-
siderable energy is deposited by the electric field. The reason for this is
that the comparison in Fig. 11 is being made on the basis of constant
mass flow, which is unlikely when a generator and an accelerator are
being compared.
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Fra. 11. Convective heat transfer to the walls in one-dimensional MHD channel
flow for the case of constant mass flow and constant wall temperature.

5. Other Solutions

Although this has been an extensive discussion of heat-transfer charac-
teristics in one-dimensional MHD flow, we have by no means covered
all of the cases treated in the literature. As mentioned previously, Siegel
(47) and Alpher (46) solved the energy equation with a uniform external
heat flux for K = —1 and no viscous dissipation. [The solution of Eq.
(66) is such that it is easy to incur algebraic errors. Alpher points out
an error in Siegel’s work (47) and the author found one in (46). It is
suggested that any expressions for T, — T be checked independently.]

Alpher’s treatment also includes the effects of electrically conducting
plates when K = —1. (In many cases of interest the plates will heat
up during operation and become conductors.) His analysis shows, for
large magnetic fields, that a decrease in plate resistance will cause the
[310)
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mean fluid temperature to approach the wall temperature. However, for
very large M, the temperature response becomes independent of the wall
conductivity.

Perlmutter and Siegel (45), besides solving Eq. (66) for various values
of K and M, also investigated the thermal-entrance region for this flow.
(The velocity profile was taken as fully developed.) Shohet et al. (48)
considered the entrance problem per se, and obtained solutions for the
pressure, velocity, and temperature variation at the channel entrance.
They found that an increase in magnetic-field strength decreased the
length necessary for the velocity to reach its nominal fully developed
value. Subsequently, the temperature distribution would also be inde-
pendent of axial length sooner than when M = 0,

B. Bounbary-LAYER Errects: Two-DiMENsioNAL CHANNEL Frow

In all large rectangular flow devices a boundary layer will form on
the channel walls and the flow in the center will be inviscid. The boundary
layer is deleterious as far as operating efficiency is concerned, because
it changes the effective area, decelerates the flow, and dissipates power
to the walls. The thermal behavior of boundary layers will also contribute
to losses, either by heating the electrodes or, in a compressible gas, by
lowering the temperature (and hence the conductivity) near the wall
through heat losses to the wall.

These boundary layers, in comparison to those discussed in Section V,
grow in an electrically conducting “free stream,” complete with pressure
gradient, velocity gradient, and applied electric field. They should not
be confused with the magnetic boundary layer, of thickness 6§ < 1/M,
which is the region near the channel walls where the ponderomotive
and viscous forces adjust for a given pressure gradient. The magnetic
boundary layer is established because of the change in sign of the current
[see Eq. (67)] across the channel; unlike a fluid-dynamic boundary layer,
it remains one-dimensional.

1. Incompressible Flow

To the author’s knowledge, there exists only one analysis expressly
for the heat transfer in an incompressible, constant-property MHD
channel boundary layer. Moffatt (49) discusses boundary-layer phe-
nomena on the electrically insulated (top and bottom) walls of the MHD
channel of Fig. 6.

The boundary layer provides a region of velocity deficit where, in
generators, a current reversal similar to that of the one-dimensional case
can occur. For the generator boundary layer, the current reversal should
cause a relative acceleration of the flow by its changing the sign of the
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ponderomotive force. This would increase the viscous dissipation (an
effect which was masked in the preceding discussion where the mass flow
was assumed constant) and subsequently the heat transfer. In the accel-
erator boundary layer, the current flows more freely near the insulated
walls, a condition which would also tend to increase the heat flux.

Several assumptions in the analysis of (49) detract from the signifi-
cance of the calculations. This is unfortunate, because the author is
unaware of any other treatments of the heating problem in two-dimensional
channel flow. These assumptions and their consequences will be discussed
here because the integral technique used by Moffatt is a convenient way
to obtain results; perhaps the same method could be used under some-
what modified conditions to obtain more realistic solutions.

First, the existence of similar solutions to the boundary-layer equa-
tions was assumed when the applied magnetic field is constant. It can
be shown (Section V,B,2) that similar solutions exist only when the mag-
netic field varies as some power of z. Secondly, in using the integral
technique for shear and heat transfer, Moffatt assumed that the velocity
profiles for laminar and turbulent flow were given by their nonmagnetic
values (i.e., parabolic for laminar and seventh-power for turbulent), so
that they are invariant with Hartmann number. This is not true in
laminar flow in a constant magnetic field (3). The effect of this assump-
tion on skin friction is reflected in the result given by Moffatt that the
friction coefficient is independent of Reynolds number when plotted
versus M/Re and does not follow the trend established by experiment,
which also shows a Reynolds-number dependence. It is difficult to deter-
mine the effect of these assumptions on the heat transfer but one would
suspect that the values given in (49) would be too low.

2. Compressible Flow

Another problem indigenous to generators or accelerators is that of
the growth of boundary layers on the electrodes. In this geometry the
magnetic field is transverse to the flow and the electrie field is normal
to it. The significant forces are sketched in Fig. 12. (Note that the coordi-
nate axes have been changed from those of Fig. 6 in order to adhere to
the usual boundary-layer nomenclature.) Heat transfer in these boundary
layers will be larger than usual because of the tendency, in the accelerator
mode, for the currents to be highest near the wall. For a gas, the decrease
in temperature near a cooled electrode will diminish the eleetrical con-
ductivity and hence increase the Joule dissipation. This flux near the
wall will lead to a higher temperature gradient and hence an increase
in heat transfer for a given wall temperature.

Kerrebrock (50) suggests seeding the gas with an alkali metal so that
(3121
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the conduectivity will be high at low temperatures. His analysis of the
compressible boundary layer is thus for a gas in which ¢ ~ ¢ YT as a
result of seeding. The inviscid flow was taken as quasi-one-dimensional
and the magnetic field varies as a power of . The magnetic Reynolds
number was assumed to be small, and similar solutions of the boundary
layer were obtained. In his analysis, Kerrebrock added a term to the
energy equation to account for the transport of heat by the electrons
in the current stream. Because this is an unusual configuration, it is
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Fia. 12. Electrode boundary-layer problem (shown in the pumping mode).

worth considering briefly the particular mechanisms of heat transfer in
this problem. The term added to Eq. (18) was the following:

9 [5kT .
2 (%59 (74)
This can be broken into the constituents
5kT. 5
-2~ -;—] = Qan,vd = h1p11)1 (75)

where h; is the enthalpy of the electrons considered as a monatomic gas
at the parent gas temperature; p;, the electron density; and »;, the drift
velocity due to the electric fields ¢(E — uB). By comparing Eq. (75)
with Eq. (36) in Section ILE,1, it is clear that this is the flux of energy
carried by the electron-drift velocity. This flux will be much larger than
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any other diffusive transport mechanisms because, near an electrode,
the current is essentially ‘“‘one-way.” Because this is true, the gas is no
longer neutral and the heat transfer in this region will be affected by the
energy gain (or loss) of the charged particles in the potential sheath at
the electrodes (see Section VI,B,3). However, Kerrebrock assumed that
the energy due to electron-ion recombination was negligible because of
the low charge concentration. Another phenomenon peculiar to this prob-
lem is that the electrons in a strong field will tend to be at a higher
kinetic temperature than that of the ions or neutrals, The enthalpy in
Eq. (75) would then be that associated with the electron temperature.
This effect, which was not considered by Kerrebrock, would increase
the heat transfer at one electrode and decrease it at the electrode of
opposite polarity.

Kerrebrock found that the largest effects of Joule heating occurred
for low Mach numbers and highly accelerated flows, and that Joule
heating tended to thin the thermal boundary layer and prevent the heat
generated by viscous dissipation from reaching the walls. As a result, a
considerable temperature excess developed in the boundary layer. The
heat-transfer rates increased by an order of magnitude in constant area
flow as the Mach number increased; part of this was due to the tempera-
ture excess, and part to the free-stream acceleration. It is not possible
to assess his results in terms of Hartmann number because the magnetic
field is variable. The expected increase in heat transfer exists, but its
rate of growth with Mach number is dependent on the conductivity
model assumed and also on the mechanism for heat conduction at the
electrode.

C. AxisyMmmeTRIic FLow

The shock tube and plasma jet, which have provided significant infor-
mation on high-temperature aerodynamic heating, are also being used
to study MHD flows experimentally. One suggested configuration is
sketched in Fig. 13. The ponderomotive force due to B, and B, will
interact with the velocity components « and » in that order; most of
the interaction will be near the wall where v and B, are relatively large.
When a solenoid is used and end-effects can be neglected, the pondero-
motive force will appear only in the radial-momentum equation, and will
inhibit the flow toward the wall. One could therefore expect a reduction
in heat transfer to the wall.

Hains and Yoler (6§1) have studied both the viscous and inviscid flow
for the model in Fig. 13, using a donut (single-turn) coil in which an
extensive radial field will exist. In their analysis, the parameter S of
Eq. (30) was taken as small, so that the magnetic field caused a perturba-
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tion, rather than a large change, in the inviscid flow. For subsonic flow,
the magnetic interaction caused the streamlines to converge toward the
channel axis and the mean velocity to increase during passage through
the field. For supersonic flow, the interactions at the wall where the
field curvature is large propagated inward, coalesced, and formed shocks
downstream of the coil The boundary layer in supersonic flow was found
to be thickened somewhat by the magnetic field, but over-all effects were
small. Heat transfer was reduced slightly by the soil and increased some-
what downstream. This effect would be more pronounced if the pondero-
motive force were larger than the inertia force.

An experimental investigation of the same configuration as Fig. 13,
using a solenoid rather than a donut coil, was made by Raelson and
Dickerman (52), who used a water-cooled arc plasma generator to obtain
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Fi1c. 13. Axisymmetric MHD flow.

the conducting fluid, in which 7T ~ 5000°-6000°K, p = 1 atm, and
u = 2.8 X 102 m/sec. The Hartmann number reached a maximum on
the order of M ~ 104, so that the magnetic forces dominated the viscous
forces. Re,, was estimated to be about 0.1 and the Reynolds number
was about 10% The heat transfer to the wall was measured by calori-
meter methods. In the parallel mode (B in the same direction as the
flow), the magnetic field evidently provided a shielding against the trans-
fer of heat, for the convective heat transfer was reduced 159% below its
value when B = 0. In the antiparallel or opposite direction, the field
was ineffective in reducing heat transfer. This effect cannot be explained.
Theoretically, there should be no difference in the mode of operation as
far as the forces on the fluid are concerned, even when the induced
magnetic field is included, unless one were to consider Hall currents.
But the operating conditions of this experiment are such that the Hall
effect should be small.
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The theory of (61) would tend to predict the measured decrease in
heat transfer, although it would not be justified to extrapolate the theory
for 8 ~ 1 to the experiments of (5§2).

D. AN AssessMENT OF HEAT TRaNSFer IN MHD CuHaNNEL FLow

The discussion of the various channel-flow problems in this section
has not emphasized the problems which remain unsolved in the deter-
mination of heat transfer in crossed-field generators and accelerators.
These will be summarized briefly in this section.

We can conclude that constant-property, one-dimensional channel flows
are well understood qualitatively. Even the inclusion of Hall currents
in the determination of heat transfer could be carried out without diffi-
culty, since the velocity field has already been analyzed (53). Compressi-
ble fully developed channel flow has not been investigated, which is not
unusual since the field-free case is not yet well understood.

However, when the conductivity varies with temperature, the heat-
transfer rates can be severe (54, 56). The validity of a theoretical analysis
for the gas behavior is restricted by the difficulty in assuming a reasonable
mode] for the partially ionized, sometimes nonequilibrium gas. Oates (54)
has suggested several experiments which can be carried out to determine
the nature of the actual gas flow as compared to the predicted one.

Of the several solutions for the free stream in a channel, those which
correspond to a constant-area one-dimensional flow are: constant B and
E, constant temperature and E, and constant temperature and B. These
could be compared with measurements; those which indicate an asym-
metry of heat transfer between anode and cathode, for instance, would
give evidence for an elevated electron temperature; measurements of the
pressure gradients across the channel would give an indication of the
magnitude of the Hall current.

It was pointed out earlier that it is necessary to have high velocities
in MHD power generators. If the gas is in equilibrium, nozzle-driven
generators become exceedingly long at high-inlet Mach numbers because
the conductivity depends on gas temperature. If the flow is expanded
to supersonic Mach numbers before entering the MHD duet, nonequilib-
rium ionization will occur; i.e., an overabundance of electrons will exist
in an expanding preionized flow because the relaxation to ionization
equilibrium is slower than the flow velocity. (This phenomenon is called
freezing, and is also found in high-energy flow about blunt bodies.)

Eschenroeder (565) discusses these effects and shows that the conduc-
tivity due to freezing increases significantly above the equilibrium value
at that pressure. The effects of this on MHD channel heat transfer would
be important. At the low operating pressures, the heat transfer would be
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less. The expansion with nonequilibrium ionization also implies that the
static temperature is lower. (The potential energy has been converted
to kinetic energy without a loss in conductivity before the gas enters
the generator.) Hence, the problem of hot exhaust gases is alleviated.
However, the theoretical analysis of heat transfer in such a flow would
be difficult.

V. Flat-Plate Boundary-Layer Heat Transfer

In high-velocity flow past a thin wing, the air in the boundary layer
will become heated due to viscous dissipation. If the velocity is large
enough, a small degree of ionization is produced, and the air will become
an electrical conductor. A magnetic field of sufficient intensity, applied
normal to the wall, will interact with the boundary-layer flow to cause
a reduction in the velocity and a decrease in skin-friction drag. The effect
of such a flow on the heat transfer to the wall will be discussed in this
section. 7

The two-dimensional boundary-layer equations are in themselves diffi-
cult; the addition of a variable conductivity and the ponderomotive
force increases the complexity to the extent that the problem is often
intractable without unrealistic assumptions (see Section V,B,2). There-
fore, we will try to gain insight into the boundary-layer problem by
considering first a simple one-dimensional shear flow, much as was done
in Section IV with the channel problem.

A. Covuerre Frow

Couette flow is produced when a viscous fluid between two infinite
plates is set into motion by the relative velocity of one of the walls. It
can be studied experimentally as the flow between two concentric cylin-
ders in relative angular motion when the spacing between the cylinders
is small compared to their radii (see Fig. 14a). Analyses of MHD Couette
flow have been made by Bleviss (66) and Leadon (567).

1.1 ncompressible‘ Couette Flow

Mathematically, this problem is the same as the one-dimensional
channel flow of Section IV, with one important exception: The boundary
conditions of the fluid are different. Consider the semiinfinite channel
of Fig. 14b with the magnetic field normal to the lower, stationary plate.
These walls are assumed to be electrically insulated. The upper wall
moves with uniform velocity, u., in the axial direction. When the mag-
netic field is not present, the velocity profile is linear.,

In order to simulate a boundary-layer flow, let us assume that the
axial pressure gradient is zero and that there is no applied eleetric field.
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Fi1c. 14. Various interpretations of MHD Couette flow; (a), flow between concentric
cylinders in relative angular motion, in which the induced current is in the Z direction;
(b), shear flow between infinite parallel plates; (¢), sliding concentric cylinders (56),
in which the current circulates.

Sinece K = 0, we must provide some shorting arrangement for the cur-
rents. Bleviss (66) suggested a configuration shown in Fig. 14¢. This has
some limitations, just as a “shorted” Couette flow would. For example,
a radial field such as indicated in Fig. 14¢ would not satisfy V- B = 0
if B, were constant, as is usually assumed. But the problem of providing
a shorting mechanism at the open ends of a concentric rotating cylinder
would also be difficult.
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Under the assumption that K = dp*/0X = 0, Eqs. (561) to (563) become

2
%—% — MU =0 (76)
*
J.SB* = %’-’7 77)
and
1 dB.*
Jo=U=—go.av (78)

where now all quantities are referred to the upper wall in terms of dis-
tance & from the lower, stationary wall, and where u(8) = u.. The
boundary eonditions on U are thus U(0) = 0, U(1) = 1. Equation (76)
can be integrated immediately to obtain

_ sinh MY

= Sinh M (79)

The variation of U and J, with M is shown in Fig. 15. As M increases,
U—exp M (Y — 1).

a. Induced Magnetic Field. If we again visualize B,* as the field induced
by a current sheet of mean density J, then B,* will be antisymmetric
at the walls, obtaining equal and opposite values there. Since J, is also
given by Eq. (78), then

B* = + (80)

1&. 1+ cosh M — 2 cosh MY
2 M sinh M

At the point n determined by / o" J.dY = /,, ! J:dY the field is zero; the

mean current below that layer is equal to the mean current above it.
This integral condition gives 5 in the terms of the hyperbolic functions

coshM—+1

cosh Mn = 5

(81)
which agrees with Eq. (80). The null point  for the channel flow of
Section I1V,A 2, was always at the center because of the symmetry of J..
Here, as M increases and the current density becomes confined to a
thin layer near the wall, the point 1 moves closer to the wall.

Bleviss (66), who included the incompressible case in his treatment of
hypersonic Couette flow, discussed the boundary conditions on B.*. He
assumed that B,* was induced by a multilayer solenoid of infinite
length. In a short solenoid, the magnetic field induced by the current
loops will be axial. It will approach a uniform maximum value in the
center and fall off as the inverse distance exterior to the coil. The Couette
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flow described by Egs. (79) and (80) will not yield this condition because
it is strictly two-dimensional. However, as M increases, especially for
M > 10, the current sheet is nearly all confined to a thin layer near the
upper wall (see Fig. 14). Therefore, if we were to bend this two-dimen-
sional configuration into a solenoid, the induction would approach a
maximum in the center, go through a null near the wall, and be opposite
in direction outside the current loop. Then, to satisfy the condition that
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s M=0 / /
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" g 4
o / e
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FiG. 15. Variation of velocity and current density with Hartmann number for
incompressible Couette flow.

the divergence vanishes for eylindrical coordinates, B.* will drop off to
zero as the inverse distance as r — «, So the boundary conditions on
B_.* in the fluid are the same as in the two-dimensional case, and B.* does
not vanish externally, as it would if the solenoid were infinite. The exact
form of B.* is, however, unimportant; it is the magnitude of B.* which
is of interest.

As far as the effect of B.* on the equations of motion, B.* enters only
into Eq. (79) and does not affect the flow. But because J,B,* is not
(320}
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symmetric, as in the channel-flow problem, a hydrostatic pressure will

be induced by the ponderomotive force. Defining Ap* = p*(1) — p*(0),
Eq. (62) yields

_ Ren Jeosh M — 1

AT = Re { 3 sinh? M } 82)

which is negligible in most instances since Re. << Re. For liquid mercury
at room temperature, for example, this ratio is on the order of 10~%. In a
compressible fluid where the local dynamic pressures are low, this term
could, however, become significant.

The faet that an axial field will exert a force on the upper wall in an
asymmetric flow is substantiated by the discussion in Section IV,C where
it was shown that an axial field increased the boundary-layer thickness
slightly. However, in that case the axial field was much larger than this
induced field and the flow was two-dimensional, so that the forces were
not infinitesimal.

b. Heat Transfer. Both Bleviss and Leadon showed that the heat
transfer to the lower wall was not changed by the addition of a magnetic
field. Writing Eq. (87) in terms of § = (T — T,)(Tw — Tw), where T, is
the temperature of the lower wall, ,

d26; dU\?

Integrating Eq. (83) twice and applying the boundary conditions on 6,
we obtain

0—Y+Pr 8[ ginh? MY

Y- sinh? M } (84)

which reduces to the result

Sy — vy (85)

when M — 0. Defining ¢ = k(dT/dy) in the usual way

_ATE | pu?
=" t% (86)

for both Eqs. (84) and (85). So the heat transfer to the lower wall 1s
unaffected by the magnetic field.
At the upper wall, which was not treated by Bleviss in"the incom-

pressible case,
2
G I‘Uoo< 2M 1) kAT 87)
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Heat will flow from the fluid to the upper wall when

2
—_— 22 88
( M 1) (88)
tanh M
where Pr- & > 2 for heat to be transferred to the wall when M = 0.
Therefore the magnetic field effectively increases the heat transfer at

the upper wall. The difference between the heat transfer with and with-
out a magnetic field is :

Pr-&>

HlU? 2M  BU?

Jo = Quoyen = T [m - l] = —5— (2M - 1) (89)
for M > 5, so that the increase in heat transfer due to the field is linear
in M a8 M increases.

In a boundary layer the “upper wall”’ is not fixed; one would suspect
that the change in heat transfer in Eq. (89) would be reflected in a growth
of the thermal boundary layer and a reduction in heat transfer to the
lower wall.

¢. Drag and Reynolds' Analogy. Bleviss also investigated the friction
drag for incompressible Couette flow and found, as Rossow (3) did, that
the magnetic field increased the skin-friction coefficient but increased
the total drag by the action of the ponderomotive force on the fluid. This
result is also evident in the simple channel flow of Section IV,A,3. In that
case the pressure drop had to be increased as M grew larger in order to
keep the same mass flow.

Since ¢, is independent of the magnetic field, then the heat-transfer
coefficient, Cry = ¢u/pcu. AT, will also be independent of M if AT is not
affected greatly by the magnetic field. Bleviss showed that when the
“recovery” temperature T, = T, + Pru,?/2¢T. was used (considering
that this is incompressible flow), Cy = 1/PrRe and that the ratio

C/ - 2PrM
Co = snh M (90)

The fact that Reynolds’ analogy is invalid in MHD will make experi-
mental verification of much of the theory difficult.

2. Hypersonic Couelte Flow

The exact calculation of magnetic effects in a compressible boundary
layer is quite difficult, so Bleviss (66) studied the simpler geometry of
Couette flow, allowing the gas to be ionized and compressible. Even so,
suitable transport properties must be chosen in order to simulate properly
the behavior of a high-temperature gas. In accordance with the conclu-
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sions of Section ILE, Bleviss assumed that the Prandtl number was
constant, the electric conductivity was obtained from (18), and the vis-
cosity was calculated by using the Sutherland formula. The gas was
taken in thermodynamic equilibrium and the Lewis number was assumed
to be unity, so that chemical heat flux was not considered.

It was demonstrated in the preceding section that Bleviss used differ-
ent boundary conditions on B.*, the induced magnetic field. His
calculations for the compressible case show that the magnetic pressure
[B.(max)]?/2u. was less than 10~2 atm; hence his results apply for free-
stream pressures as low as 10~% atm before the flow will separate from
the lower wall. If the other boundary conditions had been used, the
restriction on p., would be slightly less stringent, although considerations
of the Hall current would also restrict the regions of validity of the
solution to pressures higher than these.

One of the most important results of Bleviss’ calculations was the
showing of the effect on the various aerodynamic coefficients of variable
air properties, in particular, the electrical conductivity. He found a pecul-
iar hysteresis effect (see, e.g., Fig. 17) for certain temperature levels in
the boundary layer such that the heat transfer and skin frietion became
multivalued funections of By, the applied field strength. This was traced
to the variation of electric conduetivity with enthalpy in the boundary
layer. Since this effect also appears in the compressible boundary layer,
we will discuss it further in Section V,B,2.

Another effect of the hysteresis property enabled relatively weak mag-
netic fields to produce large reductions in skin friction and correspondingly
large increases in magnetic drag. The heat transfer to the lower wall is
slightly increased by the magnetic field. This is due primarily to the
fact that the Couette flow, unlike a boundary layer, is not free to grow
in the normal direction.

Bleviss, as did Rossow (3), also studied the case where the magnetic
field is attached to the moving wall. This will not be discussed further
here, as it has no practical significance in boundary-layer flows.

B. Frar-PraTE SoLurioNs

1. Incompressible Flow

A pioneer paper by Rossow (3) provided the basis for many later
studies in the field of magneto-fluid-mechanics. The assumption of a
small magnetic Reynolds number was made so that the induced magnetic
field did not enter into the equations of motion. The fluid was assumed
to be incompressible, and both the case of impulsive motion (the Rayleigh
problem) and the boundary-layer problem were analyzed for transverse
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constant magnetic fields fixed either to the wall or to the fluid. In all
solutions, the electric field was zero and the currents were assumed to
be shorted at infinity. In one case, the free stream was taken to be elec-
trically conduecting, so that the free-stream velocity was also retarded
by the magnetic field.

It is not possible under these conditions to obtain similar solutions
to the boundary-layer equations. These were solved by a series-expan-
sion technique in powers of 4/SX, where X = /5, for example; terms
higher than (SX)? were neglected. The free-stream velocity varied as
du/dx = —oBy?/p, a decelerating flow. Rossow found that the skin frie-
tion decreased as S increased. The heat transfer, for the case T, = T,
was found to vary as

_Nu 0.332 — 0.3428X — - - - 91)

Pr v/Re,
where both the Reynolds number and S are based on the variable free-
stream velocity. Equation (89) indicates that the decrease in heat transfer
for (SX) < 0.5 is not exceptionally large, but it also indicates that the
growth of the boundary layer permits a reduction in heating, something
which the Couette-flow configuration did not permit. The displacement
thickness, in fact, increases as

5: VRe, = SY v/Re, + (1.73 + 0.548X) (92)

Rossow found that the recovery temperature was not affected by the
magnetic field, which is to be expected, since the stagnation enthalpy is
unchanged by the presence of B, (see Section I1 B,3).

Rossow also investigated the case in which ¢ was assumed to vary
throughout the boundary layer. He chose a linear variation of ¢ with

velocity decrement, i.e.
s =0 (’—‘:%9> (93)

80 that u. is not affected by the magnetic field. The heat transfer in
this case is now

N Nu
Pr v/Re,

which is a reduction of significantly less magnitude than that of Eq. (91).
The displacement thickness and skin friction also showed less decrease
with the applied field.

In a later paper (58) Rossow used an empirical value for o ~
[324]
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exp [T — const]’* and chose the Blasius cold-wall temperature distribu-
tion to relate o with velocity. The heat transfer in this case is

Nu
Pr +v/Re,
Comparing Eqs. (91), (94), and (95) on the basis of the same kinetic
energy in the stream indicates the effect of the different variations in

conduectivity on the heat transfer. Figure 16 shows that the reduction
is most pronounced when Eq. (95) is used.

= 0.332 — 1.2168X (95)

c.4
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Fia. 16. Effect of variable conductivity on the incompressible-boundary-layer heat
transfer (3, 58).

It can be seen that neither of the variable-conductivity solutions by
Rossow showed any evidence of hysteresis effects. This is due to the
rather arbitrary relationship assumed among conductivity, temperature,
and velocity, and it introduces the interesting possibility that a properly
seeded gas at relatively low velocities might produce the kind of heat-
transfer reduetions which were predicted by Rossow.

2. Compressible Flow

The preceding discussions on hypersonic Couette flow and the variable-
conductivity solutions by Rossow indicate that the behavior of heat
transfer is very different when the air properties—especially the electric
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conductivity—are allowed to vary. The manner in which o varies with
T and T varies with u is especially important, as was just pointed out.
Bush (59) solved the compressible-boundary-layer equations and found
the same hysteresis behavior for skin friction and heat transfer as did
Bleviss, using a variation of ¢ with T similar to that of (18). This effect
occurred even though the magnetic-field configurations were different;
the field used by Bush varied along the plate, whereas Bleviss used a
constant field. However, there were important differences in the heat
transfer, the same as those found by Rossow: The growth of the boundary
layer permitted the heat transfer to be reduced, which the Couette flow
did not.

Bush assumed that the boundary-layer air was in thermodynamic
equilibrium and that the Lewis number was unity. The induced mag-
netic field was neglected, so the equations were linear in B. A similarity
transformation applied to the equations indicated that By ~ 1/4/z for
similar solutions might exist. [This was also independently determined
by Lykoudis (60)]. In the hypersonic boundary layer, the most natural
thermodynamic-state variables are enthalpy and pressure [see Eq. (20)],
so the air and transport properties are usually expressed in terms of these
functions. The natural parametric combinations of transport properties
which arise in this type of compressible boundary layer under an
Hantzsche-Wendt transformation are

a = i‘.‘_ ~ (}l)—o.u' (96)
PoKo ho
and
s _ OB A i .
B= Bo (ho) for T > 1000 K} o7)
~0 for T < 1000°K

where the subscript 0 denotes reference conditions at 7' = 222°K, and
or = 100 mho/m is arbitrary. The power-law variation given above holds
for a wide range of pressures by adjustment of By, The parameter 8
determines part of the magnetic interaction through SB, where
S = 207Bs’L/pov/ho (in the Hantzsche-Wendt transformation
o = V'ho = 472 m/sec).

Under these conditions Bush found the same hysteresis behavior in
the skin friction and heat transfer as did Bleviss. Both 7 and ¢ are plotted
schematically in Fig. 17 versus velocity for various values of S. (The
actual behavior is a funetion of k., h., and pressure.) Notice that as .,
increases for a fixed S the skin friction or heat transfer at first increases.
This occurs because the temperatures in the boundary layer are so low
that the fluid is a nonconductor. As the velocity increases, magnetic
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Fig. 17. Schematic behavior of skin friction and heat transfer in compressibie-
boundary-layer flow (5§9).

effects begin to occur and the skin friction begins to descend below its
nonmagnetic value until a point (at the vertical tangent) where a further
increase in velocity above, say, u: causes a discontinuous drop in 7 or
g to the lower branch of the eurve, as shown in Fig. 17. If the velocity
is then decreased, these functions will trace along the lower curve until
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the lower vertical tangent is reached at w, and will then jump up to
the upper curve and join the nonmagnetic curve as the velocity approaches
zero. The regions between the two vertical tangents are unstable and
would not be attained in practice.

a. Hysterests Effect. The reasons for the discontinuous drop (or hystere-
sis behavior) of skin friction and heat transfer were discussed by Bleviss
(66) and were traced to the rapid variation of ¢ with enthalpy as the
gas first begins to ionize. In his conductivity model {taken from (18)],
o(h,p) rises exponentially with & until A ~ 32k, (2600 cal/gm), at which
point the temperatures are roughly between 4000° and 5500°K, depending
on the pressure. The ion production up to this time has been primarily
from the reaction N 4+ 0 2 NO+ 4 e. Above this point the NO produc-
tion decreases, as most of the energy is taken up by the remainder of
nitrogen dissociation. Hence for enthalpies between around 2600 and
9400 cal/gm, the variation of temperature with enthalpy, and hence
conductivity with enthalpy, is relatively slow. Above A ~ 9400 cal/gm,
both oxygen and nitrogen start to ionize, and the conductivity will again
increase. By this time, however, the energy content of the gas is considera-
bly higher than that which would be expected in normal hypersonic
flight (i.e., M. > 40).

Bleviss believed that the “flat spot’”’ or abrupt change in slope of the
conductivity caused the hysteresis behavior. In the boundary layer, the
enthalpy level may pass through the point A = 32k, so that the magnetic
effects in the boundary layer change abruptly (i.e., small magnetic fields
would give large effects if o were increasing rapidly). But then as A
increases, the variation in ¢ is small and little effect of the magnetic field
would be seen.

The author believes the same explanation applies to the solutions of
(59), although the true behavior of ¢ has been masked by the parameter
B, which exhibits no such slope change. The fact that Bush found that
the hysteresis does not disappear until higher Mach numbers is perhaps
due to the differences between Couette and boundary-layer flow. Since
the boundary layer remains cooler than Couette flow at higher Mach
numbers, because of its ability to grow, the low-enthalpy behavior is
retained over a larger range of velocities.

Bush presents the results of calculations for p = 10~? atm, hy,/he =
he/ho = 10 (T ~ 2200°K), and hy/hy = 10, hy/hy = 1. The first case
would compared to a very slightly conducting free stream (f ~ 10-3%),
and the second to a hot wall and nonconduecting free stream. In the former
case the effects of finite conductivity on the inviscid flow are negligible.
We do not have space to reproduce the results of (59), but several signi-
ficant points about the heat transfer can be established.
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b, An Assessment of the Results. The calculations by Bush indicated
that reductions in heat transfer by as much as 809 would be achieved
with moderate field strengths. The field strength, however, is limited in
all flow problems by low-pressure effects, such as Hall currents (see
Section I,B,2), which would invalidate the concept of a scalar conduc-
tivity and a two-dimensional flow. Bush estimated that when p, = 10~3
atm and the reference length = 1 m, it would require the interaction
parameter S < 0.1 for «/v, £ 0.1. He did not present any curves for
this low value of S, but some indications of heat-transfer behavior
for low 8 can be obtained from the curves for S = 1.

Referring to Fig. 17¢, when h,/hy = ho/ho = 10, the stable solutions
are bracketed by 0 < u; < 15,000 (m/sec) for increasing velocities and
10,850 < us < « for decreasing velocities. That is, during a flight in
which the velocities are always larger than 10,850 m/sec the heat transfer
would be reduced substantially. Below those velocities there would be
no reduction in heat transfer, since the magnetic interaction is too small.
During an accelerating flight to u; = 15,000 m/sec there would be little
reduction in heat transfer, and the calculations by Bush indicate there
will be only a 10 to 159% reduction in skin friction. The range of velocities
in this situation is presently much higher than any which have been
achieved for thin-winged vehieles; therefore we must conclude that under
normal circumstances at these altitudes the heat transfer would be
unaffected. The curves for the heated wall are less restrictive at the lower
end in their velocity requirements. That is, the stable solutions are given
by 0 < u; < 13,700 and 10,850 < u; < . We should also mention that
at these low pressures the induced magnetic field would also become
important (see Section V,A,2).

The restriction on field strength due to Hall effects would disappear
as the pressure increases. For p, = 1 atm, Bush estimated that § < 100
would satisfy the requirement for small Hall effects. However, even
though the limiting velocities decrease when S increases, so does the
necessary field strength increase to produce a given S, especially at higher
pressures. Bush estimates that for an S of 100, at atmospheric pressure
and a length of 1 m, the field strength B, = 200,000 gauss!

It is evident that there is an optimum value for S such that Hall
effects are minimal and field strengths are reasonable. This, of course,
depends on the velocities during flight and on the heat-flux reductions
which would be necessary. The analysis by Bush indicates that even
with large magnets (S = 100) the velocities must be at least as large as
about 6000 m/sec to achieve any reductions in heat transfer.

c. Some Remarks Concerning the Assumptions. Several assumptions are
made by Bush and other workers in hypersonic-boundary-layer theory
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in order to facilitate the solution of the equations. Besides the neglect
of Hall currents and ion slip these include assuming that the induced
field is negligible, the gas is in thermodynamic and chemical equilibrium,
and the Lewis number is unity (diffusion transport of heat is neglected).

We have already remarked on the first assumption in Section V,A 2.
It was shown for the Couette-flow case that the pressure due to the
induced field could cause flow separation at ambient pressures lower than
roughly p. ~ 10~% atm. [This will not oceur if B ~ 1/4/z, according to
(60)]. In a boundary layer the induced field would probably contribute
to the boundary-layer growth and decrease the heat transfer. However,
the induced field becomes important only at those pressures where Hall
currents become important. Therefore the assumption that Re. ~ 0seems
justified in this case where the solution is limited by Hall effects.

The assumption of chemical and thermodynamic equilibrium implies
that reaction times are short compared with the time it takes an air
particle to enter the boundary layer, become heated, and traverse the
length of the body. It also implies that particles which diffuse across
the boundary layer adjust instantaneously to the temperature of the gas.
If the time for ionization is much larger than the traverse time the gas
will never ionize and the magnetic field will have no effect. If the ioniza-
tion time is equal to or greater than the dissociation time, then the
case of equilibrium will indicate maximum magnetic effects, unless the
ionization time is less than the dissociation or traverse time. In this
instance an equilibrium solution would underestimate the magnetic
interaction.

Little is known of ionization rates in gases except those at the rela-
tively high pressures existing behind normal shocks. Because the forward
two-body process of dissociation and ionization is fast compared to recom-
bination, a three-body process, it is likely that at the pressures considered
in these studies the gas will be in equilibrium—at least in the regions
of highest temperatures in the boundary layer.

This conclusion is based partially on a study by Chung and Anderson
(61) of nonequilibrium effects due to dissociation of pure oxygen in a
flat-plate boundary layer. They showed that at 30,000 m (p, ~ 10~2 atm)
and M = 20, the oxygen was 80% in equilibrium one meter aft of the
leading edge. An extrapolation of their results to the ionization equilib-
rium of NOt is certainly not warranted, since the reaction rates are
different, but since atomic oxygen is necessary for the ionization reaction,
we can conclude that at higher Mach numbers there will probably be
sufficient atomic oxygen to cause the ionization to exist.

Tt should be pointed out that this study was for the adiabatic wall.
This is the most favorable situation for equilibrium, since recombination
(330]



Fierp InFLUENCE EvecTricaLny ConpucTiNg FLUIDS

takes place only in the particles diffusing away from the wall; further,
the flow time near the wall is lowest, enabling the gas to spend more
time in a particular environment. At higher altitudes, the equilibrating
process takes longer.

In actual hypersonic flight the diffusion of heat from the reacting gas
can contribute considerably to the heat transfer. The heat released by
the recombination of electrons and ions at the wall will not be significant
at low degrees of ionization. But the effect of catalytic walls on heat
transfer can be severe due to the interaction of the magnetic field with
the atom-concentration gradient (see Section VI,B,2).

C. REsuME: Frar-Prare BouNDARY-LAYER HEAT TRANSFER

It has become clear in the preceding discussion that the assumed vari-
ations of conductivity with temperature and of temperature with en-
thalpy have a significant effect on the behavior of boundary-layer heat
transfer with magnetic fields present. When either nonequilibrium effects
or diffusion transport is included, the problem of determining the mag-
netic interaction can be formidable. Hall-current considerations appear
to limit these solutions to relatively low altitudes (p, ~ 10~% atm corre-
sponds approximately to 40,000 m altitude).

On the basis of the discussion in Section, IV,D, it would be of interest
to ascertain the effects of seeding both a nonequilibrium (high-tem-
perature ‘“frozen” flow) and an equilibrium gas with a contaminant such
as cesiumn, potassium, or sodium, all of which are easily ionized. The
conduetivity here would display a more regular behavior and the hystere-
sis properties of r and ¢ could be avoided; i.e., more efficient cooling could
take place at lower temperatures if the conductivity were high. Of course,
seeding would also increase the total drag and would probably contribute
to the heat deposition in the wake.

However, it is clear from the analyses reviewed in this section that
the reduction of flat-plate aerodynamic heating by magnetic means is
not promising for naturally ionized air. But there still remain refinements
to these solutions which may indicate further effects on heat transfer
which are as yet undetermined. Further, the purely aerodynamic utiliza-
tion of the magnetic forces as flow-control mechanisms should not be
dismissed, for the influence of a magnetic field on drag is much larger
than on the heat transfer,

V1. Heat Transfer to Blunt Bodies

It was mentioned in the Introduction that a large portion of the early
interest in engineering MHD stemmed from the aerodynamic-heating
problems associated with hypersonic flight in the atmosphere. One of
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the most critical heating areas is at the stagnation point of a blunt body,
where the incoming hypersonic airstream is brought to rest by a strong
normal shock and adiabatic compression. For a typical earth-satellite
reentry at velocities of about 8000 m/sec, the maximum heating rate
to a 1-m body is 7850 w/m? (80 Btu/ft? sec). For reentry from near
space, where the reentry veloeity is closer to 11,000 m/sec the maximum
heating rate is higher by a factor of 3.

This section will review the numerous analyses presented in the litera-
ture during the past 5 years. In retrospect it must be conceded that many
of the early estimates of heat-transfer reductions using magnetic tech-
niques were optimistic because the entire flow problem was not completely
analyzed. Again, other studies were more pessimistic because the shock
strengths considered were those associated with ballistic reentry rather
than reentry of a planetary probe. It is hoped that this review will con-
tribute to the clarification of what has been a highly controversial sub-
ject. We have tried to present the results in such a form that all compari-
sons between heating rates and methods of solution are based on bodies
of similar shape flying at the same altitude and velocity.

A. STAGNATION-POINT HEAT TRANSFER WITH APPLIED
MaGNETIC FIELDS

When a blunt body moves at hypersonic speeds, a large percentage of
the kinetic energy of the airstream is converted into heat by the com-
pression of the normal shock at the nose of the vehicle. This heating
of the air behind the shock will cause dissociation and, at high enough
velocities, will cause ionization to such an extent that the air is capable
of being influenced by a magnetic field.

Consider the blunt body of Fig. 18a. If there is no applied electric
field, and a magnetic field is affixed so that it acts perpendicularly to
the oncoming flow, the ponderomotive force acts in a direction to deceler-
ate the tangential veloeity, u, since the current, j, flows in loops as shown
in Fig. 18b. Without a detailed examination of the equations, we can
qualitatively state that the magnetic interaction will cause

(a) The shockwave standoff distance to increase, since a larger volume
is needed for the passage of the air between the shockwave and the nose

(b) The coefficients of heat transfer and skin friction to decrease
because the local velocity is lower

(¢) The pressure at the stagnation point, which is determined prin-
cipally by the normal momentum, to change little

(d) The total drag of the body to increase.

It is obvious that the problem of determining the heat transfer near
the stagnation point demands a solution of the entire flow field from the
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shock to the body both since the inviseid and viscous regimes are conduct-
ing. Some of the early papers on this subject (60, 62, 63, 64), did not include
the effects of the magnetic interaction on the inviscid flow. These solu-
tions could be considered as incomplete in the sense that a viscous prob-
lem was solved for an unknown inviscid, or controlling, flow. Neither do

Shock wave

Body
~
8
/
Boundary layer

Inviscid flow

UQ‘—-——————

(a)

(b)

Fra. 18. Schematic diagram of a hypersonic stagnation flow with an applied mag-
netic field; (a), a typical blunt body; (b), detail of stagnation point.

these solutions include any discussion of the influence of the magnetic
field on the pressure distribution around the stagnation point. But
Lykoudis (65) showed that it was possible to match the viscous solutions
with an inviscid flow by choosing an average magnetic-field intensity
in that region to adjust the velocity and pressure for the magnetic inter-
action. This procedure implicitly assumes that the electrical conduc-
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tivity and density are constant in the inviscid layer, which is an excellent
approximation at hypersonic velocities and altitudes below 60,000 m.

For the purpose of this section, however, it is most convenient to dis-
cuss the complete stagnation region, starting with the inviscid flow; after
this, the viscous regime can be easily determined by using standard
boundary-layer techniques. As in any stagnation-point flow, the heat
transfer is proportional to the temperature or enthalpy gradient at the
wall and the square root of the tangential velocity gradient at the edge
of the boundary layer [see Eq. (104)]. For a constant-property boundary
layer, the latter accounts for the largest portion of magnetic influence
on the heat transfer. We shall therefore restrict our discussion of the
inviseid solution to the determination of the velocity gradient.

1. The Velocity Gradient

The inviscid flow field in the vicinity of the stagnation point is described
in a fluid-dynamic sense as the conversion of a unidirectional, high-
velocity stream by a normal shockwave into a high-temperature subsonic
layer, which is taken to be inviscid and incompressible, both of which
are good approximations at high velocities and Reynolds numbers. The
second qualification is necessary to insure that the boundary layer and
inviscid flow are distinet; for a further discussion of ‘“viscous-layer”
effects the reader is referred to Hayes and Probstein (66) or Wu (67).

The properties directly behind the normal shock are determined by
the Rankine-Hugoniot conservation equations; if the gas becomes dis-
sociated or ionized there are numerous charts which describe the gas
properties in this region [see, e.g., (68)].

There are essentially two mathematical approaches towards the flow
problem, both of which have been successfully employed in the non-
magnetic case and which are described more fully in (66). The first consists
of utilizing the Newtonian approximation.

a Newtonian Flow. In the Newtonian approximation, the shockwave
is assumed to be either spherical or cylindrical (depending on the body
shape at the nose) in the vicinity of the stagnation point. The density
is constant in the region between the shock and body. Immediately
after passing through the shock, the fluid is assumed to give up all of
its normal momentum into pressure; i.e., the flow turns immediately so
that the velocity after incidence remains tangent to the wall. Lykoudis
made the remark in (69) that since the normal velocity, which deter-
mines the pressure in this approximation, is parallel to and unaffected
by a radial applied field, there will be no magnetic interaction which
can affect the pressure. The pressures determined by this approach will
become less accurate as the shock detachment distance increases or if
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an extensive induced field exists. The velocity gradients obtained by
the Newtonian solutions are compared in (69) with more exact calcula-
tions by Kemp (70). It is shown that the agreement is within 8%, for
reasonable values of the magnetic interaction. These data will be pre-
sented after the other flow calculations are discussed.

It should be mentioned here that one of the benefits of the Newtonian
approximation is that it permits closed-form solutions to be obtained
for all the flow characteristics. This is particularly useful when trends
are investigated.

b. Similarity Solutions. The similarity solutions discussed by Hayes
and Probstein (66) also assume a shock with the same shape as the body,
with an incompressible inviscid flow behind it. For a given shock radius,
free-stream velocity, and density ratio across the shock, the body surface
is found where the normal component of velocity vanishes. As such, these
solutions are more refined than the Newtonian approximation, although
neither takes into account the finite compressibility that exists between
the shock and the body. However, this method will allow for variations
in the pressure distribution, due to the magnetic-field interaction, and
it need not be restricted to small magnetic Reynolds numbers. However,
the shock layer must still be thin enough that the curvature is constant
and incompressibility exists.

Kemp (70) investigated analytically the extension of this method for
spherical flow and the case of small magnetic Reynolds number, in which
situation only the component of the applied field at the body need be
specified. (Of course, the applied field would still have to satisfy Maxwell’s
equations for that particular body.) Bush (71, 72) solved numerically
the inviscid-spherical flow field for a magnetic field which acted as a
dipole in the free stream. Here the boundary conditions were specified
at the shock rather than on the body. In this way he was able to consider
a nonvanishing magnetic Reynolds number and still solve a relatively
simple set of differential equations. Wu (67) utilized the same scheme
but also considered low-Reynolds-number effects (large viscous layers)
as well. He solved both the two- and three-dimensional cases. Meyer
(78) presented one of the first analyses of the two-dimensional stagnation
problem in which the inviscid flow was determined for large magnetic
Reynolds number.

c. Comparison of the Various Solutions. In order to compare the results
of these various solutions it will be necessary to specify some form of
the magnetic-interaction parameter, S [see Eq. (28)], which contains
arbitrary lengths and velocities. On the basis of the preceding discussion
it would seem that the most logical form for S would be that one which
contains all of the “knowns” or starting conditions in the solution: density
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ratio, free-stream velocity, shock radius, and magnetic field at the shock.
In fact, Lykoudis (69) showed through the analytic Newtonian solution
that this indeed is the most natural parameter for the inviscid flow. If

8. {[P= = 8, = B! ,/ﬁpf 98)

p Prlw

is used, then all flow parameters in the three-dimensional Newtonian
analysis are functions of 8,* and body type alone; the two-dimensional
parameters are weak functions of the density ratio. Here R, is the shock
radius and B, is the value of the magnetic field at the shock.

But Eq. (98) is inconvenient to use because in most practical problems
the body radius, not the shock radius, is known, and the body field rather
than its value at the shock will be specified. Kemp (70) suggests the
parameter
aB* R,

Puln

8y = (99)
to describe the magnetic effects; here B, is the magnetic field at the body
and R, is the body radius.

To indicate the order of magnitude of S, let us consider a body of
1-m radius flying at velocities on the order of Mach 25 (u. ~ 7800 m/sec).
Let us take an average value of conductivity of 100 mho/m for these
velocities and densities. (This is within a factor of 3 of the actual con-
ductivity.) At 30,000 m altitude the density is about 3 X 10~? kg/m?.
Therefore, for a field strength of 1 weber/m?

Sy ~ 0.5

At 60,000 m and at the same velocity, S; ~ 30. Therefore one could
consider that 0 < S, < 30 would bracket most practical cases for stag-
nation flow. The field strength chosen here (B, ~ 10,000 gauss) is just
about the maximum value for practical application; therefore values of
8, much lower than the above would probably be encountered in reality,
even if the velocity reaches 10,000 m/sec.

The flow characteristics when Eq. (99) is used will be functions of
the density ratio, p./p, and 8;, as well as of body type, although Bush
(72) indicates that the velocity ratio is insensitive to values of p./p at
least for 0.115 < p./p < 0.140. These are typical density ratios for hyper-
sonic normal shocks (68).

It is evident from Egs. (98) and (99) that

S = 8. (gf)’ (%{) (100)

so that a transformation between the parameters demands a knowledge
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of the magnetic-field configuration and the shock radius (or standoff
distance) which is a function of the parameter S, or S,. It is well to keep
this in mind when comparisons are made between various investigations.

The two-dimensional case has been studied by Lykoudis (69), Wu (67),
and Meyer (73), although Wu did not present any numerical calculations.
Meyer’s solution was for the case of a large magnetic Reynolds number,
and, unfortunately, it is not possible to convert from the parameters
given in (73) to the body parameter S, since the standoff distance
necessary for the conversion [Eq. (106)] is not given.
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Fi1c. 19. Velocity gradient compared to the field-free case for two-dimensional
stagnation flow (69).

We have plotted in Fig. 19 values from the Newtonian analysis of
Lykoudis in which B was assumed constant; his results, for Re, < 1,
are only slight functions of density ratio when plotted versus S, v/p./p.
The values of p/p shown in Fig. 19 embrace the entire hypersonic regime.
These curves will be utilized more fully in the section on heat transfer.
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Bush (72), Lykoudis (69), Kemp (70), and Wu (67), have calculated
the velocity gradient for the sphere. We show these results in Fig. 20.
again as a function of S,, where the density ratio p./p ~ 0.1. The curve
from (67) is for a Reynolds number of 1000 based on shock radius (com-
pared to the other solutions, where Re, — ). The thick viscous layer
in this case is reflected by the rapid decrease in velocity gradient as the
magnetic field increases slightly.

Figure 20 indicates that the agreement between various computations
for the velocity gradient is quite good even though a different magnetic-
field configuration is used in three of the calculations. (Wu used the
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Fi1G. 20. Comparison of stagnation-point velocity gradients with the field-free case
for hypersonic flow around a sphere and various magnetic-field configurations.

dipole field that was employed by Bush.) This is contrary to the com-
parison made by Lykoudis (69), who indicated that his Newtonian solu-
tion was about 8.5% lower than the similarity solution at S, = 5. He
attributed this disagreement to the change in pressure due to the magnetic
field. However, Lykoudis made his comparison with S, as the interaction
parameter; evidently when the shock radius is removed [Eq. (100)], the
disparity is eliminated to a great extent.

One important conclusion can be drawn from Fig. 19. Namely, when
Eq. (99) is used for the interaction parameter, or when the same bodies
under identical flight conditions are compared, the particular form of
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the magnetic field along the stagnation axis is relatively unimportant in
determining the reduction in the velocity gradient. Even if Maxwell’s
equations are not satisfied (for example, if B = constant) the velocity
gradient is determined largely by the value of B at the body, at least
for 8, < 5. For higher values of the interaction parameter, the dimensions
of the flow field are larger and the influence on the structure of the outer
flow of the variable magnetic field is reflected by the divergence of
values illustrated in Fig. 20 for Sy > 10.

Although Fig. 20 shows results for Ren << 1, we can infer from the
calculations of Bush (77) that as long as Re,, £ 1 and 8, < 3, there is
slight effect of the induced field on the velocity gradient. A conversion
of 8, to 8 is not possible here since the value of the magnetic field at
the body cannot be obtained from the data presented in (7). However,
on the assumption that the induced field at the body is small, S, ~ 35
when 8, = 3; so for the values of interest in hypersonic flight, the induced
field is unimportant as long as Re,, < 1. For flight at Mach 25 and an
altitude of 30,000 m, Re, ~ 0.01 (taking ¢ ~ 100 mho/m). Therefore,
the small-magnetic~-Reynolds-number approximation is valid in hyper-
sonic flow.

2. The Enthalpy Gradient

The second factor in the stagnation-point heat transfer to be affected
by the magnetic field is the enthalpy gradient at the wall. This is deter-
mined by the shape of the velocity profile in the boundary layer and
by the variation of air properties with temperature. The radial magnetic
field will lead to fuller profiles (see, e.g., Section 1V,A,3) and as a result
will enlarge that portion of the heat transfer due to the enthalpy gradient.
However this increase is not likely to be as large as the reduction afforded
by the velocity gradient, at least when the electrical conductivity is
assumed to be constant across the layer.

The boundary-layer equations for a stagnation flow fall into the class
of “wedge” flows for which U, = Cz™ [see, e.g., (60)]. For the axisym-
metric case, m = 14. This form of velocity, which in turn dictates the
pressure gradient, demands that the magnetic field tangent to the body
vary as a power of «; i.e., similar solutions are possible only if

B ~ gm¥ (101)

At the stagnation point B reduces to a constant and does not vary
across the layer. None of the cases analyzed in the literature considered
the matching of the inviscid and viscous magnetic-field configurations.
(Note here that when the velocity is constant m = 0 and the flat-plate
variation of Section V,B,2, is obtained.)
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Many analyses have been made for the viscous two- and three-dimen-
sional stagnation-point heat transfer. Both incompressible and compres-
sible flows have been treated. A survey of these papers brings forth the
interesting result pointed out by Kemp (74) that the effects of compressi-
bility and body dimension are relatively small in the determination of
the enthalpy gradients as long as the electric conductivity is constant.
This can be seen in Fig, 21, where we have plotted data from Neuringer
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Fig. 21. Invariance of viscous contribution to stagnation-point heat transfer for
constant conductivity solutions.

and Mecllroy (62), Meyer (73), Kemp (74), and Bush (75); only the
latter two calculations are for the same body shape and gas assumption,
although the field configurations were slightly different.

The data of Fig. 21 are plotted as a function of the parameter

B2
—_— 102
e ) (102)

Pe dzr
which arises naturally from the boundary-layer equations when account
is taken of the pressure gradient as determined from the inviscid flow:

du du _ du. s, 9f ou
pu o+ pu 37 = P dn + (ue — uosBy? + g-y‘(ﬂ @) (103)

S, =
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where ¢ denotes conditions at the edge of the boundary layer. It is neces-
sary in this analysis to assume that the magnetic field B is constant
across the boundary layer, which is not unreasonable unless the viscous
layer is very thick, as in the case studied by Wu (67).

When the conductivity is allowed to vary as some power of enthalpy,
the viscous eontribution to the heat transfer can be significant, as shown
by Bush (75). We have plotted the enthalpy gradients for this case in
Fig. 22, where the broken line denotes the average values for ¢ = constant,
taken from Fig. 21.
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Fia. 22. Effect of variable conductivity on the enthalpy gradient, compared to the
field-free case (75).

However, to assess the full effect of both the enthalpy gradient and
velocity gradient on stagnation-point heating, we should now look at
the heat transfer itself.

3. Stagnation Heating

As mentioned previously, the stagnation-point heat transfer is a func-
tion of velocity gradient, enthalpy gradient, and various air properties,

viz.
oT duc\*% , ,
q= (k @)w = f(p, ty h)stag. (%> hw (104)

[A complete derivation of Eq. (104) can be found in (66).] If ¢ is com-
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pared to a field-free case with the same stagnation conditions, or, equiva-
lently, the same flight velocity and altitude, the air properties cancel,

leaving
g9 _ (du./dx) ] h_w'
a0 [ (du./ dx)g] ha, (105)

It is apparent that we can either use S,, which is based on flight con-
ditions and body radius, as the interaction parameter for a comparison;
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Fig. 23. Transformation between boundary-layer interaction parameter and body
parameter for the sphere in hypersonic flight.

or we can use S,, which would be a comparison of two bodies having
the same drag. For the purposes of this section it is more convenient to
use the body parameter Ss.

In either case, it is necessary to convert from 8, to S, in order to com-
bine the results of Figs. 19-22. By use of Eqs. (100) and (102)

_ Po) (du./dx) [ Ry(du./dx),
e =5 Pe (du./dx)o[ b Ueo ] (106)

The term in brackets can be obtained from a field-free solution of the
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flow; for example, one could use the Newtonian values given in (69):

5 e
Grjo - _ NETNS

- cylinder (107)
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Uy " 3pe " doe sphere (108)
AR =

a. Heat Transfer io Spheres. This has been done for the sphere and a
density ratio of p./p, ~ 0.1; the relation between S, and S; is given in
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F1a. 24. Comparison of stagnation-point heat transfer with the field-free case for
a sphere in hypersonic flow.

Fig. 23 for the solutions of Kemp, Lykoudis, and Bush. The points due
to Kemp were taken from (74), where the field-free similarity solution
gives Ry(du./dx)o/u, ~ 0.517 compared to the Newtonian value of 0.549.
The agreement for S, < 5 is such that either solution is wvalid for
conversion.

We have plotted ¢/¢, on Fig. 24 for the calculations of Bush and
Kemp discussed previously, using the data of Figs. 20, 22, and 23. For
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n = 0 (¢ = constant), the two solutions are in agreement for 8, < 5, to
which value Kemp computed heat transfer. The curves given by Bush
in (756) for all values of the conductivity exponent extend to values of
S, much higher than presented here (S, < 100) but these were not
plotted in Fig. 24 because S, < 30 should be close to the maximum value
encountered with unseeded air and practical magnetic-field strengths, at
least for altitudes below 60,000 m. It can be seen from Fig. 24 that
when » > 5, an upper limit of sorts exists on S such that an increase
in Sy does not decrease the heat transfer further. From the calculations
made by Bush on the hypersonic boundary layer (Section V,B,2), we
find that the ¢/o, ~ (h/h,)%* fits the experimental data and the assump-
tion made in (75) that pp ~ pmu. (true when h,>> h,). Therefore, in
actual flight, the curve marked n = 5 is likely to be encountered. Reduc-
tions of 20 per cent in stagnation heating can be obtained if S; is high
enough.

The curve in Fig. 24 attributed to Lykoudis (69) is the Newtonian
solution for the heat-transfer ratio at n = 0. This curve can be obtained
by using Figs. 20, 21, and 23, or from the simple approximation

q _ | dujdz |4
@ [(du./dx)o] (109)

both of which yield the same values. Equation (109) was first used by
Lykoudis (60), where the exponent was introduced from results of non-
magnetic studies in hypersonic-stagnation heating (17). This approxima-
tion overestimates the reduction in heat transfer, which can be traced
to the lower values of velocity gradient exhibited in Fig. 20 for the
Newtonian solution, although the agreement for S, < 5 is within 3%,
of the calculations made by Bush. Therefore the simple formula of Eq.
(109) affords an excellent approximation for stagnation-point heat trans-
fer. The error does not exceed 109, which is within reason, considering
the approximations made in all these solutions, until S, >> 10. The dif-
ference would be even less if an average magnetic field were used, as
suggested by Lykoudis (65).

Before leaving the case of spherical flow, it is of interest to indicate the
effects of large viscous layers on the heat transfer. From Fig. 20 it is
evident that Wu’s calculations for a shock Reynolds number of 1000
show an extensive decrease in velocity gradient. This is reflected in the
heat transfer shown in Fig. 24, where we have multiplied the values
given in (67) by R,/Rs to account for changes in the shock Reynolds
number as S, increases.

b. Heat Transfer to Cylinders. With the exception of Meyer’s solution
for Ren > 1, the literature does not contain any complete solutions for
(344]



FieLp InFLUENCE ELEcTRICALLY CoNnpUcTING FLUIDS

the cylindrical case. We suggest, on the basis of Fig. 24, that the empirical
relationship of Eq. (107) be used for eylindrical flow, where the velocity-
gradient ratio is given in Fig. 19. These values will probably overestimate
the reduction in heat transfer in the same manner, as evinced by Fig. 24,

To conclude, we have seen that it is possible to obtain significant
reductions in stagnation-point heat transfer during ballistic reentry only
by the application of very large magnetic fields. In a practical sense,
the weight of magnets large enough to produce fields larger than 10,000
gauss would prohibit their use in present-day systems; other methods of
cooling are more feasible at the present. For future applications, such
as reentry from near space, where significant heating takes place at high
velocities and altitudes, this method of cooling might be worth consider-
ing, especially if magnet technology produces lighter and more efficient
magnets.

B. OTHER StraceNATION-POINT EFFECTS

1. Radiative Heat Transfer

While it was stipulated in the Introduction that we would be studying
convective heat transfer only, the peculiar nature of stagnation flow
demands that radiation effects be included. Goulard (76) has shown in
an order-of-magnitude analysis, using the formula due to Lykoudis [Eq.
(109)], that an optimum field exists for reduction in total heat transfer.
At the time (76) was written an analytic expression for the shock-layer
thickness did not exist. The analysis made by Goulard can be improved!
if we use the analytic expressions for the standoff distance given in (69).
It was shown in (69) that the shock-standoff distance is proportional to
(du./dz)~™, where the exponent m = 34 for cylindrical flow and m = 14
for axisymmetric flow. {Goulard used the value m = 1.) The energy
radiated by the hot gas is thus written on the basis of continuity as

gr _ | (du./dz) ™
qr, [(du,/dx) ] (110)

Using Eq. (109), the total heat can be written

- - (du./dx) | du,/dx ™
ot = ¢+ qr = Qo [m] + ¢z, [m] (111)

The optimum value for the velocity-gradient ratio occurs when the
derivative of Eq. (111) with respeect to that ratio is zero:

1/(m+0.4)
du./dz _ (qu,) 112)

(due/dx)o B 04Q0

1This refinement was suggested by P. 8. Lykoudis (40).
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Now Eq. (112) and the fact that du,/dz < (du./dx)s implies that qg,/qo

< 0.4/m for a reduction in total heat to exist when a magnetic field is
applied at the stagnation point. Since

20~ const | 2= ) e (113)

Qr, ~ const au(p.)¥Rsu.?

and

The heat-transfer ratio becomes

9B _ const awpe(Re)Hus? < O (114)
Go m
For a cylinder, the inequality is ¢gr,/go < 0.533, and for a sphere,
qr/q0 < 0.8. [Notice that if m = 1, as in (76), then the inequality is
qr.,/qo < 0.4 in all cases.]

It can be deduced from Eq. (113) that the radius for minimum con-
vective heat transfer (dqo/dR, = 0) is such that the heat-transfer ratio
becomes

qr/q0 = 0.5 (115)

Therefore if the body shape is designed so that convective heating with-
out & magnetic field is at a minimum, the application of a magnetic
field will not increase the total heat transfer, since Eq. (114) is satisfied
for either value of m under consideration. Goulard (76) found, that the
radius would have to be less than its optimum value, since the inequality
demanded that the heat-transfer ratio be less than 0.4.

It is still unlikely, however, that the inequality of Eq. (114) can be
satisfied at very high velocities when the wall absorptivity, a., is large
(i.e., when the surface is very “black’). Radiative heat transfer will
definitely become important at the higher altitudes and velocities asso-
ciated with reentry from space; and any analysis of stagnation heating
with magnetic fields should include the radiative effects. To the author’s
knowledge, however, a refined analysis has not been made.

2. kffects of Chemical Reactions

Lykoudis (60) discussed the effects of diffusion and wall recombination
briefly in his analysis of the viscous layer. By utilizing the results of
magnetic-free heat-transfer calculations (17), he showed that the term
governing recombination at the wall is unfavorably influenced by the
magnetic field, thus increasing the heat transfer due to diffusion and
recombination. If wall effects had been included in the heat-flux balance
of Section ILE, the catalytic term would multiply the Lewis number in
Eq. (39), thus causing an increase in the heat transfer to the wall. When
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a magnetic field is applied, this term is further increased. A more com-
plete discussion is given in (60).

3. Stagnation Point with Electric Field

The Langmuir probe is a small electrode to which various potentials
are applied and from which currents are measured. It has been used
extensively in gaseous discharges and static-plasma investigations. Talbot
(77) suggests utilization of the Langmuir probe at the stagnation point
and has developed the theory for its use in determination of hypersonic
ion concentrations and temperatures.

Because of the electric field applied to the probe, a space-charge sheath
will exist in the viscous region around it. The gas external to the sheath
is taken by Talbot to be chemically frozen, with ambipolar diffusion
determining the motion of ions and electrons to the wall. The heat transfer
to the wall in this presence of the sheath was determined ; thisincludes the
effects of ordinary conduction, ion-electron recombination heating, and
the release of kinetic energy gained in the fall of charges through the
sheath. An example was calculated for slightly ionized argon at
% = 2090 m/sec, p. = 8.1 X 10~ kg/m?3 and T, = 790°K. For a flat-
ended cylinder of 1-cm radius, he found that the total heat transfer for
the probe at negative potential with respect to the plasma was largely
conductive (¢ = 10°w/m?) while the other contributions were on the
order of a few hundred w/m?2. If the probe were positive, both the electron-
kinetic-energy release and work-function contributions to the heat trans-
fer become on the order of 2 X 10* w/m?; hence, a substantial variation
of heat transfer with probe potential is expected. This effect will also be
important in the analysis of heat transfer to electrodes (see Section
1V,B,2) although it has not as yet been assessed,

C. StragNATION-POINT HEAT-TRANSFER IN RETROSPECT

The data presented in this section would imply that certain high-
veloeity reentry missions would benefit from the use of magnetic methods
to reduce heat transfer. Before such a conclusion is acceptable, however,
it should be pointed out that the analyses discussed here are only crude
approximations to the complex problem of MHD stagnation-point flow.

Several factors, some of which have been mentioned here, should be
investigated more thoroughly before the problem can be considered in
a definitive state. The first is the effect of radiation-heat transfer,
which was briefly discussed in Section VI, B,1. Secondly, at high altitudes
the relaxation to equilibrium behind the shock takes a finite time, and
the conductivity (among other things) is not likely to be uniform across
the shock layer.
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We should also point out that a particular magnetic-field configura-
tion which reduces stagnation-point heat transfer could actually increase
the heating away from the stagnation point. The heat transfer away
from the stagnation point was investigated by Wu (67), but only in the
case where the viscous layer was large (Re, = 1000).

The comparisons made in this section have indicated that the Newton-
ian approximation sufficiently accounts for magnetic effects when the
electrical conductivity is constant. In fact, one could follow Lykoudis’
suggestion and use an average magnetic field in the parameter S which
would account for the variation of B between the shock and body (and
hence its influence on the velocity gradient and detachment distance);
the Newtonian formulation for heat transfer would probably agree more
closely with the exact solution for values of S, larger than 10.

The assumption of constant conductivity is not a serious shortcoming
in the analyses presented here, for seeding the boundary layer at the
stagnation point might permit ¢ to remain constant in the critical layers
near the cool wall where magnetic effects are minimal. This layer, inci-
dentally, eauses the phenomenon of velocity overshoot (u > U,) to occur
in the boundary layer. This phenomenon, which is due to the variation
of conductivity with enthalpy (muech like the hysteresis effect in Section
V), is discussed in (78).

Finally, it appears that the viscous contributions to the heat transfer
can be incorporated, for constant conductivity, into a power-law varia-
tion of the velocity gradient as in Eq. (109). The consistency of this
method is demonstrated in Fig. 24, where the curve attributed to
Lykoudis is obtained either from Eq. (109) or from Eq. (105) and the
appropriate values given in Figs. 20 and 21.

VII. Concluding Remarks

Fach of the preceding sections has contained, more or less, its own
conclusions, in order that the independence of each problem area could
be maintained. However, there remain certain outstanding conclusions
which pertain to the whole field of MHD heat transfer. These will be
discussed at this time.

It is apparent, in retrospect, that the field of MHD heat transfer can
be divided arbitrarily into two sections: one contains problems in which
the heating is an incidental byproduct of the electromagnetic fields, and
the second consists of problems in which the primary use of electro-
magnetic fields is to control the heat transfer. The first section contains
such MHD devices as generators and accelerators, and, to a lesser degree,
pumps and flowmeters. The second includes the natural convection flows
and aerodynamic heating. Both of these areas have several problems in
common, among them the lack of experimental verification of the exist-
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ing theory. Even more serious is the complete absence of reliable theory
for turbulent heat transfer. However, to delineate more clearly the heat-
transfer problems which remain in these fields, we shall discuss them
separately.

A. HEar GENERATION BY ELECTROMAGNETIC FIELDS

It is evident from the energy equation and Section IV that when
electric fields are present in the gas substantial heat will be generated
in the gas by Joule and viscous dissipation. In a generator, the gas must
be at a relatively high temperature in order for it to be electrically eon-
ducting. The efficiency of a generator will depend on how much of the
generated power is delivered to the external load, and how much is
dissipated in internal resistance. Other losses in a generator occur through
wall heating, electrode heating, and (external) Joule heating in main-
taining the magnetic field. (We should also include here such problems
as Hall currents, voltage drops at the electrode, and end effects, which
also diminish the efficiency.) Accelerators utilizing the ponderomotive
or J X B mode will have many of the same practical problems, except
that the power levels here are high enough to make the heating problem
more severe.

The state of the art of generator and accelerator design is at the point
where experiments are now being made to investigate these sources of
power loss. For example, Rosa (41) discusses an experimental 10-kw
MHD generator, in which the performance is assessed in the light of
observed Hall effects. The gas was seeded so that high conductivities
were obtained without the attendant high temperatures, although the
supply gas was generated by an arc heater. Heat-transfer measurements
were, however, not made. Other proposed experiments which specifically
include heat transfer are discussed in (64). Fay and Hogan (79) made
measurements of the heat transfer to wire electrodes in a shock-heated,
seeded gas. A potential was applied to the electrodes and the asymmetry
and increase of heating due to the electrical processes at the particular
electrode occurred as described in Section 1V,D.

It is expected that future generator or crossed-field accelerator design
will include studies of the most suitable driver gas, electrode construc-
tion and cooling, geometric configuration of the device (65) and various
seeding materials. However, in many of these studies the primary empha-
sis will be on reduction of heating losses in order to increase the efficiency.

B. Arropynamic HeATiNG

The second area, that of heat-transfer reduction by flow control, has
proved to be less promising than when it was first considered in 1957.
Even so, the primary obstacle to the use of electromagnetic means for

[349]



Mary F. Rowmic

heat-transfer reduction was the weight and Joule heat losses of the mag-
net and associated power supply. Now, with superconducting coils in
the developmental stage, some promise is held in this technique, although
it is entirely likely that the superconducting magnet will weigh more
than a conventional heat shield because of the necessary cooling equip-
ment. However, it appears (Section VI) that this method will be appli-
cable only at the stagnation point of blunt bodies.

Because of the difficulty in obtaining a suitable supply of uncontami-
nated high-velocity air, magneto-aerodynamic heating experiments are
not prevalent in the literature. Ziemer (80) has conducted experiments
on the shock standoff distance of a hemisphere-cylinder, in which the
data agree in trend, if not quantitatively, with the theory of Bush (71).
The measured standoff distance was larger by about 20 per cent than
that predicted by the theory, which indicates that the heat-transfer
reduction would be about 109, more than predicted in Fig. 2, for S, < 5.
(The magnetic-field configuration differed from that assumed in (71),
and the high upstream temperature prohibited the hypersonic-flow
assumption to be fulfilled by the experiment.) Another experiment,
briefly reported (81) at the Third Symposium on Engineering Aspects
of Magnetohydrodynamies, was one in which measured heat-transfer
rates were found to be in agreement with the theory.

In this particular area of MHD heat transfer it appears that experi-
mental work has suffered somewhat from the apparent lack of a practical
goal; early predictions which indicated that this method would never be
competitive with convectional heat-protection schemes have evidently
prevented experiments, which are necessarily expensive and difficult to
run, from being made. However, there remain several areas in the field
of hypersonice aerodynamics in which MHD techniques may prove feasi-
ble. One is the heat-protection problem associated with superorbital
re-entry (Section VI,C) and the attendant problem of radio propagation
through the plasma sheath; the other involves use of MHD devices to
supplant conventional control surfaces or jets on lifting configurations
in hypersonic flight.

C. OursTANDING PROBLEMS

Aside from the problems discussed in the various sections of this
article, there remain several basic problems which retard the progress of
an orderly investigation of the field of MHD heat transfer. It is not
likely that solutions to these problems will be available without extensive
experimental work.

This conclusion is especially valid in the case of turbulent flow, whieh
we have studiously avoided during this article. Except for the book by
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Harris (82) the author knows of no detailed experiments on the fluid-
dynamic structure of turbulent flow, with the exception of work in
progress at Purdue (40) in which veloeity profiles will be obtained in
the channel flow of liquid mercury in the presence of a transverse field.
The Purdue group also plans to obtain bulk heat-transfer rates in the
pipe flow of mercury, also with a transverse field. The velocity profiles
will be exceptionally valuable for the determination of the empirical
constants in an MHD turbulent theory based on mixing length, for
example.

Another area which is important to all of gasdynamics is the deter-
mination of transport properties of slightly ionized gases—in particular,
air. It is really not necessary to iterate any further the need for these
properties, sinee it is still a moot question as to the magnitude of ordinary
heat transfer at velocities exceeding 8500 m/sec.

Although it was mentioned that almost all the classical problems have
been attacked, there still remain many heat-transfer problems which
have not been fully investigated within the classical framework. If we
combine these straightforward, well-defined problems with those of the
next generation, problems which will include Hall effects and other high-
field phenomena, the ares of MHD heat transfer could be said to have
a rich future before it.
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SymBoLs

The meter-kilogram-second (MKS) system of units is used throughout. The fol-
lowing list contains the symbols used most frequently ; others, which are used infre-
quently, are defined when they occur.

a unit of length D electric displacement

B magnetic induction e unit of electric charge

c specific heat E electric field intensity

i species concentration & Eckert number, Eq. (33)

C parameter, Eq. (41) f, F arbitrary forces

Cy skin-friction coefficient, 27/pV2 g acceleration due to gravity

Cu heat-transfer coeflicient, Gr Grashof number, Eq. (27)
q/pCV AT h enthalpy

Cp specific heat at constant pressure A, stagnation enthalpy

d unit of length H magnetic-field intensity

D diffusion coefficient j current (J, dimensionless)
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Hall current, Eq. (1) 85 Kronecker delta (3;; = 1, i = j;
coefficient of thermal conduec- 8;i; = 0,7 = 7)
tivity or Boltzmann’s constant A difference
generator coefficient, Eq. (29) € dielectric constant
unit of length ) length defined in Eq. (81)
Lewis number, Eq. (38) 9 dimensionless temperature, Eq.
mass (25) or angular measure
Hartmann number, Eq. (30) x parameter, Section III,C,2
number density A parameter, Section III,C,2
Nusselt number, ¢L/k AT A Lykoudis number, Eq. (45)
pressure " viscosity
Prandt! number, Eq. (32) He magnetic permeability
heat flux ve collision frequency
arbitrary heat source £ dummy variable
radial coordinate P density
Rayleigh number, Ra = (Pr}(Gr) . charge density
Reynolds number, Eq. (26) 7 electric conductivity
magnetic Reynolds number, Eq. shear stress
(35) Ti5 shear-stress tensor
magnetic interaction parameter, § heat-flux vector, Eq. (36)
Eq. (28) ® viscous dissipation
time w cyclotron frequency
temperature, °K Q@ vorticity
velocity components (U, V, Subscripts
dimensionless) 0 reference conditions and condi-
internal energy tions without electromagnetic
velocity fields present
diffusion velocity of kth species x free stream or adiabatic condi-
work tions
coordinates (X, Y, Z, dimen- b hody
sionless) e edge of boundary layer
thermal absorptivity 8 shock
parameter, Eq. (96) w wall
coeflicient of thermal expansion  Superscripts
parameter, Eq. (97) . dimensionless
boundary-layer thickness - mean value
boundary-layer-displacement
thickness
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I. General Considerations
A. Frow ParrerNs oF Two-PuasE Frow

1. Definition of Annular-Dispersed Flow

Annular-dispersed flow is just one of the many flow patterns which
may occur, when a liquid and a gas flow in a duct at the same time.
This kind of flow is termed in the literature in different ways, all with
approximately the same meaning. The commonest ones are: spray flow,
fog flow, dispersed flow, etc.

From a physical point of view annular-dispersed flow is identified by
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the presence of a continuous gaseous phase, and a discontinuous liquid
phase. The liquid phase distributes itself in an annulus around the solid
boundary of the duct and as droplets in the gaseous core. Obviously
such an arrangement can persist in dynamic conditions only. When drop-
lets in the gas are practically absent, the flow pattern is almost purely
annular; when the liquid film does not exist or is disrupted, the liquid
deficient region is entered (to which the term ‘“‘mist flow” is often
associated).

Pure annular flow and “mist” flow might be considered the physical
limits of annular-dispersed flow, as represented in Fig. 1.

A full description of this flow, as of any two-phase flow, would be
quite complicated and impractical for many purposes. One would have
to pretend to know the point distribution of the three components of
the gas velocity, the point distribution of the components of the liquid

a)

Fre. 1. Annular-dispersed flow pattern. (a), pure annular; (b), annular-dispersed;
(¢), pure dispersed (mist).

velocity in the annulus, the concentration of the liquid droplets in the
core, their size spectrum, their velocities and so on. In comparison with
single phase flow the difficulties in the instrumentation and interpreta-
tion of data are greater orders of magnitude. But to gain even a knowledge
of average quantities (time and space average gas velocity, average liquid
velocity, average void fraction, thickness of the liquid annulus) is not a
simple task to perform.

2. Independent Variables of Importance

The primary variables upon which the physical situation depends are
quite numerous. They are:

{a) geometrical variables {(the duct diameter for a tube, two diameters
for an annulus, a rod diameter and a lattice pitch for an infinitely wide
cluster). The use of a single linear dimension—the equivalent diameter—
in the latter cases is highly controversial, and is mostly used as an
empirical tool to simplify correlations of experimental data, when possible.
In some cases even the “roughness’’ of the solid boundary must be taken
into account,

{b) physical properties of phases (viscosity, density, surface tension of
the liquid in the presence of the gas, contact angle of the liquid with
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the solid surface). When heat transfer is present, thermal properties are
also important to determine the two phase flow behaviour.

(¢) kinematic variables (linear velocities).

(d) external fields (the gravitational field, centrifugal fields eventually
impressed ete.). This shows as a consequence that physical situations
are different—all other things being equal—for upward flow or downward
flow or flow in an inclined tube.

In addition, to study the phenomenon in fully developed conditions
one must be far from any inlet and outlet disturbance.

Steam-water and air-water mixtures are the most common examples
of two-phase mixtures, and they are the most studied. In the former
case, assuming both phases to be in thermodynamic equilibrium, their
physical properties are all single-valued functions of a single variable:
pressure (or temperature). Thus, at a constant system pressure, neglecting
small variations due to pressure drops, the number of independent varia-
bles decreases substantially.

3. Review of Two-Phase Flow Palterns

One of the first tasks to accomplish, in studying annular-dispersed flow,
is to determine the range of variables, under which it can exist. Since
gravity has an effect, the boundaries between different flow patterns will
depend on the inclination of the duct. In any two-phase flow pattern
chart this fact must be specified. Unfortunately, in the past, flow pattern
charts were traced starting mostly from qualitative visual inspections
{by eye or by photographic techniques), which are difficult to translate
in quantitative terms.

Words, used for a long time, such as bubbles, dispersions, slugs ete.
reflect this situation. Martinelli et al. (1) were the first to introduce a
quantitative, although arbitrary, definition of two-phase flow regimes.
Depending on the value of the Reynolds number for each phase, they
defined four types of flow: turbulent-turbulent, viscous-turbulent, turbu-
lent-viscous and viscous-viscous, usually abbreviated as #, ¢, fv and vv.
The Reynolds number was defined in the usual way as GD/u, supposing
that each phase flows alone in the duct. They did not distinguish between
upward, downward, and inclined flow. These flow regimes did not coincide
with known flow patterns; the annular-dispersed flow, for instance, as
defined by many flow pattern charts, is placed across the viscous-(liquid)-
turbulent and turbulent-turbulent region.

More recently Baker (2) drew a chart of flow patterns for horizontal
flow. This chart was slightly modified by Isbin (3). A flow pattern chart
was also presented by Krasjakova (4) and by Alves (§) for horizontal
tubes. Ambrose (6) made a literature survey of flow patterns in horizontal
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tubes, from which the following list was laid down (starting from pure
liquid and increasing the gas flowrate):

(a) pure liquid

(b} bubble flow

(c) plug flow (alternate plugs of gas and liquid)

(d) stratified flow

{e) wavy flow (gas above a wavy liquid surface)

() slug flow (periodic frothy slugs pass through the pipe at a greater
velocity than the average liquid velocity)

(g) annular flow (no droplet entrainment)

(h) mist or spray flow (droplets entrained in a pipe with wetted wall)

(f) pure gas

This list—and all two-phase flow pattern lists—contains a subjective
component. Annular-dispersed flow would correspond to items (g) and
(h), where “mist”’ has a different meaning from that previously used.
The liquid deficient region is not mentioned.

In vertical upward flow some of the flow patterns existing in horizontal
flow do not oceur.

Galegar (7) proposed a flow-pattern plot for vertical flow at atmospheric
pressure. These plots, however, are not general; that is, they are different
for different fluids.

Koslov (8), by photographic techniques, studied vertical upflow of air-
water mixtures at atmospheric pressures and divided flow patterns in
the following sequence, starting from pure liquid and increasing the gas
flow rate (at constant liquid flow rate):

{a) bubble flow

(b) slug How

{¢) slug to emulsified flow

(d) emulsified flow

(e} annular-emulsified (with wavy film)
(f) mist (with wetted walls)

He gives the flow pattern boundaries as relationships between volume
flow rate quality, superficial mass velocity, tube diameter, fluid densities.
Annular-dispersed flow should correspond to items (d) to (f).

One of the most recent literature surveys of flow patterns was made
by Vohr (9), who summarizes the basic vertical flow patterns in the
following sequence:

{a) bubble flow
(b) piston (or slug) flow
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(¢) semiannular flow
(d) annular flow
(e) spray-flow

Annular-dispersed flow would correspond to items (¢) to (e).

For inclined tubes the flow patterns have not been systematically
studied. Because of its importance, upward flow will be mostly discussed
in this chapter except when otherwise stated.

B. ANNULAR-DIsSPERSED FLow PATTERN BOUNDARIES

1. Transition from Slug Flow to Annular-Dispersed Flow

As seen in the preceding paragraph, most of the annular-dispersed flow
pattern boundaries are constructed from visual inspection of what hap-
pens in a duct. This is certainly not a satisfying ecriterion. It would be
much better if a quantitative description of the transition between one
flow pattern and another could be based on the step variation of a physical
quantity, whose measurement could be feasible. It is well known that
in single phase flow one can distinguish laminar from turbulent flow
through the sudden variation of the law governing frictional pressure
drops. But other parameters can be selected: for instance, the variation
of the velocity profile or the persistence of a colored wake in the stream.

One of the most important boundaries is that separating annular-
dispersed flow from slug and bubble flow. Griffith and Wallis (10) started
from the consideration that, in vertical upward flow, annular flow is the
physical limit of slug flow, when the length of a gas slug goes to infinity.
Since the slug length is expressed in their mathematical development by
a fraction, the above condition is satisfied when the denominator goes to
zero, that is:

m(@, + ¢+ Vid) = @, (1)

where V; is the slug velocity = +/gD.
Rearranging terms one has:

QG 1\, % _ s
Y(-2)+¢-xvp @

which means that the sum of the superficial liquid velocity and a fraction
of the superficial gas velocity is a constant (at constant diameter) for
the slug-annular boundary. The authors admit that the boundary equa-
tion is certainly more complicated and depends on other characteristics
of the flowing phases.
The general diagram they plot is shown in Fig. 2. Transforming the
coordinates adopted by them, one has:
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Qo
—_— = X.
Qa + Ql
Q + Qa)’ / _U*
(——_A gD = F) (3)
8o that the boundary equation is:
L‘m
x=1(775) W

It is interesting to note from Fig. 2 that, above a certain over-all
superficial mass velocity, there is a direet transition from bubble flow to
dispersed flow, while the slug flow pattern in between appears only below
a certain critical mass velocity.

Similar considerations are made by Nicklin and Davidsonr (11). They
admit the existence of a semiannular flow, a flow in which very long slugs

v Air-water system
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Fig. 2. Flow pattern map for a vertical pipe in fully developed flow following
Griffith and Wallis. I (bubble); II (slug); I1I (annular and mist).

are interrupted by short liquid bridges. This flow pattern in vertical
upward flow would be intermediate between slug flow and annular flow.
By a direct measurement of some parameters, they arrive at the conclu-
sion that for low @, the transition between slug and semiannular flow
appears at a constant value of (@ + @,)/4 = U*, while at higher Q:
values higher (Q: + Q,)/A values are needed.

Another completely different approach is suggested by some experi-
ments carried out at Harwell. These experiments were performed by
tracing with silica water in a water-steam system heated with condensing
steam, to verify if there were a preferential deposition of solid matter in
certain flow patterns. A difference in deposition, if any, would furnish
the necessary evidence. In fact this happened and three regions of different
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amounts of deposition were identified, corresponding in the opinion of the
authors to bubble (and slug) flow, annular-dispersed flow and liquid-
deficient flow. These conclusions, of course, are only valid for this particu-
lar system (low pressure steam-water system) and under heated condi-
tions, which certainly affect the boundary between annular-dispersed flow
and the liquid deficient region, although probably to a much lesser degree
the transition between bubble (or slug) and dispersed flow.

The change in the behavior of pressure drops was used by Wallis (12)
as a criterion to differentiate between flow patterns. At CISE (13), (14)
both this criterion and the interpretation of burnout curves were used to
determine boundary lines. With the steam-water system at 70 kg/cm?
in vertical upward flow, careful measurements of pressure losses were
carried out at constant mass velocity for different steam qualities in a
tube. Irreversible pressure drops (or pressure losses) per unit length
(Aps/L) deduced from total pressure drops, correcting for the gravity
term and for expansion losses (very small corrections indeed), divided
by V*» were plotted as a function of X. The exponent, n, which is different
for different (s, is capable of flattening the central portion of the
diagram, to better emphasize the change in flow pattern. Two examples
of these diagrams are shown in Fig. 3. In Fig. 3a (low mass velocity)
three flow patterns (bubble, slug, and annular-dispersed) can be distin-
guished while in Fig. 3b (high mass velocity) only two flow patterns
(bubble, and annular-dispersed) exijst. This is in general agreement with
the conclusions reached by Griffith and Wallis (10), although the numeri-
cal results are different. Moreover, inspection of critical heat flux curves
against inlet (or outlet) quality shows a maximum for low flow rates,
while the maximum does not exist with high flowrates. The value of G
for which the maximum clearly disappears, for these experimental condi-
tions, is between 200 and 250 gm/cm? second.

At CISE laboratories a rough but useful rule was found to match
experimental results quite well: above a mean linear velocity of 500-600
cm/second slug flow does not exist for the steam-water mixture in a wide
range of diameters. The mean mixture velocity is defined in the following
way: o
U=U(1 —a)+ U@ =GValX + a) (5)

. {G(l - X) = Up(1 — a)
since _ (6)
GX = Ugpp,in

Thus the boundary equation between slug and annular-dispersed flow
would be:

GV (X + a) = const )
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which can be written:

% + % = const (8)

This form is similar to (2) apart from the dependence on the duct diam-
eter. It also resembles the conclusions reached in (1), if semiannular
flow is included in annular flow.

Sinee in these experimental conditions bubble flow persisted from zero
quality up to about 3-4 % quality (with S = 1, the void fraction is
0.5 at 3.7% quality), one can see, by introducing this limitation in (8),
that slug flow is impossible above 200-250 gm/em? second.

2. Transition from Annular-Dispersed to Slug Flow

An explanation of the slug-annular transition was proposed at CISE
(13) starting from a point of view opposite to that of Griffith and Wallis.
While they consider annular-dispersed flow as a physical limit of slug
flow (with very long slugs), at CISE slug flow was considered the physical
limit of annular-dispersed flow. This flow is characterized by the presence
of liquid droplets carried into the core. When the gas velocity is not
high enough to sustain the droplets, they slip down and coalesce to form
slugs. For a spherical liquid droplet in a stagnant gas, the settling velocity
is given by (15):

U; = \/4_@_(&*.:&2 cm/second (9)
3p,C
where C, the drag coefficient, is a function of the droplet Reynolds num-
ber (Nre)d
€ = CWaa = C (”—"U“D") (10)
1g

The size of droplets depends on the mechanism of formation. In fully-
developed flow, the only source of droplets is the liquid (wavy) annulus
flowing along the solid boundary. Here, only rough hypotheses are possi-
ble. Hinse (16) suggested the use of a eritical Weber number:

- (Uy - Ul,)ZPon - K2U02P0Dp
Y Y

We, (11
U/ here being the absolute value of the velocity of the surface of the
liquid film at the instant of droplet formation and 1 — K = U//U,.
Combining Eqgs. (9), (10), and (11), and postulating a value for K, the
settling ratio Ua/ U, can be determined. This is the ratio of the free falling
velocity of the droplet relative to the gas stream, divided by the gas
velocity. When this ratio is close to 1, the droplets would be at rest, and
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of course should coalesce with other droplets to form slugs. Rough assump-
tions are included in this picture: negligible effect of the droplets’ trans-
verse velocity, no interaction between droplets, negligible effect of the
pressure gradient etc. The agreement, however, with experiments is satis-
factory. For instance, putting K = 0.5 (and Us/U, = 1) one has
U, = 625 em/second for the steam-water system at 70 kg/em? This
corresponds roughly to the empirical equation (7). In fact, rearranging
terms, one has:

400
AS
X P1
1+ 1= X p,

GVa(X +a) =

1+ (12)

Since pi/p, >> 1, even at low quality and high AS, the denominator is
higher but close to unity.

3. General Remarks

One must take into account that all indirect methods of detecting flow-
pattern boundaries are inductive in nature and, for instance, the sentence
that the change in the pressure loss law corresponds to a different visual
picture still requires confirmation.

A provisional conclusion which can be reached now, at least for upward
vertical flow, is that at constant ¢ (within a certain  range) and starting
from pure liquid, the first low pattern to be encountered is bubble flow.
Beyond it annular-dispersed flow can be reached either directly or by
passing through slug flow if the flowrate is low enough.

What happens when the quality is increased is even more doubtful.
Annular dispersed flow might transform into pure annular flow, as a
preliminary to pure gas flow; or a certain amount of droplets might
always remain in the gaseous core, giving to the flow the character of a
“mist”’ flow pattern. Absolute values depend, of course, on the properties
of the system.

The situation is therefore still somewhat confused, but the time seems
near when a systematic description of the flow patterns can be successfully
achieved.

C. PuysicAL QUANTITIES OF INTEREST
IN ANNULAR DispERrsEp FLow

1. Void Fraction and Slip Ratio

As pointed out elsewhere, in single phase flow the average velocity U
is known, once the volumetric flowrate and the channel cross section are
known. The average mass velocity is then G = pU. On the contrary, in
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two-phase flow, knowledge of flowrates and geometry is not sufficient to
determine the average linear and mass velocities since the mixture density
is an unknown quantity. The known quantities are the apparent (or super-
ficial) mass velocities G*, and G*; defined as the gas or liquid flowrate per
unit area, supposing that each phase fills the entire cross section:
G*, = T,/A; G* = T/A. Also known are the corresponding superficial
velocities.

An additional key quantity of interest is the over-all gas volume
fraction & (or ‘““void fraction’”’) defined as the fraction of the duct cross
section (or of the volume per unit length) filled by the gas phase.

The interrelation between this and other gquantities is the following:

(a) liquid volume fraction (or “liquid holdup”) A =1 —a;h+a =1

(b) density of the mixture: 5 = ap, + (1 — &)p

The true average mass (and linear) velocities are:

Ga = G-*a/a.: Uv = G'*a/apa
G=Gyl-a; U=G6"1-an

The value of @ is not equal to that of the volume flowrate quality X,,
because the average linear velocities U, and U, are different. They will
only be equal in an idealized homogeneous model. By defining a quantity
S (over-all slip ratio) as the ratio U,/U,, one has:

(13)

Up_g_G'l—apm X l-ap
U G+ & pg—l—X & p,
(14)
X, 1—-a
T1-X, a
In the special case § = 1, X, = &; while in general:
& = X (15
*T 1y a8 - X)) )

From the above formulas one can see that @ or S are dependent on each
other. Neither of them can be easily determined through experiments and
this is the chief reason for discrepancies in their values found in literature.
In addition to an average value, a point value a can be defined. Its
knowledge permits the phase distribution in a duet to be known,

Other formulas of interest, derived from (13) and (14) are:

1-—&_;2
X=——fif~; 1-X = ? Po (168)
. —_ — —
§+=—22 §+—=2
& pg & py
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X~ .
S+ o S+ X2
1—Xp, 1 —Xp,

2. Void Fraction and Slip Ratio in Annular-Dispersed Flow

Annular dispersed flow is characterized by having two distinct regions:
the former in which 1 — « is unity (the liquid annulus), the latter in
which 1 — a varies from the wall to the axis. Evidently, @ and S can
be supposed symmetrical with respeet to the flow direction only in vertical
flow. We will refer to this case when upward motion is discussed. S and &
are functions of all the variables reported in Section I. For the special
case of steam-water at constant pressure and geometry, S and & will be
funections of flowrates only (or G and X). In addition, however, they will
be functions of the heat input when heat transfer is taking place. In fact,
in annular-dispersed flow, the total cross-sectional area occupied by the
liquid phase 4, is divided in two portions A, and A., respectively occupied
by water in the liquid film, flowing at an average velocity U;, and water
in the core, flowing at U.. Thus:

AU, = AUr + AU, (17a)
whence:
1y | s s s S;
':=T+T; S=Sc- = = (17b)
S 8 1 Sy — ys(8s — 80
where

yr=44/4y oy = A/ 4
S =U,/Uy; S, = U,/U.

Usually in upward vertical motion S, is higher but close to unity. At
burnout y; should go to zero and . to unity so that S — S, — 1. In adia-
batic flow, due to the often very high value of Sy, the value of S can be
much higher than unity.

3. Energy and Momentum Balance in Two-Phase Flow

One important point in two-phase flow is that the energy balance
equation and the momentum balance equation do not give the same
results for pressure losses. In single phase flow in a constant diameter duet,
for low of noncompressible fluids and fully developed flow (for the sake
of simplicity), one has:

(a) mechanical energy dissipated as heat per unit-time per unit-length
of duect and per unit-flowrate (from the energy balance):

J g _A_Ilj p— ﬂ) —
Bt (4 pg) (18a)
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(b) shear stress at the walls (from the momentum balance):
_ (% _ D _4p D
fo = <A—z' "-") I~ 2 1 (18b)

On the contrary, in two-phase flow, still for incompressible fluids one
has (9, 17, 18):
Apr _ g AP _
Az B= Az~ PY (198)
where p* = p,X, + p(1 — X,) is the flowrate density, that is the density
of the mixture averaged on the flowrate quality;

_f(4p __\D

where 5 is the true density of the mixture.

Since X, # a (for S # 1), r, # D/4 Ap;/Az. Thus the “head term’’ in
the pressure drop equation has two distinct expressions, following the
energy balance or the momentum balance. Ap/Az — pg = Aps'/Az may
be defined as the pressure gradient due to the momentum exchange with
the wall of the conduit and is proportional to shear stress at the wall
rw. In single phase flow, for an incompressible fluid flowing in a conduit
of uniform cross section, Ap; and Ap, coincide. The same holds for
horizontal two-phase flow, if a mean value of 7, over the whole surface
area of the wall is considered. On the other hand, in a two-phase vertical
flow the value of 7., is not strictly related to that of Apy; in fact we have:

A D
o= — (- Mg (20)
where
AS
p— P* = (Pl - Pﬂ)Xv(l - X”) 1+ AS(I . X) (21)

Therefore Aps and 7., do not refer to the same quantity. The expression
‘“‘pressure loss,” which refers to the mechanical energy dissipated as heat,
should be restricted to indicate the value of Ap;.

Since in horizontal flow the pressure loss is known, being directly
measured, a question may arise as to which of the two quantities (Apy
or A’py) in vertical flow has to be compared with the horizontal pressure
drop.

The quantity of interest from the energetic point of view is obviously
Ap;. However, if a comparison is made with the purpose of verifying
the coincidence of the values in horizontal and vertical flow (that is,
for example, checking an existing correlation of data obtained with hori-
zontal flow), then neither Ap; nor Ap,” should, strictly speaking, be used.

In fact, they would generally be different in horizontal and vertical
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flows because of the inherently different shear stress distribution to
which the phase and velocity distribution are related, in vertical and
horizontal conduits. The difference, illustrated in Fig. 4 with reference
to annular flow (where the asymmetry inherent to horizontal flow is not
apparent), makes a possible coincidence purely fortuitous. In some

[
[

| Tw
I

l T
a) b)
F1a. 4. Shear stress distribution in annular flow. (a) vertical upward flow; (b) hori-
zontal flow.

instances, however, such as in the case of a highly dispersed flow, the
difference might not be important from a quantitative point of view, but
this is difficult to know a priori with any certainty.

II. Fluid Mechanics

A. Two-Puase PrEssURE Drop
1. General Remarks

The pressure drop has been the most investigated item in two-phase
flow from both the experimental and theoretical viewpoint. However, a
pressure drop correlation has not so far been established which can be
considered reliable enough, even for a given flow pattern, for instance,
the annular-dispersed regime. Several reasons are responsible for this
fact: the incomplete understanding of the basic phenomena involved in
two-phase flow, which hinders the right approach to the problem, the
influence of many variables which are quite difficult to evaluate, such as,
for instance, the entrance conditions, the different interpretation of the
experimental data with regard to the contribution of the various terms
to the total pressure drop.

As in single-phase flow, the measured total pressure drop is given by
the sum of three different terms corresponding respectively to the frie-
tional resistance experienced by the fluid in its motion, to the gravity
field and to the velocity variation along the flow direction. In two-phase
flow, however, due to the different velocities of phases, the pressure drop
equation is different when derived from a momentum balance or, instead,
from an energy balance (see also Section I,C,3). The two equations, in
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the simple case of incompressible fluids, constant conduit eross section
and adiabatic flow, are:

Total pressure Head (or gravity)
drop Resistance term term
Energy .
equation Ap = Aps + Pl Az
Acceleration term
X v, - 1 m— X v - -
+ [”—; (Ot = O + 2252 (0 - Uu*)] (22)
Total pressure Head (or gravity)
drop Resistance term term
Momentum _ ,

equation Ap B Aps + Py A2

Acceleration .term
+ [99(020292 -l 0102) + Pl{(l - aZ)UZIZ - (1 - al)UUz}] (23)

The indexes 1 and 2 refer to sections 1 (upward) and 2 (downward) of
the conduit,

The resistance term is generally called frictional pressure drop or
irreversibility term. (The second expression, or the equivalent one: pressure
loss, should be reserved to Ap,, that is to the resistance term in the
energy equation.) A comparison among the various experimental results
should always be made on the basis of the same pressure drop equation.

It can be noted that in two-phase flow, even under the above assump-
tions, the acceleration term is different from zero when the phase distribu-
tion, that is the value of &, varies along the flow direction. This fact, not
always taken into account, contributes another source of uncertainty
in comparison with the various experimental results. The contribu-
tion of the acceleration term under adiabatic conditions, as it was
emphasized by Dukler (19), can be a substantial fraction of the total
pressure drop, especially in the case of low pressure systems, where the
gas density varies considerably along the flow direction because of the
relatively high variation of the line pressure.

2. The Homogeneous Model Correlation

The simplest approach for the prediction of the two-phase pressure
drop is represented by the homogeneous model, in which the two phases
are supposed to flow with identical velocity and with a uniform distri-
bution in the test section. According to this visualization of two-phase
flow the acceleration term is zero in both Eqs. (22) and (23) and the head
terms are equal, so that, with the above assumptions, it is Ap; = A'p;.
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The prediction of the pressure loss is made through the well known
relationship valid in single-phase flow:

21 C?
Ap; = 'l'jf;; (24)

However, the expression of a two-phase viscosity to be put in the
friction factor, is a quite arbitrary average of the viscosities of the two
phases. The following expressions have been assumed alternatively:

!olxyla-x (258)
a Mg M

= p Xy +m(l = Xu) (25b)
A= (25¢)

Rarely can the homogeneous model predict the pressure drop with an
acceptable approximation.

3. Lockhart-Martinelli and M artinelli-Nelson Correlations

The best known pressure drop correlation for isothermal two-phase
flow is that proposed since 1949 by Lockhart and Martinelli (20). This
correlation was based on experiments performed with air and various
liquids (water, kerosene, etc.) at room temperature and at pressures
varying between 16 and 52 psia. The pipe sizes ranged from capillaries
to 1 inch L.D., and the superficial Reynolds numbers between 1 and
124.000 (liquid), 7 and 86.000 (gas). In all runs for which the pipe was not
horizontal, “frictional” pressure drops were deduced from total pressure
drops, by subtracting the head term according to the momentum equa-
tion. The momentum contribution due to change in phase and velocity
distributions was neglected.

As mentioned in Section I,A,3, Lockhart and Martinelli distinguish four
flow regimes depending on the Reynolds number of the two phases
supposed flowing alone in the conduit. For any one of these regimes the
correlation, given in the graphical form (Fig. 5), provides a unique value
of the paramcter

(Ap, e ( GITJIS;I;) ,
= * e = 26
%= N "Tapo \” % = N @, (@6)
versus the value of the parameter
. Apy):
X = JAp 27
V (Apf)a ( )

1 X and ¢ have two subscripts (tt, tv etc.) depending on the flow regimes defined in
Section 1,A,3. (t = turbulent; v = viscous).
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where (Aps); and (Apy), and the frictional pressure drop of the liquid and
the gas phase, respectively, supposedly flowing alone in the conduit. The
authors used the well-known formula:

Ap, _ 2 G*
Az~ D p (28)
where
;= %-_ggg when Nz, > 2000 (20a)
and
16
f= Vo when Nz, < 1000 (29b)
Re

The proposed correlation, in terms of ¢, represents the experimental
results used to determine the correlation itself within 30%,. The values of
the pressure drop suffer of course from a greater deviation.
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Fi1e. 5. Martinelli-Lockhart graphical correlations for two-phase friction pressure
drops and liquid volume fraction.

It can be observed that the criterion selected for the specification of
the flow regimes is not realistic. Furthermore Lockhart and Martinelli
did not take into account the role of the surface tension with regard to the
energy dissipation, so that this property does not enter the correlation.
Other physical properties of the fluids are introduced only through the
calculated single-phase pressure losses.

At least it should be pointed out that, considering the postulates taken
as a basis for the correlation, it may be inferred that the correlation
would be particularly applicable to the annular-dispersed regime.

The Lockhart-Martinelli correlation {or, better, a correlation obtained
by Martinelli et al. (1) with a parameter slightly different from X] was
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extended to the flow of saturated steam-water mixtures in turbulent-
turbulent flow by Martinelli and Nelson (21). In this case, however, the
value of the saturation pressure had to be taken into account as a further
independent parameter. This shows that the influence of the physical
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Fi6. 6. Martinelli-Nelson correlation for two-phase frictional pressure drops with
quality steam (adiabatic flow).
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FiG. 7. Martinelli-Nelson correlation for two-phase frictional pressure drops (with
linear quality variation).

properties of phases is not adequately represented through single phase
pressure losses. The (¢:2, X ) curve corresponding to atmospheric pressure
was assumed to be coincident with the above mentioned correlation, while
the curve corresponding to the critical pressure was derived theoretically
taking into account that in this condition the physical properties of the
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two phases approach a common value. The intermediate curves were
determined on the basis of experiments performed in horizontal flow
with pressures varying between 35 and 230 kg/cm? under heat transfer
condition. These data were corrected for the momentum contribution
due to the quality change along the flow direction.

The Martinelli-Nelson correlation for constant quality (or for local
values in the case of a quality variation along the flow direction) is
represented in Fig. 6, in which the ordinate represents the ratio between
the two-phase friction pressure drop and the pressure loss of the liquid
phase (AP;)1, assumed to be flowing at the total mass flowrate.

In Fig. 7 the integrated correlation is represented as a function of the
outlet quality X, in the case of a linear quality variation along the flow
direction.

3. Other Results on Pressure Drops in Horizontal Conduils

Alves (5) carried out experiments in a pipeline gas-liquid contactor,
1 inch 1.D., consisting of four horizontal passes connected between one
another by three upflow return bends of 7-inch radius. The fluids were:
air at low pressure, water, and oil.

The pressure drop in the horizontal passes agreed fairly well (4+20-30%)
with the Lockhart-Martinelli correlation. The pressure drop results for
the return bonds were remarkably higher than those predicted. The
pressure drops in the Tee mixer (water on the run side) were found to be
almost equal for both the gas and the water side: they increased with
inereasing gas flowrate and reached values as high as those in a horizontal
section having L/D = 50, when N g, = 10%

The pressure drop measurements performed by Baker (2) with gas-oil
(hydrocarbons) mixtures in horizontal pipelines (4 to 10 inches) can be
considered as fully developed flow experiments (very long lines, 2 to 3
miles; very high line pressure, 1000 psi). On the basis of these and other
experiments carried out by some other authors in very different flow
conditions, Baker suggested a new relationship between Martinelli’s
parameters ¢, and X in the case of annular dispersed flow (as indicated
by the flow pattern region plot proposed by the author himself) that is:

(¢) = (4.8 — 0.3125D)X0-3#3-0.010(D) in inches) (30)

This correlation points out a dependence of the ratio (Aps)re/(Apy), on
the pipe diameter. For other flow regimes a further dependence on the
mass flowrate (besides that included in the expression of ¢,) is also
demonstrated.

Chenowheth and Martin (22) carried out experiments with air-water
mixtures in horizontal pipes (1.5 and 3 inches) at two different average

[373]



MARIO SILVESTRI

pressures (18 and 100 psi). Good agreement was found with the Lockhart-
Martinelli correlation for performance at low pressure.

On the other hand, the pressure drops obtained at 100 psi, especially
in the case of the largest diameter, were remarkably lower than those
predicted by that correlation (up to 2.5 times). On the basis of their own
results the authors developed a new empirical correlation for the frictional
pressure drop in turbulent two-phase flow [(Nr.)io = GD/u > 2000},
which gives the value of (Ap,)re/(Aps)i as a function of the liquid
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F1a. 8. Chenoweth-Martin correlation for turbulent two-phase frictional pressure
drops in horizontal ducts.

volume flow rate quality (1 — X,), having the ratio (Ap/)e/(Aps)i as &
parameter (Fig. 8). The terms (Ap))e and (Ap))e/(APs)w include the
fitting pressure drops (ZK):

JoL

(Apf)b - %_L + 3K Po Yie P

This correlation represents 929 of the data within 35%. The data of
other investigators (including those used to develop the Lockhart-
Martinelli correlation) correlate equally well. The results obtained with
three typical 3-inch fittings do correlate as well.

Isbin et al. (3) investigated the adiabatic pressure drop in horizontal
pipe (0.484 and 1.062 inches 1.D.) with saturated steam-water mix-
tures from 25 to 1415 psi (total flowrate: 454-4350 lb/h; mass quality:
0.03 = 0.98). Care was taken to avoid any entrance and exit effect.

The frictional pressure drops were computed by subtracting from those
measured the pressure drops due to the momentum variation (these
being noticeable only at low pressure). The authors compared the experi-
mental data with the Martinelli-Nelson correlation in terms of parameter
(¢¢)o which minimizes the effect of pressure. The agreement is not very
good and the experimental values of (¢,), show a dependence of the steam
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flow rate. A new empirical correlation is then proposed (Fig. 9) between
(#,)o? and the quantity 1 — X/X(N),, where (Nge)go is the Reynolds
number based upon total flow as gas. For the highest values of the
steam flow rate, the experimental data correlate fairly well with the
homogeneous model (1/U = 1/p,X + 1/m(l — X)). The experimental
curves of (¢,).? versus the mass quality exhibit a maximum in the high
quality region (X > 0.5).

In 1946 Armand (23) developed analytically a relationship between
the parameter ¢ and the liquid volume fraction (1 — &) in the case of
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F1e. 9. Two-phase frictional pressure drop correlation presented by Isbin ef al. (3)
for steam-water system in adiabatic horizontal flow.

an annular regime and extended it, rather arbitrarily, to other flow
regimes:
K
2 o

e . (32)
where the values of K and n were determined experimentally (air-water
mixtures at room temperature and atmospheric pressure in a horizontal
copper tube, 26 mm I.D.—Mass quality: 0 + 959%,) and depend on that
of (1 — &). A correlation between & and the basic variable X, is also
given. The proposed correlation represents fairly well the data obtained
by other authors under different experimental conditions.

The author of this article, together with Treshchev (24), on the basis
of experiments performed with steam-water mixtures in horizontal flow
(diameter: 57 mm I.D.; pressure: 10 + 90 atm; X = 0 4+ 909%,) with and
without heat transfer, proposed a simplified correlation (valid for
X, > 0.90) which accounts for the influence of the static pressure:

0.0025 0.005 .
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McManus (25) carried out experiments at atmospheric pressure in
horizontal pipes (1, 2, and 3 inches) with mixtures in annular-dispersed
flow. The fluids were air, water, and glycerine solutions. The total pressure
drop was corrected for the acceleration term (Ap,), according to the
momentum equation and the experimental variations of the liquid volume
fraction along the flow direetion. This correction was found to depend
substantially only on the gas Reynolds number; the Ap, fraction due to
the liquid phase, however, depends on the liquid Reynolds number. The
author found better agreement of his experimental results with the
Chenoweth-Martin correlation rather than with the Lockhart-Martinelli
one. With the smallest diameter, however, even the first correlation
predicts values of the frietional pressure drop (Ap;) lower than those
measured.

McManus observed a large increase in pressure drop when the liquid
viscosity is increased, the liquid Reynolds number being the same. At
the same time the film waves (see Section 1I,B,3) are damped and the
author suggests that the energy lost is expended in viscous shear stress
rather than wave formation.

The influence of the type of entrance and of the liquid properties
(viscosity and surface tension) was investigated by Dukler et al. (19, 26)
in an horizontal apparatus (pipe diameter: 1 and 3 inches) at room tem-
perature and pressure. The pressure gradient was found to be higher,
all other things being equal, when the gas enters the Tee mixer side. In
this case (see Section II,B,4b) the entrainment is lower, so that it is
suggested by the authors that more energy is required to transport a
given liquid flowrate in the film adhering to the wall rather than in the
core in form of small droplets. A liquid viscosity variation from 1 to 17
ep produced small but measurable pressure drop variations. The influence
of this parameter seems to be quite complicated in nature because its
influence on pressure drops goes through a minimum and depends on the
value of the liquid flowrate. On the other hand, the surface tension influ-
ence was found to be negligible. The acceleration (or expansion) pressure
drop, according to the momentum equation, was shown to be as high as
509, of the total pressure drop and the authors suggested that many
discrepancies among the various authors may be due to a different influ-
ence of this term not always taken into account.

4. Results on Pressure Drops in Vertical Conduits

Govier et al. (27, 28, 29), investigated the flow of air-water mixtures
in vertical pipes, the gas density and the pipe diameter being taken as
additional variables. They related the different trend of the total pressure
drop versus the ratio X,/1 — X, at constant liquid flowrate to the exist-
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ence of different flow regimes. A graphical correlation is proposed for
the pressure loss, computed according to the energy equation, in terms
of a friction factor defined as:

__D Ap,
- 2pU*z2 Az

fi (34)
where U*; is the superficial linear velocity of the liquid phase.

The values of f; were found to be nearly independent of the gas density
and to increase with increasing pipe diameter.

The prediction of the pressure gradient in annular vertical flow was
approached by Anderson and Mantzouranis (30), by evaluating the fric-
tion factor of the gas phase considered as flowing alone in contact with a
liquid rough surface. They suggested that the ripples on the film surface
have a marked effect on the value of the friction factor. Due to the diffi-
culty in defining the film surface condition versus the basic flow variables
the influence of the liquid phase is tentatively taken into account through
the parameter Q* = qi/xDs \/pe/r. The experimental data obtained by
the authors themselves with air-water mixtures in a 14-inch test section
were correlated in terms of 7:/p,U*,? versus the gas Reynolds number
with @ as a parameter. By comparison with other experimental data, it
was found that @Q is unable to deseribe the influence of the geometry and
liquid properties.

Hewitt et al. (31) compared the experimental data obtained in a verti-
cal channel (114-inch 1.D.) with air-water at room conditions with the
Lockhart-Martinelli and the homogeneous flow correlation. In the first
case the momentum head term was accounted for; in the second one both
the liquid viscosity and the mean fluidity were used. Satisfactory agree-
ment was found only with the first correlation.

Hughmark and Pressburg (18) investigated the influence of the liquid
properties in vertical flow. The test section was a 1-inch 1.D. pipe at
atmospheric pressure and the fluids were air and six different liquids.

They suggested that the pressure loss, defined according to the energy
equation, is related to the difference between the linear mean velocity
of the two phases and gave, in graphical form, a series of curves repre-
senting (Aps)rp — (Aps)w/Az versus (U, — U,) having as a parameter the
value of?

1 D \os
Y= Gros 0710 1475 0,108 <0.0873> (35)

However, the value of the liquid volume fraction, that is the value of

2 Units to be used: G = [Ib. mass/sq. ft. sec]; z = [cp); p = Ib. mass/cu. ft;
v = [dynes/cm]; D = [ft].
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(U, — U)), depends itself on physical properties and flowrates so that
the influence of these variables is more complicated than that shown by
(35). In particular the pressure loss will depend also on the physical
properties of the gas phase.

A semi-theoretical approach was proposed by Bankoff (32) for the
bubble flow regime visualizing a smooth phase distribution, the wall being
wetted by the liquid and the gas concentration reaching a maximum
at the axis, with a local slip ratio equal to unity. If a power law distribu-
tion is assumed for both the velocity and the void fraction the ratio
between the over-all gas volume fraction and the volume flowrate quality
(K = &/X,) will depend only on the value of the exponents. On this
basis and defining

fre

_ TR
1550

= (—l—)pcﬁjg (where et #l),
B

a correlation is derived between the shear stress on the wall in two-phase
flow and that in single (liquid)-phase flow in which mass and volume
quality, gas to liquid density ratio and K are involved. The comparison
with experimental results and other correlations for steam-water mixtures
seems to indicate that the correlation is reasonably accurate if K is
assumed to be a given function at the static pressure. Due to the pro-
cedure followed neither the gas viscosity nor the surface tension are
included.

A similar approach was tried at CISE by Bertoletti et al. (13) for

annular-dispersed flow. A velocity distribution and a void fraction of the
following form were assumed:

(36)

U= o = e = e (37a)
gmax max

@ =5 = e-}l - (37b)
max

where the subscript ‘“max” refers to the maximum value (on the axis).
The correlation derived for pressure drops was compared with experi-
mental results, and the agreement was poor (not better than using far
less complicated correlations). In any case, even if the agreement could
be improved through a better knowledge of velocity and void fraction
distribution, the main difficulties are not bypassed, since a correlation
for velocity profiles and void void fractions would be necessary. It is
not demonstrated that this would be an easier task than correlating
directly an integral parameter such as friction pressure losses.
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5. Results of Investigations Performed at CISE Laboratories

The pressure drop investigation in two-phase adiabatic flow accom-
plished at CISE (33, 34, 35,36, 37,38) was mainly devoted to the dispersed
region (according to the visual observation as well as to the Baker plot).
(See Section I,A,3 and reference (2).) The experiments were carried out
in a pressurized system (up to 22 kg/cm? abs) at room temperature with
a thick wall transparent plastic test section mounted vertically.-

Most of the runs performed with argon-water mixtures at full pressure
in a 25 mm ID. circular conduit (G = 30 <+ 300 gm/cm? second,
X = 7 + 80%). The measured values of the pressure drop were not too
far from those predicted by the Lockhart-Martinelli correlation and, at
the highest mass flowrate, by the homogeneous model

E=pXu+ (1l — Xun))

which always gave lower figures. The trend of pressure drop against
mass flowrate is, however, quite different: the dependence of the pressure
loss on specific toftal mass flowrate ean be represented to a first approxi-
mation by the exponent 1.4, instead of 1.8 as given by both correlations.
The dependence on quality was found to be represented with reasonable
accuracy by the flowrate density; the dependence on p* can be expressed
approximately by the exponent —0.75. With qualities higher than 0.5
the two-phase pressure loss was always greater than those corresponding
to the total flow of gas and at low mass flowrates this happened even
with lower qualities.

The influence of the entrance conditions was investigated by varying
the aperture of the annular slot of the Tee mixer (gas on the run side).
The pressure drop decreased with decreasing aperture size, that is with
approach to jet injection to which a higher initial liquid dispersion
corresponds.

Other experiments were carried out under different experimental
conditions to investigate the influence of the physical and geometrical
parameters.

The liquid viscosity was varied between 0.67 and 1.12 cp allowing the
operating temperature to vary between 16° and 37 °C. Within this range,
no significant influence of this parameter was observed. The same can
be said about the influence of the gas viscosity ,which was varied by
using nitrogen in place of argon (1.8 10~* against 2.2 10— poise).

The influence of the gas density, investigated by lowering the line
pressure do ~6 kg/em? abs and operating at constant volume flowrate,
was found to depend strongly on both flowrate and quality. At the
highest flowrates it was, roughly, Ap = p,*¢, while at lower flowrates the
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exponent is also lower. Furthermore, it was found that even the depend-
ence on p, together with that on quality, can be represented by the
flowrate density.

The influence of the liquid density, on the other hand, was not
investigated.

An interesting result is that concerning the influence of the surface
tension, which was investigated by using an alcohol-water solution
(90 W.% of ethyl alcohol, ¥ = ~24 dyne/em) in place of pure water.
Figure 10 shows that, while at low flowrate and quality the influence of

Ap’(water)
4 ]w 1D=215¢m
A P=218 kgferd
room temp.
gas:argon
| 62200 gfem’ sec 150
L
20}~
r— 100
- 75
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¥iu. 10. Comparison of frictional pressure drop with argon-water and argon/alcohol
systems in upflow (CISE’s results).

this parameter is not significant, according to what was found by other
authors (19), with higher values of G and X the pressure drop decreases
considerably as the surface tension is lowered, as if the interaction
between phases played a role of increasing importance in the energy
dissipation, when G and X are increased.

Finally, operating with conduits of different size and shape (round
conduit 15 mm I.D.; annuli: 1345 mm and 1945 mm) it was found that in
any case the dependence of the pressure drop on the equivalent diameter
(defined as D = 4A/p) is represented with reasonable accuracy by the
exponent — 1.2as in single-phase flow and according also to the Martinelli-
Lockhart correlation.

Other experiments in vertical upflow were carried out in a hot loop with
steam-water at 70 kg/cm? both in adiabatic and in heat transfer condi-
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tions 13, 89, 40, 41. A fairly simple expression correlated experimental
results over a wide range of flowrates and qualities reasonably well:

A 2+ G2
ol o
where
f* = WOO;_G_Z__O_? (G in gm/em? second) (39
l? (@) }

and 7 is given by (25b).

This correlation was found to apply with some loss in accuracy, even
in the results for the argon-water system, previously mentioned. Also
pressure losses in the presence of heat transfer, measured in the same loop,
could be correlated provided that the proper correction was made for the
acceleration term (computed according to the homogeneous model), which
is often predominant in the case of steam generation.

B. PaasE ANDp VELoOCITY DISTRIBUTION

1. General Remarks

The studies carried out on phase and velocity distribution in two-phase
flow may be conveniently distinguished into two major items:

(a) the investigation of the overall values of the variables averaged
over the conduit cross section. Due to the relationships existing between
them, only one variable has to be determined experimentally;

(b) the investigation of the loeal values of the variables. The local values
of the specific mass flowrates are not known a priori so that, in this case,
three independent measurements have to be made. Referring to the
annular-dispersed regime, however, we can further distinguish between
the region adjacent to the conduit wall, occupied by the liquid film, in
which the number of unknowns is reduced, and the region in the core of
the conduit, occupied by the liquid-gas dispersion.

2. Quver-all Properties

Apart from the density measurements performed with radiation,
described elsewhere (Section II,C) in this chapter, the quantity that
generally has been directly measured is the liquid volume fraction (or
“liquid holdup”) 1 — & The value of the liquid volume fraction being
known, the mean density of the mixture and the mean velocity of both
phases, hence the over-all slip ratio (S), can be easily evaluated using the
relationships given in Section I,C,1. In the case of a purely annular
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regime, without any appreciable amount of spray in the core, the mean
film thickness, too, can be immediately derived from the liquid volume
fraction.

a. Measurement Methods. The most used method to measure the over-
all volume fraction of the liquid phase is that of the “quick closing valve,”
by which the amount of liquid contained over a length of the conduit is
trapped and then weighed. Errors may arise from the following main
sources: the nonsimultaneous closing of the valves and the noncomplete
recovery of the liquid to be weighed.

An interesting method for the direct measurement of the mean density
in horizontal pipes is that used by Armand (23) who weighed a portion
of the conduit under operation.
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Fic. 11. Martinelli-Nelson correlation for void fraction vs. quality steam at dif-
ferent pressures.

b. Results and Correlations. Lockhart and Martinelli (20), on the basis
of the already mentioned experiments performed with gas-liquid systems
at low pressure, proposed a correlation between the liquid volume fraction
and the parameter X which is still extensively used. The correlation, as
shown in Fig. 5, is given in graphical form with a single curve valid for
any flow regime. For the same reasons, stated in connection with the
pressure drop correlation, the holdup correlation should not be generalized
to systems having too different properties.

Following a procedure similar to that used for the pressure drop
correlation, Martinelli and Nelson (21) derived a void fraction correlation
for steam-water systems with the saturation pressure as a further
parameter (Fig. 11). The curves given, however, are more arbitrary than
in the other case due to the lack of experimental data.

Many other authors (2, 5, 23, 42, 43, 44, 45) have carried out holdup
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measurements under different experimental conditions. The results and
the proposed correlations are rarely in mutual agreement. A comparison
among & nuraber of published data is made in (46).

The correlation recently proposed by Hughmark and Pressburg (18)
accounts for the influence of all the physical properties. A single holdup
curve is given using the following parameter?:

_ 1 — X 0.9 M10.1970'205p00.70“g2.75 (40)
X = X G0-435,,0.72

where G has a maximum value of 24.4 gm/cm? second (50 Ib/ft? second).
According to this correlation the influence of the diameter of the conduit
is not appreciable, while that of the gas viscosity is quite strong.

- ‘ Argon-water system
1-& Vertical up-#l
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Fi1c. 12. Ratio (1 — &)/(1 — X,) vs. mass quality. Gas and total mass flowrate as
parameters (CISE’s results).

The over-all liquid holdup was not directly measured at CISE, but the
values of this parameter were calculated from the data on the local values
in the core and the mean film thickness and from the mean density values
obtained with the $-ray method. The figures obtained in the two ways
were in reasonable agreement (see Table I1 in Section II,C,6) and
therefore some remarks can be made about the over-all properties of
pressurized gas-liquid mixtures in vertical dispersed flow.

With pure water as the liquid phase and argon at full pressure
(22 kg/cm?), the values of 1 — & are always considerably higher than
those of 1 — X,, but the ratio 1 — &/1 — X, depends on both flowrate

3 Units are the same as in formula (35).
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and quality (Fig. 12). Consequently the values of the over-all slip ratio
and of the ratio between the true density and the flowrate density is
substantially higher than unity. Apart from this dependence, these data
agree not too badly with the Lockhart-Martinelli correlation, in spite of
the high gas density.

According to experimental results on the influence of the physical
properties on the thickness of the liquid film (see Section II, B, 3), liquid
and gas viscosity, in contrast with the Hughmark-Pressburg correlation,
should not appreciably influence the liquid holdup, at least within the
narrow ranges investigated. The surface tension, instead, with sufficiently
high values of the flowrate and quality, would play an important role:
the lower the surface tension, the lower the liquid holdup.

On the other hand, Larson (47) during experiments with steam-water
mixtures in adiabatic flow at 70 kg/em? (1000 psi), that is with a surface
tension five times lower than that of cold water, found values of S rather
high (between 1.4 and 4.3), although operating with mass flow rates and
qualities similar to those used in CISE experiments. In this case, however,
the values of the other physical properties, especially of the liquid
viseosity, are too far from the ranges explored with gas-liquid systems.

With regard to the operation with heat transfer, mention can be made
of the experiments carried out by Egen et al. (48) at 140 kg/em? (2000 psi)
within the dispersed regime: the values of S were found to be very close
t0 unity.

3. The Liquid Film

From the experimental viewpoint, the region adjacent to the wall of
the conduit, occupied by the liquid film, has been investigated mainly in
terms of film thickness measurements. Some authors (49, 50), however,
attempted to measure directly the film flowrate, while Krasiakova (4)
investigated the veloeity distribution.

With regard to the characteristics of the film surface, such as amplitude
and frequency of ripples and waves, experiments carried out at Harwell
(51) provided quantitative data mostly for pure annular flow. Anyway
the study of the detailed configuration of the liguid film surface and
structure in dispersed flow is just beginning.

In the following, only the experimental data on average film thickness
and film flowrate will be reviewed. Theoretical approaches to velocity
distribution will also be mentioned.

a. Measurement Methods. The most commonly used methods to
measure the liquid film thickness are based upon electrical conductivity,
increased, if necessary, by the addition of small amounts of electrolytes,
while the two-phase suspension flowing in the core acts as an insulator.
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Provided that the wall of the conduit is made of an insulating material,
the electrical resistance of the film can be measured either parallel or
perpendicular to the flow direction. One can distinguish:

(a) measurements performed with electrodes placed on the wall at a
large distance with respect to the film thickness (34). In this case the
average film thicknesses can be computed by the measured values of the
resistance R and the resistivity p through the simple relationship:

1p
s(D — s) = T (41)

Due to the disturbed nature of the film-core interface, the electrical
mean thickness does not coincide with the true geometrical mean thick-
ness. For example, if along the circumference there is an interruption in
the liquid film the electrical resistance would become infinite while the
geometric mean thickness would remain finite.

(b) The electrodes are placed at a short distance (51) from each other
but on the wall. In this case the relationship between the electrical resist-
ance and the mean film thickness has to be established by calibration.
Furthermore, the reading varies continuously following the vicissitudes
of the film surface. In principle it would be possible to investigate the
amplitude and the frequency of the surface waves.

(¢) Measurements of the electrical resistance perpendicularly to the
flow direction by means of a fixed electrode on the wall and of a movable
inside the duct (25). This method provides the maximum and the mini-
mum values of the film thickness and can be used to investigate the
frequency of the waves.

TFor other methods which have been used to investigate the thickness
of the liquid film one can see (49, 52, 53).

The direct measurement of the film flowrate has been performed by
measuring the liquid flowing through an annular slot in the test section,
having a variable aperture (49), or collected in a film separator at the
end of the conduit (31).

b. Results and Correlations. The first of the above cited methods was
adopted at CISE (34) to measure the liquid film thickness. The data
obtained with argon-water mixtures at room temperature and full
pressure in the round conduit 25 mm I.D. are shown in Fig. 13. Under
these experimental conditions the film thickness ranges between 0.1 and
2 mm. As would be expected, a variation of the same sign of the gas or
liquid flowrate has an opposite effect; that is, an inerease in the gas flow-
rate reduces the film thickness while an increase in the liquid flowrate
increases the film thickness. The reduction due to a gas flowrate increase
prevails as shown by the eurves at constant quality.
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The influence of the physical properties was investigated in the same
way as for the pressure drop. In this case, too, the influence of the gas and
liquid viscosity, within the narrow ranges explored, was not appreciable,
while the influence of the surface tension becomes remarkable at inereas-
ing quality and flowrate (Fig. 14). Iilm thickness and pressure drop
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Fie. 13. Film thickness vs. liquid mass velocity, with the gas mass velocity as a
parameter (CISE’s results).

vary in the same direction as the surface tension. At least, when the gas
density is varied, the film thickness undergoes such variations that it can
be said, roughly, to be the inverse of the corresponding pressure drop
variations.

All physical properties being the same, the pressure drop and film
thickness vary in the same direction, as it was revealed by the runs
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carried out with different entrance conditions, according to what was
found by Dukler (19, 26). (See also Section 11,A/4.)

From the comparison of the data obtained in two circular conduits of
different size (25 and 15 mm 1.D.), one can see that the ratio s/D decreases
slightly with increasing diameter (37). In annular conduits (37), the film
on the outer surface js generally thicker than that on the inner surface,
but at the same time it is thinner than the film which forms at the same
specific mass flowrate on the wall of a round conduit having the same

external diameter.
s{water 8
s(alcohol) —

71 D45 cm
pa21.8kgfem®

—

-Ga200 gfomsec  foom temp.
L gas:argon

(4]

Fic. 14. Comparison of liquid film thickness with argon-water and argon-alcohol
systems in upflow (CISE’s results).

An important parameter should be the inclination of the conduit
especially when passing from vertical to horizontal pipes. This effect was
not investigated at CISE and a comparison with other author’s data
cannot be made because of the very different experimental conditions.

Film thickness measurements were performed at Harwell by Gill and
Hewitt (31), through the technique of the short distance electrodes, in an
air-water system at low pressure. The trend of s against gas and water
flowrate is similar to that found at CISE, but the values are not com-
parable due to the different conditions. The experiments were carried out
with two different modes of water injection in the mixer: annular and
multijet injection. In the first cage, all other things being equal, the film
thickness is generally substantially higher than in the second case; the
pressure drop, according to the CISE results, shows the same behavior.
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Furthermore, for a multijet injection, at high gas flowrates the film thick-
ness tends to level out with increasing liquid rate whereas with the
annular slot the thickness continues to increase markedly.

During the same experiments, the film flowrate was also measured
by means of the above mentioned technique. As with the thickness, the
film flowrate increases at constant gas flowrate with increasing liquid
flowrate, but, in the case of the annular injection, at high liquid rates it
becomes relatively insensitive to further increases, as if the fully dis-
persed flow were approached.

McManus (25) used the movable method to perform film thickness
measurements in horizontal flow with air-liquid (water and glycerine
solutions) mixtures. The circumferential profiles at various stations along
the test section were investigated. As would be expected, the film is always
somewhat thicker in the bottom. The profiles were found to vary along
the flow direction and to depend on both flowrate and quality. In most
runs the entrainment was negligible so that the over-all liquid holdup
could be derived from the film profiles. On the basis of these data, the
author proposed the following holdup correlation:

- _ 7 (N 0o\ ¢ [ m)?
L-a=Kgs (Pl) ("v) )
where R and the various exponents have different values for (Nz.): > 2100
and (Nge): < 1800.

The experimental investigation of the region occupied by the liquid film
was performed by several other authors also with different techniques.
Data and discussions are reported in (4, 49, 62, 63).

The film region has been investigated theoretically with the aim of
finding a correlation between the film thickness and the film flowrate.
For this purpose, the velocity profile in the film can be determined if a
relationship between the shear stress and the velocity at any point is
given. In the case of a purely annular flow, the shear stress distribution
can be obtained through a momentum balance provided that the total
pressure drop is known: in dispersed flow a further variable is the mean
density (or the density of the core region). In practice, the exact shear
stress distribution has never been used because the analytical procedure
would be too cumbersome. Apart from this question, one can obtain in
general a correlation involving the three variables: film thickness, film
flowrate and total pressure drop, the reliability of which depends mainly
on the selected relationship between velocity and shear stress. Two of
these variables being known, the third can be calculated.

Dukler and Bergelin (52) assumed a velocity profile equal to that given
by Nikuradze for single-phase flow and found good agreement with the
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experimental data obtained with a falling film upon a vertical flat plate.
Successively Dukler (54) developed a correlation on the basis of two
different expressions of the eddy viscosity (depending on the adimensional
wall distance y*). Hewitt (65) adapted this theory to upward cocurrent
flow and found a satisfactory agreement with the experimental data cited
above (81). Other correlations were developed by Calvert and Williams
(56) and Anderson and Mantzouranis (30).

A relationship between film thickness and the interfacial shear stress
7; was developed by Silvestri (57).

4. The Core Region

The region in the core of the conduit has only been investigated in a
partial way, because of the difficulty, from both the conceptual and the
experimental point of view, in handling all the three basic variables: gas
and liquid velocity and gas (or liquid) volume fraction. The local and the
over-all values of the entrainment were more frequently measured due
to the fact that the droplet capture efficiency is relatively insensitive to
the extraction conditions. The gas extraction, instead, requires special
precautions.

The microscopic structure of the core (average droplet size, droplet
size spectum, transverse liquid flow rate etc.) is very difficult to investi-
gate and only very recently have some attempts been made to do this.

a. Measurement Methods. The devices for the investigation of the core,
apart from the radiation sources, can be divided into two main categories:
extraction and impact pressure devices. The major problems related to
the use of these devices are, respectively, (a) fulfilment of the isokinetic
conditions (where the sampled gas and liquid flowrate are in effect those
corresponding to the unperturbed flow, and (b) establishment of a
relationship between the impact pressure and the basic variables involved.

A question arises about the optimum size of an extraction probe: a
small probe allows a more detailed investigation but the droplet size
and/or the probe flooding set a lower limit.

The phase and velocity distribution in the core was investigated at
CISE by means of extraction probes (~1.6 mm I.D.) used also as Pitot
tubes (34, 36).

Preliminary runs confirmed the expected different behavior of the two
phases: in front of the probe, while the gas stream is very sensitive to the
value of the back pressure given by the probe itself, the liquid droplets
tend in any case to keep their own direction.

The CISE method has two bases:

(a) the criterion to determine the isokinetic condition: this condition is
established when the pressure at the probe inlet is equal to the static
pressure in the conduit. The sampled flowrates are related to the basic
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variables by the simple relationship:
I'ye = aop,U,; T = (I — a)opls (43)

where ¢ is the sampling area.

(b) the impact pressure relationship. This was derived through a
momentum balance in correspondence with the probe inlet taking into
account the different behavior of the two phases:

87, = Ya',Uy + 152 (1 - @)l (44)
Since the value of « is usually not too far from unity, this relationship
shows that while the gas momentum is half lost, as in single phase flow,
the liquid momentum is almost entirely contributed to the probe. Due
to the many simplifying assumptions made, this relationship isaffected
by an inherent unknown degree of inaccuracy.

In this way, having three independent equations to determine three
unknowns, the problem of determining the phase and velocity distribution
is in principle solved.

Several authors (16, 19, 24, 26, 57) carried out sampling probe experi-
ments without controlling the isokinetic conditions just to investigate
the entrainment distribution or to measure the total entrainment.
Krasiakova (4) operated under isokinetic conditions, but measured only
the liquid flow rate. In some cases the impact pressure was also taken
(4, 16, 58); having two independent measurements, the velocity and
phase distribution may be determined, if the value of the local slip ratio,
or of an equivalent quantity, is assumed to be known.

The entrainment distribution has been investigated with different sam-
pling devices. An example is a movable knife parallel to the flow direction
and placed at the end of the test section. A differentiating process is
required in this case to determine the local values of the flowrate (23, 59).

b. Results and Correlations. The experimental data obtained at CISE
(34, 36) may be represented by the typical examples of Fig. 15a and b,
where the measured quantities and those derived through the above
mentioned equations are reported. The corresponding mean film thickness
is also indicated.

The local values of the slip ratio are slightly greater than unity through-
out the core, so that the much higher values of the over-all slip ratio
previously indicated (Section 1I,B,2b) should be attributed to the higher
concentration of liquid into the low velocity regions, close to the film
surface and the film region itself.

The local entrainment and therefore the liquid volume fraction (36),
is always minimum in coincidence with the conduit axis (or near the axis
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when the volume fraction distribution is not symmetrical). The liquid
volume fraction can be as low as less than 19 in the center but reaches
much higher values in proximity to the film surface; the measurements
near the wall, however, might be affected by the film wave interface.

The gas velocity profiles are always less flattened than single phase
flow, the gas Reynolds number being equal: the ratio between the linear
velocity in the center and the mean linear velocity, which accounts for
the actual area occupied by the gaseous phase, is in the range between
1.30 and 1.38 instead of between 1.15 and 1.18.

The distribution of the local values of the gas and liquid flowrate was
also investigated at Ansaldo Co. (Italy) (60) by means of an isokinetic
probe. The experimental conditions were: round vertical conduit 42 mm
L.D., steam-water mixtures at 50 kg/cm? in upward dispersed flow. The
entrainment distribution was found to have the same trend revealed by
the experiments performed at CISE and to be substantially unperturbed
passing from a distance of 25 to 50 diameters from the mixer.

An entrainment distribution with a minimum in the center of the
conduit was also found by Wallis and Griffith (59), who simulated the
flow of an evaporating mixture with an air-water low pressure downflow
system by injecting air through the porous wall of the test section.

On the other hand, an entrainment distribution variable along the flow
direction was found during experiments carried out at Harwell in a very
long vertical conduit (19 feet length, 114 inch 1.D.}) {68). The entrain-
ment profile in proximity to the mixer (porous wall injection of water)
is similar to those just described, while near the end of the conduit the
trend is nearly reversed. This result, however, was obtained in a low
pressure system, with a substantial variation of the gas density along
the conduit.

An entrainment distribution nearly constant throughout the core was
found by Anderson and Mantzouranis (16): the high values near the
wall were attributed to a probe interference with the wavy film surface.
The over-all entrainment was found to increase along the flow direction,
but in this case the relative variation of the density along the conduit was
also remarkable. The entrainment increases with increasing gas and/or
liquid flowrate, but the influence of the gas flowrate is greater. The experi-
ments were carried out with a nonisokinetic probe; the authors, however,
assuming a gas velocity profile equal to that which would exist in single
phase flow and on the basis of an impact pressure relationship similar
to that used at CISE, attempted to investigate the phase distribution.

Wicks and Dukler (26) carried out entrainment measurements by
means of a 0.27 inch I.D. probe placed in the center of horizontal conduits
(1 and 3 inch 1.D.). They found a remarkable influence on entrainment of
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the entrance section; the entrance type that gives higher entrainments
also gives lower pressure drops, at least at low liquid rates. The over-all
entrainment was evaluated on the basis of the central measurement
assuming a uniform distribution throughout the conduit cross-section:
values from less than 5 to 1009 of the total liquid flowrate were found.
The authors developed an entrainment correlation assuming that the
similarities in the mechanism for mass and momentum transfer which
have been shown to exist in single-phase flow also apply in two-phase flow.
The correlation gives, in the graphical form, the Martinelli parameter
X against the entrainment parameter

- X,
L Xv (NWB)GFE

(%)
Az J,
where (Nw.). is the critical Weber number, to which different values have
to be assigned depending on the entrance conditions.

Majiros and Dukler (19), using a 0.427 inch I.D. probe in long hori-
zontal conduits (20 feet length, 1 and 3 inches 1.D.), carried out the
entrainment measurements by investigating five different zones of the
conduit cross section. From their experimental data one can see, along
a horizontal diameter, an inversion of the entrainment profile going along
the conduit from a station at ~170 diameters to the last station (~200
diameters). This effect is not detectable along the vertical diameter.
They operated with different liquids to investigate the influence of liquid
viscosity and surface tension. The liquid viscosity was varied between 1
and 17 cp: the effects of viscosity variation depend on flow rates and on
the viscosity itself, the entrainment going through a maximum as the
viscosity is increased. The experiments performed by varying the surface
tension between 49 and 66 dyne/cm indicate that the entrainment
increases with increasing surface tension. It may be noted that, although
at CISE the surface tension influence on entrainment was not directly
investigated, an opposite conclusion can be derived from the experimental
data obtained on the influence of surface tension on film thickness and
pressure drop (36). The correlation proposed by Wicks and Dukler was
found not to handle the liquid viscosity effects correctly.

A theoretical investigation of the phase distribution was performed by
Levy (61), who, visualizing a smooth variation of the phase and velocity
distribution throughout the conduit cross section, extended the mixing
length theory to two-phase flow. As a result, the density profile has a
minimum in correspondence with the axis of the conduit.

R = (45)
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C. DEnsITY MEASUREMENT BY RADIATION

1. General Remarks

Absorption of penetrating electromagnetic radiation—v- or X-rays—or
of B-rays has been frequently used for measuring the density of liquid-
gas mixtures flowing in a channel. In fact the attenuation of a radiation
beam crossing the channel is essentially a function of the density of the
fluid flowing inside, although some other factors—Ilike the flow distribu-
tion and the chemical composition of the mixture—have to be taken into
account.

v-Rays, being more penetrating, can be successfully employed (48, 62,
63, 64, 63, 66, 67, 68) to traverse relatively thick channels or channels
made of “opaque” materials, such as, for instance, stainless steel. On
the other hand, the high penetrating power lowers the sensitivity in the
case of low density mixtures. 8-Rays, due to their stronger attenuation,
allow a higher sensitivity, but their use is limited by their relatively
short range. To a certain extent range limitations can be avoided by
reducing as much as possible the channel thickness in correspondence
with the traversing g-ray beam (69, 70, 71, 72, 73).

The use of X-ray techniques is less handy, because it generally requires
more elaborate radiation sources instead of simple radioisotope capsules.
Application of X-ray absorption technique was reported for gas-fluidized-
solid systems (74).

2. Sensitivity

It is well known that the absorption of a beam of monochromatic
electromagnetic radiation obeys an exponential law, say:

I =1T,exp (—us) = I,exp (—u'm) (46)

where [ and I, are the intensities respectively of the incident and of the
emerging beam, u is the absorption coefficient (em~!), s the thickness
(em) of the absorbing medium, u’ = u/pfcm?/g] and m = ps[g/cm?].

A collimated beam of beta particles obeys the same exponential law
over part of their range, due to the particular shape of the g-spectrum.
The mass absorption coeflicient depends on the maximum energy of the
B-spectrum and on the electron density in the absorbing medium, i.e.,
on Z/A if the absorber is a pure element.

The sensitivity S of an attenuation method for density measurements
may be defined (75) as

_ —dl/I
S = dmim 47
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that is, the relative variation of the counting rate referring to the relative
variation of m.

In the case of exponential attenuation, taking into account equation
(47), sensitivity may be written as

S =yum (48)

This means that for a given absorbing medium (fixed m) sensitivity
is proportional to the mass absorption coeflicient and is therefore higher
for 8-rays than for y-rays.

Considering the absorption in the duet walls, the exponent of Eq. (46)
may be specified as follows:

— (2uw'mew + uf'my) (49)

where ., and u; are the absorption coefficients in the walls and in the
flowing medium respectively, while m, and m; are the corresponding
thickness (which are assumed to be the same for both the walls), expressed
in mass per unit area.

Varying the density of the flowing medium the second term of the
exponent of Eq. (49) varies, while the first term is constant. It is therefore
easy to see that sensitivity, as defined by Eq. (47), is independent of
wall thickness.

3. Absorption Data Reduction

Traversing a channel with a well-collimated beam and assuming the
two-phase mixture has a gas volume fraction « along the beam path, the
absorption coefficient of the mixture can be written as

= au, + (1 — @)m (50)

In a channel, with a distance D between two parallel walls, filled
subsequently with the gaseous component only and with the mixture of
unknown density, attenuation is given respectively by the following
equations:

I, = I,exp (—u,D)

I =TI exp {—[ap, + (1 — a)m]D}

with the same meaning of the subsecripts. From these equations one can
derive

(51)

1 In I
D — py) 1,

from which the mean density along the beam direction can be calculated
[395]
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through measurements of I and I,. Measuring the corresponding counting
rates through a detector, background counting has to be considered.

The value of p obtained in this way is an average along the beam
path, and generally it varies traversing the channel in different positions,
sinee the flow is not uniform. Values of 5 averaged on the whole cross
section can be obtained through a simple integration.

This treatment is exaet only in the case of channel walls perpendicular
to the traversing beam. With round tubes the situation is slightly more
complicated since the nonnegligible width of the beam affects the inten-
sity of the emerging beam. Calculations show (76) that the mean chordal
length of the traversing beam can often be satisfactorily substituted for
the above mentioned distance D, except for vanishing values of the
former.,

4. Calibration and Detectors Used

Some attenuation methods must rely entirely on the calibration of the
particular device used, since the simple exponential absorption low does
not hold. This is mainly a consequence of the following factors: energetic
composition of the radiation, geometry, and diffusion. Let us ccnsider
each of these factors separately.

a. Energetic composition of the radiation. In the case of electromagnetic
radiation an absorption coefficient u can be defined, strictly speaking,
only if the radiation is monochromatic. Otherwise, calibration is the only
mean to obtain absorption curves. However, if the emitted energies are
sufficiently close, a mean value of u can be calculated and used.

Another method to overcome the difficulties connected with a complex
energetic structure consists in selecting the pulse amplitudes through the
use of a proportional detector.

Similar considerations can be made for composed g-spectra, each spec-
trum behaving—as for absorption—Ilike a monochromatic ¥ or X line.
In the case of B-rays, however, parasitic absorption in the channel walls
often helps in cutting off the low energy spectra.

b. Geometry. The exponential absorption law is valid only when the
collimation holes are small with respect to the distance of the radiation
source from the detector. If the flow distribution of the two-phase mix-
ture is not uniform inside the channel, a further requirement for the
exponential law to be obeyed and for the average density to be measured
is that the channel width (or diameter) has to be substantially smaller
than the distance source-detector.

This fact is connected with the diffusion effect, mentioned here below.

¢. Diffusion. Let us call ¢ the area of the collimation hole near the
detector and r the distance of the latter from a point source. The detector,
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in addition to the direct radiation comprised in the solid angle o/4xr?,
receives a portion of scattered radiation coming from the absorption
medium outside that solid angle. Diffusion accounts also for the fact
that smaller attenuations are measured with the same absorber when
placed farther from the collimation hole. When attenuation is measured
in nonuniform two-phase mixtures, this effect has to be taken into account
if required by geometrical conditions.

Calibration of attenuation devices often requires the use, as absorbers
of known density, of substances chemically different from the components
of the two-phase mixture studied. In this case the results have to be
normalized introducing a correction for the effect of electron density (75,
77), if use is made of S-rays.

The detectors commonly applied in the attenuation measurements
are: ionization chambers, GM counters, scintillation crystals and
photomultipliers.

The counting rate is one of the determining factors for the choice of
the detector: the GM counter is limited to about 1000 counts per second,
the scintillation counter to about 10® counts per second, while the ioniza-
tion chamber has practically no limitations.

5. Radioactive Sources

The main factors to be considered in the choice of a radioactive source
for density measurements are the following: half-life, intensity, and radia -
tion energy.

Half life has to be sufficiently long in order to avoid calculated correc-
tions or recalibrations.

Intensity will be determined so as to have a radiation flux reaching
the detector of sufficient energy, thus obtaining a satisfactory accuracy
in a conveniently short time. Since, in practice, aceuracy is determined
by the signal given by the detector, the efficiency of the latter also plays
a role in this matter.

In single pulse counting the probable error of a count is ¢ = 0.675 \/nt.
where n is the counting rate (sec—!) and ¢ the duration of the run (sec).
T'ixing ¢ and ¢, the source intensity I,(mC) can be easily determined in
the case of exponential attenuation:

_ 155 X 1077 X r*

rmoett

1, exp (eus), (53)

where » is the number of particles emitted per disintegration in the active
substance, 5 is the detector efficiency, the terms of the sum eus refer to
the various absorbers traversed by the beam, while the other symbols
were defined above.
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Radiation energy (of monochromatic y- or X-rays or simple-spectrum
betas) unequivocally determines the values of u. As far as sensitivity is
concerned it is clear from Eq. (48) that radiation energy should be
selected as low as possible, in order to obtain the maximum g’. This
choice is not always the best with respect to accuracy, for which the
detection system has to be considered (75). While for ionization chambers
sensitivity and accuracy make opposing demands on the choice of '
so that a compromise is needed, in the case of GM and scintillation
counters a value of u’' as high as possible is the best choice. For beta

TABLE 1
RavioacTive Sources Usep FPorR DENsSITY MEASUREMENT
oF Two-PHASE MIXTURES

Type »
of Energies in water
Radioisotope® rad. (MeV) Half-life (em™Y) Reference
Co® ¥ 1.17-1.33 525y 0.064 76
Cg1#7 ¥y 0.66 30 y 0.086 78
Sp1s ¥ 0.39 118 d 0.088 79
Crtr ¥ 0.32 27.8 4 0.117 81
Tm?7° Y 0.084 127 4 0.221 48,62,68,64,65,67
Ir2e2 £Y 0.30-0.61 74.4 d — 66
(several lines)
Se?t v 0.024-0.40 126 d _ 68
(several lines)
Celii-Priti+ B8 3.12 285 d 5.6% 70,72
Sreo-Y 9o+ 8 2.26 27 v 8.6+ 69,71,79

o 4+ Daughter

however u’ cannot exceed about 7/m (where m is caleculated including
parasitic absorbers), because, as said above, the absorption curve is flat-
tened by straggling at the end of the range (75).

Table I shows a list of the radioisotopes more commonly used in
attenuation techniques for density measurements of gas-liquid mixtures
(75, 78). It has to be pointed out that the flow patterns investigated
by means of y-rays in the cited literature do not always include the
annular-dispersed flow. y-Rays can be applied also in this regime provided
the channel width or diameter is sufficiently large, so that in Eq. (48)
the low value of ¢’ is compensated for by a larger value of m.

6. Experimental Procedures

As for the experimental procedures the attenuation methods can be
divided into two main categories: “‘one-shot’’ methods and “traversing”
methods (62).
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In the ““one-shot”’ methods the channel is crossed by a blade-shaped
radiation beam, the width of which practically equals the internal diam-
eter of the duct. The collimation hole before the detector is usually a
window slightly wider than the test section channel, to facilitate align-
ment of the source, test section, and detector assembly.

Density measurements performed by this method (based on calibration
with homogeneous media) can be in considerable error with respect to
actual densities, due to preferential phase distributions inside the channel.
Cook (65) conducted a series of tests on Lucite mock-ups, finding that
the error increased as the channel spacing was increased and as the dis-
tance between the radioactive source and the channel was decreased.
Errors of up to 93% were obtained, although this value represents an
upper limit encountered in pure annular flow.

Better results can be obtained with flow patterns in which the phase
distribution is practically uniform. In fully dispersed flow, with pD < 0.7
(D is diameter of the duct), Kosterin et al. (80) calculated the gas
volume fraction through an analytical relationship, which avoided the
need for calibration.

The ‘“traversing”’ methods are generally more precise than ‘“‘one-shot”
methods when the effect of flow distribution is not negligible. As previ-
ously mentioned, they consist in crossing the channel by means of a thin
radiation beam along different chords. The single measurements so
obtained yield linear mean values of the density. From these values,
plotted against the coordinate in the direction perpendicular to the beam,
one can derive, through a simple integration, the mean cross-sectional
values.

Usually the experimental procedure consists in moving the source and
the detector, rigidly connected one to the other, in the direction normal
to the beam, so that the latter explores the whole duct diameter (or
width). There are however some variants. Styrikovic et al. (80) measured
the void fractions of steam-water mixtures at pressures up to 95 kg/cm?
in a duet 238 mm I.D., using the vy-ray technique illustrated in Fig. 16.
As shown in this scheme, the source is uncollimated, and five different
beams are collimated through holes placed before five different GM
counters. The beams traverse the channel along a diameter and along
two chords on each side, forming different angles with the diameter.
This technique does not require the source to be moved. If the pulses
coming from the GM-counters are all conveyed to the same counting
system, this method can be also included in the “one-shot” eategory.

At CISE (73) a small movable 8-source, introduced inside the channel
for density measurements of argon-water mixtures at room temperature
and high pressure, was used. The setup is illustrated in Fig. 17. This is
one of the very few examples in which measurements in actual annular-
dispersed flow were performed with radiation.
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Fic. 16. Experimental arrangement used by Styrikovié ef al. (cross section):
S—uncollimated gamma source; I—thermal insulation; T—pressure tube 23.8 cm 1.D.,
—shielded Geiger-Miiller counters.

R

2z

Fig. 17. Experimental arrangement used at CISE (cross section): S—movable beta
source in a Lucite capsule (see detail enlarged 5 times a side, dimensionsin millimeters);
P—positioning device; T-—Lucite duct 2.5 ¢cm I.D.; H—collimation hole; GM—Geiger-
Maiiller counter.

The position of the source was varied along the channel diameter and
the corresponding attenuation measured. The device had to be calibrated.
In spite of the fact that a slight flow disturbance could not be avoided,
which probably resulted in the formation of a thin liquid film on the
B-source itself, the results proved to be in satisfactory agreement, with
density data obtained through an extraction technique and reproduci-
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bility was within the experimental errors (from 5 to 129, depending on
the source position). A comparison between density measured with the
B-source and obtained with other methods (34) is reported in Table II.

TABLE II
RESULTS FROM B-RAY ATTENUATION EXPERIMENTS IN ARGON-WATER MIXTURES
Frowing UrwaRDp IN A 2.5 oM I.D. DuctT AT A PRESSURE OF
22 x6/cMm?2 AND RooMm TEMPERATURE®®

Plin

G,* (e A B C D P

gm/ L
gm/em? second gm/cm3 em? -
24 .4 25.7 0.307 0.167 0.118 0.087 0.141 0.78
24 .4 44.6 0.453 0.212 0.153 0.115 0.187 0.82
24.4 77 0.587 0.317 0.206 0.159 0.256 0.80
24 .4 134 0.593 0.347 0.215 0.166 0.292 0.73
31.9 25.7 0.282 0.145 0.105 0.083 0.130 0.84
31.9 44.6 0.367 0.191 0.131 0.100 0.162 0.84
31.9 77 0.505 0.265 0.174 0.137 0.222 0.86
5.1 25.7 0.200 0.109 0.083 0.070 0.097 1.00
54.1 44.6 0.247 0.139 0.096 0.080 0.118 0.94
54.2 77 0.253 0.150 0.110 0.089 0.133 0.87
54 .4 134 0.417 0.247 0.164 0.132 0.203 0.77
72 25.7 0.139 0.089 0.068 0.064 0.078 1.04
72 44.6 0.164 0.098 0.078 0.069 0.090 0.90
72 77 0.183 0.126 0.090 0.080 0.109 0.94
72.5 134 0.332 0.210 0.154 0.126 0.180 0.93

s In the table pin is the linear mean density; s the cross-sectional mean density
and p’, the same quantity obtained by isokinetic extraction and film thickness
measurements [see (34)].

b Distance of the source from the axis in different positions (A) r = 1.05 cm;
B)r =070 cm; (C)r =034 cm; (D)r = 0.

7. Other Methods Involving Radioactive Sources

Compton scattering instead of traversing beam attenuation can also
be used for density measurements. Initial tests were performed by Bayly
(81) aimed at the density measurement of steam-water mixtures through
the detection of scattered y-radiation at an angle of 90°. A source of Cr®!
was employed and collimated with an opening of 1 X 6 em both on the
side of the source and of the detector (a erystal), for density measure-
ments of fog simulating media in the range 0.03 to 0.3 gm/cm?, A differ-
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ence of 11.79% in exit signal was found at 0.03 gm/cm?® with respect to
an empty duct. The above-mentioned author is developing the method
aiming at an accuracy of 0.001 in specific gravity.

ITI. Heat Transfer

A. GeENERAL CONSIDERATIONS
1. Critical Heat Flux

The transfer of heat by an evaporative process is as a rule characterized
by the rapid increase of wall temperature when the heat flux exceeds a
certain eritical value. This is also true in the case of annular dispersed
flow. A well-established definition of the eritical heat flux does not, how-
ever, exist. In the case of boiling water the heat transfer crisis results
in a discontinuity of the wall liquid temperature difference as a function
of the heat flux, as established by Nukiyama. Thus, at an earlier time,
it was not considered very important to discuss the way in which “burn-
out’”’ was detected or defined.

On the other hand, data on the heat transfer crisis in the case of dis-
persed flow was for a long time a by-product of boiling studies (which
correspond mainly to bubble flow) in the range of higher qualities. It
was assumed that no fundamental differences did exist between the two
phenomena.

Later on, however, several authors indicated that in a given range of
mass velocities and qualities the heat transfer crisis was characterized
by a gradual, even if steep, increase in the wall-liquid temperature differ-
ence by increasing heat flux. This is illustrated by Figs. 18 and 19. Figure
18 reported from Silvestri (82) shows the evolution of the wall liquid
temperature difference with heat flux at the outlet of an heated tube.

Figure 19 shows a temperature profile along a heated tube in the last
section of which (section B-C) the crisis has been reached, reported from
Schrock ef al. (83).

Another well-established fact is that the wall-liquid temperature dif-
ference, which is quite constant with time below the critical heat flux,
shows random oscillations in coincidence with the incipient erisis. These
oscillations first increase in amplitude, as the heat flux increases, and then
gradually die out, when the heat flux becomes much higher than critical.
The magnitude and location of these oscillations are also reported in
Fig. 18 for that particular case.

Afterward it was recognized that in the case of dispersed flow no sharp
transition existed between the slow crisis just described and the fast
crisis (eventually resulting in burnout) observed at lower quality. In fact,
it would seem that when going to lower qualities the rise in average
(402]



Two-PrasE ANNULAR-DispERsSED Frow

. 2ius% 55 %eas% *u8% +65% 0% tu%
?5 Mt ¢ 2 < < = < <l
| ——y |_,_.,
;00 L
...-/"’"’/-ﬁ-_ :
— I
W |ene e
- ! =707 k
[-cTn’] T ‘?.‘./"' o ‘ l’n-osz c:.lm '
100—2 6 =385 gfcm® sec
f X from 0561 Emm ynwﬂ?
— to  0.573(max «
|
0 20 40 60 80 100 120
ae[c]

Fic. 18. Temperature difference vs. heat flux below and beyond CHF in annular-
dispersed flow (CISE’s results).
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Fic. 19. Profiles of wall and fluid temperature, pressure and quality along the
heated length of a vertical duct with steam-water system in upflow.

temperature, after the crisis corresponding to a given increase in heat
flux, becomes sharper, and at the same time the amplitude of the oscilla-
tions around the average becomes much higher, so that the wall tem-
perature may reach a very high peak value. The mechanism of the crisis
in the case of dispersed flow might, however, be very different from the
classical burnout observed with boiling water.
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These considerations point out why most of the work in heat transfer
with dispersed flow has been concentrated in the investigation of the crisis.

Experiments have been made on cylindrical ducts with round, rectangu-
lar or annular cross sections. For practical reasons the investigation con-
cerned mainly steam-water mixtures. Upward flow has been more investi-
gated than downward flow or horizontal flow. Electrical heating is most
commonly used. Condensing steam is also used as an approximately
constant temperature boundary condition.

2. Qualitative Description of the Crisis and Definitions

A number of definitions have been proposed for the critical heat flux.
These refer either to a particular character of the phenomenon or to a
particular method of detection.

Since the crisis observed in the case of dispersed flow has generally
a progressive character, it is felt necessary to give here an accurate
description of the successive steps of the crisis. We shall then review the
various definitions which have been proposed.

There is hardly evidence that the crisis can occur with dispersed flow
anywhere but in the immediate vicinity of the outlet of the heated sec-
tion, at least in the case of a uniform heat flux distribution along the
heated length (see also Section III). Moreover various authors (83) (84)
have found that, by increasing the heat flux progressively, the crisis first
appears at the outlet and then propagates upstream.

In this way along the corresponding zone of the heated section it was
possible to observe at a given heat flux the successive stages or aspects
of the crisis.

It is equally possible to study the successive stages at a given point
by progressively increasing the heat flux and recording the output of a
thermocouple.

When this is done in a typical case (G = 150 gm/cm?sec; D = 0.5 cm;
L = 80 cm; X: = 0.20) it is possible to draw the curve of ¢ versus A8
(Fig. 20). It can be seen that after a parabolic segment O-b point b is
reached where A# suddenly decreases (segment b—c). This decrease has
been found systematically at CISE and it seems that also Perroud (84)
found the same. It has been recently ascertained that whereas the dis-
continuity b—c was always encountered, point b could shift to 4’ along
the curve O-b to any position corresponding to values of ¢ within a narrow
margin. In some cases this decrease could even happen in two or three
steps the ultimate value of the discontinuity b—c or b’—¢’ remaining prac-
tically unchanged. From ¢ (or ¢’) onwards Af again regularly increases
with ¢ until soon enough a point d is reached where A# begins to be
unstable, showing random fluctuations around the average value. Simul-
taneously from d downwards A# increases with ¢ but at 2 much faster
[404]
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rate than along a—b of ¢-d and h is progressively reduced until its value
comes to be of the order of magnitude which corresponds to convective
heat transfer for the steam flowing alone.

Further, it must be mentioned that when point ¢ has been reached, if
¢ is decreased, instead of increased, A6 does not jump back to curve
a-b but follows a curve ¢-0. It would seem, therefore, that in the whole
range of ¢ up to very near the crisis there exist two modes of heat trans-
fer: mode O-b would be stable, when ¢ starts from zero, until near enough
to the critical heat flux; there would be an abrupt change to mode ¢,
which in its turn is stable down to O; moreover, any intermediate situation
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Fig. 20. “Hysterisis’’ effect in the heat transfer coefficient below CHF.

between the two curves O-b abd O-c, below the critical heat flux, seems
to be possible in principle.

This summary desecription of the succession of events in a typical case
shows that confusion may arise in characterizing the crisis by the critical
heat flux.

In the case of boiling (bubble flow) it is known that the curve implies
the existence of a “burnout’’ heat flux: this heat flux would adequately
characterize the crisis in the case of boiling, but it does not apply to
dispersed flow. It is, at any rate, generally impossible to reach this heat
flux without destroying the test element (at least in expenments con-
ducted with electrical heating).

For this reason the so-called DNB (departure from nucleate boiling)
has been proposed. This point is inferred by a change of trend in the
curve ¢ versus Af (85).
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In our case this definition could be taken into account only if applied
to curve a-c—d. But since it is by no means certain that boiling occurs
with dispersed flow the expression “DNB” may not be adequate. More-
over, this definition is not easy to translate into a method of detection.

Another definition, proposed by Griffith (87), takes into account the
heat flux corresponding to the point where the heat transfer coeflicient
(¢/A6) reaches its maximum value. This definition is adequate in our
case but here, too, it is not easy to conceive a convenient method of
detection.

In many cases the definitions proposed for the critical heat flux were
purely operational. They were mainly based on the detection of a local
sharp rise of temperature. In many cases the detection was done by
comparing the electrical resistance of the region of the heated section
where the crisis occurs to the resistance of another region where it does
not.

Other rough detection methods were based on the determination of the
flux for which the temperature of the heated wall reached a prefixed
value (much higher than the temperature of the coolant bulk); under this
category can be mentioned the red-hot spot method used by the Russians
(86) in many early experiments.

All these methods may be used in the case of dispersed flow but they
give values of the heat flux which lie above the value corresponding to
the incipient crisis. This may be acceptable in the cases where the slope
of d-e—f (Fig. 20) is very small (low qualities, low mass velocities), but
it becomes very inadequate in the high and medium quality range, above
all for high mass velocites where the slope of d~e—f is relatively high.
In these cases the flow which may be detected does not have any connec-
tion with the critical heat flux.

Methods of this kind consist generally in using the sensing element
to trip the power supply and may be kept in any case as a safety device.

The most straightforward method is still to use a fast response thermo-
couple in good thermal contact with the heated wall in the region where
burnout is expected to occur. Of course, this method, valuable in annular-
dispersed flow, is inadequate in bubble flow or in subcooled boiling.

The output of this thermocouple can be recorded. In the case where
the heat flux increment is proportional to time, the recording would
give an image of the curve ¢ versus A@ directly. But this is not generally
the case and even if it were, the direct interpretation of such a recording
in terms of ¢ versus A@ is not very easy. However, in the case of dispersed
flow, whatever the rate of increase of ¢, the stage of the crisis, corre-
sponding to point d is always easy to distinguish directly: that is the onset
of random fluctuations of the wall temperature. Here it should be noted
(406}
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that the study of these oscillations might be very diffieult, since it would
have to take into account the attenuation effect of the thermal capacity
of the wall, and of the thermocouple itself, and the time delay introduced
in the transmission of these fluctuations to the thermocouple; but here
we have none of these difficulties since we only need to tell if they are
there or not.

This stage of the crisis is always present, reproducible, and is easy to
detect. Thus it is proposed to define the critical heat flux as the flux
corresponding to the onset of fluctuations of the wall temperature. For
sake of simplicity the term CHF (eritical heat flux) will be used
throughout.

This definition is adequate in the whole range of qualities and mass
velocities where the amplitude of the oscillations remain compatible with
the safety of the test section. For very low qualities, however, as men-
tioned before, one has to rely essentially on a device of the type previ-
ously described (prefixed temperature detector). It is impossible at the
present stage to say if and where in this range the crisis of the type we
have described goes to the type of crisis which is found with boiling
water, characterized by a discontinuous increase of A6 versus ¢, so-called
burnout, corresponding to the onset of film boiling.

B. Criticary HEar Frux CORRELATIONS

1. Variables on Which the Critical Heat Flux Depends

A systematic search for a correlation of CHF in annular-dispersed flow
must take into account all the independent quantities involved. Such a
search was not made for horizontal or inclined tubes, but only for
vertical upward motion. The water-steam system was, of course, the most
studied.

The ecritical heat flux with subcooled water in upward motion is a
function of the following variables (87):

L
G7 D: E’ Pl Pgy Kiy Mg,y Kl} Y )\, 0, — 0; 6.

When the fluid at the inlet is in the quality region, the term 4, — 6,
disappears and the quality X takes its place. Moreover, if the water-steam
mixture is supposed to be in thermodynamic equilibrium, the terms, wi,
tg, P1, Pg, K1, v, N are functions of the pressure (or saturation temperature)
only. If, in addition, the tube wall is always wetted, we have:

Por = f(%’ G, D, b, X) (54)
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where X is intended at the point where the critical heat flux is reached.
When this form is adopted, it is difficult and quite unnatural to introduce
the inlet quality X; as an independent variable. Of course X; is bound to
X, by an energy balance equation:

L
,-+4/° #(2) dz

X=X
DC\ (55)
X=X;+4 -ll)i %’ (for uniform heat flux)

Introducing this expression for X, an implicit function of ¢ is usually
obtained. If, however, we take into consideration instead of ¢.. the total

power input W, = xD /(.L ¢(2) dz, to the heated tube for which the

critical heat occurs at one point, there are no reasons to prefer X to X,.
In this case we can write:

We = f(%', G, X, p, D) (56)

To prefer one presentation to the other is a matter of personal prefer-
ence. It must be kept in mind, however, that for any correlation the
simpler the better.

The following points must also be taken into account before discussing
the proposed correlations for CHF:

(a) The phenomena responsible for the crisis in subcooled boiling and
in annular-dispersed flow (a special case of quality crisis) may be sub-
stantially different. For this reason, at Westinghouse, the notions of
g-burnout and H-burnout are being introduced (88): the first representing
the crisis for excessive local heat flux, the second for “deficiency of water”’
(high mixture enthalpy). In consequence, it is very unlikely that the same
relationship should hold for these two different flow patterns. Correlations
valid from the whole quality range, from negative quality (subcooled
water) to unity, proved to be quite unsuccessful.

(b) The use of different definitions and different detection systems
brought to experimental data which are not strictly comparable. This is
mostly valid at high quality, where detection of the crisis is very difficult.

(¢) The distribution of phases at the inlet of heated elements is greatly
influenced by the characteristics of the mixture generating plant. In
particular, the geometry of inlet mixers or of feed circuits (for the case
of separate generation of steam and water) has a fundamental influence
on results,

(d) The experimental procedure may put in evidence or obscure some

functional relationships: for instance, operating at constant total mass
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veloeity (and changing quality) or at constant mass velocity of one of the
two phases (and changing the other).

All these facts together have, as a consequence, a disagreement of
unknown extent between results obtained in different laboratories.

2. Older Correlations

From a chronological point of view, the first group of correlations had
developed since 1943, on the basis mainly of results in subcooled boiling.
The subcooling Af,u, difference between the inlet temperature and the
saturation temperature at the operating pressure, was the fundamental
parameter. These correlations are not of direct interest here, even if
they were extended to the quality region, see, for instance, (89). In what
follows we will discuss correlations developed later and more related to
annular-dispersed flow. For a wider bibliography see (90) and (91).

Reynolds (92) was one of the first to study the field of X, > 0, using
data collected at MIT. Two physical quantities are considered important
by him: the liquid film thickness (calculated as if all the liquid would
be concentrated on.the wall boundaries) and the average mixture velocity
(supposing S = 1). The phenomenon is considered a purely local one. The
correlation is of the following form:

Por = G—O'EDﬁl'Ef(X: p) (57)

The range of the variables is the following:

L/D = 50 and 76 D = 46cm

G = 90 + 490 gm/cm? sec
p = 35 + 141 kg/ecm?

X, = 0.01 <+ 0.60
der = 190 + 880 W/cm?

The CHF is a decreasing function of pressure.

For the first time an inverse relationship between ¢.. and G is presented.
This is just the contrary of what happens in subcooled boiling.

In 1958 Westinghouse presented (85) the analysis of hundreds of
burnout data collected in different USA laboratories. The “prediction’”
equation is the following:

b = GHy 20 (1 + Gﬁy exp (—0.0012 I-L)> (58)

The range of variables is:

G = 3 + 650 gm/cm? sec
¢ = 40 + 720 W/cm?
X = from subcooled to unity
geometry = circular or rectangular ducts
pressure up to p = 140 kg/cm?
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The constants a, G, depend on geometry; for a plane geometry D is
replaced by the width of the channel. Equation (58) put in evidence an
L/ D effect, while ¢ is an increasing function of G. Moreover for X — 1,
¢ does not go to zero. The dispersion of data correlated by this formula
is £35%, so that for design purposes a ‘‘design equation’ is suggested in
which the ¢, value is multiplied by 0.65.

The same data collected by Westinghouse were worked on by many
authors:

(a) Longo (93) presented a correlation identical with (58), but with
different values for a and G..

(b) Isbin et al. (94) started from a model of “quality burnout,” in which
the crisis is attributed to the disappearance of the liquid film, for lack of
transverse flow of water. The correlation is quite complex and requires
the determination of six constants. This model introduces an inverse
dependence of ¢, on G.

(¢) Bell (95) proposed an empirical correlation (for p = 140 kg/cm?):

4o = 000 + @) (et e g (59)
where a, b, ¢, d, ¢, are empirical constants (and H, is 1000 BTU/Ib).
Coeflicients d and e are such that, for equal H,, the dependence of ¢o
is inverse of G. No L/D effect is present. The range or validity is the same
as that of (§8), except that X is always positive.

(d) CISE (96) correlated the same data (plus a few points at lower
pressure) with an expression of the type:

Ger = aD—* 25G'_"y (60)

where y = 1 — X/X + a is a quantity proportional (for S = 1) to the
average liquid concentration in the duct. a and n (»n > 0) are constant at
constant pressure. Also, this correlation is based on a model in which it is
assumed that the water cross flow from the main stream to the heated
walls has a predominant role in determining the crisis.

(e) Jacobs and Merril (97) presented a statistical correlation with 24
empirical constants, which seems really too much. They verified that
correlations based on independent system quantities (input quantities
known a priori, for which an energy balance is not necessary) correlate
experimental results better than correlations based on local values (like
H., X, etc.).

(f) Also Macbeth (98) prefers the use of independent quantities, but,
to improve the correlation, he uses one variable more than needed (X and
X.) so that his correlation is incompatible with the heat balance equation.
This correlation has eight empirical constants, which are functions of
pressure and geometry.
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The experimental basis of all of this group of correlations is reference
(85). Only correlations presented under (b) and (d) try to start from an
elementary physical description of the phenomenon. In addition, Gold-
man et al. (99) tried a physical interpretation of the erisis and they
considered the diffusion of liquid droplets from the core to the heated wall
through the vapor layer adjacent to the walls in critical conditions as a
slow process. To correlate data, however, knowledge of the average axial
slip and of the local slip (average value of slip in a cross section) is
necessary.

8. More Recent Correlations

It was evident, at this point, that experimental data collected up to
1958 were not enough and that further data were needed to better under-
stand the influence of the different parameters.

Perroud (84), using a number of experimental data collected at 50 and
60 kg/em?, confirms the inverse dependence of ¢, on & and proposed for
y (or alternatively for 1 — X/X) a higher exponent than proposed for
CISE (~2 in place of 1).

A wide experimental program was carried by CISE between 1960 and
1961 (13, 39, 40, 41) on circular duets and annuli mostly at 70 kg/cm?.
The correlation (60) proposed before was modified in the following way:

1
y = e G o™ (61)
(n, m > 0)

where K and m are functions of pressure; in addition K a is function of the
L/D ratio. The inverse dependence of ¢.. on @ is still confirmed on most
of the quality range. The L/D effect is quite important. The correlation,
only valid for annular-dispersed flow, was deduced from experiments in
the following range:

p = 40 + 85 kg/cm?

D =03-+1cm

L =10+ 8 em

G = 100 + 400 gm /em? sec

X=0=+08

Quite recently, Westinghouse (88) proposed a new correlation, based
mostly on experimental data presented in (85) and (13). As previously
mentioned, the possible existence of two critical heat fluxes of different
nature is discussed. The correlation valid for the quality region is:

He — Hi = 0:(Hy, — H) + [a2 + as exp (—aD)H, exp (—as@)
+ agH,, exp (—a7 -,15) + agH,;%gl + aH,u (62)
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The range of validity is:

geometries: circular tube-rectangular channel-annular channel-rod bundle

G: 27 + 550 g/cm? sec

p: 55 + 190 kg/om?

L/D: 21 + 656

inlet subcooling: 0 + 170 keal/kg

Xt 0+09

@: 30 + 550 W/cm?, with uniform and nonuniform axial distribution

Nine empirical constants are necessary in this case; 95% of data are
correlated better than 25%. The dependence of ¢.. on G is direct at low
quality and inverse at higher quality.

Mention must be made of a number of correlations used by Russian
workers. In these correlations, the physical conditions of the system are
introduced through dimensionless groups, introduced by Kutateladze
and Styrikovi¢ (100) to study the process of nucleate boiling.

One of the most recent correlations, presented by Ivaskevié (101, 102),
has the following form, when the mixture enters with a finite quality into
the heated section:

aG(Vi + XVa)fa(p, D)1 — X]

1+b % (fs(p)L + é) G(Vy + XValfe(p,D)

fl (P) Per = (63)

D

where ¢ and b are constants and f,(p), f:(p,D), f:(p) are known functions
of pressure and diameter. This correlation which is a particular form of a
more general relationship, which holds, in the opinion of this author, in a
very wide range from subcooled water to 0.9 quality, gives however for
annular-dispersed flow a direct relationship between ¢, and G. Formula
(63) also takes into account uneven power distributions, through the
term $/¢, where ¢ is both axial and transversal average heat flux. The
author claims correlating data from different sources better than + 309;.
The occurrence of the crisis is characterized both by its location (which
does not always coincide with the outlet) and by the value of the eritical
heat flux.

Another correlation for upward flow developed by Miropl'skij and
Sicman (103) makes a distinction between pulsating flow (when thc
heated section is preceded by a large free volume) and nonpulsating flow
(when, through orifices or other means, the heated section is decoupled
from the mixture generating system). The critical heat flux is different
for these two cases only when:

ov
Kw = gi‘(—‘i') ' < 2.10 (64)
TP \Pg
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The general formulation is the following, for the case X > 0:
(a) nonpulsating flow:

M - (-31_0, 8 0,4 — n
Pt — o (47) Kot - ) (65)
where a is a constant (different for different geometries) and n is an
exponent, the values of which depend on that of Ky;

(b) pulsating flow (only for Kw < 2.1072): for higher Ky values
formula (65) holds:

0.8
St = o (47)" Kt = D0+ 43) (66)

The validity of these correlations is the following:

geometries: round tubes—annuli-rectangular channels.
D >04cm
D, —D; >02cm
D > 013 cm
L/D > 100
X < 0.9 for p = 20 kg/ecm?; X < 0.6 for p = 100 kg/cm?;
X <04 for p = 180 kg/cm?; X < 0.25 for p < 200 kg/cm?2

The authors claim to correlate a number of resuits better than +30%.

C. PrecuLiarITIES oF CriticalL HeaT Frux

1. Critical Heat Flux with Constant Power Distribution

Once a particular definition of the CHF is accepted, it is better to
study the influence of the different parameters of importance, and to rely
on experiments in which the same criteria are used throughout. Thus,
we shall refer mostly to experiments carried at CISE following the
definition given at the end of Section III,A,2 (18, 39, 40, 41).

In this paragraph only constant heat flux (along the channel length)
will be considered. The phase distribution at the inlet of the heated
section plays an important role in determining the value of the CHF. Thus
we shall distinguish between CHF in fully developed flow (when the
heated section is preceded by a very long unheated section—or mixing
length—of hundreds of diameters), in which the flow pattern peculiar of
the specific flowrate and quality can freely develop, and CHF in tubes, in
which special injection systems are used.

Results will be presented in graphs where the CHF is plotted as a
function of the inlet quality, for constant pressure, flow rate, heated
length and diameter. A family of curves will be drawn having one of the
above mentioned quantities as a parameter.
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Fig. 21. CHF as a function of quality, with mass velocity as a parameter. (a): Inlet
quality as abscissa.

Usually plots of the CHF have exit quality as abscissa. Some of these
plots will also be presented here. As seen in Section III B, it is equivalent
to choose X, or X, from a logical point of view. From a practical point of
view, however, we must make the following points;

(a) X;is an input independent variable; X, on the contrary must be
deduced through a heat energy balance. This increases the overall errors.

(b) Comparison between plots with X; or X, as abscissa shows that

X-plots can be much more easily interpreted than X,-plots.

Results presented here refer to steam-water mixtures at pressures
around 70 kg/em?, in upward flow. It is evident that, by increasing
pressure, any peculiar feature smoothes down.* It is also true that in

“ The behavior of supercritical mixtures is quite complicated, due to the rapid, if
not sudden, variation of many properties across the so-called pseudocritical tempera-
ture (temperature at which heat capacity reaches a maximum). See, for instance.
(104) and (105).
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Fig. 21. (b): Outlet quality as abscissa.

horizontal or downward flow, results, although probably not qualitatively
different, will differ from a quantitative point of view.

a. CHF in Fully Developed Flow. Results for fully developed flow will
be presented first. In this case starting from saturated steam (at the inlet)
the ecritical heat flux goes up with decreasing quality. For low mass
velocities it reaches a maximum (when the flow pattern at the inlet is slug
flow) and then goes down again. For high mass velocities no maxima
ocecur, but there is a certain inflection in the curve. See Fig. 21a. From
the comparison of plots reported in Fig. 21a and b it is seen how the
interpretation of results is mueh more difficult when X, is in abscissa.
With X; as an independent variable there is only a single value of ¢,
while ¢ is a multivalued function of X,.

The main aspects are the followings:

(a) in annular-dispersed flow, ¢. has an inverse relationship with @,
while the contrary is true at lower qualities (that is for bubble or slug
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flow). We will come to the controversial point of maxima later. This
relationship:

Ger = G(n > 0)

(where n is certainly a function of pressure) was not recognized at first
in the Westinghouse correlation, but afterwards an examination of the
same data by many authors showed that this was the case (see Section
II1,B). In addition, a number of Russian works (106, 107, 108) support
this idea, as well as recent experiments carried at the G. E. Vallecitos
Laboratories (109, 110).
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Fie. 22. Critical power at constant mass velocity as a function of inlet quality
(L/D as a parameter).

(b) there is a strong L/ D effect. In Fig. 22 a family of curves is reported
for constant G (and p) and different L/D values. The total power
#DL¢. = W, isreported on the ordinate. It can be seen that an enormous
increase in length (at constant diameter) brings only a very moderated
increase in W, This means that ¢.. goes down tremendously with increas-
ing length. Plotting W, in place of ¢., seems a better way of taking into
account the L/D effect, to which W, is much less sensitive than ¢...
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This phenomenon (“hystory effect”’) could possibly be explained by
visualizing the water flowrate as divided in two components: the former
flowing along the wall as a water film, the latter as droplets in the bulk.
The first components could be evaporated in any tube length, giving
something like a constant base load power, the second would be partially
evaporated as soon as it becomes deposited on the duct wall.

(¢) The pressure effect is not a strong one in this range.

b. CHF in Developing Flow. If the L/D effeet is difficult to explain in
physical terms, much more controversial is the question of maxima. At
CISE (where experiments were always carried out with a very long mixing .
length) maxima were always found (for low mass velocities). Russian
researchers found (107, 108) that by throttling the flow injection valve
to the heated element maxima disappear. In certain experiments they
inserted in a dead end (in respect to the heated duct) a geometric volume
which was filled at times with cold water or with nitrogen (or superheated
steam). In this latter case, maxima occurred (accompanied by strong
pressure oscillations) while, in the first case, maxima did not occur. The
reason for this was attributed to the presence of an elastic (gas), or fairly
rigid (water), medium hydrodynamically coupled with the heated duct.

To clarify this point three experiments were carried out at CISE,
(see Fig. 23) at constant pressure, geometry and flowrate selecting a
flowrate for which maxima occurred:

(a) In the first experiment subcooled water or a steam-water mixture
was injected into the mixing length (L/D = 600), and then freely passed
to the heated length. A maximum is clearly seen.

(b) In a second experiment, a very high localizedf‘pressure drop (a
number of orifices in series) was put between the mixing length and the
heated length (flashing occurred in a certain quality range). No maximum
oceurred.

(¢) In a third run, a smaller pressure drop was located as before. The
plot of ¢ looks intermediate between that of (a) and (b).

Additional experiments were performed with orifices at the bottom
of the mixing length and results were in agreement with those obtained
without orificing.

Thus it seems reasonable, for the time being, to conclude that in
experiment (a) any flow pattern could fully develop, while in experiment
(b) the injection in the test section of a high kinetic energy input pre-
vented formation of slug flow, This energy is more or less dissipated in
artificial turbulence, which alters the flow pattern even in the low quality
region. In condition (¢) the behavior was in between. This is all the more
true, without bringing into the picture the elastic character of one of the
media (steam), since at high mass velocity the maxima disappear,
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although the volume of the gas phase in the same quality range should
be more or less the same. In addition, even without throttling, maxima
disappear in conditions which are coincident, or at least very close, to
those for which slug flow disappears (see Section I, B). When subcooled
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Fiu. 23. The influence of inlet conditions on the CHF.

water is injected in a tube, one must take into account that the pressure
drop increases (mainly due to the acceleration term), in comparison with
adiabatic flow at the same average quality. Thus no flow pattern, includ-
ing slug flow—which is possible only in a quite narrow quality range—can
fully develop and the CHF curve would resemble the one with orifices
more than the one in fully developed flow.
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2. CHF with Uneven Power Distribution

No systematic study has been made up to now of this aspect of the
phenomenon, although a correlation (63) takes into account a form factor
for the heat flux distribution and another correlation (62) is also con-
sidered valid by the authors for uneven power distribution.

The limited number of experimental results is sufficient to show that
a more careful insight would be of great importance for understanding
the ecrisis. Were the crisis a local phenomenon, it would take place at the
point where local quality reaches the critical value. But this is far from
being the case.

Heat flux shapes frequently used are: hot patches in a uniform heat
flux, intervals of constant heat flux and unheated lengths, linearly varying
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F1c. 24. Critical power for three different heat input distributions.

heat flux (or linearly varying tube thickness, which gives an hyperbolic
variation for s < D;), cosine-shaped heat flux.

The strong L/D effect on the critical heat flux (which is to be compared
with the weak L/D effect on the total power) is evidence that the total
heat flux is quite insensitive to the heat flux shape: in fact, a short tube
can be considered a small portion of a longer tube with uneven power
distribution.

Even more striking are results obtained at CISE (111), an example of
which is reported in Fig. 24. Here the total eritical power as a function
of inlet quality is reported for three different cases: an electrically heated
length of 80 cm at constant heat flux, the same geometrical length but
with a central portion of 40 cm short-circuited (rectangular-shaped flux)
and a heated length of 40 cm. Even though small differences may exist
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between these three curves, there is no comparison with the very large
differences, in the heat flux distribution. It is only close to the maximum
(where the annular-dispersed flow pattern tends to disappear) that there
is an appreciable differentiation between the three curves.

Similar results were obtained by other authors. At the General Electric
Laboratories at San Jose (California, USA) experiments were carried
out in an internally heated annulus (112), with a high pressure steam-
water mixture with a power distribution of the form:

Y

5y oA <y<54

® = QPumax COS
where y is the axial coordinate from the midpoint of the heated section,
80 that the ratio ¢min/dmex was 0.34. Total critical power, at constant
heated length, could not be distinguished from data taken with constant
heat flux.

Experiments were carried out recently in USSR with linearly varying
tube thickness (113) and far from the maximum (that is in a region of
fully developed annular-dispersed flow). The CHF (the crisis always
arising at the outlet of the heated section for X; > 0) was about twice
(for increasing heat flux) or one-half (for decreasing heat flux) of the CHF
with constant distribution. Since ¢max/Pmin = 4.9 and ¢mex/¢ = 2.3
for the tested element, this showed that total critical power was more or
less insensitive to power distribution even reversing the tube itself.

The uneven distribution of heat flux in the radial direction was also
tested in USSR (114). The (radial) ¢maz/$ ratio was 1.8 and maximum
CHF’s were about 1.6-1.8 times higher than CH¥’s with uniform (radial)
heating. The conclusion reached by the authors was that in these tests
the heat flux ¢, taken as an average over the entire circumference, had,
at the moment when the crisis occurred, about the same value as in
uniformly heated tubes.

These experiments thus support the idea that the maximum power
which can be extracted from a vertical tube in critical conditions is
sensitive to the integral of the power distribution and not to local values.
Much work is necessary, however, to better clarify the situation, mainly
in connection with the criteria for the design of a steam generating tube.
The usual design criteria (hot spot factors, hot channel factors, point at
which the crisis would oecur and so on) would have to be deeply revised.

3. CHF in More Complicated Geometries

Critical flux in geometries more complicated than round tubes or
rectangular channels were investigated in a less systematic way.

A certain amount of work was done on annuli, externally, internally
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or bilaterally heated. Results of experiments at 70 kg/cm? carried out at
CISE (13, 40, 41, 82) showed that for annuli externally heated the same
correlations holds as those valid for round tubes (for the same conditions
and same (’s), without changing the value of the numerical constants,
provided that for D the ‘“heated diameter’”’ D, would be introduced.

Dy, is defined as:
D, = D,(l - [E] ) (67)

Tor internally heated annuli, the trend of ¢ is more or less the same,
but its absolute value is smaller than for externally heated annuli. It
is to be noted, in connection with this, that measurements carried on in
adiabatic flow, showed that the liquid film thickness of the internal wall
of an annulus, is generally thinner than that on the external wall.

With bilateral heating, an interesting conclusion drawn from experi-
ments is that the two heated surfaces have a negligible influence on each
other. In Fig. 25 this fact is clearly illustrated. Here plots of ¢ in the
inner tube (for two G’s) as function of inlet quality are reported for
different heat fluxes in the outer tube. The data just superimpose (at
constant 7). This means however that the crisis (in a point of the heated
surfaces) is reached for lower outlet qualities, when only one surface is
heated, while, with both surfaces heated, the crisis is reached at higher
outlet qualities. Thus any unheated surface acts as a “water sink,”
increasing the water ‘‘holdup” for a given critical power W...

At Harwell (58, 115) similar results were obtained: in Fig. 26 results
obtained at CISE and at Harwell are compared for similar conditions.
For other experiments carried out at San José Laboratory of General
Electric see (109, 110).

The results for rod bundles are more difficult to interpret because it is
more difficult to define and to assure the phase distribution at the inlet.
Results recently published by Green et al. (116) for upflow of water-steam
mixtures in bundles of nine rods (0.413" O.D. in a 0.468’ pitch) at 141
kg/em? (2000 psia), show that the CHF has the same order of magnitude
as that in parallel channels of similar length. Other experiments (117)
carried at General Electric at low pressure (~2 kg/em?) in four rod
bundles hardly enter the dispersed region.

For the development of the Plutonium Recycle Test Reactor (PRTR)
experiments were carried out at Hanford by General Electric (118) on an
electrically heated mock-up of the fuel element assembly. The test section
consisted of 19 rods, 0,564’ (1.43 cm) O.D., 7.3 feet (223 ¢cm) long in a
3.25’ (8.26 em) 1.D. process tube. Power (up to 2000 kW) was applied at
70 kg/cm? and different exit qualities were reached, some of them cor-
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responding to annular-dispersed conditions. However critical conditions

were never reached, so as not to destroy such an expensive mock-up.

Multirod (7 and 19) cluster behavior in steam-water upflow, with
power, is also being studied at Columbia University (119) in the range of
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Fic. 25. CHF in an annulus as a function of inlet quality with mass velocity as a

parameter (Bilateral heating with external critical heat flux).

70 kg/cm?. Preliminary results show that in annular-dispersed flow the
CHF is of the same order of magnitude as in cylindrical ducts; but too
few experimental points are available to draw any quantitative con-
clusion. In Sweden still another experimental group is working on vertical
clusters with steam-water upflow. Up to now published data (120) cover
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the low pressure range (2.5 to 10 kg/cm?). Experiments carried out with
a three rod cluster show that in that range, critical steam quality decreases
with increasing heat flux and decreasing pressure. Moreover they observed
that critical steam qualities for rod clusters are much lower than those
previously obtained for round ducts and described in previous reports.®
This agrees in principle with results obtained in annuli: the process tube,
usually not heated, acts as a water sink lowering the critical quality at
constant heat flux, in comparison with the round tube case.

A general remark must be made about experiments on clusters: the
fluid at the inlet is usually liquid water below the saturation temperature.
Thus a portion of the heated channel is in single flow for a time and then
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Fi6. 26. Comparison of CHF data obtained at Harwell and at CISE for internally
heated annuli. ’

in a multitude of two phase flow patterns before entering the annular-
dispersed regime: the phase distribution at its boundary is the one
imposed by geometry and by the heat input. Very probably different
results would be achieved by imposing a pre-determined phase distribu-
tion through a mixer or similar device at the inlet of the heated section.

Other geometries were also studied mainly to simulate the behavior of a
rod in a bundle: eccentric annuli, dumbbell-shaped cross section, maltese

crosses etc. Nothing can be said here of these results, without going out
of the scope of this chapter.

D. Hear TransreEr COEFFICIENT IN ANNULAR-DISPERSED Frow

1, Heat Transfer Mechanism below the Crisis

In recent times an ever-increasing interest was put on the study of
the mechanism of heat transfer in annular-dispersed flow. Today the
5 See bibliography in reference (123)
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amount of experimental data on the water-steam system in upward flow
is quite large, and a list of references ean be found in (121). Most of these
data were taken at low pressure and a number of experimental correla-
tions were developed. On the other hand, theoretical studies, aimed at
deseribing possible heat transfer mechanisms, have not been particularly
successful.

The following points must be taken into account:

(a) Only the measurement of loeal heat transfer coefficient is of scien-
tific interest. Values averaged over a certain length, although in many
cases of primary practical importance, are difficult to interpret, because
the separate influence of flow pattern, heated length, quality variation,
ete., cannot be easily separated.

(b) Heat transfer coefficients in annular-dispersed flow below the
critical heat flux are usually very large. In high-pressure systems peak
values up to 50 W/cm? °C are not uncommon. Since at high pressure (1)
the ductwall must have a certain thickness (2) metals suitable for high
temperature service, i.e., stainless steels have poor thermal conductivity,
and (3) the temperature of the inner tube wall is deduced from that on
the outer tube surface, the accuracy with which heat transfer coefficients
are measured is usually very poor. With the best equipment and careful
calibration the aceuracy attainable in such measurements does not exceed
the order of magnitude of 0.01 °C/W /em?, which means a 509 error on
a value of 50 W/cm? °C.

{c}) From the deseription of the crisis, as reported in Section I1I1/A,2,
it appears that h, below the critical heat flux, presents an ‘“hysteresis”
effect. Although this effect requires more careful experimental confirma-
tions, it would be logical to conclude that, if things are so, only an upper
and lower limit could be given for k. Below the critical heat flux, subject
to some limitations, any value seems possible in between depending on
the complicated flow subpattern configurations. At the critical heat flux,
on the other hand, the value of the heat transfer coefficient seems une-
quivocally determined. A series of A measurements for a particular condi-
tion is presented in Fig. 27.

While the above picture is subject to confirmation, in what follows a
number of correlations will be presented, which do not, of course, take
into account these additional complications.

In bubble flow, and partially also in slug flow, the heat transfer
mechanism is not substantially different from that which takes place in
subcooled boiling.

The transition from nucleate boiling to evaporating mechanism is
probably connected with hydrodynamic conditions prevailing in the
annular dispersed regime, which is entered with increasing quality. This
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transition could also be used as a tentative criterion to define the boundary
between dispersed flow and other types of flow. Two resistances in series
are met by heat going from a heated wall to a dispersed core: (a) heat
must be transmitted through the liquid layer and (b) water must be
evaporated from the liquid surface to the bulk with a mass transfer
evaporative process. This picture is consistent with the hypothesis that
no bubbles exist in the liquid film. Collier and Pulling (121) recently
pointed out that Hau’s (122) theory on the initiation of nucleate boiling
may explain this phenomenon.
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Fia. 27. Example of the wall to coolant temperature difference below CHF, as a
multivalued function of the heat flux.

From an experimental point of view Dengler and Addoms (123) pro-
posed for the temperature drop Aéy across a liquid layer, for which the
nucleation begins, the following criterion:

Ab; =2 2(U,)03 (68)

where A6, is in °C and U, in em/sec and U, is the average mixture
velocity calculated as G/p, where 5 = @p, + (1 — &)pu.

This temperature drop was also checked by Davis and David (124) for
horizontal flow. If the Yquid thickness in equilibrium with U,, at that
particular heat flux is sufficiently small, the temperature drop A6;” which
allows such heat flux to pass only by a conductive mechanism through
the liquid layer is smaller than Af; and bubble nucleation should not set

in.
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Putting:
Gy = %‘i (69)
the condition:
Agf = Agf' (70)
gives: -
2(7‘10.3 _ ¢f(U, ¢) (71)

K
where s = f(U, ¢).
Making the further hypothesis that s ~ 1/¢, one has the equation:

f(Ua)
Uaoa

= const (72)

independent of the heat flux, and depending only on U.,. This equation
determines the mixture velocity, at which nucleation is suppressed.

This relationship is of the same type as that defining the boundary
between slug flow and annular dispersed flow, although this boundary
might not coineide with the one for which bubble nucleation is suppressed.

2. Heat Transfer Correlations below the Crisis

Subject to the aforementioned limitations, a list of correlations can
be given. A first group is the equivalent, in the heat transfer field, of
Martinelli eorrelations for pressure drops. Guerrieri and Talty (125) and
Dengler and Addoms (123) summarized results obtained with steam-
water and organic systems at low pressure, in the following way:

h 1\
= K (K) (73)
in which K and = are constants and h. is the heat transfer coeflicient
caleulated with the Dittus-Boelter correlation and the total flowrate
flowing in the liquid phase (123) or the liquid flowrate flowing alone (125).
The above correlation was recently checked by Collier (121) for low
pressure experiments with steam-water mixtures in upward motion in
annuli. Properties of the liquid phase are, however, calculated not at
the bulk (saturation) temperature, but at the mean film temperature

8, so defined:

a-f = fgat + 033(010 e esat)- (74)

Schrock and Grossmann (83) present a correlation valid for both the
nucleate boiling and the evaporating region. The boiling number:

Nso (75)

-2
GH,.
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is assumed as a fundamental parameter for the first condition:

Nxu 1\"

W e~ K1 BO A+ Ko (X”) (76)
K;, K, and n being constants. Most of the data for water-steam upflow
in tubular ducts are correlated within 4 359%. The experimental range is
very wide: 3 to 35 kg/cm? for pressure and 24 to 450 gm/em? second for
mass velocity. Sani (126) used the same correlation for his results,
obtained in steam-water downflow at low pressure and low heat fluxes.
However the “boiling number” suggested by him is different:

r_ ¢V,
NBO - GHgl VL (77)
A number of correlations, derived from the homogeneous model, were
used by Groothuis and Hendal (127) and Davis and David (124). They
are all of the form:
Nyxu = KNg,MNp™ (78)

in which K, n,, n. are constants and in the Reynolds number the average
mixture fluidity 1/z is used (see formula 25a).

In the high pressure range (p > 40 kg/cm?) these correlations, com-
pared with Perroud (84) and CISE (13) data, show a worse disagreement
than at low pressure.

From a theoretical point of view, some attempts to calculate the heat
transfer coefficient from a hydrodynamic deseription of the liquid film,
as for instance those made by Anderson (128) and Hewitt (556) did not
give satisfactory results. These theories usually neglect the resistance to
heat transfer at the gas-liquid interface. On the other hand, a semi-
empirical correlation developed at CISE (129), in which the predominant
phenomenon was supposed to be the self-diffusion of steam molecules
through the steam boundary layer adjacent to the liquid surface, gave
reasonable agreement at low pressure, but failed at higher pressures.

In coneclusion, it is probable that any theoretical model should take
into account both resistances to transfer of heat: that through the liquid
film, and that at the liquid-vapor interface. Additional complications
would be the carry-over and deposition of liquid droplets, and the pres-
ence of waves or roughness on the liquid film profile. The “hysteresis’”
of the heat transfer coefficient would provide a further challenge to any
theoretician.

3. Heat Transfer above the Crisis

Above the critical heat flux, the heat transfer capacity of a heated
surface drops down considerably. It has been recognized, however, that
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in annular-dispersed flow the temperature increase following s small
increase of the heat flux is not catastrophic as in pool boiling. From
this fact arose the suspicion that occurrence of the crisis was not due to
a process of partial film boiling, but to the inadequacy of the crossflow
of water droplets to take away the heat input. This was pointed out
elsewhere [see also (58)]. Breakdown of the liquid film would bring the
flow pattern to a dry wall or partially dry wall conditions. An interest-
ing question arises, whether this new flow pattern, the so-called “liquid
deficient regime,” of which we spoke only vaguely in Section 1,A,1, is
enhanced by the heat flux, or can exist only in heat transfer conditions.
Adiabatic experiments prove that the “liquid deficient regime’” may exist
even without heat transfer, but that moderate heat fluxes bring down
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Fic. 28. Heat transfer coefficient vs. steam quality, beyond CHF (General Electric
data).

the quality at which this happens. It is also evident that in vertical
tubes there is a certain axial symmetry, while in horizontal tubes the
liquid deficiency in the bottom of the cross section is reached down-
stream with respect to the top. Thus, in the latter case, the geometrical
line connecting the ‘“‘burnout points,” at constant heat flux on the wall,
is not a circumference, lying in a plane perpendicular to the axis, but
is more or less an inclined ellipse.

The initiation of the liquid deficient region coincides, of course, with
the occurrence of the crisis. Beyond this limit, experiments were not
carried out in a systematic way. A number of heat transfer coefficients
were measured by the Harwell group (121) at low pressure. Many data
were collected at San Jose, at the General Electric Laboratories (130), in
the first development of the once-through boiler. Here experiments were
carried out at pressures of 56, 70, and 98 kg/cm? (800-1000-1400 psia),
[428]



Two-PHASE ANNULAR-DISPERSED FLow

in an annular vertical duct internally heated. They observed that &
went down from the critical value to a minimum (in the 50-609, quality
region) and then rose again to the dry saturated steam value. Tempera-
ture oscillations of varying amplitude occurred in this region, so that a
mean value for b had to be taken into account. Some data are shown
in Fig. 28.

Starting from the relationship:

NNu = CNP;-%NRG‘).S (79)

a correlation of experimental data was tried, neglecting the influence of
water droplets, and introducing the gas flowrate GX and the hydraulic
diameter aD. In this way, however, the minimum of /4 was not explained
and an empirical correction was brought about (79) by substituting
(1 — X)X for X and (1 — a)/a to a. For «, which is related to X, an
empirical correlation of Larson’s data (47) was used:

1

a = (80)
1+ 1-X <ﬂ)%
X Pl
The final form of the correlation is the following:
Ny 1—a DG 1 — X088
ojn e = 0-00136 (—; = > (81)

where @ is the total mass flowrate and the physical properties refer to
dry saturated steam. In this way, the authors claim that most of their
data can be correlated better than 20%. Since, however, all experimental
data are comprised between 0.4 and 0.8 W/cm? °C (800-1600 BTU /ft2h°F)
this result is certainly not surprising. Less acceptable seems the use of
Larson’s data, which were obtained in adiabatic flow, while beyond the
crisis « is certainly different and the slip ratio should be very close to
unity. Moreover, by introducing (80) into (81), one can see that h goes
to infinity, for X — 1, and this hardly seems a good approximation.

Another experimental analysis of the transition across the crisis was
carried by Parker and Grosh (131). Experimental conditions were quite
different from those of General Electric: low pressure (~2 kg/cm?, 30
psia), very low heat flux (1-7 W/em?; 3-21.10% BTU/ft%h), very high
quality (89-100%,). The steam-water system was studied in upward flow
in a copper tube, 1 inch I.D., 4 feet long. The scheme they propose in
order to handle the data is the following: if all droplets impinging on
the wall are evaporated, the heat flux absorbed by them is:

der = KON (82)
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where C is the concentration of water droplets and Kq is a diffusion
coefficient (in velocity units). The temperature difference between the
walls and the bulk of the fluids (assumed at the saturation temperature)
is:
o~ b= 2= (83)
where h is the heat transfer coefficient for saturated dry steam.
By definition, however:

¢ = hmilt(ow — 6&) (84)
where hnis is the over-all heat transfer coefficient. In the end:
1 1 06— 6,
el Y (85)

so that A8 = (8, — 6;) should rise more or less linearly from a value
very close to zero for “burnout’” conditions, to the dry steam value,
An interesting remark is made by the authors: if A# reaches a value
sufficiently high, the Leidenfrost phenomenon could arise (water droplets
in spheroidal state, incapable of wetting the heated wall) and a sudden
jump in temperature should precede the dry steam conditions, while the
heat transfer coefficient should drop suddenly to this value. Some experi-
mental runs seem to confirm this picture.

Experiments at very high quality (94-98%,), moderate pressures (15-45
kg/em?; 200-600 psia), mild heat fluxes (3-6 W/em?; 10-20 X 102
BTU/ft*h) were performed by Rounthwaite and Clouston (132) in a
long horizontal tube, 1.614 foot 1.D., mild steel. Evidently they found
that the upper portion of the tube perimeter enters the liquid deficient
region before the bottom. Apparently the h value fell off by a factor of
20-25 from ~2.5 to ~0.1 W/cm? °C (5000 down to 200 BTU/{t2h°F).

At CISE, a number of heat transfer coefficients beyond the crisis were
measured in a nonsystematic way (82). In a single case however a com-
plete set of heat transfer coefficients were obtained under practically
constant experimental conditions (pressure, flowrate, geometry, and
quality). For this purpose a very short tube (L/D = 20) was used, so
that the quality change due to heat input was negligible. Results are
reported in Fig. 18, where the magnitude of recorded temperature oscilla-
tions are also indicated, while the heat transfer coefficients deduced from
the same points are given in Fig. 29. The error which affects these heat
transfer coefficients is generally low, owing to the higher A0 measured,
with respect to wet-wall conditions. As a general remark, it can be
observed that over-all heat transfer coefficients are higher than predicted
[430]
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for steam flowing alone, although coefficients found when increasing the
heat flux above the critical value tend to the values corresponding to
steam flowing alone (mass velocity GX). These experiments tend to con-
firm the hypothesis that the evaporation on the wetted area and a gas
transmission elsewhere determine an average value of the heat transfer
coefficient. By increasing the heat flux the wetted area of the wall
decreases, until the temperature difference between the bulk and the
wall is such that, possibly through the Leidenfrost phenomenon as sug-
gested by Parker and Grosh, no more droplets wet the heated surfaces,
even with quality steam. If this picture is true, the Leidenfrost tem-
perature (function of many independent variables: p, G, X, D, etc.) will

20

BT

value of"h, for
\ pure dry steam
hael35 = —_—
[¢] 100 200 300

4 [l

Fra. 29. Plot of the heat transfer coefficient beyond CHF (CISE’s results, conditions
equal to those of Fig. 18).

correspond for wet steam to a second critical heat flux. This second
critical heat flux would be similar in nature to the burnout heat flux
typical for subcooled and boiling water or low quality steam. The strong
temperature oscillations observed during these experiments might be
explained by the succession of wetting and nonwetting in the region where
temperature is measured, although a not fully levelled power input could
be partially responsible in a region of high d7'/d¢.

These oscillations reach a maximum when A¢ is about halfway up
this intermediate region and should depend moreover on the thermal
inertia of the heated element, the magnitude of the volume power density
and so on. The picture is similar also with annuli externally or internally
heated.

4. Analysts of the Heat Transfer Coefficient beyond the Crisis

In what follows a tentative analysis is made, to predict the order of
magnitude of the average value of & in the liquid deficient region, fol-
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lowing the assumptions presented above and in line with the approach
made by Parker and Grosh (131).

Suppose that the critical heat flux is reached, and k., is the correspond-
ing heat transfer coefficient. We have: Afe; = ¢or/her. Then ¢ is increased
above the ¢. value and temperature recordings are taken for a suffi-
ciently long time (at the same pressure, flowrate, and quality). The
amount of water cross flow is still equal to ¢../\. If the unit heat transfer
area is taken into account, we ideally concentrate all the water crossflow
on g fraction of this area, so that this area is just fully wet: this means
that this area is in a criteal condition, with heat flux ¢. The fractional
area in wet condition will be ¢./¢, recalling that nothing has changed
from the hydraulic point of view. The dry {ractional area is then
(¢ — ¢e)/¢. If wesuppose that A in the portion of the wet area is equal to
Afwer = ¢/her while it is Abary = ¢/hary (Where the subscript “‘dry” stands
for dry saturated steam conditions) in the dry area, the value of A4,
weighted by the two areas, will be:

AB = Abae, % + Abusy 9—%”"
(86)
- fg (¢ - ¢cr)
hcr hdry
while the average heat transfer coefficient 7, is:
11 %) 1 (¢ - qscr)
=== e e 87
h hcr ( ¢ + hdry ¢ ( )

For ¢ = ¢e, it is b = he, while for X — 1, ¢er— 0 and —h— hayy.
In the intermediate region, i has intermediate values without excluding
the possibility that h can go through a minimum in the upper quality
region. In fact, neglecting the contribution of the water droplets to hgry,
but taking into account the volume occupied by the liquid phase in the
bulk (and putting S ~ 1, beyond the crisis) one has, for the velocity of
hoth phases, U* = G (V. + XV ) and the apparent gas mass flowrate is:

U*

— Vi Va — VL _ X+a
Thus
0.8
K 014D
hary = C’ﬁg (Np)*4 | ———m (89)
Ko

At constant geometry and pressure hqry is only a function of X.
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Moreover, neglecting the term fir El) in the 1/h expression, one has:
! der) |
=~ 1 - —
A maximum for 1/A is reached if:
a(i/k) _ . .. 08 _ _ G¢a
‘_dX_ _— ’ that 1S: X (¢ ¢cl‘) - dX (91)

The derivative d¢../dX is always negative and it may happen that the
above condition is satisfied for X < 1.

IV. Heat Transfer with Two-Phase,
Two-Component Mixtures

Heat transfer with two-phase, two-component systems in annular flow
was widely studied in the past and is being studied also today. The
amount of theoretical and experimental work on condensation of steam
in presence of an inert gas is very large. Most of it is concerned with
downflow. In this condition the mass transfer process of H;O molecules
diffusing from the gas core through the gas boundary layer to the film
liquid surface cannot be neglected in respect to the heat resistance of
the liquid film itself.

This resistance may be calculated, as originally suggested by Nusselt
(133), when the downflow is laminar; when it is mostly turbulent, better
agreement with experiments is reached, if, for instance, more recent
theories, like that of Duckler (64) are used. Heat transfer from the gaseous
core to the liquid surface must take into account both heat convection
and mass transfer. This is done by using the analogy suggested by
Reynolds between convective heat transfer and momentum transfer also
for the mass diffusion process. This method suggested by Colburn and
Hougen in the 1930’s (134, 135, 136), although somewhat laborious,
allows a good evaluation of the over-all heat transfer coefficient in the
condensation of a vapor from gas-vapor mixtures.

Experimental data on the evaporation of a two-phase two-component
mixture in annular-dispersed flow are, on the contrary, very scarce.

Finzi et al. (137) evaluated the heat resistance from the liquid surface
to the gaseous core in pure annular flow (both upward and downward in
the water-steam-hydrogen system), by introducing a heat transfer coeffi-
cient calculated thus:

h = 0.023 % (N"2e) (W) 08 (92)
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All physical properties, except the specific heat, refer to the gaseous
mixture (steam + hydrogen), while, for the specific heat, the following
expression is taken:

, M, N Ar .
c —c"+mp_——1rA_0 (93)
¢n 18 the true specific heat of the gaseous mixture; M,, M., are the molec-
lar weights of the vapor and of the gaseous mixture, Ax/Ad is the ratio
of the vapor pressure to the temperature drop for the vapor between the
liquid surface and the gaseous core. The exponent n in (93) has a value
of 1.13. The agreement between results calculated with this method and
with the Colburn method, in the case of condensation, is surprisingly
good, but the reason is unknown.

Experiments with large heat fluxes, up to the crisis, in annular dis-
persed upward flow were carried out by Perroud and De la Rarpe (738)
at CENG and by Lombardi (139) at CISE.

Perroud, with a method similar to that adopted by Colburn was able
to correlate heat transfer coefficients from the liquid surface to the core.
The presence of liquid droplets was neglected and the temperature drop
in the liquid film on the wall was assumed to be a fixed fraction of the
total. The results, obtained with different gas-steam-water mixtures, were
well correlated, when this fraction was fixed at 0.2.

During experiments with hydrogen, pressures from 3 to 10 kg/cm? and
an inlet temperature of 17°C, the crisis was reached. Heat fluxes so meas-
ured (24 experimental points) are proportional to the cube root of pres-
sure, to exponent 0.6 of the inlet liquid flowrate and almost independent
of the flowrate of the incondensable gas.

Experiments were carried out at CISE with the water-steam-nitrogen
system, at low pressure (2.5 to 5 kg/cm?). The inlet mixture temperature
varied between 14° and 90°C. A comparison between the heat transfer
coefficients and the CHF’s obtained in these conditions, and those
obtained with the steam-water system (for equal water and steam mass
flowrates, equal geometry, equal inlet temperatures, equal heat input, and
equal outlet pressure) shows:

(a) that the presence of substantial amounts of nitrogen reduces the
heat transfer coefficient by a factor of 2 to 3;

{b) that the critical heat flux is not appreciably altered;

(c¢) in consequence of this, the temperature difference between the
heated wall and the bulk of the coolant at the CHF is higher by the same
factor.

It was also observed that the temperature drop between the bulk and
the heated wall showed a substantial reduction before the crisis was
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reached, as it was later observed with steam-water mixtures. This reduc-
tion was more gentle with the presence of the noncondensable gas.

V. Practical Application of Annular-Dispersed Flow

The simultaneous flow of a gas and a liquid in a single duct, with
and without heat transfer, is of a common occurrence in many industrial
processes. The petroleum industry, for instance, is particularly concerned
with the flow of two-phase mixtures in the reservoir, well bore, gathering
lines, transmission lines, and processing plant equipment. Steam genera-
tors are another very important example of industrial plants operating
with a two-phase flow. The interest in this field has considerably increased
in recent years in connection with the construction of steam generating
nuclear reactors. In fact, one of the characteristics of the in-reactor
steam generation is that, below the critical pressure of water, two-phase
flow exists at least in a portion of the reactor core.

Steam generating reactors are a wide class, whose development is still
in its infancy, although considerable progress has been achieved in the
past ten years. They can be defined as reactors which receive water at a
particular enthalpy content from a condenser and eject saturated or
superheated steam to the utilization plant. They can operate both on a
direct or an indirect cycle, although the first design is more attractive,
since a number of expensive components can be eleminated in principle.

In such reactors any kind of moderator can be envisaged in a pressure
tube design. In the boiling water reactors, which are by far the most
developed model of this class, light water behaves both as a coolant
and moderator, while in the U.S.S.R. superheating reactor (140, 141)
graphite is used as a moderator and it seems that nothing prevents the
use of heavy water.

As said above, liquid water entering the core with a certain enthalpy
is ejected as steam. Achieving this in a single pass and with full vaporiza-
tion of the water flow means a once-through design: thus, in each tube
all kinds of flow patterns are met, from single-phase flow of liquid water
to single phase flow of dry steam. Such a design, although attractive,
incorporates a number of formidable obstacles, not the least important
among them being that at constant flowrate a minor power surge produces
a tremendous temperature increase at the superheated steam outlet.
A two-pass or three-pass design seems to be more reliable, although
complicated by the necessity of phase separation at a certain point of
the eycle, and attention is here focused only on this arrangement.

In the superheated steam region heat transfer obeys the laws governing
gas cooling. Problems exist with that mode of cooling, apart from the
special problems arising from the use of a corrosive agent such as steam
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at high temperatures. In the steam generating region, on the other hand,
many possibilities exist, and a certain choice is permitted, in relation to
the flow patterns allowed in the channel.

The simplest case is the use of saturated water to feed the heated
channels. For the time being let us imagine that those channels are
cylindrical and cooled from inside. In natural circulation boiling water
reactors, the flowrate is mostly determined by the geometry of the cir-
cuit, while in forced circulation reactors the coolant flowrate can be
imposed from the exterior. In the latter case, depending on the value of
the flowrate, different steam qualities can be reached at the channel exit,
which are usually much higher than those existing in boiling water reac-
tors. To a certain extent, the predominant flow pattern existing along
the channel may be selected as desired.

Up to now flow pattern charts, which are discussed in Section I, are
not of general use and specific experiments are needed for specific cases.
As previously mentioned, according to what has been found at CISE (13),
at a pressure of 70 kg/em? (~1000 psi) slug flow should not exist above
a mean linear velocity of ~500 cm/second of the steam-water mixture,
and, following the lines indicated in Section I,B,1, it would be impossible
above 200-250 gm/cm? Above this mass velocity there is a smooth
transition from bubble flow to dispersed fiow. On the other hand, below
this flowrate, slug flow can occur and maxima occur in the burnout heat
flux, if special provisions are not taken at the channel inlet. Boiling
water reactors usually operate in that region, but with a proper selec-
tion of flowrate and outlet quality most of the steam generating region
of the reactor could operate in an annular-dispersed flow pattern. Thus
the thermal and hydraulic properties of water-steam mixtures in these
conditions are of considerable interest. Knowledge of the value of critical
heat flux ¢, and of the peculiarities of the crisis phenomenon (see Sec-
tion I11,C) is of primary importance.

One point should be emphasized in connection with the design criteria
for a channel operating in annular-dispersed flow. A statement like ‘“the
maximum allowable heat power, shall not overcome the critical heat
power” has an absolute nature, but what happens if the actual power
overcomes the burnout power? Suppose that a tube 0.5 em I.D., 80 em
long, operates in upflow at a pressure of 70 kg/em? and constant heat
flux of 100 W/em?2 Outlet quality, just below the crisis, is 52.8% for
(7 = 180 g/ecm? second and 33.3%; for G = 360 g/cm? second. To match
the energy balance, inlet quality must be 27.6 and 21.5% respectively.
A sudden power surge now brings the heat flux up to 150 W/em? (outlet
quality 63 and 39.29%). The temperature distribution along the tube is
reported in Fig. 30.
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Now in both cases the crisis begins at two-thirds of the heated length,
but the maximum temperature jump is different. The one at higher flow-
rate is about two-thirds of that at lower flowrate. Thus safety beyond the
crisis is different. Moreover the temperature increase beyond burnout is
in itself quite moderate for such a high power surge, and periodical high
frequency fluctuations of the heat transfer coefficient are of much more
concern that the temperature increase itself.

In the previous example, inlet quality was not zero. To enter at zero
inlet quality would be an interesting engineering condition, because there
is no need for any steam blower or, worse, for an injection system at
the bottom of the heated channel. With the higher flowrate no instability
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F1a. 30. Temperature distribution in a tube which operates partially below and
partially beyond CHF, for two different mass velocities.

would occur, while with the lower one a small amount of instability does
exist. Through moderately orificing the channel, it is not difficult to pre-
vent this.

Orificing can be useful in another respect. Proper orificing would allow
flashing of water, pressurized at a pressure higher than that of the mix-
ture, in order to preheat water at a temperature higher than the tempera-
ture of the mixture. In this way any quality region which could present a
slug flow is avoided for flowrates of most common use. It is interesting
to note that, for a given flowrate, the average density of the coolant is
not substantially different, in this case, from the one which would be
obtained by entering at zero quality, without orificing.

For geometries which are more complicated than single tubes, like
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annuli and clusters, experimental results are much less abundant. How-
ever, sinee any unheated surface, as pointed out elsewhere, acts as a
water sink, it is of interest to eliminate them as much as possible from
the heated channels to decrease the average coolant density.

There is also the possibility of increasing outlet quality (the CHF
being constant) with the use of centrifugal fields. Very few experiments
are available (142). However displacements of the outlet quality from
40-60 to 1009, (at constant CHF) were achieved in some experiments
by means of twisted ribbons inserted in a heated tube in a low pressure
loop. Although practical application could be very difficult, it shows a
path of improvement to reach higher qualities and to reduce the holdup
water for a reactor designed for maximum neutron economy.
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APPENDIX

In this chapter on “Fluid Mechanics and Heat Transfer of Two-Phase Annular-
Dispersed Flow,”’ reference to other two-phase flow patterns is only incidental. Since
flow-pattern boundaries are not well defined, the boundary of the material collected,
and the author’s comments in this chapter, are correspondingly imprecisely defined.
This should not be considered a complete fault of the author, but must be ascribed to
the still vague nature of the problem.

The text does not start from the very beginning of the research work in this field.
In a book on “Advances in Heat Transfer’’ it was considered reasonable to summarize
the situation existing in 1954-1958 and to enter deeper into the recent advances. The
chapter may be taken as up-to-date at about the middle of 1962. Although an effort
was made to review all published literature, a number of papers escaped my attention.
To prevent complete confusion of the reader, results of other papers examined sub-
sequently could not be incorporated into the text. However, most of them are cited
in the Supplementary List of References.

NOMENCLATURE
Vi D diameter or distance beteewn par-
¢ ‘V,, -V allel walls; also equiv. diameter
A mass number, cross section area Dp particle diameter
c or ¢, specific heat at constant pressure ¢ acceleration due to gravity
C numerical constant G specific mass flowrate (or mass
CHF  critical heat flux velocity )
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stands for Geiger-Miiller
(counters)

heat transfer coefhicients; also
liquid volume fraction {(or liquid
holdup)

enthalpy

thermal conductivity

parameter

length; also heated length
exponent or numerical constant
exponent

Nusselt number

Prandtl number

Reynolds number

Weber number

pressure; also wetted perimeter
volume flowrate

distance from the axis of the
conduit

electrical resistance

film thickness or thickness in
general

slip ratio (U,/U1)

linear velocity

specific volume

total power input

mass flow rate quality or
Martinelli parameter

volume flow rate quality

molar flow rate quality

distance from the wall; also

X +4a
adimensional wall distance

(T’ = “_yl \/Twm)

Ay / A,

Ae/An

coordinate along the length
atomic number

gas volume fraction (or void
fraction)

contact angle

surface tension

mass flowrate

difference

S~1

2y/D

temperature

latent heat of vaporization (also
H gl)

parameter equal to

i viscogity; also mass absorption
coefficient (for radiation)

p density ; also electrical resistivity

- area

T shear stress

¢ heat flux; also Martinelli
parameter

Subscripts

1,2 refer to sections 1 and 2 of a duct
along its length

c core

cr refers to critical conditions

e external

E entrainment

f friction; also film and fluid

g gas (or steam)

gl refers to the difference of any
quantity in the vapor and liquid
phase

h heated

D inlet or internal; also interfacial

l liquid

m refers to mixture

max maximum

min minimum

M molar

0 outlet

( Jo refers to quantities calculated
by attributing the total mass
flow rate to a single phase (gas
or liquid)

P particle; also refers to impact
pressure

s solid or saturation

sub refers to difference between
saturation temperature and sub-
cooled water temperature

tt turbulent-turbulent

tv turbulent-viscous

TP two-phase (used only when
necessary to distinguish from
single-phase quantities)

v volume

w wall

Superseripts

average value (used only when
necessary to distinguish from
local value)

[439)



MARIO SILVESTRI

* refers to superficial quantities density and specific volume of
(for instance specific flowrates, the mixture
velocities etc.) of a single phase refers to f{rictional pressure
with respect to the total flow drops according to momentum
area; also refers to flowrate equation
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A

Ablation, see Phase change

Absorbing medium, 2

Absorption coefficient, 3, 9ff, 14f.

Adjoint heat conduction problem, 68

Accuracy improvement in transient heat
transfer problems, 96ff.

Aerodynamic heating, 269, 331ff, 349f.

Annular-dispersed flows, 355f.

applications of, 435ff.

Annular flow, 355f, 358

Apparent mags velocity in annular-dis-
persed flows, 365

Axisymmetric flows in MHD, 314ff,

B

Biot number, 175
Biot’s method, 79ff.
Boiling, 185ff.
Saturated, 186ff.
Burnout, 190
Film boiling, 190
Nucleate, 186ff.
Subeooled, 191f.
Boiling terminology, 197ff.
Boundary condition effects,
on combined forced convection and
radiation, 33ff,
on combined free convection and radi-
ation, 38fI.
Boundary conditions, in heat conduction
problems
step in surface temperature, 59f, 63,
83f.
perscribed surface heat flux, 81, 84f.
pulselike inputs, 85ff, 93ff.
Boundary conditions, in MHD prob-
lems, 279
on porous bodies, 173f.
Boundary-layer effects in MHD
two-dimensional channel flow, 311ff.
incompressible flow, 3111,

compressible flow, 312ff.
Bubble dynamics in beiling, 215ff,
Bubble growth on a heated surface, 2191f
Bubble growth in a uniformly super-
heated liquid, 216ff.
Bubble Nusselt number, 228ff.
Bubble patterns in boiling, 247,
Bubble Reynolds number, 227ff.
Burnout in saturated boiling, 190

C

Capillary-porous bodies, heat and mass
transfer in, 123ff.
Chemical reaction effects at stagnation
point in MHD, 346f.
Chenoweth-Martin correlation, 374
CHF, see Critical heat flux
Clapeyron equation, 212, 217
Collocation, method of, 98ff.
Conduction and radiation, see Radiation
heat transfer
Conduction equation, 56ff.
Convection analogies of nucleate boiling,
22611,
Convection and radiation, see Radiation
heaf transfer
Convection, nonsteady, 110ff.
Core region in annular-dispersed flows,
389
Couette flow in MHD, 317f.
incompressible couette flow, 3171f.
induced magnetic field, 319ff.
heat transfer, 321f.
drag and Reynolds’ analogy, 322
hypersonic couette flow, 322
Crises, see Critical heat flux
Critical heat flux in boiling, 232ff,
external flow, 256ff.
internal flow, 241f.
Critical heat flux in annular-dispersed
flows, 402ff.
in more complicated geometries, 420ff.
correlations of, 407ff.
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peculiarities of, 413f¥.
with constant power, 4136.
with uneven power distribution,
1194.
Critical radius of cavities in nucleate
boiling, 209 .
Cylinders, heat transfer to, 344f,

b

Density measurements by radiation tech-
nique, 394f.

Departure from nucleate boiling, 198,
232f.

Diffusion in ionized gases, 284

Dimensional analysis applied to pool
boiling, 233f.

Dispersed flow, 355f.

DND, see Departure from nucleate
boiling

Dorodnitsyn, method of, 109f.

Drag coefficient in annular-dispersed
flows, 363

Drag in MHD couette flow, 322

Droplet evaporation time, 137

“Dry body,” 123

Drying of moist porous solids, 128ff, 139f.

E

Eckert number, 281

Effects of surface roughness on boiling,
230f.

Electriec conductivity, 284f.

Electric field effects at stagnation point,
347

Electrically conducting fluids, heat trans-
fer in, 268f.

Electrostriction, 273f.

Emitting medium, 2

Energy balance in annular dispersed
flows, 366

Entrainment in annular-dispersed flows,
389ff, 392f.

Equilibrium between liquid and its vapor,
1986,

Evaporation from free surface, 125ff,
13111,

Expansion parameter, 35, 39

Exponential integral, 5
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External flow in boiling, 245f.
analysis, 254ff.
experimental data, 256ff.
flow patterns, 247ff.
External heat and mass transfer experi-
ments on porous bodies, 124ff, 153ff
with drying of moist solids, 128ff,
1391,
with evaporation from free surface,
125fF, 1314,
with porous cooling, 130f, 144ff.
with sublimation, 153ff.

F

Faraday’s law of induction, 275
Fick’s law, 283
Film boiling, 198f.
First law of thermodynamics, 276
Flat-plate boundary-layer heat transfer
and solutions, 317ff, 323ff, 331
incompressible flow, 323f1.
compressible flow, 325ff.
assessment of results, 329
hysteresis effect, 328f.
remarks on assumptions, 329f.
Flow pattern boundaries in annular-dis-
persed flows, 359fF.
Flow patterns in boiling, 247ff, 240f.
of two-phase flow, 355ff, 357ff.
Fluid flow with boiling, 196ff.
Fourier number, 175
Free convection in electrostatic fields,
286f.
in MHD problems, 286ff.
thermal instability, 287
Freezing, see Solidification

G

Galerkin’s method, 103ff.

Generation of heat internal to a slab, 60f.
90f.

Generator (pump) coefficient, 280

Goodman'’s solution

applied to semiinfinite slab, 57

to slab of finite thickness, 62ff.

Grashof number, 24, 40, 280

Gray medium, 2

Gukhman number, 124, 133ff, 140f.
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Hall current, 272

Hall effect, 272

Hartmann number, 281, 288

Hartmann problem, 300f.

basic equations, 3001,

flow characteristics, 304f.

heat transfer characteristics, 305f.
convection, 306
internal heat distribution, 306ff.
heat transfer, 309f.

induced magnetic field, 3021f.

Heat and mass flows, calculations of,
17111,

Heat and mass transfer in capillary-
porous bodies, 123ff, see also Exter-
nal heat and mass transfer, see also
Internal heat and mass transfer

Heat and mass transfer with filtration,
173

Heat-balance integral, 53

Heat conduction problem with initial
temperature distribution, 67f.

Heat flux in MHD, 277, 283

Heat generation by electromagnetic
fields, 349

Heat transfer coefficients in annular-dis-
persed flows

above CHF, 4271,
below CHF, 423ff,
in two component mixtures, 433ff.

Heat transfer in annular-dispersed flows,
402ff.

Heat transfer in blunt bodies, 331ff,
3471,

Heat transfer in MHD couette flow,
3211,

Hembholtz instability in boiling, 234ff.

High field effects in MHD, 272f.

Homogeneous model correlation in annu-
lar-dispersed flows, 369f.

Homogeneous nucleation, 214f,

Horizontal cylinder, boiling about, 247ff.

Howarth’s transformation, 32

Hypersonic flow, 3311f,

Hysteresis effects

in annular-dispersed flows, 4241,
in MHD, 328f.
in nucleate boiling, 204#,

I

Impaect pressure in annular-dispersed
flows, 389f.
Incident radiation, 6
Induced magnetic field, 302ff, 319f.
Integral method for nonlinear problems,
52ff.
Intensity of radiation, 3
Internal flow in boiling, 240ff.
analysis, 242ff.
critical heat flux trends, 2411,
experimental data, 244f.
flow patterns, 240f.
Internal heat and mass transfer in porous
bodies, 1641,
boundary conditions, 173f.
dimensionless variables, 174ff.
experiments, 177ff,
solutions, 176
theoretical development, 165ff.
Ton slip, 273

J

Jakob number, 218f,
Joule’s law, 275

K

Kirchhoff’s law, 3
Kirpichev number, 175
Knudsen number, 6
Kossovich number, 175
Krischer’s method, 146ff.

L

Lewis number, 283

Liquid film flow rate, 388

Liquid film thickness measurements,
384ff.

Liquid holdup, 381ff, 388

Liquid volume fraction, 365, 381f, 390,
392

Lockart-Martinelli correlation, 370f, 374,
379, 384

Lorentz transformation, 274

Luikov number, 175

Lykoudis number, 292
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M

Magnetic-interaction parameter, 280
Magnetohydrodynamics, see MHD
Magnetostriction, 273f.
Martinelli-Nelson correlation, 372ff, 382
Mass sources in porous bodies, 1696,
Mass transfer model in boiling, 2311.
Maxwell’s equations, 274
MHD channel flow Heat transier, 299ff,
316f, see also Hartmmann Problem
MHD equations, 2756,
MHD free convection problems
in horizontal cylinder, 297f.
on vertical plate, 200ff.
with constant magnetic field, 292f.
with variable magnetic field, 293f.
on vertical parallel plates, 295ff,
in verticle pipe, 298
MHD-limitations of classic theory, 271ff.
Mist flow, 356, 358
““Moist body," 123f.
Moments, method of, 1018,
Momentum balance in annular-dispersed
flows, 3664,

N

Newtonian solution in MHD, 334f.
Nonscattering medium, 3
Nucleate boiling, 193ff, 198f, 226f.
Nucleation and bubble dynamics, 198f.
Nucleation centers, 209
Nusselt number in annular-dispersed
flows, 429
MHD, 289
porous body problems, 124, 133, 139f.
radiation with convection and conduc-
tion, 24, 34, 36ff, 40ff.

o

Ohmic heating, 306f.

Ohm’s law, 275

“‘One-shot” method for measuring den-
sity in annular-dispersed flows, 398f.

Optical thickness, 4, 6

Optically thick approximation, 6ff, 13ff,
15, 19f.
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Optically thin approximation, 6, 8f, 13f,
201.

P

Penetration distance, 53, 55, 84
Penetration length, 6
Phase and velocity distribution in annu-
lar-dispersed flows, 381#.
Phase change in heat conduction problems
with ablation, 75ff, 82
with given surface heat flux, 74f.
with step in surface temperature, 72ff.
Plug flow, 358
Polar symmetry, heat conduction prob-
lems involving, 64, 70f, 79
Ponderomotive coefficient, 280f,
Ponderomotive force, 273f.
Pool Boiling, 233ff.
experiments in, 238,
Porous hodies, heat and mass transfer in,
123f.
Porous cooling, 130f, 144ff.
Posnov number, 175
Pressure drop in annular-dispersed flows,
368ff, 3731, 379
in vertical conduits, 376ff.
Pulselike inputs, sec Boundary conditions
in heat conduction problems

Q

Quality in annular-dispersed flows, 408f.
Quasi-neutral, 271

R

Radiant heat flux, 4
Radiation and free convection, experi-
mental results, 45ff.
Radiation effects in nucleate boiling, 214f.
Radiation heat transfer with an absorb-
ing medium, 2ff.
by combined conduction and radiation,
176,
by combined convection and radiation,
23ff.
by pure radiation, 12ff.
Radiation technique for measuring den-
sity in annular-dispersed flows, 394ff.
“Radiative conductivity,” 26
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Radiative effects at stagnation point,
345f,

Radiative Peclet number, 26

Radiosity, 4, 6

Radius of cavities in nucleate boiling,
20011,

Reynolds’ analogy in MHD couette flow,
322

Reynolds number, 280

magnetic, 282
Rods, heat conduction in, 66ff.
Rosseland approximation, 7f.

S

Saturated boiling, 198
Shvets’ method, 83ff.
Similarity variable, 35, 39
Slab, heat conduction in
for semiinfinite slab, 56ff, 68ff, 80f, 83f,
86fT. )
for slab of finite thickness, 6111, ™ 93ff.
Slip ratio in annular-dispersed flows,
36441, 390
Slug flow, 358, 359ff.
Solidification of a liquid in a square chan-
nel, 115ff.
Spheres, heat transfer to, 343f.
Spherical symmetry, heat conductor
problems involving, 64
Spray flow, 358
Stability of a liquid-vapor interface in
pool boiling, 234ff.
Stagnation point, chemieal reaction
effects, 364f.
Stagnation-point heat transfer with
applied magnetic field, 332ff.
enthalpy gradient, 339ff.
stagnation heating, 341ff.
heat transfer to spheres, 343f.
to cylinders, 344f.
veloeity gradient, 334ff.
comparison of solutions, 335ff,
Newtonian flow, 334£.
similarity solutions, 335
Step in surface temperature, see Bound-
ary conditions in heat conduction
problems
Stream function, 35, 39
Subcooled boiling, 191f, 198

Sublimation, 153ff.

Superficial mass velocity, 365

Superheated liquid in nucleate boiling,
205ft.

Surface roughness effects on boiling, 202ff.

Surface tension effects in annular-dis-
persed flows, 380

Surface variables in boiling, 202ff.

T

Taylor instability in boiling, 234ff.

Thermal boundary-layer in boiling, 231

Thermal instability in free convection
MHD problems, 287

Thermal properties, temperature depend-
ent, 32, 68ff, 90ff, 101f.

Thermodynamic equilibrium at a curved
interface, 198ff.

Transient heat exchanger problem one
fluid, 64f1.

Transition from annular-dispersed to slug
flow, 363ff.

from slug to annular-dispersed flow,
350ff.

“Traversing”’ method for measuring den-
sity in a conduit, 398f.

Turbulent flow in MHD, 350f.

Two-phase flow, variables of importance,
3561,

\'

Vapor trapping in nucleate boiling, 206ff.
Void fraction, 364f.

w

Wall effect in classic MHD theory, 271f.

Wavy flow, 358

Weber number, 363

Weighted residuals, method of, 97ff.

Wind tunnel for external heat and mass
transfer experiments, 125ff.

X

X-ray techniques in density measure-
ment, 394ff,

Y

Yang, method of, 106ff,
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