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PREFACE 

In launching a new publication series a t  this time when publications 
are appearing at  an explosive rate it is of paramount importance to  estab- 
lish the necessity of the new venture. Obviously the strongest argument 
for initiating a new publication is that it fills a void; that it performs a 
function not accomplished by the existing literature. This is precisely the 
reason for the appearance of the new Advances in Heat Transfer-it is 
intended to fill the significant gap between the regularly scheduled jour- 
nals, both national and international, and the university level textbooks 
on the subject of heat transfer. 

Research in heat transfer during ;the past decade has grown at an 
astonishing rate primarily :hue to the problems associated with the growth 
of the atomic energy industry, and the aerodynamics and astronautics 
efforts throughout the world. During this period, development of new 
instrumentation and refinement of high speed computers have improved 
our experimental and analytical capacities, and accordingly we have been 
able to attack new and more complex problems as well as dissect classical 
problems in a much more definitive fashion. The results of these research 
efforts are normally published as individual articles in national and inter- 
national journals. It is understandable that such journal articles, because 
of space limitations, assume the reader ‘to be well aware of the existing 
state of knowledge, and so present in an abbreviated and concise manner 
the new piece of information. It is extremely dificult for a nonspecialist to 
make engineering use of individual papers appearing in such a journal, 
It is clear from time to time-as a given area in heat transfer evolves to a 
definitive state-that a review article or a monograph which starts from 
widely understood principles and develops the topic in a logical fashion 
would be of value to the engineering and scientific community. It is the 
hope that Advances in Heal Transfer will fulfill this function. 

T. F. IRVINE, JR. 
J. P. HARTNETT 

December, i963 
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I. Introduction 
The interaction of radiation upon other modes of heat transfer (i.e., 

conduction and convection) is an area which has recently aroused con- 
siderable attention. Basically, such interaction effects may be broken 

1 A portion of the work described herein was supported by the National Science 
Foundation through Grant Number G-19189. 
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down into two main categories. The first involves radiation passing 
through an absorbing-emitting medium such as water vapor or quartz, 
for which net radiant energy is transferred to or from each element of 
the medium. Consequently, the conduction or convection process may 
be thought of as one involving heat sources and sinks. Due to the fact 
that the analytical expression for the source-sink effect must be formu- 
lated in terms of emissive power, problems of this type are of course 
nonlinear. In addition, radiation to or from an  element will take place 
over paths of finite length resulting in an integral expression for the 
source-sink term, and consequently the equation expressing conservation 
of energy will be an integrodifferential equation. 

The second category involves radiation interaction through the 
boundary conditions of the conduction or convection process. One 
example is transient conduction in a solid with radiation a t  the surface 
as treated, for example, in (I), (2) and (3); while in convection processes 
the boundary condition along the heated or cooled surface may be altered 
due to radiation exchange. 

It is not the purpose of the present article t o  furnish a comprehensive 
survey of the literature, particularly since excellent summaries of existing 
work on absorbing media have recently been compiled by Viskanta (4) 
and Hottel (5 ) .  Instead, the aim is to  illustrate only the most basic 
effects of radiation upon the other modes of heat transfer, and to this 
end extremely simple physical models will be employed. Admittedly, such 
simplifications do not always correspond to  reality. Since problems 
involving radiation interaction generally contain a large number of 
parameters, emphasis will often be placed upon evaluating only first- 
order radiation effects. Although such results certainly do not give a 
complete solution to the problem, they do serve the useful purpose of 
indicating under what conditions radiation effects need even be considered. 

II. Radiation Equations for Absorbing Media 
Although energy transfer by radiation has been of interest to physicists 

for a relatively long period of time, it is only recently that the fundamental 
equations describing energy transfer in an absorbing medium have been 
developed for application to engineering systems. Such derivations may 
he found in the work of Viskanta (4) ,  Usiskin and Sparrow (6),  and 
Goulard (7). A similar development will be given herein making use of 
the simplifying assumptions as followP: 

(1) The medium is gray; i.e., the absorption coefficient is independent 
of wave length. 

* For a more complete development taking into account isotropic scattering and 
an index of refraction other than unity, the reader is referred to ( 4 ) .  
PI 
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(2) The medium is nonscattering, is in “local thermodynamic equilib- 
rium,” is a diffuse absorber and emitter, and has an index of refraction 
of unity. 

(3) The bounding surfaces are isothermal, opaque, gray, and diffuse 
reflectors and emitters. 

In  addition, the development will be restricted solely to onedimensional 
energy transfer. 

A. BASIC EQUATIONS FOR ONE-DIMENSIONAL RADIATION 

The physical model and coordinate system are illustrated in Fig. 1 
and consist of two infinite parallel surfaces separated by an absorbing medi- 
um. With the surfaces a t  different temperatures, radiant energy will pass 
through the intervening medium, and the problem is to first evaluate 
the local radiant energy flux qr(y). To accomplish this, let I be the inten- 
sity of radiation passing through a volume element of length ds and unit 
cross-sectional area as shown in Fig. 1. 

, , I I , ,  , , , , I  I ,  I I , / I ,  / I , /  / /  ////,////,/,@ 

- r - + - -  qcy’  w 
FIQ. 1. Physical model and coordinate system. 

By the definition of the absorption coefficient a, the amount of inten- 
sity I which is absorbed in passing through the length ds is 

a l  ds (1) 

Further, through use of Kirchhoff’s law the energy emitted by the volume 
element is given by (8) 

4ae ds 

where it should be noted that ds also denotes the volume of the element. 
Since the medium is msumed to be a d8use emitter, then the energy 
leaving the element through the solid angle dw is correspondingly 
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and the intensity of emission becomes 

at? ds 

It is apparent that the intensity of radiation over the path ds is reduced 
through absorption in the amount given by Eq. (1) and increased by 
emission as given by Eq. (2). Thus, the change in intensity dZ is simply 
the difference of these quantities, yielding 

_ -  _ - -  dl at? UI 
ds T 

Upon defining 

I = loy a dy,  p = cos 8 

thie results in 
p- d I  +I,? 

dr r (3) 

Letting the radiosities of the lower and upper surfaces be RI and Rt 
respectively, the boundary conditions for Eq. (3) may be expressed as 

7 = 0, 

where ra = loL a dy. The solution of Eq. (3) is correspondiiigly 

The radiant heat flux may now be obtained through integration of 
Eqs. (4) with respect to solid angle over the entire enclosing sphere; 
i.e., with do = 2r sin 8 d0,  then 

qr = 2~ lor I COB 8 sin 8 dB 

1 
= 2r lo I p  d p  - 2r /o-l Ip dp 

and substituting Eqs. (4a) and (4b) into the first and second integrals 
respectively 
i41 
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q r  = 2R1Es(~) - 2ReEs(~o - 7) 

+ 2 lor e(t)Ez(r - t )  dt - 2 /rro e(t)Ez(t - r )  dt (5) 

This represents the desired result for the radiant heat flux. The functions 
E,(t) are the exponential integrals defined as 

and are tabulated by Kourganoff (9). 
It follows that the radiant heat source per unit volume within the 

medium is - dqT/dy or -a  dqr/dr, and upon differentiating Eq. (5) there 
is obtained 

- - =  2RlE2(r) + 2R2E2(r0 - r )  
dr 

Physically, the first and second terms in this expression represent the 
energy absorbed by a volume element from the lower and upper surfaces 
respectively. The third term denotes the energy absorbed from all other 
elements, while the last term is the energy emitted by the element. One 
may note that for isothermal conditions (R1 = Rz = e )  

and since (10) 

I" El([r  - t I )  dt = 2 - E ~ ( T )  - &(TO - r )  

then dq,/dr = 0. This of course should be expected, since under isother- 
mal conditions there can be no net radiation to or from any element of 
the medium. 

A further consideration in any heat transfer process is the net radia- 
tion to or from the bounding surfaces. In the present situation the net 
radiant transfer is obtained by evaluating Eq. (5 )  at either surface. For 
example, the net radiant transfer from surface 1 is 

qrl = RI - 2R2E3(ro) - 2 /oroe(t)Ez(t)  dt (7) 

noting that E3(0)  = x. Since the first term in this expression, R1, denotes 
the radiant energy leaving the surface, then the sum of the second two 
terms represents the radiation incident upon surface 1. The quantity 
2R2E3(n)  is the energy coming from surface 2, with 2E,(r0) being the 

[51 
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attenuation factor due to the intervening medium. The energy radiated 
by the medium which is incident upon surface 1 is 2 

So far nothing has been said concerning the radiosities R1 and R2, 
and these will not be known a priori. Consider first the lower wall. Since 
the radiosity R1 is the sum of the emitted and reflected energies from 
surface 1, and recalling that the surfaces have been assumed to be gray 
and opaque so that the reflectivity is (1 - el), then 

R ,  = elel + (1 - c d H 1  

where H 1  is the radiation incident upon surface 1, and from the discussion 
following Eq. ( 7 )  

H I  = 2RzEs(r0) + 2 16’ e(l)E2(t)  dt 

e(t)Ez(t) dt. 

Consequently 

In a similar manner, consideration of surface 2 yields 

122 = t2e2 + a(1 - e?) [ R ~ E ’ ~ ( ~ O )  + loro e(t)EP(ro - t )  d t ]  (9) 

Equations (8) and (9) thus constitute two simultaneous equations for 
I z 1  and K i .  For black surfaces the simple results R1 = el and R2 = e2 
are obtained. 

I t  may be noted from the preceding equations that dependence upon 
the absorption properties of the medium occum solely through the dimen- 
sionless distance T .  l;or a constant absorption coefficient, the dimension- 
less thickness of the absorbiiig medium is T = aL, and this is commonly 
referred to  as the optical thickness. Further, as discussed in (7) the 
quantity l/a may be interpreted as the penetration length for radiation. 
In other words, if the absorption coefficient is small, then a beam of 
radiant energy will travel a large distance through the medium before 
significant attenuation occurs; i.e., the penetration length will be large. 
On the other hand, if a is large then the penetration length will be short. 

From this it may be seen that the optical thickness T O  is the ratio of 
characteristic length L to penetration length and that l / a  plays a role 
analogous to a mean free path while I / T ~  is analogous t o  the Knudsen 
number. For T~ << 1 the radiation process is referred to as optically thin, 
whereas it is optically thick for T O  >> 1. 

The preceding discussion would indicate that potisible simplification 
of the governing radiation equations might result for the limiting cases 
of an optically thin or optically thick medium. Fortunately, this is so, 
and the optically thick approximation will be considered first. 
[GI 
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B. OPTICALLY THICK APPROXIMATION 

Providing the radiation process is optically thick, the penetration 
length will be small compared to the characteristic length L of the 
medium, and the radiation transfer wil l  approach a diffusion process. 
This occurs since the radiant energy emitted from an element will undergo 
such rapid attenuation that the transfer process will be dependent solely 
upon local conditions; i.e., the gradient of emissive power. There is of 
course a direct analogy to heat conduction in a gas as treated by kinetic 
theory, for which energy is considered to be transported by gas molecules 
in traveling a mean free path which is assumed t o  be an incremental 
distance. The radiation transfer process may in turn be visualized as 
one in which energy is transported by photons traveling a “radiation 
mean free path” or penetration length, and the penetration length is 
taken to be the incremental distance. This leads to the so-called Rosseland 
approximation for the radiant heat flux ( 1 1 )  

The coefficient 36 has been the subject of some controversy (6), and 
perhaps the most straightforward derivation of Eq. (10) is simply a proof 
that it follows from the asymptotic form of the governing radiation equa- 
tions applicable to an optically thick medium. For this purpose, consider 
a slab of thickness L bounded by black surfaces and within which only 
radiation transfer takes place. Hence, since there is no mechanism other 
than radiation by which energy can be transferred to or from an element, 
it follows that dqr/dr = 0. Letting 

e(T) - el 
‘(7) = e2 - el 

Eq. (6)  may thus be expressed with the aid of (10) as 

1; ‘(7 - t)El(t)  dt + 16“- $4. + t)El(t)  dt 

+ Ed70 - 7 )  = 2547) (11) 

In that Eq. (10) predicts the emissive power within the slab to vary 
linearly with distance, a solution of Eq. (11) will be assumed of the form 
cp = 7/r0.  Upon substituting this into Eq. (11) and performing the indi- 
cated integrations, the left side of Eq. (11) becomes 
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In order for cp = 7 / 7 0  to be a solution of Eq. (ll), the above quantity 
in brackets must vaniah. This is obviously not the case. However, the 
bracketed term will vanish provided r and r o  - 7 are large, since for 

tE,(t) - e-L 

So, the emissive power will vary linearly with distance providing the 
medium is optically thick. It should be realized, however, that no matter 
how optically thick the medium might be, the assumption that r and 
- are everywhere large will always fail at the boundaries, and this 

is a shortcoming of the Rosseland approximation. 
To evaluate the heat flux across the slab, Eq. (5)  may be expressed as 

t >> 1 (10) 

-- PI - 2E9(70 - r )  + 2 [-'cp(r + t )Ez( t )  dt 
el - ex 

and substituting into this equation cp = r/r0 together with the asymptotic 
expression tE,(t)  - e-t, there is obtained 

4 ez - el  
q r =  -3 -  7 0  

Consequently, for an infinitesimal slab of thickness d7 

4 de qt = - -- 
3 dr 

which is precisely Eq. (10). It has thus been shown that the Rosseland 
approximation is indeed an asymptotic form of the governing radiation 
equations. 

C. OPTICALLY THIN APPROXIMATION 

The optically thin approximation applies for T O  << 1, and the radiation 
equations derived in Section II,A may be simplified through use of the 
relations (9) 

E2(t) = 1 + O ( t ) ,  Ea(t) = 92 - t + O ( P )  (12) 

which are the fist terms of the power series expansions of Es(t) and 
E&). For example, considering black surfaces (R ,  = el and Rz = e,) 
Eq. (5) reduces t o  

qr = el( l  - 27) - es(l - 270 + 27) 

+ 2 /d e ( t )  dt - 2 LTo e ( t )  dt (13) 

PI 
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and it follows that for black surfaces the source-sink expression becomes 

The physical interpretation of Eq. (14) is readily apparent. The 
quantity 4e represents the energy emitted per unit volume from an 
element, since 4ae is the actual emission per unit volume (8). In turn, 
2el and 2e2 denote the energy absorbed by the element from the lower 
and upper surfaces respectively. Thus, under optically thin conditions 
every element of the medium exchanges radiation directly with the 
bounding surfaces and no intermediate attenuation of the radiant energy 
takes place. An optically thin medium is therefore commonly referred to  
as a medium with negligible self-absorption. 

D. ABSORPTION COEFFICIENTS 

Although a considerable amount of data has been obtained concerning 
the emissivity of gases, very little information is available regarding the 
mean absorption coefficient a. As illustrated by Goulard (?'), the con- 
version of emissivity data to absorption coefficients may be accomplished 
in the following manner. 

From the discussion following Eq. (7), the rate of energy per unit 
surface area emitted by the gas slab and incident upon the lower surface is 

Now, by the usual definition of gas emissivity, t, the energy emitted by 
an i so tkmal  slab of gas may be expressed by 

qrr = ueT' (16) 

with T the gas temperature. Thus, letting e = uT4 be a constant in Eq. 
(15), and equating Eqs. (15) and (16) 

€ = 2 p * ( t )  dt 

However, if this expression were employed to evaluate the absorption 
coefficient from emissivity data, it would be found that a is dependent 
upon the gas thickness L, whereas actually the absorption coefficient 
depends solely upon the state of the gas.* 

a When the assumption of a gray gas is not applicable, a will also depend upon the 
incident radiation. 

[91 
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A t  this point is should be reemphasized that the concept of gas 
emissivity refers t o  an isothermal gas, and a radiating gas can approach 
isothermal conditions only in the limit as T O  -+ 0. Thus, from Eqs. (12) 
and (17) with T~ = aL, the relationship between gas emissivity and 
absorption coefficient is found to be 

a = %($ L-0 

The absorption coefficient may therefore be evaluated from emissivity 
data through extrapolation of the quantity LIL. 

1000 2000 So00 4000 5000 

T8mprratur0, k 

FIG. 2. ;\baorption rocfirlent of water vapor s t  one atmosphere pressure. 

This procedure has presently h e n  applied both to water vapor aiid 
carbon dioxide a t  a pressure of 1 atmosphere, and the results are shown 
in Figs. 2 and 3. The emissivity data were taken from Figs. 1-13 and 4-15 
of Hottel’s chapter in RIcAdams (I@, and Fig. 4-16 of (12) was utilized 
to correct the pressure of the water vapor from 0 to 1 atmosphere. 
Figures 1-14 arid 4--16 of (12) may be employed in order to apply the 
results of Figs. 2 arid 3 to pressures other than 1 atmosphere. 

Values of t/L for high-temperature air have been tabulated by Kivel 
arid Bailey (IS), and since their results were obtained for optically thin 
conditions, Eq. (18) may be applied directly with no extrapolation 
necessary. These results are given in Fig. 4 where P O  denotes standard 
P O I  
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Tmnpwaturm, *I 

DO 

Fro. 3. Absorption coefficient of carbon dioxide at one atmosphere pressure. 

FIQ. 4. Absorption coefficient of air. 
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density. Further information on the emissivity of high-temperature air 
has recently been summarized by Thomas (24). 

III. Pure Radiation in an Absorbing Medium 
Before considering the application of the foregoing radiation equations 

to problems involving conduction and convection, the simpler situation 
of pure radiation transfer in an absorbing medium will be investigated. 
For convenience, radiation between parallel black plates which are 
infinite in extent will be assumed. It is of interest to first note that if the 
plates are separated by a nonabsorbing rather than absorbing medium, 
the radiant heat transfer from one plate to the other is simply 

q r  = el - C2 

If the space between the plates is instead occupied by an absorbing gas, 
the effect upon the net radiant heat transfer q. will be similar to that of 
placing a radiation shield between the plates. One would thus expect the 
heat transfer to be decreased as the absorption ability (or optical thick- 
ness) of the intervening medium is increased. 

Since radiation is assumed to be the only mode of heat transport or 
addition within the medium, then from conservation of energy dq,/dr = 0. 
Again letting 9 be the dimensionless emissive power of the gas defined as 

e - el 
ez - el 

P =  - - 

Eq. (6) gives 

/d c p ( t ) E ~ ( ~  - 0 dt + 1." cp(t)E~(t - T )  dt 

+ Ed70 - 7 )  = 29b) (19) 

It should be noted that Eq. (19) is linear in 9 due to the neglect of 
conduction or convection. The integral equation is, however, singular 
since El(t)  posewee a logarithmic singularity a t  the origin. Numerical 
results for &) have been obtained by Usiskin and Sparrow (6) through 
numerical integration of Eq. (19) using an iterative procedure, and by 
Viskanta and Grosh (16) through application of the method of undeter- 
mined parameters. The results of (16) are illustrated in Fig. 5, and the 
limiting solutions for r = 0 and r = m readily follow from the optically 
thin and optically thick approximations. From Eq. (14) for an optically 
thin medium with dq,/dr = 0 

el + el 
2 

e = -  

such that tp = $5. Conversely, with qr constant Eq. (10) illustrates that 
tl2l 
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the gas emissive power will vary linearly with distance between plates 
for optically thick conditions such that p = 7/70.  

To evaluate the net radiant heat transfer from one wall to the other, 
Eq. (7)4 in terms of p(7) becomes 

Thus, with p known the radiant energy transfer may be evaluated 
through integration of the above equation. This has been accomplished 
in (6) and (15), and the results of (15) are illustrated in Fig. 6. As 
expected, the heat transfer decreases with increasing optical thickness. 

FIG. 5. 
from (16). 

8. 

Variation 

I .o 

0.8 

0.6 

0.4 

0.2 

0 
0 0.2 0.4 0.6 0.8 I .o 

V G  

of dimensionless emissive power between parallel black plates 

Following Hottel (5) ,  optically thin and optically thick results are 
also shown in Fig. 6. The optically thin expression for qr is obtained by 
substituting Eq. (20) into Eq. (21), giving 

~- *I - 1 - TO 
e l  - e2 

while the optically thick result 

9r 4 
el - e2 370 
-5- 

follows directly from Eq. (10). Figure 6 thus conveniently serves to 
4 The subscript 1 may be droped since q. is constant. 

~ 3 1  
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illustrate the applicability of the optically thin and optically thick 
approximations. 

It should be noted from Fig. 5 that a discontinuity in emissive power, 
and hence temperature, exists at the surfaces. This is due to the neglect 
of conduction within the medium, conduction being the only process by 
which continuity of temperature can be insured. This temperature jump 
may be thought of as analogous to  the discontinuity in velocity between 
fluid and bounding surface which arises in nonviscous flow analyses, the 
velocity jump resulting from the neglect of viscosity. 

It is worth mentioning that nowhere in the preceding analysis has the 
absorption coefficient been assumed to be independent of temperature. 

0. I 1.0 10 

Opt ica l  Thicknau.  T. 

Fxo. 6. Heat transfcr between parallel black plates frolu (16) .  

Actually, the results as presented are valid for any variation of the 
absorption coefficient with temperature, and a given variation a( T) need 
be utilized only in the evaluation of the optical thickness ro. If the 
absorption coefficient is independent of temperature, then ro  = aL,  
while if a is temperature dependent the relationship between L and ro is 

The conversion of a(T)  to a(.) is accomplished through use of the known 
emissive-power profiles, which yield T(r ) .  

As n simple example, consider the absorbing medium to  be water 
vapor and the distance between plates to  be sufficiently large such that 
I 141 



HEAT TRANSFER INTERACTIONS 

the optically thick approximation may be employed. Thus p = r/r0, and 
from the definition of p 

Over moderate temperature ranges, the absorption coefficient of water 
vapor can be approximated by 

a = CT-" 

So, combining this with the preceding equation 

and substituting into Eq. (22) 

(n f 4)CL (TI4 - Tz4) 
7 0  = 

4 (T1"+4 - Tp"+4) 

Letting TI = 2000"R and T2 = 1000"R, it is found from Fig. 2 that 
C = 135,000 and n = 1.6. Further, taking L = 10 f t ,  the above expres- 
sion yields ro = 9.5. Assuming, on the other hand, a constant value of the 
absorption coefficient corresponding to the mean temperature of 1500"R, 
then ro = 12.0. The assumption of a constant absorption coefficient 
evaluated at  the mean temperature between plates thus leads to an error 
of 26 % for the optical thickness. Since under optically thick conditions 
q. varies as 1/70,  the heat transfer will be underestimated by 21 % through 
the assumption of a constant absorption coefficient. 

Although the results of Figs. 5 and 6 are directly applicable only to 
black surfaces, Viskanta and Grosh (16) have discussed their extension to 
gray surfaces through the foIlowing procedure. It is easily shown (16) that 
Figs. 5 and 6 apply to gray surfaces through replacing el and e2 by R1 
and R2 respectively. Further, upon substitution of the emissive-power 
profiles given in Fig. 5 into Eqs. (8) and (9), subsequent integration yields 
two simultaneous algebraic equations for R1 and Rz. This determination 
of the radiosities then gives all the necessary information for radiation 
between gray surfaces. 

Viskanta and Grosh have, in fact, recently applied this procedure to 
the parallel plate system for the case of equal plate emissivities (€1 = €2). 

Their results, recast in terms of the present nomenclature, are listed in 
Table I, and, as would be expected, illustrate a reduction in heat transfer 
with decreasing plate emissivity. 

An alternate approach to radiation heat transfer between gray plates 
has recently been employed by Howell and Perlmutter (17). Instead of 

~ 5 1  
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1 1 1 8 

+ 

- 

0.2 - 
0.3 

0.1 
0 I I I I I 1 1 

TABLE I 

RETWEEN PARALLEL GRAY PLATES (16)  
HEAT TRANSFER RESULIS FOR RADIATION 

1 

0 .1  1 .o 0.916 
0.9 0.761 
0.5 0.330 
0 . 1  0.052 

1.0 1 .o 0.553 
0.9 0.493 
0 . 5  0.265 
0.1 0.050 

10.0 1.0 0.109 
0.9 0.107 
0.5 0.090 
0.1 0.038 

formulating the problem in terms of an integral equation, the Monte 
Carlo method was applied. Heat transfer results were presented for the 
two plates having equal emissivities, and these results are shown in 
Fig. 7. The curve for t = 1.0 is in excellent agreement with (16), while the 

O P f i C O l  Thichnmss. r. 

Fro. 7. Heat transfer between parallel gray platea from (17). 

results for t = 0.1 are in corresponding agreement with Table I. For 
70 = 0, the values for E = 0.1 and t = 0.3 coincide with the well-known 
expression (1  8) 
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for parallel plates with equal emissivities and separated by a nonabsorb- 
ing medium. 

IV. Combined Conduction and Radiation in an 
Absorbing Medium 

The problem previously considered of heat transfer between infinite 
parallel plates separated by an absorbing medium will now be extended 
to include conduction as well as radiation within the medium. It will be 
assumed that the absorption coefficient and thermal conductivity of the 
medium are independent of temperature, and the plates will initially be 
considered as black surfaces. The first complete formulation of this 
problem was recently presented by Viskanta and Grosh (19). 

The temperature distribution within the medium is described by the 
energy equation as applied to simultaneous conduction and radiation, 
and for the present one-dimensional problem with constant thermal 
conductivity this is 

Correspondingly, employing Eq. (6) with R1 = el and R2 = e2 since the 
surfaces are assumed black, the energy equation becomes an integro- 
ditrerential equation of the form 

Unlike the previous problem of pure radiation, which resulted in solely 
an integral equation, the above equation necessitates two boundary 
conditions. Since the inclusion of conduction requires continuity of 
temperature, these conditions are 

T = T 1 ;  y = O  

T = T I ;  y = L  

It m y  further be noted that Eq. (24) is nonlinear as a result of the 
conduction term appearing on the left side. 

An additional quantity of importance is the net heat transfer from one 
plate to the other. Because the system is in steady state, this may be 
determined by evaluating the heat transfer from or to  either surface. 
Choosing the lower surface, the radiative contribution to the total heat 
transfer is given by Eq. (7) with the R's replaced by e's, while the conduc- 
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tive contribution is 

The total heat transfer between plates may thus be expressed by 

Dimensionless quantities similar to those employed by Viskanta and 
Crash (19) will iiow be defined as 

Equation (24) correspondingly becomes 

- ~ ' € l 4 ( t ) f i 1 ( / ~  - tl) dt (26) 

with the boundary conditions 

e(o) = 1, e(70> = ee 
I n  addition, the equation for heat transfer between plates, Eq. (25), may 
be expressed in dimensionless form as 

Equations (26) and (27) illustrate that both the dimensionless tempera- 
ture distribution] e(T), and dimensionless heat transfer, 4/uTI4, depend 
upon three parameters; r0, eZ and N. The appearance of which was 
not present in the preceding pure radiation solution, is a result of the 
nonlinearity of the present problem, while N may be regarded as a measure 
of the relative importance of conduction versus radiation. In  the limit as N 
goes to zero the present problem reduces to that of the preceding section, 
while for large N the heat transfer process approaches that of pure 
conduction. 

Equation (36) has been solved numerically using an iteration procedure 
by Viskanta and Crosh (19) for several combinations of the governing 
parameters] and the heat transfer was subsequently evaluated using an 
equation similar to Eq. (27). Their results, actually taken from (16')] are 
listed in Table 11. Additional heat transfer results have recently been 
presented by Einstein (20) for O2 of 0.2 and 0.8 with N and T~ ranging up 
[181 
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to 1.56 and 3.0 respectively. The geometry employed by Einstein actually 
differed slightly from that considered here, in that the width of the plates 
was taken to be finite and equal to ten times the spacing between plates. 

It is again of interest to investigate the limiting cases of optically thick 
and optically thin radiation. Consider first the optically thick situation. 
Temperature profiles for combined conduction and optically thick radia- 
tion have been discussed by Viskanta and Grosh (%I) ,  while the local 

TABLE I1 
HEAT TRANSFER RESULTS FOB COMBINED CONDUCTION AND 

RADIATION BETWEEN BLACK PLATES (16) 

7 0  er N duT1' q/n(approx.) 

0.1 0.5 0 0.859 1.00 
0.01 1.074 1.01 
0.1 2.88 1.01 
1.0 20.88 1.00 

10.0 200.88 1.00 
~~ ~ ~ 

1.0 0.5 0 0.518 1.00 
0.01 0.596 1.11 
0.1  0.798 1.11 
1 .o 2.600 1.03 

10.0 20.60 1.00 

1.0 0.1 0 0.556 1.00 
0.01 0.658 1.11 
0.1 0.991 1.08 
1.0 4.218 1.01 

10.0 36.60 1.00 

10.0 0.5 0 0.102 1.00 
0.01 0.114 1.10 
0.1 0.131 1.07 
1 .o 0.315 1.04 

10.0 2.114 1.01 
~~ ~ 

heat flux is obtained by combining Eq. (10) with the conduction law, 
yielding 

P = - ( k + r ) &  16uT' dT 

Following Einstein (%O), this may be integrated, recalling that q is a 
constant, to give 



R. D. CEW 

or, in dimensionless form 

One may note that the optical thickness r0 has been eliminated as a 
separate parameter through combination with the dimensionless heat 
transfer term. 

A comparison of Eq. (28) with the results of Table I1 for 82 = 0.5 
and T~ = 10 is shown in Fig. 8. The maximum discrepancy between the 
two results is 23% for N = 0; i.e., for pure radiation. As N increases the 
difference in turn decreases, with the error being only )$'% for N = 10. 
The reason for this is that the optically thick approximation is concerned 
solely with the radiation process, and any resulting error should diminish 
with an increaaing influence of conduction (increasing N). 

0: 4 

0.3 

P 
5 1: 

0.2 

0.1 
I 

- Exact (161 

- - - - Dpficolly T h i c k  A p p r o i .  

) I  0. I D 

FIQ. 8. Heat transfer for combined conduction and radiation between parallel 
black plates, 82 = 0.5 and TO = 10. 

Turning next to the optically thin approximation, combination of 
Eqs. (14) and (23) with subsequent reduction to dimensionless form 
yields 

as the equation describing the temperature profile within the medium. 
The boundary conditions are again 

e(o) = 1, e(ro) = e2 
P O I  
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while combination of Eq. (13) with the conduction law gives the heat 
transfer between plates aa 

= -4N y:) + 1 - €Iz4( l  - 270) - 2 04(r)  dr (30) 
U T ~ '  r-a I" 

Inspection of Eq. (29) reveals that the temperature profile, €I(7), for 
optically thin conditions is no longer dependent upon three parameters, 
but instead r and N combine to yield dependence upon the two parameters 
r O / f i  and €I2. From Eq. (30), however, the dimensionless heat transfer 
is still a function of three parameters. 

To this writer's knowledge, no solutions to Eqs. (29) and (30) are 
presently available for comparison with the results of Table 11. Numerical 
results for an optically thin problem have been obtained by Goulard (7) , 
but these are based upon thermal conductivity and absorption coefficient 
varying with temperature. 

In  addition to studying combined conduction and radiation between 
black plates, Viskanta and Grosh (16) have extended their analysis to 
include gray plates. It was assumed that the plates had equal emissivities, 
and heat transfer results were presented for f = 0.1, 0.5, and 0.9. These 
results for the case of E = 0.1 are illustrated in Table 111. 

At this point it is certainly evident that problems involving combined 
conduction and radiation in an absorbing media contain a multitude of 
parameters, the number being four for gray plates with equal emissivities. 
It would consequently be advantageous to  have some sort of simplified 
procedure available for estimating heat transfer, and one such method has 
been proposed by Einstein (do ) .  This procedure simply assumes that the 
two modes of heat transfer can be superimposed with no regard for their 
mutual interaction. Thus, the radiation transfer qr is evaluated as though 
there were no conduction taking place; in other words, from Fig. 6 for 
black surfaces or Table I for gray surfaces. The heat tramfer due to 
conduction is in turn calculated as if there were no radiation transfer 
occurring, so that 

or, in dimensionless form 

The total heat transfer is then taken as the sum of the two separate heat 
rates, p = pr + qc. 

Einstein found that this approximate procedure, when compared to his 
complete calculations for €I2 = 0.2 and 0.8 with black surfaces, under- 
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predicted heat transfer by no more than 9%. A further comparison has 
presently been made with the c = 1.0 results of Viskanta and Grosh and 
is illustrated in Table I1 by the column q/q(approx.), where q(approx.) 
denotes heat transfer evaluated by the superposition approach. It may 
be noted that the maximum discrepancy is roughly ll%, and this com- 
parison lends further support t o  Einstein's approach. 

TABLE 111 
HEAT TRANSFER  RESULT^ FOR COMBINED CONDUCTION AND 

RADIATION BETWEEN GRAY PLATES, c - 0.1 ( I  8 )  

0.1 0.5 0 0.049 1.00 
0.01 0.267 1.07 
0.1 2.078 1 .OI 
1 .o 20.08 1 .OO 

10.0 200.08 1.00 

1.0 0.5 0 
0.01 
0.1 
1 .o  

10.0 
~. . .. 

1.0 0.1 0 
0.01 
0.1 
1 .o  

10.0 

0.047 
0.156 
0.393 
2.245 

20.25 

0.051 
0.22 
0.591 
3.753 

36.22 

1.00 
2.33 
1.59 
1.10 
1.01 

1 .oo 
2.55 
1.44 
1.03 
1.00 

10.0 0.5 0 0.036 1 .oo 
0.01 0.090 2.37 
0.1 0.115 2.05 
1 .o 0.297 1.26 

10.0 2.107 1.03 

The largest errors in the superposition method arise for intermediate 
values of N. This should be expected, since in the limit of either very 
small or very large N the heat transfer process approaches that of pure 
radiation or pure conduction respectively, and the superposition pr* 
cedure becomes exact. Table I1 further illustrates that, with respect t o  
optical thickness, the largest differences between q and q(approx.) exist 
for intermediate values of T O .  For T O  = 0 the heat transfer process is 
again that of pure conduction, while for large T O  Einstein has pointed out 
that the superposition approach is exact since Eq. (28), which applies for 
P21 
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optically thick conditions, simply represents the sum of pure conduction 
and pure radiation heat transfer. 

In order to assess the applicability of the superposition method to gray 
rather than black surfaces, an additional comparison is illustrated in 
Table 111 for the plates having an emissivity of 0.1. From this it is seen 
that very substantial errors arise, and it would appear that the super- 
position approximation is therefore applicable only for high surface 
emissivities. 

V. Laminar Flow of an Absorbing Gas 
across a Flat Plate 

As a final example of heat transfer in absorbing media, consideration 
will be given to combined convection and radiation. The only basic 
difference between this process and one of combined conduction and 
radiation is that the medium is now allowed to move relative to the 
bounding surfaces with some prescribed velocity distribution. Essentially, 
convective heat transfer can be broken down into two general areas; 
internal or duct flows, and external or boundary layer flows. A rather 
detailed analysis pertaining t o  the first area, consideration of fully devel- 
oped heat transfer for flow of an absorbing medium between parallel 
plates, has been presented by Viskanta (22). The second area, boundary 
layer flow of an absorbing medium, is not nearly as amenable to analysis, 
and it is with this type of combined convection and radiation process that 
the present section will be concerned. 

Sidorov (23) has considered combined convection and radiation for 
laminar flow across a flat plate, but obtains a solution in an extremely 
approximate fashion. The optically thin approximation has been applied 
to boundary layer heat transfer by several authors, for example, Howe 
(24) and Koh and DeSilva (25). In these analyses the gas (high-tempera- 
ture air) within the boundary layer was assumed to emit but not absorb 
thermal radiation. This assumption is valid providing the surface and 
the gas outside the boundary layer are relatively cold. Results based upon 
the optically thick approximation have been presented by Viskanta and 
Grosh (26) for laminar flow across a wedge. This analysis thus serves as a 
limiting solution for the case in which the optical thickness of the bound- 
ary layer is large. 

In many situations involving boundary layer flow of absorbing gases, 
the interaction between convection and radiation will not be appreciable. 
To assess under what conditions this neglect of interaction effects is 
permissible, the following analysis will deal with evaluating first-order 
interaction effects upon boundary layer heat transfer. The particular case 
of laminar flow across a flat plate will be considered. 

P31 
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A. THEORETICAL MODEL 

The physical model and coordinate system are illustrated in Fig. 9. 
Steady laminar flow of a constant-property fluid with negligible viscous 
dissipation is assumed, and the boundary condition a t  the plate surface is 
taken to be that of a constant temperature. In  order to  keep the number 
of parameters to  a minimum, it will further be assumed that the plate 
surface is black. No appreciable difficulty would be encountered in 
extending the analysis to  a gray surface. As usual, the free-stream fluid is 
considered to be infinite in extent. It should be emphasized, however, 
that in the present situation “infinite in extent’’ additionally refers to 
optical conditions. Thus, all radiation emitted by the plate must eventu- 
ally be absorbed by the fluid, while the fluid will in turn be the sole source 
of radiation incident upon the plate. 

I T- i % ___-  
A 

4 i n  

’- T. = Constant 

r , .. : . . ,- I ,, I .‘ / 1  

FIQ. 9. Physical model and coordinate system for boundary layer flow of an absorb- 
ing gas. 

Before discussing the mathematical model to be used in the present 
analysis, it is of interest to investigate possible limiting solutions for the 
case in which the fluid is a very weak absorber. Under such a condition, 
it would be expected that absorption and emission effects within the 
thermal boundary layer would exert a negligible influence upon the con- 
vection process. Correspondingly, the convective heat transfer qcuI a t  the 
plate surface would be that for pure convection, and, expresaing this in 
terms of the convective Kusselt number, defined as 

arid taking for example P r  = 1.0, one has the well-known result 

ge = 0.332 

where Re is the Reynolds number defined a8 Re = u,x/u. 
To obtain an expression for the radiative heat transfer qm a t  the plate 

surface, it may be noted that under the condition of weak absorption the 
radiation field will extend far out into the fluid since only gradual attenua- 
tion of radiation occurs, and, correspondingly, temperature gradients will 
~ 4 1  
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be small throughout most of the fluid. It may thus be assumed that as far 
as radiation is concerned the fluid is essentially isothermal and at  the 
free-stream temperature T,. Equation (17) illustrates that the emissivity 
of an infinite isothermal fluid is unity, and therefore the net radiation 
exchange between plate and fluid is 

qTw = ew - em (32) 

First-order corrections to Eqs. (31) and (32) will now be considered, 
and it will first be necessary to formulate the energy equation as applies 
to the present boundary layer problem. Under the assumptions previously 
mentioned, the complete energy equation is 

pc, (. + v 5) = - div (Ic - div qr (33) 

where the bar denotes a vector quantity, and 

Qc = -k grad T 

As is well known, if the Peclet number, defined as Pe = u,x/a, is suffi- 
ciently large, then conduction in the x-direction will be negligible such 
that div qc 31 aq,,/ay, where the subscripts x and y will be used to denote 
the x and y components. Equation (33) then becomes 

A similar criterion for the neglect of radiation in the x-direction will 
now be determined. Perhaps the simplest means of accomplishing this is 
to investigate under what conditions radiation in the flow direction is 
negligible compared to convection, since convection in the flow direction 
will, under most conditions, be a predominate term in the energy equation. 
The requirement is thus that 

The order of magnitude of uaT/dx is estimated in the usual manner to  be 

In order to predict the magnitude of dq,,/ax, it may be noted from 
Fig. 6 that the optically thick approximation will overestimate radiation 
heat transfer when applied to conditions which are not optically thick. 
Thus, in the present situation a conservative criterion would a t  most 
result through use of the optically thick approximation. The order of 

~ 5 1  



R. D. CESS 

magnitude of dq,./ax will consequently be estimated 

giving 

from 

(37 j 

From this, together with Eqs. (35) and (36), the condition for radiation 
transfer in the x-direction to be negligible is 

>> 1 ucnx 
1 &Ta/3apc, 

As pointed out by Viskanta and Grosh (86), the quantity 16aT3/3a can 
be interpreted as a “radiative conductivity.” The dimensionless group 
appearing above may in turn be considered as a “radiative Peclet 
number. ’ 

With radiation neglected in the x-direction, and again letting q. 
denote radiation in the ydirection, Eq. (34) becomes 

The absorption-emission term, aqr/&, is given by Eq. (6)  with T O  + m , 
RI = el. and e(7) replaced by e(x,T),  such that 

- - -  - 2e,E2(r) + 2 e(x,t)E1(Ir - t i )  dt - 4e(x,7) (40) ar 
It will now be assumed that thermal conduction within the fluid is 

restricted to  a thin region of thickness 6 adjacent to  the plate surface, 
which is simply the conventional thermal boundary layer, and that this 
boundary layer is optically thin (i.e., T J  = a6 << 1). The optically thin 
boundary layer, however, represents only a portion of the entire tempera- 
ture field, since radiation emitted by the plate will pass virtually un- 
attenuated through this layer. Consequently, it is necessary to consider 
not only the boundary layer, but also an adjacent radiation layer which 
is not optically thin and within which temperature gradients, and thus 
conduction effects, may be assumed small. 

In  other words, it has been assumed that conduction within the fluid 
is restricted to a thermal boundary layer whose thickness is small com- 
pared to the penetration length. Adjacent to this boundary layer is a 
radiation layer having a thickness of the same magnitude as the penetra- 
tion length, and within which thermal conduction is neglected. In carrying 
out the solution to this assumed model, the temperature profile within 
I261 
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the radiation layer must first be determined. From this the temperature 
at the outer edge of the thermal boundary layer is obtained, and the 
boundary layer solution follows. 

B. RADIATION LAYER 
The energy equation applicable to the radiation layer is given by Eqs. 

(39) and (40) with u = u,, v = 0, and the conduction term in Eq. (39) 
deleted. Thus 

Since radiation transfer in the x-direction has been neglected, the bound- 
ary condition for this equation is 

T =  T,; x = O  

The solution of Eq. (41) may be accomplished through successive 
a p p r o h t i o n s .  In light of previous discussion, the first approximation 
wil l  be taken aa T = T,, and substituting this (i.e., e = e,) into the 
right side of Eq. (41) and performing the integrations, there is obtained 

The second term on the right side of this equation thus represents the 
change in fluid temperature due to radiation exchange with the plate. 
Since only first-order effects are being considered, higher-order terms in 
Eq. (42) will not be investigated. 

Equation (42) may now be employed to evaluate the boundary condi- 
tion a t  the outer edge of the thermal boundary layer, Letting this tem- 
perature be Ts, and since EZ(76) = 1 + O(n) N 1, then 

The fact that Ta differs from T ,  is the result of neglecting conduction 
within the radiation layer. It may be seen that the solution for the 
radiation layer is in a sense analogous to a potential flow solution, from 
which the potential velocity a t  the surface is employed as the boundary 
condition a t  the outer edge of the velocity boundary layer. 

C. THERMAL BOUNDARY LAYER 
In order to apply Eqs. (39) and (40) to the optically thin boundary 

layer (0 5 7 5 76), the integral appearing in Eq. (40) will be split into 
~ 7 1  
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two parts giving 

- = 2e,E'?(r) + 2.p e(z,t)El(lr - I[) dt ar 

+ 2 /I, e(zJt)E1(Ir - tl) dt - 4e(z,7) (44) 

The emissive power occurring in the second integral corresponds to the 
temperature distribution within the radiation layer. So, making use of 
Eq. (42) there is obtained 

for r > 7 8 .  Upon substituting this into the second integral in Eq. (44) 
and evaluating the integral for T < 71, one has 

The second term on the right is neglected since the present analysis is 
concerned solely with first-order radiation effects, while O(rJ may be 
neglected due to the fact that the boundary layer is assumed to be opti- 
cally thin. Equation (45) thus gives the value of the second integral 
appearing in Eq. (44), whereas the first integral is negligible under 
optically thin conditions (see, for example, Section 11,C). Since E1(7) 'V 1 
for 7 < TI, the form of Eq. (44) applicable to  the optically thin boundary 
laycr is thereforc 

Comparing this with Eq. (14), it may be seen that the radiation layer 
appears as a black surface at temperature T, as far as first-order radia- 
tion effects within the boundary layer are concerned. 

Upon substituting Eq. (46) into Eq. (39), the applicable form of the 
boundary layer energy equation is 

(47) 
aT aT a2T 2au 
as ay aY PCP 

~ ~ . - - I - V - - - ~ ~ + + ( T , , , ~ + T , ~ - ~ T ~ )  

The boundary conditions for this equation are 

T =  T,; y = O  

I ' j  Td; y +  03 

where P', is a constant while Td is given by Eq. (43). It will now be 
convenient to define a dimensionless temperature difference and a tem- 
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perature ratio as 

and Eq. (47) becomes 

ae ae a2e 

ax ay a g  
u - + v - = a -  

From Eq. (43) the boundary conditions transform to 

e = 1 ;  y = o \  

(49) 

New independent and dependent variables will now be defined as 

where q is the familiar similarity variable for pure forced convection 
from a flat plate, while [ is an expansion parameter which arises since 
the present convection-radiation problem does not reduce to a similarity 
solution. The solution of Eq. (48) is now assumed to be of the form 

Recalling that the velocity components are given by 

where f(q) is the Blasius stream function (W?), then upon substituting 
Eqs. (50) and (51) into Eq. (48) and collecting like powers of E, there is 
obtained 

(52) 
1 

Pr ---eo)' + s f e i  = o 

with 

{l  + A' - 2[1 + (A - l)e,]4) (54) 
1 

pa = - A - 1  
1291 
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The boundary conditions upon ea(q) and &(q) are found from Eqs. (49) 
to bc? 

eo(o) = 1, eo(a) 4 0  

As would be expected, the function O0(q)  represents the convective 
temperature distribution for the case of negligible radiation interaction 
([ = O), while the second term in Eq. (50) denotes the first-order radia- 
tion effect upon the temperature profile within the boundary layer. To  
determine the temperature distribution throughout the entire fluid (com- 
bined boundary layer and radiation layer), Eq. (42) may be rephrased as 

8 = e , ( m ) E 2 ( T ) t  + . . . 

and it readily follows from combination of this expression with Eq. (50) 
that 

e = eo(q) + e 1 ( 3 ~ s ( 7 ) ~  + . - . (55) 

represents the temperature distribution throughout the entire fluid. In 
making use of Eq. (55), it must be remembered that q -+ m corresponds 
to the outer edge of the thermal boundary layer where T is still sufficiently 
small such that E,(T) 'u 1. 

D. HEAT TRANSFER RESULTS 
It will be convenient to consider separately the radiation and convec- 

tion contributions to the total heat rate per unit area at the plate surface. 
To evaluate the radiation heat transfer, Eq. (7) with Rl  = ewr T O - +  m 

and e(7) replaced by e(z,T) gives 

gm = e, - 2 lo' e(z,7)~2(7) d7 

or 

qm = (e, - em> - 2 lo- (e - e,)Es(.r) dT (56) 

At this point it should be noted that 

ax 
TI = a8 - - 

and since the present analysis applies only for small 71 as well as small 
f ,  then any terms of O(T& are negligible in the same sense that O ( t P )  
has been neglected. In  line with this, evaluation of the emissive power 
from Eq. (55) and substitution into Eq. (56) gives the radiation heat 

a 
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transfer at  the wall as 

1‘ I D +  (A - i)e0i* - i j  dq + - . . (57) 

Comparison of the above with Eq. (32) illustrates that the second 
term on the right side of Eq. (57) represents the first-order correction 
to Eq. (32), and that this first-order effect depends upon the optical 
thickness of the boundary layer but not upon 5. It may be recalled that 
Eq. (32) is based upon the assumption that the fluid is isothermal a t  
temperature T,, whereas the first-order correction in Eq. (57) corresponds 
to  the temperature profile eO(q). The subsequent departure from this 
profile by the amount el(q)E2(7)i as indicated in Eq. (55) would in turn 
appear as a second-order effect in Eq. (57). 

It may easily be shown that the quantity 

is positive regardless of the value of X (of course, X > 0). The effect of 
the first-order term in Eq. (57) is thus to reduce radiation heat transfer 
with respect t o  that predicted by Eq. (32). This is physically reasonable 
since Eq. (32) assumes the fluid to be isothermal at  T,, whereas the 
fluid within the boundary layer (and also the radiation layer if higher- 
order effects are taken into account) actually differs from the free-stream 
temperature in the direction of T,, such that radiation exchange between 
this portion of the fluid and the plate is reduced. 

Turning next to the convective heat transfer a t  the plate surface, this 
is given by 

qcw = A($) 
#=a 

and combining the above with the definition of the Nusselt number 

NU 

v-0 

so that from Eq. (50) 

The first term in this equation corresponds to pure forced convection 
and reduces to Eq. (31) for Pr = 1.0. It may be seen that the first-order 
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radiation effect depends upon [ but not upon the optical thickness of 
the boundary layer. 

Although the foregoing heat transfer results were obtained under the 
assumption of constant properties, they may be applied without modifi- 
cation to the variable-property situation characterized by 

pu = const 

c, = const 

p k  = const 

alp = const 

This may easily be verified through use of Howarth's transformation 
together with the optical distance expression 

for variable a. 
With the exception of alp = constant, the property variations described 

above constitute a reasonable first-approximation for most gases. With 
respect to alp = constant, it may be recalled from Section I11 that for 
water vapor in the temperature range 1OOO" to  2000"R the absorption 
coefficient varies as Consequently alp varies approximately as 

and this is a less severe dependence upon temperature than for a 
by itself. On the other hand, for high-temperature air the ratio alp will 
vary more strongly with temperature than for a alone. 

E. NUMERICAL RESULTS FOR A +  1 

Although numerical heat transfer results covering a range of values of 
the parameter X were not available a t  the time of completion of this 
article, illustrative results can be presented for the limiting case of X 4 1 
(small temperature differences). It may easily be shown that taking 
X -+ 1 is the same aa assuming linearized radiation. 

Turning first to  radiation heat transfer a t  the plate surface, Eq. (57) 
with X -+ 1 becomes 

Q l l = 1 - 2  
ew - e, 

Choosing Pr = 1.0, then from Reynolds' analogy 

and 

To evaluate convective heat transfer the solution for 01(q)  is necessary, 
4 1 and Pr = 1.0 Eq. (53) and its boundary conditions reduce and for 
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to 
e: + 55je: -yel = 8e0 - 4 

e,(o) = 0, e l ( m )  -+ 4 
From this it may be verified that 

where 

and 

ei(d = 411 + ~z(7 )  - u i ( ~ ) l  

Ul” + 45fUl’ - y.1 = 0; Ul(0) = 1, Ul( 03) --j 0 (60) 

u 2  ” + +$fuz‘ - f $ z  = 8 0 ;  ~z(0) = 0, az(m) -+ 0 (61) 

Equation (60) corresponds to forced convection with a linear variation 
of surface temperature with 2, and from (98) ul’(0) may be estimated 
for Pr = 1 to be u1’(0) = -0.541. Further, Eq. (61) has beensolved in 
(29) with application to a nonsteady convection problem, giving 
~ ~ ’ ( 0 )  = -0.876 for Pr = 1.0. Thus el’(0) = -1.34, and for Pr = 1.0 
Eq. (58) yields 

The fact that convection heat transfer is increased due to  the inter- 
action of radiation can be explained by investigating the sign of the 
absorption-emission term -aq,/ar. For example, if the plate is heated 
(T, > T,) it may be seen from Eq. (46) that -aqr/ar will be negative 
near the surface of the plate and positive within the outer portion of 
the boundary layer. The effect of radiation is thus t o  impose an effective 
heat sink within the fluid near the surface, which in turn tends to increase 
heat transfer from the plate surface. For the opposite extreme of an 
optically thick boundary layer, Viskanta and Grosh (26) have shown that 
an increase in convective heat transfer occurs only for X < >$. 

VI. Boundary Condition Effects upon Forced Convection 
The foregoing sections have dealt exclusively with the influence of 

radiation upon conduction and convection heat transfer as the result 
of absorption and emission within the medium. In all cases the bounding 
surfaces were taken to  be isothermal, and there was no alteration of the 
boundary conditions due t o  the presence of radiation. The present sec- 
tion considers the reverse situation. The medium is assumed to be non- 
absorbing, and the only influence of radiation is through altering the 
boundary conditions of the heat transfer process. 

The particular situation to be considered is that of laminar forced 
convection across a flat plate. Steady flow of a constant-property fluid 
which is transparent to thermal radiation is assumed, and the physical 
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model and coordinate system are illustrated in Fig. 10. Heat transfer a t  
the surface takes place through the combined processes of convectioii 
with the fluid which has a constant free-stream temperature T ,  and 
radiation with the environment which is a t  temperature T,. 

Consider first the case in which the surface temperature is a prescribed 
function of x .  With this type of boundary condition the fluid is completely 
oblivious to  the presence of radiation since there is neither absorption 
within the fluid nor does the radiant heat exchange affect the surface 
temperature T,(s) .  Thus, for a prescribed surface temperature there will 
be no interaction between the two separate modes of heat transfer. The 
locaI convective heat t r a d e r  coefficient (or convective Nusselt number) 
can be evaluated by standard methods (30 and 31), while the radiation 
heat transfer is evaluated in the usual manner. 

The situation is considerably different, however, for the inverse prob- 
lem in which the surface heat rate per unit area is a prescribed function 
of x. Once again there are standard methods available for evaluating 

Environmmnt, T, 

urn, 1, 
___c 

- -A I I { ) b  
, n /  I , / I ,  n I , ,  , , 1 7 1  

I l l  I 

q.- Conatant 

FIG. 10. Physical model and coordinate system for boundary condition effects 
upon forced convection. 

the convective Nusselt number corresponding to a given qw(s). However, 
with radiation present the heat rate distribution along the surface which 
the fluid actually observes may be quite different from that which is 
prescribed. This is due to the fact that part of the prescribed q w ( x )  leaves 
the surface as radiant energy and in an amount which varies with loca- 
tion. It is thus possible for the convective heat rate to vary with x in a 
completely different manner than the total prescribed quantity qw(z), 
and this results in a mutual interaction between the two modes of heat 
transfer. 

In the present analysis the particular case of a constant surface heat 
flux is considered, and results will be given for the convective Nusselt 
number. Once this is known, the surface temperature can readily be 
obtained through an energy balance. 

For laminar flow of a constant-property fluid across a flat plate with 
negIigible viscous dissipation, the energy equation is of the form 

aT aT a2T 
u - + u - =  a- 

a x  a y  all2 
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As mentioned above, the surface heat rate is taken to be constant, and 
the boundary conditions for Eq. (63) become 

T - T , ,  y +  (64b) 

where e is the plate emissivity. 
The solution of Eq. (63) subject to the boundary conditions (64) may 

be obtained in the following manner. Two new independent variables 
will be defined as 

where q ia the similarity variable as used previously, while the expansion 
parameter f is defined differently than before. In addition, the fluid tem- 
perature will be expressed by the series 

T - T, = T,[alel(7)t + a2e2(7)t2 + - - -1 (65) 

Upon substitution of Eq. (65) into Eq. (63) and collecting Like powers 
with the requirement that &(O) = e2(0) = 

of t, the quantities e,(q) are found to be the solution of 

- - . = 1. 

satisfying the boundary conditions 

e,(O) = 1, en( m) -, 0 

The Blasius stream function (27) is again denoted by f(7). It should be 
noted (28) that Eq. (66) i identical to that representing the fluid tem- 
perature for a surface temperature varying as p (or 2””). Such a result 
should be expected since the energy equation is linear. 

It remains to evaluate the constants ulJ a2, . . . , and from Eq. (65) 

T ,  - T ,  = T,(alt + azt2 + . . .) (67) 

Substituting these expressions into Eq. (64a) and collecting like powers 
of [, the constants a, may be determined. In the following, however, it 
will be necessary to know only the ratio a2/ul, for which it is found that 
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The foregoing results may now be expressed in terms of the convective 
Nusselt number, recalling that 

Combining this definition with Eqs. (67) and (68) and dividing one series 
into the other, there is obtained 

The quantities €I,’(O) and 6,’(0) have been evaluated by Donoughe and 
Livingood (28) for Pr = 0.7, giving 

e,’(o) = -0.4059, e,yo) = -0.4803 

So, combining these results with Eqs. (69) and (70), the final expression 
for the Kusselt number with Pr = 0.7 becomes 

As would be expected, the value 0.406 represents N u / a e  for a con- 
stant surface heat flux with no effect due to radiation. The second term 
in Eq. (71) correspondingly denotes the first-order inffuence of radiation. 
It is interesting to note that this first-order term does not depend upon 
either T .  or qw. However, these quantities enter into the second and 
higher-order terms in the form of the additional parameter 

As discussed in (32) , there appears to be little use in evaluating higher- 
order terms in Eq. (71) due to  the slow convergence of the series. An 
alternate approach is to obtain a solution applicable for large E ,  and it 
was found that an asymptotic expansion exists of the form 

T - T, - T,[bo4o(~) + bi4i(~)t-’ -t . . *I (73) 

where 40(0) = #,(O) = = 1 have been chosen for convenience. The 
functions &(TI) and constants b, are evaluated using essentially the same 
procedure as in the previous solution for small t. 

Upon substituting Eq. (73) into Eq. (63) and collecting like powers 
of 6, there is obtained 

. . 
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and this is the same as Eq. (66) except that the sign of n is reversed. 
From Eqs. (64a) and (73) it is found that 

where P is defined by Eq. (72), while from for Pr = 0.7 

+o’(O) = -0.2927, (gI’(0) = 0 

The asymptotic expansion for the Nusselt number is in turn found to be 

such that for Pr = 0.7 

This obviously applies only for P > 0. For 0 = 0 an asymptotic solution 
can be obtained by expanding in reciprocal powers of t g  as done by 
Lighthill (33). Further, for pure radiation the wall temperature is given 
b s  

$ = [ & + ( E ) ]  T, 4 $4 = P M  
(77) 

and consequently, a t  least in the limit of large 6, fl  < 0 is not physically 
possible. 

One may note that the first term in Eq. (76) is the value of Nu/Z/& 
for pure convection with a constant surface temperature. This is entirely 
reasonable on physical grounds, since in the limit as 4 becomes large 
(radiation predominates) the surface temperature will approach the con- 
stant value given by Eq. (77). Thus, the maximum effect that radiation 
can exert upon the convection process is to reduce N u / d &  from 0.406 
to 0.293. 

The limiting results for small and large [ as given by Eqs. (71) and 
(76) are illustrated in Fig. 11 together with Lighthill’s results (33) for 
/3 = 0. Also shown in Fig. 11 is a straight-line fairing between the two 
limiting solutions, and this should be regarded only as a very crude 
interpolation. 

The fact that the maximum influence of radiation upon convection is 
to reduce the Nusselt number from that for a uniform surface heat rate 
to the value for a uniform surface temperature has particular significance 
with regard to  turbulent flow. If the flow is turbulent, this difference is 
only about 495, and it may therefore be concluded that for turbulent 

[371 
6 +1’(0) = 0 for all Pr. 



0.45 

FIG. 11. Variation of the Nusselt number for laminar flow across a fiat phte, 
Pr = 0.7. 

I ’ I 1  I l l >  I I I !  

----- Lighthill .  p=O 

Bow across a flat plate any radiation effects upon the surface boundary 
condition will have slight effect on the Nusselt number. 

VII. Boundary Condition Effects upon Free Convection 
As a second example of the influence that radiation may have upon 

altering convective boundary conditions, free convection from a vertical 
flat plate will be comidered. It is again assumed that the fluid is non- 
absorbing and that the surface heat flux is uniform. To further simplify 

Ambient .  T. 

Enrironmn?. TI 

Fro. 12. Physical model and coordinate system for boundary condition effectH 
upon free Convection. 
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the problem, the ambient temperature of the fluid and the environment 
temperature for radiation exchange will be taken as the same value T-. 
The physical model and coordinate system are illustrated in Fig. 12 for 
a heated plate. For a cooled plate the gravity force is reversed. In  addi- 
tion to analytical predictions, experimental results have been obtained 
using ambient air as the nonabsorbing fluid. 

A. ANALYSIS 

For laminar free convection of a constant-property fluid along a vertical 
surface, the boundary layer equations are 

a"+$=() 
ax ay 

au au a2U 

ax ay ay u - + v - = v 7 + gP(T 

a T  a T  a2T 
u - + v -  ax ay = 

and the boundary conditions become 

BE % = - !& + - (T4 - TB4) 
a Y  k k  

u = v = o  
y = o  @la> 

T-T,,  u - 0 ;  y +  00 Wb)  

Introducing the stream function # by the customary definition 

a+ v = - -  a+ 
= ay' ax 

then Eq. (78) is automatically satisfied. New independent variables will 
now be defined as 

ClY mTm3 
2 3 5  kC1 (82) r] = -1 E = -x46 

and solutions of Eqs. (79) and (80) are assumed to be 

# = CsXVo(r]) + FI(r])E + a . .I 

T ,  - T = - [e,(q> + e,(q)t + . .I 

(83) 

(84) 
qwxn 
C& 

where 
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For f = 0, Eqs. (82) through (85) reduce to the similarity transformation 
for free convection in the absence of radiation as considered by Sparrow 
and Gregg (34). 

Upon substituting Eqs. (83) and (84) into Eqs. (79) and (80) and col- 
lecting like powers of t,  ordinary differential equations describing Fo, 
0 0 ,  F1 and 0, are obtained as 

The bouiidary conditions for these equations are determined in essentially 
the same manner as in the preceding case of forced convection. Combining 
Eqs. (83) and (84) with Eqs. (81) gives 

(88) 
Po(0) = Fo'(0) = 0, 00'(0) = 1 

Fo' ( .o)  --+ (01, 0d.o) --+ 0 

The foregoing results may now be expressed in terms of the convective 
Nusselt number a i d  Grashof number, where 

g@x3(TW - Tm) 
V2  

Gr = 

From Eq. (84j, recalling that 0,'(0) = 400(0) 

q Z f f  

Clk 
T ,  - I', = - [60(0) + el(o)i + . . .I 

and combining these with the definitions for Nu and Gr 

Results for eo(s) and Fo(q) have been presented by Sparrow and Gregg 
(34) for Pr of 0.1, 1, 10 and 100. For purposes of the present analysis, 
1401 
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Eqs. (87) subject to  the boundary conditions (89) were solved numerically 
on an IBM 7090 digital computer for Pr = 1.0, and the pertinent results 
are 

e,(o) = -1.357, e,(o) = 5.463 

In  addition, the functions Fc’, F1’ and e0, 
and 14 respectively. For Pr = 1.0, Eq. (90) thus gives 

are illustrated in Figs. 13 

~- Nu - 0.456 - O.l80[ + - a - 
(Gr)g 

The first term is again the result for pure free convection with no influence 
of radiation. 

In  order to make a comparison later with experimental data, it would 
be advantageous to extend the present analysis to a Prandtl number 

0 I 3 5 

FIG. 13. The functions F o ( ~ )  and F I ( ~ )  for free convection. 

more closely representing that of air. One way to  do this, of course, 
would be to resolve Eqs. (86) and (87). However, from the analysis of 
Sparrow and Gregg (86) it may be found that a t  least within the Prandtl 
number range of 0.7 to 1.0 the effect of Prandtl number upon Nusselt 
number is virtually independent of the surface boundary condition. From 
the uniform surface temperature results of Ostrach (36) the Nusselt 
number for Pr = 0.72 is found to be lower by the factor 1.12 than for 
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Pr  = 1.0. Thus, applying this factor to Eq. (91) there is obtained for 
Pr = 0.72 

It is interesting to note what form the preceding results would take if 
linearized rather than fourth-power radiation had been assumed. Factor- 
ing the fourth-power temperature difference in the usual manner, the 

6 

5 

4 

3 

2 

1 

C 

-I 

- 2  
i 

FIG. 14. The functions %(q) and el(?) for free convection. 

radiant heat transfer between surface and environment may be expressed 
as 

~m = nE(Tw2 + Tw2)(Tw + T,)(Tw - T m )  

and providing Tw does not differ too greatly from T,, this may be 
approximated by 

qm = 4aeT,’(T, - T,) 

So, assuming linearized radiation the boundary condition a t  the plate 
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surface becomes 

(93) 

If Eq. (93) rather than the first of Eqs. (81a) had been employed in 
the foregoing analysis, the same results would still have been obtained. 
In  other words, the term denoting first-order radiation effects is the same 
whether fourth-power or linearized radiation is employed, and this holds 
for forced convection as well. If higher-order terms were considered in 
Eqs. (91) and (92), the additional parameter 

would arise for fourth-power radiation, whereas this would not be the 
case if linearined radiation were assumed. 

As in the previous section dealing with forced convection, attention 
will now be directed towards determining asymptotic results for large 
values of the radiation parameter E. To further simplify the problem 
linearized radiation will be assumed, and the thermal boundary condi- 
tion a t  the plate surface is taken to be that given by Eq. (93). As just 
discussed, the small 5 results are equally applicable to this situation. 

A solution of Eqs. (79) and (80) in the form of an asymptotic expan- 
sion will now be assumed as 

# - ~ ~ C ~ X " / ~ [ G O ( O  + Gi({)F% + * * *I (94) 

T -  

where 

For 6 = 0, this reduces to the similarity transformation for free con- 
vection from an isothermal plate with the temperature difference between 
plate and ambient equal to qw/4aeTwa. 

Upon substituting Eqs. (94) and (95) into Eqs. (79) and (80) and 
collecting like powers of 5,  there is obtained 
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The boundary conditions are easily found to be 

G"(0) = G"'(0) = 0, &(O) = 1 

Go'(m) -+ 0, +o'( a) --$ 0 
(99) 

Heat transfer results may now be determined in eactly the same 
manner as before. By incorporating Eq. (95) into the definitions for Nu 

0 I 2 3 4 5 

<=3L x '(4 

FIG. 15. The functions  GO(^) and G I ( ~ )  for free convection. 

and Gr, there is obtained 

It is readily observed that, as for forced convection, the first term in 
the above expression represents heat transfer from a constant-tempera- 
ture plate. 

Tabulated values of Go(q) and &(q) given by Ostrach (36) for Pr = 0.72 
were used as input data in solving Eqs. (98) numerically on an TBM 
I620 digital computer. The results of primary interest are 

I441 
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and the functions Go', GI' and $o, tpl are illustrated in Figs. 15 and 16 
respectively. It follows that for Pr = 0.72 the Nusselt number expression 
becomes 

Nu - 0.357 + 0.007f-41 + . * * (102) (Gr)g 

Equations (92) and (102) thus represent for Pr = 0.72 the solutions for 
small and large 3: respectively. It should be emphasized that if fourth- 

FIG. 16. The functions &(r) and +I({) for free convection. 

power rather than linearized radiation had been employed, the additional 
parameter 

would appear in the coefficient of the second term in Eq. (102). 

B. EXPERIMENTAL RESULTS 

To augment the foregoing analytical results, an experimental investi- 
gation was undertaken concerning free convection from a vertical flat 
plate having a uniform surface heat flux. Free convection rather than 
forced convection was chosen solely as the result of the lesser equipment 
requirements of the former as compared to the latter. On the other hand, 
the analyses have indicated that the influence of radiation through 
altering the convective boundary conditions is considerably less for free 
rather than forced convection. Consequently, the advantage of experi- 
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mental simplicity is somewhat offset by the fact that a smaller effect 
had to be observed. 

It was decided to use room air as the nonabsorbing fluid and to  employ 
moderate temperature differences so that the assumption of linearized 
radiation would be appropriate. From the previous section i t  was shown 
that the influence of radiation is dependent upon the parameter defined 
as 

With the ambient temperature T ,  fixed, the only way of varying for 

, 111% I'  Copper Ear . r x f  Copper Bar 

'\ *\\ 
\ ,  m \ / *  I.. 

1_ 

1 
Fiberglor  S lotn lerr  S Iec I  

lnsulotion B o o r d  - S h e s 1  

3 0" -- L L -  - 

f 
t I 

I I 

I 

I 

I 4" I 

+ I 

I + + +  I 

I 0  + O I  
' I  
t i + + +  I 

I + T  I 

I 

I 

I ; j + f -  
1 1 '1 5 1  I 

I  
I 

I + ~. 9" I 

- 4 -  
I 

I 

32" 

+ Thermocouple Locat ions 

0 v o l t o g e  TOP Locations 

FIG. 17. Free convection apparatus. 

a given plate emissivity would be to vary either x or qw. However, since 
these quantities are raised to the ?,g power in the above expression, 
significant variations in 5 could not easily be obtained in this manner. 
It was thus decided to produce the main variations in through altering 
the emissivity of the surface. 

The experimental apparatus consisted of a vertical test plate as illus- 
trated schematically in Fig. 17. The test plate was constructed of 26 
1461 
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gage (0.018 inches thick) type 304 stainless steel. An identical stainless 
steel sheet was used as a guard plate and was separated from the test 
plate by a one-inch-thick fiberglas insulation board. 

Both the test and guard plates were heated by passing an alternating 
current through them, thus producing a locally uniform heat generation 
within the plates. The two plates were connected in series by a one-inch- 
square copper bus bar as shown in Fig. 17. The plates were checked for 
uniformity in thickness and no variations greater than 1% were found. 
Power to the test plate was measured by a Weston Model 432 wattmeter, 
and the voltage taps for the wattmeter were soldered t o  the inside sur- 
face of the plate as shown in Fig. 17. 

Surface temperatures were measured by copper-constantan thermo- 
couples located vertically along the center of the test plate and soldered 
to the inside surface. Additional thermocouples were located on both 
the test and guard plates to serve as a check on horizontal and transverse 
temperature gradients. Thermocouple emf was measured by a self- 
balancing Leeds and Northrup K-3 potentiometer. 

The radiation environment for the test plate consisted of a four-foot- 
square plywood box open on one side. The test plate was then located 
so as to face into the box, and the minimum gray-body view factor was 
calculated to be 0.99~ with E plate emissivity. Thus, the box was suffi- 
ciently large to closely approximate an infinite environment, since the 
gray-body view factor between the plate and an infinite environment is 
E. The combined ambient-environment temperature T, was taken to be 
the average of the inner surface temperatures of the box. 

Three surface finishes on the plate were employed ; polished stainless 
steel, bronze radiator paint, and black lacquer. The emissivity of these 
surfaces was measured using a radiometer similar to that described in 
(37)) giving the following values in the temperature range of 100" to  
140°F: 

Polished stainless steel E = 0.20 

Bronze radiator paint E = 0.52 

Black lacquer E = 0.96 

The apparatus was operated a t  a surface heat rate of 46 Btu/hr f t2 ,  
which corresponds to a current of approximately 240 amps. The tempera- 
ture difference between plate surface and ambient ranged from 28" t o  
61°F depending upon location and surface emissivity. In evaluating the 
convective heat transfer coe%cient (and hence Nusselt number) the only 
additional information required was the convective heat rate from the 
plate surface, and this was determined by subtracting the radiation heat 
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rate 4 T W 4  - T-3 from the total. In reducing the data to the form 
Nu/Gr,l as a function of (, the air properties, with the exception of p, 
were evaluated at the local reference temperature 

T, = T ,  - 0.38(Tw - T,) 

while the coefficient of thermal expansion was taken to be 6 = l/T,. 
This is the procedure that has been recommended by Sparrow and 
Cregg ($8). 

The experimental data are illustrated in Fig. 18 and correspond to a 
Crashof number range of 1.6 X lo7 to  1.3 X lo9. Also shown in Fig. 18 
are the limiting solutions for small and large E, Eqs. (92) and (102), as 

0 
n c = 0 2 0  

0 - _ -  Foired 

---t I 
- - --  - -  --- 

0 

r- 0 * @  0 
U 

T, :Cons1 - 
- - 

0 30- I I I I l l 1  I I I I l l l l .  

FIQ. 18. Comparison of experimental and theoretical results for free convection 
from a vertical plate. 

represented by the solid curves, while the broken curve denotes a straight- 
line fairing between the two limiting solutions. It may be seen that the 
data are in reasonably good agreement with the analytical and faired 
curves, the maximum discrepancy being 8%. 

SYMBOLS 
a absorption Coefficient 
cp 
e black-body emissive power, UP 
Gr 
H incident radiation 
I 

specific heat a t  constant pressure 

Grashof number, g@zS(T,  - T J / v *  

intensity of radiation, time-rate of 
radiant energy transfer per unit 
Rolid angle per unit area normal to 
pencil of rays 

k thermal conductivity 

[481 

L distance between plates 
Nu Nusselt number, qc;c/ (  T, - T,)k 
F'r F'randtl number v / a  

p heat rate per unit area 
R radiosity, total radiant energy 

leaving a surface per unit time per 
unit area (i-e., sum of emitted and 
reflected radiation) 

Re Rcynolds number, u d / v  
1 dummy variable of integration 
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1. 
2. 
3. 

4. 

5. 

6. 
7. 
8. 

9. 

10. 
11. 

12. 

13. 

14. 
15. 

16. 
17. 

18. 
19. 
20. 

absolute temperature u Stefan-Boltzmann constant 
velocity component in xdirection 
velocity component in y-direction 
distance measured along surface 
distance measured normal to surface 
thermal diffusivity 
coefficient of thermal expansion 
boundary layer thickness 
total hemispherical emissivity 
angle measured from normal 
absolute viscosity 

kinematic viscosity 
density 

cos e 

T 

T~ 

o solid angle 

Subscripts : 

1 lower plate 
2 upper plate 
c conduction or convection 
r radiation 
w wall 
m free-stream conditions 

optical distance, lo’ a dy 

optical thickness, lo” a dy 
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I. Introduction 
The field equations which describe a physical phenomenon are fre- 

quently nonlinear. However, the analytical investigator linearizes them 
whenever possible in order to take advantage of the principle of super- 
position. The linear representation is an approximation, and can be 
expected to reproduce the true behavior fairly well whenever the non- 
linearities are weak in some sense. Conversely, if the nonlinearities are 
strong, they must be included in order to explain the observed behavior. 
An example of the latter case, taken from the field of mechanics, is the 
hard or soft spring. Examples from the field of fluid mechanics are bound- 
ary layer growth and shock wave propagation. 

IR the field of heat transfer, and more especially heat conduction, the 
transient heat conduction equation is linearized by assuming the thermal 
properties to be independent of temperature; furthermore, the boundary 
conditions are also taken to be linear. When dealing with heat conduction 
in solids, the linear approximation is often quite acceptable. As a matter 
of fact, virtually all of the well-known treatise of Carslaw and Jaeger (1) 
is devoted to a presentation of solutions of linear transient heat conduc- 
tion problems. However, if the temperature in the solid varies over a 
wide range the thermal properties become temperature dependent, the 
field equation becomes nonlinear, and the solution cannot be obtained 
by any of the elegant methods which Carslaw and Jaeger demonstrate. 
On the other hand, if the temperature level itself becomes high, radiation 
or change of phase may occur, and, as a consequence, the boundary con- 
ditions become nonlinear, and once again the elegant methods fail. The 
purpose of this chapter is to present a mathematical technique, called 
the integral method, by which approximate solutions to nonlinear tran- 
sient heat conduction problems can be obtained. Such problems need 
not be linearized, because the technique is elastic enough to encompass 
all nonlinearities. The integral method reduces the nonlinear boundary 
value problem to an ordinary initial value problem whose solution can 
frequently be expressed in closed analytical form. The integral method 
can also be used to obtain approximate solutions to linear problems with 
complicated spacially-dependent thermal properties, and problems where 
convection as well as conduction is involved. The versatility of the 
method will be demonstrated by the presentation of many examples in 
the subsequent text. 

In  order to introduce those concepts which are basic to the integral 
method, we will use the method to obtain the solution to a very simple 
linear problem. Let us assume there is a semiinfinite slab extending over 
positive x. Initially, the temperature T is - T,, and a t  the surface x = 0 
1521 
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the heat flux, F ( t ) ,  is given for time t > 0. If a is the thermal diffusivity, 
the heat conduction equation is 

a2T aT 
f f - y = - 1  x > o ,  t > o  

ax at 

If k is the thermal conductivity, the boundary condition is 

aT k- = -F( t )  5 = 0, t > 0 
ax 

We now define a quantity 6( t )  called the penetration distance. Its 
properties are such that for x > 6 ( t )  the slab, for all practical purposes, 
is at an equilibrium temperature and there is no heat transferred beyond 
this point. The penetration distance is analogous to the boundary layer 
thickness in fluid mechanics. If Eq. (1) is multiplied by ax and integrated 
from 0 to 6, the resulting equation is called the heat-balance integral. 
The temperature will be compelled to satisfy the heat-balance integral, 
but not the original heat conduction equation, Eq. (1). The heat conduc- 
tion equation will, thereby, be satisfied only on the average. This averaged 
equation is analogous to the momentum integral in boundary layer 
theory. Integral methods were first introduced by von Karman and 
Pohlhausen (2)  in order to solve nonsimilar boundary layer problems 
in fluid mechanics. A modern account of the Karman-Pohlhausen method 
and a bibliography may be found in Schlichting (5). The method is, 
however, equally appropriate for solving any problem governed by a 
diff usion-type equation. Such problems as the nonsteady heat conduc- 
tion in solids, the nonsteady flow of fluids through porous media, the 
mixing of two species, and (in the social sciences) the spreading of rumors 
all obey equations of this type. The integral method will be developed 
here in the context of heat transfer. The solutions thus obtained, although 
not exact, are often sufficiently accurate for engineering purposes. 

The heat-balance integral obtained by averaging Eq. (1) in the manner 
described, becomes 

where 

But, since there is no heat transferred beyond x = 6, 

(6,t)  = 0 ax 
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Let us assume that T can be represented by a second-degree poly- 
nomial in x of the form: T = Po + Blx + &x2, where the coefficients pi 
may depend on f .  Applying Eqs. (2, 5 )  and the condition 

T(6,t) = - T ,  (6) 

the temperature profile must take the form 

Substituting into Eq. (4), it is seen that 

Introducing Eqs. (2, 5,s )  into the heat-balance integral, Eq. (3), gives 
the following ordinary differential equation to be solved for 6:  

I d  
6 dt 
-- (62F) = CYF 

By virtue of the initial condition, 6(0) = 0, 

If F ( t )  is constant this reduces to 

s=d@Zj 

(9) 

The surface temperature is obtained by setting z = 0 in Eq. (7) and 

T(O,t)[=zl = -T ,  + dE) d(11 [ F ( t )  jot F(tJ &I@/, (12) 

applying Eq. (10). The result is 

If F ( t )  is constant this reduces to 

z = - T ,  + a) +Z F d i / k  (13) 

The exact solution of this problem is given on page 75 of ( I ) ,  and for 
a constant value of F ,  the result is 

T(0,t) = - T ,  + dm l /aC F d i ? / k  (14) 

By comparing Eqs. (13) and (14) it is seen that the results are of the 
same form, differing only by a numerical factor. Since = 1.13 
and dm = 1.23, the error is about 9%. This error can be reduced 
by using a less primitive temperature profile than that represented by 
(541 
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Eq. (7), and also by using other methods which will be presented in 
the sections below. However, considering the crudity of the method, and 
of the assumed profile, it is remarkable that Eqs. (13) and (14) agree 
as well as they do. At interior points, where the temperature is lower, 
the per cent error is necessarily greater, but the temperatures are still 
fairly well represented. 

It will be required, for subsequent development, to know the value of 
6 when z = 0. From Eqs. (10, 12) the result is 

6, = 2T,k/F(t,) (15) 

where t, is the time at which z = 0 occurs, and can be obtained from 
Eq. (12) for variable heat flux, or from Eq. (13) for constant heat flux. 
Using Eq. (13), the result is 

All of the fundamental concepts basic to the integral method appear 
in the simple example presented above. Much of the material presented 
below will be devoted to the demonstration of the proper application of 
the method for various practical heat transfer problems. Included are 
problems in both conduction and convection, problems involving a change 
of phase, problems with polar and spherical symmetry, problems with 
nonlinear boundary conditions, and problems with temperature-depend- 
ent thermal properties. 

Historically, the first applications of the integral method to solve the 
diffusion equation, Eq. (l), were made by Landahl (4) in the field of 
biophysics. Landahl was specifically concerned with the spread of a con- 
centrate. I n  all the problems with which he dealt, the profile was chosen 
to be linear, and this is, of course, the most primitive profile possible. 
(An exception is one case which used an exponential profile, but the end 
result was dismissed as being no significant improvement over the result 
obtained using a linear profile.) Landahl subsequently applied his version 
of the integral method to a variety of nonlinear problems governed by 
an equation of the diffusion type (5 ,  6). The case of concentration- 
dependent properties was discussed by Macey (7) but still using a linear 
profile. A presentation of some of this early work appears in Rashevsky 

A more sophisticated approach was adopted by Veinik (9) in applying 
the integral method to heat conduction problems. He always assumed the 
profile to be a polynomial, and applied the integral method to a great 
number of cases. None of these early investigators were concerned with a 
rational approach toward improving the accuracy of the integral method. 

[551 
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Although we will also apply the integral method to a number of cases, 
nevertheless, the objective of this article is to acquaint the reader with 
the integral method as a mathematical technique. With this purpose in 
mind, the applications will be used primarily for illustrative purposes. 
The integral method has been advanced beyond the rudimentary stage 
by virtue of the efforts of many investigators whose work will be dis- 
cussed. Thus, in addition to presenting examples of the application of 
the method, we will also present techniques for improving the accuracy 
of  the method; we will compare the method with other related methods; 
we will demonstrate the limitations of the method, and suggest how 
these limitations may be overcome. 

11. The Linear Heat Conduction Equation with 
Fixed Boundaries 

In this section, we will consider problems involving the transient heat 
conduction equation in one space variable. Thermal properties will be 
taken to be constant so that the governing equation is linear. Both 
linear and nonlinear boundary conditions will be considered. The crude 
second degree polynomial for the temperature profile, which was assumed 
in the example problem presented in Section I, will usually be discarded 
in favor of a more convenient or appropriate profile. 

,4. THE SEMIINFINITE SLAB 

The temperature distribution in a semiinfinite slab, initially a t  zero 
temperature [T, = 01 and subject to a very general boundary condition, 
has been obtained by Goodman (10) [see also (1711 using the integral 
technique. In  Section I the solution was obtained assuming the surface 
heat flux to be a prescribed function of time. A generalization of this 
condition is the assumption that the heat flux is a prescribed fiinction 
of surface temperature and time: 

The temperature profile will be taken to be a cubic, in which case four 
conditions are required to determine the four constants. Three of these 
conditions are Eqs. (5, 6, 17) which are the natural conditions. An addi- 
tional derived condition can be obtained by differentiating Eq. (6) with 
respect to time and applying 
is 

Equation (18) is sometimes 
1561 
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tends to make the profile go smoothly into the ambient temperature. 
Clearly, the cubic profile must take the form 

where 

Z T = g (6  - x ) ~  

6 = 3Z/f(z,t) 

Equation (20) expresses a relationship between surface temperature 
and the penetration distance. As a consequence, there is really only one 
unknown function of time in Eq. (19), and this will be obtained from the 
heat-balance integral. Upon integrating Eq. (1) from z = 0 to x = 6 and 
applying Eqs. (5 ,  17) we obtain 

dB 
at 

fff = - 

By substituting Eq. (19) into Eq. (4) and performing the integration, we 
obtain the quantity 8 in terms of z and 6. After eliminating 6 by using 
Eq. (20), we obtain the following ordinary differential equation for z :  

The proper initial condition is z = 0 when t = 0. If the function f(z,t) is 
dependent on both z and t Eq. (22) must be integrated numerically. 
However, there are two cases for which Eq. (22) can be integrated 
analytically: when f depends solely on z, and when f depends solely on t. 

Case (a)-If f is independent of t, the solution is 

Case (b)-If f is independent of z, the problem becomes identical to 
the one solved in Section I, except that the profile in Section I is a 
quadratic, whereas here it is a cubic. We are therefore able to compare 
the results obtained using a quadratic profile with those obtained using 
a cubic profile. The result is 

which is, of course, the cubic profile equivalent of Eq. ( 1 2 ) .  

1. Applications of Goodman’s Solution 

Iff is constant, Eq. (24) reduces to 

z = &f 1/z 
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which is the cubic profile equivalent of Eq. (13). Since dB = 1.15, and 
the exact factor 2/4/1F = 1.13, the error has been reduced from 9 %  to 
2% by using a cubic instead of a quadratic profile. 

As an example of Eq. (23) suppose 

h 
f(2) = (2’ - 2 )  

where h and 2’ are constants and represent, respectively, the heat transfer 
coefficient and the ambient temperature of the surrounding medium. 
The result is 

- 1 + In [ l  - (2 /2’>]  (27) 2 [I - (2 /2‘ ) ]2  1 = 1.1 1 

The exact solution is given both analytically and graphically on page 72 
of (1).  To the scale of the graph presented there, it is impossible to 
detect any error in Eq. (27). 

Equation (23) may be applied to a nonlinear problem. Suppose 

f(z> = ( H / k ) ( z  + (28) 

This represents a slab of absolute temperature To radiating into a sink of 
absolute temperature zero. The result is 

where 
tl = 1 + z /To  

This problem has been solved by Jaeger (11) by numerical integration of 
the heat conduction equation. In this case also, it is impossible to detect 
any error in Eq. (29) when it is superimposed on the graph which Jaeger 
presents. 

Schneider (12) has generalized the solution given by Eq. (29) to a slab 
of finite thickness (plate) radiating into a sink of finite temperature. The 
case of zero sink temperature can be expressed in closed form; other 
cases must be integrated numerically. For further details see Schneider’s 
paper. (See Section 11, B, however, for a general discussion of slabs of 
finite thickness.) 

Chambre (IS) has considered, from a different point of view, the semi- 
infinite slab with a boundary condition of the form of Eq. (17) without t 
dependence (although there is no reason, in principle, why t dependence 
could not have been included). Since the field equation is linear, the 
surface temperature can be expressed as a convolution-type integral in 
[%I 
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terms of the surface heat flux using standard methods (e.g., LaPlace 
transforms). Then, by virtue of Eq. (17), Chambre is led to the following 
nonlinear integral equation €or the surface temperature : 

where zo is the initial temperature of the slab [ 3 - T,]. Upon substitut- 
ing an approximate solution into the right-hand side of Eq. (31), he is 
led to an improved solution which he again substitutes into the right- 
hand side. By continuing in this way, very accurate results can be obtained 
after only a few iterations, provided, of course, that the initial guess is 
reasonably accurate. It is clear that this method of attack could be used 
for any problem in which the nonlinearities appear only in the boundary 
conditions; for, if the differential equation is linear, an integral equation 
can always be derived. Schapker (1.4) has discussed the derivation of 
such integral equations. In using the integral equation approach together 
with an iteration procedure, two questions arise: the convergence of 
the iteration procedure, and the choice of the initial guess. For the 
semiinfinite slab, Chambre has outlined the convergence proof and the 
conditions under which it is valid, The best choice for the initial guess, 
as suggested by Chambre, is the solution obtained by the integral method. 
Thus, the iteration scheme becomes a technique for improving the inte- 
gral method. Arbarbanel (16) has also used the integral equation approach, 
together with an iteration procedure. He has applied the technique to 
the slab of finite thickness and the sphere, each of which is subjected 
to  the radiation boundary condition. He does not, however, use the inte- 
gral method to obtain the initial guess in the iteration procedure. 

2. The Step in Surface Temperature 

A case of special interest is the semiinfinite slab initially a t  zero tem- 
perature whose face is suddenly raised to temperature T,. Applying Eqs. 
(5 ,  6, 18) with T, 3 0, together with the boundary condition 

T(0,t) = T ,  (32) 

the cubic profile must take the form 

Substituting into Eqs. (3, 4) we are led to a differential equation for 6 
whose solution is 

6 = d24at (34) 
1591 
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The surface heat flux is, therefore, 

The exact solution of this problem is given on page 63 of ( I )  and is 
identical to Eq. (35) except that the numerical factor = .602 is 
replaced by y'rr = 364. The error is about 7%. Reynolds and Dolton 
(16) have used the integral method to analyze this problem, but their 
result differs from the one presented here because of a different selection 
of the derived condition on the cubic profile. Instead of using the smooth- 
ing condition, Eq. (18), they obtain a derived condition by differentiating 
Eq. (32) and applying Eq. (1). They are then led to a surface heat flux 
of the form of Eq. (35) except that the numerical factor is replaced by 
dK = .530. The error in this case is about 6%. This difference in 
approach is illustrative of B general property of the integral method; viz., 
the choice of profile is never unique, and the error in the final solution 
depends, to a large extent, on a judicious choice of the profile. Thus, 
there is a certain ambiguity in the method, which can only be resolved 
by investing it with mathematical rigor. For those problems to which 
it applies, Chambre's iteration scheme ( I S )  is precisely the rigor required; 
for, by virtue of the convergence proof, we have a guarantee that, what- 
ever the assumed profile, we can come as close to the correct solution as 
desired. For the particular case under consideration, the iteration can 
be said to converge in one step; for, by substituting Eq. (35) (which 
has the same form as the exact solution) into Eq. (31), the surface tem- 
perature is seen to be indeed a constant, but the wrong constant. Itl 
may then be adjusted, and the iteration is complete. 

The solution for the step in temperature given by Eqs. (33, 34) can 
be used to generate an approximate solution for the semiinfinite slab 
with arbitrary time-dependent surface temperature T, (1) by use of 
Duhamel's integral: 

where 6 ( t )  is given by Eq. (34).  

3. Internal Heat Generation 

Suppose there is internal heat generation q(t)  per unit time per unit 
volume, and the surface temperature is fixed a t  zero. Initially, the slab 
is a t  zero temperature. Equation (1) is replaced by 
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Assume once again a cubic profile. Two of the natural conditions are: 
Eq. (5 ) ,  and Eq. (32) with T, = 0. The third natural condition is obtained 
by applying Eq. (37) far from the boundary where no temperature 
gradient exists : 

The derived condition can be obtained by differentiating Eq. (38) and 
applying Eqs. (5, 37). The result is once again Eq. (18), and the heat 
balance integral takes the form 

The temperature profile is 
Q T = - [l - (1 - ~ / 6 ) ~ ]  

PC 

The solution is 

B. THE SLAB OF FINITE THICKNESS 

Goodman (17) has obtained the temperature distribution in a slab of 
thickness I ,  initially a t  zero temperature, and subject to boundary con- 
dition Eq. (17) at  IC = 0 and to the isothermal condition at  x = I: 

T(Z,t) = 0 (42) 

Initially, the effect of the boundary condition a t  x = 1 is not felt, and 
the slab behaves as though it were semiinfinite. For this initial stage, 
therefore, Eq. (22) applies. As soon as 6 = I ,  however, the initial stage 
is complete, and the time at  which this occurs can be obtained by setting 
6 = I in Eq. (20). I n  the second stage, the concept of penetration dis- 
tance has no meaning, and, consequently, only three conditions are 
required to specify the coefficients of the cubic profile. Two of these 
are the two natural conditions, Eqs. (17, 42). The third condition can 
be derived by differentiating Eq. (42) with respect to time and applying 
Eq. (1): 

The cubic temperature profile must then take the form: 
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The surface temperature, z ,  will be determined from the heat-balance 
integral, where, in this case, the integration extends from 0 to 1. We are 
then led to the following differential equation for z :  

Once again, there are two cases for which the equation can be integrated 
directly: when f depends solely on z, and when f depends solely on t. 

Case (a)-If f is independent of t ,  the solution is: 

The constants to  and zo define the end of the initial stage and the 
beginning of the second stage. These constants may be determined from 
the semiinfinite slab solution when 6 = 1. Explicitly, set 6 = 1 in Eq. (20) 
to determine 20, and set z = zo in Eq. (23) to determine to .  

Case (b)-If f is independent of z, the solution is: 

The constants t o  and zo in this case are determined by setting 6 = 1 
in Eq. (20) ,  and t = t o  in Eq. (24). 

1. Application o j  Goodman’s Solution 

1%. the case j = constant. Equation (47) then reduces to: 
Only one simple application of the general formulas will be presented, 

z = fl[l - 314 exp (-2.4at/Z2)] 1 > t o  (48) 

The exact solution appears on p. 113 of (1) in terms of an infinite series 
of eigenfunctions. For large time, it is sufficient to retain only the first 
eigenfunction. If this is done, the result is: 

1 (49) 

By comparing Eqs. (48) and (49), it is seen that the exact value of the 
eigenvalue is r2/4 = 2.467 instead of 2.4, while the exact coefficient of 
the exponential is 8/7r2 = .811 instead of .814. In Section VII it will be 
demonstrated how the integral method may be used to generate the 
1621 
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higher eigenfunctions and eigenvalues, while simultaneously improving 
the accuracy. 

2. The Step in Surface Temperature 

Reynolds and Dolton (16) have carried out the calculation of the 
temperature in a finite slab initially a t  zero temperature, whose surface 
temperature is suddenly raised to T,,  and whose far surface, (z = E ) ,  
is insulated : 

(Z,t) = 0 ax 

The derived condition for the cubic profile is obtained by differentiating 
Eq. (32) and applying Eq. (1): 

2 (0,t) = 0 

The profile is then of the form: 

where the parameter y satisfies the differential equation : 

(53) 

which is obtained from the heat-balance integral. The initial condition 
which we will apply to Eq. (53) is slightly different from the one used by 
Reynolds and Dolton (16) because the solution in the initial stage is 
different (see Section 11, A, 2). By equating the surface temperature 
gradient with that for the initial stage at the time when 6 = 1, we are 
led to the condition y( to)  = -3. The complete solution is: 

(54) y = - 3e-['N(a/Wt-!Aol 

The exact solution appears on page 101 of (1) in terms of an infinite 
series of eigenfunctions. The first term of the series is: 

A numerical comparison between Eqs. (54,55) demonstrates the accuracy. 

C. PROFILES REPRESENTED BY FUNCTIONS 
OTHER THAN POLYNOMIALS 

Up to this point, all profiles have been represented by polynomial 
expressions. It is sometimes more advantageous to use some other type 

~ 3 1  
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of profile which invariably takes the form of a nonalgebraic function 
multiplied by a polynomial. The advantage of so doing lies in the greater 
accuracy achievable. This will be illustrated by three examples. 

1 .  Polar and Spherical Symmetry 

Lardner and Pohle (18) have demonstrated that, for problems involv- 
ing polar or spherical symmetry, the polynomial representation of the 
profile is inappropriate because the solution does not tend to the proper 
form of the steady state solution in the limit for large time. They argue 
that the volume into which heat diffuses does not remain the same for 
equal increments of r (radius) as in the planar case, and, as a conse- 
quence, a modification in the assumed profile is necessary. Indeed, in 
the case of polar symmetry, the heat conduction equation becomes: 

a 
at 

The heat-balance integral becomes : 

dt3 dT 
dt ar a 
- = QT- 

(56)  

(57) 

where 
b 

0 = /a r T d r  (58) 

and the suggested form of the profile is: 

T = (polynomial in r )  lnr (59) 

Similarly, in the case of spherical symmetry, since the steady state solu- 
tion is proportional to l / r ,  the suggested profile is: 

(60) 
(polynomial in r )  

r 
T =  

Lardner and Pohle then proceed to solve an explicit case having polar 
symmetry using both a polynomial profile, and a profile in the form of 
Eq. (59). By comparing the results with the known exact solution of the 
problem, they clearly demonstrate the superiority of Eq. (59). For fur- 
ther details, the reader is referred to Lardner and Pohle’s paper. 

2. One Fluid Heat Exchanger 

Reynolds and Dolton (16) have applied the integral method to the 
transient cooling of a single-fluid heat exchanger. The exchanger consists 
of a tube of length 1 through which the fluid flows. A t  time zero-minus, 
the exchanger is in steady state, with the wall temperature held a t  
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T, = Ti by an appropriate heat source. At time zero, the heat source is 
removed and the exchanger cools. It is assumed that conduction is absent 
in both the tube and the fluid, and the heat which is exchanged between 
them is proportional to the temperature difference. The wall and fluid 
temperatures are then functions only of time ( t )  and the longitudinal 
distance along the tube (x). An energy balance in the solid leads to the 
equation : 

T,dx + O l d  ( T ,  - T f ) d x  = 0 

where T f  is the temperature of the fluid. The energy balance in the fluid 
is obtained assuming that the change of energy storage in the fluid is 
small compared with the energy transferred to it from the wall: 

If the wall temperature were constant, the solution would be: 

This steady state solution suggests we assume a profile of the form: 

Ti - T f  = Tie-41 (64) 

where a is a time-dependent parameter to be determined. This assumed 
form is chosen in the same spirit as Lardner and Pohle’s profiles for polar 
and spherical symmetry. In  both cases, the form is suggested by the 
steady state solution. If the wall temperature is also assumed to have 
an exponential profile, such that Eq. (62) is satisfied uniformly, it must 
take the form: 

Substituting Eqs. (64, 65) into Eq. (6l) ,  Reynolds and Dolton are led 
to the following differential equation for a:  

subject to the initial condition a(0) = a. From a graphical comparison 
of the exact solution [see page 123 of Bateman (19)] with the one obtained 
by integrating Eq. (66), they conclude that the results agree quite well 
for a < 5 ,  which is the range of most practical heat exchangers. 
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3. H a t  Conduction in Rods 

given, for example, in Chapter IV of (1): 
The heat conduction equation in a rod of constant cross section is 

where v is related to the heat transfer coefficient between the rod and 
its surroundings. The steady state solution for a semi-infinite rod whose 
end x = 0 is maintained at constant temperature T, is: 

Now suppose that a t  time zero-minus, the rod is at zero temperature, 
and at time zero, the end temperature is suddenly raised to T,. We 
assunie a profile of the form 

'l' = T8e-ilb (69) 

which is suggested from the steady state solution, Eq. (68). Upon inte- 
grating Eq. (67) from x = 0 to x = rn ,  the heat balance integral becomes 

ae aT 
- = -a - (0,t) - v o  
at dX 

where 

0 = /om T d x  

(70) 

After performing the indicated operations, there is obtained the following 
differential equation for b :  

vb 
db - CY 
dt b 
_ _ - -  

subject to the condition b ( 0 )  = 0. The solution is 
.- 

The temperature gradient a t  x = 0 is 

The exact solution of this problem is given on p. 135 of (1). The exact 
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temperature gradient a t  x = 0 is given by: 

Equations (74, 75) are shown plotted in Fig. 1. The accuracy of the 
approximate solution can be improved by using a profile consisting of 
a polynomial multiplied by an exponential, where additional constraints 
can be derived by differentiating the boundary condition at  x = 0. 

? 
I 

I I I I I I 

0 0.2 0.4 0.6 0.8 1.0 1.2 
ut 

FIG. 1. Temperature gradient time history at the end of a semiinfinite rod with 
isothermal end--comparison between exact and integral solution. 

D. CONCLUDING REMARKS 

The examples presented above are not intended to be exhaustive, but 
merely illustrative of the manner in which the integral method reduces 
a heat transfer problem to an ordinary differential equation. As pointed 
out by Reynolds and Dolton (16), the integral method is really a generali- 
zation of the “lumped parameter” method in which the temperature 
of the thermal capacitor is no longer idealized as constant, but is allowed 
to have some spatial distribution. 

In all the problems considered in this section, the initial temperature 
has been assumed to be constant or, more usually (and with no loss in 
generality), zero. No consideration has been given to problems in which 
there is an initial distribution of temperature. The reason for this is 
that the integral method, as presented, cannot deal with problems of 
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this type. One possible approach to this type of problem is to utilize a 
theorem of Goodman (20) which states that the solution of any linear 
problem can always be expressed in terms of its adjoint; the adjoint is 
merely another heat conduction problem with time running backwards 
which always has zero initial temperature. The integral method can thus 
be employed indirectly to solve linear problems with nonuniform initial 
temperature; for, by solving the adjoint problem using the integral 
method, and then applying Goodman’s theorem which relates the actual 
problem to its adjoint, the solution to the actual problem may be obtained. 
Ot,her approaches which are applicable to both linear and nonlinear 
problems will be presented in Section VII where generalizations of the 
integral method are presented. 

HI. Ternperature-Dependent Thermal Properties 
When the thermal properties depend on temperature, Eq. (1) is replaced 

by 
pc- aT = d(kE) 

at ax (76) 

Both k and pc are here assumed to be temperature-dependent. At this 
point, we make a transformation of the dependent variable as suggested 
by Goodman (21): 

T 
u = lo p c d T  (77) 

The quantity u is a single valued function of the temperature T.  In  
terms of the new variable, the heat conduction equation, Eq. (76), 
becomes 

- av = - a [cY(U) 21 
at ax 

A. THE SEMIINFINITE SLAB 

The slab is assumed to be initially at zero temperature. At  the surface, 
either the temperature or the heat flux is prescribed: 

T = T , ,  x = O  

arrl 
ax 

k - = -P(t) z = 0 

The designations a and b will continue to refer, respectively, to the case 
of prescribed surface temperature and prescribed surface heat flux. 
[a1 
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In terms of the transformed variable v, the boundary condition becomes 

v = v., x = o  (804 

We will adopt a cubic profile for v. The assumption that v is a poly- 
nomial does not lead to the correct steady state limit; however, the poly- 
nomial representation is adequate provided the thermal properties of the 
material do not vary rapidly with temperature. This characteristic applies 
to most materials. The cubic must take the form 

F6 
v = - ( 1 -  

3ff8 

Upon integrating Eq. (78) from x = 0 to x = 6 and applying Eqs. 
(81)) we obtain the following heat balance integrals : 

d0 
dt 
- = 3asv,/6 

d0 - = F ( t )  
dt 

where, in both cases, 

8 = loa v d x  (83) 

Substituting Eqs. (81) into Eq. (83), and using the results in Eqs. (82), 
we obtain the following differential equations for 6: 

Notice that only the thermal properties a t  the surface are involved 
when the problem is cast in terms of the transformed variable v.  The solu- 
tions of Eqs. (84), subject to the initial condition 6(0) = 0, are 
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Equations (77, 81a, 85a) comprise the solution for prescribed surface 
temperature in terms of quadratures. For prescribed surface heat flux, 
the solution would correspondingly be given by Eqs. (77, 81b, 85b), 
except that the diffusitity a t  the surface as is given in terms of the surface 
temperature which is not yet known. However, us may be determined 
in terms of 6 by setting x = 0 in Eq. (81b). Upon eliminating 6 between 
the resulting equation and Eq. (85b), the following transcendental equa- 
tion for v a  is obtained: 

Once tiI and therefore a, has been determined as a function of time by 
solving Eq. (86), the complete solution is given by Eqs. (77, 81b, 85b). 

As an application of Eq. (%a), suppose the prescribed surface tempera- 
ture is a step, so that v8 is constant. Since as depends solely on us, ay8 is 
also constant, and Eq. (85a) reduces to 

s=-t (87) 

which is a generalization of Eq. (34). Upon substituting into Eq. @la) 
we obtain 

Suppose that pc is constant. By virtue of Eq. (77), v is then proportional 
to tc. At the same time, let li = ko(l + aT/T,) describe the temperature 
variation of the thermal conductivity. It follows that as = k0(1 + a ) / p c .  
Let, y = z v'&2 &, and Eq. (88) then becomes 

This closed form solution is plotted in Fig. 2, and compared with the 
exact solution of Yang (22). Also shown in Fig. 2 is a comparison of 
-d/dy (T /T , )  y = 0 as calculated exactly by Yang, and as calculated 
approximately from Eq. (89). The heat flux a t  the surface is directly 
proportional to this quantity. 

B. OTHER GEOMETRIC CONFIGURATIONS 

The transformation given by Eq. (77) is generally applicable to all 
problems with temperature-dependent thermal properties. For example, 
upon applying the transformation to problems with polar symmetry we 
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obtain 
- a (TV) = 2. (mz) 
at ar 

The finite slab with variable thermal properties and an insulated far 
boundary has been analyzed by Koh (93) using the integral method. 
Koh assumes an exponential profile, although there does not appear to 
be any rationale for so doing. 

Y 

FIG.  2. Temperature profiles in a semiinfinite slab with linear dependence of thermal 
conductivity on temperature-comparison between exact and integral solution using 
cubic profile (21). 

IV. Problems Involving a Change of Phase 
Problems in which melting or freezing occur fall into two categories. 

For some materials, there is no distinct line of demarcation between the 
liquid and solid phases. These materials are called glassy, and the two 
phases are distinguished mainly by a gradual change in the physical 
properties of the material. If the fluid phase can flow, the problem becomes 
one of fluid mechanics with a coupling between the energy and momen- 
tum equations because the viscosity is strongly temperature-dependent 
and increases rapidly into the “solid” phase. Such fluid flow problems 
are beyond the scope of the present article and will not be considered. 
Other materials possess a definite line of demarcation between the liquid 
and solid phases, called the melt line. Typical of such materials are the 
metals and ice. We will deal exclusively with materials of this type. 
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In addition to melting, heated materials may also vaporize by passing 
through a liquid phase or by sublimating, provided the temperature 
becomes high enough or the vapor pressure is low enough. When vapori- 
zation occurs there is always a vaporization line. Examples of all of these 
cases will be presented, and we will concentrate on problems in one 
space dimension. It will be assumed in all problems that the thermal 
properties in each phase are constants, but they will, in general, be dif- 
ferent constants in each phase. Conditions in the solid phase will be 
designated by a subscript 2, and in the liquid phase by a subscript 1. 
The field equation in each phase will be Eq. (1) with the appropriate 
subscript. Throughout these problems, a quadratic profile in each phase 
will be used. Let z = s ( t )  define the location of the melt line. The melting 
temperature will always be taken to be zero, thus, 

T[s(t),t] = 0 (91) 

From a heat balance across the melt line 

ds dTz aT 
ax ax dt - p z L - ,  x = s ( t )  kz-- - kl--' = + 

where L is the latent heat of melting, and the upper sign is to be taken 
for freezing problems and the lower sign for melting problems. This 
equation states, in mathematical terms, that the difference between the 
heat flux entering and leaving the melt line equals the latent heat absorbed 
or emitted. 

Goodman (24) has solved a number of problems involving a change 
of phase, some of which will now be presented. All of these problems 
haw one feature in common: viz., there is a temperature variation in 
only one phase. This feature offers tremendous mathematical simplifica- 
tions in the analysis. Some of the problems are correctly formulated in 
this way, while for others this formulation constitutes an approximation. 
In the latter case, Evans et al. (66) have presented a discussion of the 
effect of the approximation on the meaning of the results. 

A. kIELTING O F  A SOLID WITH STEP I N  SURFaCE TEMPERATURE' 

In accordance with the approximation mentioned above, it will be 
assumed that the solid is a t  the melting temperature. Equation (92) 
then simplifies to 

where A ,  = p L j k ,  and the subscripts have been dropped since there is 

1 The solution is equally applicable to the freezing of a liquid. 
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only one phase. The condition at the surface is Eq. (32). Equations 
(1, 32, 91, 93) constitute a complete statement of the problem. Upon 
integrating Eq. (1) from 2 = 0 to x = s, and applying Eq. (93) we are 
led to the following heat balance integral: 

where 

(94) 

(95) 

Let T be represented by a second-degree polynomial in x.  Two of the 
three conditions required to determine the constants are Eqs. (32, 91). 
The third condition is Eq. (93). But in its present form, Eq. (93) is not 
suitable because the coefficients in the polynomial would involve dsldt.  
In turn, 0 would involve dsldt,  and the heat-balance integral would 
then be a second-order differential equation for s ( t ) ,  whereas there is 
only one initial condition for s, namely, s(0) = 0. To circumvent this 
difficulty, we will cast Eq. (91) into a different form. By differentiating 
Eq. (91) with respect to t we obtain: 

Upon eliminating dsldt between Eqs. (93, 96), it follows that 

rg) 2 = aT 
(97) 

But a partial derivative with respect to time is inadmissable for deter- 
mining the constants in the polynomial because the constants would 
then be determined from a differential rather than an algebraic equation. 
Therefore, we eliminate aT/at between Eqs. (1, 97). The third condition 
then becomes 

With the third boundary condition in this form, the nonlinearity of the 
problem becomes self -evident. 

If the temperature distribution is given by 



THEODORE K. GOODMAX 

the quantities a and b are determined by 

A,cY 
a = - [ l -  

b = -  as + T,  
S 

S2 

where 
2 T,  

= L4z 

Upon substituting this profile into Eqs. (94, 95) we finally obtain the 
following differential equation for s: 

( 102) 
ds 
dt 

6 4 1  - (I + ~ 1 %  + PI 
5 + P + (1 + PI>+ 

s -  = 

The initial condition s(0) = 0 leads to the solution 

s = K d t  
where 

The exact solution is given in the form of Eq. (103) by Carslaw and 
Jaeger (1) .  A graphical comparison of Eq. (104) with the true variation 
between K / 2  4 2  and p is given in (24) snd shows that the error is about 
7% for ,u = 2.8, the largest value of p considered. For smaller values of 
P, the per cent error is less. 

B. MELTING OF A SOLID WITH GIVEN SURFACE HEAT  FLUX^ 

The problem is identical to the preceding one except that the condi- 
tion at the surface, Eq. (32), is replaced by Eq. ( 2 ) .  The heat-balance 
integral becomes 

dt (e + a ~ l s )  = a ~ ( t ) / k  (105) 

where 8 is given by Eq. (95). Upon integrating and applying the initial 
condition s(0) = 0, we obtain 

Once again, we assume T to be in the form of a second-degree polynomial. 
The three conditions for determining the constants are Eqs. (2 ,  91, 98). 
After carrying out the required elementary steps we obtain the following 

[741 
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relationship between the location of the melt line and time: 

where 

The exact solution for F = constant is given in (25) in the form of a 
Taylor series for u in terms of T .  By expanding Eq. (107) in the same form, 
it is shown in (24) that the coefficients of the first four terms of the series 
agree, and that the error in the coefficient of the fifth term is about 4%. 

The temperature-time history on the surface is given parametrically 
by Eq. (107) and the following equation: 

1 1  
AlCY 4 4  
2- T(o t, - - - + - (1 + 4a)M + a/2 

C. MELTING OF A SOLID WITH COMPLETE REMOVAL 
O F  MELT (ABLATION)3 

In the preceding two problems, a temperature distribution was 
assumed to exist only in the liquid phase, and the temperature in the 
solid phase was approximated by a constant. In  the present case, since 
the liquid is immediately removed on formation, there is a temperature 
distribution in the solid phase only, and this does not constitute an 
approximation. 

It is assumed that the semiinfinite solid slab has been heated by appli- 
cation of a constant heat flux F at  the boundary x = 0. At time t = 0 
the melting temperature T = 0 is reached on the boundary, and a t  that 
time the penetration distance is given by Eq. (15). For positive time the 
solid melts, and all the melt is immediately swept away by some undis- 
closed mechanism. (For the case in which the mechanism is aerodynamic 
shear and pressure forces, Goodman (b6), by analyzing the fluid flow 
in the liquid phase, has determined the conditions under which complete 
removal of melt is a good approximation.) The boundary and melt lines 
are now indistinguishable and are both located at  x = s(t). According 
to Eq. (92), the boundary condition is 

dT ds 
dX dt 

F + k - = pL - 1  x = s( t )  

3 The solution is equally applicable to  a sublimating solid with complete removal of 
vapor. 
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Once again, the subscripts have been dropped since there is only one 
phase. The temperature distribution in the solid is represented by a 
quadratic which satisfies Eqs. (5, 6, 91). This leads to the following 
distribution : 

T = 3 6 [ - 2 ( - - - ) + ( ~ ~ ]  x - - s  
8 - s  6 - S  

(112) 

The heat balance integral is obtained by averaging Eq. (1) from s to 
6. After applying Eq. ( l l l ) ,  we obtain 

dt 
where 

0 = T dz 

(113) 

Upon substituting Eq. (112) into Eq. (114)) and applying the result in 
Eq. (113)) we obtain 

==a[ CYF d 6 - s  , ] + ; i i ( l + v l )  ds 

where 
v 1  = apL/kT,  

There are two unknowns in Eq. (115), and consequently another rela- 
tionship between 6 and s is required. This relationship can be obtained 
from the condition at  the melt line. Upon substituting Eq. (112) into 
Eq. (111) we obtain 

ds 2kT, 
dt 6 - S  

p L -  = F - -  

Equations (115, 117) are two simultaneous differential equations for s 
and ( 6  - s). The initial conditions are s(0) = 0, 6(0) = 2T,k/F. Assume 
that this pair of equations possesses a steady state solution, i.e., assume 
dsldt has a constant value w. It follows from Eq. (117) that 6 - s is 
constant, and from Eq. (115), it is seen that 

This value of w is precisely the same as obtained by Landau (27) using 
the exact system of equations. 

To solve the complete transient equations, eliminate ds ld t  between 
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them and let 

The result is a differential equation for {. Let 

The solution of the differential equation is 

Upon substituting Eq. (121) into Eq. (117)) and defining 

we obtain 

(123) 2(1 + 2 v1 v') - 'I S = -$g ( - 2 + 2vl In [ 
Equations (121, 123) are the equations for the melt line in parametric 
form. Landau (87) has obtained the exact solution for the melt line by 
integrating the heat conduction equation numerically; it is impossible 
to distinguish his results, on the scale to which they are plotted, from the 
solution presented here. 

If the applied heat flux is due to aerodynamic friction, and the solid 
sublimates, the gaseous vapor which is produced will mix in the boundary 
layer and have a cooling effect. This results in a modification of the 
boundary condition, Eq. (1 11). By drawing on the literature of transpira- 
tion cooling Adams (28) has shown that this modification manifests itself 
in an effective increase in the latent heat. Otherwise, the problem remains 
the same. Sutton (29) has applied the integral method with the Adams 
modification, and has assumed a profile in the form 

T = -Tm{l - exp [-(5 - s ) / Z ] }  (124) 

It can be shown that the form of this profile approaches the exact steady 
state value in the limit for large time. Hence, this form may be expected 
to be more accurate than the polynomial form. Sutton's solution for the 
location of the melt line is given parametrically by 

s2 = (1 + vl) In Vl' - v 1 ( +  - 1) (125) (1 + Vl)' - 

s = 2- [ v10  - (; - l)] 
1 + v1 
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rrherc, i n  this casc, { is defined to be 

j- = liT,/F% (127) 

Ikonomos (SO) has carried out experiments in a hypersonic wind tunnel 
using teflon and lucite hemispherical models and has obtained good 
agreement with the theoretical values calculated by Sutton. 

Blecher and Sutton (31) have considered the ablation problem with 
a pulselike heat input typical of that experienced by a reentry vehicle. 
By comparing results obtained from the integral method with more 
simple-minded methods (e.g., a quasi-steady approximation), they con- 
clude that all methods will predict the transient ablation rate fairly well, 
but that the simpler methods do not predict the temperature profiles 
correctly. It is difficult to justify this victory for the integral method 
on the basis of this comparison because no exact solution was calculated, 
and also because the integral method itself appears to give spurious pro- 
files for pulselike inputs (see Section VI). On the other hand, Altman 
(32) also considered the ablation problem for pulselike inputs and, using 
polynomial profiles, obtained good agreement with solutions based on 
finite difference calculations. The spurious results which occur for other 
problems with pulselike inputs apparently do not take place in the 
ablation problem; the reason for this remains obscure. 

D. OTHER CASES 
Goodman (24) has presented the solution to two other cases which 

will only be mentioned here. One case is the melting of a solid due to 
aerodynamic heating or radiation. This case is similar to those presented 
in IV,A except that the boundary condition at the surface is given 
by 

aT k - = h[T - To], x = 0 ax 

where h and To are constants. The second case is the vaporization of a 
melting solid. Here the solid is assumed to be at the melting temperature 
and the vapor is immediately removed. Thus, a temperature distribu- 
tion exists only in the liquid phase. Goodman and Shea (33) have con- 
sidered the melting of a finite slab with temperature distributions in 
both phases. At the surface x = 0 the heat flux is specified to be a con- 
stant. The far surface is either insulated or isothermal. Quadratic profiles 
are assumed in each phase, giving rise to six unknown constants. In 
addition, the location of the melt line is also unknown. The seven condi- 
tions which are used to determine these unknowns are : the two boundary 
conditions at either end of the slab; Eq. (91) in both phases, Eq. (92), 
1781 
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and the heat balance integrals in each phase. It is interesting to observe 
that, for the case of the insulated far boundary, the results indicate that 
the temperature in the solid reaches the melting temperature very 
rapidly, thereby justifying the approximation, which was made in Sec- 
tion IV,A that the temperature in the solid is equal to the melting 
temperature from the outset. 

Van der Velden and Schaffers (34) have independently devised a 
version of the integral method and applied it to a freezing problem with 
polar symmetry. They assumed logarithmic type profiles in accordance 
with the rule presented in Eq. (59), and they report that their results 
differ by only a few per cent from more exact results. 

V. Related Methods 
The heat-balance integral technique is not, of course, the only approxi- 

mate method available to the analytic investigator. We will now briefly 
consider some other analytical methods which bear a resemblance to 
the integral method in that they utilize the concept of penetration dis- 
tance whenever appropriate, and that they are applicable to linear and 
nonlinear problems alike. The results of these related methods, when 
applied to some simple cases, will be compared with the corresponding 
results obtained using the integral method. Two such methods will be 
presented: Biot’s method and Shvets’ method. 

A. BIOT’S METHOD4 

Variational principles have been used in mechanics for many years. 
Recently, applied mathematicians have turned their attention to the 
formulation of variational principles in heat conduction. Many varia- 
tional formulations have been published in the decade between 1950 and 
1960 [see (35) for a bibliography]. The formulation of Biot is remarkable, 
however, because it constitutes a thermodynamic analogy to Hamilton’s 
principle in mechanics, and thereby leads to the thermodynamic equiva- 
lent of Lagrange’s formulation of Newton’s laws in terms of generalized 
coordinates. In  a series of elegant papers, Biot has developed and applied 
his variational principle and the Lagrange equations (36, 37, 38, 39, 40, 
41). We are not primarily concerned here with the derivation of the 
method, but, rather, with its application. 

Let H represent a heat flow vector whose time rate of change $I is 
the heat flux across an area normal to H. Conservation of energy then 
requires 

-pcT = div H (129) 
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Let E represent the thermal potential energy, D the dissipation function, 
Qt the generalized force, and qi the generalized coordinate, where 

E = f ;  pcT2dv  

n=?4  I klHlz dv (130) 

I 

The volume integrals are understood to extend to the penetration dis- 
tance for those problems for which the concept of penetration distance 
has meaning. The Lagrange formulation of the thermal balance is 

(131) 

where the dot denotes time differentiation. 

1. The Semiinfinite Slab 

Equation (131) can be applied to solve the problem of a semi-infinite 
slab with constant heat flux F, applied to its surface. Biot has suggested 
that for the boundary condition of prescribed heat flux two generalized 
coordinates be used, one being the penetration distance and the other 
being the surface temperature. One Lagrange equation with respect to 
either coordinate together with a constraint preserving the overall heat 
balance will yield two coupled equations for the generalized coordinates. 
It might be noted that the constraint is identically the heat balance 
integral. .4n alternative approach will be presented in which only one 
generalized coordinate, the penetration distance, appears. The heat flux 
field can be made to satisfy the boundary conditions H ( 6 , t )  = 0 and 
a(O,t) = F if we choose a temperature profile in the form 

H has only one component for a one-dimensional problem, and by apply- 
ing Eq. (129) we obtain 

H = Ft (1 - $)a 
from which the heat flux field becomes 

(134) 
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Upon substituting Eqs. (132-134) into Eqs. (130, 131) we obtain 

“[(%55)6jt + (%2)6*1 = (%ON (135) 

6 = 2.81 (136) 

The solution of this equation is 

The surface temperature is 
3Ft F 

z = ~ = 1.065 - l/& 
PCS k (137) 

Similar analyses can be performed using cubic, exponential, and other 
profiles. It is not always possible to choose a temperature profile which 
enables the heat flux field to satisfy the required boundary conditions. 

TABLE I 
RESULTS FOR CONSTANT FLUX CASE- 

Surface Penetration 
Profileb temperature distance % Difference 

I. Parabolic 
A 1.065 2.81 -5 .6  
B 1.157 2.59 + 2 . 0  
C 1.120 2.68 -0.7 

11. Exponential 
A 1.225 0.816 +8.6  

C 1.152 0.866 +2.3  

A 1.105 3.62 - 2 . 0  
B 1.14 3.52 + 1 . 0  
c 1.123 3.56 - 0 . 5  

B 1.220 0.895 -0 .7  

111. Cubic 

IV. Heat balance integral 
Parabolic 1.225 2.45 +8 .6  
Cubic 1.15 3.45 + 2 . 0  

V. Exact 1.128 

0 Data from Lardner (36). 
b A = Heat flow satisfies flux condition. 

B = Independent generalized coordinate = surface temperature. 
C = Independent generalized coordinate = penetration depth. 

In  this case, one must fall back on the approach which utilizes two 
generalized coordinates. In general the penetration distance will be of 
the form 6 = (-) l/&, and the surface temperature of the form 
z = ( ) ( F / k )  1/d. Table I presents the values of the bracket for all 
possible cases together with the exact solution and the result obtained 
using the integral method. It can be seen that all solutions give results 
which are accurate to within a few per cent. 
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2. Jfel t ing of a Solid with Complete Reinorla1 of Melt  

Biot and Daughaday (41) have used Lagrangian methods to solve the 
problem of the melting solid with complete removal of melt which is 
solved in Section IV,C using the integral r n e t h ~ d . ~  In their analysis, 
Biot and Daughaday assume the slab to be initially a t  zero temperature, 
and the melting temperature is consequently T,, a constant. We shall 
adopt this view. The volume integrals, Eq. (130), must extend from 
.L: = s to x = 6. We choose a cubic temperature profile and let the pene- 
tration distance be the generalized coordinate. 

The heat flow field is obtained by applying Eq. (129): 

( I  38) 

Upon substituting into Ey. (130) we obtain the following Lagrangian heat 
flow equation: 

(140) 

-1 second relationship between s and 6 is derived from the heat-balance 
integral, Eq. (113). Because the initial temperature is zero and the 
melt,ing temperature is T,, Eq. (113) is slightly modified to: 

Whence, 
d 
dt 

f ; T ,  - (6 - S) + 
Equations (140) and (142) must be solved simultaneously for (6 - s) 
and s. The initial conditions are derived from a Lagrange analysis prior 
to melting, specifically the solution II1,C of Table I. It is possible to 
obtain a closed-form solution in parametric form which is similar to that 
obtained using the integral method, but this will not be carried out. 
The numerical results show satisfactory correlation with the exact results 
of Landau (27). 

6 Lardner ( 4 2 )  has carried out this calculation independently. I n  the same report 
Lardner has also used Lagrangian methods to solve the problem presented in Section 
IV,C, and compared the results both with the exact solution and with the solution 
obtained using the integral method. 
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Biot has applied Lagrangian methods to problems with variable ther- 
mal properties, and to problems with a variety of nonlinear boundary 
conditions. He has also generalized the method to those problems for 
which the thermal and elastic behavior is coupled. We will not, however, 
present any additional examples. 

B. SHVETS’ METHOD 

An iteration scheme for solving Eq. (1) has been proposed by Shvets 
(4s). Consider a semi-infinite slab initially a t  zero temperature, and sub- 
jected to a step of unit temperature a t  its surface. Let the nth approxi- 
mation be given by 

n 

T n  = 2 
k = O  

where the partial solutions satisfy 

a2Tk aTk-1 
at 

and the sequence is started by 

(143) 

Define a penetration distance by the condition T(6,t) = 0. Then, To 
must take the form 

To = (1 - 2/6) (146) 

Upon substituting into Eq. (144) and applying the conditions T(6,t)  = 0, 
T(0,t) = 1, we obtain, to the first approximation, 

where the dot denotes differentiation with respect 

(147) 

to at. 
To determine 6, we apply Eq. (5 ) ,  which leads to the following equation: 

ss = 3 (148) 

6 = 2.45 2/2 (149) 

The penetration distance thus becomes 

and the surface heat flux becomes 

0.61k 
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As noted below Eq. (35)’ the exact solution is of the same forni, except 
that the numerical factor 0.61 is replaced by 0.564. Shvets’ method may 
be carried out to higher approximations, resulting in higher order dif- 
ferential equations for 6 and polynomial profiles of higher degree. The 
differential equation for 6 is always determined by applying Eq. (5)  
after all the partial solutions have been obtained. 

Suppose we wish to apply the same technique to a semiinfinite slab 
for which the surface heat flux is specified as in Eq. (17). Squire (44) 
has discussed the application of the Shvets method to this problem. 
The surface temperature z is now unknown, and T o  may take any one 
of three forms : 

7’0 = r (1  - L / 8 )  (151a) 

2’” = f(. - 6) (151b) 

To = z - f x  (151c) 

Thus, there are three possible ways to proceed. Forms a and c imply a 
two-parameter profile, the parameters being the surface temperature z 
and penetration distance 6. For form b, there is but a single parameter: 
the penetration distance. The possibility of having three choices of profiles 
and procedures arises here for the same reason that it arose in using 
Lagrangian methods. 

In procedure (a) T satisfies the conditions Tl(0,t) = 0, 2 ‘ 1 ( 8 , t )  = 0. 
Two simultaneous equations for the two parameters are derived by 
applying the boundary conditions Eqs. (5 ,  17). In procedure (b) TI 

satisfies the conditions - - (0,t) = 0, Tx(6,t) = 0. The equation for 

the penetratioii distance is derived by applying the boundary condition 
Eq. (5). In procedure (c) T satisfies the conditions Y’l(0,t) = 0, 
aT,  - (0,t) = 0. Two simultaneous equations for the two parameters are 

derived by applying the boundary condition T(6,t) = 0 and Eq. (5). 
f’or constant heat flux F ,  the penetration distance will take the form 

6 = ( ) & and the surface temperature will take the form 

a T ,  
ax 

ax 

z = ( ) ( F / k )  4 2  
Table I1 presents the value of the brackets for the three possible cases 
together with the exact solution and the results obtained using the inte- 
gral method. It can be seen that the results obtained using Shvets’ 
method for constant heat flux are not very accurate. This is in contrast 
to the results obtained using Shvets’ method for the step in surface 
temperature wherp the accuracy was quite acceptable. Of course, higher 
order approximations are available in order to improve the accuracy, 
1841 
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TABLE I1 
RESULTS FOR CONSTANT FLUX CABE 

Surface Penetration 
Solution temperature distance % Difference 

Case a 1.000 2.000 - 13 
Case b 0.707 1.414 - 37 
Case c 1.000 2.000 - 13 
Heat-balance integral 

Parabolic 1.225 2.45 4-8.6 
Cubic 1.15 3.45 +2.0 

Exact 1.128 

although they soon become rather tedious. The method can, of course, 
be used to solve nonlinear problems, and Shvets himself has done so by 
applying it to  solve some boundary layer problems, achieving acceptable 
accuracy in the first approximation. 

VI. Pulselike Inputs 
Although there are many problems which can be solved successfully 

by using the integral method, there is a class of problems for which the 
method provides spurious answers. After we discuss the reason for the 
failure of the integral method in solving this class of problems we will 
present the extended integral method which is a method specifically 
designed to be applied in cases where the ordinary integral method is 
inapplicable. 

In order to  appreciate the limitations of the integral method, consider 
Eq. (12) which expresses the surface temperature in terms of a general 
time-dependent surface heat flux for a semiinfinite slab. We will assume 
T ,  = 0 with no loss in generality. Suppose the heat flux F ( t )  to be pulse- 
like, i.e., suppose it rises to  a maximum, falls to zero, and then remains 
zero. According to  Eq. (12) the surface temperature rises to  a maximum 
some time after F,.,, falls to  zero at  the same moment that F becomes 
zero (heat shut-off), and remains zero. However, the exact solution to 
this linear problem is known, and according to the exact solution, or 
by physical intuition, we know that for a pulselike surface heat flux, the 
surface temperature must rise to a maximum and then decay gradually, 
approaching zero asymptotically. Thus, it is seen that Eq. (12) deviates 
from the correct value sometime after Fmax,  and is completely spurious 
just prior to heat shut-off. The same type of failure would occur if a 
pulselike surface temperature were prescribed and the surface heat flux 
were sought. 

~ 5 1  
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The reason for the failure of the method is clear: the assumed tempera- 
ture profile, Eq. (19), does not resemble the actual profile when the sur- 
face heat flux is pulselike. According to Eq. (19), the profile is monotonic 
with no inflection points. This is a reasonable profile for an increasing 
heat flux. When the heat flux is pulselike, on the other hand, the profile 
will tend to be nonmonotonic after F,,,, and there is no way in which 
the form assumed in Eq. (19) can accommodate itself to this tendency. 

What is required is a temperature profile which possesses two (or 
more) time-dependent parameters to be determined by two (or more) 
conditions. With this view, the heat-balance integral would be one such 
condition. The totality of conditions would then result in sufficient 
simultaneous equations to determine all the parameters. 

Goodman and Ullah (45) have developed a two-parameter method in 
which one parameter is the penetration distance of a fictitious problem 
and is known, while the other parameter is determined from the heat- 
balance integral. Thus, the two parameters are determined successively 
rather than simultaneously, and the heat-balance integral alone is SUE- 
cient to determine both the parameters. This technique will become 
clearer by the presentation of a simple example. 

A. SEMIINFINITE SLAB WITH A PULSELIKE HEAT FLUX 

Consider a semiinfinite slab initially a t  zero temperature, and assunie 
that the temperature satisfies Eq. (1) together with the boundary condi- 
tion, Eq. (2). A sketch of F(t )  is shown in Fig. 3 as the curve ABCD, 

FIG. 3. Sketch of pulselike heat flux. 

and the pulselike character of this function will be noted. For simplicity, 
we will use quadratic temperature profiles. Then, for 0 < t < t,,,, the 
heat flux is increasing, and the solution presented in Section I obtains. 
In the interval t > t,,, we assume the temperature to consist of two 
parts : 

T(Z,t) = Tl(Z,t) + T*(x,t) (1 52) 
f861 
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where T1 satisfies the conditions of a fictitious problem with boundary 
condition 

(153) 
aT 

k- = - F m a x ,  x = 0 ax 

In other words, T1 is the analytic continuation of the solution obtained 
in the first interval assuming that the heat flux follows the curve ABC' 
which is monotonic. We denote the penetration distance associated with 
TI by 81; then, an analytical expression for a1 can readily be obtained 
from Eq. (10): 

We now assume that the surface heat flux associated with T 2  is negative 
and monotonic and begins at  t,,, in such a way that the total heat flux 
follows the curve ABCD, which is the true boundary condition. Asso- 
ciated with the temperature T 2  is a second penetration distance a2 < a1 
which begins to propagate at  t = t,,,. In  other words, T 2  must take the 
form 

= o  
We now calculate 

2 > 8 2  

The heat baIance integral gives 

or 

t l = f l F d t  

Upon equating Eq. (156) and Eq. (158) and eliminating 81 with the aid 
of Eq. (154), we obtain the value of a2:  
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Hence, the surface temperature for t > t,,, is given by 

t 

- ( F m a r  - F)' (lm.x ( F m a x  - P )  dt) 'Z] ,  t > tmsx (160) 

For t > to, the surface temperature can be obtained by setting F = 0 
in Eq. (160). This results in 

For large time Eq. (161) yields the following asymptotic formula: 

If, instead of assuming quadratic profiles, we assume cubic profiles 
which satisfy the smoothing condition, Eq. (18), the results given in 
Eqs. (16e l62)  mill remain unaltered except that the numerical factor 
4% will be replaced by a. 

Figures 4 and 5 show the surface temperature obtained by using the 
extended integral method for parabolic and triangular heat pulses. The 
exact solutions of these problems are also known, and the comparisons 
demonstrate satisfactory agreement. 

If the thermal properties are temperature-dependent, the transforma- 
tion, Eq. (77), can be applied. I n  this case, the fictitious solution c1 
cannot be obtained explicitly because it depends on the diffusivity which, 
in turn, depends on the actual temperature, not the fictitious temperature. 
Nevertheless, the analysis can be carried out symbolically, in which case 
it is found that for t < t,,, the solution is given by Eq. (86), and for 
t > t,,,, the solution is given by 

where quadratic profiles have been assumed. The effect of using cubic 
profiles can again be obtained by replacing a by m. Equation 
I881 
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Legend 
-Quadratic 

Cubic 
Exact 

- -- 
-.-. 
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14 h\. 0 t0/2 to 

0 0.5 1.0 1.5 2.0 2.5 3.0 
t / t o  

FIG. 4. Temperature time history at the surface of a semiinfinite slab with parabolic 
surface heat flux-comparison between exact and integral solution with two different 
profiles (46) .  

1.6 

1.41 
1.2 - 

0 0.5 1.0 1.5 2.0 2.5 3.0 
t/t0 

FIG. 5. Temperature time history at the surface of a semiinfinite slab with triangular 
surface heat flux-comparison between exact and integral solution with two different 
profiles (@). 
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(163) is the generalization of Eq. (160) for temperature-dependent ther- 
mal properties, and is a transcendental equation to be solved for the 
surface temperature. 

B. SEMIINFINITE SLAB WITH PULSELIKE HEAT GENERATION 

We will reconsider the problem presented in Section II,A,3, and 
generalize it in two ways: the thermal properties will be taken to be 
temperature-dependent, and the cumulative heat generated, Q(t ) ,  will 
be taken to be pulselike, so that heat is first added and then withdrawn. 
Equation (37) is replaced by 

Upon applying the transformation, Eq. (77), we obtain 

a v  a 
at ax - - - (&$) = q(t) 

The problem will now be transformed into one satisfying a homogeneous 
equation with a nonhomogeneous boundary condition. Let 

2’ = Q + vi (166) 

The quantity v‘ then satisfies Eq. (78) with CY dependent on v, and the 
boundary condition becomes 

v’(0,t) = -&(t) (167) 

In  the interval before Q = Qmax, the ordinary integral procedure is valid, 
and the profile is given by 

U’ = -Q( l  - s/S)~ t < tmax (168) 

The heat balance integral becomes 

av’ 
ax lo” v’ dx = -a1 - (0,t) 

This yields a differential equation for 6, the solution to which is 

It is to be noted that since the surface temperature of the original prob- 
lem for u is constant, CY. is constant. 
“1 
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When 1 > tma, the extended integral method must be used. Accord- 

(171) 

where v1 satisfies the conditions of a fictitious problem which is the 
analytic continuation of the solution given above with Q = &ma,. The 
penetration distance 61, which is associated with 01, is obtained by sub- 
stituting Q = Qmax in Eq. (170): 

ingly, let 
v' = V l ( X , t )  + 02(z,t) 

The profile for v2 must then be 

02 = (Q - Qmax)[l - x/62I3 5 < 8 2  

= o  x > 62 (173) 

where b2 begins to propagate a t  t = t,,,. The heat balance integral is 
obtained by integrating Eq. (78) from 0 to 61: 

Upon subtracting Eq. (169) (with 6 = 61, v' = 81) we obtain a differential 
equation for 6 2  the solution to which is 

The complete solution in the second time interval is then given by 

v = -Qmax(l - $/ad3 - (Q - Qmax)(1 - x / 6 d 3  + Q (176) 

where it is understood that the first term vanishes for x > 61, and the 
second term vanishes for 2 > 62. The solution after heat shut-off can 
readily be derived as the analytic continuation of Eqs. (175, 176), by 
setting Q = 0. The surface temperature gradient is shown plotted in 
Fig. 6 for the triangular heat pulse which is sketched in Fig. 5. In per- 
forming these calculations, constant thermal properties have been 
assumed in order to be able to compare the results with those of an exact 
solution which is also shown. The comparison indicates that the approxi- 
mate solution is quite satisfactory. Some temperature profiles for the 
interval t o / 2  < 1 < t o  are shown plotted against the dimensionless dis- 
tance E = x / 2  fi in Fig. 7. Note the reverse profiles for the larger 
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FIG. 6. Surface temperature gradient for semiinfinite slab with triangular cumulative 
heat generation-comparison between exact and extended integral solution. 
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values of t, and also note how well the extended integral method repre- 
sents such profiles. 

It might be noted in passing that Eq. (164) bears a resemblance to 
the momentum equation which governs a steady incompressible laminar 
boundary layer. In  this analogy, x and t become the normal and longi- 
tudinal coordinates, respectively, T becomes the longitudinal velocity, 
k becomes the coefficient of viscosity, p is the density, Q becomes the 
pressure gradient (Q becomes the pressure), and the condition of zero 
surface temperature becomes the no-slip condition. Furthermore, in order 
to cast the momentum equation into the form of Eq. (164) it is necessary 
to make an Oseen-type approximation in which momentum is transported 
with an average velocity c, and the normal velocity is identically zero. 
The point of zero surface heat flux, which is marked with an asterisk (*) 
in Fig. 6, then corresponds to the point of separation in the analogy, and 
a condition for separation can be determined by performing elementary 
operations on Eq. (176)) and applying Eqs. (172, 175). The result is 

(177) 

A superior separation condition can undoubtedly be derived by applying 
the extended integral method to the exact boundary layer conditions. 
Furthermore, the extended integral method also gives promise of being 
able to predict the flow in the separated region itself. But these problems 
are beyond the scope of the present article. 

C. FINITE SLAB WITH TRIANGULAR HEAT PULSE 

Suppose we apply the triangular heat flux as sketched in Fig. 5 to 
the end x = 0 of a finite slab of length 1 which is insulated a t  the far end. 
We assume to/2 to be greater than the time needed for the thermal 
layer 6 to become equal to 1. Assuming that the profiles are quadratic, 
it is seen that as long as 6 < 1 the solution is given by Eq. (12) which, 
for zero initial temperature, becomes 

where ts is the time at which 6 = I, and is given by 

ts = 12/3ff (179) 

When t = ta the temperature distribution in the slab is given by 

A1 
6ak 

T(z,t) = ~ (z - Z)Z 
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which serves as the initial condition for the next time interval. For 
t > t a  the solution is affected by the insulation condition at x = 1 :  

aT 
dX 
- = o ,  s = z  

The heat balance integral can be derived in the next time interval, and 
the temperature profile turns out to be 

At A at 
T ( x , ~ )  = - (X - Z)2 + 7 ( t  - ta), 2kl 2A1 ta 5 t 5 to/2 (182) 

For t > to/2 the heat flux starts decreasing, and it is necessary to use 
the extended integral method. Proceeding as in the previous examples, 
we seek the solution T of a fictitious problem for which F = F,,,, = At&, 
which is the analytic continuation of Ey.  (182). The solution is 

The solution to  the actual problem is then assumed in the form 

T = Tl(x, t )  + T2(x,t) t > to/2 (184) 

For time immediately subsequent to to/2 there is a penetration distance 
associated with TZ, and T z  takes the form 

The heat balance integral then yields 

and the complete solution is given by 

Ato 
2x2 2kl T(x,t)  = --;- (x - 2 ) 2  + - 

- A ( t  - t o / 2 )  (z - d 3 a ( t  - t o / 2 ) ) 2  (187) 
2k d 3 a ( t  - to/2) 

As soon as Zi2 = 1, the form of Tz assumed in Eq. (185) becomes inappro- 
priate because the boundary condition a t  the far end then begins to 
affect it. The time a t  which this occurs is denoted by t d ? ,  and is given by 

ta, = t a  + t o p  

I941 
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When t > ta2, Eq. (185) must be replaced by 

where a is an unknown parameter to be determined by applying the 

Legend 

FIG. 8. Temperature time history at the surface of a finite slab with the triangular 
surface heat flux sketched in Fig. 5 and insulated far end-cornparison between 
exact and extended integral solution (ato/2le = 0.6) (46). 

heat balance integral. The solution turns out to be 

Since TI and Tz both satisfy the same boundary conditions applied at  
the same place, namely Eqs. (2 ,  Ml), it is not really necessary to use the 
extended integral method to derive Eq. (190); the ordinary integral 
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method suffices. However, the initial condition for the solution in this 
interval must be taken from Eq. (187) which does require the extended 
method for its derivation. 

When 1 > to the heat is shut off and T becomes constant and uniform: 

t > t o  
Ado2 T=- 

4kE 

h plot of the surface temperature, obtained from Eqs. (178, 182, 187, 190) 
is presented in Fig. 8 for the special case (rto/2Z2 = 0.6. The exact solu- 
tion obtained from (&) is also shown for purposes of comparison, and 
agreement is seen to be quite satisfactory. 

D. COXCLUDING REMARKS 

The extended integral method has been presented and applied to a 
number of cases involving pulselike inputs. The same technique can be 
used to generate solutions to problems for inputs which are oscillatory 
in character simply by allowing a new penetration depth to begin propa- 
gating at each maximum and minimum of the input. I n  practice, the 
required mathematical manipulations become quite tedious, and no 
demonstration will be given here. 

It might be pointed out that the extended integral method is eminently 
suited to problems which involve melting and subsequent refreezing, 
such as those that arise during welding. 

VII. Improving the Accuracy 
Every solution thus far obtained using the integral method, for which 

an exact counterpart was available, has been seen to contain small but, 
irrevocable errors in the final numerical results. The question naturally 
arises as to how to eliminate, or at least reduce, these errors and thereby 
improve the accuracy. One simple and obvious way which might be used 
to improve the accuracy is to increase the order of the polynomial used 
to represent the profile. Each additional parameter which is thereby 
introduced is then determined from an additional derived constraint 
applied a t  the ends of the profile, The smoothing condition, Eq. (18), 
is typical of such derived constraints. Goodman (21) has applied this 
concept to solve a nonlinear problem, and has demonstrated the improved 
accuracy achievable using a fourth-degree polynomial over that which 
can be achieved using a third-degree polynomial. The flaw in this concept 
is that there is no a priori guarantee that increasing the order of the 
polynomial will improve the accuracy. Although the accuracy is fre- 
quently improved with this technique, it can be demonstrated, none the 
less, that there are cases for which it actually worsens. An example is 
LY61 
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the problem presented in Section II,A,2; in this case a quadratic profile 
provides a more accurate surface heat flux than a cubic profile. However, 
because the concept is simple and easy to  apply, cubic profiles are gen- 
erally to be preferred to quadratic profiles, and quartics to cubics. 

A much better way to improve the accuracy is to use the iteration 
scheme of Chambre which has been presented in Section II,A,l. In 
this case we are guaranteed improvement by virtue of the convergence 
proof. However, Chambre’s method has two unattractive features. The 
first of these is that the method can be used only for those cases for which 
an integral equation can be derived. This restricts it to problems with 
a linear field equation, and allows nonlinearities to appear only in the 
boundary conditions. The second unattractive feature is that an integral 
equation must be solved instead of a differential equation. An integral 
equation is more awkward to solve on a high-speed digital computer 
than a differential equation, principally because the integral equation 
contains both fixed and running variables. 

We will now present three techniques for improving the accuracy of 
a solution obtained using the integral method. These techniques can be 
applied when the nonlinearities appear in the field equation or the bound- 
ary conditions or both. The details of these techniques can become rather 
involved and, due to space limitations, they can be presented only in 
broad outline. In each technique the improvement is effected by solving 
an initial value problem involving ordinary differential equations. Such 
problem are readily adapted to high speed computers. 

A. THE METHOD OF WEIGHTED RESIDUALS 

Consider a field equation described by a nonlinear operator L: 

L(T)  = 0 

Specifically, of course, we are concerned with some form of the heat 
equation. An approximate solution, T,, when substituted into the left- 
hand side of Eq. (192) will result in a residual en, 

We seek a solution which makes en small in some sense. We multiply it 
by a weighting factor wj, and average over-all space. Upon setting the 
average equal to zero we obtain 

$wjL(T,) dv = 0 j = 1,2, . . . n (194) 

Our solution will be made to satisfy Eq. (194) instead of Eq. (192). 
The form of T, will be taken in such a way as to  satisfy the boundary 
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conditions and to contain n unknown parameters C,,. By choosing n 
different weighting factors, there mill result precisely the same number 
of equations as unknowns. 

For different selections of the forms of the weighting factor, the 
method is known by different names. When w, = A ( z  - z j )  [A is the 
Dirac delta function], the method is called collocation. If T ,  is a linear 
function of the parameters C,,, and wj = aT,/aC,,, the method is called 
Galerkin's method. When w, = xj or Tnf it is called the method of 
moments. For the special case of one parameter and w1 = 1, Eq. (194) 
becomes the heat balance integral, and the method of weighted residuals 
reduces to the integral method. We will be concerned primarily with 
the application of these methods to nonlinear problems. 

1. The Method of CollocatioiA 

Collocation is probably the crudest of all methods for solving a dif- 
ferential equation, and is not really a technique for improving the inte- 
gral method. Nevertheless, i t  is a special case of the method of weighted 
residuals, and it does have inherent within i t  the possibility for self- 
improvement. The collocation method can be applied to problems having 
nonzero initial conditions as will be demonstrated. If the boundary condi- 
tion is such that the temperature is specified, then no collocation point 
may lie on the boundary. Otherwise the location of the collocation points 
can be freely chosen. To demonstrate how the method of collocation is 
to be applied, we will present an example. 

Consider a finite slab of length 1. The temperature obeys Eq. (1) 
together with the boundary conditions 

aT aT 
- (0,t) = 0, - (Z,t) = -f(Tl,t) ax ax 

where Tl is the temperature at z = 1. The initial temperature distribu- 
tion is T(s,O) = g ( x ) .  The boundary condition at s = I is seen to be 
nonlinear. Assume a biquadratic profile which automatically satisfies the 
symmetry requirement imposed by the boundary condition at  x = 0: 

T = A + Bx2 + Cx4 

By satisfying the condition at  x = 1 the parameter B can be eliminated, 
with the result, 

(195) 

There are two remaining parameters in Eq. (196), and therefore two 
collocation points are required. We arbitrarily select these points to be 
1981 
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x = 0 and x = 1. The second derivative of T evaluated at  each colloca- 
tion point is: 

(S) = - (q + 4cp) 
8x2 -o 

(197) 

The temperature evaluated at  each collocation point is 

To = A (199) 

Ti = A - f(Tl,t)E/2 - CL4 (200) 

where To is the temperature at  x = 0. We now satisfy Eq. (1) at each 
of the collocation points. Thus, substituting Eqs. (197, 199) and then 
Eqs. (198, 200) into Eq. (l), we obtain the following two ordinary dif- 
ferential equations : 

Eqs. (200-202) constitute a set of three simultaneous equations for 
the three unknowns A ,  C ,  T1. The two initial conditions which must be 
satisfied are 

To = A = g(0); TI = g(2) (203) 

It is seen that the original distribution of temperature is accounted for, 
but only very crudely. 

Consider the special case f = constant, g(x)  = 0. In this case, all of 
the steps can be carried out analytically, and the final result is 

T=- 1 - 3(z/E)2 - J6[1 - S(X/Z)~ + ~ ( X / Z ) ~ J ~ - - ~ ~ ~ ~ ~ ~ ' )  (204) 

The exact solution to this problem is given on p. 112 of (1). A comparison 
shows that the underlined terms are reproduced exactly, and we may, 
therefore, expect the longtime solution, as obtained by the method of 
collocation, to  be quite accurate. The remainder of the exact solution is 
comprised of a series of eigenfunctions. The f is t  eigenvalue is -r2a/12 
which is approximated in Eq. (204) by - 12a/Z2. The first eigenfunction 
is 1/r2 cos rx/Z which is approximated in Eq. (204) by g [ l  - 6 ( ~ / 1 ) ~  + 
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3 ( ~ / 1 ) ~ ] .  Plots of the approximate and exact first eigenfunction are pre- 
sented in Fig. 9. 

The early time solution, obtained by the method of collocation (or 
by any form of the method of weighted residuals, for that matter), will 
never be as accurate as the longtime solution. This shortcoming can be 
overcome by using the concept of penetration distance for those problems 
with zero initial temperature. With this view, the time domain will always 
be divided into two intervals: the interval before the penetration dis- 
tance reaches the far end, and the interval after this occurrence. As 

I 
- 0 4 '  

FIQ. 9. Approximate and exact first eigenfunction for a slab with constant surface 
heat flux and insulated far end. 

forfeit for the improved accuracy in the first time interval, the solution 
in the second time interval will be less accurate than the solution obtained 
without using the concept of penetration distance. 

We can, of course, improve the overall accuracy by including addi- 
tional collocation points. Suppose, for example, we add another term, 
Dxo, to  the temperature profile in Eq. (195). We can now collocate a t  
the interior point x = E/2 as well as a t  the boundaries. This results in 
an additional differential equation, and, for the case f = constant, g = 0, 
we obtain approximations to the first two eigenfunctions. Furthermore, 
the accuracy of the first eigenfunction and eigenvalue is improved over 
that given in  Eq. (204). To this approximation, the first two eigenvalues 
~ 3 ~ 0 1  
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are -9.50a/lP and -5O.5a/PJ which are to be compared with the exact 
valuea --n2a/l' and -4rza/la, respectively. The additional collocation 
point also allows for an improved representation of the initial temperature 
distribution. It can be seen that the more collocation points, the better 
the representation of the solution. Clearly, this method is not restricted 
to problems in one space dimension. However, in two space dimensions 
it becomes more imperative to saturate the spacial domain with colloca- 
tion points. 

In  one dimension, the method of collocation is analogous to the prob- 
lem of curve fitting, where the fit is effected by compelling the rtssumed 
analytical representation to pass through the true curve at  a specified 
number of points. 

2. The Method of Moments 

An early, yet quite sophisticated application of the integral method 
to solve the nonlinear heat conduction equation is presented in a paper 
by Fujita (47) who credits Yamada (48) with the original conception. 
Consider the one-dimensional heat equation with temperaturedependent 
properties, and let wj = zj in Eq. (194). If the spacial domain is the 
interval a < z < b, Eq. (194) becomes 

lab zjL(Tn)dz = 0, j = 0,1,2, . . . n (205) 

By virtue of the theorem of moments, any function Tn which satisfies 
this set of n equations makes L(T.) vanish at  least n times in the interval 
a < x < b. Hence if T ,  further satisfies any given initial or boundary 
condition, such a function may be considered to be an approximate 
solution of Eq. (192), and we may improve the accuracy by making n 
moderately large. In practice, of come, n is limited because the calcula- 
tions become too tedious. The caae n = 0 is identically the integral 
method which, as has been amply demonstrated, yields reasonable 
accuracy whenever it is applied to problem with monotonic inputs. 

It has been stated previously that the accuracy of a solution obtained 
using the integral method might be improved by increasing the order 
of the polynomial used to represent the profile and applying derived 
constraints a t  the ends of the interval. However, as was pointed out, 
there are caaes for which the accuracy actually worsens using this pro- 
cedure. On the other hand, suppose that we increase the order of the 
polynomial and only use the natural constraints. The additional param- 
eters can then be determined by using the higher moments. Thus, by 
virtue of the theorem of moments, we can expect an improved solution. 

For example, for the case of temperature-dependent thermal properties, 
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Eq. (78) is the basic field equation. Then, for j = 1 the weighting factor 
is z. After integrating by parts we obtain 

a / ,  d a  x v d x  = - / , ' a g d x  

where a semiinfinite slab has been assumed, and we have utilized the 
concept of penetration distance. Equation (206) together with the usual 
heat balance integral will permit the determination of two parameters 
in the profile. Notice that in this approximation, the variation of the 
diffusivity throughout the slab appears, and not merely the diffusivity 
a t  the surface. 

Fujita has used the method of moments to solve the heat equation 
with a linear dependence of thermal conductivity on temperature. Ini- 
tially, the slab is a t  zero temperature. He divides time into the usual 
two intervals and employs the concept of penetration distance. The 
procedure is straightforward and will not be presented here inasmuch 
as Fujita's complete analysis has been reproduced by Crank (43) in a 
readily accessible reference. It is interesting, however, to compare 
Fujita's constant diffusivity result in the first interval with the result 
using only the heat balance integral and a quadratic profile. The latter 
result for a cubic profile is presented in Section II,A,2, and it is shown 
there that the surface heat flux is proportional to the numerical factor 
502. For a quadratic profile, the factor is .576. Fujita also obtains .576 
using zeroth and first moments and a cubic profile. Thus, the loss in 
accuracy which occurs in going from a quadratic to a cubic profile in the 
earlier method does not take place with the method of moments. 

Suppose the initial temperature were not zero. I n  this case the concept 
of penetration distance cannot be applied. However, as in the method of 
collocation, we can account for nonzero initial conditions by abandoning 
the concept of penetration distance; but, by doing so, we will forfeit 
some accuracy in the early time. If the initial temperature is T(z,O) = g ( x ) ,  
then, upon applying the method of moments, we obtain 

jab x jT(x ,O)  dx = s j g ( x )  d x ,  j = 0, 1, 2, . . . n (207) 

These equations can be used to generate sufficient initial conditions for 
all the parameters. 

Another possible way to apply the method of moments is to weight 
the equation with the dependent variable instead of the independent 
variable : 

/ab 

[ab r r j ~ ( ~ )  dx = 0, j = 0, 1 ,2 ,  . . . n (208) 
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The advantage that Eq. (208) has over Eq. (205) is that the differential 
operator is weighted most where the temperature difference from ambient 
is greatest. Thus, regions of greater activity are considered to be more 
important than regions of lesser activity. As an example, for the case of 
temperature-dependent thermal properties, Eq. (78) is the basic field 
equation. Then for j = 1, we take the weighting factor to be v. After an 
integration by parts, we arrive at  

where a semiinfinite slab has been assumed and we have utilized the 
concept of penetration distance. Equation (209) together with the usual 
heat balance integral will permit the determination of two parameters 
in the profile. This two-parameter technique was introduced by Tani 
(60) to solve a boundary layer problem. As in the case of Eq. (206), 
the variation of the diffusivity throughout the slab appears, and not 
merely the diffusivity a t  the surface. 

3. Gulerkin’s Method 

Galerkin’s method is another variation of the method of weighted 
residuals and is mainly applicable to linear problems. It can be applied 
with ease to complicated two- and three-dimensional regions, and to 
cases where the thermal properties are neither isotropic nor homogenous. 
A presentation of the Galerkin method as applied to slabs is given by 
Schmit (61). A proof of the convergence of the method is given by Green 
(62). We will illustrate the method by applying it to solve for the tem- 
perature in a circular region of radius a initially a t  temperature p ( r ) .  
At the boundary r = a the temperature is maintained a t  T = To. We 
assume a solution in the form 

n 

T = To + 2 4dt)gdr) (210) 
1 

where gk(u) = 0 so as to  satisfy the boundary condition. The temperature 
satisfies Eq. (56). Upon multiplying by gj(r) and applying the condition 
that the weighted - sesidual must be zero, we obtain 

/o” gj(r) [ a  2 ( r  g) - r $1 dr = 0 

If Eq. (210) is substituted into Eq. (211), and the h s t  term is integrated 
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by parts, I\-? obtain 

where the prime denotes differentistion. 

resulting in 
The initial condition is satisfied by setting T(r,O) = p ( r )  in Eq. (210), 

TO -k 2 #'k(0)gk(r) = p(r> (213) 
1 

Upon multiplying Eq. (213) by rg,(r) and integrating over the interval, 
we obtain 

Equation (2 l a j  is an eigenvalue problem. The characteristic numbers 
and vectors can be obtained in standard fashion by letting 4 k  = AkeO'. 
Equation (214) represents n simultaneous equations for the n initial 
values &((I). If the functions 91; are orthogonal, Eq. (212) will appear 
in canonical form; that is, the derivatives will be solved for in terms of 
other quantities; a t  the same time, in Eq. (214), the initial conditions 
will be given directly. 

Suppose we choose n = 1, and select the function g1 to  be 

ffl = (9 - US) (215) 

This selection does not comply with the form suggested by Lardner and 
Pohle for problems with polar symmetry (see Eq. (59)). However. 
Lardner and Pohle's rule must be obeyed only when the concept of 
penetration distance is being adhered to, which is not the case here. 
With g1 given by Eq. (21.5), Eq. (212) becomes 

(216) 
a2 

41' i + a41 = 0 

Upon choosing p ( r )  = 0, Eq. (214) becomes 

To at - + #do) s = 0 

The solution is, therefore, 
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Upon substituting into Eq. (210), the temperature is seen to be 

T = T O  - %To(1 - ‘1 as e-6at’mr 

Figure 10 shows the axis temperature as obtained from Eq. (219) and 
compares it with the exact solution. As in the other forms of the method 
of weighted residuals, the errors are seen to be largest for early time. 

? 

t-“ 
: - 

41/02 

-0.5- 

FIG. 10. Axis temperature time history for B circular region of radius a with constant 
surface temperature-comparisn between exact and Galerkin’s solution. 

These errors can be reduced by using the concept of penetration distance 
[for p ( r )  = 01. For a one-parameter profile, such as the one assumed in 
the foregoing example, Galerkin’s method reduces to the equation of 
the first moment as exemplified by Eq. (209), except that in this case it 
must be modified to account for polar symmetry. For constant thermal 
properties the result is 

aT r (gy dr (220) 
ar 

rT2 dr = aToa - (a) - a 

The appropriate one parameter profile which satisfies Lardner and Pohle’s 
[1051 
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rule for problems with polar symmetry is 

The carrying out of the solution is left to the reader. 

B. THE METHOD OF YAM 

In a series of gapers, K. T. Yang (53, 54, 56, 56) has developed and 
demonstrated an improved integral method, and also an error criterion. 
He has applied the improved integral method to boundary layer problems. 
steady convection problems, and unsteady conduction problems. The 
final formulation of the improved method is presented in (56), and the 
description which follows is taken from that paper. We will present 
the method exclusively in the context of unsteady heat conduction. 

The basic aini of the improved integral method is to use the solution 
obtained from the heat-balance integral to achieve an improved profile. 
Then, having improved the profile, we can solve the heat-balance inte- 
gral over again. In  theory, the procedure may be repeated as many times 
as desired. After each iteration, a certain quantity J is calculated. J is 
defined in such a way that if the solution were exact, J would be zero. 
By monitoring the magnitude of J at each iteration, we can discover 
how much our solution has improved. At first glance, it would seem to 
be superfluous to  have such an error criterion, because it might be thought 
that the quality of the solution after n iterations could be judged by 
observing whether or not there was a large change from one iteration to 
the next. But, in practice it becomes necessary to  stop after one iteration, 
and we would like some indication of the improvement effected by this 
iteration. Hence, the error criterion is an important part of the method. 

With these preliminary remarks out of the way, we can now describe 
the improved integral method in detail. As developed originally by Yang, 
the method is to be applied only to those cases for which the concept 
of penetration distance has meaning, i.e., only to semiinfinite slabs with 
uniform initial temperature. We will restrict our attention to such cases. 

Consider the heat equation L(u) = 0. Averaging from zero to  infinity 
we obtain 

where 
I1 + I11 = 0 (222) 

(223) 

and rl = x / 6 .  To determine the basic integral solution, we let 7' be 
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described by a polynomial (say) in the interval 0 _< q I 1, and T = 0 
in the interval 1 5 7 I w .  Thus, 111 is zero in the first iteration, and 
Eq. (222) defines the usual heat-balance integral from which the basic 
integral solution may be obtained. 

In the improved integral procedure and in subsequent iterations, the 
thickness 6 ( t )  is treated as an auxiliary function defined by the solution 
to  Eq. (222) with III included. The improvement in the profile is accom- 
plished by first transforming the independent variables from (z,t) t o  (9,t). 
For the heat equation with variable thermal properties, Eq. (78), we 
obtain, in terms of the transformed variable v ,  

where the dot denotes differentiation with respect to time and the prime 
denotes differentiation with respect to v.  We now evaluate the coefficient 
of av/aq  and also the right-hand side of Eq. (224) by using the results 
already at hand from the basic integral solution. Equation (224) t,hen 
becomes an ordinary linear differential equation in terms of 7 with time 
entering only a8 a parameter. For brevity, we rewrite Eq. (224) as 

d2v dv 
- 4- PI-  = Pf 
dtlz d? 

When P I  and Pz take values from the basic integral solution they will 
be denoted by P I ,  and P2, respectively. Equation (225) is readily inte- 
grated to yield an improved profile v l ,  where the subscript refers to the 
first iteration. However, both P I  and Pz involve v,  and v has a composite 
structure; therefore, Eq. (225) must be integrated separately for the two 
intervals 0 I q 5 1 and 1 5 q 5 w .  Using the subscripts I and 11 to 
designate the two intervals, Eq. (225) may be written as 

which can be solved explicitly. Four constants of integration will appear 
in the solutions, and these may be determined from two ma.tching con- 
ditions at q = 1, vie., 

together with the prescribed conditions a t  7 = 0 and 7 = a. The new 
profiles must now be resubstituted into the integral equation, Eq. (222), 
and an improved variation of 6, vie. &, obtained. When &(t)  is sub- 
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stituted in q,  u1 becomes a known function of x and 1 and the improved 
integral solution is complete. The steps may, of course, be repeated 
treating v 1  as the basic solution, and this results in an iteration procedure. 

In applying Eq. (225) we evaluated Pl and P2 from the solution 
obtained in the previous iteration. However, after the solution is a t  
hand we may evaluate the quantity 

where the P’s are now evaluated from the solution obtained in the current 
iteration. The smallness of en will be a measure of the error, and, if the 
iteration procedure converges, e,, may be expected to approach zero for 
all 7. In order to account for both positive and negative values of en 
in the interval 0 5 q 5 w the following error criterion is used: 

Separate calculations for the two intervals 0 5 7 I 1 and 1 5 q 5 00 
are necessary in view of Eq. (226). In the actual evaluation of en in the 
nth iteration, Eq. (228) may be simplified by eliminating the second 
profile derivative as follows: 

(230) 
dun 

e n ( t , v )  = (Pz.n-1 - P2.u) + (f‘1.n - P1.n-1) - 
dv 

By comparing successive values of J, the question of convergence may 
be readily answered. 

As an illustration of the rapidity of the convergence of his method, 
Yang has “improved” the integral solution for a semi-infinite slab with 
step-wise surface temperature change and linear variation of thermal 
conductivity with temperature. The basic solution to  this problem is 
given by Eq. (88) [or Eq. (89)] for an assumed cubic profile. For a quartic 
profile with an additional derived constraint the solution has been given 
by Goodman @I), and it is this quartic integral solution that Yang uses 
a8 the basic solution to start his iteration procedure. The three cases 
a = +.5, 0, - .5 shown in Fig. 2 were chosen, and the iterated values 
of -d /dy (T, /TS), ,~,  as shown exactly in Fig. 2, were determined 
together with the J values. The results are presented in Table 111. 
Notice the large reduction in J from the integral solution to the first 
iteration. This is significant for the following reason: The sample problem 
is of the type known as self-similar, i.e., the temperature is a function 
of the one variable x /&  and not a function of x and t separately. 
Because the sample problem has this property it is a simple matter to 
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iterate as many times as desired. Most problems which are encountered 
are not self-similar, and for those cases, Eq. (225) must be solved repeat- 
edly for each value of the time. Because of the enormous amount of 
numerical work involved in such a program, it is not practical to  carry 
out Yang's iteration scheme beyond the first improvement. Hence, it is 
important that a large improvement be effected in the first iteration. 
The large reduction in J in the first iteration of the sample problem 
attests to the utility of the method. 

TABLE 111 
RESULTS OBTAINED B Y  FIVE SUCCESSIVE APPLICATIONS OF YANQ'S METHOD" 

(Y Iterations J 

0 . 5  0 
1 
2 
3 
4 
5 

0 0 
1 
2 
3 
4 
5 

- 0 . 5  0 
1 
2 
3 
4 
5 

0.23920 
7.0916 X 
5.7466 X 
5.0310 X 10-7 
5.0157 X 10-7 
4.9970 X 10-7 
0.25687 
6.7926 X 10-6 
1.5519 X 10-6 
1.5457 x 10-8 
1.5407 X 
1.5366 X 10-6 
0.21789 
5.0568 X 10-5 
1.7631 X 
9.9195 X 10-11 
9.4097 X 10-11 
8.4550 X 10-11 

0.865 
0.8631 
0.8631 
0.8632 
0,8632 
0.8632 
1.095 
1.1284 
1.1284 
1.1284 
1.1284 
1.1284 
1.789 
1.8603 
1.8596 
1.8596 
1.8596 
1.8596 

Data from Yang (66). 

C. THE METHOD OF DORODNITSYN 

A generalization of the integral method has been described by 
Dorodnitsyn (67) in which the usual integral method is considered to  be 
the first approximation. Subsequent approximations are obtained by 
dividing the interval into two or more strips and averaging over each 
strip. Thus, the values of the dependent variable a t  the boundary of 
each strip can be taken as the unknowns, and the number of unknowns 
is exactly equal to the number of heat balance integrals. Dorodnitsyn 
(58) has generalized this method further by introducing weighting func- 
tions in the integral relations in each strip. He has applied the technique 
t o  solve a boundary layer problem, but not to solve the (mathematically 
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simpler) heat equation. Sokolova (69), on the other hand, has applied a 
method similar to Dorodnitsyn’s first method to the semiinfinite slab 
using two intervals 0 < z < (L/2)  and (6/2) < x < 6. Parabolic profiles 
are used in each interval. (Higher order polynomials would require derived 
constraints which are inadmissable.) Thus, seven parameters arise : three 
from each parabola plus the penetration distance. The seven conditions 
which completely define the solution are: the given boundary condition 
a t  the surface x = 0; the zero temperature and zero heat flux condition 
a t  x = 6;  the continuity of temperature and heat flux a t  x = (6/2); and 
the two heat balance integrals in each interval. Much improvement in 
accuracy is reported over the results obtained using but one interval. 
Goodman and Shea (33) used much the same technique in solving for 
the melting of finite slabs, but here the division into two intervals arose 
naturally because of the two phases. Also, the location of the melt line 
which divides the two intervals was an additional unknown. 

The same technique can be applied to a slab of finite length, 1. For 
the linear problem presented in Section 11, B, 1, it was shown that the 
first eigenfunction of the exact solution is reproduced approximately 
when one interval is used. If we use the two intervals 0 < x < (1/2) 
and (E/2) < x < 1, the first two eigenfunctions will be reproduced approxi- 
mately. The approximate first two eigenvalues in this case turn out to 
be -2.597 and -31.7, which are to be compared with the exact values: 
-2.467 and -22.2. It is clear that the number of eigenfunctions which 
can be reproduced approximately will equal the number of intervals 
which are used. Also the numerical values of the solution will tend to  
improve as the number of intervals increases. 

Landahl (4)  has also reported improved accuracy using two intervals 
(for the semiinfinite case) in his applications, but he does not present 
any details. 

VIII. A Nonsteady Convection Problem 
Thus far, we have used the integral method to  solve various forms of 

the heat equation in one space dimension only. The field equation in 
these cases was always reduced to  an ordinary differential equation. A t  
this point, we will apply the integral method to  a problem in forced con- 
vection that was originally solved by Goodman (60). This problem 
involves two space dimensions and time, and the integral method reduces 
the field equation to a partial differential equation in one less independ- 
ent variable. 

The problem to be considered is the temperature response of an incom- 
pressible fluid due to a wall temperature which is uniform but unsteady. 
The approach adopted uses the integral method to solve for the response 
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due to a unit step in wall temperature, and then uses Duhamel’s integral 
to generalize to arbitrary wall temperature. 

In this section the (x,y) components of convection velocity will be 
denoted by (up). Neglecting viscous dissipation, and assuming constant 
thermal properties, the temperature is found to obey the following 
equation : 

a2T 
ay2 

aT a T  
pe - + u - + v -  =k- [a t  ax ay 

Taking the external temperature to be zero, and assuming a penetra- 
tion distance 6(x,t), we find, upon integrating Eq. (231) from y = 0 to 
Y = 4 

where q8 is the surface heat flux, and the continuity equation for the 
velocities has been used. We now adopt the approximation that the 
velocity profile is linear and is given by the first term of a Taylor series 
expansion near the wall. This approximation can be expected to have 
greatest validity when the Prandtl number is large, because in that case 
the penetration distance will be small in comparison with the boundary 
layer thickness. I n  practice, the approximation is found to be acceptable 
when the Prandtl number is of the order unity. 

where ra is the wall shear stress and p is the coefficient of viscosity. Upon 
applying Fourier’s law, and substituting Eq. (233) into Eq. (232), we 
obtain 

We now assume a cubic profile which obeys the constraints: T(x,6,t) = 0; 
dT/ay(x,s,t) = 0; T(x,O,t) = T,; @T/ay2(x,0,t) = 0. The last condition 
is a derived constraint, and makes use of Eq. (231) at  y = 0 and the no- 
slip conditions. The temperature profile is seen to be of the form 

T = -  T8 [ 3 ( I - -  !J2 - (1 - 
2 

Upon substituting into Eq. (234), we obtain 

‘a as 3 k  
a - (raS2) + pcp - = - - 

P ax at 2 s 

(235) 
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where 

Thus, Eq. (236) simplifies to 

(237) 

We now restrict our attention to  a flat plate, in  which C B B ~  

where K1 is given, for example, by Schlichting (3, Chapter VIII)  : 

and L: ia the free stream velocity, V (  = p / p )  is the kinematic viscosity. 
Equation (238) becomes 

Since the wall temperature is uniform, 6 always starts at z = 0, and 
hence, a similarity solution is possible. Let 

(242) 

Assume 4 = t&(F). Then Eq. (240) reduces to the following ordinary 
differential equation : 

This equation is linear if F is taken to be the dependent variable. Apply- 
ing the initial condition 4(0) = 0, we obtain the solution, 

which is shown plotted in Fig. 11. 
The equation 

4 = 1  
v121 

(245) 
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is a singular solution of Eq. (243) ; this solution does not satisfy the initial 
condition, but is a steady state solution. The complete solution must 
begin for small F on the curve represented by Eq. (244), and end for 
large F on the curve represented by Eq. (245). However, the curve of 
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FIG. 11. Transient growth of penetration distance for forced convection on a flat 
plate with step in surface temperature (60). 

Eq. (244) turns back on itself, so that for some values of F (time) it is 
double-valued. This is impossible physically, and somewhere before turn- 
ing back on itself the solution must jump to  @ = 1. This jump will be 
called a heat wave. 

The heat wave must occur a t  some constant value of F,  say F*. In 
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order to calculate the value of F* w e  must obtain a conservation law 
across the wave. Such a law can be obtained from Eq. (243). Setting 
F = F*,  and integrating, it is found that 

f.14' - )<4'F* (246) 

is conserved across the wave. On the side of the wave where Eq. (244) 
is applicable, let I$ = 4*. On the side of the wave where Eq. (245) is 
applicable, let 4 = 1. Hence, applying the conservation law, we obtain 

From the numerical solution of Eq. (214) it is found that 

F* = 0.266 (248) 

Sow it is clear that for F > F* the steady state solution prevails, whereas, 
for F < F* the solution is transient. Thus, a step in surface temperature 
will give rise to a starting heat wave which propagates from the leading 
edge, and whose trajectory is given by F = F+.  After this wave has 
passed any particular station, the heat flux is steady at that station. In  
order to define the trajectory of the wave more explicitly, substitute 
Eq. (239) into Eq. (242), and let F = F*.  After some simplification we 
obtain 

V t / z  = 1.33Pri5 (249) 

where Pr( = pr/k) is the Prandtl number. Hence, the larger the Prandtl 
number, the slower the wave, and the longer it takes to achieve steady 
state. 

The surface lieat flux response to  a step in surface temperature can 
now be determined, and the result is 

(250) 

which may be compared with the steady state solution presented by 
Schlichting (3, Chapter XIV). In order t o  obtain the response to an 
arbitrary wall temperature variation, we apply Duhamel's integral, with 
the result that 

The definition of F, Eq. (242), may be simplified with the aid of Eq. 
PI41 
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(239). After some manipulation, it is seen that 

0.20ut 
Pr55 x 

F = -  

Finally, it should be mentioned that Cess (61) has solved the same prob- 
lem by use of La Place transforms. He overcomes the intractability of 
Eq. (231) by constructing two solutions in the LaPlace transform domain 
which have the proper behavior for small and large values of the LaPlace 
transform variable respectively, and then patching them. 

M. A Two-Dimensional Problem 
Consider a cylindrical prism having a square cross section bounded 

(253) 

by the isothermal surfaces 

C,(x,y) = (22 - a”(y2 - a2) = 0 

The region is assumed to contain liquid a t  the melting temperature T = 0, 
and the surfaces are maintained at  the temperature T = - To. During the 
period of solidification the location of the melt line will be described by 
the line Cp(z , y , t )  = 0 which is an isothermal on which T = 0. The heat 
conduction equation is 

The boundary conditions are 

T = -TO on Co(s ,y>  = 0, t > 0 

T = 0 on CF(%J,t) = 0 
(255) 

The initial conditions are 

T = OandCp = CO = 0, t = 0 (256) 

Let V ( C F ,  Co) be the volume of solidified material at time t per unit 
depth of boundary in the axial direction. Thus in time At the volume of 
solid increases by an amount AV(C,,Co), and there will be set free an 
amount of heat. 

AQ = PLAV(CFJCO) (257) 

This must escape by conduction through the solidified material in such 
a way that the amount of heat that flows outward is 

A& = - k ( f g d s ) A t  
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where s is the distance measured along the contour C f  = 0 in a counter- 
clockwise direction. and ) f .  is t,hr normal. Thus, in the limit as At becomes 
vanishingly small 

where 

Upon introducing the dimensioiiless variables 

the above boundary value problem may be written 

(259) 

(260) 

’ O }  (263) 
e = o 0x1 Cq0(X,Y) = (Xz - 1 ) ( Y *  - 1 )  = 0, 

e = 1 0x1 CF(XIY,~) = 0 

where 

8 = 1 ,  r = o  (266) 

G. Poots (68) has solved the above two dimensional heat conduction 
problem using an integral method. The success of the solution he obtains 
depends, to a large extent, upon his ability to make intelligent guesses 
for the shape of the solidification front (melt line) for all time, and for 
the temperature profiles. Because the problem which he poses contains 
many symmetries the guesses are likely to be nearly correct. 

Note, that at the beginning 

CF(X,Y ,T)  = CO = (X* - 1)(Y2 - 1) = 0, r = 0 (267) 

It is plausible to assume that for small time Cf will be in the shape of a 
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square with rounded corners, and must become circular, i.e., of the form 
X2 + Y2 - f ( r )  = 0, for times near the finish of the solidificatioii period. 
Moreover, at  the end of the solidification period the solidificatioii front 
lies on the axis of the prism, X = Y = 0. It is thus reasonable to assume 
the following shape 

C,(X,Y,r) = (X* - 1)(Y' - 1) - t(r) = 0 (268) 

where e is an unknown function of time. The initial condition, Eq. (260), 
is now replaced by 

L = O a t r  = 0 (269) 

and, by virtue of Eq. (268), L = 1 a t  the instant of complete solidification 
of the prism. 

The heat balance integral is derived by integrating both sides of Eq. 
(262) over the solidified phase bounded by the contours Co = 0 and 
CP = 0. Applying Green's theorem to the resulting equation and using 
the boundary condition Eq. (264), we obtain 

We assume for the solidified phase, the one-parameter temperature 
distribution 

(271) 
(X3 - l ) ( Y *  - 1) 

9 =  
e 

which satisfies, by virtue of Eq. (267), the boundary conditions, Eq. 
(263). Upon substituting Eq. (271) into the heat-balance integral, Eq. 
(270), there results a first order ditrerential equation for ~ ( r )  to be solved 
subject t o  the initial condition Eq. (269). The solution is 

where 

and 

Defining 
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the required integrals 
41 -; 

I , ,  = 1" HI1 fis 
and 

(276) 

(277) 

can be expressed in terms of complete elliptic integrals. The results are 

l o  = E - cK 
I - 1 ..' (278) 1 - /3{(4 + e)E - t(2 + 3e)Kt 

where the modulus is 6 1  - e. Upon using the rules for differentiating 
E and K we obtain 

.. - 

:I ,I = '.id (279) 

The functions A .  and A1  are tabulated in Table IV correct to six decimal 
places. 

TABLE IV 
THE FLXCTXONS A. AND A1 (68). 

e Ao '4 1 

0.00 
0.04 
0.08 
0.12 
0.16 
0.20 
0.21 
0.28 
0.32 
0.36 
0.40 
0.44 
0.48 
0.52 
0.56 
0.60 
0.64 
0.68 
0.72 
0.76 
0.80 
0.84 
0.88 
0.92 
0.96 
1 .oo 

0.OOOOOO 
0.060322 
0.107342 
0.149558 
0.188741 
0.225720 
0.260979 
0.294833 
0.327503 
0.359154 
0.389913 
0.419880 
0.449136 
0.477748 
0.505772 
0.533256 
0.560241 
0.586764 
0.612855 
0.638542 
0.663849 
0.688800 
0.713413 
0.737706 
0.761696 
0.785398 

0. oO0000 
0.012226 
0.02193 1 
0.03OiI 5 
0.0389 14 
0.048685 
0,0541P2 
0.061284 
0.068213 
0.074943 
0.081496 
0.087893 
0.094 149 
0.100276 
0.106287 
0.112190 
0.117994 
0.123705 
0.129329 
0.134872 
0.140339 
0.145734 
0.151061 
0.156323 
0.161524 
0.166667 



INTEGRAL METHODS FOR NONLINEAR HEAT TRANSFER 

The analysis presented above differs in its application of the integral 
method from that presented in Section IV in one fundamental respect 
(aside from the additional dimension). The temperature profile in Sec- 
tion IV possesses two parameters [see e.g., Eq. (99)] one of which is elimi- 
nated by applying the heat flux boundary condition a t  the melt line in 
a modified form, viz., Eq. (98). The profile in Poots’ analysis contains 
only one parameter E ,  and it does not satisfy the heat flux condition at  
the melt line. We may, therefore, expect the results of Poots’ analysis 
to be less accurate than the solutions presented in Section IV. An exact 
numerical solution of the melting square prism has been obtained by 
Allen and Severn (63) using the method of relaxation for the special 
case ,f3 = 1.5613. According to this solution the nondimensional time 
required for the complete solidification of the prism is 7 = 0.60. From 
the integral method Poots obtains 7 = 0.35. The integral solution appears 
to lose accuracy for late time, which accounts for this discrepancy. The 
solution can, of course, be improved, by using a two-parameter profile 
together with another condition; for example, the two-dimensional analog 
of Eq. (98) could be used. Poots recognized the need for an improved 
solution and chose for his second condition the first moment equation 
as exemplified in one dimension by Eq. (209). The late time accuracy 
is considerably improved using this scheme, and the nondimensional 
time required for the complete solidification of the prism becomes 
7 = 0.52. For the details of this improved solution the reader is referred 
to Poots’ paper. 

X. Concluding Remarks 
The integral method and related methods have been presented with 

emphasis on application to nonsteady heat conduction in one space 
variable. Examples have been chosen to illustrate various aspects of the 
method. 

There are still questions left unanswered, however. For example, it is 
not clear how the concept of penetration distance should be used for 
problems in more than one space variable. The problem presented in 
Section VIII, while dealing in two-space variables, bypasses this question 
because the space variable z in that problem is really time-like. The 
problem presented in Section IX also bypasses the question by utilizing 
the symmetry properties of the geometry. Another unanswered question 
is how to use the penetration distance concept when the initial tempera- 
ture is nonuniform. Questions of convergence, while not altogether 
ignored, have not been emphasized. In most cases, no convergence proof 
exists in the literature, and this is especially so for nonlinear cases. It is 
hoped that, in the course of time, light will be shed on all of these problems. 
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SYMBOLS 
radius of circlr: also see Eq. (64); 
also parameter 
slope of linear heat input (see Fig. 
5); also parameter 
p L / k  
parameter 
parametw 
heat capacity; also parameter 
parameter 
parameter 
y e e  Eq. (17) 
surface heat flux; also see Eq. 
(242) in Section VIII 
initial temperature distribut.ion 
see Eq. (210) 
heat transfer coetlicient. 
heat flow vector 
see Eq. (229) 
thermal conductivity 
length of slab 
latent. heat of melting 
Prnndt.1 number ( = p c / k  in R c -  
tion VIII)  
internal lieat gentmted per unit 
valiime per unit t.ime; also limt 
flux in Rrtion 1.111 
see Eq. (38) 
radial coordina t t- 
melt line 

I 
T 
I ’ m  

U 
I 1  

1. 

U’j 

Y 

L’ 

3’ 

a 

Y 
6 

en 

? 

e 

P 

v 

V I  

P 

7. 

t inir 
temperature 
negative of initial trmperature 
velocity 
free stream velocity 
see Eq. (77); also velocity in 
Section VIII 
weighting function 
spacial roordinate 
spacial coordinate in Section VIII 
Rurface temperature 
ambient temperature of surround- 
ing medium 
diffusivity ( = k / p c )  also param- 
eter in Eq. (62) 
parameter 
penetration distance 
residual 
z/6; also see Eq.-(30) 
see Eq.  (4 ) ;  a1so“sP.e Eq. (261) iii  

Section IX. 
coefficient of viscosity 
see Eq. (67); also kinematic 
viscosity ( =  p / p )  in Section VIII 
see Eq. (116) 
density 
surface shear stress 

Subscript 8 refers to surface value 
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I. Introduction 

Heat and ma= transfer between capillary-porous bodies and surround- 
ing incompresaible liquid accompanied by a change of phase is not only 
of theoretical interest but also of great practical importance for some 
technological processes. As is shown below, phase changes (evaporation 
of a liquid or ice) essentially influence the intensity of heat and mass 
transfer between a body surface and the surrounding medium (external 
heat and mass transfer). Heat and mass transfer inside a porous body 
(internal heat and mass transfer) also has its unique character. 

Even now the mechanism of heat and mass transfer in evaporation 
processes is scantily studied, and analytical investigations do not, there- 
fore, lead to reliable results. The main part of this paper is devoted to 
the experimental study of heat and mass transfer in evaporation processes. 
To elucidate peculiarities of heat transfer with simultaneous mass trans- 
fer, a dry body (pure heat transfer) and a moist body (heat transfer in 
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the presence of mass transfer) were investigated simultaneously. Such 
a comparison makes it possible to establish relations for interconnected 
heat and mass transfer processes. 

II. External Heat and Mass Transfer in Evaporation 
Processes 

Heat and mass transfer between a body surface and a liquid are fre- 
quently described by empirical relations of the following form : 

Xu, = APrmRe"; Nu, = A'Scn'Re"' (1) 

where the constants A ,  A', m, m', n and n' are determined experimentally 
and depend bdth on liquid properties and on the range of the Reynolds 
number (laminar or turbulent liquid flow). 

Investigations of Lebedev ( I ) ,  Polonskaya (a),  Sergeyev (3) and others 
show that for capillary-porous bodies containing a liquid, relations of 
the type shown in Eq. (1) are inapplicable. In this case the dimensionless 
Gukhman number has to be introduced, characterizing the capacity of 
a moving gas to evaporate liquid. The Gukhman number is a generalized 
variable which determines the peculiarities of simultaneous heat and 
mass transfer processes with evaporation. 

For more detailed investigation into heat and mass transfer between 
capillary-porous bodies and humid air, extensive experiments under the 
various conditions considered below were conducted at the Heat and 
Mass Transfer Institute. 

A. EXPERIMENTAL PROCEDURE 

Experiments were carried out in a wind tunnel, 30 meters long with 
an octahedron-shaped cross section 0.22 square meter in area. The cham- 
ber where experiments were conducted is a part of the wind tunnel. The 
air motion was induced by a fan, the velocity of air motion ranging from 
1 to 22 meters per second. Dynamic head was measured by a Pitot tube; 
exchange of the circulating air in the wind tunnel was made by means 
of slide valves and an additional channel. 

The air mas heated by an electric air heater 100 kw in power which 
consists of eight parallel sections. Two of them were switched into an 
electrical network to provide automatic control of temperature. Thermis- 
tors were used for temperature measurement. The automatic system was 
of 0.1"C accuracy. Air temperature changed between 25" and 150°C. Air 
humidity in the tunnel was maintained constant with the help of a 
special automatic-control system. Relative airihumidity varied from 5 
to 80%. 

Vniformity and stability of an airflow in the tunnel working section 
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were thoroughly studied. In the wind tunnel there were settling screens 
which removed the larger eddies and secured a uniform temperature 
distribution in the airflow. The length of the stabilization portion, i.e., 
the distance from the screens to the working section, was 4 meters. 
Velocity and pressure fields were measured by three-channel cylindrical 
and five-channel spherical probes. The nonuniformity of the velocity 
field did not exceed 1.0-1.5% of the flow velocity on the axis. The 
divergence of velocity-vector angles in horizontal and vertical planes 
was no more than k1.5" (within a flow core). Flow turbulence was also 
measured with the help of the Loitsyansky-Schwabe version of the hot 
wire anemometer. The degree of turbulence was 2.5 %. Consequently, 
the wind tunnel secured rather high stability and uniformity of a flow. 

To minimize the value of radiant heat transfer, the air a t  a given 
temperature circulated over an additional airpipe which was in the work- 
ing section of the tunnel (See Fig. 1). This arrangement kept the test 
section walls a t  the same temperature as the test body. The automatic- 
control system maintained constant wall temperatures within 10%. The 
working section of the wind tunnel had glass doors (7) and (8); all the 
measuring devices were inserted into the tunnel through a bushing (9), 
placed far from the bodies investigated. The wind tunnel and additional 
airpipe were insulated thermally from the outside. 

1. Experiments on Liquid Evaporation .from Free Surface 

Initially experiments on heat transfer between the heated air and 
liquid surface were carried out along with those on heat transfer between 
the air and a dry body. The liquid was poured into a 45 X 100 X 76 mm 
metallic pan made of stainless steel. The dry body was made of the 
same steel in the shape of a hollow parallelepiped 45 X 100 X 76 mm 
in size. From a vessel [Fig. l b  (4)] water entered this parallelepiped 
and passing through it into a tank (18) which was weighed. 

The experimental procedure was as follows: a dry body (15) and a 
pan (14) with a liquid, which flowed from a vessel (12), were placed into 
the working section of the wind tunnel (see Fig. lb). 

Evaporation of various liquids: water, acetone, benzol, and butanol 
was investigated. Aerodynamic wedges (16) made of heat-insulating 
material were placed in front of the pan and the dry body. The non- 
heated length was 176 mm long. The amount of heat transferred from 
the air to the body was determined by the water rate entering into the 
metallic parallelepiped (dry body) and by the measured inlet and outlet 
water temperatures. 

The test liquid was supplied to a burette (5 ) ,  which in turn supplied the 
liquid to the pressure vessel (12). 
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FIQ. 1. Schematic drawing of teat units for heat and inass transfer investigation. 
a. Supplementary air line for radiant heat transfer control: l -e lectr ic  air heater; 
Z-lide valve; 3-heat insulation; 4-additional air pipe; 5-internal surface; 
G-external surface of working chambcr; 7 and 8-g lass  doors; %-bush for installa- 
tion of measuring devices; l I t c o n t a c t  thermometer for air temperature control in 
additional pipe. b. Schematic drawing of working section; l-direction of air flow 
in tunnel; 2-galvanometer; 3-galvanometer scale; 4-pressure tank for water cool- 
ing dry body; %-measuring burette; 6-water cock; 7--overflow pipe; &water 
hose or calorimeter of dry body; h u t l e t  of water from calorimeter; Io-commuta- 
tor; 11-measuring cylinder; 12-pressure vessel; 13--water hose for liquid feed 
into pan; 14-pan with liquid; 1 5 - d r y  body; 16-aerodynamic wedges; 17-hot 
junctions of thermocouples; 18-balance for water; 19--supplementary air pipe; 
2 b h e a t e r ;  21-low-pressure fan; 22-connecting pipe; 23--galvanometer; 24-heat 
insulation; 25-wall of the working section; 2&potentiometcr; 27-Dewar flask for 
cold junctions of thermocouples. 
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The pressure vessel (12) was connected by a pipe (13) with the pan 
and an overflow pipe (22) located a t  the same level as the test surface 
allowed the maintenance of the same liquid level both in the vessel and 
in the pan during the whole evaporation process. The smalI amount of 
overflow was collected in a measuring cylinder (11). The amount of the 
evaporating liquid from the pan (14) was determined by readings on 
the measuring burette ( 5 )  and the cylinder (11). The supply of liquid 
through a hole in the bottom of the pan provided uniform temperature 
over the pan height. 

The temperature of the body surface was maintained constant and 
equal to that of the evaporating liquid in the pan. Thus, the surface 
temperature of the liquid and dry body was the same. 

The surface temperature of the liquid was measured by three special 
thermocouples. The temperature was also measured over the liquid 
height. The heat-transfer coefficient hd between the dry body and the 
air was determined according to the rate of water m which passed through 
the body for the definite time r and according to the difference of inlet 
and outlet water temperatures : 

where S d  is the heat-transfer surface. 
In most cases the contribution of radiant heat transfer is small in 

comparison with that of convective heat transfer so that it may be 
neglected. The coeEcient hd is, therefore, equal to the coefficient of con- 
vective heat transfer. 

In some experiments a correction for radiant heat transfer was intro- 
duced which was found both theoretically and from experiments with 
the additional airpipe (see Fig. la). 

The heat-transfer coefficient he with liquid evaporation was defined 
by the following formula : 

where S. is the free liquid surface. 
The magnitude of the convective heat flow qc was determined by the 

amount of the evaporated liquid with the correction for the value of 
radiant heat transfer between the bottom, side pan surfaces and the 
wind-tunnel walls. 

The mass-transfer coefficient h, was found according to the amount 
of the evaporated liquid m for the time T 
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The partial vapor pressure p.. close to a liquid surface was assumed 
to be equal to that of a saturated vapor at the surface temperature. 
The partial pressure of water vapor p, .  in the air was determined by the 
psychrometric method. When acetone, alcohol and other liquids evapo- 
rated, p,,,, was defined by an aspirational method (by the sampling 
method). 

2. Experiments on Drying of Moist Solids 

The aim of this experimental set was to compare heat transfer of a 
dry capillary-porous body with that of a moist capillary-porous body 
being dried. Dry and moist bodies, each of the same shape of a rectangular 

Fro. 2. Uistribution of pore radii of porous ceramic bodies with fineness of 1-10 %; 
%2%. Here r is the pore rcrdiua in microns and D is the ratio of the pore volume to 
the body volume. 

parallelepiped, 25 X 100 X 187.5 mni, were taken instead of metal 
models and placed into the wind tunnel. 

The capillary-porous bodies were made of porous ceramics which was 
prepared in the following way: the mixture was composed of chanzotte' 
(7Fi%), kaolin (12.5%), clay (12'3,), and liquid glass (0.5%). Particles 
8-10 p in size were obtained after milling the above components. Then 
dross (suspension of 3.5 % moisture) was made of this mixture which was 
a material for a ceramic body. The latter was dried first at a temperature 
of 80°C for 48 hours followed by 8 hours kilning at 1200°C. 

Porosity of the ceramics obtained was uniform. The distribution of 

1 A refractory material with a high content (75%) of AlrO,. 
11281 
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pore radii is depicted in Fig. 2 as differential curves which show that 
about 70% of the pores are 0.6-0.8 p in radius, depending on fineness. 
Such ceramics may be machined easily and are capable of absorbing 
large quantities of water (moisture of about 19-20%). 

A moist capillary-porous body was shaped as a solid parallelepiped 
(a brick) and a dry body was a rectangular parallelepiped (a box) made 
of sheet copper and covered by a thin layer of porous ceramic (see Fig. 3). 
The water was supplied to the box, which served as a cooler, through 
connecting pipes. The water temperature was raised by heat transferred 

Fro. 3. Dry and moist capillary-porous bodies. 

from air to the cooler surface through the layer of porous ceramic and 
the metal wall of the cooler. The temperature of water in the connecting 
pipes was measured by thermocouples. Aerodynamic wedges made of 
the same porous ceramic were located at the frontal part of the models. 
The length of the unheated wedge was equal to that of the parallelepiped. 
A te3on packing was inserted between the wedge and the models. The 
models were machined by a grinder and a shaping machine, and then 
twelve thermocouples (copper-constantan) were installed in every body 
to measure the surface temperatures. To decrease heat loss through the 
wire thermocouples, they were installed in a large section of an isothermal 

~ 2 9 1  
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surface. The therinocouples were calibrated after installation in the body 
surface to eliminate errors which may have occurred in the process of 
installation. 

In a typical run, dry and wet bodies were placed together in the working 
section of the tunnel. The surface temperature of the body was controlled 
to be the same as the wet-bulb temperature by adjusting the amount 
of cooling water passing through the cooler of the dry body. The moist 
body was preheated to the wet-bulb temperature and then placed into 
the tunnel. The body was weighed to determine the amount of the 
evaporated moisture. For this purpose an automatic balance was used 
as described by Smolsky (4). The accuracy of weighing was kO.l%. 
The rate of drying was constant. The moisture of the body ranged in 
the drying process from 19 to 7-9%. 

Heat transfer coefficients h d  and h, and mass transfer coefficient h, 
were determined in a similar way. The degree of uncertainty (maximum 
relative error) was 6 3 %  allowing for all the errors. 

3. Experaments on Porous Cooling 

The process of drying of moist ceramics is unsteady since the moisture 
content of the body is continuously decreasing. Evaporation does not 
always occur on the surface. Under severe conditions of drying, even 
with constant evaporation rate, evaporation takes place inside the body 
at  a certain depth. Hence, comparison of heat transfer of n dry capillary- 
porous body with that of a moist one with continuous supply of liquid 
is of great interest. In this case the process will be stationary (the moisture 
content of the body is maximum and constant) and heat transfer between 
such a moist body and heated air will be referred as porous cooling by 
evaporation. 

The experiments were carried out in the above tunnel with the same 
parameters of the heated air. Bodies made of the same porous ceramics 
were used as models. They were shaped as a sphere, cone, cylinder, and 
disc. Every body was hollow and detachable and composed of two sec- 
tions which provided more accurate installation of thermocouples and 
uniform water supply. The sections were assembled in two ways. One 
of these methods is depicted in Fig. 4. The joint surfaces of two halves 
of a body were ground, holes 5 mm in depth were drilled in the walls 
for pins of a frame inserted between the halves. Liquid cement-phosphate 
was used to joint the halves with the frame. This method proved of 
particular value for bodies of revolution. The halves of a body with a 
slightly curved surface should be jointed by means of a cross and a pin 
coupling and this is more reliable for bodies of such a shape. The model 
was placed into the wind tunnel and the surface temperature a t  various 
~ 3 0 1  
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points as well as the amount of the evaporated liquid was recorded 
during the run. 

B. INTERPRETATION OF DATA 

The Nusselt numbers Nu, and Nu, were calculated from the experi- 
mental data. The thermal conductivity of humid air was found by the 
formula of Nesterenko (6). 

The question of proper selection of the physical properties of humid 
air is of great importance for analysis of the experimental data. These 
coefficients (lc, v, D,  a)  are variable and depend on temperature and air 
humidity. Some investigators assume the temperature of the wall to be 

3 

FIG. 4. Schematic drawing of porous body: 1-half of ceramic body; 2-plastic frame 
with pins; 3-holder; &-thermocouples; &drain. 

the characteristic value for evaluating the properties, while others use 
the mean temperature of the boundary layer, and a third group prefer 
the temperature outside the boundary layer. In the present work, trans- 
fer coefficients were based on the temperature outside the boundary 
layer t ,  (t, = t,). This method proved to be the best one for correlation 
of the experimental points. 

1. Liquid Evaporation from a Free Surface 

At first it was determined that the heat transfer coefficient with 
evaporation he is greater than that without evaporation ha (heat transfer 
coefficient for a metal body). The ratio h,/hd ranges between 1.2 and 1.6, 
depending on temperature t, and relative air humidity cp. Table I gives 
data on he/& for several air temperatures. From Table I it is seen that 
the value of h,/hd increases with the air temperature for all the liquids 
tested. Consequently, heat transfer with liquid evaporation from a free 
surface has its own peculiarities, different from that with injection of 

11311 
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TABLE I 
~:FFECT OF AIR TEMPERATURE t,  ON h,/hd OF VARIOUS LIQUIDS 

Air temperature "C 

Liquid ( h , / h d )  40" 50" 70" 90" 120" 

Benzol 1 40 1 .44  1.51 1.51 1.63 
Acetone - 1.43 1.47 1 . 5 2  1 .56  
Butanol 1 40 1.44 1.51 1.57 1.60 
Water. 1.46 1.48 1 .51  1.55 - 

~ ~~ - 

'I Constant relative air humidity cp = 16%. 

an inert gas into a boundary layer through a porous wall. Let us con- 
sider this in detail. 

In the excellent text by E. Eckert and R. Drake (6) it is shown that 
the heat transfer coefficient with gas injection into a boundary layer h 

0 6  

0 2  

0 

FIG. 5. Ilelative heat and mass transfer coefficients for laminar flow on flat plate 
arcording to E. R. G. Eckert. 

is less than the value without injection h,. The ratio h/ho decreases with 
increase in the parameter 2 = (w,/w,) .\/ReZ (see Fig. 5). In the case of 
liquid evaporation from a free surface the velocity of convective mass 
transfer w8, normal to the wall on its surface, is equal to the evaporative 
mass flux j ,  (kg/m2h) divided by the humid-air density p (kg/ms)), i.e., 
w. = j d p .  
[132] 
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In our case with water,evaporation from a free surface the evaporative 
mass flux changed from 0.65 to 15.0 kg/m2h and Re,, from 4.104 to 
16.104. Then, the parameter 2 will vary between 0.0007 and 0.09. 

Figure 5 shows that for such values of the parameter 2 the ratio h/h, 
will be equal to 0.99 and 0.83, respectively, i.e., the heat transfer coeffi- 
cient h will decrease by 17% at  most. 

We do not deny either the effect of mass transfer on temperature and 
velocity profiles in a boundary layer in evaporation processes or the theory 
of injection into a boundary layer through a porous wall. However, under 
the present conditions this effect was apparently suppressed by other 
effects which lead to an increase in the heat transfer coefficient with 
evaporation, as compared with dry wall heat-transfer. 

It should be noted, however, that the comparison of the present data 
with those in Fig. 5 is not completely valid. In these experiments heat 
and mass transfer occurred on a flat plate and on a liquid surface in a 
turbulent flow while Fig. 5 illustrates results for a laminar boundary 
layer. Such a discrepancy made us conduct some additional research, the 
results of which will be considered below. 

From these additional experiments it was found that the mass transfer 
coefficient h, (kg/mZh mm Hg) depends on the molecular weight of the 
evaporating liquid M (see Table 11). The mass-transfer coefficient 

TABLE I1 
EFFECT OF MOLECULAR WEIGHT ON MASS TRANSFER COEFFICIENT h,  

h, kg/meh mm Hgo 
_- 

M wo = 5 wo = 9 wo = 14 
Liquid kg/mole m /sec m/sec m/sec 

Water 0.018 0.125-0.185 0.181-0.232 0.269-0.377 
Acetone 0.058 0.243-0.271 0.343-0.351 0.489-0.505 
Butanol 0.074 0.329-0.366 0.439-0.472 0.570-0.710 
Benzol 0.078 0.330-0.370 0.410-0.470 0.729-0.788 

a Limiting values of mass transfer coefficient, obtained at various air temperature 
(27°C < t < 120°C), are presented. 

increases with the molecular weight of the evaporating liquid under 
other similar conditions. The Nusselt numbers Nu, and Nu, are calcu- 
lated according to the values of he and h,. Calculation results are shown 
in Fig. 6, from which it follows that the relative humidity (p is an important 
independent parameter. The slope of the straight lines is equal to 0.8 
(n = n' = 0.8). If the Gukhman number which accounts for the influence 
of the relative humidity is introduced, experimental points lie on one 

[I331 
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Fra. 6. Heat and mass transfer with water evaporation froni free surface (Sergeev’s 
experiments). (a) Xu, . 10-*/PrOa* and (b) (Nu,/ScO 33) . lo-* are includedinvertical 
tine. 

straight line Zy(Su/Ke” ‘) = f ( / y  C;ii). The exponent for Gu is equal to 
0.2. The experimental data on evapoyation of all the test liquids are 
presented in Fig. 7, on the basis of which the following relations may 
be written : 

Nu, = 0.08BPrD 33Re0 8Gu0 2 

Nu, = 0.09iSco 33Re0 *Gu0 * 
2.104 < Re < 2 lo6 

0.02 < Gu < 0.19 

Nesterenko and Dokuchaev (7) obtained similar relations for Re between 
3 X lo4 and 3 X lo6 (see Fig. 8). 

C’onsequently, Gu characterizes the peculiarities of heat and Inass 
transfer in liquid-ev-aporatioit processes. I n  such processes the therrntll 

(3 
((9 

Range of validity: 

ji34] 
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3 4 5 6 7 8 lo5 14 Re 

FIG. 7. Heat and mass transfer with liquid evaporation from free surface according 
to Sergeev's data: I-water; %-acetone; a--benrol; 4-butanol. (a) Nu, - Pr5*GuD 
and (b) -Nu,/ScHGuO are included in vertical line. 

conductivity and diffusion coefficients depend on vapor fraction in the 
air, i.e., on temperature and relative air humidity. In Sergeyev's experi- 
ments the thermal conductivity coefficient of the humid air was calcu- 
lated by the Nesterenko formula: 

k = k. + 0.0041q (7 1 
where k, is the thermal conductivity of the dry air. 

However, the thermal conductivity of the humid air depends to a 
greater extent on temperature than that of the dry air. Zakharov (8) 
carried out experiments to determine the heat conductivity of humid air 
over a temperature range from 20" to 60°C. Experimental results are 
presented in Table 111, from which it is seen that a t  q = 100% the 
conductivity changes from 0.0208 kcal/m h"C, a t  t = 20°C up to 0.0478 
kcal/m h"C, a t  t = 60"C, i.e., 2.3-fold. With increase in temperature 
from 20" to 60°C the thermal conductivity of the dry air (q = 0) varies 
only 1.23-fold. 

If the Gukhman number appeared only in the relations for the heat 
[I351 
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FIG. 8. Plot of Sri,/Pro ZaGu'J.* and Xu,,,/Sc'J.%uo versus Re according to the 
data by:  1-A. V. Nwtercnko; 2--5. F. Dokuchaev; 3-G. T. Sergeev. 

transfer Susselt number, then it might be argued that i t  characterizes a 
change in the thermal conductivity of the humid air in the boundary 
layer. However, the Gukhman number also enters into the formula 
for Xu,. 

The hypothesis on volumetric evaporation is the most possible explana- 
tion of the physical meaning of the Gukhman number Gu. The essence 
of this hypothesis lies in the fact that from the free liquid surface fine 
liquid droplets penetrate into the boundary layer. Heat fluctuations of 

TABLE I11 
'I'HERMAI. CONDUCTIVITY OF HLWID AIR 

k . ~~*(KCAL/M H QRAD) 

t"C 

P% 20 

0 1.78 
20 1 .&i 
40 1.90 
60 1.96 
80 2.02 
100 2.08 

40 

2.02 
2.29 
2.54 
2.58 
3.00 
3.20 

60 

2.20 
3.05 
3.74 
4.26 
4.51 
4.78 

- 
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a liquid-molecule complex (the Papaleksi effect) 2 favors the evacuation 
of liquid droplets into a boundary layer. The interaction between a 
humid airflow and liquid surface is, however, the major reason for the 
removal of liquid  droplet^.^ 

According to the dynamic-adsorption theory of de Boer (9) an evapora- 
tion process is a dynamic process of evaporation and condensation. Liquid 
molecules not only leave the liquid surface (evaporation) but also return 
continuously from the air (condensation). The evaporation rate is pro- 
portional to the difference of the flow of molecules leaving the surface 
and those returning to the surface. On the basis of Fedyakin’s investiga- 
tions (10) condensation occurs nonuniformly along the liquid surface. In 
the process of condensation there takes place incomplete wetting of the 
liquid surface by the adsorbed layer of liquefied vapor. In this case on 
the liquid surface there are droplets which are not firmly bound and 
consequently are removed by the airflow. 

It is of interest to make an approximate calculation of the lifetime 
of such a droplet in a boundary layer. 

Designate the droplet radius by R, then the time necessary for the 
droplet evaporation, r (lifetime) will be equal to 

LpeR LpeR2 
h At 2k At 

r=- -  _ -  

where L is the latent heat of evaporation, At is the temperature drop 
between the droplet surface and the air. 

Transmission of heat from the air to a droplet proceeds mainly by 
heat conduction. So the heat transfer coefficient h will be equal to  
h = Nu k / R  = k/R,  since the Nusselt number for a spherical droplet 
is unity when the radius is used as the characteristic length. Droplet 
evaporation occurs under adiabatic4 conditions, therefore the droplet 

* See N. D. Papaleksi, “Collected Works,” Vol. 1, Published by Academy of Sciences 
of the U.S.S.R., 1948. 

a The editors suggest, and the author agrees, the increase in heat transfer may be 
due to an instability phenomenon. Chandrasekbar (“Hydrodynamic and Hydro- 
magnetic Stability,” Oxford Univ. Press, 1961) predicts that surface waves occur for 
airflow over water for an air velocity of 21 feet per second (approx. 6.5 meters per 
second). The theory reportedly has been verified experimentally by Francis (“Wave 
Motions on a Free Oil Surface,” Philosophical Magazine, Series 7, Vol. 45, p. 695, 
1954). Since many of the reported experiments were above this critical value, it is 
suggested that surface waves were present-thus increasing the area of heat transfer. 
The presence of waves would also explain the entrainment of a substantial amount of 
water in the boundary layer, just as the wind blowing over the waves on an ocean or 
lake carries a substantial spray of water. 

4 By this we mean that the heat required for evaporation is transferred from the 
surrounding air by convection. 

[137] 



A. V. LUIKOV 

temperature is equal to the wet-bulb temperature. If i t  is assumed that 
At = 2"C, L = 580 kcal/"C, then for the droplet with the radius R = 0.01 
mm its lifetime will be of order r = 0.004 second. In reality, however, 
it will be less because in the process of evaporation the droplet radius 
continuously decreases. For a droplet with R = 0.001 mm its lifetime 
will be 100 times less, since T is directly proportional t o  the square of 
the radius. 

Liquid-droplet evaporation in a boundary layer is called volumetric 
evaporation. It is volume-vapor source in a boundary layer and a heat 
sink. For a flat plate the laminar boundary layer equations for transfer 
of a two-component mixture (humid air) will be as follows: 

Continuity 

Momentum6 

I l i f f  usion 

Heat transfer 

where subscript 1 designates vapor and 2, dry air. 
It is assumed that the pressure gradient is negligible (8pld.r = 0) and 

thermal diffusion effects are assumed to  be negligibly small. 
The system of differential equations (9-12) differs from an ordinary 

system of equations by the presence of additional terms I (vapor source) 
and LI (heat sink). 

With the help of the methods of the similarity theory from Eq. (12) 
we find a dimensionless variable K 

( 1.3) 

where the length of an evaporation surface 1 is the characteristic dimen- 
sion and the absolute air temperature T. is the determining temperature. 

The value LI is equal to the heat necessary for volumetric evapora- 
tion. Designate the amount of droplets per unit volume of a boundary 

[138] 
6 The effect of evaporation on the niomentum equation is neglected. 
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layer through N, and their mean radius, through 8. Then, it may be 
written in the following form: 

LI = 4?rR2NVh At = 4rI?NVk At (14) 

where At is the difference between the air temperature in a boundary 
layer t ( x , y )  and the wet-bulb temperature ta[At = t ( x , y )  - tb]. 
Consequently, we have 

The value kBN,12 depends on physical liquid properties and fluid 
dynamics of a flow. The dimensionless value A t / T a  determines the relative 
intensity in volumetric evaporation. It changes along x-y coordinates. 
The maximum value of this quantity is equal to Gu = ( T .  - T b ) / T a .  

From this viewpoint the Gukhman number shows whether the humid 
air may evaporate in volume (evaporation of fine droplets in a boundary 
layer). 

The Gukhman number should be in formulas for Nu, and Nu, since 
it characterizes a vapor source in a boundary layer. 

The hypothesis on volumetric evaporation needs to be proven by direct 
experiments. Such experiments are being conducted at the Heat and Mass 
Transfer Institute. 

One may, however, come to the conclusion that a heat and mass 
transfer process with liquid evaporation from the free surface differs 
from that with the injection of an inert gas into a boundary layer. 

8. Drying of Capillary-Porous Bodies 

As was already mentioned above, two sets of experiments were carried 
out. For the first set, plates were used at  a temperature from 30" to 90°C 
with relative air humidity from 5 to 80 %. Air velocity in the wind tunnel 
ranged from 3.0 to 15.0 meters per second. 

Experiments with dry bodies of porous ceramics and metal bodies were 
made to compare heat transfer in the presence of drying with that of a 
dry body. First of all it should be noted that the results of the experi- 
ments with the reference standard bodies made of porous ceramics and 
of sheet steel are similar (see Fig. 9). A rough surface of porous ceramic 
has therefore no effect on heat transfer. 

The solid line in Fig. 9 corresponds to the equation 

Nu = 0.037Pr'JJsRe0.' 

which correlates the data with a maximum deviation f 6%. All the coeffi- 
cients entering Nu, Pr, and Re were based on the ambient temperature. 

11391 



A. V. LUIKOV 

Experimental data on drying of the moist porous plate were correlated 
in the aame way as those on evaporation of water from the free surface. 

The temperature of the moist plate was found to be the same at  all 
the points of the surface. The heat transfer coefficients h, were larger 
for the nioist plate than those for the dry one (he > hd). The maximum 
difference between h. and hd (h./hd = 1.15) is found with a small relative 
air humidity 'p. With high p the ratio h./hd approaches unity (h,/ha = 1.05). 
Similar ratios h,./hd were found in Lebedev's experiments on drying of 

FIG. '3. Plot of ?U'u/PrOaa versus Re for: l-metal plate; 2 4 r y  plate or porous 
ceramics. Equation Xu = 0.037Pr)sRe0-n is represented by a solid line. 

clay ( I ) .  Thus, for instance, a decrease in relative air humidity from GO 
to 10% caused a 15% increase of he. 

Comparison of heat and ma89 transfer Susselt numbers shows that 
Nu, > Nu, and with an increase in the relative humidity ratio Nu,/Nu,, 
approaches unity. 

The data were correlated by the following formulas: 

Xuq = 0.083Pro~asRe~Guo.10 (16) 

Nu, = O . ~ ~ O S C ~ . ~ ~ R ~ ~ * G U O . ~ ~  (17) 

over the range of Reynolds numbers between 2.5 X lo6 and 1.6 X lofi 
and Gukhman number between 0.014 and 0.17 with a maximum devia- 
tion of _+7..50/,. 

Comparison of formulas (16) and (17) with similar formulas (5) and 
(6) shows that an exponent of the Gukhman number with drying is 
less than that with evaporation from a free surface. Assuming the 
Gukhman number to characterize the intensity of volumetric evaporation, 
a conclusion may be drawn on the decrease in droplet evacuation into the 
11401 
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boundary layer with drying of a capillary-porous body (an average pore 
radius is about 0.5-0.8 p)  in comparison with evaporation from a free 
surface. This conclusion qualitatively agrees with the physical mechanism 
of droplet formation in a boundary layer. 

The modified Gukhman number Gu' = T./Tb may be used instead of 
Gu. Then formulas (16) and (17) become 

Nu, = 0.057Pro.a8Re~~(T./Tb) l.s (18) 

Nu,,, = 0.063S~~~~~Re~~(T./T~)~~~ (19) 
These are more convenient for engineering calculations. 

Consider tests on drying of moist porous ceramic bodies of different 
shapes (sphere, cylinder, disc, cone) carried out by S. S. Chervyakov. 
To compare heat transfer with drying of moist bodies with that of dry 
bodies of the same shape, we refer to Shchitnikov's data (11).  For this 
research sheet copper models 1.5 mm in thickness were used. Tube spirals 
were installed inside the bodies, which were of a spherical shape and of 
a cylindrical shape. Tube grids were inserted into the plate and disc. 
Holes 0.5 mm in diameter were drilled in these tubes. Cooling water 
was supplied through a pipe, connected with the spiral or the grid. The 
amount of heat transferred into the air from a heated body was deter- 
mined by water rate and by the difference between the inlet and outlet 
temperatures of the water. The wall temperature of a body was measured 
by thermocouples a t  fourteen different positions. 

The experiments were carried out in the wind tunnel with the air 
velocity varying from 2.5 to 18.0 meters per second which made it possible 
to cover a range of Reynolds numbers from 2 X 10' to 1.5 X 10'. The 
air temperature ranged from 60" to 140°C and the surface temperature 
was uniformly equal to 32.7" 0.3OC. The experimental data were corre- 
lated by a plot Zg Nu = f(lg Re). They also gave the values of constants 
A and n for Nu = A Ren. 

The deviation of experimental points from the plot was small, the 
maximum deviation c being *3-6%. The experimental data are sum- 
marized in Table IV. Formula Nu = f(Re) may be plotted based on 
values of A and n for comparison with the similar plot for moist bodies. 

It should be noted that the experiments by Shchitnikov were carried 
out carefully as confirmed by his data for a plate with fairing. The values 
of A and n are in good agreement with those obtained by the well-estab- 
lished conventional empirical formula Nu = 0.032 ReOJ for the case of 
a flat plate in an airflow ( I S ,  14). 

In S. S. Chervyakov's experiments, the relative air humidity was 
unchanged (q = const). The value of Gum was, consequently, almost 
constant. Experimental data were therefore presented as empirical 
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TABLE I V  

Heat Transfer of Differentry Shaped Metal Bodies i n  a Heated Aiv mow 

Body shape and orientation to air  flow 
- 

t 

I 

6? 

ela b 

b 

Charac- 
Size teristic 
(mm) size, I A n E(%) 

d = 120 I = d  0.190 0.64 + 4  

d = 70 

11 = 170 

I = d  0.118 0.67 * 4  

I = d  0.123 0.68 i5 

d = 120 
h = 180 
1 = 190 

d = 120 
11 = 180 
r = 190 

d = 143.1 
h = 27 

d = 143.7 
h = 21 

a = 160 
b = 100 
h = 25 

a =  160 
b = 100 
11 = 25 

a -  160 
b . 1 W  

0.128 0.65 i6 

0.051 0.74 16 

0.028 0.77 t 3  

0.017 0.86 13 

0.107 0.70 15 

0.290 0.58 15 

~ 

0.031 0.80 13 
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formulas 
Nu, = A Re” and Nu, = A’ Ren’ (20) 

Constants A ,  A’, n, n’ are compiled in Table V. Orientation of the body 
to the flow is the same as in Table IV. 

The heat transfer performance Nu = f(Re) is plotted in Fig. 10 for 
heat and mass transfer of a cylinder being dried, and Shchitnikov’s data 
are presented for comparison. Figure 10 shows that Nusselt number Nu, 

TABLE V 
HEAT AND MASS TRANSFER WITH DRYING (2.5 X lo4 < Re < 7.2 X l O 4 ) a  

Body shape and its orientation 
to flow A n A’ n’ 

Cylinder (orientation a) 0.167 0.65 0.090 67 
Sphere 0.114 0.70 0.132 0.63 
Cone (orientation b)  0.077 0.80 0.0815 0.76 

Q It should be emphasized that these results were obtained by Chervyakov and that 
the A’ and n‘ refer to a Nusselt number for mass transfer defined by Eq. (23); that is 

Nu,’ = A’Re”’ 

when 

FIG. 10. Plot of Re versus Nu (Nu, and Nu,) for cylinder in cross flow with 
I-drying, 2-porous cooling, 3-theoretically predicted values for dry heat transfer. 
(Note that Nu,,, for Case 1, drying is actually defined by Eq. (23) and should rigorously 
be identified as Nu,,,’) 

[ 1431 



A. V. LUIKOV 

with drying is about 14% larger than Nu with heat transfer of a metal 
cylinder over the range of Re from lo' to lo6. In comparison with 
Sergeyev's data, the mass-transfer Nusselt number is less than the 
heat-transfer Nusselt number (Nu, < Nu,). One of the sources of such 
a divergence is a different method for calculation of the mass-transfer 
Nusselt number. Sergeyev found Nu, by the following formula 

where D, is the diffusion coefficient based on the pressure difference 
(kg/m h mm Hg) and related to the conventional coefficient D(m2/h) by 

I n  this case all the transfer coefficients, including the diffusion coefficient, 
were determined a t  the ambient temperature (I' = TJ. 

S. S. Chervyakov obtained mass-transfer Xusselt number by the 
formula 

where mass-transfer coefficient h,'(n$h) is based on the difference of 
vapor fractions in the air Apl. A diffusion coefficient was found at the 
ambient temperature as well. 

Comparing formulas (21) and (23) and keeping in mind formula (22), 
one can see that Xu, > Sum'. As an example, in one of the experimental 
runs j .  = O.;i kg:m2h, Apl = 9.85 mm Hg, Apl = 0.0108 kg/m3, then 
h, = 0.051 kgim h mm Hg and h",' = 46.5 m/h, h,RT/M = 55 m/h. 
Hence, ratio SuJNu,' = 1.18. Thus, Xu, is about 18% larger than 
NU,'. Besides, in S. S. Chervyakov's experiments temperature head At 
was small. The surface temperature (wet-bulb temperature) was therefore 
1,jo-200C lower than that of air. 

Comparison of Tables IV and V indicates that in all the cases heat- 
transfer Susselt number Xu, with drying is larger than Kusselt number 
with dry heat transfer. The difference is from 12 to 50%, depending on 
Re and a body shape. 

3. Porous Cooling 

Experiments on porous cooling, described in Section 11,A point 3, were 
carried out by Mironov (1%) with the same relative humidity. Experi- 
mental data were therefore correlated by empirical formula (20). Con- 
stants A, A', n, and n' are compiled in Table VI. Comparison of Tables 
[I441 
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TABLE VI 
HEAT AND MASS TEANBFER IN THE PROCESS OF POROUS COOLING 

(2.5 * lo' < Re < 7.2 X 10') 

Shape and orientation Sire 
to flow (-1 A n -4 ' n' 

Sphere d = 102 0.277 0.630 0.020 0.81 
Cylinder (orientation a )  d = 168 0.073 0.75 0.0142 0.835 

Disk (orientation b )  d = 23 0.121 0.725 0.0237 0.830 
d -  84 

d = 135 

d = 110 
Cone (orientation a )  d = 178 0.161 0.67 0.0122 0.84 

I V  and VI shows that with porous cooling heat-transfer Nusselt number 
is also larger than Nusselt numbers with pure heat transfer. This differ- 
ence is even greater than that with drying and in some cases reaches 
70% over the range of great Reynolds numbers. The values of Nu = f(Re) 
for a cylinder in a cross flow are also plotted in Fig. 10 for comparison 
(curve 3). Figure 10 shows that Nu, with porous cooling is larger than 
that with drying. This difference increases with Reynolds number Re. 
Mass-transfer Nusselt number Nu,,, with porous cooling is smaller than 
Nu,,, with drying. In  this case the difference between them decreases 
with increase of Re. 

This trend is caused by the mechanism of heat and mass transfer of 
moist capillary-porous bodim. With porous cooling evaporation occurs 
a t  a body surface or in a layer close to it. With drying of a moist body 
evaporation takes place at  a certain depth even at  constant rate of drying. 
Increase in air velocity is known to move the evaporation zone into the 
interior of the body. 

Since the experiments by Mironov and Chervyakov were carried out 
with bodies almost equal in size, the air velocity is proportional to 
Reynolds numbers. With increase in Reynolds numbers mass-transfer 
mechanism of drying becomes therefore similar to that of porous cooling. 

Since the amount of heat spent for evaporation is determined by the 
amount of moisture evaporated and the water supply with porous cooling 
is conatant (a moisture content of the body is constant below the evapora- 
tion zone), a conclusion may be drawn that Nu, with drying should be 
smaller than that with porous cooling over the range of great Reynolds 
numbers. 

These experiments indicate that heat and mass transfer between moist 
capillary-porous bodies and ambient air has its own peculiarities. The 
orientation and, consequently, the structure of the evaporation zone of 
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a capillary-porous body are of great importance. Heat required for 
evaporation is transferred to the evaporation zone not only through a 
boundary layer a t  the surface, but also through a very thin layer of the 
body. This thin layer has a capillary-porous structure through which 
heat and mass are transferred by conduction and diffusion. This heat 
and mass transfer through the body layer has a direct effect on distribu- 
tion of temperature and vapor fraction in a boundary layer of humid air. 
Smolsky has shown that temperature and concentration profiles in a 
boundary layer depend on porous structure, with velocity, relative 
humidity, temperature and, consequently, temperature head being equal. 
Colloid bodies, for example, produce t(y) and pl(y) profiles different from 
those for a capillary-porous body. Mel’nikova has found that constants 
A and A’ entering formula (20) depend on porosity and capillary struc- 
ture of a body. External heat and mass transfer depend, therefore, on 
heat and mass transfer inside the body (internal heat and mass transfer). 

The effect of mass transfer on heat transfer with evaporation of liquid 
from capillary-porous bodies mainly results in the change of heat and 
mass transfer mechanism due to the deepening of the evaporation sur- 
face into the interior of the body. The present author’s experiments (16) 
have shown that mass transfer does not effect the air velocity profiles 
in a boundary layer. 

To analyze a complex problem of heat and mass transfer with tran- 
spiration cooling we shall avail ourselves of the Krischer method. The 
ewence of the method is in the following. 

If the influence of the mass cross flow is neglected, the differential 
equation for heat transfer in the boundary layer with a laminar flow 
over a flat plate may be written asb 

at a 2 t  

ax ay 
uvz - = a -2 

The boundary conditions are: 

a t  y = 0: t ( x , O )  = t . ;  a t  x = 0, t (0 ,y)  = 1. 

a t  y -+ : l(z,=) = i, (2.5) 

The flow velocity wz is the function of coordinates and is determined 
by solving the equation of motion. The Krischer method assumes w. 
to be constant and equal to the average flow velocity in the boundary 
layer (w. = az). In  actual processes a constant velocity takes place 
only in a flow of liquid without friction, i.e., when the coefficient of inter- 
nal friction is very small. In the case of viscous fluid such an assumption 

6 Heat transfer due to vnpor diffusion niay be neglected as a small value. 
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(w. = 8, = const) avows the solution of the problem of heat transfer 
in a boundary layer. 

In the case of a flow over an infinitely long plate (1 --+ w ) the solution 
of the differential Eq. (24) subjected to boundary conditions (25) has 
the form: 

The local Nusselt number Nu, is 

Differentiating the solution (26) with respect to y and assuming y = 0, 
we obtain 

The average Nusselt number over the surface is 

2 
= - f i e  
6 

In order to compare the obtained results with the known formulas 
for the Nusselt number with the laminar flow over a plate it is necessary 
to determine the value of 8.. If the profile of the velocity wz(y) is taken 
for a cubic parabola, the average integral velocity g, will be 

I 5 
8, = w. f 1. wJy) dy = 3 20, 

where 6 is the boundary-layer thickness. Then for moist air (Pr = 0.7) 
we shall have 

Nu = 0.625 - n e  = 0.74 d& (31) 
2 

6 
This result m e r e  from the known analytical solution Nu = 0.60 a e  

only by 23%. Thus, the assumption that the velocity 8). is constant 
when solving a diiTerentia1 equation of the boundary layer is quite justified 
as the method of solution. It gives satisfactory results. 

The present problem on evaporation porous cooling may be stated as 
follows. 

The differential equation for heat transfer remains the same [see Eq. 
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The boundary conditions will be as follows: 

t(O,y) = t o ;  t(a,m) = I!,; t(zl-&) = t b  = const (32) 

And it is assumed that the temperature on the surface of evaporation is 
equal to the wet-bulb temperature. Due to the small boundary-layer 
thickness of the body the distribution of temperature in it proceeds 
according to the limit law. 

In  this case the boundary condition (33) may be written as 

where I! = k b i l i f  is some value similar to the relative coefficient of heat 
transfer. 

The solution of differential Eq. (24) subjected to boundary conditions 
(32) and (34) has the form 

From Eq. (35)  w e  obtain Eq. (26) as a specific case. If evaporation takes 
place on the surface of a body ( 5  = 0), the second term of the right-hand 
side of (35) is equal to zero, as a t  t -+ 0, then H + x . 

The temperature on the surface of the body (y = 0) will not be con- 
stant but will change along the axis .c 

Xear the edge of the plate (x = 0) the temperature of the surface of 
the body t.[t, = t(z,O)] is equal to the air temperature 1. = t,, while at 
a considerable distance (a -+ =) the temperature of the surface is equal 
to the wet-bulb temperature ( t ,  = t b ) .  Hence, the temperature head 
At (At = t. - t.) changes front zero near the edge of the plate to the constant 
oalue (1. - t b ) .  It is a very important fact which determines the rela- 
tionship of heat and mass transfer when the surface of evaporation 
deepens inside the body. If evaporation takes place on the body surface, 
then under adiabatic conditions its temperature is constant and equal 
to the wet-bulb temperature. 
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It is known from the general theory of heat transfer that if the tempera- 
ture head At increases in the direction of flow, the heat transfer coefficient 
is higher than that at constant temperature. Hence, when the surface of 
evaporation deepens the heat transfer coefi ient i s  higher than that with 
evaporation on the surface. If as the first approximation we assume that 
the heat transfer coeficient with evaporation on the surface of the body 
is equal to the heat transfer coefficient of a dry body, then at drying with 
deepening of the surface of evaporation the heat transfer coeflcient will be 
higher than that of a dry body. This increase in the heat transfer coefficient 
should be reflected in calculation formulas Nu = f(Re) by introducing 
an additional dimensionless argument. Since At is a cause of the change 
in the heat transfer coefficient, it is natural that Gu or (T,/Tt,) will be 
the generalized variable. Let us consider it in more detail. 

The local Nusselt number will be : 

- -  at(z’o) - dE KexpK2erfcK[l - expK2erfcK]-’ z 
NU, = 

It. - t(@>l aY 
(37) 

where the dimensionless variable K is equal to 

It Characterizes the effect of the deepening of the evaporation surface 
on heat and mass transfer of capillary-porous bodies. 

Let us designate 

f ( K )  = 4; KexpK2erfcK (39) 
Then we shall have 

From Eq. (40) we shall obtain Eq. (28). If evaporation takes place on 
the surface (K  = m ) ,  N = 1 since f ( K )  = 1, i.e., 

1 
NU, = l/?r 

and this finally coincides with Eq. (27). Thus the dimensionless value 
N characterizes a relative increase in the local Nusselt number with 
evaporation of moisture from capillary-porous bodies, as compared to 
moisture evaporation on the surface of the body. 
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It is seen from equation (39) that the value of N decreases with the 

In the range of values of K from 0.1 to 5 (0.1 < K < 0.5) the relation 
increase in K gradually approaching unity. 

Nu = f ( K )  may be approximated by the relation 

N = 1.31K-0.12 (41) 

I t  is known from the theoryof dryiiigof moist materials that thedistance 
of the evaporation surface from the surface of the body during the constant 
rate of drying in the first approximation is proportional to the psychro- 
metric difference At (At = ta  - t b ) .  Then the dimensionless variable K 
will be inversely proportional to ( t o  - t b )  and, consequently, to the 
Gukhman number (K - Gu-'). From this it follows that the number 
N will be proportional to GuO-' (N - GuO.') and this takes place in 
experiments on heat and mass transfer in the process of drying. 

Only during the constant rate of drying the temperature of the evapora- 
tion surface l(c, - E )  is constant. Beginning from the critical moisture 
content its temperature increases with time of drying gradually approach- 
ing the air temperature, which is reached by it a t  the equilibrium moisture 
content. From this it follows that the Nusselt number Nu, during the 
falling rate of drying will decrease gradually approaching with time the 
Nusselt number for a dry body. 

It is of interest to determine approximately the value of N .  For porous 
ceramics ( k b  = 0.2 kcal/mh"C) at Re = 6.10' and for z = 20 mm for 
the parameter K = 1.5 the value 5 = 0.5 mm. In this case, according 
to Eq. (33), the coefficient N = 1.25, i.e., the heat transfer coefficient 
with drying is higher by approximately 25% than the heat transfer coef- 
ficient for a dry body if it is considered that heat transfer with evapora- 
tion on the body surface is identical with heat transfer of a dry body. 
For parameter K = 0.23 the value E = 3 mm, and the coeEcient 
N = 1.55, i.e., the heat transfer coefficient is approximately by 50% 
higher with drying as compared to that of a dry body. 

It is quite natural that at small values of 5 it is practically impossible 
to fulfill an exact measurement of the body-surface temperature. Thermo- 
couples imbedded on the "surface" of the body practically show the 
wet-bulb temperature. Therefore, the heat transfer coefficient is calculated 
as the ratio of LL heat flow to the psychrometric difference ( ta - tt,) 

Then the local Nusselt number will be equal to 
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Upon simple transformations we obtain 

where Na is the coefficient which shows a relative change in the number 
Nuza and, consequently, in the coefficient it& due to the deepening of 
the evaporation surface. It is seen from Eq. (44) that with increase in 
K the coefficient N decreases. 

Since the dimensionless K is inversely proportional to the psychro- 
metric difference (t, - tb),  the Nusselt number will decrease with the 
increase in (t, - t b )  or in the Gukhman number. 

In  a small range of K the relation Nub = f ( K )  may be given in the 
form of relations 

where B and m are constants (0 2 m 2 1). 
For example, in the range (0.3 < K < 1.5) the constants B and m 

are equal to 0.73 and 0.46, respectively, while in the range (1.5 < K < 5) 
B = 0.80 and m = 0.15. 

Hence, in the range (0.3 < K < 1.5) the coefficient Nb will be propor- 
tional to  Gu-O.~~. A similar relation was observed in a number of works. 

Equation (24) is a particular case of Eq. (12) when the transverse 
velocity is zero (w, = 0). Equation (12) may be solved if wz = t& = const 
and w, = j 8 / p  = const are assumed. The solution of Eq. (12) with 
boundary conditions (25) is of the form 

Na = BKm (45) 

From the above solution the local Nusselt number is obtained 

where Pez* = w,x/a = j a x / p a  is the local Peclet number for transverse 
transfer. If the effect of transverse heat transfer along y is neglected 
(Pe,* = 0 ) ,  then from Eq. (47) formula (28) is obtained. If the evapora- 
tion rate is lower than 20 kg/m2h ( j ,  < 20), then for a met plate in a 
laminar airflow (Pr = 0.7), when Re 5 8.104 Pez* < 25. Hence the 
second term of Eq. (47) is less than 5% in relation to the first one, and 
the value of exp (- Pe,*2/4pe,) is practically unity. 
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The solution of Eq. (12) with boundary conditions (32-33) is of the 
form 

Tf,,, Hw,\ xa 

If we assunie au = 0, then from Eq. (48) the solution (35) will he 
obtained. From Eq. (48) the following formulas are obtained 

where 

6 Kexp(K2 - BK)erfc ( K  - i B )  (50) 

For N h  

If the effect of transverse mass transfer is neglected ( B  = 0), then from 
formulas (49) and (52) we obtain formulas (40) and (44), respectiyely, 
since 

(53) 

With no deepening of the evaporation surface ( 4  = 0, K = .j) we obtain 
from formulas (49) and (30) 

~ ( K , o )  = 4; KexpK2erjcK = f ( K )  

This is Eq. (47), since 
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Over the range 0.5 < K < 5 and with the above values of Re and 
evaporation rate j ,  1 /2(B/K) 5 0.06. Thus for approximate calculations 
which are sufficient for engineering practice, the effect of transverse mass 
flow may be neglected. 

III. External Heat and Mass Transfer with Sublimation 
The above experiments do not yield a clear understanding of the 

complicated process of combined heat and mass transfer in a boundary 
layer of an evaporating liquid. Therefore, experiments on heat and mass 
transfer with sublimation of solid materials carried out by Novikov (16) , 
Heat and Mass Transfer Institute, Minsk, are of great interest. 

The solid material investigated was naphthalene. This substance has 
great evaporative capacity, its physical constants being known. Air 
pressure ranged from 760 to 0.07 mm Hg which permitted the study of 
the pressure effect on heat and mass transfer. To compare the process of 
naphthalene sublimation with evaporation of moisture from a capillary- 
porous body, a porous ceramic body soaked with water and a body made 
of moist gelatine were taken, the latter being chosen for comparison 
of heat and mass transfer of a typical capillary-porous body (moist 
ceramics) with a colloid one (gelatine). Sublimation of frozen moisture 
(ice) occurred only at low air pressures, at slight rarefactions liquid 
evaporation taking place. 

A. EXPERIMENTAL PROCEDURE 

Experiments on sublimation in vacuum are usually carried out under 
free convection. Since the main aim of the present studies was to compare 
the processes of evaporation with sublimation in forced convection, a 
special unit was designed for vacuum experiments in both free and forced 
convection. This was achieved by setting the model in motion. Its velocity 
changed in a wide range from 0.0 to 50.0 meters per second. 

A schematic drawing of the teat unit is depicted in Fig. 11. A vacuum 
chamber (1) was a steel cylindrical vessel 350 mm in height and 415 
mm in diameter. The cylinder was provided with steel covers with rubber 
packings. The chamber was heated by an electrical heater allowing the 
air temperature in the chamber to range from 20" to 100°C. The chamber 
was thermally insulated from the outside. There was a glass window 
150 mm in diameter in the top cover through which changes in the mass 
of the body of interest were recorded. This cover was provided with 
packing sleeves which connected a vacuum pump (18), pressure gauges 
(23) and (24), a vacuum gauge (19), air line (20), and thermometers 
(the hole for thermocouple wires). Through a hole in the bottom cover 
a shaft was inserted rotated by a direct-current motor (7). The shaft 
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was in bearings connected with the cover by rubber packings. There 
was a special prechamber for gasketing the shaft lead, covering the 
bearings. The prechamber was coupled with the vacuum pump, its capac- 
ity being 0.7 liter per second (in Fig. 11 it is not shown). 

The shaft was a steel rod 7 mm in diameter and 200 mm in length 
with a holder (2) on it. The holder was a hollow duralumin cyIinder 
180 mm in length. 
h steel spring was inserted inside the holder for measuring the mass 

of the body. One end of the spring was fixed, the other being connected 

FIG. 11. Schematic drawing of test unit for heat and mass transfer experiments 
in vacuum (16): &-chamber; 2---steel holder; 3-reference standard body; 4-auto- 
type transformer; 5-voltage stabilizer; &-rectifier; 7 4 i r e c t  current motor; 8-stro- 
boscope; $-thermocouple installation in a model; 10-thermostat with melting ice; 
11-thermocouple switch; 12-potentiometer; 13-normal element; 14-storage 
battery; 15-null galvanometer; 16oi l  pump; 217-galvanometer; 18-41 pump; 
19-thermocouple vacuummeter for pressure range from I to lopa mm Hg; 20-air 
line with diaphragms; 21-trap; 22-mercury discharge lamp; 23-vacuum gauge 
for pressure range from 760 mrn Hg to 1 mm Hg; 24-ompression pressure gauge; 
25-cylindrical receiver. 

with a body by a rod. When the body rotated, the spring stretched by 
centrifugal force. This stretch was recorded on the scale adjusted to the 
same holder. Readings of the scale were made by a stroboscope. A beam 
was mounted on the other (short) end of the holder which was composed 
of a set of lead washers and a screw plug. The whole unit was balanced 
statically and dynamically. The centrifugal force stretching the spring 
was proportional to the mass. Decrease in mass with evaporation caused, 
therefore, displacement of the body along the holder, which was registered 
1541 
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by a pointer of the spring balance. The pointer was observed by means 
of the stroboscope. 

There was a set of springs which were used depending on the number 
of rotations of the body. Relation between the mass of the body and 
readings of the spring balance was linear. The required vacuum in the 
chamber was created by the vacuum pump (18) 7 liters per second in 
capacity. 

The vacuum pump was connected with the chamber by a vessel (25) 
which served as a receiver for pulsation absorption. Pressure in the work- 
ing chamber was controlled by a special air line (20). Its design allowed 
the maintenance of a definite air onflow into the working chamber by means 
of a set of diaphragms made of thin brass foil. A supplementary steam- 
oil pump 250 liters per minute in capacity was engaged a t  high rarefaction. 
Pressure in the chamber was measured by a U-tube with a mercury 
column (23) over the pressure range from 760 to 1 mm Hg. A compression 
gauge (24) was used to measure partial pressure of dry air from 1 mm Hg 
and lower. The pressure gauge was coupled with the working chamber 
by two traps. One of them was filled with calcium chloride (21), the other, 
with liquid nitrogen. The total pressure over the range from 1 to  lo-* 
mm Hg was measured by a thermocouple vacuum gauge (19). 

Thermocouples (copper-constantan) 0.1 mm in diameter served as 
thermometers for air in the chamber, the walls and the model. The 
temperature of the fixed body was measured by a thermocouple with ~b 

hot junction adjusted near the surface. The temperature of the rotating 
body was measured by a special alcohol thermometer, a thin rod with 
a spherical end. The bulb was covered with melted naphthalene. Then 
it was placed in the holder and set in rotation. Readings were made on 
the thermometer scale and through the stroboscope. The thermometer 
had been calibrated beforehand without naphthalene under the condi- 
tions of rotation. These tests allowed a correction for centrifugal force. 

Models were prepared in the following way: a textolite sphere 10 mm 
in diameter was covered by a melted naphthalene. The sphere was sub- 
merged into melted naphthalene, and on cooling down, the naphthalene 
layer was ground and shaped as a concave hemisphere 12.6 mm in diam- 
eter. Thus, the textolite sphere was covered with a naphthalene layer 
1.3 mm in thickness. A hole was made in the sphere for adjustment to 
the holder. A thermocouple was inserted in this hole to measure naphtha- 
lene temperature. 

The second model was a sphere 15 mm in diameter made of the same 
porous ceramics as in the experiments on porous cooling. Before the 
experiment this sphere was soaked with water as described above (Sec- 
tion 11,A). 
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The third model was made of moist gelatine which is a typical colloid. 
It is shaped as a parallelepiped, 10 X 10 X 5 mm. This shape was chosen 
because of difficulty in manufacturing a spherical body. The experimental 
procedure and units are described in detail in Novikov's work (16). 

The experiments were carried out under stationary conditions when 
the body temperature was constant in time. Therefore the total heat 
transferred to the body was spent on evaporation. Consequently, heat 
flux q. (kcal/m2hoC) is equal to the product of a specific heat of evapora- 
tion L (kcal/kg) by evaporation intensity j ,  (kg/m*h), i.e., q. = Lj,. 
The total heat transfer coefficient he,, including heat transfer by convec- 
tion and radiation, was defined by formula 

Radiant heat transfer coefficient h, is calculated by the conventional 
formulas and additional experiments were carried out to find emissivity 
of naphthalene, moist porous ceramics, and gelatine. Convective heat 
transfer coefficient is defined by formula h, = he, - h,, mass transfer 
coefficient for a viscous region is found by formula 

and for a molecular-viscous' region by formula 

j ,  - 0.583p,,(M/T)n.5 h, = 
P v r  - p v a  

(57) 

wbere p,, is a partial vapor pressure a t  the body surface. 

B. INTERPRETATION OF THE DATA 

The pressure effect on evaporation intensity a t  various velocities is 
depicted in Fig. 12 for three models. 

In  free convection, evaporation for all the bodies increases to a maxi- 
mum value with pressure decrease and then i t  decreases. Maximum 
intensity j,,, for naphthalene is 0.57 kg/m2h a t  a pressure of 0.5 mm Hg, 
for gelatine j,,, = 0.5 kg/m2h a t  a pressure of 1 mm Hg (Zg p = 0)) and 
for moist ceramics jmax = 0.46 kg/m*h at 0.5 mm Hg. 

In  forced convection, evaporation intensity varies with material prop- 
erties. For naphthalene j ,  changes with l g  p in forced convection in a 
similar way as in free convection. Maximum evaporation intensity for 

7 Here we define molecular, viscous, and molecular-viscous as follows: If (I) k >> d ,  
Inolecular region; (2) k << d, viscous region; and (3) k - d, molecular-viscous region 
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naphthalene is found at  1 mm Hg, for porous ceramics it is a t  100 mm 
Hg (Zg p = 2), and for gelatine, a t  4 mm Hg. The shape of curvesjs = f(Zg p )  
over the pressure range from 500 to 1 mm Hg depends on the body struc- 
ture. For gelatine evaporation intensity decreases with pressure falling 
from 500 to 100 mm Hg (Zg p = 2), while with porous ceramics it increases. 

-I 0 I 2 4 p 

FIG. 12. Effect of pressure p (mm Hg) on evaporation intensity j (kg/m*h) for a) 
gelatine; b) moist porous ceramics; c)  naphthalene. 

Thus, the general trend is similar to that with drying of moist bodies 
a t  normal barometric pressure. Heat and mass transfer coefficients are 
summarized in Table VII. The heat transfer coefficient of a colloid body 
(gelatine) and a typical capillary-porous one (ceramic) are close to each 
other only at extreme pressures-740 mm Hg and 0.17 mm Hg. In  the 
rest of the pressure range (740 < p < 0.17) heat transfer coefficients he 
for gelatine are larger than those for ceramics. 

To illustrate this, take the data for a pressure of p = 100 mm Hg and 
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TABLE VII 

PRESSURE AND BODY VELOCITY 
HEAT A N D  M A S S  TRANSFER COEFFICIENTS RELATED TO MEDIUM 

Naphthalene Moist ceramics Gelatine 

hs hm ha h ,  h, e h, 
I' w kcal/m2h"C kg/xnZh kcal/m2h0C kcal/xnZh kcal/m2 kg/m2h 

mm Hg m/sec mm Hg m m H g  h"C m m H g  

742 0 3 . 0  0.11 - - 20.6 0.018 
- - 83.5 0.075 10 23.0 - 

20 32.0 - - - 100.6 0.075 
30 45 .0 - - - 115.6 0.085 

- - 122.6 0.090 40 54.0 
50 67.0 - - - 128.6 0.093 

- 

- .  - ~ _ _ ~  

500 0 2 . 0  0.17 
10 18.8 
20 25.0 - 
30 31.3 - 
40 39.7 - 
50 43 8 - 

- 

300 0 1 6  0.28 
10 15.1 - 
20 21 5 
30 27.8 
40 34.0 
50 40.2 - 

100 0 1.1 0.3 
1 0 3.1 1 9  
20 4.8 2.7 
30 6 .4  3 . 6  
40 7 . 6  4.4 
50 9 . 1  4.3 

- 

- 

- 

_ _  - - 

- - 11.8 0.014 
42.6 0.043 
55.1 0.056 
62.6 0.063 
69.6 0.070 
74.6 0.075 

- - 
- - 
- -. 
- - 

- -_ 

9 . 8  0.022 15.5 0.037 
31.2 0.065 40.5 0.083 
38.7 0.074 45.5 0.092 
43.2 0.082 48.5 0.098 
46.2 0.087 50.5 0.100 
49.7 0.093 51.5 0.103 

6 . 6  0.050 15 .3  0.046 
20.8 0.130 30.3 0.078 
23.8 0.146 34.3 0.088 
25.8 0.157 38.3 0.096 
27.3 0.168 41.3 0.100 
28.3 0.175 42.3 0.105 

4 0 4.65 7 . 8  10.5 0.100 11 .7  0.113 
10 9.45 17.3 12.6 0.115 15.4 0.140 
20 10.75 22.2 14.9 0.130 18.4 0.163 
30 11.85 26.0 16.6 0.150 22.0 0.190 
40 12.65 29.4 19.4 0.165 25.4 0.215 
50 13.45 33.0 21.4 0.180 28.3 0.236 
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TABLE VII (Continued) 

1 0 5.32 26.0 6.4 0.250 11.2 0.152 
10 8.52 44.5 6.9 0.280 13.3 0.173 
20 8.58 58.0 7.5 0.300 14.8 0.188 
30 8.97 66.0 8.0 0.310 16.8 0.206 
40 9.34 76.0 8.5 0.330 18.8 0.225 
50 9.4 79.5 9.0 0.350 21.8 0.245 

- - 0.5 0 6.37 31.7 6.6 0.35 
10 8.31 43.5 6.9 0.36 
20 8.57 56.0 7.2 0.38 
30 8.45 62.0 7.5 0.39 
40 8.30 70.0 7.8 0.40 
50 8.40 75.0 8.3 0.42 

- - 
- - 
- - 
- - 
- - 

4.95 36.6 - - - - 0.27 0 
- - - - 10 5.88 54.5 

20 6.33 60.5 
30 6.50 79.0 - 
40 6.65 83.5 - - - - 
50 6.70 86.0 

- - - - 
- - - 

- - - - 

0.18 0. - - 5.2 0.33 3.8 0.130 
10 - - 5.5 0.35 4.3 0.140 
20 - - 6.0 0.36 4.7 0.145 
30 - - 6.4 0.37 5.3 0.155 
40 - - 6.6 0.39 5.9 0.163 
50 - - 7.0 0.40 6.4 0.175 

0.11 0 1.46 33.2 
10 1.52 35.4 
20 1.64 38.7 
30 1.72 41.6 
40 1.82 44.3 
50 1.92 47.1 

0.09 0-50 1.98 40.2 

0.07 0-50 1.98 59.0 

a velocity of w = 50 meters per second. Under these conditions evapora- 
tion intensity of water from gelatine and ceramics are almost the same 
(for gelatine j ,  = 0.84 kg/m2h, and for ceramics j ,  = 0.86 kg/mZh). 
However, heat transfer coefficient h, for gelatine is 42.3 kcal/m2h°C, 
and he = 28.3 kcal/m2hoC for ceramics, i.e., heat transfer coefficient for 
gelatine is 50% larger than that for ceramics. A similar relation is found 
for other pressures. In natural convection a heat transfer coefficient for 
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gelatine is 1.5 kcal/m2h°C, and h. = 6.5 kcal/m2hoC for ceramics a t  the 
same pressure ( p  = 100 mm Hg). Thus, in the latter case the heat trans- 
fer coefficient is as much as 2.3 times that of ceramics. It is interesting 
to note that the general trend is quite different with mass transfer coef- 
ficients. At the same pressure 100 mm Hg mass transfer coefficient for 
gelatine h, = 0.105 kg/m2h mm Hg (w = 50 meters per second), and 
for ceramics h, = 0.175 kg/mgh mm Hg. Thus, mass transfer coefficient 
for gelatine is 1.65 times smaller. 

The surface temperature for gelatine was 9.5"C1 and for ceramics 
-3.2"C. Since the ambient temperature was uniform (1, = 20"C, resist- 
ance to heat transfer to a ceramic body is large compared with that for 
gelatine. Assume evaporation of moisture to take place a t  a certain 
depth 4, but not a t  the surface. Then heat flux qI and mass flux j .  will be 

q, = h.'Al; j ,  = hm'Apl (58) 

where heat and mass transfer coefficients h.' and h,' will be 

respectively. 
k b  is thermal conductivity of a surface layer, amp is a moisture diffusion 

coeacient based on the pressure difference. 
Since the layer thickness { is small, the distribution of temperature 

and partial vapor pressure may be assumed linear. The thermal conduc- 
tivity kb of the body increases with moisture content. The initial moisture 
content of the gelatine is considerably greater than that of porous ceram- 
ics. The thermal conductivity of the ceramic is, therefore, small compared 
with gelatine. However, the main difference in thermal resistance (Ilk, ,)  
of the surface layer is caused by different values of k. For a capillary- 
porous body & is considerably greater than t h a t  for a colloid body. The 
thermal resistance ( f / k b )  of a gelatine surface layer is, therefore, smaller 
than that for a ceramic one. Thus, the heat transfer coefficient h.' for 
gelatine is large compared with porous ceramics. The moisture diffusion 
coefficient of capillary-porous bodies is as much as 100 times that of 
colloid bodies. For example, moisture diffusion coefficient a, for gelatine 
is 0.03 X mZ/h, and for capillary-porous bodies it is from 2.10-5 
to 8.10-6 m2/h with 4W800% of moisture content.8 Therefore, though 

The moisture diffusion coefficients for gelatbe are reported in Drying Engineering, 
Proceedings of the Cinema and Photo Institute, Moscow, 1962; while the data for 
ceramics are from 'Transport Phenomena in Capillary Porous Bodies,'' by Luikov, 
Goeenergoizdat, 1954. 
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a boundary layer for a gelatine body is extremely small, its resistance 
to mass transfer will be larger than that for a ceramic body. As a result 
mass transfer coefficient h,' for gelatine is small compared with that for 
porous ceramics. 

In view of the above pattern, heat and mass transfer coefficients acquire 
the meaning of heat and mass exchange coefficients. A boundary layer 
consists of vapor-air mixture adjacent to the body surface and of a thin 
layer of the body itself, E in thickness. Thus, external heat and mass 
transfer is inseparably linked with the internal process since moisture 
evaporation takes place inside the body. 

I I I I I 

- I  0 I 2 lg p 

FIG. 13. Effect of pressure p (mm Hg) on heat transfer coefficient h, (kcal/mZh"C) 
for naphthalene in free convection according to the data by I-P. A. Novikov (16); 
2-theoretically predicted values for dry heat transfer. 

Turning to heat transfer with sublimation of naphthalene, the effect 
of pressure on the heat transfer coefficient h, in free convection is illus- 
trated in Fig. 13. A pressure drop from 742 to  40 mm Hg (Zgp = 2.6) 
causes decrease in he from 2.5 to 0.8 kcal/m2hoC. Then he increases and 
reaches a maximum value (he = 6.3 kcal/m2hoC) at  0.5 mm Hg. As the 
pressure continues to drop, heat transfer coefficient becomes less and at  
pressure of 0.1 mm Hg it is 1.4 kcal/m2hoC. Figure 13 illustrates also 
variation of heat transfer coefficient h represented by 

Nu = 1.18(Gr Pr)O.lZ6 l.10-3 < Gr Pr < 5.102 (60) 

For the case of heat transfer in the absence of mass transfer, coeffi- 
cient h continuously decreases with decreasing pressure from 3.4 to 0.3 
kcal/m2hoC. Thus, he is larger than h over the pressure range from 10 
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to 0.1 mm Hg. A t  0.5 mm Hg ratio h,,lh = 10.6, i.e., heat transfer 
coefficient h, with sublimation is as much as about 11 times h. This 
increase in h, can be explained in the following way. As a solid material 
evaporates into the surrounding medium over the pressure range of about 
10-0.1 mm Hg, its volume becomes lo4-lo6 times larger. The mass of 
vapor in this vast volume (compared with the model) leaves the surface 
and penetrates the surrounding medium. Evaporation is nonuniform over 
the whole surface, but it takes place in the form of jets escaping from 
numerous discretely located centers of evaporation. The theory of dis- 
crete evaporation is confirmed by the fact that with sublimation of ice 
in vacuum the surface layer of ice becomes porous. 

These jet,s quickly rush into the medium, producing strong turbu- 
lence. 21 very complicated and random movement arises, caused by circu- 
lation streams, multiplied by these jet streams. To get an idea of the 
magnitude of the circulation multiplication factor n, one can use the 
following approximation. 

Assume the total heat required for evaporation of the material, to be 
transferred by radiation and direct exchange between the medium and 
the body surface. Then, from the equation of thermal balance we may 
Write 

Lj, - o r  = c i a ( t a  - tJ(n + 1) (61) 

where q'is a heat flux by radiation. This is about 30 to 50% of the total 
heat Lj. required for evaporation. In this case evaporation is assumed to 
be uniform over the whole surface of the body and heat transfer to be 
purely turbulent. From formula (61) it follows that at pressure of 0.5 
mm Hg n = 34 for naphthalene, and n = 36 for porous ceramics (for 
ice, evaporating from porous ceramics). 

Thus, the heat transfer is accompanied by a complicated turbulent 
transfer, caused by discrete evaporation of solid material from the surface 
which takes place repeatedly. 

In the case of ice sublimation vapor pressure pn.* at the body surface 
is larger than the ambient pressure p(p,,. > p ) .  According to the experi- 
mental data ratio p / p . ,  is about 0.3-0.4, i.e., it is supercritical. 

Under these conditions vapor escapes from discrete evaporation sites 
with extremely great velocity. The vapor in the form of jets rushes into 
the surrounding medium and causes ejection of vapor-air mixture between 
the sites. 

Heat transfer rate by convection is proportional to volumetric heat 
capacity c,p. Since the density of the medium decreases with pressure, 
the convective heat transfer becomes of less significance over the pressure 
range p < 0.5 mm Hg. 
t1621 



CAPILLARY-POROUS BODIES 

! 

In addition, a t  small pressures a t  the surface a layer arises close to 
the wall with a thickness comparable to a mean free molecular path 
which is inversely proportional to the pressure. In this layer no turbu- 
lence occurs and heat is transferred by molecular transfer alone. This 
results in a decrease of the heat transfer coefficient h, with pressure. Over 
the pressure range 0.1 < p < 0.5 molecular-viscous heat exchange is 
gradually changed to  a purely molecular one. 

This conclusion is confirmed by the experimental data on the velocity 
effect on heat transfer coefficient he (Table VII). A t  a pressure of 1 mm 

ts 

20 

15 

10 

5 

0 10 20 30 40 50 W 

FIG. 14. Effect of velocity w (m/sec) on surface temperature tr ("C) of naphthalene 
sphere at air pressure in chamber ranged from 300 mm Hg to 0.11 mm Hg. 

Hg, an increase in velocity from 0 m/sec (a motionless body) to 50 m/sec 
causes an increase in he from 5.32 to 9.4 kcal/m2hoC (1.95 times increase), 
while at  a pressure of 0.5 mm Hg this increase is 1.31, and at  0.09 mm Hg, 
the coefficient h, is actually independent of velocity. 

The above conclusions are confirmed by the analysis of temperature 
change at  the sphere surface made of naphthalene with the velocity at  
various pressures of the medium (see Fig. 14). At a pressure of 300 mm 
Hg surface temperature t, is actually independent of the velocity. At 
pressures from 100 to 0.5 mm Hg increase in the velocity causes decrease 
of the body temperature. The value of this temperature change increases 
with pressure decrease. With further pressure decrease ( p  < 0.5 mm Hg) 
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the value of t. change decreases and a t  0.11 mm Hg the surface tempera- 
ture is actually independent of the velocity. 

The effect of the body size on evaporation intensity and heat transfer 
coefficient is of some interest. The data are presented in Fig. 15 for 
naphthalene spheres with various diameters. As expected, evaporation 
intensity and heat transfer coefficient become smaller with increase of 
the body surface (of a sphere diameter). 

We have attempted to consider the nature and the effect of evapora- 
tion on the process of convective heat transfer under various conditions. 
The following conclusions may be drawn from the investigations: 

Heat transfer with simultaneous mass transfer due to  a new gas phase 
formation involves a great number of phenomena which are inseparably 

1 

10 

08 

0 6  

04 l 2  

FIG. 15. Effect of surface S (m') on evaporation intensity j (kg/ni2h) and heat 
transfer coefficient h. (kcal/m*h'C) of a naphthalene sphere in free convection (w = 0 
and 10 meters per second). 

interconnected. Investigation into this process will be successful only if 
the process is considered as a whole, as the sum of all the interconnected 
phenomena involved. It does not appear possible to utilize existing expres- 
sions based on a heat transfer-mass transfer analogy. Rather, quantita- 
tive relations must be obtained which correspond to the actual physical 
process. 

IV. Internal Heat and Mass Transfer in 
Capillary-Porous Bodies 

Transfer of noncondensing gases, vapor, and liquid mny occur in n 
capillary-porous body. Transfer of vapor and inert gas proceeds in differ- 
ent ways: by diffusion and effusion (molecular transport) and by filtra- 
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tion under the pressure gradient (molar transport). Transport of a liquid 
occurs by diffusion, capillary absorption, and by filtration. Consequently, 
the derivation of mass-transfer relations in capillary-porous bodies on 
the basis of a molecular and molar transport mechanism involves great 
difficulties. These relations may serve to analyze a qualitative mass- 
transfer pattern and to find out the character of a change in transfer 
coefficients, depending on moisture content and body temperature. Heat 
and mass transfer coefficients are determined experimentally for various 
bodies. 

A. ANALYTICAL HEAT AND MASS TRANSFER THEORY 

Consider a system : a capillary-porous body and a substance bounded 
within it. At a positive temperature ( t  > OOC) the bound substance con- 
sists of a liquid, vapor, and inert gas. At a negative temperature (t  < OOC) 
it consists of ice, supercooled liquid (water), vapor, and gas. Depending 
on the energy of binding between the moisture and the body, the freezing 
temperature of water changes over a wide range. Thus, in most cases 
there is always some amount of a supercooled liquid in capillary-porous 
bodies at the negative temperature. 

The second peculiarity of mass transfer in capillary-porous bodies is 
the partial filling of pores and body capillaries with a gas and moisture 
(vapor, water, or ice) i.e., a part of a capillary is filled with water or ice 
and the remainder, with a vapor-gas mixture (humid air). 

Steamlike moisture (vapor) is designated through 1 ; water, through 2 ; 
moisture in a solid state (ice), through 3, inert gas (dry air), through 
4 and a body skeleton, through 0. As a result, a moist capillary-porous 
body is a multicomponent system containing the bound substance 
(k = 1,2,3,4) and a dry body skeleton (k = 0). The volume concentra- 
tion of the bound substance (dry air, vapor, water, and ice) is equal t o  
the relation of the mass m of this substance to the body volume, V :  

where mk and W k  are the mass and concentration of the lcth component 
(k = 1,2,3,4), respectively. The quantity w k  may be expressed in terms 
of p k  and porosity II of a body (pore volume per unit of a body volume). 

where p k  is the density of the bound substance (PI and p4 are fractions 
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of vapor and dry air in the humid air, respectively; pz is the density of 
water; p3 i~ the density of ice"). 

In the first approximation the quantity of filling of capillaries b k  is 
equal to the relation of the volume of the bound substance in the state 
k to that of capillaries. According to the filtration theory in porous 
media b k  is referred to as a saturated state. In  the present case such a 
determination of the coefficient bk is, however, conditional, since moisture 
may be bounded by adsorptive and osmotic forces not only within the 
walls of capillaries but also with the internal wall surfaces of a capillary. 
Equality (63) shows that the volume concentration ok depends not only 
on P k  and II but also on bk which varies in the process of mass transfer. 
Consequently, filtration equations in porous media are inapplicable for 
moisture transfer in capillary-porous bodies since accordincto the filtra- 
tion theory the value of bk is assumed to be unity. 

The volume of a moist body depends on moisture content, therefore, 
instead of the volume concentration it is better to use the relative con- 
centration UI., determined by the formula: 

where PO is the density of the body itself. 

The relative concentration of the bound body u = uk is equal with 

great accuracy to the sum of relative concentrations of water ug and 
ice u3(u = u2 + u3), as the mass of vapor and dry air in pores and 
capillaries of the body is negligibly small, as compared with that of water 
and ice. According to Posnov's calculations (17) a t  the normal pressure 
(p = 7GO mm Hg) and a t  t = 20°C for a maximum-porosity body the 
mass of the humid air in body pores make-up of that of water, 
corresponding to equilibrium moisture-content. And so the relative con- 
centration u is equal to: 

k = l  

4 

and is called moisture content of a body. 
In the heat and mass transfer theory for capillary-porous bodies rela- 

tion (6Fj) is of great importance as i t  allows to make some simplifications 
and transformations. 

In a capillary-porous body moisture moves slowly. The temperature 

With adsorption PI is the density of adsorbed water. 
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of water and humid air in body pores and capillaries is practically equal 
to  that of their walls. Vapor in capillaries is in thermodynamic and 
molecular equilibrium with liquid. The partial vapor pressure in a hygro- 
scopic body state depends on temperature and moisture contents of a 
body; 

where u,, is the maximum moisture content of the body reached by 
sorption. 

In the moist state (u > uam) the partial pressure of vapor is equal to 
the pressure of a saturated vapor p,. Consequently, p, depends only on 
temperature : 

p ,  f (u ,T)  at 0 < u < u a m  (66) 

p .  = pa = f ( T )  a t  u > UBm (67) 

1 .  Differential Heat and Mass Transfer Equations 

Molecular and molar transport of vapor, air, and water proceed simul- 
taneously in a capillary-porous body. All these types of transfer may be 
conditionally called diffusion. Here by diffusion is meant molecular M u -  
sion, capillary diffusion (capillary absorption) and convective diffusion 
(fiItration). 

If we designate the density of a mass flow of the kth component of a 
bound substance in the state k(k = 1,2,3,4) through j k ,  then the differ- 
ential mass transfer equation may be written as: 

where r k  is the strength of the mass source or sink of the kth component. 
Summing Eq. (68) over all the kth components (k = 1,2,3,4), we obtain 

the following differential equation: 
4 

since the sum of all the mass sources and sinks is equal to zero: 

I k  = 0 

A differential heat transfer equation is obtained from that for enthalpy 
transfer of the present system. At constant pressure the local derivative 
of the volumetric enthalpy concentration is equal to the divergence of 
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an enthalpy flow 
4 I 

where q is the heat flux; h is the specific enthalpy. 

c p k  = (dhk/d t ) ,  then we shall have: 
Designate the specific heat capacity a t  the constant pressure through 

4 

Multiply Eq. (68) by h k  and summarize over li from 1 to 4 

4 4 4 

Hence from Eqs. (72) and (73) we obtain the differential heat transfer 
equation : 

I 4 

C P O Z  at = -&vq - 2 h k I k  - 2 c,k,ikvt 

k = l  k = l  

where e is the total specific heat of a body: 

c = Go + 2 C*uk 

k - 1  

(74) 

(75) 

From Eq. (74) the Fourier-Kirhoff equation for a moving liquid may 
be obtained as a particular case. Assume k = 2 

4 

C P .  = c P 2 p o u 2  = c P 2 p 2 ;  j ,  = P W  (76) 
then we have 

We now examine Eq. (74) in more detail. In capillary-porous bodies 
in the absence of filtration the convective component of heat transfer 
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is small compared with the conductive one. The term 

therefore, be neglected. 

a noncondensing gas (dry air), the source Iq is equal to zero (I4 = 0). 

Cpkjkvt may, 
k = l  

If there are no chemical conversions connected with the formation of 

Differential Eq. (74) may be written as follows: 

3 

Equations (78), (68), and (69) represent a system of differential equa- 
tions for heat and mass transfer with sources of mass Ik and heat hklk, 
accounted for by phase conversions. In  order to complete these equations 
it is necessary to determine sources Ik and flows of heat and mass. 

a. The Mass Sources. If the body temperature is above zero (t  > O O C ) ,  

moisture inside it is composed of two phases (liquid and vapor). In  this 
case we obtain from relation (70) 

I2 = -I1 (79) 

Since the mass of vapor in capillaries is negligibly small compared with 
that of liquid (uz >> ul) ,  we may assume u1 = 0. Then it follows from 
Eq. (68): 

(80) a0 = -divjl + I l  = 0 ar 
Hence the expression for a liquid source is 

IZ = -Il = -divjl 

If the body temperature is below zero ( t  < O O C ) ,  the moisture inside 
it is composed of vapor and ice or saturated liquid. No mass transfer 
of the solid state occurs ( j 3  = 0). Then for a two-phase system we obtain 
from Eq. (68) 

Usually, considering dispersed media containing ice, the notion of ice 
content factor eic is introduced, which is a ratio of the mass of ice and that 
of moisture (water and ice). In the present symbols 

If a body does not contain ice (us = 0), factor eic is zero (eic = 0). When 
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the whole of water converts into ice (u2 = 0) ,  ti, = 1. In most cases tir 

is less than unity (0 < t i c  < 1). According to Tsitovich (18) the factor 
ti, is independent of moisture content u, but it depends on the temperature 
alone. We may, therefore, write 

duS = t i , du  
Then source I 3  will be 

A similar relation may be obtained for the source 1 2  at  a temperature 
of the body t > 0°C. Changes in the maw of the liquid may be caused 
by transfer (dour) and phase conversion d , w ,  i.e., 

duz = dcUp 4- d , ~ 2  

Denote relation d,u2/d.u2 through d2(p2 = d,uz/douz).  This value ranges 
from (8 = 0) when no phase conversions occur (d,uz = 0 ) ,  to infinity 
(& = w),  when all the changes of mass are caused by phase conversion 
alone (douq = 0). Therefore, introduction of a new value c2  is advisable, 

(86) 

82 
1 + 8s €2 = ~ 

which is referred to as a phase conversion coefficient. This coefficient 
ranges from zero to unity (0 < e2 < 1). The case t2 = 0 corresponds to 
absence of phase conversions (B2 = 0 ) ,  and when O. = l(p2 = m), no 
mass transfer occurs. 

Then relation (86) may be written as 

(88) 
1 

1 - €2  
d ~ r  = (1 + 8 2 )  doU2 = __-- douz 

Consequently, a diffusion equation of mass transfer will be 

au, au2 
a7 a? P O  - = -divjz  4- tzpD - 

Comparing Eq. (89) with (68), we obtain (since uz = u for t > O O C )  

au2 au 
I t  = f Z P 0  - = w o  a7 

The following formula may, therefore, be written for the source Ik(k = 2,3) 

Thus, ice content factor tic is a phase conversion coefficient c3(eic = e l ) .  
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The physical meaning of this factor may be explained in the following 

Allowing for d u l / d ~  = 0, it followe from Eqs. (68) and (69) at 

(92) 

way. 

t > O T ,  that 
au 
ar 11 = - 1 1  = t r p o  - = -diuj, = -tp(divjl + diuj,) 

Hence 

If we assume for approximation e2 = const, we get from Eq. (91) for 
one dimensional problems (diu = a/dz), i.e., when vectors j 1  and j2 are 
parallel or unparallel 

Consequently, coefficient t; determines the amount of vapor transferred 
in a body in relation to the whole vapor and liquid flow. 

b. Calmla th  of Heat and Mues Flaue. Vapor in the interior of a 
capillary-porous body is transferred by molecular tramport.l0 It is in 
thermodynamic equilibrium with liquid. A mass 0om of vapor is 

j1 = - tpDVplo  = -amlpoVu - am1TpoVt (95) 

where t is a dimensionless factor characterizing resistance to vapor dif- 
fusion in a moist body. 

The vapor diffusion coefficient of a moist porous body is equal to 

P d P l 0  

a d =  J) PO - (=> T 

and thermal diffusion coefficient anlT of a moist body is 

In the moiat sfate of a body (u > u,) the coefficient ie zero, since 
( d p i o / d U ) T  = 0, and a,lT is 

The liquid tramfer in a capillary-porous body may be described in an 

[1711 
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analogous manner, as functions of moisture content u and body tempera- 
ture T. We obtain 

j 2  = -amzpoVu - am2TpoVt (99) 

The diffusion coefficient am2 and the thermal diffusion coefficient arnZT 

of liquid in a porous body are not constant, but depend on temperature 
and moisture content of the body. 

The heat flux according to Fourier's law is 

q = -kVt  ( W  

The coefficient of heat conduction k of a moist body depends on both 
u and T. 

Using relations (95), (99) and (100) we get a set of transfer equations 

where a,,, is a total moisture diffusion coefficient am = (a,l + am2);  6 is 
a thermal gradient coefficient 

(103) 

I, is a specific heat of phase transition equal to the difference of specific 
enthalpies Lki = (ht - hi). 

In the case of liquid evaporation (a moisture sink) or ice melting posi- 
tive sign in Eq. (102) before L c p o  &A/& should be replaced by a negative 
sign. 

All the transfer coefficients (amJ k ,  t, c, 6 )  are variables. For a short 
range of Au and At, they may be assumed constant for approximation. 
Then accounting for relations (81) and (91) Eqs (101) and (102) may 
be written as 

- _  - K11v2U + KliVZl 
a7 

ar 

amiT + a,ZT 
ami + a,? 6 =  

(104) 

(105) - _  at - KzlV% + KizV'.f 

where the transfer coefficients %(k, i = 1,Z) are 

K I I  = a,,, = (ami 4- a d ;  ~ 1 2  = ~ , 6  = (urnlT 4- umzT) (106) 
L€ 

~ 2 1  = -a,; 
C 

€L 
K Z Z  = a + - am6 

C 
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c .  Heat and Mass Transfer with Filtration. At intense heating of a 
moist body above 100°C there appears a pressure gradient due to liquid 
evaporation. A pressure gradient ( V p  # 0) may also take place at  tem- 
perature less than 100°C due to effusion of the humid air through micro- 
capillaries inside a body. The presence of V p  inside a capillary-porous 
body causes filtration of vapor and liquid. This mode of transfer is 
described by the Darcy law: 

jf = - k f V p  (108) 

where k f  is the total filtration-coefficient. 

transfer in a capillary-porous body is as follows (19) : 
In this case the system of differential equations for heat and mass 

au = KllV% + Ki,V?! + KlsV'P 

- _  at - KilV2U + KzzV't + N2sv2p 

a_p = Ka1v2U + KazV't + KaaV'p 

(109) 

(110) 

(111) 

a7 

a7 

ar 
where coefficients 

a, 
C 

K 1 3  = a,,,af, K2a  = EL - a,; K 3 9  = (a! - 2 a,,); 

a/ = k f / C f p  and is the coefficient of filtration diffusion} Cfll is the body 
capacity for the humid air with filtration} 8f = kf/a,p.. 

2. Boundary conditions 

Space boundary conditions reflect the law of interaction between a 
body surface and the surrounding medium. This interaction implies 
transfer of energy and mass. If the transfer of energy and mass occurs 

11 Cj is similar to en.. It represents the change in vapor concentration in capillaries 
of a body with specific pressure of humid air. Or it is a capacity of a porous body related 
to the quantity of vapor in capillaries. Cj is defined by 

4 ~ 1  + 214) - Cf dP 

If we w u m e  humid air is governed by the equation for ideal gaaes, then from Eqs. 
(62) and (63) 

where R ie a gse constant for humid air. 
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according to the convective transfer law, then at the constant pressure 
( p  = const) boundary conditions may be written in such a way: 

a,po(Vu), + arnT(Vt). + j8(.) = 0 

-(k + La. ,2T)(Ws - La,m(Vu). + qd.1 = 0 

(112) 

(113) 

Equation (112) represents a mass balance close to a body surface 
(subscript 5 ) .  The moisture amount, supplied to a body surface as a 
result of thermodynamic forces V u  and Vt is equal to that which left 
the body surface for the surrounding medium j # ( ~ ) .  Equation (113) is 
the energy (heat) conservation equation. The amount of heat, supplied 
to the body surface q,(r), is equal to that which penetrated inside a body 
( - k V t ) #  and that, spent for liquid evaporation (subscript 2), the flow 
of which depends on V u  and V t .  

If j8(.) and a#(.) are given as time functions, then Eqs. (112) 
and (113) are boundary conditions of the second kind. When a moist 
body interacts with the heated air, flows j . ( ~ )  and q.(r) are equal to 

jJ.1 = Bpo(ua - u.1 

q k )  = h(to - 1,) 

(114) 

(115) 

where B is the inass transfer coeficient based on the difference of mois- 
ture content and lie is the equilibrium moisture content. 

The mass transfer coefficient h., in the diffusion Nusselt number, Nurn, 
is determined from the relation h,  = j,/Ap,. 

In the hygroscopic state of a moist body there exists a definite relation 
between the mass transfer coefficients h, and 8. The vapor fraction in 
the humid air is a function of the relative humidity cp and of the air 
temperature l’. At an isotherm it follows that the definite moisture con- 
tent of the body ‘IL corresponds to the given value of cp and T. In the moist 
body state the intensity in liquid evaporation j8(.) will be constant 
( j ,  = const) and Eq. (114) does not apply (is not valid) in this case. 

For one-dimensional problems (V = a/az) the boundary conditions 
may he writt,en as follows: 

3. Dittiensiuniess Heat and ill us^ Transfer l’ariablrs 

Froni the system of differential Eqs. (104) and (10.5) ailti houtidary 
conditions (112) and (113) we obtain generalized arguments and functions. 
11741 
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The Fourier numbers for temperature and moisture content fields are 
determined by the following relations : 

Between these dimensionless arguments there exists an interrelation made 
by the Luikov number, Lu, (Fo, = Fo,Lu), where Lu is equal to 

am Lu = - 
a 

The Luikov number characterizes the velocity of an equal moisture 
content surface with respect to the velocity of an isothermal surface. 
For the majority of moist bodies Lu < 1 since the moisture content field 
changes slower, as compared with a change in a temperature field. 

The Kossovich number, KO, determined by the relation 

L A u  
c At 

KO = __ 

is equal to the ratio of heat spent for moisture evaporation ( L A u )  to 
that spent for body heating (c At).' 

The Posnov number, Pn, determines the effect of a temperature field 
on a moisture content field. It is equal to the relative moisture content 
drop, caused by the temperature difference : 

6 At Pn = - 
Au 

On the basis of the boundary conditions (112) and (113) we obtain two 
dimensionless arguments, Kirpichev numbers Ki, and Kim. 

The Kirpichev heat and mass transfer numbers are equal, respectively 
to 

(122) 

If flows q ( ~ )  and j ( r )  are determined by relations (114) and (115)' 
then instead of Ki, and Kim we obtain the heat and mass transfer Biot 
numbers : 

hl . '01 B~, = - 
a, k Bi, = -; 

The values of At and Au are chosen in accordance with the conditions of 
a specific problem. 
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4 .  Solutions of Heat and Mass Transjer Equations 

Differential equations (104) and (10.5) with boundary conditions (114) 
and (11.5) and (1 18) and (1 17) may be solved. These solutions are given 
in monograph (19). 

The dimensionless temperature t * ( t *  = t / t . )  and moisture content of 
a body u*(u* = uiu,) are functions of generalized variables and heat 
and mass transfer similarity numbers: 

(124) 

(125) 

u* = F (;, Fop, Lu, Bi,, Rim, c, KO, Pn 

Fop, Lu, Bi,, Bi,, e, KO, I’n 

where 7i0  is the initial moisture content and t, is the initial temperature 
of a body. The analysis of solutions shows that not all the variables 
equally influence a process. The mass transfer arguments Bi, and Pn 
mainly influence a moisture content field, and the heat transfer argu- 
ments Bi, and KO, a temperature field. It was determined that calcula- 
tions may be considerably simplified, and the following relations: 

eKo 

may be used instead of relations (124) and (125). Thus, the complex 
dimensionless argument Bi,/eKo influences heat transfer of a moist body 
and Bi,/Pn, mass transfer. 

Under the boundary conditions of the third kind the heating of a dry 
body is determined by the dimensionless arguments Fo, and Bi,. The 
heating of a moist body will be defined by three arguments: Fo,, Lu and 
Bi,/eKo. From these dimensionless arguments the Luikov number is the 
parameter of interaction between moisture content and temperature 
fields. The dimensionless argument BiJeKo reflects the relation between 
heat supplied to a body and that spent for internal moisture evaporation. 

Consequently, in the presence of heat transfer with simultaneous mass 
transfer the number of dimensionless arguments increases by one (instead 
of two arguments we have three). 

The solution of the system of differential equations (113-115) under 
the corresponding boundary conditions are presented in monograph (19). 
11761 
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B. EXPERIMENTAL INVESTIGATIONS 

Experimental procedure for the study of moisture and heat transfer 
in moist capillary-porous bodies are described in monographs (80, 81). 
In these monographs experimental methods for determining the moisture 
transfer coefficients (a,,,,@ and the heat transfer coefficients @,a) are 
expounded. Since the moisture transfer coefficients are of great interest, 
Table VIII  illustrates these coefficients for some building materials. 

TABLE VIII 
MOISTURE TRANSFER COEFFICIENTS 

Material 

10 1.9 0.40 
Autoclave concrete 20 20 2.0 0.80 

po = 400 kg/m m* 30 2.5 0.92 
40 4.0 0.96 

~~ ~~~ ~~ 

10 1.4 0.54 
Asbestoscement slabs 20 20 3.2 1.14 

PO = 390 kg/ma 30 6.2 0.88 
40 7.9 0.42 
50 8.3 0.21 
60 8 .3  0.14 

20 0.9 0.92 
Mineral wool 20 100 3.9 0.92 

- po = 200-280 kg/m3 140 4.8 
180 5.6 - 

Diatomic slabs 
p o  = 500 kg/m3 

10 1.0 0.50 
20 20 3.5 0.52 

30 7.0 0.35 
40 9 .1  0.25 
50 9.1 0.17 

Wood (pine) 
10 0.18 1 .o 

40 25 0.46 2.0 
30 0.62 2 .0  
75 0.62 0.6 

For the majority of materials the moisture diffusion coefficient a,,, 
continuously increases with moisture content. In the moist state for some 
bodies the diffusion coefficient a, changes negligibly, so it may be con- 
sidered constant. 

f1771 
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The diffusion coeficient a,,, increases with the body temperature which 
is approximately proportional to T". For ceramic bodies the exponent 
n = 14 according to Miniovich's (22) data and for wood n = 10 accord- 
ing to Sergovsky's (83) data. 

The thermal gradient coefficient 6 also depends on moisture content. 
.it first 6 increases with moisture content, becomes maximum and then 
decreases. With the total saturation by water the coefficient 6 is equal 
to zero. 

For many thermal insulating materials the change in the coefficient 6, 
depending on u, is well described by the Dubnitsky formula (24) 

6 = Au2exp ( -BZL) (128) 

The constants A and B are determined experimentally. 
The coefficient 6 depends only slightly on temperature, therefore in 

engineering calculations it may be considered to be independent of 
temperature. 

For some materials (clay, quartz, sand, peat) Lu is a linear function 
of moisture content. 

Experimental investigations show that the moisture content of the 
body u is not a potential of moisture transfer. The equality of transfer 
potentials of contacting bodies in thermodynamic equilibrium is the main 
property of a transfer potential of any substance. The moisture content 
does not satisfy this property. For instance, if plates of moist peat and 
paper are contacted, then in the equilibrium state the moisture content 
of peat will be 210% and of paper, 50%. Consequently, at the border 
of their contact there takes place a jump in the moisture content from 
*iO to 210%. A similar jump of enthalpy (heat content) occurs when two 
diesimilar metallic plates come into contact. If one plate is made of lead 
(c = 0.3 kcal/grad) and another of iron (c = 0.11 kcal/grad), then their 
contact a t  the temperature of 50°C enthalpy will be 1.5 kcal/kg for lead 
plate and 5.5 kcal/kg for the iron plate. As is known, the temperature 
is potential of heat transfer. The temperature of both plates in the equi- 
librium state is, therefore, the same and equal to 50°C. 

Moisture transfer under isothermal conditions in a uniform body occurs 
from the great moisture content to the small one. However, when two 
dissimilar bodies come in contact, a contrary process may take place. 
For example, if a bed of moist peat (u = 300%) is spread over that of 
moist quartz sand ( Z L  = lOOJ,), then transfer of moisture will occur from 
sand to peat, i.e., from a body with the small moisture content to that 
with the great one. 

These experimental facts served as a basis for introduction of the mois- 
ture transfer potential. At first the moisture transfer potential in a 
[ 1781 
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capillary-porous body was introduced purely empirically. It was deter- 
mined by the value of the moisture content of a reference standard body. 
The maximum moisture content for a reference standard body ulmJ 
achieved in the process of sorption of water steam was assumed to be 
100 mass transfer degrees (100OM). Then the moisture transfer potential 
0 of the body of interest was determined by the moisture content value 
of the reference standard body u,, being in the thermal dynamic equilib- 
rium with the body investigated 

Such a determination of the potential 6 resembles an elementary experi- 
ment on determining the heat capacity of a body by the calorimetric 
method. Usually water, the heat capacity of which is approximately 
equal to unity (c = 1) , is taken as a calorimetric liquid. In  the equilibrium 
state the temperature of the body of interest and of water is just the 
same. Since the heat capacity of water is equal to unity, the body tem- 
perature is numerically equal to enthalpy (heat content) of water (of 
reference standard liquid). 

After the analogy of this experiment, in the equilibrium state of con- 
tacting moist bodies (reference standard and investigated) the moisture 
transfer potential is the same, i.e., O1 = 02, and moisture contents are 
different, i.e., u1 # u2. 

By analogy with the specific heat of a body the concept of the iso- 
thermal specific mass capacity c, was introduced according to the fol- 
lowing relation: 

em = G) T 

If over some range of the moisture content Au the mass capacity Em is 
assumed to be constant, then the relation between the moisture content 
and moisture transfer potential will correspond to the linear law: 

u = A + Erne (131) 

where A is a constant and Em is the average specific mass capacity. 
If a filter paper ia taken as a reference standard body, then in the moist 

body state ( 0  > 1OO"M) for some materials the relation between u and 
0 is represented by a straight line. For example, for wood (pine a t  t = 60°C) 

Em = 0.21 X lo-* kg/kgoM, 

Em = 0.51 X kg/kgoM, A = 0.066 

A = 0.042 and for milling peat 
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111 the hygroscopic state the relation between u and B is also linear. 
However, with some moisture contents the niass capacity Em of a body 
changes unevenly. This moisture content corresponds to the moisture 
of polymolecular adsorption. For instance, for the above wood over the 
range 0 < B < 40"M Em is equal to 0.380 X kg/kgoM and over the 
range 40 < B < 1OO"M E,,, = 0.270 X kglkgOM. (See Table IX.) 

TABLE IX 
ISOTRERMAL SPECXFIC MOISTURE CAPACITY OF MOIBT BODIES AT 25°C 

c, x 102" 

Material o < e < eo e. < e < 1 0 0 ~ ~  e > 1 0 0 " ~  

Foam concrete ( p o  = TOO kg/ma) 
Peat slabs 
Wood (pine) 
Fibrolite 
Red clay 
Peat 
Red Briok 
Gelatine 

0.110 
0.0'14 
0.380 
0.130 
0.180 

0.004 
- 

0.040 - 
0.052 
0.270 0.210 
0.090 - 
0.180 0.030 
1.200 0.510 
0.009 - 
0.700 - 

0 8. is the moisture transfer potential corresponding to polymolecular adsorption. 
It depends on body properties. 

Consequently, the isothermal mass capacity characterizes the binding 
energy between moisture and a capillary-porous body. This binding 
energy between moisture and a capillary-porous body is determined by 
the work of separation of mass unit of moisture in an isothermal reversi- 
ble process. This work is equal to a change in the free energy E in the 
isothermal process (!I' = const). 

In  this case the relative air humidity is equal to the ratio of pressure 
of moisture vapor in a body p ,  to that of saturated vapor p ,  a t  the given 
temperature (cp = p y / p , ) .  In the hygroscopic state the moisture content 
of any body including the body, chosen as a reference standard, is deter- 
mined by the relative air humidity and its temperature u = f(cp,T). 
Consequently, the potential of moisture transfer B thermodynamically 
is the function of binding energy alone between moisture and a capillary- 
porous body [6 = j ( E > ] .  

Filter paper was chosen as a reference-standard capillary-porous body 
as it contains all the types of relations between moisture and moist bodies 
[If301 
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(adsorption, capillary and osmotic moisture). The main property which 
establishes the applicability of the filter paper for a reference standard 
body lies in the fact that its relative moisture content u , ~ / u , ~  (the ratio 
between equilibrium u.= and maximum sorption of moisture content u,,,,) 
is independent of temperature over the range from 20" to 80°C. 

It is of some interest to compare the potential of moisture transfer B 
with that of transfer applied in agrophysics. In  the works of American 
investigators the value of pF, equal to the logarithm of the value of the 
suction force F, is assumed to be the potential of moisture transfer in 
grounds. In the hygroscopic state the suction force F is determined by 
the value of RTlnv, i.e., it is proportional to free energy of moisture 
mass unit (aE/am)T. Consequently, here potential p F  is proportional 
to the logarithm of the moisture transfer potential B(pF - I d ) .  In the 
moist state the suction force F is proportional to capillary pressure deter- 
mined experimentally. In the moist state (e > 100°M) the potential pF 
for a reference standard capillary-porous body (filter paper) was defined 
by special tests. From these experiments the relation was obtained 
between p F  and 8, which may be presented as the following empirical 
formula : 

p F  = 3.66 - 1.5. 10-'8 at B > 100"M (133) 

The peculiarity of the moisture transfer potential 0 lies in the fact 
that it characterizes transfer of moisture in a capillary-porous body both 
as liquid and vapor. It follows from the fact that according to relations 
(95) and (99) liquid and vapor transfer is determined by two thermo- 
dynamic forces (Vu and Vt). Under isothermal conditions (T = const) 
the density of a moisture flow is equal to 

(2)T Ve j = -amPo Vu = --p0 (134) 

as a t  a constant temperature u = f(0). Since the value (du/dO)~ is equal 
to the isothermal specific mass capacity (moisture capacity) then rela- 
tion (134) may be written as: 

j = -kk,VB (135) 

where k, = a.,ps, is the coeEcient similar to that of heat conduction 
(k = appc) and it may be referred to as the moisture conduction coeffi- 
cient (kg/mh"M). 

As in the moist body state the specific mass capacity is constant for 
many moist bodies, the moisture conduction coeficient will change with 
moisture content of a body just in the same way as the moisture diffu- 
sion coeficient changes. 
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At present there is a number of experimental methods for determining 
diffusion coefficients of liquid, moisture, moisture transfer potential, and 
specific. moisture capacity in moist bodies (26) .  

The complex of these physical values will be referrcd to as mass transfer 
characteristics of capillary-porous bodies. Heat transfer characteristics 
(coefficients of heat conduction and thermal diff usivity) alongside with 
mags trnnsfer ones completely determine physical properties of capillary- 
porous bodies. 

The above experimental relations cogently demonstrate the interaction 
of heat and mass transfer. This interaction for capillary-porous bodies 
extends over heat and mass transfer between u, body surface and sur- 
rounding medium and over that inside a capillary-porous body. 

In order to describe quantitative relations it is, therefore, necessary 
to haw a method of analysis which makes it possible to consider the 
interaction of the heat and mass transfer processes. One such method 
is the thermodynamics of irreversible processes (26). The present experi- 
mental data well confirm the niathematical theory of thermodynamics 
of irrcversihle transfer processes. 

SOMESCLATURE 
constant \-slue in empirical formulns 
thcrnial cliff u6ivit.y (ni*/h) 
diffusion coefficient of moisture in a capillary-porous body (inz/li) 

thcrinal moisture diffusivity in a body (ni*/h°C) 
coefficient of filtration diffusion in R poroiis body (m2/h) 
spc~4ic  heat (kral/kg"C) 
sperific. isobaric heat of humid air (kcal/kg"C) 
spevific isothermal Inass capacity (moisture capacity) of a moist body (kg/kgoAf ) 
diffiieion roefficicmt of vapor into air (m*/h) 
heat transfer c.oc!ffirient (kcal/m*h"C) or specific ent.lialpy (kcal/kg) 
mass tranKfer roefficicnt (kg/m*h, m i 1  Hg) 
cvai)oretio~i intensity or moisture-flow density (kg./m*h) 
thermal conductivity (kral/rnh"C) 
filtration voefficient (kg/m h mm Hg) 
specific evaporation heat (kcal/kg) 
characteristic body dimension (m)  
iiiolecular weight fkg/mole) 
mass (kg) 
pressure in surrounding mediuni (nim Hg) 
pressure of saturated vapor (nim Hg) 
specific heat flow (kcal/m*h) 
universal gas constant (rnniHg ma/% mole) or radius (m) 
surface area (m') 
temperature ("C)  
ubsoliite temperature ("I<) (2' = t + 373.16) 
rnoisture content of a body &g/kg) 
volume (ni') 
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W 

B 
6 
e 

e ic  

P 
Y 

P 

P I 0  

T 

e 
rp 
w 

air velocity (m/sec) 
mass-transfer coefficient based on moisture-content difference (m/h) 
thermal gradient coefficient of a moist body (l/"C) 
phase conversion coefficient 
ice-content factor 
dynamic viscosity coefficient (kg/m sec) 
kinematic viscosity coefficient (m*/sec) 
density (kg/'ms) 
relative vapor concentration (p10 = p l / p )  

time (h) 
moisture transfer potential ("M) 
relative air humidity 
moisture concentration in a body (kg/ma) 

Subscripts 

a surrounding medium (humid air) 
b 
c values, corresponding to convection 
d dry body 
e evaporation or moist body 
f filtration characteristics 

mass-transfer characteristics 
o relative value or state of absolutely dry body, or initial state 
q heat-transfer characteristics 
I radiative characteristics 
s 
u vapor 
1 vapor 
2 liquid 
3 ice 
4 
'Af 

Dimensionless Numbers 

state of adiabatic air saturation 

body surface or saturation state 

dry air in pores and capillaries of a body 
moisture-transfer potential unit in a moist body (mass transfer degree) 

R'u, 
Num 

Nu, 
Gu 
Pr 
s c  

Pe 

Pe, 

Fo 
Lu 

KO 

Pn 

hl/k Nueselt number for heat transfer 
h,l/D, Nusselt number for mass transfer (Dp is a diffusion coefEcient based 
on pressure difference) 
h,z /k ,  local Nusselt number 
(2'. - T b ) / T .  Gukhman number 
Y I P  Prandtl number 
w/D Schmidt number 
wl 
- Peclet number 

WZZ - local Peclet number 
La 
ar/P Fourier number 
am/a Luikov number 

gU Kossovich number 
cAt 

!L!! Posnov number 
Au 
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Ki” 

Iii, 

BiV 

Bin, 

qb!! Kirpiahev nuinher for heat t.ransfer 
k41 

j ( r ) l / t i n p ~ u  Kirpichev number for mass transfer 

Riot numbcr for heat transfer 

61 - Diot number for ina.ss transfer 
n ”, 
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I . Introduction 
A . HISTORY AND APPLICATIONS 

When heat is transferred to a liquid which is a t  or near its saturation 
temperature, there may be a phase change of some of the liquid into the 
vapor state . The applications of such boiling heat transfer are many. not 
only in apparatus whose primary purpose is to vaporize a liquid. such as 
steam boilers. but also in situations where it is desired to remove heat 
from a surface at a high rate with the lowest possible surface temperature . 

Historically. the engineer’s primary interest in the transfer of heat to a 
boiling liquid has been toward the generation of ateam for power produc- 
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tiou, eit lw electrical, propulsive, or both. To this need was added, at  a 
fairly early date, that of the manufacturing chemist, whose production 
processes required the vaporization of nunicroiis liquids in distillation and 
other routine operations. 

Starting around 1948, extcnsive research and development directed 
toward nuclear power generation for ship propulsion got under way. 
Since the first plant was to be a pressurized water reactor for the sub- 
marine .Vautiltis, it was imperative that design criteria in water heat 
transfer technology be firmly established. To the student of boiling 
technology, it is interesting to observe the impetus given to research in 
this field by the development of the pressurized water rcactor, which was 
itself carefully designed to avoid boiling of the coolant. Since that period, 
o f  course, reactors have been built in which steam generation takes 
place in the core, in direct contact with the nuclear fuel dements, and 
these hare proved eminently successful. 

Befow the feasibility of the boiling reactor principle was demonstrated, 
however, it was thought that the variations in moderator density caused 
by vaporization in the core might cause power transients which would 
threaten the opcrational stability of the plant. Consequently, the early 
boiling water research for pressurized water reactors was intended to 
delineate the prmissible range of heat flux and the minimum velocity 
and subrooling required to insure the presence of the primary coolant in 
the liquid phase only. 

From the standpoint of heat transfer to the boiling liquid, it is almost 
incidental that the energy source in these reactors comes from nuclear 
Gsion. Similar plates, tubes or rods resistively heated by an electrical 
current would produce much the same heat transfer situation. Quite a 
different method of steam formation occurs in a homogeneous reactor, 
however, in which the fissionable material is chemically combined in a 
salt, such as uranyl sulfate, and carried in aqueous solution. If such a 
device were permitted to boil, steam formation would take place through- 
out the fluid volume rather than at a heating surface, as with hetero- 
geneous reactors. Similar vapor formation takes place when a liquid at or 
slightly above saturation temperature is heated internally by infrared 
radiation from an outside source, such as a heating lamp. 

B. SATIJR.4TED B o I L I s G  

In many ways, it is advantageous to regard boiling as a special case of 
convection, either free or forced. To appreciate this similarity, consider a 
simple heat transfer situation, that of an electrically heated, cylindrical 
metal tube immersed in a few inches of water. Passage of current through 
the tube produces thermal energy which raises its temperature, and 
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convective heating of the water takes place. If quantitative measurements 
are made when the water just reaches saturation temperature and when 
the heat input is small, it might be expected that vapor bubbles would 
form at the heated surface and that these bubbles would rise to the water 
surface and escape. That this is not the case has been shown by careful 
measurements (I), and, in fact, what happens is that the liquid near 
the heater reaches a temperature slightly in excess of saturation. This 
superheated liquid is less dense than the lower-temperature saturated 
liquid, and it therefore tends to rise to the free surface, where vaporiza- 
tion takes place. In spite of the fact that there is vaporization at the 
water-air interface, this mechanism is simply natural convection insofar 
as conditions at  the heater are concerned. The temperature driving force 
a t  the heater required to produce a certain heat flux is predictable from 
natural convection correlations. 

As the heat flux is increased, the water superheat increases to an 
amount which permits the formation of vapor bubbles on the heater 
surface. It will be observed that there are preferred locations where 
bubbles form, and the bubbles form in columns at these places, which are 
known as nucleation centers. For low heat flux, relatively few such centers 
will be observed, but an increase in heat transfer is accommodated by an 
increase in the number of bubble columns. Since the vapor bubbles so 
formed detach from the heater and rise in the superheated liquid, and 
since the vapor is not itself superheated, there is heat transfer to the 
bubbles from the liquid as they rise to the surface. Experiments have 
shown that, contrary to intuition, most of the vapor formation in this 
type of nucleate boiling takes place after the bubble leaves the heating 
surface. Consequently, most of the heat transferred from the surface 
during nucleate boiling goes to the superheated liquid adjacent to the 
heater and not directly to the vapor bubbles which grow on the surface. 
Figure la shows nucleate boiling from a )$-inch diameter tube at  low heat 
flux with relatively few nucleation centers. 

Figure 2 shows the variation of heat flux with the temperature driving 
force, which may be taken for present purposes as the heater surface 
temperature minus bulk liquid temperature, for an electrically heated 
platinum wire (8, 3). A similar variation has been measured with the 
apparatus shown in Fig. 1. 

At very low heat flux, the curve is a straight line on a log-log plot, 
which indicates a functional relation of the type 

q” = h(t, - to) 

where the coefficient, h, is simply the convective conductance, and is 
proportional to the power of the temperature difference for natural 
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Fro. 1. (a) Pool boiling of water a t  atmospheric pressure and a heat flux of 15,000 
Btu/(hr)(sq ft). The bubbles collapse soon after leaving the heating tube because 
the bulk temperature is only 208" F. (b) Vigorous nucleate boiling at a heat flux 
of 171,000 Btu/(hr)(sq f t )  and a bulk temperature of 210" F. (c) Transition to 
film boiling with melting of the heating tube (4). 

convection in the laminar range. Consequently, the heat flux is propor- 
tional to the 94 power of the temperature difference (1) in the region 

At heat input sufficient t o  produce bubble formation on the surface, 
which is the nucleate boiling regime B - C shown in Fig. 2, the rate of 
increase of Q" with temperature difference is much greater than before, 
and, as can be deduced from the graph, very large heat transfer rates are 
possible with a relatively small temperature driving force. This is of 
great practical advantage in many situations where a cooling problem 
exists but where the maximum surface temperature is limited by metal- 
lurgical or other considerations. 

As the heat flux is increased in the nucleate boiling regime, more nuclea- 
tion centers are activated and there is more and more vapor in the vicinity 
of the heated surface. At some critical point (C, Fig. 2), the nucleate 
boiling mechanism can accommodate no additional heat transfer. A t  this 
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point, a vapor blanket f o r m  over the entire surface, and the heat transfcr 
nwhanism changes completely. Figure l b  shows nucleate boiling a t  a 
flux slightly less than that which produces vapor blanketing. 

Beyond the peak heat flux just described, the film boiling regime is 
encountered, as is indicated in Fig. 2. The very large heat transfer rate 
must be accomplished through a vapor film, which requires a much 
larger temperature difference than existed at almost the same hest flux in 

'h 
I 10 cos 10) 10' 

At ,Of 

FIG. 2. Boiling of water at 212' F on an eleetricnlly heated platinum wire. Data 
of S u k i p m a  (2) as presented by 3IcAdaniu (.?). 

nriclcate boiling. With water, the required surface temperature is greater 
than the melting points of the coninion metals and alloys. Consequently, 
the phenomenon of a sudden transition from nucleate to film boiling a t  
nearly constant heat flux is frequently called burnout. Figure l c  shows 
the failure of a stainless steel heating tube when the peak heat flux is 
reached ( 4 ) .  

For certain fluid-surface combinations, it is possible to operate in the 
filtn boiling regime without damage to the surface. In such cases, the 
entire curve in the film boiling region may be obtained experimentally. 
It can be Seen from Fig. 2 that with water, for example, the temperatures 
are such that radiation from the surface to the liquid, through the film, 
will play an important part in the film boiling heat transfer mechanism. 

There is a fairly wide interval in temperature between the nucleate 
boiling peak and the minimum stable condition at which film boiling can 
be sustained. This region is usually termed unstable film boiling and is 
characterized by the alternate growth arid collapse of a vapor film. It can 
be deduced from the graph that this type of boiling will not occur in a 
1w 
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device which has relatively constant heat input, because an increase 
through nucleate boiling to the peak heat flux will cause a sudden "jump" 
(along a horizontal line on the graph) to a corresponding point which is 
well into the film boiling regime. Similarly, during operation in stable film 
boiling, a decrease in heat flux below the relative minimum in the curve 
produces a jump to a point in the nucleate boiling region which is well 
below the peak heat flux. 

With a different kind of heating, however, operation in the unstable 
film boiling regime becomes quite feasible. If, instead of heating the tube 
shown in Fig. 1 electrically, it is heated internally by the flow of a hot 
fluid, then any desired value of surface temperature can be maintained. 
If the thermal capacity of the heating medium is large enough, its 
temperature change will be small as it passes through the tube, and the 
entire outer surface of the tube can be held at practically the same 
temperature. 

C. SUBCOOLED BOILING 

Before examining the mechanism of nucleate boiling in greater detail, a 
distinction needs to be made according to  whether the main body of 
liquid in the vicinity of the heater is at or slightly above saturation 
temperature, as described above, or at  a lower temperature. In the latter 
case, which is called subcooled boiling or, sometimes, local boiling, vapor 
bubbles form at a surface because it is substantially above saturation 
temperature, but the bubbles either collapse without leaving the surface 
by transfer of heat to the adjacent subcooled liquid, or else they leave the 
surface and then immediately collapse. In either case, the heat transfer is 
materially improved over convection without phase change because of 
the violent agitation of the liquid in the boundary layer by the growing 
and collapsing bubbles. 

Suppose liquid at constant pressure and at temperature 1, is pumped 
upward past the heater in Fig. 1 at  a constant velocity, V ,  and that the 
thermal capacity rate, mc, is sufficiently large that the liquid temperature 
rise is small. Consider first t,he forced convection region, where the surface 
temperature is below tsat. Unlike its situation with natural convection, 
the heat transfer coefficient is now independent of the temperature 
difference, and it may be calculated from an equation of the following 
form if the effects of fluid property variation across the boundary layer 
are neglected. 

Since h is defined a8 q"/At, 
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where the terms in the parentheses are functions of vclocity and bulk 
temperature only. Figure 3a shows this relationship as a log-log plot of 
unit slop. 

Sow consider what happens when the heat flux is increased until the 
surface temperature exceeds the saturation temperature of the liquid. 

FIG. 3. (a) Variation of heat flux during forced convection and subcooled boiling 
at different liquid subcoolings and at attnosphcric pressure. (h) Variation of heat 
Htix with df*,, instead of At. (e) Variation of heat flux during forced convection and 
subcooled boiling nt clitlerent velocities and at atniospheric presurc. The subcooling 
is 25" F. 

.\s with pool \miling, bubble formation requires a finite positive surface 
temperatiire excess, Atast. When nucleate boiling first starts, most of the 
heat is still being transferred by forced convection. However, as the heat. 
flux is increased still further, the nucleate boiling mechanism begins to 
piadomiuatc. and the effect of convection bccomes unimportant. T'*g ' 1 IirP 
:<a shows c~i rws  for nucleate boiling at  a given velocity with different 
hulk liquid teniperatures and. therefore, different subcoolings. 

It has heen s h o w  in inany experiments that, over most of the nucleate 
boiling range, the siirface teinperature excess above saturation is LC func*- 
tion of heat flus oiily, i ~ g t r r d l ~ s ~  of thc: subcooling. The nucleate boiling 
curves in 1:ig. ;<a may be represented quite satisfactorily by a single line 
11921 
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from which the subcooling, and therefore the bulk temperature, has been 
eliminated, by plotting q" vs. Atsat instead of At. 

Figure 3b shows the c~irve's of Fig. ;Za replotted in  this manner, from 
which it can be seen that  the new curve has the same coordinates as the 
zero subcooling curve in Fig. 3a. Since values of bulk temperature below 
saturation cannot be represented on the logarithmic scale of Atsat, the 
forced convection portions of these curves have little meaning and have 
been included mainly for the sake of completeness. However, they are 
useful for predicting where boiling starts a t  various subcoolings with the 
velocity chosen. 

The effect of liquid velocity will next be examined. Figure 3c shows the 
idealized curve of Fig. 3a for one value of subcooling, t o  which has been 
added two additional curves at higher velocities. These curves illustrate 
the relative independence of nucleate boiling on velocity except near the 
region of initiation of nucleate boiling. 

Two additional remarks need to  be made about these curves. In  the 
first place, the transition from forced convection to  nucleate boiling does 
not occur with discontinuous slope, as the straight-line portions of Fig. 3 
would suggest, but smoothly, through a transition region where both 
effects are important. Secondly, velocity and subcooling have a significant 
effect on the peak heat flux, but this portion of the curve is not shown 
in the figures. 

D. THE I V ~ ~ ~ ~ ~ ~ ~ ~  OF NUCLEATE BOILING 

It was pointed out earlier that in the regime of most practical impor- 
tance, nucleate boiling, the heat transfer from a surface takes place 
chiefly by a convective process to the liquid. The high transfer rates can 
be achieved with fairly small temperature differences because of the very 
high turbulence level produced in the liquid by the vapor bubbles growing 
and leaving the surface. 

However, the greater complexity of nucleate boiling compared with 
convection without change of phase may be appreciated by a considera- 
tion of the pertinent factors affecting the two mechanisms. Whereas the 
viscosity, density, thermal conductivity and specific heat of the fluid can 
be used to describe single-phase heat transfer, in nucleate boiling many 
additional properties are relevant. The surface tension, latent heat of 
vaporization, saturation temperature, liquid and vapor densities, and 
other properties of both phases must be introduced. As with ordinary 
convection, the configuration of the flow channel and the flow rate must 
also be considered, but in addition the type of metal, the surface roughness 
and the presence of adsorbed gas have all been found to  affect boiling heat 
transfer . 
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.I h i d  description of the mechanism of niiclcatc boiling from a suh- 
iuerged heater in  a liquid pool was given by the late Max Jakob (I) .  
I n  I94!) Professor Jskot), who, together with co-workers in Cerniuny 
and, later. in the United States, made many important contributions to 
the unclcrstanding of boiling heat transfer, had this to say about saturated 
boiling: 

“Summarizing our knowledge of the mechanism of nucleate boiling on 
a clean. smooth or rough, heating surface, it can be said that only a very 
mall  part of the heat produced in a heater is directly transferrcd to thc 
interior of huthlc~s adhering on the surface. The main part of the energy 
niakes a detour through the liquid. The prerequisite of boiling is forma- 
tion of a thin, considerably superheated layer of liquid on the heating 
siirfsce and slight superheating of the I ~ l k  of the licliiid. Vapor bubbles 
originatc on roughnesses or from gas bubbles which esist a t  the heating 
stirface. The bubble develops first by evaporation because of the con- 
siderable temperature excess of the liquid layer mentioned ovcr the 
saturation temperature. The bubble breaks off when its volume has grown 
so much that the buoyancy exceeds the capillary forces which bind it to 
the heating siuface. In the ensuing rise of the bubble through the bulk of 
thc liquid, the excess of liquid temperature and thc coefficient of heat 
transfcr on the bubble surface are smaller. However, this surface and the 
time available for heat transfer are so much greater that thc vapor forma- 
tion is largest during the free rise of the bubble. Vapor bubbles sub- 
sequently originating on the same spot form a sort of swaying column; 
with increasing heating energy and temperature exccss spots of smaller 
roughness satisfy the capillary conditions of bubble formation and start 
as new sources of vapor columns.” 

It is to  be expected that nucleate boiling from a heater cooled by a 
subcooled liquid will differ in some important respects from the mecha- 
nism just described. In the first place, if there is to  be a condition of 
steady state, some means must be provided to introduce subcooled liquid 
at an unchanging temperature and to remove heated fluid. Consequently, 
interest in subcooled boiling is usually confined to forced convection. 

In the second place, the vapor bubbles which grow and leave the sur- 
face in subcooled boiling immediately find themselves surrounded by 
liquid colder than themselves. Instead of growing during a buoyant rise 
through the liquid to a free surface, the bubbles immediately collapse 
in the stream of subcooled liquid. Whether the vapor bubbles actually 
become detached from the heater before collapsing, or do so while still 
at,tached to the heater, depends upon such conditions as fluid velocity 
and subcooling. 

In spite of them rather significant differences, the mechanism of 
[1W 
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nucleate boiling in the vicinity of the heated surface appears to be rela- 
tively independent of the bulk fluid temperature. Rohsenow and Clark 
(6)  have studied high speed motion pictures of subcooled nucleate boiling 
in order to estimate the net heat transferred to vapor bubbles compared 
to the total heat transferred from the surface. They found that only a 
very small part of the total was represented by the latent heat of the 
growing and collapsing bubbles. Consequently, the high rate of heat 

AVOLUME Vs OF HOT 
LlPUID IS PUSHED INTO 
THE BULK. 

t. t. 

THE BUBBLE IS DETACHED AN0 THE BUBBLE HAS COLLAPSED 
A VOLUME OF COLD LRUlO RE- AND A VOLUME OF COCD LIQUID 
PLACES THE BUBBLE AT THE IS BROUGHT IN CONTACT WITH 
HEATING SURFACE. THE HEATING SURFACE. 

FIG. 4. Schematic diagram of nucleate boiling model of Forster and Greif (6‘). 
Lower left, vapor bubble leaves surface; lower right, bubble collspses without leaving 
surface. 

transfer associated with subcooled nucleate boiling was attributed by 
them to violent agitation of the liquid adjacent to the surface. 

A significant refinement of this model of nucleate boiling heat transfer 
is described in a paper by Forster and Greif (6), in which they attribute 
the increased heat transfer to a “pumping action” caused by the growth 
and collapse of vapor bubbles. Their model, which will be described 
briefly, appears to yield useful quantitative results and to agree with 
observations in several important respects. However, it should be 
regarded as a modification and amplification of the mechanism already 
presented, since it is in no way contradictory. 

Figure 4 shows schematic diagrams of the heat transfer mechanism 
as conceived by Forster and Greif. After its initiation on the heating 
surface, which is at  temperature t., the bubble grows to a volume V h .  

As a result of this growth, an equal volume Vb of hot, superheated liquid 
is forced out of the sublayer into the main stream, which is at a lower 
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temperatiire, 1,. When drag and/or buoyant forces cause the bubble to 
be detached from the wall or to  collapse at the wall, its place next to  
the wall is taken by cold liquid. If the temperature to is below saturation, 
the huhhle collapses, and if i, is above saturation, i t  grows in the main 
stream, hut in either case its placc next to  the wall is taken by liquid 
at  temperature near to. This model appears to  explain the high heat 
transfer rates which are obtained with nucleate boiling, and it may go 
a long way toward explaining quantitatively the nearly complete inde- 
pendence of heat transfer rate on main stream velocity and subcooling 
over a wide range of the boiling regime. 

E. FLUID FLOW WITH BOILING 

Tn most design problems where boiling occurs, the determination of 
the heat transfer coefficient or, what is equivalent, the variation of sur- 
face temperature with heat flux, is only part of the information required. 
Data which may be of even greater importance are the peak heat flux; 
the static pressure drop in the flow channel; the stability of nucleate 
boiling and of the flow; and the density of the liquid-vapor mixture. 
The mixture density is especially important in natural circulation sys- 
tems, where it controls the flow rate, and in nuclear reactors, where the 
reactivity may be a sensitive function of the moderator density. 

Several different regimes of boiling flow are of interest and can he 
delineated. JIost common, perhaps, is the situation in which either srih- 
cooled or saturated liquid is brought under pressure to the entrance of 
a heated channel. For convenience of discussion, it will be supposed that 
the channel is a round tube, but the phenomena which will be described 
are not confined to  this configuration. 

-1s the liquid flows through the heated tube, its temperature increases, 
and, if conditions described earlier are appropriate, nucleate boiling &,arts. 
At moderately high heat flux, the surface temperature excess, Atsat, is 
sufficient to  produce boiling even before the bulk temperature reaches 
saturation, and subcooled boiling occurs. Static pressure and density 
variations in subcooled boiling flow are not yet predictable from analysis, 
nor is there much reliable empirical information. However, i t  is known 
that static pressure gradients may be several times as great as with 
similar subcooled liquid flow without vapor formation. 

Further along the length of the heated tube, the bulk liquid tempera- 
ture may reach saturation, and additional heating will cause the forma- 
tion of vapor which, unlike that in the situation just discussed, will riot 
condense in the main stream. Consequently, a two-phase mixture of 
liquid anti vapor will flow in the tube from this point rintil the exit is 
reached or iintil all the liquid is vaporized. 
[ 1 !Nij 
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It will be appreciated immediately that flow conditions are drastically 
changed from those prevailing earlier, before boiling began. Because of 
the usually large (sometimes enormous) specific volume of the vapor 
phase compared to that of the liquid, flow continuity requires accelera- 
tion of the fluid mixture. The magnitude of this acceleration may be 
quite small with subcooled boiling, especially in channels of a t  least 
moderate size, but large increases of momentum must be expected with 
saturated boiling. 

Frictional forces between the fluid and the walls of the channel are 
naturally quite dependent on the velocity of the flowing mixture. The 
force which is required to accelerate the h i d  and to overcome this 
increased wall friction is supplied at  the expense of static pressure. For 
a flow channel which is not horizontal, a further change in static pressure 
occurs because of the change in elevation. In order to predict the magni- 
tude of this effect, the density of the two-phase mixture must be known. 

A different application of boiling flow from that in a heated channel 
is adiabatic flow of a saturated mixture. If liquid a t  saturation tempera- 
ture is flowing in an insulated channel, its static pressure tends to decrease 
because of frictional effects. If heat losses are small, the temperature 
at first remains constant and the liquid becomes superheated because of 
the pressure decrease. With sufficient superheating, vapor begins to form. 
As in the case of boiling flow in a heated channel, acceleration and 
increased frictional effects must be made up by the continuing decrease 
of static pressure along the channel. Sometimes called flashing flow, this 
phenomenon is of practical interest in many engineering applications. 

0 

F. BOILING TERYINOLOQY 

There is not yet agreement among workers in the field on terminology 
for various types of boiling heat transfer, but suitable descriptive terms 
have been used by various authors, and a consistent terminology is 
evolving. One basic distinction is between surface boiling and volume 
boiling, i.e., whether vapor bubbles form originally at a heated surface 
of macroscopic size or whether they form spontaneously in the liquid. 
Volume boiling, which is relatively uncommon, occurs in pure liquids 
heated by radiation, and in solution-type nuclear reactors in which heat 
generation occurs in the bulk of the fluid. 

There is no difficulty in distinguishing between nucleate boiling and 
film boiling. As was pointed out earlier, the mechanisms of heat transfer 
are completely different in these two regimes, with the most obvious 
difference being that with nucleate boiling from a surface, moet of the 
heat transfer is to the highly agitated liquid. When film boiling takes 
place, on the other hand, the heater is blanketed with a layer of super- 
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heated vapor. Much less is known about unstable film boiling, but its 
practical importance is limited by its difficulty of achievement except 
by so-called constant temperature heaters. 

When the heat transfer rate is increased to  the critical heat flux, 
nucleate boiling can no longer exist, and the surfacc becomes covered 
with an insulating film of vapor. Various other terms have been applied 
to this heat transfer rate, including burnout, transition heat flux, and 
peak heat flux. Closely related to these terms is the concept of “departure 
from nucleate boiling” (DSB) which is defined as the point on the 
nucleat(* boiling curve (Fig. 2) at which a noticeable variation from 
linearity occurs as,>he critical flux is approached. 

The distinction hetween saturated boiling and subcooled boiling has 
been made in some detail i n  the preceding discussion. The most common 
instance of saturated boiling is pool boiling, which occurs when a heater 
is immersed in a relatively large quantity of liquid which would be 
strtgnatit rxcept for the natural convection currents set up by the heating. 
After an initial transient period during which the heat added brings 
the liquid to the boiling point, subsequent heat addition results in satu- 
rated boiling. If the liquid, subcooled or saturated, is forced to flow past 
the heated surface while it is partially or wholly evaporated, forccd coil- 
vection boiling is said to take place. 

Froni the qualitative discussion which has been presented above, it. 
may he swn that the subject of boiling heat transfer may be divided 
into two general areas: one, which is concerned primarily with conditions 
at or near the heating surface, includes nucleation, bubble growth, peak 
heat flus. and film boiling theory; the other, for heated or unheated 
chaniiels with vapor and liquid in coexistence, is one of two-phase fluid 
flow and hydrodynamic instability analysis. Various aspects of these sub- 
jerts will be examined in detail in succeeding .sections, and both theoretical 
analysis and empirical correlations will be presented. 

11. Nucleation and Bubble Dynamics 
.I. SUCLEATION FROM A SOLID SURFACE 

1. l’heriwdynanric ISyuiliBriim at a Curred Interface 

.llthoiigh heat transfer does not occur in a system which is in eqrii- 
librium, it is possible to derive useful limiting conditions for heat transfer 
from equilibrium considerations. For example, the physical properties 
which are utilized in heat transfer calculations are reported for equilib- 
riuiii conditions, although we apply them with more or less siiccess to 
highly noneqriilibrium systems. 
[ 1981 
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In particular, thermodynamic analysis leads to three criteria for equi- 

(a) The temperature must be uniform throughout both phases. 
(b) The chemical potentials (for a pure substance, identical with the 

(c) If the interface is spherical, the pressures in the liquid and in the 

librium between a pure liquid and its vapor (7): 

Gibbs free energies) of the two phases must be equal. 

vapor are related by 

2u 
p ,  - pz = - 

T 

Equation (1) can also be derived readily from a force balance on a hemi- 
spherical segment of a vapor bubble which is in dynamic equilibrium 
with surrounding liquid. The liquid pressure and the effect of surface 
tension combine to balance the vapor pressure, which must therefore 
exceed the liquid pressure. 

The saturation states of liquid and vapor which are ordinarily tabulated 
(e.g., 8) are for equilibrium at a plane surface. If the interface is curved, 
as would be the case with a vapor bubble surrounded by liquid, a liquid 
droplet surrounded by vapor, or a column of liquid in a capillary tube 
in equilibrium with vapor, Eq. (1) shows that the phases must be at, 
different pressures if they are in equilibrium. 

vo por 

liquid 

Fro. 5. Liquid rise in a capillary tube due to surface tension. 

Perhaps the most graphic demonstration of this situation can be. given 
by considering liquid which has risen in a capillary tube, Fig. 5 .  When 
this system reaches equilibrium, its temperature must be uniform 
throughout according to the criteria we have accepted earlier. The pres- 
sures of liquid and vapor at the plane surface must be the same and 
equal to saturation pressure for the system temperature. From hydro- 
statics we may write expressions for the vapor and liquid pressures on 
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either side of the rrirved interface: 

(hnsequently, a t  the curved interface both the liquid and the vapor are 
superheated, since each phase is at a pressure less than the saturation 
value for the system temperature. The amount of vapor superheat may be 
negligiblr, compared to that in the liquid, since ordinarily pl >> py. 

c 
Yrc.. 6. Variation of pressure Rith chotnical potrntial for :t sirigle-corriponcnt liquid 

111 equilibrium wlth its vapor (9). 

For a round capillary tube, the interface will be approximated by a 
portion of a sphere, the radius of which is determined by the Rurface 
tension. C'onsequently , equilibrium thermodynamic states derivable from 
this illustration will apply to any spherical liquid-vapor boundary, 
including vapor bubbles and liquid droplets. 

Instead of pursuing this example further, however, let us take a more 
general approach and apply the conditions of equilibrium directly to 
vapor bubbles (9). Iigure 6 shows the variation of pressure with chemical 
potential (or free energy) for a typical, single-component liquid in equi- 
librium with its vapor. Isotherms in both vapor and liquid regions have 
positrive slopes, with a discontinuity in slope a t  the saturation line. 

For a fixed liquid pressure p", all possible liquid states lie along the 
line d'c" or its extension. Equilibrium a t  a plane interface ( r  4 ;.) is 
represented by the point a" on the saturation line, while, for a finite 
radius of curvature, n, for example, the vapor pressure exceeds p" by ail 
r;2cml 
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amount specified by Eq. (l), which therefore specifies the pressure 
coordinate of the vapor state b'. 

The other coordinate (l) of the two phase states b' and b" is deter- 
mined by the requirements that they be a t  the same temperature and at 
the same free energy. It is again apparent that both phases are super- 
heated, but the locations of b' and b" on their respective isobars must be 
found by trial. The superheated liquid point, b", is on the projection of 
the isotherm t b  (not yet determined) from the liquid region (7, p. 433), 
while b' must lie on the superheated vapor portion of the same isotherm. 
Consequently, the conditions of equilibrium and the equation of state of 
the fluid are sufficient to determine the vapor and liquid states for a 
bubble of any given radius when the liquid pressure is specified. 

To apply these observations to nucleate boiling, suppose a very small 
vapor bubble exists a t  a heated surface where it is largely, if not entirely, 
surrounded by liquid. Merely to avoid collapse, the vapor bubble must be 
a t  a higher pressure than the liquid. Since the vapor superheat is usually 
very small, and since its existence merely strengthens our argument, let 
us neglect it and assume the vapor to be a t  saturation temperature for its 
pressure. The liquid temperature must be at  least as great as this or else 
the bubble size will diminish through condensation a t  the interface. For 
nucleate boiling, and therefore bubble growth, to occur, the liquid must 
be superheated even more than the equilibrium diagram (Fig. 6) would 
indicate. 

One further observation may be made of the nature of Eq. (1) :  as the 
radius of a bubble approaches zero, the vapor pressure apparently 
approaches infinity. Such a situation is meaningless physically, of course, 
and a consideration of the derivation of the equilibrium criteria, including 
Eq. (I), will show them to be valid only for bubbles which are large 
compared to molecular sizes and distances. Nevertheless, the equation 
predicts, and experiment confirms, that very high liquid superheats can 
occur if great care is exercised to remove favorable nucleation centers 
before heating. For example, Kenrick et al. (10) reported 306" F superheat 
in water at atmospheric pressure in a capillary tube, which corresponds 
to a saturation pressure of 800 psia and a calculated bubble radius from 
Eq. (1) of 0.6 X 

Since we know from experience that nucleate boiling of water occurs 
quite readily a t  superheats of the order of 0.1 of the above value, say 
30 to 50" F, we can deduce that much larger nuclei (of the order of 
10-4 inch) are normally available in engineering systems. The next section 
will present the results of recent research which demonstrates that minute 
pits and crevices in a heating surface can entrap gas and vapor, thereby 
providing nucleation centers of such a size. 

PO11 
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2 Sur jncc  I-ariab1r.s 

For a long time there has been interest in the nature of those preferred 
lovations on heating surfaces at which columns of bubbles form, the 
nilcleation centers. ,Jakoh observed that  the temperature difference 
rcyuird lxltweeit a vapor bubble and the superheated liquid layer next to 
the surfacc depends mainly on the radius of the bubble, and that this 
radius is influenced I t y  the roughness of the heating surface ( I ) .  He also 
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l h .  7 .  Siit*le:itr boiling of n-pentane on nickel polidled with \ arious grades of 
emery pajter; I .  4/O.-polished nickel; 2. 2/&-polishd nirkcl; Y .  0-polished nickcl; 
4 1 p o l i d ~ ~ ~ d  riicthel: .5. :+-pnlr.;hed nirkcl ( I  !). 

pointed out tlrat the mean size of the originating bubbles is controlled by 
a h t i s t i ca l  nwan of the roughness of the heating surface, an observa- 
tioii which later research has amplified considerably (1  I ,  12). 

C'orty and Foust hare  reported the effects of surface roughness and 
surface aging on the boiling curve (Fig. 2) and on the bubble contact 
angle for several fluid-surface combinations (1  1 ) .  Electron micrographs, 
phcttoiniclograplis, and profilonwter roughness measurements were made 
of t 1 i ~  heating surfaces, while buhble shape, size, and population were 
determined from enlargements of short-exposure (10 psec) motion 
pictures. In these experiments, saturated, pool boiling of ethane, norrnal 
pentnncb, and Freon-1 13 was performed from an  upward-facing, horizontal 
plate which had first been plated with either copper or nickel, then 
I204 



BOILING 

roughened by rubbing with one of various grades of emery paper (4/0, 
2/0, 0, 1, and 3). 

Figure 7 shows five curves obtained with n-pentane boiling from nickel 
with different finishes, from which it is evident that  successively rougher 

FIG. 8. Electron micrographs of collodian replicas of boiling surfaces. Dow latex 
yardstick balls are approximately 10-microinch replicas shadow cast at arctan 35 
(11). (a) 4/@polished nickel. (b) Z/O-polished nickel. (c) l-polished nickel. 

FIG. 9. Photomicrographs of collodian replicas of boiling surfaces (11).  (a) O-pol- 
ished nickel. (b) l-polished nickel. (c) 3-polished nickel. 

finishes required successively smaller temperature differences for a given 
flux, as one might expect from Eq. (1). Electron micrographs of three of 
the surfaces are shown in Fig. 8, while photomicrographs are shown in 
Fig. 9. Observe that Figs. 8c and 9b are of the same surface. The scratch 
marks left by polishing with emery paper appear from the micrographs 
to  be from 10 to 1,000 microinches wide, while a diamond-tip profilometer 
gave readings of 2.2 to  23 microinches (rms). 

Figure 10 shows an  idealized conical cavity which may be used to  
compare the bubble radius, r ,  predicted by Eq. (1) to the observed rough- 
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IICSS, r.xpiwisetl as thr cavity radius, R. From the figriw we see that 

I’ - R ros ( 4  2 - @) 

a i d  therefore, from Eq. ( 1 ) .  

Corty and Foust arbitrarily assumed a constant value of 120” for the 

Frc,. 10. Idealized conical cavity aud vapor bnbblc. 

angle 4, since the electron micrographs showed the grooves to be quite 
flat, while observed values (44 to  GO”) of the contact angle, p, were used. 
Evaluating the pressure diff erence from the observed surface superheat 
and the surface tension a t  saturation temperature, they calculated cavity 
radii of 3.7 to ‘3.8 microinches for the -1 0-roughened surfaces. 

It might be observed at this point that the very flat grooves which the 
polishing apparently produced are relatively ineffective in trapping and, 
especially, in retaining vapor. This aspect of nucleation will be discussed 
further in reporting Bankoff’s work (13), but should be born in mind when 
considering the hysteresis effects observed by Corty and Voust and 
presented below. 

The boiling curves in Fig. 7 illustrate another significant effect of the 
surface condition in that  their slopes vary somewhat with roughness and, 
particularly for thP rougher surfaces, that  their slopes are much greater 
(13 to  25)  than is usually fouiid with unprepared surfaces (3  to  .5). 
Apparently the careful roughening of these surfaces replaced the fairly 
broad size distribution function of the typical “as-received” metallic 
surface with narrow distributions whose peaks were closely related to the 
grade of ernerv paper iised. 

3. Hystereszs 

Sorne of the most interesting observations made by Corty and F’oust 
had to do with the difference in behavior of nucleation centers under 
certain conditions depending upon whether the heat flux was increasing 
12041 
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or decreasing. Curve abe in Fig. 11 represents the variation of p" with At 
for free convection in a pool without boiling, while curve bdc is the normal 
nucleate boiling curve which was obtained when the heat flux was 
decreased from a region where the surface was densely covered with 
bubble columns. As the flux was reduced, more and more of these bubble 
columns disappeared, until the free convection curve was reached and no 
vapor was being produced. If the surface was then kept free of bubbles 
for at  least 10 to 15 minutes, subsequent increase of flux took place along 
the free convection curve abe, with surface superheats of 40 to 50" F 

I 

log AT 

FIG. 11. Hysteresis in nucleate boiling. 

being accommodated entirely by free convection and without bubble 
formation. Finally, at  a point such as el vigorous nucleate boiling began 
suddenly and the superheat dropped to about 25" F a t  point d. Corty and 
Foust observed that when this occurred, the first bubble formed at some 
random point on the surface, and nucleation then spread concentrically. 

If the heat flux was increased from the point b immediately upon the 
cessation of nucleation, instead of waiting as before, the start of nuclea- 
tion was not random, but began with the nuclei which had most recently 
been active. Nucleation spread from these points in patchwise fashion as 
the heat flux was further increased, until vigorous nucleate boiling was 
again reached over the entire surface. Curve bfc illustrates this condition, 
while bgc shows the case of increasing the heat flux while a few nucleation 
centers per square inch are still active. Temperature readings taken at 
three locations, 0.19 inch below the heater surfaces, led to the observation 
that the surface temperature in the boiling patches was characteristic 
of the nucleate boiling curve bdc, while the bare spots were a t  a con- 
siderably higher temperature such as represented by the point e. 

Another interesting facet of the hysteresis effect is that the surface 
~ 0 5 1  
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roughness was found to  influence the maximum surface superheat which 
could he obtained by free convection before nucleation started. The point 
e in 1;ig 11 for the smoothest surface (2.2 microinches by profilometer) 
occurred a t  a superheat of 3.5' F, while the roughest surface could sustain 
52' F superheat before boiling began. This suggests some of the smaller 
cavities were more effective in retaining entrapped vapor after boiling 
litis stopped. Furthermore, very large cavities mould be unlikely to trap 

0 so 100 IS0 200 250 300 3SO 

HEATING SWIFACE TEMPERATURE -OF 

FI<.. 1 %  Trifliiciice ot prrprrssiirizatiori of water to 15,000 psia on the nlaxiniuni 
surfRcr zupvrlreat olit:tinetl lwforr incipient boiling ( 1  $). 

vapor e\.en when vigorous boiling occurred, since the liquid would tend to 
pmetrate such cavities completely. 

Sabersky and Gates (14) found an even greater temperature overshoot 
when heating water which had been preprcssurized to  15,000 psia for not 
less than 1.5 minutes. Resistance-heated wires of 0.010-inch diameter w c r ~  
uscd, with typical results as shown in l i g .  12. The very large superheats 
wliicli they obtained in free convection without bubble formation are of 
the same order as those which can be obtained with clean water without 
any foreign surfaces, which indicates that  the prepressurization treatment 
eliminated the more effective niicleation sites, i.e., those of larger diam- 
eter. Once the entrapped gas had been dissolved or the vapor condensed 
at  these sites, suhsequent reduction of pressure did not cause their 
reactivation. Thcse results give additional weight to  the supposition 
that> the start of nucleation normally occurs at preexisting cavities in 
which gas or vapor is entrapped. 

/t. 1-q)Or Truppir1.V 

The vapor trapping mechaiiism has been analyzed in more detail by 
Bankoff (Is), who considered the conditions under which gas will be 
[ 2061 



BOILING 

trapped in a V-shaped groove by a liquid front advancing normal to the 
groove, as well as the mechanism by which gas would be displaced by 
such a front. These arguments apply qualitatively to conical, cylindrical 
and other cavity shapes as well as to grooves. Consider Fig. 13a, from 

(b) 

FIG. 13. Idealized vapor trapping model ( I S ) .  (a) Vapor displaced by liquid 
(b) Liquid displaced by vapor front front advancing normal to V-shaped groove. 

advancing normal to V-shaped groove. 

which it can be seen that no gas will be entrapped if 

814J 

because the liquid will completely fill the bottom of the groove by the 
time it reaches the opposite wall. If, as Fig. 13a illustrates, 

@ > 4 J  (3) 

some gas will be trapped in the bottom while the rest of the groove fills 
with liquid. 

Now consider the opposite problem of displacing liquid from the groove 
by gas, as shown in Fig. 13b. The angle which the gas-liquid interface 
makes with the solid as it advances down the right-hand wall is 0, the 
contact angle, and this interface will be parallel to the left-hand solid 
face if 

@ = 180 - 4J 
~ 0 7 1  
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('onaequently, a t  this or at any smaller valiw of j3 thc liquid will not be 
r~ornpletelp displaced before the interface transfers to the left-hand wall, 
and the criterion that liquid he left, in the groove as the gas swerps over 
it is 

p < 180 - 4 (4) 

On the basis of inequalities ( 3 )  and (4), Rankoff divides the surface 
roughnesses in any particular system into four classes: 

(a) Those which obey (3) but not (4). These occur when the solid is 
poorly wet ( B  2 YO') and the grooves are relatively shallow (4/2 ?i 45'). 
Such grooves are stable when completely filled either with vapor or with 
licluid. and can be refilled with vapor even if they become filled with 
l ic luid.  Consequently, this class of roughness favors nucleation. 

(b) Those which obey (4j but not (3). These occur with good wetting 
( p  << !jOol and when 4 is not too close to 180". Liquid can completely fill 
these grooves, and it will not be displaced later by a vapor front. In both 
of these first classes of roughness, it is possible to switch from vapor to 
liquid or from liquid to vapor, which can account for the hysteresis 
etf ec t s disc rissed earlier. 

( c )  Those which obey both (3) and (4), when /3 is not close to zero and 
9 ' 3  << Xi", are very steep and, once they are filled with either liquid or 
vapor, cannot be completely purged by the opposite phase. 

(dj Those which obey neither (3) nor (4), when /3 is not close to zero 
and 4 2 >> 4.5', are very shallow and cannot trap vapor. 

Rankoff has also extended the thermodynamic nucleatioii theory of 
T-olmer ( 1 5 ,  16) and Fisher (1 7 )  to consider wetted and unwetted surface 
projections, plane surfaces and cavities (28). As we have noted earlier, 
very large superheats can be sustained by a pure liquid in contact only 
with smooth, clean, wetted surfaces. Bankoff shows that the superheat 
required for the formation of a vapor nucleus of critical size (ie., large 
enough to go\v spontaneously) on a plane surface is a function of fluid 
properties and of the tendency of the liquid to wet the surface. The poorer 
the  wetting. the lower the required superheat (or excess pressure), but 
even for water on parafine, commonly considered nonwetting, the contact 
angle @ is only U > O ,  and a theoretical pressure of about 800 atmospheres 
would be required. Since this is far in excess of observed values, it is 
concluded that nucleation from a plane surface, like nucleation in the 
pure liquid. is of no importance in surface boiling. 

i t  has long been supposed that surface projections, as well as pits and 
scratches, serve as nucleation centers (1 ) .  However, Bankoff's analysis 
demonstrated that a surface projection is, if anything, inferior to a plane 
surface in minimizing the work of forming a vapor nucleus. Consequently, 
[ 2081 
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only surface cavities should be of importance as nucleation centers, and 
even these are effective only if poorly wetted by the liquid or if they 
contain an incondensable gas. Eventually, the incondensables will diffuse 
into the liquid phase and the cavity will fill with liquid unless boiling 
is maintained, in which case such a cavity may continue to nucleate 
from the entrapped vapor. 

Experimental verification of some of these conclusions has been 
reported by Clark, Strenge and Westwater (19). Photographs of the 
nucleate boiling of diethyl ether and of normal pentane were made through 
a microscope. Clean, polished heating surfaces of both zinc and aluminum 
alloy were used. Twenty nucleation sites were observed: 13 were identified 
as pits in the surfaces: 3 were scratches; 3 occurred a t  the boundary 
between the metal heater and a plastic cement used as a sealant against 
the surrounding packing material; and 1 was on a shifting speck of 
unidentified material which appeared briefly on one of the surfaces. The 
active pits were from 0.0003 to 0.0033 inch in diameter and were nearly 
circular, while the active scratches were about 0.0005 inch wide. 

The possibility that grain boundaries might also act as nucleation 
centers was explored in two ways: by a comparison of the boiling curve 
obtained from a heating surface of polycrystalline zinc with that obtained 
from a single crystal, and by direct microscopic observation of nucleation 
on numerous polycrystalline surfaces. No significant difference could be 
observed between the boiling curves, nor was any grain boundary seen 
to be acting as a nucleation center. 

5.  Size Range of Cavities and Critical Radius 

Another useful concept, that of the critical radius, can be illustrated 
with the aid of the equilibrium theory presented earlier and the idealized 
sketch in Fig. 14a. Suppose vapor to be trapped in the bottom of this 
cavity, with the liquid-vapor interface initially in the spherical segment 
labeled ro and with a constant contact angle of 90” with the solid. The 
three equilibrium criteria stated in Section II,A,l and illustrated in Fig. 
6 are assumed to be satisfied, so the system is in a stationary state. 
In order to disturb this state and to cause the vapor volume to increase, 
we may either add heat or reduce the pressure level of the entire fluid 
system, thereby increasing the superheat of both phases. Imagine that 
we carry out the latter process slowly, so the system temperature remains 
nearly uniform but changes with time according to the equilibrium re- 
quirements and the equation of state. Evaporation will occur a t  the inter- 
face and the vapor mass will increase. 

Now consider the variation of the liquid superheat (or, what amounts 
to the same thing, Ap), as the vapor volume increases. Figure 14b shows 
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how the reciprocal of the radius, which is just A p / 2 u  at equilibrium, 
decreases as the amount of vapor increases. After state 1, when the 
interface reaches the mouth of the cavity, further growth results 
in  a decrease in the radius, and therefore in an increase in the super- 
heat, until the contact angle with the solid surface outside the cavity 
reaches its characteristie value (assumed YO" for this illustration), 
after which further growth again increases the radius and thcrnfore 
dwreases the huperheat Observc that there is a minimum radius T* 

k ' ~ ( ~  14 (3) Idealized conical rarity with a '30" contact angle. (b) Variation of the 
rwiprocal of I' with biihhle volume. The r* is the critical value and has associated with 
I t  thc critical . it  ( I @ ) .  

nhenevei. the contact angle is equal to or greater than YO", and there 
is a (.orresponding maxiniiim superheat. This minimum is called the 
c-iiticd radius becauw, although a smaller bubhle can exist and even 
iiwreiisc in volunie, its growth will he stopped before it reaches this 
c.ritic:tl size if t IN. liqiiid siiperhrat is not suffic*ient to carry it through 
this stage. 

iriffitli and Wallis (13) ha\ e found that the nucleating properties of 
a coniral cavity can he characterized by a single dimension under certain 
conditions. They also found that boiling would not occur at the desired 
sites (i.e., they were not stable) if thr water had been degassed prior 
to the test. The degassing of the water apparently resulted in the removal 
of :ill gas from the cavities before boiling began. Furthermore, they 
obscrved that tfir conical cavities \\ere not stable for much subcooling 
and that unwttcd cavities were niorc stable than wetted ones, all of 
which ohstrvations are cwmistent with the earlier analysis of Bankoff 
and others. 

Instead of examining thc (iriffith and Wallis results in greater detail, 
let us now consider a more recent analysis by Hsu (2'0) based 011 the 
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nucleate boiling model of Hsu and Graham (21). Assume a bubble nucleus 
exists a t  the mouth of an active cavity such as is illustrated in Fig. 15a. 
The previous bubble has just departed and relatively cool liquid at 
temperature to now occupies the region, as indicated by the temperature 
profile (0 = 0) shown in Fig. 15b. Also shown is a broken line, 0 = Ob, 
from the wall to the extremity of the bubble representing the vapor 
temperature, which is uniform. 

In HSU’S model, it is assumed that a liquid layer of thickness 6 is heated 
by transient conduction from the wall, but that beyond this layer, eddy 

8. LIMITING THERMAL LAYER THICKNESS 

( 0 )  (b) (C) (d) 

FIG. 15. Model for calculation of the waiting period with typical temperature 
profiles (20). (b) Temperature profile at 7 = 0. 
At the beginning of the waiting period, 8 = 0 at all z except at the wall (z = 6). 
(c) Temperature profile a t  0 < T < T ~ .  During the waiting period, the surrounding 
liquid is cooler than the bubble interior. (d) End of the waiting period; 0 (2) curve 
reaches point (8~, zb). 

(a) Bubble nucleus at cavity mouth. 

diffusivity is controlling and the liquid is a t  the bulk temperature. In 
the boundary layer, then, we have a simple transient conduction problem 
with either a step change in temperature at  the wall (constant surface 
temperature case) or else a sudden start of heating at the wall (constant 
heat flux case), both solutions being available in the literature (2.2). For 
the sake of brevity, the present treatment will be confined to the constant 
surface temperature case, while both cases are treated by Hsu (20). 
Figures 15c and d show schematically how the temperature excess, 
e(x , r )  = t(x,r) - t o ,  builds up as heating of the boundary layer progresses, 
until in the latter curve the temperature in the liquid is everywhere 
equal to or greater than the vapor temperature. This is equivalent to 
stating that 0(x ,r )  = e b  a t  x = 6 - b a t  the end of the waiting period, 
rW. A more complete way to represent the transient solution is shown in 
Fig. 16, in which the dimensionless liquid temperature group [ is plotted 
as a function of the dimensionless distance group 7 with a dimensionless 
time group as the parameter. 

Also shown in Fig. 16 is a typical curve of ( vs. 7 derived from Eq. 
WI 



( I ) ,  in nliich A p  is replaced. by a corresponding teniperature dit'feiwm 
from the ('lapeyron equat,ion, i.e., 

Equations ( 1 )  and ( 5 )  yield 

where Ez is the cavity radius and the condition I ' ~ ~  l / p ,  is met. Although 

DIMENSIONLESS DISTANCE, .I 

PIC, 16. Omensioniess temperature variation with dimensionless distance for con- 
,taut surface temperature with the dimeneionless time group, m r / b 2 ,  as a parameter 
(m. F = e/e,, 'I = ~ 1 6 .  

the contact angle ,B and the slope of the cavity mouth y are unknown, 
a simple but reasonable assumption is that  the bubble height, b = 6 - 5 6 ,  

is equal to the cavity diameter, 2 R ,  which leads to  an expression for the 
bubble radius I' in terms of b (20) .  Wit,h this substitution, then, Eq. (6) 
rriag be noiidiineusionalized to give 
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HSU’S model requires that this equation, which is plotted in Fig. 16 for 
typical values of fluid properties and 6, be satisfied a t  the end of the 
waiting period. The intersections of this f a  vs. 7]b curve with the transient 
conduction curves give the waiting periods for bubbles of various sizes. 

It is immediately clear that for a cavity to be effective, its waiting 
period must be finite. Therefore, the intersections of this infinite time 
Curve (t = Q) in Fig. 16 with the typical ,$b vs. r]b curve provide minimum 
and maximum values of 7]bl as shown, and only cavities within this size 
range can be effective. Expressed algebraically, these limiting radii are 

where C1 and C3 are functions of the angle p + y (Fig. 15a) and the 
cavity radius R (20). 

Not all sites within the limits given by Eqs. (8a) and (8b) are active, 
since there may be two cavities very close together, of which only the 
one with the shorter waiting period will be active at a given surface 
temperature (or heat flux). From these equations it may also be deduced 
that nucleate boiling is impossible if there are no real roots, i.e., if 

Therefore, the temperature difference of incipient boiling is predicted 
from this inequality to be 

This expression is significant because it relates the condition of incipient 
boiling, which can be estimated in various ways (e.g., Fig. 3), to the 
boundary layer thickness 6. 

Hsu (SO) has compared the incipient nucleate boiling data reported 
by McAdams et al. (2.9, with the pressure and subcooling dependence 
predicted by Eq. (9). A reference point was chosen to evaluate 6/C3 
from a measured value of Oa0, after which OEo was calculated for a wide 
range of boiling conditions with the same value of O/C,. Equations (8a) 
and (8b) were also tested against the temperature and cavity size meas- 
urements of Clark, Strenge and Westwater (19) and of Griffith and 
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Wallis (1.2). In all cases, the calculated results from the nucleate boiling 
model of Hsu and Graham were consistent with experimental observations. 

B. HOMOGENEOUS NUCLEATION AND RADIATION EFFECTS 

Nucleation from a homogeneous liquid phase is relatively rare, because 
long before the very large liquid superheats which would be needed are 
attained, heterogeneous nucleation usually occurs. In nearly all engineer- 
ing systems, there will be gas entrapped in the container walls, gas bubbles 
in the liquid, or suspended solids, perhaps very small, which provide 
nucleation sites. However, it is possible in the laboratory, if extreme 
care is taken, to achieve very high degrees of superheat in liquids before 
nucleation and bubble growth occur. 

The theory of homogeneous nucleation has been reviewed in detail by 
Westwater (94) and will not be discussed here. Classical thermodynamics 
and the reaction rate theory of Eyring seems capable of explaining some 
of the main features of this phenomenon, but Westwater concludes that 
considerably more work needs to be done in this area. 

We have referred earlier to a solution-type nuclear reactor as a prac- 
tical example of homogeneous nucleate boiling, but it is clear that homo- 
geneous nucleation is not likely to occur in such a device. However, this 
application is interesting to the present discussion because of the high 
density of ionizing radiation which is likely to be present. 

Fast and slow neutrons, gamma rays, beta particles, protons and even 
fission products can conceivably contribute to nucleation in a superheated 
liquid, and, in fact, the well-known bubble chamber invented by D. A. 
Glaser ($5, 26) for the detection of nuclear particles depends upon this 
process for its operation. According to a model proposed by Seitz (27), 
most bubble nuclei formed in a bubble chamber are produced when 
incident particles (e.g., protons or pions) transfer energy by Rutherford 
scattering to electrons in the superheated liquid. These electrons rapidly 
lose this kinetic energy, which is of the order of kilovolts, to the molecules 
in their path, and this energy reappears chiefly in the form of heat. 

In order for such an excited electron to form a nucleus of sufficient 
size that a macroscopic bubble will be formed, the electron must have 
a range of the same order of magnitude as the radius demanded by Eq. 
(1) for the particular values of surface tension and superheat which are 
used. That is, within a distance approximately equal to 2r = 4u/Ap,  the 
electron must transfer enough energy to produce a bubble of radius 9'. 
A static bubble of this size represents an energy investment of 

h', = 4 m 2 0  + 4n-rSpah/3 (10) 

where the first term is the energy required to create the vapor-liquid 
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surface and the second represents the latent heat. Seits shows that the 
static energy demanded by Eq. (10) is exceeded by an order of magnitude 
by the energy which would be lost within a range of 2r by 10 kev electrons, 
so the process is feasible from this standpoint. This phenomenon which 
results in a substantial and rapid energy transfer in a very small region 
is known as a “thermal spike.” 

It is essential that the nucleus be formed in a period of time which 
is short compared to the time in which the heat would diffuse through 
the liquid. This criterion is found to be met by average bubble growth 
velocities of the order of 0.1 the speed of sound. Seitz further considers 
in an approximate way the additional energy required to accelerate the 
liquid and to overcome resistance of viscosity. Although viscous effects 
are apparently negligible for liquid hydrogen, which has a very low coef- 
ficient of viscosity (about lod4 poise), they may be appreciable in propane 
and similar liquids with viscosities near 

Because of the scarcity of experimental data on bubble production by 
ionizing radiation, as well as the approximate nature of certain aspects 
of the analysis, these results must be considered somewhat tentative. 
Nevertheless, they present a consistent picture of the processes which 
seem to be taking place and agree with the limited experimental data 
which are available. 

poise. 

C. BUBBLE DYNAMICS 

1. Introduction 

Having considered the circumstances which control the nucleation of 
vapor bubbles at  a heated surface or, occasionally, within a bulk liquid 
phase, we may now turn our attention to the conditions which govern 
the subsequent growth of these nuclei into vapor bubbles of macroscopic 
size. The simplest form that this problem can take is that of a spherical 
bubble growing in a large volume of uniformly superheated liquid. This 
situation might be approached not only in homogeneous boiling, such 
as in a bubble chamber or in a homogeneous nuclear reactor, but also 
in certain surface boiling situations. 

In pool boiling, for example, bubbles experience a relatively small frac- 
tion of their growth while they are attached to the heated surface. As 
we have discussed earlier, most of the heat transferred from the heater 
goes to the liquid in the pool and thence to the vapor bubbles during 
their ascent to the free surface. Another important instance of a vapor 
bubble growing in uniformly superheated liquid occurs when the pressure 
is suddenly reduced in an isothermal liquid system which is at  or near 
its saturation temperature. Nearly uniform superheat can be achieved 
and bubbles can grow a t  such nucleation sites as may be present. 
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Considerably more complex is the problem of bubble growth in a non- 
uniform temperature field, such as exists in the thermal boundary layer 
during surface boiling. This is the problem in pool boiling from the time 
of formation of the nucleus of critical radius until detachment of the 
bubble from the heated surface. Similar but still more difficult is the 
analysis of the bubble growth rate during subcooled surface boiling, when 
the nucleus grows in a superheated layer near the heater, but collapses 
when it contacts subcooled liquid a short distance away. The bubble 
may or may not detach and move into the main stream before collapsing. 
The dynamic analysis of bubble detachment in these various surface 
boiling situations is, itself, a subject of considerable interest. 

Valuable reviews of bubble dynamics have been published by Jakob ( I ) ,  
Westwater (.2+$), Zuber (28) and Hsu and Graham ( $ 1 ) .  Much of the 
material in the following paragraphs was drawn from these sources. 

2. Bubble Growth in a Uniforinly Superheated Liquid 

According to Bosnjakovic (as), the thermal resistance to bubble growth 
may be considered to be concentrated in a thin layer of liquid next to 
the growing bubble. The vapor in the bubble, and therefore the surface 
layer of liquid molecules, is nearly a t  saturation temperature during 
most of the bubble growth period. Therefore we denote the conductance 
of the boundary layer, k/6, by h, and obtain an energy balance at  the 
interface 

From measurements of the bubble growth rates obtained from high-speed 
motion pictures, Jakob and others ( 1 )  found values of h from Eq. (11). 
For water in pool boiling at  atmospheric pressure, values of h as high 
as 40,000 Btii ;(hr) (sq ft) (F) were observed in the initial transient when 
the bubbles formed. After 10 millisec, this value decreased to about 4,000 
and then t,o about 3,000 for niost of the 200 millisec observation. After 
about 2.; millisec, the average bubble left the surface and began its free 
ascent through the superheated liquid. 

Fritz and Ende (SO) treated this problem by numerical integration of 
the heat equation, assuming the newly created vapor-liquid interface 
acted as a plane wall of temperature tSat bounding a semiinfinite slab of 
liquid initially a t  lo.  Formulated mathematically, this partial differential 
equation for t = t ( z , ~ )  is 
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subject to the initial and boundary conditions that 

t(x,O) = t o  

t ( 0 , ~ )  = tsat for T > 0 

lim t (x ,~)  = to 
w -  

An energy balance a t  the interface then provides the coefficient h: 

where x is measured from the interface into the liquid and where the 
derivative is obtained from the transient solution. Reasonably good 
agreement was found between values of h from this calculation and 
those found from the photographic measurements. 

This transient conduction model was later refined by Plesset and 
Zwick (31) and Forster and Zuber (32), who combined the equation of 
motion with the transient heat conduction equation. This approach starts 
with Rayleigh’s equation for the growth of a spherical bubble in an 
infinite liquid medium 

The pressure excess which is assumed to produce the bubble growth may 
be written in terms of the Clapeyron equation 

where the vapor pressure and temperature are functions of the radius, 
according to Eq. (l), and therefore of time. Note that temperature tsat 
is not the temperature of the liquid, but rather is the saturation tempera- 
ture which corresponds to the liquid pressure. Finally, the energy equa- 
tion in spherical coordinates is written as 

a@ at at ar 

At the start of bubble growth (T = 0 ) ,  the temperature everywhere in 
the liquid is constant a t  some known degree of superheat, and the liquid 
temperature far from the interface remains a t  this superheat. These two 
boundary conditions, together with an instantaneous energy balance a t  
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the liquid-vapor interface, can he expressed as follows : 

t(r,O) = t o  

lirn t(r ,r)  = l o  
7’ 5 

The thin thermal boundary layer assumption of Bosnjakovic (29) is 
retained to simplify the integration. 

Although somewhat different procedures were followed by the authors 
of references (31) and (32) in obtaining solutions to these equations, 
both found that bubble growth is limited by the rate of heat diffusion 
to the interface, and that the effects of liquid inertia and surface tension 
are small and can be neglected. The predicted growth rate is expressed 
by the asymptotic solution 

which is in good agreement with the experimental measurements of 
Dergarabedian (33). 
C. Birkoff et al. (34), obtained an asymptotic solution to Eq. (15) by 

a similarity assumption which does not require the thin boundary layer 
approximation. They showed that Eq. (16) is a good approximation 
whenever the dimensionless group 

A similar observation had been made earlier by Griffith (85). First Savic 
(36) and later, Zuber (28) have called this dimensionless group the 
“Jakob number” in honor of the late Professor Max Jakob.’ 

A further contribution to the theory has been made by Scriven (37), 
who solved the equations of continuity, momentum and energy not only 
for single-component systems but also for binary systems. His results 
for single-component systems are consistent with those of Plesset and 
h i c k  (31) for large values of the Jakob number. While heat diffusion is 
the limiting process for bubble growth in the single-component case, 
both heat and mass must diffuse to the vapor-liquid interface in the 
two-component case. If the more volatile component does not diffuse 

1 In a personal communication Professor S. P. Kezios has informed the authors that 
Mr. Savic proposed to him that this dimensionless group be named the Jakob number 
some years prior to the publication of reference (36). 
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with sufficient rapidity to the interface, the boiling temperature increases 
in that vicinity and bubble growth is inhibited. 

From the above discussion it is clear that the theory of bubble growth 
in an infinite liquid medium at uniform superheat is well advanced, 
especially in the period after the first instant when surface tension and 
liquid inertia become unimportant. One circumstance which is not con- 
sidered by these theories, however, is that there may be turbulence in 
the liquid which will increase the effective diffusivity of both heat and 
mass. Much more complex is the problem of bubble growth in a non- 
isothermal liquid layer, which will we discussed in the next section. 

3. Bubble Growth on a Heated Surface 

Recognizing the fact that in surface boiling a bubble grows in a liquid 
which is not uniformly superheated, but of varying temperature, Griffith 
(56) obtained a numerical solution of the transient conduction problem 
for nonuniform liquid temperature. Utilizing the results cited earlier that 
surface tension and liquid inertia are negligible during the later and more 
important stage of bubble growth, he combined Eq. (15) with an energy 
balance at the liquid-vapor interface and with a velocity expression 
obtained from the continuity equation. The distinctive feature of this 
analysis is the use of a linearly varying liquid temperature in the boundary 
layer next to the heating surface as an initial condition. 

Perhaps the most serious limitation of Griffith’s analysis is the difficulty 
of predicting suitable values of the boundary layer thickness. Further- 
more, no attempt was made to predict bubble collapse rates in subcooled 
boiling, presumably because Eq. (15) is written for laminar flow, while 
a high degree of turbulence is likely in the collapse process. Nevertheless, 
Griffith’s analysis predicts a number of interesting trends : 

(a) For increasing pressure and decreasing values of the Jakob number, 
the growth velocity decreases. 

(b) The maximum size attained by bubbles at  small Jakob number is 
independent of the Jakob number and depends only on the thickness of 
the superheated boundary layer. 

(c) The average growth velocity of bubbles with a smaller maximum 
size is greater than for those with a larger maximum size for the same 
Jakob number. 

Bankoff and Mikesell (38) showed that the nearly symmetrical bubble 
growth and collapse curves which have been obtained experimentally by 
Gunther (39) and Ellion (4O) with highly subcooled surface boiling would 
not occur if the limiting process were entirely transient conduction as 
expressed by Eq. (15). They postulated a turbulent convective mecha- 
nism for that part of the bubble which projects into the turbulent core 
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of subcooled liquid. Thus, evaporation in the laminar flow region near 
the base of the bubble may continue even while rapid condensation 
occurs where there is contact with the highly subcooled turbulent core. 
The use of an empirical expression for the turbulent flow heat transfer 
resulted in qualitative agreement with experiments in which heat flux, 
liquid bulk velocity and liquid subcooling were independently varied. 

In another paper, the same authors (41) extended the laminar flow 
analysis of Plesset and Zwick (31) to the case of a bubble growing in 
a non-uniform liquid layer of either a linear or an exponential tempera- 
ture profile. I n  this model, it is assumed that the bubble initiates in a 
superheated layer a t  the surface, but that its growth forces a thin layer 
of superheated liquid into the main stream (cf. Fig. 4). The results of 
the computation are expressed parametrically in terms of the volume of 
the bubble boundary layer, which in turn was obtained empirically from 
experimental bubble growth data. Agreement with the trends exhibited 
by bubbles growing in saturated surface boiling is good, but not in sub- 
cooled boiling. The authors attribute the latter disagreement to inaccuracy 
in the assumed temperature distribution or to turbulent heat transfer 
between the vapor bubble and the subcooled bulk fluid. 

Experimental measurements of bubble growth rates in the pool boiling 
of distilled water and methyl alcohol have been reported by Staniszewski 
(42). Although most of these observations were made with upward-facing 
horizontal plates, two runs were with a vertical plate. System pressure 
was varied from 1 atmosphere to  40 psia, the pool depth to as little as 
1 inch, and the heat flux from 15 to 80% of the critical value. High-speed 
movies were analyzed to obtain bubble diameter as a function of time 
from the instant of first visibility until that of detachment from the 
surface. 

Although the usual statistical variation among growth curves was 
observed, the growth rate proved to be almost independent of the sys- 
tem pressure. However, both the bubble frequency and departure diam- 
eter are smaller a t  higher pressure. At the highest heat flux, the departure 
diameter tends to increase, while the bubble frequency correspondingly 
decreases. Changing the heater orientation from horizontal to vertical 
had no pronounced effect on the departure diameter, but did result in 
slower bubble growth. 

Staniszewski found that if the growth curves are written in the form 

T = Crm (17) 

the exponent m varies from a value of 0.5 to  1 early in the growth period, 
with a subsequent decrease to a value of about g. The analysis of Bankoff 
and Mikesell (41) most nearly fits the curves, but suffers from the dis- 
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advantage of requiring an empirical constant which depends upon experi- 
mental conditions. When Griffith's numerical results ($5) were fitted to 
an equation of the form of Eq. (17), the exponent varied from about 
0.5 in the early growth stage down to 0.22 to 0.35 for larger bubbles. 
Consequently Griffith's theory underestimates the growth in the early 
stage, but agrees well in the later part of the period. The constant-super- 
heat theories (31, Sd), with their constant exponent of 0.5, do not agree 
very well with the experimental results. 

- 
DISTRIBUTION IN THE - ' - 
TXERMAL BOUNDARY - 

- - - 
- -  

(a) (b) 

FIG. 17. Jakob's analytical model of a bubble growing in a nonuniform tempera- 
ture field (M). (a) Initial temperature distribution. @) Temperature distribution 
for a growing bubble. 

The bubble diameter at  detachment was compared by Staniszewski 
with the approximate formula derived by Fritz (43) from a balance of 
buoyant and surface tension forces acting on typically shaped bubbles: 

Dt, = 0.0148P 4 2ugc (P in degrees) s G  - Pa) 

This formula overestimates the mean values of observed data and the 
scatter is considerable. It was observed that faster growing bubbles 
attained a larger breakoff diameter, which fact was incorporated into a 
formula for Da 

Db = 0.0071P ,/ 2ugG . (1 4- 0.073 d r / d r )  
d P 2  - P J  

where dr /dr  is in ft/sec. Eq. (18) agrees within f 25 % with all the experi- 
mental observations of Db which Staniszewski made. 

In his dissertation (B), Zuber treats the problem of bubble growth 
in a nonuniform temperature field by extending the Bosnjakovic-Jakob 
model which we have discussed earlier. Figure 17a shows an idealized 
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initial temperature distribution in a thermal boundary layer of thickness 
a h l  just as a microscopic bubble is formed but before its growth has begun 
to cool the boundary layer. In Fig. 17b1 the bubble has grown and the 
adjacent temperature distribution has changed as a result of the diffusion 
of thermal energy toward the interface. Within a layer of thickness 6 ,  
the heat flow is from the hotter liquid to the interface, while beyond 6, 
heat continues to flow toward the bulk liquid. To describe this situation, 

ij 
5 

n 
0 

0 

b 0 0  

a 

I I I I I I 

0 20 4 0  60  80 100 120 

TIME , T a I O ~ I I C  

FIG. 18. Ellion's experimental data for bubbles growing and collapsing in subcooled 
water at atmospheric pressure (40). The heat flux i s  147 Btu/(sec)(sq ft) and the bulk 
temperature 135" F. 

Zuber modifies Eq. (16), which was obtained for a uniformly superheated 
liquid, by equating the transient heat transfer rate to the sum of the 
rates of latent energy increase and heat transfer to the bulk liquid (q") : 

(note that the coefficient 7r/2 has been substituted for its near equal, 
d, which appears in Eq. (16)). The quantity q" is assumed by Zuber 
to be equal to the average heat flux from the heating surface on the 
grounds that the average temperature gradient in this portion of the liquid 
is not distorted greatly by the appearance and growth of the bubble. 
The integrated form of Eq. (19) is 
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Zuber found good agreement between the bubble sizes predicted by 
Eq. (20) and measurements made by Fritz and Ende (SO) of the diameters 
of vapor bubbles a t  the time of departure from a heated surface in pool 
boiling. A further check was made against experimental bubble growth 
curves obtained by Zmola (44), again with close correspondence. 

Zuber also treats the problem of bubble growth and collapse in a sub- 
cooled liquid and compares the predictions from the extended Bosnjakovic- 
Jakob model with Ellion’s experimental data (400). Figure 18 shows radius- 
time data obtained by Ellion, while Fig. 19 presents the same data 

/“ 
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0 0 5  10 1.5 2.0 2.5 3.0 3.5 4 0  

‘CW 

T - 
FIG. 19. Comparison of theoretical bubble growth and collapse curves ($8) with 

subcooled boiling data of Ellion (40). 

normalized on the maximum radius rm and the time at  which this radius 
is reached, Tm. 

From Eq. (19), the maximum bubble radius occurs when dr/& = 0, 
i. e., when 

Equation (20) may then be written 

G m  = k(t* - ttmt>/q” (21) 

and the maximum radius is 

Dividing Eq. (22) by Eq. (23) gives an expression for r / rm:  

r/rm = dFm (2 - 4%) (24) 
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Figure 19 shows that this equation successfully predicts the observed 
bubble growth, but not the collapse, which occurs much more rapidly 
than the theory predicts. 

Reasoning that the heat transfer mechanism in the liquid near the 
interface is much more favorable during collapse than during growth 
because of deformation and motion of the bubble, as well as turbulence, 
Zuber has obtained a solution to the collapse phase of the problem by 
assuming isothermal conditions. Unlike the growth phase, inertial effects 
are now controlling, and the R.ayleigh equation becomes 

where surface tension effects are again ignored and the right-hand side 
is constant for the isothermal case. The solution to this equation is (68): 

for T / T ~  2 1 
Equation (‘25) is also shown in Fig. 19 for comparison with Ellion’s data. 

Hsu and Graham (21) have evaluated the terms in Eq. (19) somewhat 
differently than did Zuber. In  the first place, they have calculated the 
heat transfer rate to the bulk liquid (Q”) by means of a solution to the 
transient equation for heat conduction in a flat plate. The liquid layer 
temperature is assumed initially to vary linearly from the wall to the 
bulk liquid a t  the edge of the thermal boundary layer (x = 6,). The 
transient which follows is caused by the sudden drop in temperature 
from t, to dnt a t  the surface of the “liquid slab” which is bounded by the 
newly formed and growing bubble. These initial and boundary conditions 
for Eq. (12) can be written as follows: 

t(x,O) = t ,  - Q ” X / k l ,  0 5 x 5 6 h  

t(0,r) = tsat for T > 0 
t ( & , ~ )  = to for T 2 0 

where x is measured from the wall and q” is the heat flux from the wall. 
The transient flux to the bubble, q.”, can then be found from the solution 
to Eq. (12) with these boundary conditions, and this flux is analogous 
to the two corresponding terms in Eq. (19). However, these terms in 
the latter equation have been multipled by u/2 to  correct for the sphericity 
of the interface, and a similar correction will be applied to q,“. 

The other refinement which Hsu and Graham applied to Zuber’s analy- 
sis was to include a term which accounts for heat transfer through the 
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base of the bubble, which had been ignored. The latter flux is assumed 
equal to the flux from the heated surface, q", and a heat balance on the 
bubble may be written 

hp, * 4?rr2dr/'dr = q"Aba + CqII"A, (26) 

where C = 1 for the flat film approximation and 1~/2 for a spherical film. 
The geometrical problem of relating the base area to the bubble wall 
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Fra. 20. Comparison of theoretical bubble growth predictions (H, 28) with boiling 
data for water at 18" F subcooling, atmospheric pressure (21). 

area was resolved by recourse to the calculations of Bashforth and Adams 
(45), from which it was found that for very small bubbles, Aa. E A,,  
while for larger bubbles (T > 1 mm), f i b a  S A,/4. 

Finally, Eq. (26) can be integrated to find the radius as a function of 
time. This integration is performed in two parts, according to the two 
ranges of bubble size just mentioned, with the results shown in Fig. 20. 
Bubble growth curves are shown with and without the sphericity correc- 
tion for both Zuber's and Hsu and Graham's calculations. The experi- 
mental data in the illustration were reported by Hsu and Graham for 
distilled, degassed water in pool boiling a t  atmospheric pressure with a 
subcooling of about 18" F. 

An interesting feature of the bubble growth analysis of Hsu and 
Graham is its dependence on the thickness of the thermal boundary 
layer ( 6 h )  which exists in the liquid a t  the end of the waiting period 
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(cf. Section II,A,.i). Consequently, a larger, faster-growing bubble would 
he expected after a long waiting period than after a short one, and this 
behavior was observed experimentally. The nucleation characteristics of 
the surface influence the waiting period (Section II,A,5) and can there- 
fore be considered in the bubble growth calculations. 

III. Nucleate Boiling 
The nucleate boiling process is too complex to have yielded to adequate 

representation by a mathematical model and, therefore, to satisfactory 
analysis. For saturated pool boiling, Jakob ( I )  showed that only a small 
fraction of the heat passes from a surface directly to the vapor, while 
both Gunther and Kreith (46) and Rohsenow and Clark (5) made similar 
observations for forced convection, subcooled boiling. Therefore, the pri- 
mary nucleate boiling mechanism is apparently one of convection from 
the hot surface to superheated liquid, with vapor bubbles serving to 
promote mixing of the liquid near the surface. However, the exact 
mechanism by which the bubble action increases the heat flux is not 
clearly understood. 

A. CONVECTION ANALOGIES 

Gunther and Kreith (46) have described the nucleate boiling process 
as “microconvection in the sublayer.” They hypothesize that the growth- 
and-collapse cycling of bubbles introduces subcooled liquid into the sub- 
layer and excites oscillating local velocities. Shadowgraphs which they 
presented of the convection currents induced by surface boiling tend to 
support this hypothesis. Using reasonable values for equivalent diameter, 
local velocity and liquid temperature in the Sieder-Tate equation they 
showed that the proposed mechanism could accommodate the high heat 
transfer rates observed in nucleate boiling. 

Rohsenow (47) proposed a different analogy between nucleate boiling 
and single-phase forced convection heat transfer based on the common 
form of nonboiling convection correlations 

Since the controlling resistance to heat transfer in surface boiling is 
postulated to be in the liquid, the properties k, p and c in Eq. (27) are 
chosen as those of saturated liquid corresponding to the local pressure. 
The characteristic length, Da, on the other hand, is related to an average 
vapor bubble on the heated surface, as is the mass flux, Gb, since it is 
the bubble growth characteristics which determine the amount of local 
agitation in the liquid sublayer. 
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The growing bubbles are not ordinarily spherical, but a characteristic 
length can be conveniently defined as the diameter of a sphere having 
the same volume as an actual vapor bubble when it breaks away from 
the surface. Denoting this length hereafter by Db, Fritz's formula (cf. 
Section II,C,3) can be written 

2gcu - 0 I p 5 140" 
Db = c l ~ J s ( p l  - P.)' 

The bubble diameter is, therefore, a function 
for a given solid-liquid combination. 

The volume of an actual vapor bubble is 
of vapor leaving per unit heater area is 

of saturation pressure only 

?rDba/6, and the mass rate 

where n = number of nucleation centers per unit area 
f = frequency of bubble formation at a nucleation center. 

Furthermore, Jakob showed that, for pool boiling, the product fDb is a 
constant at  a given pressure and at  low to moderate heat flux ( 1 ) .  

Next consider the rate of heat transfer to the vapor bubbles while 
they are attached to the surface, i.e., 

All quantities in the brackets are constant or are functions of the satura- 
tion pressure only, so qbf' varies linearly with n a t  a given pressure. 
However, Jakob found that the number of nucleation sites on a surface 
in pool boiling is proportional to the total heat flux, and an increase in 
the heating rate is accompanied by a proportionate increase in the num- 
ber of bubble columns. Consequently, at  a given pressure the total heat 
flux is also proportional to  n, the nucleation site density, and therefore 

qtf = C2qbl' (29) 

where Cz may be a function of the pressure. Let us now solve Eqs. (28) 
and (29) for the bubble mass velocity 

The bubble Reynolds number is, then, 
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where C3 = C$ fi/C2. The contact angle has been absorbed into the 
coefficient C3 because of lack of data on the variation of this quantity 
with pressure and with surface condition. 

Many investigations have shown that the heat flux in nucleate boiling 
depends upon the excess of surface temperature over local saturation 
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FIG. 21. Rohsenow's correlation (47)  of Addoms' pool boiling data (48). 

temperature rather than over a local bulk liquid temperature. Conse- 
quently, the bubble Nusselt number is defined as 

which will be found to be equally applicable to subcooled nucleate boiling 
and to saturated boiling. 

We now have the three dimensionless groups in Eq. (27) expressed 
in terms of usually measured variables, and we can try to obtain a corre- 
lation of nucleate boiling heat transfer in terms of these groups. Instead 
of using the bubble Nusselt number as the dependent group, however, 
it is more convenient to use the group 

and to seek a correlation of the form 

&(NRe.b, N~r .1)  
C&at - ~- 

x 
The data of Addoms (48) were selected for this purpose because of 
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the wide pressure and heat flux ranges covered. Figure 21 shows Addoms’ 
results a t  various pressures from 14.7 to  2465 psia, which are correlated 
by 

where C8f is 0.013, and the data spread by approximately +20%. 
The correlation Eq. (30) has also been applied to the data of numerous 

other experimenters. Values of the coefficient C8f for various fluid-surface 
combinations are listed in Table I (47). 

TABLE I 
VAI.UES OF C,, FOR SOME SURFACE-FLUID COMBINATIONS 

Surface-fluid combination c*/ 
Water-Nickel 
Water-Platinum 
Water-Copper 
Water-Bras 
CCla-Copper 
Benzene-Chromium 
n-Pent ane-Chromium 
Ethyl alcohol-Chromium 
Isopropyl alcohol-Copper 
35% KiCOI-Copper 
50% KtCOa-Copper 
n-Butyl alcohol-Copper 

0.006 
0.013 
0.013 
0.006 
0.013 
0.010 
0.015 
0.0027 
0.0025 
0.0054 
0.0027 
0.0030 

Rohsenow found the exponents of 0.33 and 1.7 adequate to correlate 
a wide range of data for single component liquids boiling on clean surfaces. 
For dirty surfaces, the 0.33 exponent on the bubble Reynolds number 
was still adequate for most of the data, but the best Prandtl number 
exponent varied from 0.8 to 2.0. 

Since the contact angle /3 is seldom known, it is difficult to assess the 
significance of the absorption of this factor into the coefficient C.f.  How- 
ever, it is presumably this step in the analysis which makes C,f so depend- 
ent on the fluid-surface combination. 

Another difficulty with this correlation lies in the Prandtl number 
effect which it predicts. If we write the correlation in the form of Eq. 
(27) we obtain 

or 
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In no other forced or natural convection correlation does the Nusselt 
number diminish with increasing Prandtl number. If we examine Eq. (31) 
we see that the negative exponent merely intensifies the dependence of 
q''/Atsat on the liquid conductivity, kl, and on the viscosity, p r .  The 
only aspect of the situation which is disturbing is the prediction that 
q"/Akat is diminished by an increase in the liquid specific heat, which is 
contrary to reason and to the prediction of Reynolds analogy. 

Rohsenow's correlation has been applied to a variety of liquids cover- 
ing a wide range of fluid properties and appears to be the most successful 
correlation which has been developed to date. It permits the calculation 
of the heat flux which can be accommodated by nucleate boiling for a 
given temperature difference, Ataatl at various system pressures, once the 
coefficient C,, has been found by a suitable experiment. 

Forster and Greif (6) have used the vapor-liquid exchange model which 
has been discussed in some detail in Section 1,D to derive a correlation 
for nucleate boiling: 

This is the same as a correlation derived earlier by Forster and Zuber 
(@), who used a model much the same as Rohsenow's except that the 
radial bubble growth rate was used as the characteristic velocity in the 
Reynolds number and a bubble radius obtained from bubble dynamics 
was used as the characteristic length in the Nusselt number. 

B. EFFECTS OF SURFACE ROUGHNESS 

It has been shown that surface roughness influences not only the 
intercept of the boiling curve but also its slope (Fig. 7). Rohsenow's 
correlation permits adjustment of the intercept by proper choice of the 
constant C,,. However, all of the correlations which have been discussed 
so far ignore the dependence of the slope of the boiling curve on surface 
conditions and hence on the size distribution of active nucleation sites. 
This is undoubtedly due, a t  least in part, t o  the difficulty of describing 
surface roughness mathematically. 

Kurihara and Myers (60) were the first to attempt to incorporate 
surface effects quantitatively into a correlation of nucleate pool boiling 
heat transfer. Their experiments show that the average boiling coefficient, 
h,, varies approximately as nH for n > 200 per sq ft, where n is the con- 
centration of nucleation sites. This type of relationship has since been 
confirmed by Tien (61)' who found that the exponent on n varies from 0.3 
to 0.5 for data taken with several liquid-solid combinations. For n < 200 
per sq f t  the average boiling coefficient appears to be nearly independent 
of n. 
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Using the Reynolds, Nusselt and Prandtl numbers as defined by 
Rohsenow (4?'), Kurihara and Myers employed dimensional reasoning 
to arrive a t  the equation: 

where h, is in Btu/(hr)(sq ft)(F). They also presented a method for 
calculating the number of nucleation sites as a function of surface super- 
heat provided that one experimental point of n vs. A&.$ is known. Their 
predicted relations show reasonably good agreement with the experi- 
mental data for n > 200 per sq f t .  

Tien (51) proposed a new model for the nucleate boiling mechanism 
in which the bubble columns rising from the heated surface induce a 
flow pattern similar to axisymmetrical stagnation point flow. Solutions 
for this flow pattern which are available in the literature are used to 
derive the following relationship for nucleate pool boiling: 

h, = 61.3Np,oJakln-0.6 

This equation does not correlate the available data as well as Eq. (32), 
perhaps, as suggested by Tien, because the properties of the vapor phase 
have been neglected. 

C. THERMAL BOUNDARY LAYER 

In their measurements of the temperature distribution over a heater 
in nucleate boiling, Gunther and Kreith (46) observed that there is a 
thermal boundary layer near the heated surface. The existence of this 
layer was confirmed by Yamagata et al. (62) who used an optical method 
and later by Hsu and Graham (21) who used shadowgraph and schlieren 
photography. Hsu and Graham have discussed the role of this thermal 
boundary layer in the heat transfer process and have shown that the 
ebullition cycle consists of three stages: 

(a) The development of a thermal layer next to the heated surface. 
(b) The growth of the bubble which pushes the surrounding liquid 

radially outward. The area of influence of each bubble has a diameter 
about twice that of the bubble. 

(c) The destruction of the thermal Iayer due to the replacement of 
hot fluid from the bulk liquid. 

D. MASS TRANSFER MODEL 

Recently Bankoff (63) has questioned the generally accepted idea that 
latent heat transport plays a minor role in nucleate boiling heat transfer 
a t  a heated surface. If the high heat fluxes found in nucleate boiling are 
caused only by the bubble stirring action, similar action should be 
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accomplished by generating inert gas bubbles a t  the heating surface. 
However, experiments by Mixon et al. (b4) show that even with high 
rates of bubble generation, the resulting heat fluxes are in the range of 
the lower limit of nucleate boiling. Bankoff suggests therefore that the 
mechanism of latent heat transport is significant for high heat transfer 
rates, and that i t  consists of simultaneous evaporation near the base of 
the bubbles and condensation a t  the top. 

Bankoff and Mason (55) have performed experiments to measure the 
heat transfer coefficients a t  the surfaces of single steam bubbles in a 
turbulent stream of subcooled water. Using these results they calculated 
that the mechanism of latent heat transport could account for the major 
fraction of the total heat flow in subcooled boiling and that it is, in fact, 
the dominant process near the critical heat flux. 

IV. Critical Heat Flux 
The heat flux a t  which nucleate boiling fails and a t  which a heating 

surface becomes partially or entirely blanketed with vapor is of great 
practical interest to the engineering designer. Furthermore, the mecha- 
nism by which this transition occurs is of considerable theoretical interest. 
Nevertheless, the complexity of the hydrodynamic and thermodynamic 
processes which occur a t  very high nucleate boiling rates are such as to 
have defied even approximate analysis. 

Consider again the boiling curve shown in Fig. 2, in which the heat flux 
variation with the temperature difference At is shown. In most of the 
nucleate boiling regime, columns of discrete bubbles originate from 
specific nucleation sites, and a relatively large increase in heat flux is 
provided by a small increase in the surface temperature. As the flux is 
increased above the value marked “DSB,” however, there is an increasing 
tendency for bubbles to coalesce near the surface. This tendency may be 
traced not only to the crowding of more vapor columns into the same area 
as new sites are activated, but also to the increased likelihood of coales- 
cence of successive bubbles from the same nucleation site as the waiting 
time diminishes. 

Boiling a t  fluxes between DNB (departure from nucleate boiling) and 
the peak value is characterized by a pronounced two-phase boundary 
layer near the surface and by oscillating, nonuniform surface tempera- 
tures caused by local insulation by patches of vapor. As long as these 
patches are unstable, however, there is a tendency toward their immediate 
replacement by liquid, and nucleate boiling continues. Consequently, 
the stability of vapor-liquid interfaces is an important consideration in 
most of the successful theoretical work which has been reported. In 
succeeding sections we shall consider both theoretical analysis and 
~ 3 2 1  
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experimental correlations of the critical heat fluxes which have been 
observed in pool boiling, flow inside heated channels, and forced con- 
vection normal to heated cylinders. 

A. POOL BOILING 

1. Dimensional Analysis 

Kutateladze (56) has treated the failure of nucleate boiling as a purely 
hydrodynamic problem, hypothesizing that the critical flux is reached 
when the stability of the two-phase boundary layer, characteristic of 
the region between DNB and critical heat flux, is destroyed. This layer 
remains stable as long as the kinetic energy of the vapor leaving the heated 
surface is low enough that the liquid can penetrate the layer and cool 
the surface. Near the critical flux the vapor and liquid are in such violent 
agitation that viscous drag is negligible, and the occurrence of instability 
is equally probable for any part of a sufficiently large surface. Conse- 
quently, the critical heat flux should be independent of heater dimensions 
except for h e  wires, for example, when the heater diameter is of the 
same order as the bubble sizes. 

With this model as a basis, Kutateladze nondimensionalized the equa- 
tions of motion and the equations of dynamic interaction of the vapor 
and liquid phases and arrived at  the single dimensionless group 

The value of K was found by comparison with data from several sources 
to vary from 0.095 to 0.20 depending on the surface roughness and the 
liquid-surface combination. Sterman (57) derived this same parameter 
using the principles of similarity. 

Borishanskii (58) included the effects of viscosity in his dimensional 
analysis and arrived at  two dimensionless groupings, K and N ,  where 
K is the same as Kutateladze's parameter and N is expressed as 

The following functional relationship was found by comparison with data 

K = 0.13 + 4N-0e4 (33) 

A somewhat simpler semiempirical correlation has been derived by 
Rohsenow and Griffith (69) using vapor binding of the surface as a 
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criterion for critical heat flux 

where the constant coefficient has the units of ft/hr and the gravity 
ratio was added (60) to encompass the data of Usiskin and Siege1 (61). 

2. Stability of a Liquid-Vapor Interface 

An idealized hydrodynamic model of vapor-liquid flow conditions at 
the peak heat flux has been described and analyzed by Zuber et al. (62, 
63, 64). Visualize an agglomerate of vapor bubbles over a heating sur- 
face which is submerged in a pool of saturated or slightly superheated 
liquid and which is operating just below the peak flux. Vapor is fed into 
the agglomerate, chiefly by the capture of additional bubbles from nearby 
nucleation sites, while one or more jets of vapor flow upward through the 
liquid and corresponding jets of liquid flow downward. 

For purposes of analysis, the main liquid-vapor interface is a t  first 
imagined to be horizontal and nearly plane, with insufficient disturbance 
to overcome surface tension forces and permit the vapor to pass upward 
into the more dense liquid. This condition of metastable equilibrium is 
similar to that in the air-water interface below an inverted tumbler of 
water covered by gauze. I n  the idealized boiling model, it is hypothesized 
that such an interface fails by Taylor instability, and that this results 
in a definite two-dimensional pattern of vapor jets flowing upward and 
liquid flowing downward. 

Since the upward Aow rate of vapor increases with heat flux, and since 
the downward-flowing liquid must compete with the vapor for the 
available flow area, it is hypothesized in this second phase of the analysis 
that the critical condition occurs when the relative yelocity of the two 
phases becomes sufficient to prevent further increase of the heat flux. 
Known as Helmholtz instability, this condition can also be analyzed in 
terms of the minimum wave length of a disturbance which will result 
in the destruction of the vertical interface between the counterflowing 
vapor and liquid. Both the Taylor and the Helmholtz instabilities are 
discussed by Lamb (65) and will be analyzed in the paragraphs to follow. 

Let us first consider the Taylor instability, for which we visualize a 
horizontal liquid-vapor interface in the plane y = 0. For potential flow 
it can be shown that the velocity potentials are given by 

(34a) 
(34b) 

where 5 is measured in the plane of the interface. These potentials are 

a,, = Cemu cos mx cos wr, y < 0 
91 = C'e-mu cos mx cos wr, y > 0 
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solutions of Laplace's equation and satisfy the conditions for simple 
harmonic deformations of the interface which damp out far from the 
interface. The corresponding perturbations a t  y = 0 are given by 

e = a cos mx sin w (35) 

Kinematic conditions which must be satisfied at the interface are 

(36) 
a6 aal a+v - = - - = - -  
ar all all 

while a force balance there yields the static relationship 

Euler's equation must be satisfied in the liquid and the vapor: 

If the velocity effects are assumed to be small and the body force per 
unit mass, Y ,  is set equal to -g/ge, Eqs. (34) through (38) will yield 
the frequency 

(39) - p v  gm>, .=(x-x am3gc 

The wave number m is related to  the wave length L by 

L = 2r/m (40) 

The criterion for a stable interface is that w must be real, since otherwise 
a disturbance would grow exponentially with time. Therefore the critical 
wave length is found by setting w = 0 in Eq. (39) and is given by 

The wave length which would give the maximum growth rate is found 
by maximizing w with respect to rn and is 

Lo2 = 2 4 X g  

Zuber et al. term this the most dangerous wave length and assume that 
there is a spectrum of probable unstable values given by Lo, where 
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Because of Taylor instability, therefore, it is postulated that the hori- 
zontal liquid-over-vapor interface tends to break up in a square, two- 
dimensional pattern of side length LO. From each unit cell of area Lo2 
rises a circular vapor column of diameter L0/2 or of area *Lo2/16. This 
choice of diameter, while somewhat arbitrary, is not unreasonable, since 
it represents the distance between the inflection points of a two-dimen- 
sional sinusoidal disturbance of wave length Lo. Furthermore, this wave 
length is now seen to be dependent only on the fluid properties (Eqs. 
(41) and (42)), which are constant a t  a given pressure for saturated 
boiling. Consequently, the vapor generation rate a t  the critical flux, 
which is limited by the Helmholtz instability condition, will depend only 
on the maximum permissible frequency of bubble emission, which will 
next be considered. 

Visualize now a plane vertical interface at y = 0 (note the previous 
.x, y coordinates have been rotated go"), which is a considerably simplified 
representation of the flow pattern already described. Let us again use 
potential theory, after Lamb (65), to find the minimum frequency of a 
disturbance which will grow with time. If the liquid and vapor velocities 
away from y = 0 are Vt and V,, the velocity potentials are 

ar = -v ,x  + @lt,, y < 0 
9l = T'lX + 911, y > 0 

where 
a12~ = CJemu+;(or--mr) 

Q, - C'e-mv+;(wr-m.) 
1z - 

Corresponding perturbations a t  the interface are given by 

Kinematic conditions which must be satisfied a t  y = 0 are 

Since there are no body forces in the y direction, Eqs. (38) become, 
with thhe omission of second order terms, 
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Solving Eqs. (37) and (44) through (47) a t  y = 0 yields the expression 
for the frequency of a disturbance at the interface in terms of the wave 
number m: 

The condition of stability of the interface is that w must be real, so the 
critical condition is 

(48) 
-- gcum3 m 2 ~ , ~ ~ ( P ,  + I‘d2 = 

Pu + PZ ( P u  + P d 2  

For the square matrix of vapor columns described earlier, the equation 
of continuity requires that 

Equations (48) and (49) may be solved for the critical vapor velocity 

The product of the last two terms is approximately equal to 1 over the 
entire pressure range of interest, and these two terms are therefore 
omitted hereafter from the expression for critical vapor velocity. 

Rayleigh’s analysis (66) of a circular gas jet in a liquid shows that 
axially symmetric disturbances with wave lengths larger than the cir- 
cumference of the jet are unstable for all vapor velocities. From Eq. (40) 
and the assumed jet diameter of L0/2, therefore, we find the wave num- 
ber, m, to be 4/L0, and the critical vapor velocity from Eq. (50) becomes 

vu = d4ug,/PvLo 

The heat flux carried by the vapor in saturated boiling is 

q” = p,XA,V,/A = ?rpVXV,/l6 

Thus, with the spectrum of possible wave lengths given by Eq. (43), 
the critical heat flux is determined within the limits 

2 0.12 q,“ 
Pu [~99c(PZ - P Y ) P  

0.16 2 

This dimensionless group is identical to Kutateladze’s parameter K ,  and 
the agreement of the range of constants with those found experimentally 
by Kutateladze is very good. Furthermore, this model and the analysis 
lead one to expect the critical heat flux to span an uncertainty band, 
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approximately rt 14 % with the assumptions just  reported. Consequently, 
the well-known lack of reproducibility of experimental burnout data may 
well be inherent in the process rather than a sign of inadequate control 
over the variables (63). 

Figure 22 shows the variation of K with N as reported by Borishanskii 
(,58) for water and 5 organic fluids. In addition to the best-fit curve 

N 
0 WATER 0 HEPTANE ETHANOL 

BENZENE N PROPANE I HEPTANE 
+ ETHANOL PROPANE WATER 
9 PENTANE 0 WATER 
S PENTANE A BENZENE 

FIG. 22. Correlation of critical heat flux data for various liquids in pool boiling. 
The solid line is the best fit curve (58) represented by Eq. (33) and the range of K 
predicted by Eq. (51) is shown by the broken lines (64). 

represented by Eq. (33), the range of K predicted by Eq. (51) is shown 
by the broken lines. Since some of the assumptions in the analysis are 
somewhat questionable, this close agreement may be fortuitous, but this 
model appears nevertheless to represent quite well the general features 
of the critical heat flux phenomenon in pool boiling. 

3. Pool Boiling Experiments 

Experimental data for the peak flux in pool boiling exhibit wide scatter, 
even when taken under apparently similar conditions. This may be 
traced, a t  least in part, to variations in surface conditions of the heaters, 
especially for constant heat flux systems. If the heater surface is rough, 
nucleation sites are plentiful and the boiling process is even and regular. 
However, if the surface is smooth, high superheat is required to nucleate 
a bubble, and when a bubble finally does form, a relatively large quantity 
of the highly superheated liquid can vaporize almost instantaneously 
(the familiar "bumping" which occurs when liquid boils in a clean glass 
container) and blanket a local region of the surface with vapor. Since 
the energy generation rate is a constant the surface may overheat locally 
and the vapor blanket spread. In a constant temperature system, on 
the other hand, the surface will recover, since the localized vapor blanket 
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cannot produce a temperature excursion. Bonilla and Perry (67), 
Kutateladze (669, and others have found that surface conditions signifi- 
cantly affect the critical flux in a constant heat flux system, while 
Berenson's experiments (68) show that it is relatively unimportant for 
constant temperature heaters. 

The critical heat flux in pool boiling varies considerably with pressure, 
tending toward zero both as the pressure approaches zero and as it 
approaches the thermodynamic critical point, as both Cichelli and 
Bonilla (69) and Kazakova (70) have reported. A maximum value occurs 
a t  about 45 the critical pressure for water and for several organic liquids. 
Addoms (4.8) also investigated critical heat flux from platinum wires in 
boiling water over a wide range of pressures. He found that the peak in 
the curve of critical heat flux versus pressure occurred a t  approximately 
% the critical pressure for small diameter wires (50.024 inch). 

With the advent of space'travel and the possibility of using boiling 
liquids to cool various components of space vehicles, there has been 
considerable interest recently in the effects of gravity on the boiling 
process. Usiskin and Siege1 (61) have investigated critical heat flux in 
reduced and zero gravity fields using a free-fall apparatus. Although the 
transients involved in their experimental procedure make the data some- 
what difficult to interpret, the g" variation of critical flux predicted by 
Kutateladze (56) and Zuber et d. (66, 63, 64) appears to be reasonable. 

Costello and Adams (7f) have investigated the critical flux from a 
cylindrical heater placed in a centrifuge, with accelerations up to 44 
times earth's gravity directed normal to the axis of the cylinder. They 
found that the critical flux increases slightly with acceleration up to 
g / g o  = 10, and for higher accelerations varies approximately as g'. Their 
experiments indicate, however, that there is a heater size effect, and for 
larger diameter cylinders higher accelerations would be required to attain 
the g' behavior. 

Ivey (72) has determined the critical flux in pool boiling in the range 
1 < g/go < 160. His experiments show that the critical flux varies as 
gO.2'3, which is in reasonably good agreement with the predicted g" 
variation. 

Several papers on the critical heat flux in binary mixtures of water 
and organic liquids have been presented by van Wijk, von Stralen and 
Vos (73, 74, 76, 76, 77), and by Fastovskii and Artym (78). They found 
that the critical flux with small diameter wires (<0.4 mm) increases with 
concentration of the organic component to a maximum value and then 
decreases. In some cases the maximum value was several times the critical 
flux attained with either pure component. Owens (79) has conducted a 
similar investigation using a XG-inch diameter tube and found that the 
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addition of organic liquids to water tended to decrease rather than 
increase the critical flux. Each of these investigators observed that the 
size of the vapor bubbles was much smaller in the binary mixtures than 
in either pure component, as did Leppert, Costello and Hoglund ( 4 )  in 
forced convection boiling. Although this phenomenon is not clearly 
understood, it appears that the increase in critical heat flux for small 
diameter wires in binary mixtures may arise from the fact that in the 
pure component a relatively large vapor bubble can completely surround 
the heater and blanket it locally. In  the binary mixtures the small bubbles 
do not lead to this local blanketing and a higher critical heat flux can be 
attained. 

B. INTERNAL FLOW 

I .  FhJW Patlrrns 

Tippets has recently presented the results of a study of critical heat 
fluxes and flow patterns for high-pressure, steam-water mixtures in heated 
rectangular channels (80,81). Photographic observations were made with 
a high speed moving picture camera sighting across channels of either 
0.25- or 0.50-inch thickness which were 2.10 inches in width and 37 
inches long. Simultaneous records of power and coolant flow rate were 
made on an oscillograph, while the critical flux was determined by means 
of a “burnout detector” which compared the electrical resistance of two 
4x-inches-long sections at the outlet of the heated channel. Since the 
resistance of the heater element increased with temperature, a tendency 
toward overheating at the exit could be detected by an imbalance in 
the resistances of these sections. 

Tippets reported the following visual characteristics of the flow at 
1000 psia for flow rates of 50 to 400 lb/(sec) (sq ft) and for fluid states 
a t  the observation window from 170 Btu/lb subcooled to saturated boil- 
ing at a maximum quality of 0.66. 

(a) For subcooling greater than 20 Btu/lb, flow rates from 100 to 400 
lb/(sec)(sq ft) and heat flux much less than critical, an irregular, frothy 
layer of growing and collapsing bubbles was observed to slide along the 
heated surface at a velocity slightly less than the mean channel velocity. 
Away from the heated surface, the flow was nearly pure liquid. 

(b) For low subcooling (up to 20 Btu/lb) and flow rates from 200 to 
400 lb/(sec)(sq ft), and for saturated boiling a t  low qualities (up to 0.10) 
and a flow rate of 100 lb/(sec)(sq ft), heat fluxes below the critical value 
produced a frothy mixture of large and small bubbles in a continuous 
liquid phase. Next to the heated surface was a highly agitated layer of 
tiny bubbles in liquid, while at a flow of 100 lb/(sec)(sq ft) there were 
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slight fluctuations in the pattern which suggested a tendency toward 
slug flow. 

(c) At  somewhat higher qualities (0.10 to 0.30) and low flow rates 
(below 100 Ib/(sec)(sq ft)), a slug flow pattern developed. This appeared 
to consist of a finely divided froth of vapor and liquid alternating periodi- 
cally (0.05 to 0.10 sec) with a thick layer of liquid against the wall and 
high vapor concentration in the middle of the channel. This pattern was 
not observed a t  the higher mass velocities, and it became indistinct and 
disappeared at  the higher qualities even at  lower flow rates. 

E 
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FIG. 23. Simplified representation of flow pattern observed by Tippets (82) for 
saturated boiling in a rectangular channel. 

(d) The predominant flow pattern which occurred a t  all the observed 
critical flux conditions consisted of an irregular, wavy liquid film along 
the walls, flowing with the stream, and a dispersion of liquid droplets 
in a continuous vapor core, or, at  the lower qualities, a vapor-liquid 
emulsion in the core. The liquid film was considerably more agitated a t  
the heated surfaces than a t  unheated surfaces, with irregular streamers of 
vapor or bubbles forming at  the heater and issuing into the liquid film. 
This flow pattern was also observed at  fluxes less than critical for a flow 
rate of 400 lb/(sec)(sq ft) at  all qualities; for 200 to 400 lb/(sec)(sq ft) a t  
qualities above 0.10; and for 50 to 200 lb/(sec)(sq ft) a t  qualities above 
0.30. Figure 23 is a simplified representation of this flow pattern. 

6. General Trends in Saturated Boiling 

From his own observations with water at 1000 psia, as well as from 
those of other investigators who measured the critical flux with high 
pressure water in forced convection, Tippets presented - a summary of 
major trends: 

(a) p,” decreases with increasing mass velocity for bulk boiling and 
increases with increasing mass velocity for subcooled boiling. 
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(b) q,” decreases monotonically with increased steam quality or specific 
enthalpy for stable, steady flow and may have a maximum with respect 
to steam quality in conditions of bulk boiling if the flow is unsteady or 
oscillating. 

(c) q,” decreases monotonically as pressure is increased above about 
600 psia. 

(d) q:’ increases slightly as the characteristic duct size b (the radius 
of a circular tube, the hydraulic diameter for annuli and rectangular 
ducts) increases from 0.024 to 0.084 inch then decreases as the duct size 
increases further to 0.24 inch. 

(e) q:’ is virtually independent of duct length-to-diameter ratio for 
ratios greater than about 100, but increases for ducts shorter than this. 

(f) q,” increases with increasing ratio of heated surface to total surface. 

3. Analysis 

From the flow pattern which he observed a t  the critical flux condition, 
depicted in Fig. 23, Tippets constructed a simplified flow model which 
could be analyzed (80, 82). The first element in this analysis consists of 
a potential flow solution to find the maximum liquid f lm thickness which 
can remain stable with the dynamic force of the vapor acting against 
the stabilizing effect of surface tension in the liquid (Helmholtz insta- 
bility). A critical wave length L, is thereby obtained which represents 
the limit beyond which small disturbances will grow exponentially with 
time. This wave length is 

1 L, = - 2?ru [coth (ml”) + tanh (m6) 
P. V.12 PI 

where 1/,1 is the effective core to film relative velocity, m is the wave 
number, 6 is the mean thickness of the liquid film and 1” is the half- 
width of the zone of influence a t  the interface. Figure 24 shows the 
idealized system used for this analysis. 

In the next step of the analysis, Prandtl’s mixing length theory is 
used to relate 1” to 6 and to evaluate the relative velocity V,,l. This 
term is then eliminated through the introduction of the parameter (PTPP 

from the two-phase flow correlations of Martinelli et al. (83) to obtain 
an equation for the liquid film thickness 

In  this equation, K 3  lies between 2?r, for the critical wave length, and 3n, 
for the wave length of the disturbance with maximum growth rate 
“21 
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(cf. Section IV,A,2). The quantity K 4  is an unknown dimensionless con- 
stant and ff is the Fanning friction factor. 

In Tippets' model, therefore, the liquid film thickness varies around 
the mean value given by Eq. (52) as liquid is exchanged between the 
film and the vapor core. When the film tends to thicken, unstable dis- 
turbances grow more rapidly and increase the liquid entrainment, thereby 
reducing the film thickness. When the film is thinner than 6, the entrain- 
ment diminishes and liquid capture by the interface from the core 
dominates, thereby increasing the film thickness. 

I 

I - IN  

WALL 

FIQ. 24. Idealized system for film stability analysis of critical heat flux (82) 

The onset of the critical condition is supposed to occur when the liquid 
vaporization rate in the film exceeds the net liquid supply rate from the 
core. If all of the heat transferred from the wall is used to vaporize liquid 
in the film, the net liquid supply rate to the film must be q"/X at  steady 
state (a" < qc"). According to Tippets, this liquid flux consists of three 
components: turbulent diffusion from the core to the interface; liquid 
carried from the interface region to the core by the vapor current; and 
entrainment, the liquid torn from the interface by the vapor when the 
film is unstable. Only the first of these is a supply term, while the last 
is assumed to be negligible when the critical condition is approached, 
since the film is then thin and, therefore, stable. 

The two liquid diffusion terms are evaluated from mixing length theory, 
while the average velocity of the vapor near the interface is calculated 
from a power-law variation, in analogy to single-phase flow. The results 
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of these calculations give the following working equation for the critical 
flux : 

where 

Qc” = C”lp/.$ (53) 

1 + (1 + -) C’XC - PI 

f = -  1 - xc Po 

( P Z + T P F ~ / / P ~ )  

The coefficients C‘, C“ and a are determined by fitting Eq. (53) to experi- 
mental data, while b is the characteristic channel dimension mentioned 
earlier (the radius of a circular tube, ,1; the hydraulic diameter for annuli 
and rectangular ducts). Reasonably good correlation of a wide range of 
data was found with 

u = 0.75 

C’ = 1.00 (fraction of channel heated, 0.80 to 1.0) 

= 6.5 (fraction of channel heated, 0.23 to 0.40) 

C“ = 0.53 (2, > bo = 0.084 inch) 

= 0.53 ( b / b , ) O . g ( b  < bo = 0.084 inch) 

4. Comparison with Experimental Data 

Tippets (80, 82) has applied Eq. (53) to 80 of his own data points 
and to 742 selected experimental points by other investigators. These 
data were selected, whenever possible, on the basis that the critical heat 
flux had actually been experienced or else that the detector mentioned 
earlier had tripped, indicating a marked tendency toward overheating 
a t  the end of the channel. Since the region between DNB and the critical 
flux is characterized by temperature fluctuations which increase in smpli- 
tude as the flux is increased, it can be said with certainty that the detector 
will operate somewhere in this region, but not that it willtrip precisely 
a t  the peak flux. 

Figure 25 shows the variation of the critical flux with quality for vari- 
ous flow rates, heater element widths and thicknesses, and channel 
equivalent diameters for Tippets’ data. Similarly good agreement was 
found with the measurements of Janssen and Kervinen (84) which were 
taken in an annular duct with the inner walls heated. In  this case, how- 
ever, the coefficient C’ in Eq. (53) had a value of 6.5. The data of Aladyev 
et al. (85) for flow in a circular tube were well correlated, but the coefficient, 
C” had to be adjusted to 0.74. Tippets suggests the small length-to- 
diameter ratio (twenty) of the heated tube as the cause of this adjustment. 
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FIG. 25. Comparison of film stability analysis, Eq. (53), with critical heat flux 
data for water (88). 

Some of the data of DeBartoli et al. (86) ; Bennett et aE. (87) ; Silvestri 
(88); and Berkowitz et al. (89) are not as well correlated by Eq. (53) ,  
even when the coefficients C' and C" are determined from the data itself. 
Some of the deviation may be caused by the fact that two-phase mixtures 
rather than pure liquids entered the heated channels in some of the latter 
tests. This might inhibit the attachment of the liquid film to the wall 
and result in lower peak fluxes (80, 82). 

C. EXTERNAL FLOW 

1. Flow Patterns 

Vliet and Leppert (90, 91) have described the flow conditions for the 
nucleate boiling of water at atmospheric pressure flowing normal to an 
electrically heated tube. Figure 26 shows schematically a uniformly 
heated cylinder with nearly saturated water flowing upward around it. 
Nucleation starts first on the rear half of the cylinder at seemingly 
random locations. As the heat flux is increased the density of sites 
increases and becomes more uniform, and nucleation spreads to the for- 
ward half of the cylinder. Bubbles thus initiated on the forward half 
grow and move around the cylinder as a result of liquid drag and buoyant 
effects. They then separate individually from the cylinder somewhere 
downstream of the 90" position, as shown in Fig. 26a. The bubbles tend 
t o  grow momentarily while in the superheated liquid near the cylinder, 
but soon collapse if the liquid above is even slightly subcooled. 
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\\'itti still furtlier increase in the heat flus, tlir perrentage of vapor 
1 1 1  thtx two-phase mixture in t lie cylinder wake incrcuhes to the point 
that it vapor cavity forms in this region. Initially, thc cavity is riot 
continuous aioiig the length of tlie cylinder, hut ib 1)rokcii by liquid which 
extcnds don 11 to the cylinder at intcrvals along its length, as sketched 

t 
Flow 

V q  Cavity 

Droplets 

Liquid Boilmg 

ssciion a-a 

Liquld 

VQF.por 

(C) 

Frc;. 26. Solieniatic diagrnnia of boiling pattern for nearly saturat,ed water flowing 
norni:il to R heated cylinder (YO). (a) Lon lieat flux. (t)) High lieat flux. (c) 
Hrolieii cuvity formation. 

in 1-igs. %ih arid Bcic. The transition from individual bubble separation 
to this type of cavity formation takes place gradually. Even though a 
vapor cavity exists in the wake, liquid continues to be supplied to the 
back of the cylinder. This liquid apparently flows through the hreaks 
in tlie cavity and between the bubbles as they move around the cylinder. 

The reason for the formation of the cavity may be more fully under- 
stood from the following reasoning. For single phase flow about bodies 
of this type, a separated region (backflow of the fluid) can oceur where 
the fluid encounters a positive pressure gi-adient which arises froni decel- 
[ 2.261 
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eration of the flow. For a cylinder, this position varies between 70 and 
120" from the forward stagnation point, depending on the cylinder 
Reynolds number. For nucleate boiling a t  low heat fluxes, the amount 
of vapor in the cylinder wake is insufficient to allow the liquid to  move 
past the cylinder without decelerating or causing a backflow region to  

FIG. 27. (a) (For descriptive legend see page 249) 

form. However, as the heat flux increases, a condition arises where the 
amount of vapor is sufficient to  allow the liquid to  continue in a direc- 
tion tangential to  the 90" position, leaving a separated region of vapor 
which is similar to the separated region of single phase flow. 

There is a further reason for the formation of the cavity. If the liquid- 
vapor mixture tends to follow the surface, as on the front half, a centrifu- 
gal force, arising from the inward centripetal acceleration, is created 
which acts radially outward on the mixture. Because of the difference 

~ 4 7 1  
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in densities between liquid and vapor, tliere is a separating tendency 
wtiipli i.; analogous to the buoyant force of gravity. Sea r  the 90" position 
t tie effwt is accentuated somewhat by the higher velocity denlanded 
potmtinl flow. Tlliis, as  the niixtiirc passes the 90" position, the vapor 

1:rc;. 27. (bj (For descriptive legend see page 249) 

t twd> t o  niovc into the wake region, and the liquid tends to continue 
i l l  n tangential direction-- upward, in this case. 

.It thew lieat fluxe- the rate of forination of vapor is apparently 
in*ufficient to  maintain the liquid walls uniformly along the length of 
t l i f  cylinder, and there are intervals where the yapor is pinched off by 
liqiiid nliicli tliercfore extends down to the cylinder. Since all the yapor 
viliicli is formed either condenses at the cavity walls or leaves as the 
cavity hreitks tip above the cylinder, the area of the cavity exposed to  
rltt, liquid increases as  the heat flux increases and the breaks in the 
ca\ ity become less well-defined. Once the liquid no longer extends dowii 
[248] 



to the cylinder, the only liquid which enters the cavity is that slower- 
moving liquid which exists between the vapor bubbles and the heater 
surface as the bubbles enter the cavity near the 90" position. The rear 
half of the cylinder is cooled by boiling of this liquid which is in contact 

FIG. 27. Effect of heat flus on the boiling pattern of nearly saturated water (4' F 
(b) subcooling) from a %G-inch tube at 2 ft/sec (90). 

47% of critical flus. 
(a) 21% of critical flus. 

(G) 84% of critical flux. 

with it. For heat fluxes below the critical value, more liquid than necessary 
is carried into the cavity and the excess is lost by entrainment a t  the 
cavity walls. Liquid droplets, thrown off by the violent boiling of the 
liquid on the rear heater surface and from the upward-moving liquid 
walls, are observed throughout the cavity. 

For still further increases in heatflux, there is an abrupt increase in 
the length of the cavity which results in a very uniform vapor sheet 
formation. The cavity wall interfaces exhibit criss-cross wave patterns, 
the angles of which vary with liquid velocity. These angles apparently 

[2491 



c l ~ q w i i t l  upon tlw rtht,ive magnitudes of the local liquid velocity tlnd t lw 
velocity of propagation of surface waves caused by bubhlc growth. 'L'hc 
sliapv of tlw vuvity is similar to that illiiatriltctl in Fig. 2tih for t.lw Iwokci) 
cavity, hut it is considerably longer. 

FIG. 28. (uj (For desvriptive Icgcnd SCP pnge 252) 

(;water hetit flux causes no significant. change except for a decrease in 
the number and size of liquid droplets in the cavity and the amount of 
liquid on the heated surface. This decrease in the amount of liquid in 
the region bounded hy t.he cavity walls and the heater is evidence of 
decrease in the excess liquid carried into the region. Increase in the heat 
flux causes less liquid to be carried into the cavity because of more 
closely packed bubbles a t  the position of separation. while simultaneously 
requiring more liquid for cooling the rear half of the cylindcr. Soon the 
flux increases to the point where the liquid carried in is inuuficicnt to 
produce the necessary cooling of the top half of the cylinder. The critical 
[ 3.501 
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condition has therefore been reached, starting a t  the top of the cylinder 
and, since the surface is electrically heated, rapidly overheating the 
entire cross section. Once the cavity is formed, so that liquid can enter 
only along the heated surface, the critical condition is well defined, 

FIG. 28. (b) (For descriptive legend see page 252) 

because more liquid is required to produce the necessary cooling on top, 
but less enters because of the more closely packed vapor bubbles. 

Therefore, two factors should govern the magnitude of the critical 
heat flux for low subcooling: the area per unit length of the rear half 
of the cylinder and the amount of liquid carried into the cavity along 
its surface. The first factor is essentially a function only of the cylinder 
diameter, whereas the second is a function of the diameter, liquid velocity 
and liquid and vapor thermal properties. 

Figure 27 shows a series of photographs indicating the effect on the 
boiling pattern of increasing heat flux for water with 4' F subcooling 
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fiorving at 2.:{ ft ‘wc. The broken cavity formation is disappearing at, 
0.21 y,” (first photograph) arid the last two pictures indicate little effect 
011 cai-it!. shaptb for q” > 0.5 qC”. Figure 28 is a series of photographs 
iiptii thr  critical heat flns showing the effect of velocity on the boiling 
pnttc.rn f o r  1ieai3ly s:itnrated 1)oiliiig. 

FK;. 28. Effect of velocity on the boiling pattern of nearly saturated water (4” F 
(b) 2.4 ft/sec. hutwooling) from a 16-inch tuhe at 90% of rritical flux. 

I ( * )  4.7 ft /HCC. 

(a) 1.2 ft/sec. 

Olwrrvation o f  tlie two-phase flow pattern with subcooled boiling at 
atinosphrric pres,.;urt (91) indicates that the mechanism of failure when 
tlie subcooling is approximately 30” F or less is similar to  that for saturated 
boiling. -4 definite vapor cavity is again formed in the wake of the cylinder 
when the heat flux is large, and the liquid which cools the war half of 
the cylinder enters the cavity between the vapor hubbles in the two- 
phase boundary layer. 
[%2\ 
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For subcooling greater than about 30" F there is insufficient vapor 
to form such a cavity because of the rapid condensation which occurs. 
The two-phase boundary layer on the rear half of the cylinder which 
is now bounded by liquid rather than vapor, continues around the 
periphery of the cylinder nearly to the 180" position. An irregular and 

FIG. 29. (a),"(For descriptive legend see page 256) 

unstable accumulation of vapor in this region leads to the interruption 
of nucleate boiling. The mechanism of failure is probably similar to the 
low subcooling case except that the region occupied by vapor is smaller, 
less well-defined, and appears to be time-variant. 

Figure 29 presents a series of photographs which illustrates the effect 
of increased subcooling on the boiling pattern a t  a liquid velocity of 2 
ft/sec. The vapor cavity clearly exists up to 20" F subcooling, while 
a t  30" F it has almost disappeared. At 50" F subcooling the pattern is 
reduced to an irregular accumulation of vapor near the 180' position. 
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2 .  .4 nnlysis  

-1 simplified physical model has been proposed (90) of the mechanism 
of failure of nucleate boiling when a vapor cavity exists behind a cylinder, 
e.g., when the suhcooling of water at atmospheric pressure is less tliari 

FIG. 19. (h) (For descriptive lrgend see prtgc 256) 

about 30" I;. Shown schematically in Fig. ?d, this model assumes that 
the nucleate boiling crisis is caused by a deficiency of liquid entering 
the cavity bet\veeri yapor bubbles a t  the angle 0, from stagnation. If 
the liquid enters the cavity a t  saturation temperature and all of it is 
vaporized in cooling the top of the cylinder, the critical heat flux is 

wtiere 11'1 is the volumetric inflo\v of liquid per unit length of cylinder. 
The analysis consists largely of evaluating th is  licluid flow rate into the 
cavity . 
[ 2.54 1 
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The liquid which enters the cavity is assumed to be that liquid in the 
two-phase boundary layer which flows between a surface through the 
centers of average sized bubbles and the heater surface as the bubbles 
pass the angle 08. The precise value of 0, is difficult to determine, but 
observation of the boiling pattern indicates it is approximately ~ / 2 .  

FIG. 29. (c) (For descriptive legend see page 256) 

The liquid velocity on the front half of the cylinder just outside the 
boundary layer can be obtained from potential theory, while a linear 
velocity profile is assumed for the two-phase boundary layer in that 
region. It is then possible to approximate the liquid flow rate in the 
boundary layer a t  the location O,, with the result from Eq. (54) 

(55)  

The quantity f is the integrated average value from the stagnation point 
[ 3551 
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to 0, of t lw fractioii of the surface lieat flux which goes to the production 
of vapor it1 the Iwutidary layer. This quantity may tw a function of 
velocity and tube diameter, but ~vould I>c expected to be dependent 
chiefly on the fluid properties. It will he retained for t.he present. as an 

FIG. 29. Effect of subcooling on the boiling pattern for sater from a \&inch tube 
(a) 4" P 

(b) 20" F subcooling and 358 Rtu/ 
(r) SO" F subcooling and 260 Rtu/(scc)(nq f t )  hcnt flus. 

at  approximately 80% of critical flux (91). The velocity is 2.35 ft/sec. 
subcooling and 228 Htu/(sec)(sq f t )  heat Hux. 
(nec)(sq f t )  h t  Hus. 
(d) 50' 1: 4)rooling and 311 Btu/(wa)(sq ft)  heat Hrix. 

iinknowii parameter to he evaluated from experimental data for the 
critir:il flw. 

.I. J~.cyc~riiiwnlnl Data 

Tlie effect of velocity 011 the critical flux for water at atmospheric 
pressurc is shown in Fig. 31, which includes three points ohtained by 
Beecher (92) for saturated water with 0.024-inch diameter wires and 
seven points by Yliet and Leppert (90) for 3 to 3" 1: subcooling with 
0.1tL.j-inch diameter tubes. .t dinirrisional expression for the vclocity 
dependence is 

qctl = I 7 8 l * l 1 ~  Htll (sec)(sq f t )  (.;ti) 

where 1'1 ia the average liquid velocity a t  the heater i n  ft :sec (90). 
pxq 
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Critical flux was also measured for nearly saturated water (3 to 5” F 
subcooling) over a heater diameter range of 0.010 to 0.189 inch. Figure 
32 shows these results, together with saturated boiling data of Beecher 
(92) for a 24-mil wire, from which can be deduced a weak diameter 

0 Liquid 

FIG. 30. Proposed model for forced-convection boiling of a saturated liquid from 
a uniformly heated cylinder (90). 

dependence of the form 

for boiling with very low subcooling. 
The analytical prediction of the effects of velocity and diameter may 

be compared with experimental data by inserting the fluid properties, 
k and a, as well as expressions for the temperature difference Atsat and 
the fraction J’ into Eq. (55). Alternatively, since the fraction J is unknown 
and too complex to analyze at present, we can evaluate the other param- 
eters in Eq. (55) and then see whether the required variation and magni- 
tude of J’ is physically reasonable. 

The average heater surface temperature was measured a t  numerous 
“2571 
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FIG. 31. The variation of c*ritical heat f lux with velocity for nearly ytlturiLtcd water 
flowing normal to a lirirtcd tube (90). 

HEATER OIAYTEER, INCMS 

FIG. 32. The variation of critical flux with heater diameter for the forced conrection 
of .*clturated water at atmospheric pressure (90). Seven points shown at 0.024-inch 
diameter :ire from kecher's results (92). 

values of the nucleate boiling heat flux up to the critical value for a num- 
ber of velocities. The empirical relationship which fits these data for 
water at atmospheric pressure is 

q" = O.l0.5(Atb,J* I3tu/(sec)(sq ft) ( 5 i )  
I2.581 



BOILING 

This dependence on the temperature difference, though in exact agree- 
ment with a prediction of Forster and Greif (6) is somewhat weaker 
than the third-power variation found by Rohsenow (47) from the data 
of Addoms and others. For other boiling situations, values of 4 to 6 for 
this exponent are not uncommon. 

If Eq. (57)  is used to eliminate At,,, in the analytical prediction (Eq. 
(55)) and if the values 1.1 X lop4 Btu/(sec)(ft)(OF) and 1.8 X 
ft2/sec are substituted for lc and a, (8) we obtain 

q:’ = 0.075 (g) Btu/(sec)(sq ft) 
P 

For agreement between this result and the %-inch tube experimental 
data (Eq. (56)), it is necessary that 

f = 0.20v4i 

This indicates that f varies from 0.20 to 0.36 over the velocity range 
from 1 to 10 ft/sec. 

Jakob ( 1 )  and Rohsenow and Clark (5) reported values below 0.10 
a t  fluxes well below the peak, while the flat plate, pool boiling analyses 
of Kutateladze (56) and Zuber et al. (69, 63, 64) include the assumption 
that the entire flux evolves as latent heat of vaporization at the critical 
condition, in which case the fraction is unity. The value of f required 
in the present analysis refers to the front half of the cylinder, while the 
transition to film boiling invariably occurs in the rear half. Consequently, 
the front half could sustain a higher flux before transition, and a value 
of f less than unity but greater than 0.10 is to be expected. 

The experimental results shown in Fig. 32 indicate a trend of the peak 
flux to decrease with increasing heater diameter, which is qualitatively 
consistent with the analysis. However, the dependence predicted by the 
analysis is much stronger than the experiment seems to indicate. Further 
consideration of this discrepancy suggests that as the tube diameter 
becomes smaller, the fraction of surface covered by the bubbles may 
become larger, since the bubble size is determined by the nature of the 
surface and by the liquid properties, not by the tube diameter. The frac- 
tion of heat transferred to the vapor may therefore become larger, and 
it is reasonable to suppose that the fraction f is a weak inverse function 
of diameter as well as a function of velocity. It is necessary for the 
fraction f to have a dependence of .f - D-0.42 to agree with the empirical 
results. 

The effects of velocity and heater diameter have also been determined 
for subcooled boiling of water from cylindrical tubes (91). Figure 33 
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slioas the results of GO burnout tests made with 0.123-inch 0.d. by 0.10- 
inch wall, type 347 stainless steel tubes. The curves which have been 
drawn through these points show that the critical flux varies approxi- 
mately linearly with subcooling except a t  the higher velocities, where 
there is little effect of subcooling below 20 to 30" F. The trends are con- 
sistent except for an inversion of the generally positive effect of velocity 

0 20 40 60 80 100 I20 
SUBCOOUNO, 01,. T 

FIG. 33. The variation of critical flux with subcooling and velocity for anter flowing, 
upwnrd actoss Jg-inch tubes (91). 

i n  the range from 2 to 6 ftjsec. The reason for these anomalously low 
values obtained at 4.75 ft/sec and high subcooling is not known, but 
may have been caused by a change in the flow pattern between 2 and 6 
ft,'sec which was not observable by the methods employed in t.he 
investigation. 

Kezios and Lo (93) have obtained critical heat flux data for 0.125-inch 
diameter stainless steel rods which show a similar dependence on the 
subcooling to that in Fig. 33, but only qualitative agreement with thc 
velocity dependence. .A possible explanation for the discrepancy may lie 
in the corrections for channel blockage by the heater tubes, since the 
tubes occupied a larger fraction of their channel flow area than did the 
solid rods. 
12601 
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Figure 34 presents all the data of Vliet and Leppert, including not 
only the 64 tests with 0.125-inch tubes, but also 38 tests with wires and 
tubes from 0.010 to 0.189-inch 0.d. The data, when correlated in this 
form, can be represented by 

p i ’  = 140 + 24Vi + 3.9Ats,b Btu/(sec)(sq ft) (58) 

with a mean deviation of 12%. The data of Kezios and LO can be repre- 
sented by the following equation which differs from Eq. (58) only in 

1 I I I 1 

L 
0 ^^ Î w. n 

0 UAMETER EFFECT TESTS . 118-INCH RODS [94 

0 118-lNCH TUBES 

(UI 13 REPRODUCIBILITY TESTS 
I I I 

200 400 600 800 1000 

24V, + 3.9Atttub, BTWSEC FT2 

0 
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FIG. 34. Correlation of critical heat flux measurements for cylinders at various 
velocities, subcoolings, heater diameters and wall thicknesses (91) including data of 
Keeios and Lo (93). 

the constant term 

qC’’ = 70 + 24Vi + 3.9AtSub Btu/(sec)(sq ft) 

This linear variation of critical heat flux is in agreement with the experi- 
ments and analyses of numerous investigators. 

Investigation of the effect of heater diameter on the peak heat flux 
in subcooled boiling was made for several liquid conditions over a range 
of diameters from 0.010 to 0.189-inch, using type 321 stainless steel 
tubing of 0.010-inch wall thickness for diameters greater than 0.020-inch 
and stainless steel wire for diameters less than or equal to 0.020-inch. 

[2611 
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In general, the variation can be represented at a given approach velocity 
and suhcooling bv 

qr)# - 1 / l ) V  (XI) 

wlierc y is a positive cxpoiient which depends on the liquid velocity and 
subcooling. [:or the nine liqiiid conditions investigated, the exponent y 
is plotted as a function of velocity with subcooling as a parameter in 
Fig. 3.5. and the estimated constant suhcooling lines are indicated. 

0 1  2 3 4 S 6 T  e 9 10 II 

FORCED CONVEC" VELOCITY. C T l K C  

1;~;. :$.5. Variation of tlie di:inictcr exponent in ICq. (59) with watrr velocity at. 
r:irioiis siilm>olings ( f i f  1. 

The inverse variation of the critical flux with heater diameter at a 
given liquid approach ve1ocit.y and subcooling is consistent with the 
direct dependence of the critical flus on subcooling. For flow across a 
heated element the effective subcooling varies over the surface in the 
flow direction, the lowest value occurring at the farthest point down- 
stream. Therefore, the larger the test section the lower is the effective 
suhcooling in the liquid near the element at a given heat fliix, and the 
lower is the Critical flux. 

The saturated, forced convection Imilirrg data of Beecher (92) for 
0.024-inch diameter wires, \\.hen conipared to tlie results for 0.125-inch 
o.d. tubes, indicates 11 diameter esponeiit of 0.15 over the entire velocity 
range from 1.2 to 10 ft 'see. This result is also shown in Fig. 3:. 
('2621 
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NOMENCLATURE 
area 
surface area of the base of a bubble 
attached to a surface 
surface area of the liquid-vapor 
interface of a bubble attached to a 
surface 
specific heat 
diameter 
hydraulic diameter 
acceleration of gravity 
dimensional constant relating force 
and mass in Newton’s law of 
motion 
standard acceleration of gravity a t  
the earth’s surface 
mass flux 
convective heat transfer coefficient 
average boiling heat transfer 
coefficient 
mechanical equivalent of heat 
thermal conduchivity 
wave length 
wave number 
Jakob number, ( t o  - tsat)pzc/Xpv 
Nusselt number, hD/k 
Prandtl number, cp /k  

Reynolds number, DVp/p  
pressure 
pressure difference corresponding 
to superheat, t - tell$ 
heat flux 
critical heat flux 

heat flux to  a bubble across the 
liquid-vapor interface 
bubble radius 
cavity radius 
temperature 
surface temperature 
bulk liquid temperature 
saturation temperature 
t, - t o  
€ 8  - t s a t  

t s a t  - t o  
specific volume change by vapori- 
zation 
velocity 
steam quality a t  critical heat flux 
body force per unit mass in the y 
direction 
thermal diffusivity 
contact angle 
chemical potential 
latent heat of vaporization 
viscosity 
density 
surface tension 
time 
velocity potential 
two-phase friction multiplier 
disturbance frequency 

Subscripts 
1 liquid 
v vapor 
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I. Introduction 
Electromagtietic phenomena in rigid conductors have been studied 

ever siricc the time of Faraday. It has not been until fairly recent years, 
however, that the iriteraction of electromagnetic fields and electrically 
conducting fluids has attracted much attention. Probably the largest 
incentive toward an understanding of such phenomena came from the 
field of astrophysics. I t  has long becn suspected that most of the matter 
in  the universe is in the plasma or highly ionized gaseous state. Much 
of the basic knowledge in the area of electromagnetic fluid dynamics 
evolved from these studies. 

The field of plasma physics has now grown from these scholarly begin- 
nings to include problems in such widely diverse areas as geophysics 
tltid controlled nuclear fusion. Nost of the recent impetus toward the 
est.ablishmeirt of a firm theoretical basis for this discipline has, i n  fact, 
hccn due to the requiremeiits of modern fusion reactor desigii. 

As a branch of plasma physics. the field of magnetohydrodynamics 
(MHD) consists of the study of a continuous, electrically conducting 
fluid under the influence of electromagiietic fields. Originally, MHD 
iiicluded only the study of strictly incompressible fluids (hence the 
“hydro”), but today the terminology is applied to studies of partially 
ionized gases as well. Other names have been suggested, such as magneto- 
fluid-mechanics, or magnetoaerodynamics, but the original nomericlature 
has persisted. The essential requirement for problems to  be analyzed 
under the laws of MHD is that the continuum approach be applicable. 

A. LMHD ASD HEAT TRASSPEH 

With the advent of hypersonic flight the field of MHD as defined 
above, which had heretofore been associated largely with liquid-metal 
pumping and flow velometry, attracted the interest of aerodynamicists. 
The possibility arose of altering the flow and heat transfer around high- 
velocity vehicles provided that the air were sufficiently ionized. Further- 
more, the invention of high-temperature facilities such as the shock tube 
and plasma jet provided laboratory sources of flowing, ionized gas, which 
provided an inccntive for the study of plasma accelerators and generators. 
P681 
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As a result of this, many of the classical problems of fluid mechanics 
were reinvestigated. Some of these analyses arose out of the natural 
tendency of scientists to investigate a new subject. In this case it was 
the academic problem of solving the equations of fluid mechanics with 
a new body force and another source of dissipation in the energy equation. 
Sometimes there were no practical applications for these results. For 
example, the natural-convection MHD flows of Section 111 have been of 
interest to the engineering community only since the introduction of 
liquid-metal heat exchangers, although the thermal-instability investiga- 
tions of Section I11 are directly applicable to problems'c'in geophysics 
and astrophysics. 

The study of channel-flow heat transfer discussed in Section IV has 
many applications to  the propulsion and power-generation field. The 
pioneer work in channel flow was done by Hartmann and Lazarus ( I ,  2 )  
in their studies of liquid-metal pumps. Many of the one-dimensional 
heat-transfer analyses today are extensions of the early Hartmann flow 
problem. In reality, however, the assumption of continuum flow is not 
always justified in flows of partially ionized gases under both electric 
and magnetic fields. This particular limitation of classical MHD will be 
discussed further in Section 1,B. 

But it was in the field of aerodynamic heating that the largest interest 
was aroused. Rossow (3)  presented the first paper on this subject in 
1957. His results, for incompressible, constant-property flat-plate 
boundary-layer flow, indicated that the skin friction and heat transfer 
were reduced substantially when a transverse magnetic field was applied 
to the fluid. This encouraged a multitude of analyses for every conceivable 
type of aerodynamic flow; most of the research centered on the stagnation 
point where, in hypersonic flight, the highest degree of ionization could 
be expected. The results of these studies were sometimes contradictory 
as to the amount by which the heat transfer would be reduced. (Some 
of this was due to misinterpretations and invalid comparisons.) Even- 
tually, however, it was concluded that the field strengths necessary to 
provide sufficient shielding against high-heat fluxes during atmospheric 
flight were not competitive (in terms of weight) with other methods of 
cooling (4). However, the invention of new, lightweight, superconducting 
magnets has recently revived interest in the problem of providing heat 
protection during the very-high-velocity reentry from orbital and super- 
orbital flight (5 ) .  

The present study is divided into several sections, each dealing with 
a particular classical heat-transfer problem. The simple one-dimensional 
flows (Poiseuille and Couette) willbe discussed a t  some length in Sections 
IV and V in order that the behavior in more complex flow problems can 
be more easily interpreted. In  each case the effects of the magnetic and 
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electric fields will lw assessed in the light of analyses available in the 
published literature. 

We shall also be dcaling almost exclusively with laminar flow problems. 
Hecause of the semiernpirical techniques used to  analyze the turbulent 
hoiindary layer, it is riccessary to  rely on accurate experimental measure- 
meiits to obtain certain constants in the skin-friction laws. I n  ordinary 
fluid mechanics, Reyiiolds’ analogy can often be used to obtain heat- 
transfer coefficients from the variation of shear stress. But Reynolds’ 
analogy will not be applicable iii JIHD flows, and it will thereforc be 
necessary to measure both skin frictioii and heat transfer to determine 
the empirical constants. To date, the experiments in JIHD turbiileiit 
flow haw Iwen confined primarily to studies of skin-friction dray and 
trailsition from laminar to turbulent flow in insulated channels. . I s  a 
result, the heat-transfer portion of the theory has not yet heii dewloped 
to the extent that realistic analyses of turbulent heat transfer are available 
in  the literature (sec, e.g., Sectioii IV,B,l.). 

This study assesses the effects of externally applied electromagnetic 
fields on heat transfer to electrically conductiiig continuous fluids. In 
order to preswit a logical exposition of this broad subject, tho basic equa- 
tions are developed first aiid various classical problems arc discussed, 
xricli as free eoii\-ectioii and heat transfer iii channel flow aiid at ti stagna- 
tioii point. Each of the areas discussed is of practical import in the 
engineering ficld of today. The simple one-dimensional flow of Section 
I\’ illustrates m u ~ y  of the heating problems associated with some nioderii 
generators aiid accelerators. Similarly, the plane shoar flow of Section 
1- serves as a representative example of the more sophisticated flows 
itrisiiig i i i  the study of aerodynamic heating. The limitations of the 
cotitiiiuum approach demonstrate the outstanding problems which remain 
in  cncli of the subject areas discussed. 

I t  is shown that this field of lieat transfer contains problems of two 
geiieral types: those in which the heating is a consequence of electro- 
magnetic fields applied to  the fluid for purposes of generating power or 
primping, and those in  which the electromagnetic fields are used primarily 
to eoiitrol the lieat transfer (i.e., at the stagnation point of a blunt 
body or i i i  natural convectioii flows.) 

The extreme Iieating rates associated with the first area are due pri- 
m:trily to the presetice of large electric fields in the fluid and the attendant, 
Joule Iieating. 111 the swoiid, tlie poiideromotive force on the fluid caused 
by the interaction of the flowing conductor and rrnapplied magtietic field 
coiitrols the motion of the fluid and reduces the heat transfer. -4lthough 
this teclinicpc is limited iii application by the largc magnetic field 
* t  rwgtlis iwcssary to affert tlie flow of naturally ionized air, the develop- 
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ment of superconducting magnets holds promise for future utilization in 
the reduction of aerodynamic heating, especially for reentry at super- 
orbital speeds. 

This survey of electromagnetic effects on heat transfer indicates that  
the most serious lack in this field today is experimental verification of 
the existing theory. 

B. LIMITATIONS IN CLASSIC MHD THEORY 

Every mathematical description of a natural phenomenon contains 
certain approximations. The concept of a continuous fluid is one which 
serves quite well in determining the gross behavior of a gas, as long as 
the mean free path is small compared to  the characteristic length in 
the flow. In  accordance with this assumption, i t  is generally specified 
in hSHD analyses that  the electronic mean free path is small compared 
to  such characteristic lengths in the problem. 

It is also assumed that  the fluid will not support any excess of charge- 
i.e., that  it is electrically neutral in a local sense. This condition is easily 
satisfied when the fluid is a continuum and is unbounded. Near boundaries, 
where strong concentration gradients exist, i t  is necessary to  examine 
further the concept of charge neutrality. 

1. Wall Eflects 

The currents in a gas are determined by the motion of the charge 
carriers relative to  the mean velocity of the gas. If we assume either 
thermal equilibrium or ion generation by the action of externally pro- 
duced electromagnetic fields, then, because the electrons are much lighter 
than the ions, their thermal velocities are much higher. In  an  unbounded 
gas without concentration gradients, the region of excess of charge in a 
unit volume is determined by the electron Debye length, which is pro- 
portional to  the square root of the ratio of electron kinetic energy to  the 
electron density (6). In  essence, an  ion will not “see” an electron over a 
distance larger than a Debye length. A gas in which the continuum 
property is upheld, therefore, will not tolerate an  extensive space charge, 
and is said to  be quasi-neutral. 

To insure quasi-neutrality in the presence of concentration gradients 
and electromagnetic fields, it is necessary to  specify further that  the flux 
of charge into any volume equals the flux of charge out of it. The physical 
process which regulates the charge density in this case is referred to  as 
ambipolar diffusion (7).  The ambipolar-diff usion coefficient is so defined 
that  the flux and the number density of charges of opposite sign are equal; 
hence, where it is assumed that  ambipolar diffusion occurs the concept of 
quasi-neutrality is automatically satisfied. 
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’l’liis diffiisioa procesx is best described as a limiting situation, i i i  which 
clectroirs leaving a volume element will initially diffuse to the walls more 
rapidly t.haii will the ions. They will set up near the wall, by this motion, 
a negative space-charge field that repels further electrons and attracts 
tlir ions. Outside the space-charge sheath, electrons and ioirs will diffuse 
at  thr name rate a id ,  by definition of the diffusion coefficient, tlre charge 
drilhity will he zero. Tlie climcnsioiis of the sheath will again be governed 
by tlir clcc*trori Dctye length. For the case of electrically insulating 
houiitlarirs i i i  contiiluum flow, the sheath is of negligible extent and is 
iininiportunt as far as the heat transfer is conccrncd. 

In the preeciice of strong electric-field gradients, such as found near ail 

rlectrude, coliclitions a t  the sheath may seriously affect the heat transfer 
to the electrode. This problem, which will exist in many low-density 
11 I+ I )  generators, has not yet been assessed at any length in the litcrature 
(wr ,  e.g., Secticms IV,l3, aiid Y1,B.). 

?. Hiyh-liic,ld L.@ls 

Ctilih the formation of the sheath, wliicli is due to the high thermal 
velocity of  c4ectrous, aiiother restriction in the application of continuum 
niagm~t~ohydrodynamics to problems involving ionized gases arises 
hcause of the directed motion of charged particles in electric and mag- 
tictic+ fields. Tlie fornier will occw in any bounded system of low-density 
plasma; the latter will exist a t  pressures which are normally (in the zero- 
field case) sufficient to iiwure the continuum approach. These effects, 
which can he loosely termed as “high-field” effects, will not be covered a t  
any lciigth here berause t h y  occur outside the range of continuum MHD 
in  tlre strictest sense. They are, however, of sufficient importance to 
practical engineering problems in modern hIH1) devices that this brief 
description is warranted. 

a. Hall Currents. In  a gas which is suficiciitly dense, the electron-atom 
collision frequency, vP,  is large enough so that the tendency for free 
electrotis to spiral around the magnetic field lines is suppressed. If the 
applied field is large or the gas density low so that the cyclotron fre- 
quency, w = el3 m, exceeds the collision frequency, the electron can make 
L iiurnher of cyclotron orbits htweeii collisioiis and will drift in a direction 
perpendicular to the direction of the magnetic and electric fields. Th i s  
drift produces a curreiit (the Hall current), aid the gyromotion decreases 
ttic electric conductivity of the gas (7). Referring ahead to  Ohm’s L a w  
[Eq. (Y)], we call include the contribution to the current due to  the Hall 
effect, namely 

E + v X B - j =  U 
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where the conductivity u is reduced by the factor (1 + ( W / Y , ) ~ )  and where 
the last term in the brackets is the Hall current, j H .  

By lowering the conductivity, the Hall effect thus reduces the current 
in the direction of the electric field and causes a current to  flow normal 
to  both E and B. While it is obvious that  any DC power generator 
or accelerator will become inefficient in high field strengths uiiless i t  is 
designed to  operate in the Hall mode, the Hall effect also influences the 
flow, and hence the heat transfer, in a direct manner. It can be shown 
from Ey. (1) and the discussions of Section II,B, that this current mill 
interact with the applied magnetic field to  induce a transverse motion of 
the fluid. For example, a given two-dimensional flow would become three- 
dimensional. The Hall effect therefore places a serious restriction on the 
regime of applicability of many solutions in which partially ionized gases 
are analyzed using continuum MHD. The limits of validity for solutions 
of this sort will be noted when appropriate. 

b. Ion Slip. When the ratio W / Y ,  becomes very large, the electromagnetic 
field can force both the ions and electrons to  produce a relative drift 
between them and the neutrals. This drift is called “ion slip” and is of 
course negligible for highly ionized gases. Brunner (8) has investigated 
both the Hall and ion-slip effect for equilibrium air and concludes that  
for low-pressure conditions and an applied field of lo4 gauss (1 weber/m*) 
the conductivity is reduced materially by as much as a factor-of lo3 a t  
operating pressures of atm. 

Since both the Hall effect and ion slip will occur in low-pressure, 
moderately-high-temperature environments, they will affect the heat 
transfer in both a generator/accelerator and a boundary layer. To  the 
author’s knowledge the heat transfer under such conditions has not yet 
been investigated. It can, however, be predicted that these problems will 
form the next generation of RiHD-heat-transfer studies. 

11. The Basic Equations 
The governing equations of magnetohydrodynamics result from a com- 

bination of two disciplines : electromagnetic theory and fluid mechanics. 
Extensive derivation of the equations is beyond the scope of this article; 
instead we will make use of rather general, fundamental laws and refer 
the reader to  the cited literature for a more comprehensive treatment. 

A. THE ELECTROMAGNETIC SYSTEM 

ilccording to  electromagnetic theory (9), the forces on a conducting 
fluid a t  rest are of the following types: ponderomotive, magnetostrictive, 
electrostrictive, and electrostatic. The ponderomotive force is the force 
on a volume distribution of current in a magnetic field. Magnetostriction 
and electsostriction are both defined, for a nonferromagnetic medium, as 
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elastic deformation of the fluid under the influence of electromagnetic 
fields. They are important in a medium where the magnetic permeability 
and electric susceptibility are functions of the fluid density. The electro- 
static force is the usual body force on free-charge carriers in the fluid. 

It is usually assumed in MHD that  the permeability pCLe and the dielec- 
tric constant e are constant ; displacement and polarization currents are 
neglected; and, in accordance with the continuum approach, the net- 
charge density, p e ,  is zero. Justification for the neglect of these terms 
depends, of course, on the physical properties of the gas as well as on the 
nature of the applied electromagnetic fields. For example, we will be 
discussing time-independent fields exclusively in this article, so that  
plasma oscillations, for example, will not be considered and the dis- 
placement current can be neglected. The validity of these assumptions 
depends further on the relative size of the electromagnetic forces com- 
pared to  the fluid-dynamic forces in a given fluid. Lykoudis (10) has 
pointed out that for electrostatic free-convection problems in polar liquids 
or gases the electrostrictive force can be on the same order as the buoyant 
forces (Section 111,A). But this situation will be the exception rather 
than the rule in the J2HD problems likely to  be encountered, for the 
poiideromotive force and inertia or shear terms are usually large enough 
to  justify the above assumptions. 

This leaves the poiideromotive force as the only remaining electro- 
magnetic force on the system a t  rest. In  order t o  assess the interaction of 
the applied fields with a moving fluid, it is convenient to  transform the 
system to the same frame of reference in which the basic thermomechani- 
cal laws are used. Maxwell’s equations for time-independent fields in a 
system a t  rest are 

V X H = j  
V X E = O  
V * B  = V . D  = 0 

where 
D = CE and B = p,H 

and where H is the magnetic field strength, j, the current density, B, 
the magnetic induction, and D, the dielectric displacement. The above 
equations are written in the R4KS (m-kg-sec) system of units. Conversion 
tables between these and the cgs system are given in most textbooks (9). 

Under a Loreiitz transformation for iioiirelativistic velocities, Eqs. (2) 
to  (5j still hold in the fluid, but the field vectors E and H are replaced by 
Ef = (E + V X B) and Hf = (H - V X D), so that  Eqs. (2) and (3) 
become 

V X ( H - V X D )  = j  (6) 
V X (E + V X B) = 0 (7 1 
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where V is the center-of-mass velocity of a fluid clement; B, D, and j are 
unchanged, as are the differential operators, when V is much less than the 
speed of light and p e  = 0. 

Equation (7) establishes that an electric field will be present in the 
fluid due to the motion of the current-carrying conductor through the 
magnetic field. It can be written for a constant-density fluid (V . V = 0) 
as 

V X E = (B * V)V - (V . V)B (8) 

which is often called Faraday’s law of induction for a moving medium (9). 
Equation (8) is not valid unless the density of the fluid is constant, 

Since this electromagnetic system is now a t  rest in the fluid, we can 
apply the phenomenological laws for a medium a t  rest and obtain Ohm’s 
law 

and Joule’s law 
j = u(E 4 V X B) 

Qj  = j z / u  = a(E + V X B)’ 

(9) 

(10) 

Ohm’s law now includes the current induced by the motion of the con- 
ducting fluid through the magnetic force lines. The heat due to  electrical 
dissipation in a conductor is given by Joule’s heating law. Again, the fluid 
flow will contribute to  the heat through the induced field. The con- 
ductivity in Eqs. (9) and (10) is assumed to  be scalar, as discussed in 
Section I,B,2. 

B. THE R’fAGNETOHYDRODYNAMIC EQUATIONS 

It is now possible to  derive the conservation equations for RlHD flow 
by the usual method of balancing across differential fluid elements. 
Although these equations are written for generality for time-dependent 
flows, we shall be considering only the steady state in this study. 

The electromagnetic field cannot create mass, and the continuity 
equation remains unchanged in form: 

9 + v * (pV) = 0 
at 

where p is the fluid density and V is the velocity. For reacting gases, the 
continuity of each species should be considered. 

It is a comparatively simple matter to  derive the momentum equation. 
Starting with Newton’s law 

dV 
dt 

p - = F  

where F is the sum of all the forces acting on the fluid, we need only 
consider which forces arise from the electromagnetic field. The usual 
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utid wliera f is due to gravitatiorial and buoyancy forces. 
The electromagnetic force mliich acts in  Eq. (12) is the usual pondero- 

motive force discussed earlier, where the fluid is considered a rigid 
currelit-carrirr moving in a magnetic field; that is, 

(14) 

part of which would exist if the fluid were a t  rest, and part of which is due 
to the current induced by thc niotioii through thc magnetic field. The 
forcv aE X B will accelerate or decelerate the flow, depending on the 
direction of  E, B, and V; the “back” emf a V  X B will provide a current 
\vl.hoae interaction with B will always decelerate the flow. 

With the forces of Eqs. (13) and (11), the momentum equation becomes 

( I 5) 

F, = j X B = a(E + V X B) X B 

p - =  -v p + T,, + f + a(E + V X B) X B 
rll 

wlirre (1 dl is the sut)stantial (Eiilerian) derivative. 
A derivatioii of an energy equation for AIHD should take into account 

the electromagnetic theory for a moving medium and the thermodynainics 
of an electrically conducting gas. The most rigorous and complete deriva- 
tion in the literature is that of Chu (11). Other derivations (12, IS), 
which satisfy the first law of thermodynamics by physical reasoning based 
on 1Iaxwell’s equations at rest, are shown by Chu to be correct (although 
difficult to interpret) as long as p ,  and c are constant. 

The difficulty encountered in writing an energy equation for a gas in 
which c = c(p.1’) and p. = p s ( p , T )  arises when the constituents of the 
energy balancc given by the first law are separated into mechanical and 
electromagnetic parts. The reader is referred to  (11) for a complete 
traatnient of this particular case, since with the exception of Section 
III ,A,  we shall not be concerned with problems where the electromagnetic 
parameters fie and c are variable. 

From the first law, the energy balauce can be written 

dllt = dM‘r + dlvd  + d& (18) 

where Ut  is the interns1 energy per unit mass, I+‘, the reversible work, Wd 

the energy dissipated internally, and Q the heat flux. Chu writes the 
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internal energy and the pressure as the sum of mechanical and electro- 
magnetic components; however, when e and p, are constant, these electro- 
magnetic terms are balanced by the electromagnetic contribution to the 
reversible work; i.e., if 

and dW,  = pld (:) - H d (:) - E * d ($) 
then only the mechanical contributions remain in Eq. (16) when e and ps 

are constant. It can also be shown (Section III,A) that this is true even 
when E and pe are variable; however, this result depends on the particular 
law by which these quantities are related to temperature and density. 
It should also be specified again that the momentum balance, Eq. (15), 
is also affected when E and pe  are variable, because of the entrance of 
electromagnetostrictive forces. 

The remaining terms in Eq. (16) are the dissipative energy given by 
viscous dissipation and Joule heating, and the heat flux due to diffusion, 
conduction, and external sources. Using Eq. (lo), we can therefore write 
for the energy equation 

where now U and p are the ordinary state variables given by the first 
terms in Eq. (17), 4 is the heat flux due to conduction and diffusion, and CP 
the viscous dissipation rjjauj/axi. The heat flux will be discussed further 
in Section II,E,l. 

It is convenient a t  this time to present alternate forms of Eq. (18). 
For an incompressible fluid, dU = c d T ,  where c is the specific heat. 
Then Eq. (18) becomes 

pc d T =  dt - V . + + @ + Q + j z / u  (19) 

since the work due to  compression is zero. 

written in terms of enthalpy as 
When the fluid is compressible, dU = dh - d(p /p )  so that Eq. (18) is 

This form is often useful in a dissociated or ionized gas. If we define the 
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stagiiation enthalpy as h. = h. + V*/2 in the usual manner, and eliniinate 
the pressure term by using the momentum equation, then 

V) + j - E  

and the stagiiation enthalpy is increased by the power energy addition 
j - E. This would be expected, for in the fluid at rest, j = UE and the ohmic 
heating does not vanish. When there is no electric field applied, the 
stagnation enthalpy is unchanged explicitly by the presence of the 
magnetic field, although magnetic effects enter implicitly through the 
viscous term. It is thus convenient to use Eq. (21) for compressible-flow 
problems when the applied electric field is zero, for example, a t  the 
stagnation point of a blunt body (Section VI). 

One final equation is needed to  complete the system hydrodynamically. 
This involves the magnetic field which appears in the ponderomotive- 
force term in Eq. (15) and the Joule heating term in Eq. (18). It is obvious 
that the magnetic field when applied to  the fluid will alter the flow pattern 
through these coupling terms. In  much the same manner, the fluid wil l  
react on the applied field through Ohm’s law to relieve these forces. Thus 
the magnetic field which appears in the MHD equations is the resultant, 
or total magnetic field present in the fluid. Its behavior is determined by 
Faraday’s law of induction, Eq. (2), from the total of currents acting in 
the system, including those, if any, which generate the applied field. 
Using Eq. (9), and letting j, denote the current in an external solenoid, 
me can write for B 

where V X E - 0  (22) 

As it stands, Eq. (21A) contains the electric field and is not easy to solve. 
If, however, the gaq is such that u and p are constant, then the continuity 
equation, along with Eq. @2), may be used fo give 

(23) 
1 

C& 
(V * V)B = ( B  * V)V + - V*B 

where the conductivity of the coil has also been taken as constant. 
Equation (23) determines the magnetic field in the fluid when u and p 

are constant and illustrates the coupling which can exist between the 
hydrodynamic and electromagnetic fields. Fortunately, it is often possible 
to linearize the magnetic terms in the system of equations. This will 
become evident when the magnitude of these tcrms is discussed in 
Section II,D. 
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C. BOUNDARY CONDITIONS 

The fluid and thermometric boundary conditions are unchanged by 
the addition of electromagnetic fields. For continuum flow the tangential 
and normal velocities vanish a t  solid boundaries, while the fluid tempera- 
ture must be continuous. 

The electromagnetic equations must be satisfied in the region outside 
the moving fluid. In  this region, say, for example, in the walls of the 
container, it may be necessary to  use the complete Maxwell equations. 
As we pass from the vacuum to the walls to the fluid, it will be necessary 
to satisfy the following conditions at  the boundaries (9): the normal 
component of B is continuous and the tangential component of E is 
continuous. If there is a charge layer on the surface, the discontinuity in 
D is equal to the surface charge density, and if a surface current exists, 
then the discontinuity of the tangential component of H is equal to the 
current density a t  the surface. The latter condition of surface currents 
will not exist if the conductivity of both media are finite, in which case 
the tangential component of H is continuous. In  some problems in MHD, 
however, it is often assumed that the conductivity of the walls is infinite 
in order to  simplify the analysis of the problem. In this case, the first 
condition must be satisfied. Finally, everywhere in the vacuum, walls, and 
fluid, the conservation of charge for steady currents, V * j = 0, demands 
that the lines of current density form closed loops. These loops may be 
closed outside the fluid by the use of electrodes and wires. 

The induced magnetic field is often neglected in MHD flows, so that the 
boundary conditions for this component are rarely mentioned in the 
literature. Its value a t  the fluid boundary can be ascertained by consider- 
ing the flowing fluid as a carrier of current sheets, each of which will 
generate a B-field. When the flow is symmetric, the induced magnetic 
field will be symmetric. It will not necessarily vanish at  infinity unless 
the current acts as a line or point source. It is thus not possible to discuss 
the boundary conditions on the induced magnetic field without a con- 
sideration of the flow problem, which is a further coupling of the equa- 
tions. For this reason we will present a more complete discussion of the 
induced field for several flow configurations (Sections IV,A,2, and V,A, 1). 

D. DIMENSIONLESS PARAMETERS 
In ordinary fluid mechanics, dimensionless parameters which delineate 

flow regimes evolve from the transformation of the basic equations to 
dimensionless form. The same is true in MHD flows, where the magnitude 
of the electromagnetic parameters dictates the amount of interaction 
between the fields and the flow. 
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We will choose as reference conditions those constants which typify 
the flow in a designated problem. These will be given the arbitrary 
subscript o but they will, of course, depend on the particular problem 
under analysis. With the buoyant force included, the momentum equation 
becomes 

Gr 1 
Re Re 

= -vp* + e + --Ttj* 
dV* 

P* - a t  
+ SK(aE* X B*) + S(uV* X B* X B*) (24) 

where the starred quantities are now dimensionless; the pressure, p * ,  is 
as usual referred to the dynamic pressure, poVo2. The dimensionless 
temperature is 

e = ( T  - T ~ ) / ( T *  - T ~ )  (25) 

where T I  and Irp  are arbitrary constant temperatures. The air properties 
have been taken as variable for generality. 

Most of the parameters in Eq. (24) are familiar. These are 

(26) 
inertia force 

PO viscous force 
Re = ' ?  = Reynolds number = 

GT = po2g8(Tw ~ - T w )  L3 = Grashof number 
PO2 

(27) 
- buoyant force inertia force 

viscous force viscous force 
- ~- __ 

where @ is the coeflicient of expansion and L is the characteristic length. 
The new parameters in Eq. (24) are 

s= -  u ~ B ~ 2 L  = magnetic-interaction parameter 
POVO 

(28) 
- po ndero mo tive force -__ 

inertia force 
and 

(29) 
applied electric field 

I/'oBo induced electric field 
generator (pump) coeficient = 

K = L =  E 

The sign of K is determined by the direction of the applied field. It is 
negative when the applied field is in the opposite direction to the induced 
field. Both S and K determine the magnitude of the ponderomotive 
force in the general sense, for one can think of S as determining the 
induced ponderomotive force due to the interaction of the flow with the 
field and S K  determining the applied force, which would act even if the 
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system were at  rest. As such, in an inviscid flow, if either S or SK is 
larger than one, the velocity will be affected. 

When viscous forces normally predominate, as in a boundary layer, 
either of the quantities SRe and SKRe should be of order one for the flow 
to be affected by the fields. The product SRe defines one of the most 
important parameters in MHD 

uoBo2L2 - ponderomotive force 
IC viscous force 

S R e = - = M  - 

By convention, M is called the Hartmann number, although M2 is 
certainly the more natural parameter (10). 

Turning now to the energy equation, let us consider the compressible 
case. Equation (18) becomes, for a perfect nonreacting gas and an iso- 
thermal wall, 

+ V* * Vp* + ES{u(KE + V* X B*)2] (31) 

where Q* = QL/poVo' is a dimensionless heat source. The usual 
parameters in Eq. (31) are 

(32) 

(33) 

energy dissipated 
k0 energy conducted 

= Eckert number = 

Pr = __ ICocPp, = Prandtl number = 

kinetic energy 
Cp,(TZ - TI) thermal energy 

vo2 & =  

The others are defined above. 
The Joule dissipation term in Eq. (31) will vanish only if 

KE* = -V* X B* 

i .e.,  only if the electricJield as seen by an observer moving with the velocity V* 
vanishes. It is difficult to determine a priori when the Joule dissipation 
will contribute significantly t o  the temperature distribution and the heat 
transfer a t  the wall. In general, however, when an electric field is applied, 
the term is not negligible. In fact, even when K = - 1, which corresponds 
t o  the case of electrically insulated walls, the Joule dissipation is not 
negligible. This is a result of the fact that when K = -1, the mean 
current vanishes, but there remain circulating currents u*V* X B* which 
can influence:the heat transfer (Section IY,A,3). 

So far we have not mentioned the influence of the hydrodynamic flow 
on the magnetic field. In order to determine this, consider Eq. (23), 
remembering that both u and p are constant. In dimensionless form, this 
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equation becomes 

Equation (31) indicates the magnitude of the induced field-i.e., the 
amount of bending of the applied field lines by the flow. The dimensionless 
parameter ill Eq. (34) is 

Re, = TIoLuOpc = magnetic Reynolds number (35) 

in which I / U ~ C ( ~  can be thought of as a “magnetic kinematic viscosity.” 
Sotice that Eq. (34) is remarkably similar to the vorticity equation. 

(Imagine that €3” is replaced by Q.) The magnetic Reynolds number acts 
i n  the same way a Reynolds number does: when Re, is zero the field lines 
are undisturbed by the flow, but when Re, ---f t~ the lines are frozen into 
the fluid. The induced magnetic field vanishes when R e ,  = 0, and the 
motion equations can be solved independently from Maxwell’s equations. 
‘Phis is a strong assumption to make, but it is useful since first-order 
influelices of magnetic forces still are included. 

Let us assume that Re, << 1 so that the induced field B, is much less 
than the applied field B. This corresponds to a weak interaction, which is 
often the case in engineering MHD. Then the ponderomotive-force term 
iii Eq. (1.5) is determined by Bo alone, where the current depends only on 
the applied field. Equation (23) or (34) become superfluous, since the 
induced field can be determined from Eq. (2) and Ohm’s law. It is often 
useful to find B, when Re,,, << 1 in order to  verify that the assumption is 
justified. 

E. TRANSPORT PROPERTIES 

In order to determine the heat transfer, suitable assumptions will have 
to  be made to account for the variation of transport properties of the 
various working fluids. For liquid metals such as mercury or sodium the 
transport properties are well-established and are tabulated in most 
handbooks. It is not possible to  make such a definitive statement about 
ionized gases. Only the electrical conductivity has been measured at  
high temperatures; for the remainder of the transport properties, it is 
necessary to rely on calculations. It should be mentioned again that 
when the magnetic field strength is large, the possibility exists that the 
transport coefficients will be nonisotropic, as discussed in Section I,B, in 
which the Hall current was defined. We will, however, only be concerned 
here with cases where the transport properties are scalar. 

Since gases other than ionized air will be encountered in this article, we 
do not have space to present values for the various transport properties. 
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The literature cited in this section will provide a guide, if not a definitive 
answer, to the problem of their determination. 

1. The Heat-Flux and Thermodynamic Coefieients 

The heat flux, Q, in Eq. (18) consists of heat conducted through the 
fluid element and chemical heat transported by diffusion of the reacting 
species. In  accordance with kinetic theory (14, I @ ,  we may write 

where k is the coefficient of thermal conductivity (usually referred to as 
the “frozen” conductivity) and pk,  hk, and Vk the density, specific 
enthalpy, and diffusion velocity of the kth species, in an n-species gas. 
In  writing Eq. (36) we have neglected thermal diffusion and pressure 
gradients, as is usually done. Evaluation of the second term in Eq. (36) 
is exceedingly difficult unless the mixture is a simple binary gas. 

For a binary nonionized gas, Fick’s law gives 

p k V k  = -pDizvCk, k = 1, 2 (37) 

where c k  is the mass-fraction concentration of the kth species and Dl2 is 
the binary-diffusion coefficient. A Lewis number can be defined as 

where is the average specific heat. Using the above definition, Eq. (36) 
can be written 

2 

The Lewis number thus determines the amount of heat transported by 
diffusion. When Le = 1, the heat flux is independent of the diffusing 
species. 

For a multicornponent nonionized mixture one can assume (14) that 
the various Dkl are similar and use an average diffusion c0efficient:‘This 
cannot be done when the gas is ionized or not in thermal equilibrium 
because the electrons then have a higher diffusion velocity than all the 
other particles. 

The transport coefficients k,  p, and Dkl are difficult to determine for a 
multicomponent, reacting, partially ionized gas. Calculations have been 
made, using the standard techniques of kinetic theory, but these differ in 
their results because of various assumptions made as to the collision cross 
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sections. It is felt that calculations using the low-temperature cross 
sections, for example, (14) or (16), are as reliable as any others a t  the 
present time. A good summary of all high-temperature transport proper- 
ties is given in (16). One remark should be inserted here about the 
diffusion coefficients, however. 

2. DiJusion in Ionized Gases 

In  high-temperature air, good agreement between theory and experi- 
mental values of heat transfer in the absence of applied fields has been 
found when the gas is assumed to  be a binary mixture such that Dk;t 
is the binary-diffusion coefficient. The Lewis number assumes values 
(1'7) near Le - 1.4 for T 5 9000°K. For other mixtures a t  high tempera- 
tures where measurements are not available, a kinetic-theory approach 
such as that described in (14) is adequate. 

The theory of (14) considers an unbounded medium where the diffusion 
of electrons and ions takes place independently, i.e., free diffusion. It was 
pointed out in Section I,B,l, that this is not possible near a boundary 
where concentration gradients will lead to gross space charge if the ions 
and electrons move at  different velocities. The kinetic theory of a parti- 
ally ionized three-component gas is given in some detail by Finkelnburg 
and Maecker (15), but it is too lengthy to reproduce here. It can be 
shown, however, that in the absence of strong normal electric fields the 
diffusion of charged particles (as a group) to  the wall obeys essentially 
the same law as does the binary gas of Eq. (39). In  the presence of strong 
fields the electrons are accelerated to very high thermal velocities, and 
the gas is unlikely to be in thermodynamic equilibrium. 

8. Electric Conductivity 

The electric conductivity, which determines the heat transport in an 
indirect manner, is one of the best-defined of the transport properties 
because it is relatively easy to measure. 

When Hall effects are not considered, u is a scalar function of tempera- 
ture and density. Lamb and Lin (18) have measured u for high-tempera- 
ture air a t  various pressures. Among others, Brunner (8) has calculated u 
for air when Hall effects and ion slip are important; his equations are 
based on kinetic theory and are hence applicable to other gases. In  many 
cases it is desirable to seed the gas with some low-potential ionizing agent; 
Brunner's methods also apply in this case and he has calculated u for air 
seeded with 1 % potassium. 

The natural variation of u with temperature (or degree of ionization) 
follows an easily remembered pattern. For degrees of ionization less than 
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0.1 %, u is an exponential function of T,  rising rapidly; as the ionization 
exceeds this value, u - TSa. 

F. Rfisu~fi  

Before embarking on a survey of the classical MHD heat-transfer 
problems, let us summarize briefly the following pertinent facts which 
have emerged from this section. 

First, the ponderomotive force u(V X B) X B which is caused by the 
interaction of the magnetic fields and the velocity always acts in a direc- 
tion which will decelerate the flow. We may therefore expect an increase 
in drag (considered as, say, “magnetic” drag) whenever the pondero- 
motive coe6cient S is greater than 1. Conversely, the friction drag would 
decrease because the velocity is lower. 

The ponderomotive force due to the applied electric field UE X B will 
accelerate the flow if E is opposite in direction to the induced electric 
field UV X B. Otherwise, it will decelerate the flow whenever SK is 
greater than 1. 

The deceleration of the flow will always cause a decrease in heat 
transfer if the Joule dissipation term is zero. This term vanishes only 
when E = -V X B, or, equivalently, when V X (V X B) = 0. For an 
incompressible fluid this reduces to the condition that 

(B * V)V = (V V)B 

i.e., a condition which depends on the geometric relation of the velocity 
and field which cannot be determined a priori. When an electric field is 
applied the Joule heating is, in general, significant. 

The magnetic field will have no explicit effect on the stagnation 
enthalpy when the applied electric field is zero. It will, however, affect 
the magnitude of the viscous dissipation and should cause a reduction in 
heat transfer since the friction drag is less, although one would not expect, 
a priori, Reynolds’ analogy to apply in MHD flow. 

The magnetic field induced by the current J = u(E + V X B) will be 
generally assumed to be zero in most problems discussed here. To be 
neglected, however, its magnitude should be small in comparison with 
both the applied field and other forces in the momentum equation. 

The parameters of most importance in this analysis are the interaction 
parameter, S, the Hartmann number, M, and the generator coefficient, K .  
Other parameters will arise during the course of the investigation, some 
in conjunction with a special flow configuration. Others, which are 
pertinent to ordinary heat transfer (Nusselt number, Stanton number), 
are not changed in definition by the electromagnetic field. 
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We will henceforth be discussing flows in which the Reynolds number is 
moderate (laminar flow), and the magnetic Reynolds number is small. 
Equations (ll), (ls), (IS), and (23), or their dimensionless counterparts, 
constitute the basic set of equations, along with an equation of state, 
transport properties, and boundary conditions. 

When boundary-layer problems are considered, the above equations, 
with the exception of the additional MHD terms, will assume their 
usual forms in the boundary-layer approximation. The methods of 
solving the MHD boundary-layer equations are straightforward. Tech- 
niques involving similar solutions or series expansions are employed just 
as in the field-free case. Because the reader is assumed to be familiar with 
such procedures, these solutions are not discussed in detail. 

III. Free Convection 
Among the classical hydrodynamic flows which already contain a body 

force are those associated with natural convection. When MHD became a 
popular subject, it was only normal that these flows be investigated with 
the additional, ponderomotive, body force &s well as the buoyant force. 
At  first glance there seems to be no practical application for these MHD 
solutions, for most heat exchangers utilize liquids whose conductivity is 
so small that prohibitively large magnetic fields are necessary to influence 
the flow. But some nuclear power plants employ heat exchangers with 
liquid-metal coolants, so the application of moderate magnetic fields to 
change the convection pattern appears feasible. 

Another classical natural convection problem is the thermal instability 
which occurs in a liquid heated from below. This subject is of natural 
interest to geophysicists and astrophysicists, although some applications 
might arise in boiling heat transfer. 

Before these topics are discussed, it is worthwhile to mention another 
free-convection problem in which electric forces, rather than the usual 
MHD forces, play a significant role. 

A. FREE CONVECTION IS ELECTROSTATIC FIELDS 
The ponderomotive force is by no means the most important of the 

electromagnetic forces in free convection. It was pointed out in Section 
II,A, that the electrostrictive forces would be neglected in this treatment 
of iMHD flows because they were small. This is not necessarily true in a 
heated, low-velocity fluid subjected to an electric field. In liquids or gases 
with polar molecules, for example, the dielectric susceptibility will depend 
on both the density and the inverse power of temperature, so that the 
resulting force due to an electric-field gradient behaves much like the 
buoyancy force in pure convection. 
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The electrostrictive effect was first noticed by Senftleben and Braun 
(19) in 1936. They were studying the free convection of gases in a hori- 
zontal cylinder with a heated wire placed along the cylinder axis. When 
an electric field was applied between the wire and the cylinder, the heat- 
transfer rate increased by as much as 50% if the working fluid was 
paraelectric (i.e., the molecules carry a permanent dipole moment). 
Theoretical predictions of the Nusselt number, based on similarity 
arguments, were found to be inadequate when later workers extended 
the experimental domain. Studies recently made a t  Purdue University 
(20) determined the Nusselt number semianalytically and found that the 
increase in Nusselt number due to the electrostrictive force was a function 
of the Prandtl number, the Grashof number, the Senftleben number, and 
an empirical constant depending on the ratio of wire to cylinder diameters. 
The Senftleben number behaves in much the same way as the Grashof 
number of Eq. (27) ; if the gravitational force g is replaced by yEa2/d one 
obtains the Senftleben number. Here y specifies the temperature depend- 
ence of the electric susceptibility, E, is the electric field a t  the surface of 
the wire, and d is the wire diameter. The analytic results compare well 
with the experiments when the product (Senftleben) (Grashof) is small; 
the comparison is better for gases than in liquids. It is also shown in (20) 
that the energy equation retains its usual form [Eq. (18)] if the elec- 
tric susceptibility and magnetic permeability are given by the Debye 
theory. 

Other electrostatic effects have been noticed in the natural convection 
of a liquid in strong electric fields. For example, Schmidt and Leidenfrost 
(21) found that the heat transfer in certain nonconducting oils (paraffin, 
beeswax, and castor oil) was greatly increased when an electric field was 
applied. These increases could not be attributed to the electrostrictive 
effect, but were shown to result from the formation of electrically charged 
 ball^'^ of fluid which wandered in an irregular manner between the 
electrodes. An electrohydrodynamic model of this phenomenon does not 
presently exist, but one would suspect that the oil became charged 
through friction and that the electrostatic body force contributed to the 
peculiar convection patterns which evolved. 

The essential element in considering these usually neglected forces is 
their magnitude in comparison to  the inertia and shear terms in the 
momentum equation. In  a forced convection flow these forces would be 
too small in magnitude to ever influence the flow. 

B. THERMAL INSTABILITY 

Cowling (lea) attributes to Wal6n the idea that a magnetic field will 
inhibit the onset of convection in a liquid heated from below. The 
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principle, for a high magnetic Reynolds number, is that when convection 
tends to bend the magnetic-force lines, the associated tension p e H 2  leads 
to a volume force opposing any further bending. 

Lehnert and Little (23) gave a striking demonstration of the ability of 
the applied field to arrest the formation of convection cells, a demonstra- 
tion in which both a pure-conduction region and a cellular-convection 
region appeared in the same liquid. This was made possible by placing a 
container of heated liquid mercury on the edge of the magnetic pole piece 
so that part of the liquid was in a normal field and part was in an oblique 
field. The liquid subjected to the strong vertical magnetic field remained 
stable, while the other portion exhibited typical Benard cells. 

The theory of thermal stability for a wide variety of configurations was 
developed by Chandrasekhar (124), who showed that the critical Rayleigh 
number at  which convection first occurs is a function only of the boundary 
conditions at  the surface of the heated liquid and the Hartmann number 
defined as 

M = B cos Od 4 (40) 

where d is the depth of the liquid and 8 is the angle of incidence between 
the magnetic field and the liquid surface. The critical Rayleigh number 
was found for three cases of a horizontal layer heated from below in a 
transverse field: (a) both surfaces free, (b) one free, one rigid, (c) both 
surfaces rigid. In  all cases as M -+ m, Ra, = 7r2M4, where the Rayleigh 
number is defined in the usual sense as Ra = (Pr)(Gr). 

Chandrasekhar’s theory was verified for M > 10 and case (c) by 
Xakagawa, who performed a series of experiments (126, 26, 127, 128) with 
various magnets. Although the upper surface in Nakagawa’s experiments 
was “free,” a contaminant film that prevented any motion of the surface 
formed on the surface of the heated mercury. The data from Nakagawa’s 
experiments are given in Fig. 1 with the theory for rigid boundaries and 
the asymptotic prediction. Figure 1 shows good agreement over a wide 
range of Hartmann numbers and liquid-layer depths, although there is 
some divergence for d = 0.06 m. 

The region to the left of the curve in Fig. 1 is unstable. For M = 0, 
Ita, = 1708, so that an appreciable increase is gained in the maintenance 
of a pure conduction mode by the application of even moderate magnetic 
fields. Even after convection is established, the magnetic field influences 
the transport of heat in a favorable manner. This was predicted and 
experimentally verified by Nakagawa (28, as), who established that the 
convective heat transport is characterized by a linear function of the 
temperature difference between the upper and lower surfaces, a t  least for 
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values of Rayleigh number near Ra, and for large values of the Hartmann 
number. This relationship can be written in terms of the Nusselt number 
as 

Nu = 1 (Ra < Ra,) 

(41) Nu = 1 + C(1 - 2) (Ra > Ra,) 

where the Nusselt number for the pure-conduction mode was normalized 
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FIG. 1. Variation of critical Rrtyleigh number with Hartmann number for liquid 
mercury heated from below. 

for convenience by Nakagawa to eliminate the dependency on Rayleigh 
number. We have plotted the factor C in Fig. 2 as a function of Hartmann 
number; Figs. 1 and 2 permit Eq. (41) to be evaluated for any given 
magnetic field. 
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The experimental agreement with Eq. (41) is best for M > 100; below 
that value, the observed heat transport is less efficient than the relation 
indicates. This is attributed by Nakagawa to the fact the the convection 
cells are larger for small values of 11, and that the development of the 
amplitude of convection might be delayed by frictional effects in the 
experiment (the liquid layer was only 0.03 m deep). For large values of 
the Hartmann number, the magnetic field decelerates motion normal to it 

Horlmonn number, M 

FIQ. 2. Theoretical variation of convective-heat-transport function with Hartmann 
nirmher for a liquid heated from below (29). 

and stretches out the coiwection cells longitudinally, hence permitting a 
more efficient transport of heat in the upward direction. 

c. SEVERAL KATURAL CONVECTION FLOWS 

1 .  Heated \‘attical Plafe 

Among the many geometries associated with classical natural convec- 
tion flows is the heated vertical plate. Here, the heat from the surface is 
transferred to the fluid, which causes a decrease in the fluid density and a 
subsequent flow upward due to buoyant forces. When a magnetic field is 
applied normal to the plate, the ponderomotive force will act in a down- 
ward direction to inhibit the flow and to reduce the heat transfer to the 
fluid. 
[2901 



FIELD INFLUENCE ELECTRICALLY CONDUCTING FLUIDS 

The basic equations of Section II,B, indicate that this problem is 
rather formidable if the momentum, energy, and magnetic equations 
remain coupled. In  practice, assumptions are made which facilitate the 
solution. These are 

(a) The magnetic Reynolds number is small 
(b) Viscous and Joule dissipation are neglected 
(c) The fluid is semiincompressible: the density is constant except in 

its contribution to the buoyant forces; the fluid thermodynamic 
properties are constant 

(d) The applied electric field is zero 

Assumption (a) uncouples the momentum and magnetic equations ; 
assumptions (b) and (c) uncouple the momentum and energy equations; 
assumption (d) is physically realistic for a single plate. 

The assumption that Re, = 0 is probably more justified in free- 
convection flow than for any other case discussed in this article. This 
occurs because the velocity is much lower. Poots (SO) has shown for the 
free-convection flow between heated vertical plates that when 

Bo = 0.0384 weber/m2 (384 gauss) 

the induced field is less than the value of the earth’s magnetic field! 
Since this field is neglected in all practical MHD problems, it seems 
justified to  ignore the effect of the induced field in the momentum equa- 
tion even for strong applied fields. 

The generalized conditions under which it is possible to  neglect viscous 
and Joule dissipation have already been discussed in Section II,D. For 
the mean viscous dissipation to be unimportant, the Eckert number must 
be small. This is certainly true in a low-velocity heated fluid. The mean 
Joule dissipation is small when M2(K + 1)2 < 1/&. If the system is 
short-circuited to satisfy the electromagnetic boundary conditions, then 
M2 < 1/&, which is again true for relatively high magnetic fields. 
Finally, assumption (c) is generally made for natural-convection flows, 
and there is no reason to disregard it now that magnetic fields are present. 

We should say a word about the boundary conditions in this type 
of flow. First, the usual thermofluid-dynamic conditions of continuity 
and no slip will hold. As far as the electromagnetic conditions are con- 
cerned, when no electric field is applied only the induced current will be 
present. It will flow in closed loops transverse and parallel to the plate. 
Continuity will be established only a infinity, although in practice a short 
circuit could easily be arranged. The applied magnetic field will have only 
the normal component, which must satisfy Maxwell’s equations. 

P911 



J l A R Y  F. ROMIG 

Under these assumptions, Eqs. (l l) ,  (15), and (18) can be written in 
terms of the plate length and conditions at  the edge of the layer as 

au av - + - = o  ax a Y  

ae ae 1 a2e u - -+v-=--  ax a Y  PrReaY2 (44) 

where X = x / L  is along the plate and Y = y/L is normal to it. The 
reference conditions on temperature are the adiabatic temperature and 
the wall temperature. Equations (4244) are of the usual t,hermal- 
boundary-layer type with the exception of the additional force terms 
for the electromagnetic fields. Equations of this sort are generally solved 
by a series expansion when B is constant or by application of the method 
of similar solutions. In  this case B(z)  must vary in a manner specified by 
the similarity transformation. (See Section III,C, 1 .) 

a. Constant Magnetic Field. Sparrow and Cess (31) obtained a solution 
by series expansion in powers of the parameter AX2, when Bo is constant, 
where 

2M2 - ponderomotive force 

d c r  
A = - -  

[buoyant force X inertia force]% (45) 

This parameter, which has been called the Lykoudis number, will 
generally be of order one, depending on the magnetic-field strength, since 
the Grashof number must be of order (Reynolds number) for the buoyant 
forces to induce convection. 

Their results for heat transfer can be written in terms of the mean 
Xusselt number over the plate 

where Nuo = -0.40480’ (Gr)t’ is the mean Nusselt number without a 
magnetic field, and 8’ is the temperature gradient a t  the wall. Solutions 
were obtained for Pr = 10,0.72, and 0.02. The first two values correspond 
to, say, electrolytic solutions and partially ionized air, and the last to 
liquid metals and highly ionized air. The conductivity for electrolytes 
(e.g., salt water) is on the order of 10 mho/m, while that for liquid 
mercury is about 106 mho/m. It is evident that very large magnetic fields 
(on the order of 1 weber/m2 or lo4 gauss) would be necessary in the case 
of salt water if the parameter A is to  be on the order of one. 
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We have plotted Eq. (46) in Fig. 3 for Pr = 0.72 and 0.02, along with 
another solution of this problem, which will be discussed shortly. It is 
obvious from Fig. 3 that the magnetic field reduces the heat transfer t o  
the fluid and inhibits the growth of convection. In  fact, if M is large 
enough, Nu = 0, which would imply that the magnetic field has effec- 
tively stopped convection. The solution for A >> 1 may be invalid because 
of the series truncation in Eq. (46). 

b. Variable Magnetic Field; Similar Solutions. It is of interest to com- 
pare this solution with one in which the field varies along the plate. A 
variation in B could be imposed arbitrarily, like the experiment by 
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FIG. 3. Variation of the mean heat transfer with magnetic field for a heated vertic 1 

plate, showing the effects of Prandtl number and two different field configurations. 

Lehnert (13) for demonstrating convection patterns. More often, how- 
ever, the field is made variable because the governing equations cannot be 
solved in closed form unless B = B(z) .  

Lykoudis (32') derived the conditions on n for B = B&)" such that 
Eq. (43) will have similar solutions (i.e., will be independent of x under a 
similarity transformation). He showed that it is necessary for n = ->/4 
in order that the free-convection case may become independent of x. 
Gupta (33) obtained a similarity solution using integral methods. 
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The technique of obtaining similar solutions to the momentum equa- 
tion is used quite often in ordinary fluid mechanics. Its application to 
MHD problems follows a tradition of somewhat unfortunate impositions 
on the boundary conditions which cannot always be simulated in practice. 
For example, the similar solutions to boundary-layer mass-transfer 
problems demand that the wall velocity vary as x?’, which is not success- 
fully met experimentally with a uniformly porous plate except far down- 
stream from the leading edge. When similar solutions are obtained for 
the MHD case, the applied magnetic field must also vary in a way which 
may be difficult but not impossible to meet experimentally. 

Even more important, the use of similar solutions in MHD, which is 
also discussed in Sections V and VI, has aroused some criticism because 
the magnetic field does not satisfy Maxwell’s equations. To be sure, 
Eqs. (2-5) are not satisfied exactly when B = B(z)  alone, but neither are 
they satisfied exactly when the induced field is neglected. By proper 
design of the magnet the variation in B normal to the plate can be made 
small and, in the mean, it can be said to vanish, which is a valid approxima- 
tion to  Maxwell’s equations in the same manner by which an integral 
method can be used to satisfy the boundary-layer equations. The same 
comment applies to the neglect of the induced field in the fluid, for that  
also approximates Maxwell’s equations in much the same sense thak the 
boundary-layer equations are an approximation to the Navier-Stokes 
equations. 

Again we mill be interested in solutions for low Prandtl numbers. 
1,ykoudis obtained both analytic and machine solutions for the heat 
transfer when 0.01 5 Pr 5 0.73. We have shown the results of his 
machine calculations in Fig. 3. It appears that the mean heat transfer is 
not reduced so much, or the flow decelerated so effectively, when the mag- 
netic field is variable. This is cspecially true at low Prandtl numbers and 
A ‘ S  1, which is the region of most validity of the series solution of (31). 

Sparrow made a comparison of the local heat transfer, Nu(x), a t  a given 
station for these two solutions under the condition that the local magnetic 
fields were the same at the station under consideration. He found that 
the local heat-transfer coefficients were in close agreement for all values of 
AXz up to and including unity, basing his comparison only on the data 
available to him for Pr  = 0.73. For higher values of AX2, the results of the 
constant field solution were lower. He attributed this deviation to either 
upstream influence or, perhaps, t o  the series approximation made kn his 
solution. Figure 3 indicates that the deviation is most likely due to up- 
stream influence which becomes more important as the Prandtl number 
decreases, i.e., as the boundary layer becomes more transparent to heat. 
On a phvsical basis, this difference might be due to the fact that the large 
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magnetic field a t  the leading edge of the plate has little effect on the heat 
transfer to the fluid because the velocities there are so low. Farther up 
the plate, where velocities have increased, the magnetic field strength has 
dropped below the constant value assumed by Sparrow, and the pondero- 
motive force is again less than it would be for the constant-field case. 
The upstream heat transfer is therefore greater than that calculated for 
the constant magnetic field, and the net heat transfer to the fluid is 
larger. 

2. Convection Between Parallel Vertical Plates 

A slightly more complex situation arises when the flow between 
two heated plates is examined, since an additional parameter (the 
wall-temperature difference) enters. However, this geometry permits a 
one-dimensional flow problem to be studied. Poots (SO) has made an 
exhaustive analysis of this case, including the Joule heating, viscous dissi- 
pation, and internal heat sources in the energy equation. Gershuni and 
Zhukhovitskii (34) have treated the situation where the walls were a t  
equal temperatures, but did not include the dissipation terms in their 
analysis. 

In  Poots’ investigation, the parallel plates are combined with elec- 
trically insulated walls to form a channel. The induced current will then 
flow in closed loops parallel and transverse to the plates as long as an 
electric field is applied to the walls so that the mean current flow across 
the plates is zero. This condition implies that the induced magnetic field 
vanishes a t  the vertical plates, an implication which is consistent with 
the boundary conditions discussed in Section I1,C. The configuration is 
identical to that of the Hartmann channel-flow problem discussed in 
Section IV,A. The heat transfer depends, in his study, on four parameters: 

9 the plate-temperature-diff erence ratio TWi - T, 
Tw2 - T, x =  

1 the dimensionless heat source &a2 
‘*.= k(TW2 - T,) 

M = Boa d&, the Hartmann number 

K = PrGr 89a -, a dimensionless heating parameter where 
‘ p  a is the distance between the plates. 

(The difference between these numbers and those of Section II,D, evolves 
from a different dimensional analysis.) A series expansion was made in 
powers of K ;  for liquid mercury or sodium this is reasonable, for although 
Pr  . Gr is generally large, the coefficient Pqa/C, is small so that K 2 O(1). 

P951 



MARY F. ROMIG 

NU- Nuc t 1 N u -  
\ 

I d Pr Gr 8g o/C, 

Poots verified that the trends for A4 = constant were the same as for 
the magnetic-free case: an increase in h or Q* increased the mass flow and 
temperature; and the viscous dissipation affected the velocity and tem- 
perature; profiles, for as K increased (A, Q* constant), the velocity increased 
and the heat transfer to the fluid was altered. By letting h, &*, and K 

0 50  too I50 200 
Hartmann number, M 

FIG. 4. The reduction in dissipative heat transfer with increase in magnetic fields 
for plates of equal temperature ($00). 

remain fixed, and by varying hI, he showed that the velocity and tem- 
perature were reduced, due to  the downward ponderomotive force. 
Numerous tabulated results for heat transfer and mass flow are given in 
(SO) for various h, &*, K ,  and 31. They indicate that for moderate values 
of K the dissipative terms in the heat-transfer equation can be neglected, 
especially as 11 increases. 

This trend is quite apparent in Fig. 4, where we have plotted the dis- 
sipative portion of the total heat transfer as a function of Hartrnann 
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number and internal heat load for the case of plates at  equal tempera- 
tures. The Nusselt number in Poots’ analysis 

(47) 

consists of that due t o  pure conduction, Nuc(&*, A), and that due to dis- 
sipation, Nua(Q*, h, M). Since Nu, can be quite large (Nu, - 50 for 
Q* = 100) and K is on the order of one, the heat transfer is primarily due 
to  conduction, even a t  M = 0. 

It is not possible to make any general comparisons between the solu- 
tions of Section III,C,l and the tabulated values for h # 1 provided 
by Poots. This is due to  the fact that the solutions of Section III,C,l, 
assumed that the applied electric field was zero, while Poots’ solution is 
for the insulated case, where E = -ui iB~,  and where a is the mean 
velocity in the channel. 

3. Other Solutions 

Poots (SO) also considered a problem which has no classical fluid- 
dynamic analog; that is, the problem of natural convection in a hori- 
zontal tube in which an axial current is flowing (see Fig. 5) .  The equations 

Nu = NU, + K N U ~  + O(K’) 

E 

J- 

(induced) 

Electrically insulated walls 

(0) 

@ ~ s o ~ ~ e r m o ~ c o r e  I 

5 

I 

(b) 
FIG. 5. Free convection in a horizontal tube in an electrostatic field; (a), Electro- 

magnetic configuration; ( b ) ,  Convection pattern. 
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for the central portion of the tube are the same as for the vertical plates 
with Q* = 0; the electromagnetic field is identical with that for an 
infinitely long cylindrical current-carrying wire. He again employed a 
series-expansion technique and found that the 0th order solution gave 
a temperature distribution and magnetic field identical to  the classical 
Joule heating problem in a long cylindrical wire. But in a fluid the tem- 
perature gradients induce a nonuniform motion which modifies the cur- 
rent density and field structure iri a manner shown in Fig. 5. These cells 
would be set up, as K increases, so that an isothermal core would exist 
with flow traveling up the center and around the side in a boundary 
layer. Whether or not this flow is stable was not discussed. It should 
also be mentioned that in this particular problem the electrostrictive 
forces may become important (see Section 111,.4). 

Cramer (35) has investigated the free-convection flow in a vertical 
isothermal pipe in a transverse field, but he does not discuss heat transfer 
explicitly. Lu (36) examined free-convection flow past a porous plate 
with suction; but again the heat transfer is not given in easily accessible 
form. Reeves (37) has inspected qualitatively the combined effects of 
nonuniform wall temperature and magnetic field on the heated vertical 
plate. Mori (38) also solved the vertical-plate problem, but there appears 
to be an error in the governing differential equations (39). 

D. CONSEQUEXCES AND IMPLICATIONS 
It was shown in this section that the application of a magnetic field 

normal to a heated wall reduced the heat transfer from the plate to the 
fluid but also decreased the fluid velocity. This will affect the hydro- 
dynamic stability of the flow. Gershuni and Zhukhovitskii (39) have 
calculated the critical Grashof number for flow between parallel vertical 
plates and Pr = 0.02. They show that the minimum critical Grashof 
number increases from 405 to  4500 as M increases from 0 to  10. However, 
in the case of a single plate, the magnetic field may produce inflection 
points in the velocity profiles. This destabilizing effect may actually 
lower the transition point (10). 

The decrease in fluid velocity is not necessarily beneficial. If these 
devices are used as heat exchangers in nuclear reactors, it may be expe- 
dient to circulate the radioactive metal by other means, possibly by 
pumping. 

Lykoudis (32) showed that it was feasible to  study free-convection 
problems in the laboratory by utilizing liquid mercury. This is one of 
the few hlHD heat-transfer problems which adapts itself t o  a “clean” 
experiment. Experiments of this type are now in progress at Purdue 
(4). 
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IV. Heat Transfer in Channel Flow 
The analysis of magnetohydrodynamic flow through ducts has received 

considerable attention. This class of flow has many applications in the 
design of MHD generators, cross-field accelerators, shock tubes, pumps, 
and flowmeters. In  many cases the flow in these devices will be accom- 
panied by heat, either that dissipated internally through viscous or Joule 
heating, or that produced by electric currents in the walls. 

Internal MHD flows fall naturally into categories which depend on 
their field configuration. For example, in a typical MHD generator a dc 
magnetic field is applied normal to  the moving fluid. When electrodes 
are connected to the walls, perpendicular to B and V, the induced electric 
field will cause currents to flow through the plasma and an external load. 
These electrodes serve the same purpose as does a brush in an ordinary 
generator. Energy is transferred to the load a t  the expense of kinetic 
energy of directed motion of the fluid. Such a device would be used in a 
heat cycle, which would be conventional except for the high temperatures 
involved. It would take over the functions of both the turbine and the 
generator in the cycle. 

An MHD power generator has no moving parts, other than the fluid. 
But the temperatures of the working fluid will be high in order to obtain 
adequate a; if it is seeded it may be contaminated with alkali metals 
and be subject to corrosion problems; and, finally, it is difficult to obtain 
adequate velocities without long entrance lengths. In a generator, the 
power output per unit volume varies as uu2, while the heat generated 
per unit length varies as au. Thus one or the other will have to be mini- 
mized (41) for a given reservoir temperature to obtain an optimum 
output. 

The MHD accelerator works in the opposite sense to a generator. By 
application of an external field opposite to the direction of the induced 
field, energy is transferred to the gas by Joule heating and the pondero- 
motive force. Both the generator and the accelerator are limited by high 
temperatures, the Hall effect, and sheath formation a t  the electrodes, 
since operation at  low pressures is usually desirable to  decrease the heat 
transfer . 

A device which is not plagued by these high-temperature problems is 
the liquid-metal flowmeter (4%’). It utilizes the voltage induced in the 
flow by the applied field. The potential difference measured between the 
electrodes will indicate the flow rate. Heat transfer is not likely to be 
an outstanding problem here unless the flowmeter is used in heat 
exchangers. The same remarks can be applied to liquid-metal pumps. 

Most research eff ort has been directed toward one-dimensional incom- 
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pressible laminar flows with transverse magnetic and normal electric 
fields. The popularity of this model is due primarily to its mathematical 
simplicity, since in actual operation the flow will most likely be turbulent, 
two-dimensional, and, if the working fluid is a gas, compressible. Flows 
with parallel magnetic fields, such as a circular channel with an axial 
magnetic field, have found application in shock-tube studies. In a one- 
dimensional flow, the parallel field does not influence the velocity distri- 
bution, but it will in theory delay transition to turbulent flow arid tend 
to prevent the transport of heat and momentum across the field lines. 
An axisymmetric flow with a normal field, such as a pipe flow in a radial 
magnetic field (43), is difficult to study experimentally. 

It is possible, because of the simplicity of the one-dimensional equa- 
tions, to establish trends with 11 and K that will apply in a general 
sense to the more complex situations associated with two-dimensional or 
compressible flows. Therefore, the classical Hartmann channel-flow prob- 
lem is discussed in some detail in the next section. 

A. ONE-DIMENSIONAL INCOMPRESSIBLE FLOW 

The Hartmann problem (1, 2)  and extensions of it involve Eitrictly 
one-dimensional flows between parallel plates of spacing 2a, as sketched 
in Fig. 6. A channel is formed by placing the side walls a t  a distance 

t 1. 
u -  2 0  /--I 

I 

t 

t 
Bo 

FIG. 6. One-dimensional flow. 

is long enough that the flow is fully developed 2d >> 2a apart. The channel - - 

and no axial currents exist. A constant magnetic field is applied normal 
to the plates, and an electric field is applied normal to the side walls. 
In the following discussion, the plates will not be considered to be elec- 
trically conducting. When they are, the problem is exceedingly difficult 
and can only be solved in special cases (44). 

1 .  The Basic Equations 

Under the assumption that there is only one velocity component, and 
that no axial or transverse variation of any parameter is permitted (with 
[3001 
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the exception of pressure), the electromagnetic equations can be written 

0 = j ,  - aE, = j ,  = aEV 

j z  = a(& + uB,) 

from Eqs. (9), (3), and (2), respectively. It is easily deduced from Eqs. 
(48) and (49) that E, = Ea, = 0 and E, = constant = EO everywhere. 
For the magnetic field, B, = constant, from Eq. (50). But B, = 0 out- 
side the fluid so B, = 0 everywhere. Since a normal field BO is applied 
at  infinity, By = Bo by reasons of continuity. (We shall defer discussion 
of B, until Section IV,A,2.) 

The MHD equations are now written in dimensionless form, referring 
all parameters to the reference conditions Bo, Eo, Q (the mean velocity), 
and a, the channel radius. The momentum equations are 

and 

J , = K +  

where j ,  = .j,/utiBo, and where 

(53) 

the generator coefficient, K ,  the pon- 
deromotive coefficient, s, and the two Reynolds numbers were defined 
in Section I1,D. The continuity equation is automatically satisfied for 
one-dimensional flow, and the energy equation will be deferred until 
Section IV,A,4. The induced magnetic field B, does not enter into Eq. 
(51)) since the flow is one-dimensional and B, does not interact with the 
fluid to generate a current in the z-direction. If the relation given in 
Eq. (50) for j ,  were used, then the derivative of B, would be present 
rather than the applied field Bo. We have therefore not assumed any- 
thing about Re, other than the fact that B, << BO at infinity. 

The solution of Eq. (51) for the usual fluid-dynamic boundary condi- 
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tions that U ( t -  1) = 0 is 

- K - -  ap*/ax] [ 1 - cash ___.._ M Y ]  (54) S cosh M 

where YI is the Hartmann number of Eq. (30).  The average velocity in 
the channel is written in dimensional form as 

so that 

or 

[ r  = -__ 3l - CoshnIy] 
cosh M M - tanh RI [ 

(56) 

(57) 

Both Eqs. (54) and (57) are of interest. Equation (5.1) shows the effect 
of changing the pressure head, ponderomotive force, and generator coef- 
ficient on the velocity profile for a constant mass flow, while Eq. (57) 
gives an equivalent relationship in terms of Hartmann number. 

The current is obtained from Eqs. (53) and (57). Let j be defined as 
the mean current 

1 
J = 9; J ,dY  = K + 1 (58) 

from 1 3 1 .  ( 5 3 ) .  Then the total current can be written as the sum of the 
mean current and a circulating current, J,, as 

J ,  = K + U = J - (1 - U )  = J +  J ,  (59) 

wherc J ,  = - (1 - U) .  It is immediately obvious that the mean current 
vanishes when K = -1. This corresponds to a channel in which the 
walls are electrically insulating (ie., in which the only currents flowing 
are circulatory). When K = 0, there is no applied electric field and a 
mean current equal to the electromotive current exists everywhere in 
the channel. This corresponds to the electrically short-circuited case. 
The maximum operating condition for a generator occurs when K = 1. 

Equations (54) to (59) provide the information necessary for assessing 
the effects of the electromagnetic fields on the flow and heat transfer. 

2. The Induced Magnetic Field 

While we will not be fiutlier conceriied with tlie induced field, w\~lfl 
should ascertain the conditions under which it can be neglected. This 
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particular flow also offers an opportunity for discussing the boundary 
conditions on the induced field (see Section I1,C) in a simple flow problem. 

Writing the integral of Eq. (53) in the form 

we find that 

sinh ')] (61) 
Bz* = -Re, ( K Y  + M - tanh M ( Y -  M Gosh M 

whereB,*(O) = O,B,*(l) = -Re,(K+ l),andBz*(-l) = +Re,(K+ 1). 
It is apparent that the boundary conditions on B, are determined entirely 
from the mean current across the channel; this is physically realistic 
when the channel is thought of as a sequence of current sheets, each 
with its own induced field. This interpretation would imply that the 
induced magnetic field should vanish at the boundary only when there 
is no net current interior to  the region, i.e., only if J = 0 or K = -1, 
which is substantiated by Eq. (61). From a consideration of the fields 
outside the fluid, we see that B,* = constant satisfies both 

V X B = V - B  = 0 

Hence the induced field is given by Eq. (61) inside the fluid, and by 
the boundary values exterior to the fluid. 

The fact that B,*(Y) is symmetric with respect to the origin is of 
importance when the forces in the Y-direction are considered. Since J ,  
is symmetric about the z-axis, we can immediately conclude that the 
net ponderomotive force in the Y-direction vanishes, i.e., 

JzBz dY = o 
and that the induced field will not impose a net pressure in the Y-direc- 
tion. Therefore the only importance the induced magnetic field has in 
one-dimensional channel flow is its influence a t  infinity; i.e., its magnitude 
compared to the applied field Bo must be small. 

The magnitude of B,* at infinity will be, by continuity, its value a t  
the wall for a two-dimensional current sheet. In  absolute units 

B,*( m) = / K  + 11 Re, (63) 

When K = - 1, B,*( a) vanishes, regardless of the magnitude of Re,. 
For other values of K,  we must specify that IK + 11 Re, << 1 for B,* 
not to influence the applied field direction. For liquid mercury 

(64) 
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and for ionized air, it is orders of magnitude less. It appears that under 
practical operating conditions this condition can be fulfilled easily. 

3. Flow Characteristics 

The response of the total mass flow to the ponderomotive force and 
electric field is evident either from Eq. (55)  or, in a dimensionless form, 
from Eq. (56). For a zero electric field and a given pressure head, the 
flow will decelerate as M increases, due to the ponderomotive force uBo2. 
This deceleration is even more significant when Eo > 0, the generating 
mode. In the pumping mode, Eo acts in the opposite direction and power 
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FIG. 7. -Velocity distribution in one-dimensional channel flow. 

is added to the fluid instead of being extracted. This flow will accelerate 
in regions where the current is in the same direction as Eo, a condition 
which is met in the whole channel when K is larger (negatively) than - 1. 

The shape of the velocity distribution will not change with K since 
the electric field provides a constant body force on the fluid when the 
induced magnetic field is neglected. Equation (57) indicates that if the 
same mass flow is maintained in the channel as M varies, an  increase 
in the magnetic field will increase the ponderomotive force and flatten 
the velocity profile. We have plotted U for various values of M in Fig. 7 .  
For M = 0, the profile reduces to plane Poiseuille flow; for M -+ 00, it 
approaches slug flow. The shape of the profile as M increases will affect 
[304 
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the heat transfer by increasing the convection near the wall and by 
increasing the viscous dissipation. 

The current flow will be unidirectional throughout the entire channel 
only if K + U,,, > 0, or, since 

the condition on K is 

(65) 
M(c0sh M - 1) > 

-4- M cosh M - sinh M 

In  all other cases the current will change direction a t  some point. As 
M increases, this location moves closer to the wall, setting up what 
Hartmann called a “magnetic boundary layer.” 

The particular Y values where J ,  reverses (since J ,  is symmetric there 
are two of them) are given by the points at  which U ( Y )  = - K .  Since 
these points move closer to the wall as M increases, we can expect larger 
gradients to  exist in J ,  close to the wall, and, as a result, we also expect 
an increase in Joule heating. 

These effects will be seen more clearly if we turn now to  the energy 
equation for this geometry. 

4. Heat-Transfer Characteristics 

In order to establish trends with M and K it is necessary to define 
the reference conditions with which any comparison will be made. These 
are perfectly arbitrary, but the most natural ones for MHD channel flow 
are the following: 
(a) Constant mass flow (a = constant), which means that the pres- 

sure drop is adjusted as M and K vary 
(b) As M changes, K remains constant; this implies that the appIied 

electric field varies in such a way that the parameter 

&a &/CM 6 
remains constant as M --t 0 or M + m. These definitions should be kept 
in mind throughout the following discussion. 

The energy equation for a one-dimensional flow of a constant-densit y 
fluid is written from Eq. (18) in dimensionless form (AT here is an 
arbitrary, constant, temperature difference) 

when the internal heat source is zero and where 6 = -kVT.  Since U 
[3051 
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and J, do not vary with axial distance, the internal heat generated a t  
each axial station is identical. A heat balance on the moving fluid gives 

where Q = pczi AT and q* = q /Q is any heat added externally. Looking a t  
Eqs. (66) and (67), we can list the following items, resulting from the 
applied fields, which will influence the temperature response and heat 
transfer to the wall: ( a )  convection: A U ( Y ) ;  (b)  internal heat distribution: 
J Z 2  and ( d U / d Y ) 2 ;  and (c )  total heat input: &4 - p*. This list does not 
contain the usual fluid parameters, such as Reynolds and Prandtl num- 
bers, since they will be unaffected by the applied fields when the meaii 
flow is constant. 

a. Convection. We have already shown in Fig. 7 that as RI increases 
the convection will be larger close to the wall. If there where no internal 
heating, the temperature in the fluid would tend t o  become uniform in 
response to any external heat load as M increases. This situation could 
exist in very-low-velocity flows, where both the ohmic and viscous heat- 
ing are small (45).  This term vanishes, of course, when the wall tenipera- 
ture is constant. 

b. Internal Heat Distribution. The internal heat distribution due to 
viscous dissipation depends only on M. From Eq. (54), the ratio of viscous 
dissipation to the mean viscous dissipation in the channel is 

2 M4 sinh2 MY yg) = (M - tanh * cosh2 M 

The viscous dissipation is plotted in Fig. 8 as a function of Y for v't , rious . 
magnetic-field strengths. It is a t  maximum a t  the wall and increases 
with JI. This will enlarge the heat flux near the wall. 

It is more difficult to assess the ohmic heating because it is a function 
of both 31 and K .  When K = - 1, however, the net current vanishes 
and only the circulating current contributes to the heating. Using Eq. 
(.%), the Joule heating for this case (divided by the mean viscous dissipa- 
tion and A1*) is given in Fig. 9. It appears that this mode of operation 
(electrically insulated walls) produces internal heat very close to the walls. 
In fact, for large magnetic-field strengths, the viscous and ohmic dissipa- 
tion are of the same order of magnitude a t  the walls: 
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I I 12 

Normal distonce, Y 

FIG. 8. Comparison of dimensionless viscous dissipation in one-dimensional channel 
flow with the mean viscous dissipation in the channel. 

Normal distance. Y 

FIG. 9. Ohmic heating for electrically insulated walls in one-dimensional channel 
flow. 

It can be shown, however, that the maximum ohmic dissipation is 
larger than the mean viscous dissipation by a factor of MZ, which has 
prompted some authors to neglect the viscous dissipation in their analyses. 
Both Alpher (46) and Siege1 (4'7) solved Eq. (66) for K = - 1  under 
this assumption. They found that when M became sufficiently large the 
ohmic heating could exceed the energy supplied to the fluid by an external 
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source q*, and the fluid temperature could surpass the wall temperature 
(ie., there was heat conduction out of the fluid). Alpher’s solution of 
Eq. (66) gives, in the limit of large 31 

- 1 a t i s p  
3 k  6 k  

T, - 5”- 3- - -- M 

where E is the bulk temperature. Addition of the viscous heating to 
this analysis should cause the crossing point to occur for lower values 
of M. 

The current at the wall vanishes only when the device is short-circuited, 
which is evident from Eq. (61) when K = 0. We have plotted the ohmic 
heating distribution for K = 0 in Fig. 10. Most of the heat release is 

Norm01 6irloncr, Y 

FIQ. 10 Ohmic heating for short-circuit mode in onedimensional channel flow. 

in the center of the channel, and as M increases the profile becomes 
more uniform. 

In the short-circuit case, it is possible to neglect the viscous dissipa- 
tion as long as hl is large enough. For large values of the magnetic field, 
both the maximum viscous and maximum ohmic dissipation approach 
the same value: M*/(1 - l/M)*. However, the ohmic heating occurs 
throughout a large portion of the channel, while the viscous dissipation 
is confined in the magnetic boundary layer near the walls. The net result 
of this combination at high Hartmann numbers is a uniform heat source 
throughout the channel. This problem has not been solved except in 
the special caae of thermally insulated walls, although the solution could 
be obtained without too much difficulty. Perlmutter and Siege1 (46) show 
that the difference between the wall and bulk temperature is a minimum 
“81 
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when K = 0 and the walls are thermally insulated. As M increases, 
T,,, - T approaches zero, as would be expected. 

For other values of K the ohmic heating will dominate the viscous 
heating, and the distribution will depend on the particular value of K .  
For negative K the bulk of ohmic heating will still take place at  the 
walls, so the conclusions drawn for K = - 1  still hold. For K > 0, the 
heating will be larger in the center of the channel as M -+ QJ. 

c. Heat Transfer. While it requires considerable algebra to find the 
mean temperature for the case of variable wall temperature or external 
heating, we can show the variation in heat transfer when the wall tem- 
perature is constant merely by integrating Eq. (67). This yields 

1 (71) 
M sinh 2M - cosh 2M + 1 

q = - a M 2  (K 'Iz 2(M cash M - sinh M)2 I.La2 1 
which reduces to qo = 3pii2/a when M = K = 0. We have plotted the 
ratio q/po in Fig. 11 for various values of K. The dashed lines in Fig. 11 
are values of this ratio when the viscous-dissipation term is omitted in 
Eq. (66)) since this is often done in practice (46, 47). 

When M 4 m 

M2 M Q N ( K  + 1)2 -j- 
P O  jj + 

when the viscous dissipation is included. When it is omitted 

Thus for K # - 1 both solutions approach the same value as M increases. 
But when the wall is insulated, the heat transfer when viscous dissipation 
is neglected is lower by a factor of 2. This is evident in Fig. 11, where 
the behavior at  large Hartmann numbers is already evident for M > 5.  
The neglect of viscous dissipation is therefore not justified when the wall 
is insulated ( K  = - 1). 

For other values of K ,  the ohmic heating is quite pronounced, for 
q/qo increases rapidly with M. Notice also in Fig. 11 that the heating 
in the accelerator mode is equal to that in a generator mode with a lower 
coefficient; the curves for K = -3  and K = 1 are equal, for example. 
This implies that generators with practical efficiencies (say, for K - 0.8) 
the heating problem may be as severe as in an accelerator in which con- 
siderable energy is deposited by the electric field. The reason for this is 
that the comparison in Fig. 11 is being made on the basis of constant 
mass flow, which is unlikely when a generator and an accelerator are 
being compared. 
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FIG. 11. Convective heat transfer to the walls in one-dimensional MHD channel 
flow for the case of constant mass flow and constant wall temperature. 

5. Other Solutions 

Although this has been, an extensive discussion of heat-transfer charac- 
teristics in one-dimensional MHD Aow, we have by no means covered 
all of the cases treated in the literature. As mentioned previously, Siege1 
(47) and Alpher (46) solved the energy equation with a uniform external 
heat flux for K = - 1  and no viscous dissipation. [The solution of Eq. 
(66) is such that it is easy to  hcur  algebraic errors. Alpher points out 
an error in Siegel’s work (47) and the author found one in (46). It is 
suggested that any expressions for T, - be checked independently.] 

Alpher’s treatment also includes the effects of electrically conducting 
plates when K = -1. (In many cases of interest the plates will heat 
up during operation and become conductors.) His analysis shows, for 
large magnetic fields, that a decrease in plate resistance will cause the 
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mean fluid temperature to approach the wall temperature. However, for 
very large M, the temperature response becomes independent of the wall 
conductivity. 

Perlmutter and Siege1 (46), besides solving Eq. (66) for various values 
of K and M, also investigated the thermal-entrance region for this flow. 
(The velocity profile was taken as fully developed.) Shohet et al. (4.8) 
considered the entrance problem per se, and obtained solutions for the 
pressure, velocity, and temperature variation at  the channel entrance. 
They found that an increase in magnetic-field strength decreased the 
length necessary for the velocity to reach its nominal fully developed 
value. Subsequently, the temperature distribution would also be inde- 
pendent of axial length sooner than when M = 0. 

B. BOUNDARY-LAYER EFFECTS : TWO- DIMENSIONAL CHANNEL FLOW 

In  all large rectangular flow devices a boundary layer will form on 
the channel walls and the flow in the center will be inviscid. The boundary 
layer is deleterious as far as operating efficiency is concerned, because 
it changes the effective area, decelerates the flow, and dissipates power 
to  the walls. The thermal behavior of boundary layers will also contribute 
to losses, either by heating the electrodes or, in a compressible gas, by 
lowering the temperature (and hence the conductivity) near the wall 
through heat losses to the wall. 

These boundary layers, in comparison to those discussed in Section V, 
grow in an electrically conducting “free stream,” complete with pressure 
gradient, velocity gradient, and applied electric field. They should not 
be confused with the magnetic boundary layer, of thickness 6 < 1/M, 
which is the region near the channel walls where the ponderomotive 
and viscous forces adjust for a given pressure gradient. The magnetic 
boundary layer is established because of the change in sign of the current 
[see Eq. (57)] across the channel; unlike a fluid-dynamic boundary layer, 
it  remains one-dimensional. 

1. Incompressible Flow 

To the author’s knowledge, there exists only one analysis expressly 
for the heat transfer in an incompressible, constant-property MHD 
channel boundary layer. Moff att  (4.9) discusses boundary-layer phe- 
nomena on the electrically insulated (top and bottom) walls of the MHD 
channel of Fig. 6. 

The boundary layer provides a region of velocity deficit where, in 
generators, a current reversal similar to that of the one-dimensional case 
can occur. For the generator boundary layer, the current reversal should 
cause a relative acceleration of the flow by its changing the sign of the 
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ponderomotive force. This would increase the viscous dissipation (an 
effect which was masked in the preceding discussion where the mass flow 
was assumed constant) and subsequently the heat transfer. I n  the accel- 
erator boundary layer, the current flows more freely near the insulated 
walls, a condition which would also tend to increase the heat flux. 

Several assumptions in the analysis of (&I) detract from the signifi- 
cance of the calculations. This is unfortunate, because the author is 
unaware of any other treatments of the heatingproblem in two-dimensional 
channel flow. These assumptions and their consequences will be discussed 
here because the integral technique used by Moffatt is a convenient way 
to obtain results; perhaps the same method could be used under some- 
what modified conditions to obtain more realistic solutions. 

First, the existence of similar solutions to the boundary-layer equa- 
tions was assumed when the applied magnetic field is constant. It can 
be shown (Section V,B,2) that similar solutions exist only when the mag- 
netic field varies as some power of 2. Secondly, in using the integral 
technique for shear and heat transfer, Moffatt assumed that the velocity 
profiles for laminar and turbulent flow were given by their nonmagnetic 
values (i.e., parabolic for laminar and seventh-power for turbulent), so 
that they are invariant with Hartmann number. This is not true in 
laminar flow in a constant magnetic field (3). The effect of this assump- 
tion on skin friction is reflected in the result given by Moffatt that the 
friction coefficient is independent of Reynolds number when plotted 
versus M/Re and does not follow the trend established by experiment, 
which also shows a Reynolds-number dependence. It is difficult to deter- 
mine the effect of these assumptions on the heat transfer but one would 
suspect that the values given in (49) would be too low. 

2. Compressible Flow 

Another problem indigenous to generators or accelerators is that of 
the growth of boundary layers on the electrodes. In  this geometry the 
magnetic field is transverse to the flow and the electric field is normal 
to it. The significant forces are sketched in Fig. 12. (Note that the coordi- 
nate axes have been changed from those of Fig. 6 in order to adhere to 
the usual boundary-layer nomenclature.) Heat transfer in these boundary 
layers will be larger than usual because of the tendency, in the accelerator 
mode, for the currents to be highest near the wall. For a gas, the decrease 
in temperature near a cooled electrode  ill diminish the electrical con- 
ductivity and hence increase the Joule dissipation. This flux near the 
wall will lead to  a higher temperature gradient and hence an increase 
in heat transfer for a given wall temperature. 

Tcerrebrock (50) suggests seeding the gas with an alkali metal so that 
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the conductivity will be high a t  low temperatures. His analysis of the 
compressible boundary layer is thus for a gas in which u - e-l/T as a 
result of seeding. The inviscid flow was taken as quasi-one-dimensional 
and the magnetic field varies as a power of x. The magnetic Reynolds 
number was assumed to be small, and similar solutions of the boundary 
layer were obtained. In his analysis, Kerrebrock added a term to the 
energy equation to  account for the transport of heat by the electrons 
in the current stream. Because this is an unusual configuration, it is 

FIG. 12. Electrode boundary-layer problem (shown in the pumping mode). 

worth considering briefly the particular mechanisms of heat transfer in 
this problem. The term added to Eq. (18) was the following: 

This can be broken into the constituents 

5 k T .  5 - -1 = 3 kl'nyd = hlplvl  2 e  (75) 

where hl is the enthalpy of the electrons considered as a monatomic gas 
a t  the parent gas temperature; pl, the electron density; and v l ,  the drift 
velocity due to the electric fields u(E - uB). By comparing Eq. (75) 
with Eq. (36) in Section II,E,l, it is clear that this is the flux of energy 
carried by the electron-drift velocity. This flux will be much larger than 
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any other diffusive transport mechanisms because, near an electrode, 
the current is essentially “one-way.” Because this is true, the gas is no 
longer neutral and the heat transfer in this region will be affected by the 
energy gain (or loss) of the charged particles in the potential sheath at 
the electrodes (see Section VI,B,$). However, Kerrebrock assumed that 
the energy due to clectron-ion recombination was negligible because of 
the low charge concentration. Another phenomenon peculiar to this prob- 
lem is that the electrons in a strong field will tend to be at a higher 
kinetic temperature than that of the ions or neutrals, The enthalpy in 
Eq. (7s) would then be that associated with the electron temperature. 
This effect, which wa8 not considered by Kerrebrock, would increase 
the heat transfer a t  one electrode and decrease it a t  the electrode of 
opposite polarity. 

Kerrebrock found that the largest effects of Joule heating occurred 
for low Mach numbers and highly accelerated flows, and that Joule 
heating tended to thin the thermal boundary layer and prevent the heat 
generated by viscous dissipation from reaching the walls. As a result, a 
considerable temperature excess developed in the boundary layer. The 
heat-transfer rates increased by an order of magnitude in constant area 
flow as the2Mach number increased; part of this was due to the tempera- 
ture excess, and part to the free-stream acceleration. It is not possible 
to assess his results in terms of Hartmann number because the magnetic 
field is variable. The expected increase in heat transfer exists, but its 
rate of growth with Mach number is dependent on the conductivity 
model assumed and also on the mechanism for heat conduction at the 
electrode. 

C. AXISYMMETRIC FLOW 
The shock tube and plasma jet, which have provided significant infor- 

mation on high-temperature aerodynamic heating, are also being used 
to study MHD flows experimentally. One suggested configuration is 
sketched in Fig. 13. The ponderomotive force due to B, and B, wil l  
interact with the velocity components u and v in that order; most of 
the interaction will be near the wall where u and B, are relatively large. 
When a solenoid is used and endeffects can be neglected, the pondero- 
motive force will appear only in the radial-momentum equation, and will 
inhibit the flow toward the wall. One could therefore expect a reduction 
in heat transfer to the wall. 

Hains and Yoler (61) have studied both the viscous and inviscid flow 
for the model in Fig. 13, using a donut (single-turn) coil in which an 
extensive radial field will exist. In their analysis, the parameter S of 
Eq. (30) was taken as small, so that the magnetic field caused a perturba- 
(3141 



FIELD INFLUENCE ELECTRICALLY CONDUCTING FLUIDS 

tion, rather than a large change, in the inviscid flow. For subsonic flow, 
the magnetic interaction caused the streamlines to converge toward the 
channel axis and the mean velocity to increase during passage through 
the field. For supersonic flow, the interactions at  the wall where the 
field curvature is large propagated inward, coalesced, and formed shocks 
downstream of the coil The boundary layer in supersonic flow was found 
to be thickened somewhat by the magnetic field, but over-all effects were 
small. Heat transfer was reduced slightly by the soil and increased some- 
what downstream. This effect would be more pronounced if the pondero- 
motive force were larger than the inertia force. 

An experimental investigation of the same configuration as Fig. 13, 
using a solenoid rather than a donut coil, was made by Raelson and 
Dickerman (5.29, who used a water-cooled arc plasma generator to obtain 

Coil or solenoid 

B---- 

"W - ------_ 
-/-- -- 

'4 
/-- 

insulated 

FIG. 13. Axisymmetric MHD flow. 

the conducting fluid, in which T - 5000°-60000K, p = 1 atm, and 
u = 2.8 x lo2 m/sec. The Hartmann number reached a maximum on 
the order of &I- lo4, so that the magnetic forces dominated the viscous 
forces. Re, was estimated to be about 0.1 and the Reynolds number 
was about lo6. The heat transfer to  the wall was measured by calori- 
meter methods. In the parallel mode ( B  in the same direction as the 
flow), the magnetic field evidently provided a shielding against the trans- 
fer of heat, for the convective heat transfer was reduced 15% below its 
value when B = 0. In the antiparallel or opposite direction, the field 
was ineffective in reducing heat transfer. This effect cannot be explained. 
Theoretically, there should be no difference in the mode of operation as 
far as the forces on the fluid are concerned, even when the induced 
magnetic field is included, unless one were to consider Hall currents. 
But the operating conditions of this experiment are such that the Hall 
effect should be small. 
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The theory of (61) would tend to predict the measured decrease in 
heat transfer, although it would not be justified to extrapolate the theory 
for S - 1 to the experiments of (69). 

D. AN ASSESSMENT OF HEAT TRANSFER IN MHD CHANNEL FLOW 

The discussion of the various channel-flow problems in this section 
has not emphasized the problems which remain unsolved in the deter- 
mination of heat transfer in crossed-field generators and accelerators. 
These will be summarized briefly in this section. 

We can conclude that constant-property, one-dimensional channel flows 
are well understood qualitatively. Even the inclusion of Hall currents 
in the determination of heat transfer could be carried out without diffi- 
culty, since the velocity field has already been analyzed (65). Compressi- 
ble fully developed channel flow has not been investigated, which is not 
unusual since the field-free case is not yet well understood. 

However, when the conductivity varies with temperature, the heat- 
transfer rates can be severe (54,66). The validity of a theoretical analysis 
for the gas behavior is restricted by the difficulty in assuming a reasonable 
model for the partially ionized, sometimes nonequilibrium gas. Oates (64) 
has suggested several experiments which can be carried out to determine 
the nature of the actual gas flow as compared to the predicted one. 

Of the several solutions for the free stream in a channel, those which 
correspond to a constant-area one-dimensional flow are: constant B and 
E,  constant temperature and E, and constant temperature and B. These 
could be compared with measurements; those which indicate an asym- 
metry of heat transfer between anode and cathode, for instance, would 
give evidence for an elevated electron temperature; measurements of the 
pressure gradients across the channel would give an indication of the 
magnitude of the Hall current. 

It was pointed out earlier that it is necessary to have high velocities 
in MHD power generators. If the gas is in equilibrium, nozzledriven 
generators become exceedingly long at high-inlet Mach numbers because 
the conductivity depends on gas temperature. If the flow is expanded 
to supersonic Mach numbers before entering the MHD duct, nonequilib- 
rium ionization will occur; i.e., an overabundance of electrons will exist 
in an expanding preionized flow because the relaxation to ionization 
equilibrium is slower than the flow velocity. (This phenomenon is called 
freezing, and is also found in highenergy flow about blunt bodies.) 

Eschenroeder (66) discusses these effects and shows that the conduc- 
tivity due to freezing increases significantly above the equilibrium value 
at that pressure. The effects of this on MHD channel heat transfer would 
be important. A t  the low operating pressures, the heat transfer would be 
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less. The expansion with nonequilibrium ionization also implies that the 
static temperature is lower. (The potential energy has been converted 
to kinetic energy without a loss in conductivity before the gas enters 
the generator.) Hence, the problem of hot exhaust gases is alleviated. 
However, the theoretical analysis of heat transfer in such a flow would 
be difficult. 

V. Flat-Plate Boundary-Layer Heat Transfer 
In  high-velocity flow past a thin wing, the air in the boundary layer 

will become heated due to viscous dissipation. If the velocity is large 
enough, a small degree of ionization is produced, and the air will become 
an electrical conductor. A magnetic field of sufficient intensity, applied 
normal to the wall, will interact with the boundary-layer flow to cause 
a reduction in the velocity and a decrease in skin-friction drag. The effect 
of such a flow on the heat transfer to the wall will be discussed in this 
section. 

The two-dimensional boundary-layer equations are in themselves diffi- 
cult; the addition of a variable conductivity and the ponderomotive 
force increases the complexity to the extent that the problem is often 
intractable without unrealistic assumptions (see Section V,B,2). There- 
fore, we will try to gain insight into the boundary-layer problem by 
considering first a simple one-dimensional shear flow, much as was done 
in Section IV with the channel problem. 

A. COUETTE FLOW 

Couette flow is produced when a viscous fluid between two infinite 
plates is set into motion by the relative velocity of one of the walls. It 
can be studied experimentally as the flow between two concentric cylin- 
ders in relative angular motion when the spacing between the cylinders 
is small compared to their radii (see Fig. 14a). Analyses of MHD Couette 
flow have been made by Bleviss (66) and Leadon (67). 

1. Incompressible Couette Flow 

Mathematically, this problem is the same as the one-dimensional 
channel flow of Section IV, with one important exception: The boundary 
conditions of the fluid are different. Consider the semiinfinite channel 
of Fig. 14b with the magnetic field normal to the lower, stationary plate. 
These walls are assumed to be electrically insulated. The upper wall 
moves with uniform velocity, urn, in the axial direction. When the mag- 
netic field is not present, the velocity profile is linear. 

In  order to simulate a boundary-layer flow, let us assume that the 
axial pressure gradient is zero and that there is no applied electric field. 
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FIG. 14. Various interpretations of MHD Couette flow; (a), flow between concentric 
cylinders in relative angular motion, in which the induced current is in the Z direction; 
(b), shear flow between infinite parallel plates; (c), sliding concentric cylinders (56), 
in which the current circulates. 

Since K = 0, we must provide some shorting arrangement for the cur- 
rents. Bleviss (66) suggested a configuration shown in Fig. 14c. This has 
some limitations, just as a “shorted” Couette flow would. For ex ample, 
a radial field such as indicated in Fig. 14c would not satisfy V . R = 0 
if Bo were constant, as is usually assumed. But the problem of providing 
a shorting mechanism at  the open ends of a concentric rotating cylinder 
would also be difficult. 
13181 
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Under the assumption that K = d p * / d X  = 0, Eqs. (51) to (53) become 

and 
1 dB,* 

Re,,, dY 
J, = u =  - -~ 

where now all quantities are referred to the upper wall in terms of dis- 
tance 6 from the lower, stationary wall, and where u(6) = urn. The 
boundary conditions on U are thus U(0) = 0, U(1) = 1. Equation (76) 
can be integrated immediately to obtain 

sinh MY 
sinh M 

U =  (79) 

The variation of U and J ,  with M is shown in Fig. 15. As M increases, 
U-+ exp M (Y  - 1). 

a. Induced Magnetic Field. If we again visualize B,* as the field induced 
by a current sheet of mean density 1, then B,* will be antisymmetric 
a t  the walls, obtaining equal and opposite values there. Since J, is also 
given by Eq. (78), then 

[ M s i n h M  2 c o s h M Y J  Re,,, 1 + cosh M - 
2 

B,* = + - 
1 

At the point q determined by lov J ,  dY = J ,  dY the field is zero; the 

mean current below that layer is equal to the mean current above it. 
This integral condition gives q in the terms of the hyperbolic functions 

cosh M + 1 
2 

cosh Mn = 

which agrees with Eq. (SO). The null point q for the channel flow of 
Section IV,A,2, was always at  the center because of the symmetry of J,.  
Here, as M increases and the current density becomes confined to a 
thin layer near the wall, the point q moves closer to the wall. 

Bleviss (66)) who included the incompressible case in his treatment of 
hypersonic Couette flow, discussed the boundary conditions on B,". He 
assumed that B,* was induced by a multilayer solenoid of infinite 
length. I n  a short solenoid, the magnetic field induced by the current 
loops will be axial. It will approach a uniform maximum value in the 
center and fall off as the inverse distance exterior to the coil. The Couette 
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flow described by Eqs. (79) and (80) will not yield this condition because 
it is strictly two-dimensional. However, as M increases, especially for 
M > 10, the current sheet is nearly all confined to a thin layer near the 
upper wall (see Fig. 14). Therefore, if we were to bend this two-dimen- 
sional configuration into a solenoid, the induction would approach a 
maximum in the center, go through a null near the wall, and be opposite 
in direction outside the current loop. Then, to satisfy the condition that 

Uond Jt 

FIG. 15. Variation of velocity and current density with Hartmanu number for 
incompressible Couette Bow. 

the divergence vanishes for cylindrical coordinates, B,* will drop off to 
zero as the inverse distance as r + 00. So the boundary conditions on 
I?,* in the fluid are the same as in the two-dimensional case, and B,* does 
not vanish externally, as it would if the solenoid were infinite. The exact 
form of B,* is, however, unimportant; it  is the magnitude of B,* which 
is of interest. 

As far as the effect of B,* on the equations of motion, B,* enters only 
into Eq. (79) and does not affect the flow. But because J,R,* is not 
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symmetric, as in the channel-flow problem, a hydrostatic pressure will 
be induced by the ponderomotive force. Defining Ap* = p * ( l )  - p*(O),  
Eq. (62) yields 

which is negligible in most instances since Re, << Re. For liquid mercury 
a t  room temperature, for example, this ratio is on the order of In  a 
compressible fluid where the local dynamic pressures are low, this term 
could, however, become significant. 

The fact that an axial field will exert a force on the upper wall in an 
asymmetric flow is substantiated by the discussion in Section IV,C where 
it was shown that an axial field increased theboundary-layer thickness 
slightly. However, in that case the axial field was much larger than this 
induced field and the flow was two-dimensional, so that the forces were 
not infinitesimal. 

b. Heat Transfer. Both Bleviss and Leadon showed that the heat 
transfer to the lower wall was not changed by the addition of a magnetic 
field. Writing Eq. (67) in terms of 0 = (T  - Tw)(T ,  - 
the temperature of the lower wall, 

Integrating Eq. (83) twice and applying the boundary 
we obtain 

which reduces to the result 

Pr * & 
6 0  = Y + 2  ( Y  - Y2) 

when M + 0. Defining p = k(dT/dy) in the usual way 

ATk pum2 
q w = - + - -  6 26 

Tw),  where T ,  is 

(83) 

conditions on 8, 

for both Eqs. (84) and (85). So the heat transfer to the lower wall is 
unaffected by the magnetic field. 

At the upper wall, which was not treated by Bleviss in the incom- 
pressible case, 
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Heat will flow from the fluid to the upper wall when 

I 
1 2  P r * E ’  ( 2M 1> 

tanh M 

where Pr * G > 3 for heat to be transferred to the wall when M = 0. 
Therefore the magnetic field effectively increases the heat transfer at 
the upper wall. The Merence between the heat transfer with and with- 
out a magnetic field is 

for M > 5, so that the increase in heat transfer due to the field is linear 
in JL as hl increases. 

In a boundary layer the “upper wall” is not fixed; one would suspect 
that the change in heat transfer in Eq. (89) would be reflected in a growth 
of the thermal boundary layer and a reduction in heat transfer to the 
lower wall. 

c. Drag and KeynoMs’ h a l o g y .  Bleviss also investigated the friction 
drag for incompressible Couette flow and found, as Rossow (3) did, that 
the magnetic field increased the skin-friction coefficient but increased 
the total drag by the action of the ponderomotive force on the fluid. This 
result is also evident in the simple channel flow of Section IV,A,3. In  that 
case the pressure drop had to be increased as M grew larger in order to 
keep the same mass flow. 

Since qw is independent of the magnetic field, then the heat-transfer 
coefficient, CH = qw/pczs, AT, will also be independent of M if AT is not 
affected greatly by the magnetic field. Bleviss showed that when the 
“recovery” temperature T, = T, + Pr~,~/2cT, was used (considering 
that this is incompressible flow), CH = I/PrRe and that the ratio 

C, 2 P r  M 
CH sinh M 
-= -  

The fact that Reynolds’ analogy is invalid in MHD will make experi- 
mental verification of much of the theory difficult. 

2. Hypersonic Couetle F h  
The exact calculation of magnetic effects in a compressible boundary 

layer is quite difficult, so Bleviss (66) studied the simpler geometry of 
Couette flow, allowing the gas to be ionized and compressible. Even so, 
suitable transport properties must be chosen in order to simulate properly 
the behavior of a high-temperature gas. In accordance with the conclu- 
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sions of Section II,E, Bleviss assumed that the Prandtl number was 
constant, the electric conductivity was obtained from (18), and the vis- 
cosity was calculated by using the Sutherland formula. The gas was 
taken in thermodynamic equiIibrium and the Lewis number was assumed 
to be unity, so that chemical heat flux was not considered, 

It was demonstrated in the preceding section that Bleviss used differ- 
ent boundary conditions on BZ*, the induced magnetic field. His 
calculations for the compressible case show that the magnetic pressure 
[B,(ma~)]~/2p, was less than lov2 atm; hence his results apply for free- 
stream pressures as low as atm before the flow will separate from 
the lower wall. If the other boundary conditions had been used, the 
restriction on p ,  would be slightly less stringent, although considerations 
of the Hall current would also restrict the regions of validity of the 
solution to pressures higher than these. 

One of the most important results of Bleviss’ calculations was the 
showing of the effect on the various aerodynamic coefficients of variable 
air properties, in particular, the electrical conductivity. He found a pecul- 
iar hysteresis effect (see, e.g., Fig. 17) for certain temperature levels in 
the boundary layer such that the heat transfer and skin friction became 
multivalued functions of Bo, the applied field strength. This was traced 
to the variation of electric conductivity with enthalpy in the boundary 
layer. Since this effect also appears in the compressible boundary layer, 
we will discuss it further in Section V,B,2. 

Another effect of the hysteresis property enabled relatively weak mag- 
netic fields to produce large reductions in skin friction and correspondingly 
large increases in magnetic drag. The heat transfer to  the lower wall is 
slightly increased by the magnetic field. This is due primarily to the 
fact that the Couette flow, unlike a boundary layer, is not free to  grow 
in the normal direction. 

Bleviss, as did Rossow (3), also studied the case where the magnetic 
field is attached to the moving wall. This will not be discussed further 
here, as it has no practical significance in boundary-layer flows. 

B. FLAT-PLATE SOLUTIONS 

1. Incompressible Flow 

A pioneer paper by RQSSOW (3) provided the basis for many later 
studies in the field of magneto-fluid-mechanics. The assumption of a 
small magnetic Reynolds number was made so that the induced magnetic 
field did not enter into the equations of motion. The fluid was assumed 
to be incompressible, and both the case of impulsive motion (the Rayleigh 
problem) and the boundary-layer problem were analyzed for transverse 
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constant magnetic fields fixed either to the wall or to the fluid. In  all 
solutions, the electric field was zero and the currents were assumed to 
be shorted at infinity. In  one case, the free stream was taken to  be elec- 
trically conducting, so that the free-stream velocity was also retarded 
by the magnetic field. 

It is not possible under these conditions to obtain similar solutions 
to the boundary-layer equations. These were solved by a series-expan- 
sion technique in powers of v'm, where X = x/6, for example; terms 
higher than ( L ~ X ) ~  were neglected. The free-stream velocity varied as 
&,/ax = -uBo2//p, a decelerating flow. Rossow found that the skin fric- 
tion decreased as S increased. The heat transfer, for the case T, = T,, 
was found to vary as 

NU 
Pr  d R e ,  

~ = 0.332 - 0.342SX - . . . 

where both the Reynolds number and S are based on the variable free- 
stream velocity. Equation (89) indicates that the decrease in heat transfer 
for ( S X )  < 0.5 is not exceptionally large, but it also indicates that the 
growth of the boundary layer permits a reduction in heating, something 
which the Couette-flow configuration did not permit. The displaoement 
thickness, in fact, increases as 

'* y'R<i = SY fiz + (1.73 + 0.54SX) (92) 
2' 

Rossow found that the recovery temperature was not affected by the 
magnetic field, which is to be expected, since the stagnation enthalpy is 
unchanged by the presence of Ba (see Section 11,B13). 

Rossow also investigated the case in which u was assumed t o  vary 
throughout the boundary layer. He chose a linear variation of u with 
velocity decrement, i.e. 

u = ua(+) (93) 

so that u, is not affected by the magnetic field. The heat transfer in 
this case is now 

- 0.332 - 0.103SX - XU 
.____ - 
Pr z/Re, (94) 

which is a reduction of significantly less magnitude than that of Eq. (91). 
The displacement thickness and skin friction also showed less decrease 
with the applied field. 

In a later paper (58) Rossow used an empirical value for a - 
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exp [T - const]” and chose the Blasius cold-wall temperature distribu- 
tion to  relate u with velocity. The heat transfer in this case is 

Nu = 0.332 - 1.216SX 
Pr 6 (95) 

Comparing Eqs. (91), (94), and (95) on the basis of the same kinetic 
energy in the stream indicates the effect of the different variations in 
conductivity on the heat transfer. Figure 16 shows that the reduction 
is most pronounced when Eq. (95) is used. 

0.4 

0.3 
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0 0 

r 
0.1 

0 
0 0. I 0.2 0.3 0.4 

Mognetic interoct ion porcrneter ,SX 

FIQ. 16. E.ffect of variable conductivity on the incompressible-boundary-layer heat 
transfer (3, 68). 

It can be seen that neither of the variable-conductivity solutions by 
Rossow showed any evidence of hysteresis effects. This is due to the 
rather arbitrary relationship assumed among conductivity, temperature, 
and velocity, and it introduces the interesting possibility that a properly 
seeded gas at  relatively low velocities might produce the kind of heat- 
transfer reductions which were predicted by Rossow. 

3. Compressible Flow 

The preceding discussions on hypersonic Couette flow and the variable- 
conductivity solutions by Rossow indicate that the behavior of heat 
transfer is very different when the air properties-especially the electric 
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conductivity-are allowed to vary. The manner in which u varies with 
T and T varies with u is especially important, as was just pointed out. 
Bush (59) solved the compressible-boundary-layer equations and found 
the same hysteresis behavior for skin friction and heat transfer as did 
Bleviss, using a variation of u with T similar to that of (18). This effect 
occurred even though the magnetic-field configurations were difierent ; 
the field used by Bush varied along the plate, whereas Bleviss used a 
constant field. However, there were important differences in the heat 
transfer, the same as those found by Rossow : The growth of the  boundary 
layer permitted the heat transfer to be reduced, which the Couette flow 
did not. 

Bush assumed that the boundary-layer air was in thermodynamic 
equilibrium and that the Lewis number was unity. The induced mag- 
netic field was neglected, so the equations were linear in B. A similarity 
transformation applied to the equations indicated that BO - l/\& for 
similar solutions might exist. [This was also independently determined 
by Lykoudis (SO)]. In the hypersonic boundary layer, the most natural 
thermodynamic-state variables are enthalpy and pressure [see Eq. (20)1, 
80 the air and transport properties are usually expressed in terms of these 
functions. The natural parametric combinations of transport properties 
which arise in this type of compressible boundary layer under an 
Hantzsche-Wendt transformation are 

(96) 

and 
4.79 s = UE- - ~ ~ ( k )  for I' > ~OOOOK 

-0 for T < lOOOOK 
CTPO 

where the subscript 0 denotes reference conditions at  T = 222OK, and 
UT = 100 mho/m is arbitrary. The power-law variation given above holds 
for a wide range of pressures by adjustment of 6 0 .  The parameter @ 
determines part of the magnetic interaction through S& where 
S = 2 u ~ B ~ * L / p o  do (in the Hantzsche-Wendt transforniation 
I&,, = d& = 472 m/sec). 

Under these conditions Bush found the same hysteresis behavior in 
the skin friction and heat transfer as did Bleviss. Both 7 and q are plotted 
schematically in Fig. 17 versus velocity for various values of S. (The 
actual behavior is a function of h,, h,, and pressure.) Notice that as u- 
increases for a fixed S the skin friction or heat transfer at first increases. 
This occurs because the temperatures in the boundary layer are so low 
that the fluid is a nonconductor. As the velocity increases, magnetic 
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FIG, 17. Schematic behavior of skin friction and heat transfer in compressibie- 
boundary-layer flow (69). 

effects begin to occur and the skin friction begins to descend below its 
nonmagnetic value until a point (at the vertical tangent) where a further 
increase in velocity above, say, u1 causes a discontinuous drop in r or 
q to the lower branch of the curve, as shown in Fig. 17. If the velocity 
is then decreased, these functions will trace along the lower curve until 
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the lower vertical tangent is reached at u2 and will then jump up to 
the upper curve and join the nonmagnetic curve as the velocity approaches 
zero. The regions between the two vertical tangents are unstable and 
would not be attained in practice. 

a. Hysteresis Eflecf. The reasons for the discontinuous drop (or hystere- 
sis behavior) of skin friction and heat transfer were discussed by Bleviss 
(56) and mere traced to  the rapid variation of u with enthalpy as the 
gas first hegiiia to ionize. In his conductivity model [taken from (28)], 
a(h,p) rises exponentially with h until h - 32ho (2600 cal/gm), at which 
point the temperatures are roughly between 4000" and 5500"K, depending 
on the pressure. The ion production up to this time has been primarily 
from the reaction r\' + 0 $ NO+ + e. Above this point the NO produc- 
tion decreases, as most of the energy is taken up by the remainder of 
nitrogen dissociation. Hence for enthalpies between around 2600 and 
9400 cal/gm, the variation of temperature with enthalpy, and hence 
conductivity with enthalpy, is relatively slow. Above h - 9400 cal/gm, 
both oxygen and nitrogen start to ionize, and the conductivity will again 
increase. By this time, however, the energy content of the gas is considera- 
bly higher than that which would be expected in normal hypersonic 
flight (i.e., Ma > 40). 

Bleviss believed that the "flat spot" or abrupt change in slope of the 
conductivity caused the hysteresis behavior. In the boundary layer, the 
enthalpy level may pass through the point h = 32ho so that the magnetic 
effects in the boundary layer change abruptly (i.e., small magnetic fields 
would give large effects ifa were increasing rapidly). But then as h 
increases, the variation in u is small and little effect of the magnetic field 
would be seen. 

The author believes the same explanation applies to the solutions of 
(59), although the true behavior of u has been masked by the parameter 
8, wbich exhibits no such slope change. The fact that Bush found that 
the hysteresis does not dissppear until higher Mach numbers is perhaps 
due to the differences between Couette and boundary-layer flow. Since 
the boundary layer remains cooler than Couette flow at higher Mach 
numbers, because of its ability to grow, the low-enthalpy behavior is 
retained over a larger range of velocities. 

Bush presents the results of calculations for p = lea atm, h,Jho = 
h,/ho = 10 (T - 2200'K), and h,/ho = 10, h,/ho = 1. The first case 
would compared to a very slightly conducting free stream (p- 103,  
and the second to a hot wall and nonconducting free stream. In the former 
case the effects of finite conductivity on the inviscid flow are negligible. 
We do not have space to reproduce the results of (69), but several signi- 
ficant points about the heat transfer can be established. 
[3281 
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b. An Assessment of the Results. The calculations by Bush indicated 
that reductions in heat transfer by as much as 80% would be achieved 
with moderate field strengths. The field strength, however, is limited in 
all flow problems by low-pressure effects, such as Hall currents (see 
Section I,B,2), which would invalidate the concept of a scalar conduc- 
tivity and a two-dimensional flow. Bush estimated that when p ,  = 
atm and the reference length = 1 m, it would require the interaction 
parameter S 5 0.1 for w / v c  I 0.1. He did not present any curves for 
this low value of S, but some indications of heat-transfer behavior 
for low 8 can be obtained from the curves for S = 1. 

Referring to Fig. 17c, when h,/ho = h,/ho = 10, the stable solutions 
are bracketed by 0 < u1 < 15,000 (m/sec) for increasing velocities and 
10,850 < up < w for decreasing velocities. That is, during a flight in 
which the velocities are always larger than 10,850 m/sec the heat transfer 
would be reduced substantially. Below those velocities there would be 
no reduction in heat transfer, since the magnetic interaction is too small. 
During an accelerating flight to u1 = 15,000 m/sec there would be little 
reduction in heat transfer, and the calculations by Bush indicate there 
will be only a 10 to 15 % reduction in skin friction. The range of velocities 
in this situation is presently much higher than any which have been 
achieved for thin-winged vehicles; therefore we must conclude that under 
normal circumstances at  these altitudes the heat transfer would be 
unaffected. The curves for the heated wall are less restrictive a t  the lower 
end in their velocity requirements. That is, the stable solutions are given 
by 0 _< ul 5 13,700 and 10,850 5 u1 5 w .  We should also mention that 
a t  these low pressures the induced magnetic field would aIso become 
important (see Section V,A,2). 

The restriction on field strength due to Hall effects would disappear 
as the pressure increases. For p ,  = 1 atm, Bush estimated that S 5 100 
wouId satisfy the requirement for small Hall effects. However, even 
though the limiting velocities decrease when S increases, so does the 
necessary field strength increase to produce a given 8, especially a t  higher 
pressures. Bush estimates that for an S of 100, a t  atmospheric pressure 
and a length of 1 m, the field strength Bo = 200,000 gauss! 

It is evident that there is an optimum value for S such that Hall 
effects are minimal and field strengths are reasonable. This, of course, 
depends on the veIocities during flight and on the heat-flux reductions 
which would be necessary. The analysis by Bush indicates that even 
with large magnets (S = 100) the velocities must be at  least as large as 
about 6000 m/sec to achieve any reductions in heat transfer. 

c. Some Remarks Concerning the Assumptions. Several assumptions are 
made by Bush and other workers in hypersonic-boundary-layer theory 
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in order to facilitate the solution of the equations. Besides the neglect 
of Hall currents and ion slip these include assuming that the induced 
field is negligible, the gas is in thermodynamic and chemical equilibrium, 
and the Lewis number is unity (ditTusion transport of heat is neglected). 

We have already remarked on the first assumption in Section V,A,2. 
It was shown for the Couette-flow case that the pressure due to the 
induced field could cause flow separation at ambient pressures lower than 
roughly p ,  - lo-* atm. [This will not occur if B - l/dZ, according to 
(60)). In a boundary layer the induced field would probably cont.ribute 
to the boundary-layer growth and decrease the heat transfer. However, 
the induced field becomes important only at those pressures where Hall 
currents become important. Therefore the assumption that Re,,, - 0 seems 
justified in this case where the solution is limited by Hall effects. 

The assumption of chemical and thermodynamic equilibrium implies 
that reaction times are short compared with the time it takes an air 
particle to enter the boundary layer, become heated, aud traverse the 
length of the body. It also implies that particles which diffuse across 
the boundary layer adjust instantaneously to the temperature of the gas. 
If the time for ionization is much larger than the traverse time the gas 
will never ionize and the magnetic field will have no effect. If the ioniza- 
tion time is equal to or greater than the dissociation time, then the 
case of equilibrium will indicate maximum magnetic effects, unless the 
ionization time is leas than the dissociation or traverse time. In this 
instance an equilibrium solution would underestimate the magnetic 
interaction. 

Little is known of ionization rates in gases except those at the rela- 
tively high pressures existing behind normal shocks. Because the forward 
two-body process of dissociation and ionization is fast compared to recom- 
bination, a three-body process, it is likely that at  the pressures considered 
in these studies the gas will be in equilibrium-at least in the regions 
of highest temperatures in the boundary layer. 
This conclusion is based partially on a study by Chung and Anderson 

(61) of nonequilibrium effects due to dissociation of pure oxygen in a 
flat-plate boundary layer. They showed that at 30,000 m (p- - lo-* atm) 
and M = 20, the oxygen was 80% in equilibrium one meter aft of the 
leading edge. An extrapolation of their results to the ionization equilib- 
rium of NO+ is certainly not warranted, since the reaction rates are 
different, but since atomic oxygen is necessary for the ionization reaction, 
we can conclude that at higher Mach numbers there will probably be 
sufficient atomic oxygen to cause the ionization to exist. 

I t  should be pointed out that this study was for the adiabatic wall. 
This is the most favorable situation for equilibrium, since recombination 
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takes place only in the particles diffusing away from the wall; further, 
the flow time near the wall is lowest, enabling the gas to  spend more 
time in a particular environment. At higher altitudes, the equilibrating 
process takes longer. 

In actual hypersonic flight the diffusion of heat from the reacting gas 
can contribute considerably to the heat transfer. The heat released by 
the recombination of electrons and ions a t  the wall will not be significant 
a t  low degrees of ionization. But the effect of catalytic walls on heat 
transfer can be severe due to the interaction of the magnetic field with 
the atom-concentration gradient (see Section VI,B,2). 

C. R~suMP: FLAT-PLATE BOUNDARY-LAYER HEAT TRANSFER 

It has become clear in the preceding discussion that the assumed vari- 
ations of conductivity with temperature and of temperature with en- 
thalpy have a significant effect on the behavior of boundary-layer heat 
transfer with magnetic fields present. When either nonequilibrium effects 
or diffusion transport is included, the problem of determining the mag- 
netic interaction can be formidable. Hall-current considerations appear 
to limit these solutions to relatively low altitudes ( p ,  - atm corre- 
sponds approximately to 40,000 m altitude). 

On the basis of the discussion in Section, IV,D, it would be of interest 
to ascertain the effects of seeding both a nonequilibrium (high-tem- 
perature “frozen” flow) and an equilibrium gas with a contaminant such 
as cesium, potassium, or sodium, all of which are easily ionized. The 
conductivity here would display a more regular behavior and the hystere- 
sis properties of r and q could be avoided; i.e., more efficient cooling could 
take place a t  lower temperatures if the conductivity were high. Of course, 
seeding would also increase the total drag and would probably contribute 
to the heat deposition in the wake. 

However, it is clear from the analyses reviewed in this section that 
the reduction of flat-plate aerodynamic heating by magnetic means is 
not promising for naturally ionized air. But there still remain refinements 
to these solutions which may indicate further effects on heat transfer 
which are as yet undetermined. Further, the purely aerodynamic utiliza- 
tion of the magnetic forces as flow-control mechanisms should not be 
dismissed, for the influence of a magnetic field on drag is much larger 
than on the heat transfer. 

VI. Heat Transfer to Blunt Bodies 
It was mentioned in the Introduction that a large portion of the early 

interest in engineering MHD stemmed from the aerodynamic-heating 
problems associated with hypersonic flight in the atmosphere. One of 
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the most critical heating areas is at the stagnation point of a blunt. body, 
where the incoming hypersonic airstream is brought to rest by a strong 
normal shock and adiabatic compression. For a typical earth-satellite 
reentry at velocities of about 8000 m/sec, the maximum heating rate 
to a 1-m body is 7850 w/m* (80 Btu/ft2 sec). For reentry from near 
space, where the reentry velocity is closer to 11,000 m/sec the maximum 
heating rate is higher by a factor of 3. 

This section will review the numerous analyses presented in the litera- 
ture during the past 5 years. In retrospect it must be conceded that many 
of the early estimates of heat-transfer reductions using magnetic tech- 
niques were optimistic because the entire flow problem was not completely 
analyzed. Again, other studies were more pessimistic because the shock 
strengths considered were those associated with ballistic reentry rather 
than reentry of a planetary probe. It is hoped that this review will con- 
tribute to the clarification of what has been a highly controversial sub- 
ject. We have tried to present the results in such a form that all compari- 
sons between heating rates and methods of solution are based on bodies 
of similar shape flying at the same altitude and velocity. 

A. STAGNATION-POINT HEAT TRANSFER WITH APPLIED 
MAGNETIC FIELDS 

When a blunt body moves at hypersonic speeds, a large percentage of 
the kinetic energy of the airstream is converted into heat by the com- 
pression of the normal shock at  the nose of the vehicle. This heating 
of the air behind the shock will cause dissociation and, at high enough 
velocities, will cause ionization to such an extent that the air is capable 
of being influenced by a magnetic field. 

Consider the blunt body of Fig. 18a. If there is no applied electric 
field, and a magnetic field is a&ed so that it acts perpendicularly to 
the oncoming flow, the ponderomotive force acts in a direction to deceler- 
ate the tangential velocity, u, since the current, j ,  flows in loops as shown 
in Fig. 186. Without a detailed examination of the equations, we can 
qualitatively state that the magnetic interaction will cause 

(a) The shockwave standoff distance to increase, since a larger volume 
is needed for the passage of the air between the shockwave and the nose 

(b) The coefficients of heat transfer and skin friction to decrease 
because the local velocity is lower 

(c) The pressure at the stagnation point, which is determined prin- 
cipally by the normal momentum, to change little 

(d) The total drag of the body to increase. 

It is obvious that the problem of determining the heat transfer near 
the stagnation point demands a solution of the entire flow field from the 
w21 
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shock to the body both since the inviscid and viscous regimes are conduct- 
ing. Some of the early papers on thissubject (60,6d, 63,64), did not include 
the effects of the magnetic interaction on the inviscid flow. These solu- 
tions could be considered as incomplete in the sense that a viscous prob- 
lem was solved for an unknown inviscid, or controlling, flow. Neither do 

Shock wave 
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' / l f l /  ' t. 

/ / / / / / / / ' / / f l l f l / l l / j  

(b) 
Fro. 18. Schematic diagram of a hypersonic stagnation flow with an applied mag- 

netic field; (a), a typical blunt body; (b), detail of stagnation point. 

these solutions include any discussion of the influence of the magnetic 
field on the pressure distribution around the stagnation point. But 
Lykoudis (65) showed that it was possible to match the viscous solutions 
with an inviscid flow by choosing an average magnetic-field intensity 
in that region to adjust the velocity and pressure for the magnetic inter- 
action. This procedure implicitly assumes that the electrical conduc- 
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tivity and density are constant in the inviscid layer, which is an excellent 
approximation at hypersonic velocities and altitudes below 60,000 m. 

For the purpose of this section, however, it is most convenient to dis- 
cuss the complete stagnation region, starting with the inviscid flow; after 
this, the viscous regime can be easily determined by using standard 
boundary-layer techniques. As in any stagnation-point flow, the heat 
transfer is proportional to the temperature or enthalpy gradient at the 
wall and the square root of the tangential velocity gradient at the edge 
of the boundary layer [see Eq. (104)]. For a constant-property boundary 
layer, the latter accounts for the largest portion of magnetic influence 
on the heat transfer. We shall therefore restrict our discussion of the 
inviscid solution to the determination of the velocity gradient. 

1. The Velocity Gradient 

The inviscid flow field in the vicinity of the stagnation point is described 
in a fluid-dynamic sense as the conversion of a unidirectional, high- 
velocity stream by a normal shockwave into a high-temperature subsonic 
layer, which is taken to be inviscid and incompressible, both of which 
are good approximations at high velocities and Reynolds numbers. The 
second qualification is necessary to insure that the boundary layer and 
inviscid flow are distinct; for a further discussion of “viscous-layer” 
effects the reader is referred to Hayes and Probstein (66) or Wu (67). 

The properties directly behind the normal shock are determined by 
the Rankine-Hugoniot conservation equations; if the gas becomes dis- 
sociated or ionized there are numerous charts which describe the gas 
properties in this region [see, e.g., (68)l. 

There are essentially two mathematical approaches towards the flow 
problem, both of which have been successfully employed in the non- 
magnetic case and which are described more fully in (66). The first consists 
of utilizing the Newtonian approximation. 

a Newtonian Flow. In the Newtonian approximation, the shockwave 
is assumed to be either spherical or cylindrical (depending on the body 
shape at  the nose) in the vicinity of the stagnation point. The density 
is constant in the region between the shock and body. Immediately 
after passing through the shock, the fluid is assumed to give up all of 
its normal momentum into pressure; i.e., the flow turns immediately so 
that the velocity after incidence remains tangent to the wall. Lykoudis 
made the remark in (69) that since the normal velocity, which deter- 
mines the pressure in this approximation, is parallel to and unaffected 
by a radial applied field, there mill be no magnetic interaction which 
can affect the pressure. The pressures determined by this approach will 
become less accurate as the shock detaclirricnt distance iiicreases or if 
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an extensive induced field exists. The velocity gradients obtained by 
the Newtonian solutions are compared in (69) with more exact calcula- 
tions by Kemp (70). It is shown that the agreement is within 8% for 
reasonable values of the magnetic interaction. These data will be pre- 
sented after the other flow calculations are discussed. 

It should be mentioned here that one of the benefits of the Newtonian 
approximation is that it permits closed-form solutions to be obtained 
for all the flow characteristics. This is particularly useful when trends 
are investigated. 

b. Similarity Solutions. The similarity solutions discussed by Hayes 
and Probstein (66) also assume a shock with the same shape as the body, 
with an incompressible inviscid flow behind it. For a given shock radius, 
free-stream velocity, and density ratio across the shock, the body surface 
is found where the normal component of velocity vanishes. As such, these 
solutions are more refined than the Newtonian approximation, although 
neither takes into account the finite compressibility that exists between 
the shock and the body. However, this method will allow for variations 
in the pressure distribution, due to the magnetic-field interaction, and 
it need not be restricted to small magnetic Reynolds numbers. However, 
the shock layer must still be thin enough that the curvature is constant 
and incompressibility exists. 

Kemp (70) investigated analytically the extension of this method for 
spherical flow and the case of small magnetic Reynolds number, in which 
situation only the component of the applied field at  the body need be 
specified. (Of course, the applied field would still have to satisfy Maxwell’s 
equations for that particular body.) Bush (71, 72) solved numerically 
the inviscid-spherical flow field for a magnetic field which acted as a 
dipole in the free stream. Here the boundary conditions were specified 
at the shock rather than on the body. In this way he was able to consider 
a nonvanishing magnetic Reynolds number and still solve a relatively 
simple set of differential equations. Wu (67) utilized the same scheme 
but also considered low-Reynolds-number effects (large viscous layers) 
as well. He solved both the two- and three-dimensional cases. Meyer 
(73) presented one of the first analyses of the two-dimensional stagnation 
problem in which the inviscid flow was determined for large magnetic 
Reynolds number. 

c. Comparison of the Various Solutions. In order to compare the results 
of these various solutions it will be necessary to specify some form of 
the magnetic-interaction parameter, S [see Eq. (28)], which contains 
arbitrary lengths and velocities. On the basis of the preceding discussion 
it would seem that the most logical form for S would be that one which 
contains all of the “knowns” or starting conditions in the solution: density 
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ratio, free-stream velocity, shock radius, and magnetic field a t  the shock. 
In fact, Lykoudis (69) showed through the analytic Newtonian solution 
that this indeed is the most natural parameter for the inviscid flow. If 

is used, then all flow parameters in the three-dimensional Newtonian 
analysis are functions of S.* and body type alone; the two-dimensional 
parameters are weak functions of the density ratio. Here R. is the shock 
radius and B. is the value of the magnetic field a t  the shock. 

But Eq. (98) is inconvenient to we because in most practical problems 
the body radius, not the shock radius, is known, and the body field rather 
than its value a t  the shock will be specified. Kemp (70) suggests the 
parameter 

to describe the magnetic effects; here Bb is the magnetic field a t  th.e body 
and Rb is the body radius. 

To indicate the order of magnitude of Sb, let us consider a body of 
1-m radius flying a t  velocities on the order of Mach 25 (u, - 7800 m/sec). 
Let us take an average value of conductivity of 100 mho/m for these 
velocities and densities. (This is within a factor of 3 of the actual con- 
ductivity.) At 30,000 m altitude the density is about 3 X kg/ml. 
Therefore, for a field strength of 1 weber/m2 

f i b  - 0.5 
At 60,OOO m and a t  the same velocity, Sb-30 .  Therefore one could 
consider that 0 Sb I 3 0  would bracket most practical cases for stag- 
nation flow. The field strength chosen here (& - 10,000 gauss) is just 
about the maximum value for practical application; therefore vadues of 
Sb much lower than the above would probably be encountered in reality, 
even if the velocity reaches 10,000 m/sec. 

The flow characteristics when Eq. (99) is used will be functions of 
the density ratio, pJp, and Sb, as well as of body type, although Bush 
(72) indicates that the velocity ratio is insensitive to values of p m / p  at  
least for 0.1 15 p J p  I 0.140. These are typical density ratios for hyper- 
sonic normal shocks (68). 

It is evident from Eqs. (98) and (99) that 

so that a transformation between the parameters demands a knowledge 
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of the magnetic-field configuration and the shock radius (or standoff 
distance) which is a function of the parameter Sa or S,. It is well to keep 
this in mind when comparisons are made between various investigations. 

The two-dimensional case has been studied by Lykoudis (69), Wu (67), 
and Meyer (7S) ,  although Wu did not present any numerical calculations. 
Meyer’s solution was for the case of a large magnetic Reynolds number, 
and, unfortunately, it is not possible to convert from the parameters 
given in (73) to  the body parameter Sb, since the standoff distance 
necessary for the conversion [Eq. (106)] is not given. 

@b2 Rb 
Magnetic interaction , Sb : - 

P m U m  

FIG. 19. Velocity gradient compared to the field-free case for two-dimensional 
stagnation flow (69). 

We have plotted in Fig. 19 values from the Newtonian analysis of 
Lykoudis in which B was assumed constant; his results, for Re, << 1, 
are only slight functions of density ratio when plotted versus S, &&. 
The values of pJp shown in Fig. 19 embrace the entire hypersonic regime. 
These curves will be utilized more fully in the section on heat transfer. 
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Bush (729, Lykoudia (69), Kemp (YO), and Wu (67), have calculated 
the velocity gradient for the sphere. We show these results in Fig. 20. 
again as a function of S b ,  where the density ratio p,,/p - 0.1. The curve 
from (6'7) is for a Reynolds number of lo00 based on shock radius (com- 
pared to  the other solutions, where Re, --i a). The thick viscous layer 
in this case is reflected by the rapid decrease in ve1ocit.y gradient as the 
magnetic field increases slightly. 

Figure 20 indicates that the agreement between various computations 
for the velocity gradient is quite good even though a different magnetic- 
field configuration is used in three of the calculations. (Wu used the 

a 2 4 6 10 12 I 4  16 

uEO2Rb 
Moqnelic paronml~r , So : 

FIG. 20. Comparison of stagnation-point velocity gradients with the field-free case 
for hypersonic flow around a sphere and various magnetic-field configurations. 

dipole field that was employed by Bush.) This is contrary to the com- 
parison made by Lykoudis (69), who indicated that his Newtonian solu- 
tion was about 8.5% lower than the similarity solution at S b  = 5.  He 
attributed this disagreement to the change in pressure due to  the magnetic 
field. However, Lykoudis made his comparison with S, as the interaction 
parameter; evidently when the shock radius is removed [Eq. (lO)], the 
disparity is eliminated to a great extent. 

One important conclusion can be drawn from Fig. 19. Xamely, when 
Eq. (99) is used for the interaction parameter, or when the same bodies 
under identical flight conditions are compared, the particular form of 
I3381 
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the magnetic field along the stagnation axis is relatively unimportant in 
determining the reduction in the velocity gradient. Even if Maxwell’s 
equations are not satisfied (for example, if B = constant) the velocity 
gradient is determined largely by the value of B a t  the body, a t  least 
for s b  < 5. For higher values of the interaction parameter, the dimensions 
of the flow field are larger and the influence on the structure of the outer 
flow of the variable magnetic field is reflected by the divergence of 
values illustrated in Fig. 20 for Sb 2 10. 

Although Fig. 20 shows results for Re, << 1, we can infer from the 
calculations of Bush (71) that as long as Re, I 1 and S, < 3, there is 
slight effect of the induced field on the velocity gradient. A conversion 
of S, to Sb is not possible here since the value of the magnetic field at 
the body cannot be obtained from the data presented in (71). However, 
on the assumption that the induced field a t  the body is small, Sb - 35 
when S, = 3; so for the values of interest in hypersonic flight, the induced 
field is unimportant as long as Re, 5 1. For flight a t  Mach 25 and an 
altitude of 30,000 m, Re, - 0.01 (taking u - 100 mho/m). Therefore, 
the small-magnetic-Reynolds-number approximation is valid in hyper- 
sonic flow. 

2, The  Enthalpy Gradient 

The second factor in the stagnation-point heat transfer to be affected 
by the magnetic field is the enthalpy gradient a t  the wall. This is deter- 
mined by the shape of the velocity profile in the boundary layer and 
by the variation of air properties with temperature. The radial magnetic 
field will lead to  fuller profiles (see, e.g., Section IV,A,3) and as a result 
will enlarge that portion of the heat transfer due to the enthalpy gradient. 
However this increase is not likely to be as large as the reduction afforded 
by the velocity gradient, a t  least when the electrical conductivity is 
assumed to be constant across the layer. 

The boundary-layer equations for a stagnation flow fall into the class 
of “wedge” flows for which U ,  = Cxm [see, e.g., (SO)]. For the axisym- 
metric case, m = 45. This form of velocity, which in turn dictates the 
pressure gradient, demands that the magnetic field tangent to the body 
vary as a power of x; i.e., similar solutions are possible only if 

B, IV p - M  

At the stagnation point B reduces to a constant and does not vary 
across the layer. None of the cases analyzed in the literature considered 
the matching of the inviscid and viscous magnetic-jield configurations. 
(Note here that when the velocity is constant m = 0 and the flat-plate 
variation of Section V,B,2, is obtained.) 

[3391 

(101) 



MARY F. ROMIG 

Jfany analyses have been made for the viscous two- and three-dimen- 
sional stagnation-point heat transfer. Both incompressible and coinpres- 
sible flows have been treated. A survey of these papers brings forth the 
interesting result pointed out by Kemp (74) that the effects of compressi- 
bility and body dimension are relatively small in the determination of 
the enthalpy gradients as long as the electric conductivity is constant. 
This can be seeii in Fig. 21, where we have plotted data from Neuringer 

Incompressible lwo-dimensional 

Compressible txod~rnens~onol 

A Ref (62) 

V Ref (731 
0 r,=o 

Three-d~menrmnal 
0 Reif74)(Tw<<Te] 
0 Ref @5) 
0 Tw-Te 
b Tw=O 

FIG. 21. Invariance of viscous contribution to stagnation-point heat transfer for 
constant conductivity solutions. 

and McIlroy (66), Meyer (73), Kemp (74), and Bush (75); only the 
latter two calculations are for the same body shape and gas assumption, 
although the field configurations were slightly different. 

The data of Fig. 21 are plotted as a function of the parameter 

which arises naturally from the boundary-layer equations when account 
is taken of the pressure gradient as determined from the inviscid flow: 
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where e denotes conditions at  the edge of the boundary layer. It is neces- 
sary in this analysis to assume that the magnetic field Ba is constant 
across the boundary layer, which is not unreasonable unless the viscous 
layer is very thick, as in the case studied by Wu (67). 

When the conductivity is allowed to vary as some power of enthalpy, 
the viscous contribution to the heat transfer can be significant, as shown 
by Bush (75). We have plotted the enthalpy gradients for this case in 
Fig. 22, where the broken line denotes the average values for u = constant, 
taken from Fig. 21. 

Moqnetic poromeler ,Se= 
~e (d@e/d') 

FIG. 22. Effect of variable conductivity on the enthalpy gradient, compared to the 
field-free case (76). 

However, to assess the full effect of both the enthalpy gradient and 
velocity gradient on stagnation-point heating, we should now look a t  
the heat transfer itself. 

3. Stagnation Heating 

As mentioned previously, the stagnation-point heat transfer is a func- 
tion of velocity gradient, enthalpy gradient, and various air properties, 
viz. 

[A complete derivation of Eq. (104) can be found in (6'6).] If Q is com- 
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pared to a field-free case with the same stagnation conditions, or, eyuiva- 
Ietitly, the same flight velocity and altitude, the air properties cancel, 
leaving 

(105) 
(duJdz) ' 4  h,' 

= [ (dUa/dL.).] 

It is apparent that we can either use s b ,  which is based on flight con- 
ditions and body radius, as the interaction parameter for a comparison; 

%*b2 *b 
Magnetic interaction, S, = - 

Po urn 

FIG. 23. Transformation between boundary-layer interaction parameter and body 
pammcter for the sphere in hypersonic: flight. 

or we can use S,, which would be a comparison of two bodies having 
the same drag. For the purposes of this section it is more convenient to  
use the body parameter St,. 

In either case. it is necessary to convert from s, to sb in order to com- 
bine the results of Figs. 19-22. By use of Eqs. (100) and 

The term in brackets can be obtained from a field-free 
(3421 
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flow; for example, one could use the Newtonian values given in (69) : 

I cylinder (1 07) 
Rb - 1 + p m / p e  cosh-1 [ -1) 1 

z -  4 - 3 P w / P s  d 3 P w l P e  

sphere 

a. Heat Transfer to Spheres. This has been done for the sphere and a 
density ratio of pJpe - 0.1; the relation between 8, and s b  is given in 

0 4 8 12 16 20 24 28 32 

Ue 8; R* 

' b -  P C U ,  
Mapnetic-inlaroclion parameter S - 

FIG. 24. Comparison of stagnation-point heat transfer with the field-free case for 
a sphere in hypersonic flow. 

Pig. 23 for the solutions of Kemp, Lykoudis, and Bush. The points due 
to Kemp were taken from ( 7 4 ,  where the field-free similarity solution 
gives Rb(due/dx)O/um - 0.517 compared to the Newtonian value of 0.549. 
The agreement for s b  < 5 is such that either solution is valid for 
conversion. 

We have plotted q/qo on Fig. 24 for the calculations of Bush and 
Iiemp discussed previously, using the data of Figs. 20, 22, and 23. For 
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n = 0 (u = constant), the two solutions are in agreement for s b  5 5, to 
which value Kemp computed heat transfer. The curves given by Bush 
in (76) for all values of the conductivity exponent extend to values of 
S, much higher than presented here (S, I 100) but these were not 
plotted in Fig. 24 because Sa 5 30 should be close to the maximum value 
encountered with unseeded air and practical magnetic-field strengths, at 
least for altitudes below 60,OOO m. It can be seen from Fig. 24 that 
when n > 5, an upper limit of sorts exists on Sa such that an increase 
in St. does not decrease the heat transfer further. From the calculations 
made by Bush on the hypersonic boundary layer (Section V,B,2), we 
find that the u/u, - (h/h,)6-44 fits the experimental data and the assump- 
tion made in (76) that pp-p,pr (true when h,>>k,).  Therefore, in 
actual flight, the curve marked n = 5 is likely to be encountered. Reduc- 
tions of 20 per cent in stagnation heating can be obtained if Se is high 
enough. 

The curve in Fig. 24 attributed to Lykoudis (69) is the Newtonian 
solution for the heat-transfer ratio at n = 0. This curve can be obtained 
by using Figs. 20, 21, and 23, or from the simple approximation 

both of which yield the same values. Equation (109) was first used by 
Lykoudis (60), where the exponent was introduced from results of non- 
magnetic studies in hypersonic-stagnation heating (1 7). This approxima- 
tion overestimates the reduction in heat transfer, which can be traced 
to the lower values of velocity gradient exhibited in Fig. 20 for the 
Newtonian solution, although the agreement for s b  < 5 is within 3% 
of the calculations made by Bush. Therefore the simple formula of Eq. 
(109) affords an excellent approximation for stagnation-point licat trans- 
fer. The error does not exceed lo%, which is within reason, considering 
the approximations made in all these solutions, until s b  >> 10. The dif- 
ference would be even less if an average magnetic field were used, as 
suggested by Lykoudis (66). 

Before leaving the case of spherical flow, it is of interest to indicate the 
effects of large viscous layers on the heat transfer. From Fig. 20 it is 
evident that Wu’s calculations for a shock Reynolds number of 1000 
show an extensive decrease in velocity gradient. This is reflected in the 
heat transfer shown in Fig. 24, where we have multiplied the values 
given in (67) by to account for changes in the shock Reynolds 
number as sb increases. 

b. Heat Transfer to Cylinders. With the exception of 3leyer’s solutioii 
for Re, >> 1, the literature does not contain any complete solutioris for 
[W 
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the cylindrical case. We suggest, on the basis of Fig. 24, that the empirical 
relationship of Eq. (107) be used for cylindrical flow, where the velocity- 
gradient ratio is given in Fig. 19. These values will probably overestimate 
the reduction in heat transfer in the same manner, as evinced by Fig. 24. 

To conclude, we have seen that it is possible to obtain significant 
reductions in stagnation-point heat transfer during ballistic reentry only 
by the application of very large magnetic fields. In a practical sense, 
the weight of magnets large enough to produce fields larger than 10,000 
gauss would prohibit their use in present-day systems; other methods of 
cooling are more feasible a t  the present. For future applications, such 
as reentry from near space, where significant heating takes place at high 
velocities and altitudes, this method of cooling might be worth consider- 
ing, especially if magnet technology produces lighter and more efficient 
magnets. 

B. OTHER STAGNATION-POINT EFFECTS 

1, Radiative Heat Transfer 

While it was stipulated in the Introduction that we would be studying 
convective heat transfer only, the peculiar nature of stagnation flow 
demands that radiation effects be included. Goulard (76) has shown in 
an order-of-magnitude analysis, using the formula due to Lykoudis [Eq. 
(109)], that an optimum field exists for reduction in total heat transfer. 
At the time (76) was written an analytic expression for the shock-layer 
thickness did not exist. The analysis made by Goulard can be improved' 
if we use the analytic expressions for the standoff distance given in (69). 
It was shown in (69) that the shock-standoff distance is proportional to 
(due/dx)-m, where the exponent m = for cylindrical flow and m = >5 
for axisymmetric flow. (Goulard used the value m = 1.) The energy 
radiated by the hot gas is thus written on the basis of continuity as 

(1 10) 

Using Eq. (log), the total heat can be written 

The optimum value for the velocity-gradient ratio occurs when the 
derivative of Eq. (111) with respect t o  that ratio is zero: 

'This rehement was suggested by P. S. Lykoudis (400). 
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Now Eq. (112) and the fact that du,,/d;l: < (du.,/d.c),, implies that pR,/qo 
< 0.4jm for a reduction in total heat to exist when a magnetic field is 
applied at the stagnation point. Since 

and 

The heat-transfer ratio becomes 

QR, - const ar(pa)%RbUm’O 

For a cylinder, the inequality is q R I / q o  < 0.533, and for a sphere, 
QRo/qO < 0.8. [Notice that if m = 1, as in (76), then the inequality is 
q R o / q o  < 0.4 in all cases.] 

It can be deduced from Eq. (113) that the radius for minimum con- 
vective heat transfer (aqo/aRb = 0) is such that the heat-transfer ratio 
becomes 

Therefore if the body shape is designed so that convective heating with- 
out a magnetic field is at a minimum, the application of a magnetic 
field will not increase the total heat transfer, since Eq. (114) is satisfied 
for either value of m under consideration. Goulard (76) found, that the 
radius would have to be less than its optimum value, since the inequality 
demanded that the heat-transfer ratio be less than 0.4. 

It is still unlikely, however, that the inequality of Eq. (114) can be 
satisfied a t  very high velocities when the wall absorptivity, a,,,, is large 
(i.e., when the surface is very “black”). Radiative heat transfer will 
definitely become important at the higher altitudes and velocities wo- 
ciated with reentry from space; and any analysis of stagnation heating 
with magnetic fields should include the radiative effects. To the author’s 
knowledge, however, a refined analysis has not been made. 

2. fiflects of Chemical Reactions 

Lykoudis (60) discussed the effects of diffusion and wall recombination 
briefly in his analysis of the viscous layer. By utilizing the results of 
magnetic-free heat-transfer calculations ( l7) ,  he showed that the term 
governing recombination at the wall is unfavorably influenced by the 
magnetic field, thus increasing the heat transfer due to diffusion and 
recombination. If wall effects had been included in the heat-flux balance 
of Section II,E, the catalytic term would multiply the Lewis number in 
Eq. (39), thus causing an increase in the heat transfer to  the wall. When 
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a magnetic field is applied, this term is further increased. A more com- 
plete discussion is given in (60). 

3. Stagnation Point with Electric Field 

The Langmuir probe is a small electrode to which various potentials 
are applied and from which currents are measured. It has been used 
extensively in gaseous discharges and static-plasma investigations. Talbot 
(77) suggests utilization of the Langmuir probe at the stagnation point 
and has developed the theory for its use in determination of hypersonic 
ion concentrations and temperatures. 

Because of the electric field applied to the probe, a space-charge sheath 
will exist in the viscous region around it. The gas external to the sheath 
is taken by Talbot to be chemically frozen, with ambipolar diffusion 
determining the motion of ions and electrons to the wall. The heat transfer 
to the wall in this presence of the sheath was determined; this includes the 
effects of ordinary conduction, ion-electron recombination heating, and 
the release of kinetic energy gained in the fall of charges through the 
sheath. An example was calculated for slightly ionized argon a t  
u, = 2090 m/sec, pw = 8.1 X kg/m3, and T ,  = 790°K. For a flat- 
ended cylinder of l-ern radius, he found that the total heat transfer for 
the probe a t  negative potential with respect to the plasma was largely 
conductive (q  = 105w/m2) while the other contributions were on the 
order of a few hundred w/m2. If the probe were positive, both the electron- 
kinetic-energy release and work-function contributions to the heat trans- 
fer become on the order of 2 X lo4 w/m2; hence, a substantial variation 
of heat transfer with probe potential is expected. This effect will also be 
important in the analysis of heat transfer to electrodes (see Section 
IV,B,2) although it has not as yet been assessed, 

C. STAGNATION-POINT HEAT-TRANSFER IN RETROSPECT 

The data presented in this section would imply that certain high- 
velocity reentry missions would benefit from the use of magnetic methods 
to reduce heat transfer. Before such a conclusion is acceptable, however, 
it should be pointed out that the analyses discussed here are only crude 
approximations to the complex problem of MHD stagnation-point Aow. 

Several factors, some of which have been mentioned here, should be 
investigated more thoroughly before the problem can be considered in 
a definitive state. The first is the effect of radiation-heat transfer, 
which was briefly discussed in Section VI,B,l. Secondly, a t  high altitudes 
the relaxation to equilibrium behind the shock takes a finite time, and 
the conductivity (among other things) is not likely to be uniform across 
the shock layer. 
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We should also point out that a particular magnetic-field configura- 
tion which reduces stagnation-point heat transfer could actually inc, 'rease 
the heating away from the stagnation point. The heat transfer away 
from the stagnation point was investigated by Wu (67), but only in the 
case where the viscous layer was large (Re, = 1000). 

The comparisons made in this section have indicated that the Newton- 
ian approximation sufficiently accounts for magnetic effects when the 
electrical conductivity is constant. In  fact, one could follow Lykoudis' 
suggestion arid use an average magnetic field in the parameter S .which 
would account for the variation of B between the shock and body (and 
hence its influence on the velocity gradient and detachment distance) ; 
the Newtonian formulation for heat transfer would probably agree more 
closely with the exact solution for values of Sb larger than 10. 

The assumption of constant conductivity is not a serious shortcoming 
in the analyses presented here, for seeding the boundary layer at the 
stagnation point might permit u to remain constant in the critical layers 
near the cool wall where magnetic effects are minimal. This layer, inci- 
dentally, causes the phenomenon of velocity overshoot (u > U,) to occur 
in the boundary layer. This phenomenon, which is due to the variation 
of conductivity with enthalpy (much like the hysteresis effect in Section 
V), is discussed in (78). 

Finally, it appears that the viscous contributions to the heat transfer 
can be incorporated, for constant conductivity, into a power-law varia- 
tion of the velocity gradient as in Eq. (109). The consistency of this 
method is demonstrated in Fig. 24, where the curve attributed to 
Lykoudis is obtained either from Eq. (109) or from Eq. (105) and the 
appropriate values given in Figs. 20 and 21. 

VII. Concluding Remarks 
Each of the preceding sections has contained, more or less, its own 

conclusions, in order that the independence of each problem area could 
be maintained. However, there remain certain outstanding conclusions 
which pertain to the whole field of AIHD heat transfer. These will be 
discussed at this time. 

It is apparent, in retrospect, that the field of X H D  heat transfer can 
be divided arbitrarily into two sections : one contains problems in which 
the heating is an incidental byproduct of the electromagnetic fields, and 
the second consists of problems in which the primary use of electro- 
magnetic fields is to control the heat transfer. The first section contains 
such MHD devices as generators and accelerators, and, t o  a lesser degree, 
pumps aiid flowmeters. The secoiid includes the natural convection flows 
and aerodyiianiic heating. Both of these areas have several problems ill 
common, among them the lack of experimental verification of the exist- 
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ing theory. Even more serious is the complete absence of reliable theory 
for turbulent heat transfer. However, t o  delineate more clearly the heat- 
transfer problems which remain in these fields, we shall discuss them 
separately. 

A. HEAT GENERATION BY ELECTROMAGNETIC FIELDS 

It is evident from the energy equation and Section IV that when 
electric fields are present in the gas substantial heat will be generated 
in the gas by Joule and viscous dissipation. In  a generator, the gas must 
be a t  a relatively high temperature in order for it to be electrically con- 
ducting. The efficiency of a generator will depend on how much of the 
generated power is delivered to the external load, and how much is 
dissipated in internal resistance. Other losses in a generator occur through 
wall heating, electrode heating, and (external) Joule heating in main- 
taining the magnetic field. (We should also include here such problems 
as Hall currents, voltage drops a t  the electrode, and end effects, which 
also diminish the efficiency.) Accelerators utilizing the ponderomotive 
or J X B mode will have many of the same practical problems, except 
that the power levels here are high enough to make the heating problem 
more severe. 

The state of the art of generator and accelerator design is a t  the point 
where experiments are now being made to investigate these sources of 
power loss. For example, Rosa (41) discusses an experimental 10-kw 
MHD generator, in which the performance is assessed in the light of 
observed Hall effects. The gas was seeded so that high conductivities 
were obtained without the attendant high temperatures, although the 
supply gas was generated by an arc heater. Heat-transfer measurements 
were, however, not made. Other proposed experiments which specifically 
include heat transfer are discussed in (54). Fay and Hogan (79) made 
measurements of the heat transfer to wire electrodes in a shock-heated, 
seeded gas. A potentia1 was applied to the electrodes and the asymmetry 
and increase of heating due to the electrical processes at  the particular 
electrode occurred as described in Section IV,D. 

It is expected that future generator or crossed-field accelerator design 
will include studies of the most suitable driver gas, electrode construc- 
tion and cooling, geometric configuration of the device (65) and various 
seeding materials. However, in many of these studies the primary empha- 
sis will be on reduction of heating losses in order to increase the efficiency. 

B. AERODYNAMIC HEATING 

The second area, that of heat-transfer reduction by flow control, has 
proved to  be less promising than when it was first considered in 1957. 
Even so, the primary obstacle t o  the use of electromagnetic means for 
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heat-taransfer reduction was the weight and Joule heat losses of the mag- 
net and associated power supply. Now, with superconducting coils in 
the developmental stage, some promise is held in this technique, although 
it is entirely likely that the superconducting magnet will weigh more 
than a conventional heat shield because of the necessary cooling equip- 
ment. However, it appears (Section VI) that this method will be appli- 
cable only a t  the stagnation point of blunt bodies. 

Because of the difficulty in obtaining a suitable supply of uncontami- 
nated high-velocity air, magneto-aerodynamic heating experiments are 
not prevalent in the literature. Ziemer (80) has conducted experiments 
on the shock standoff distance of a hemisphere-cylinder, in which the 
data agree in trend, if not quantitatively, with the theory of Bush (71).  
The measured standoff distance was larger by about 20 per cent than 
that predicted by the theory, which indicates that the heat-transfer 
reduction would be about 10% more than predicted in Fig. 2, for 8 < 5. 
(The magnetic-field configuration differed from that assumed in (71),  
and the high upstream temperature prohibited the hypersonic-flow 
assumption to be fulfilled by the experiment.) Another experiment, 
briefly reported (81) a t  the Third Symposium on Engineering Aspects 
of Magnetohydrodynamics, was one in which measured heat-transfer 
rates were found to be in agreement with the theory. 

In  this particular area of MHD heat transfer it appears that experi- 
mental work has suffered somewhat from the apparent lack of a practical 
goal ; early predictions which indicated that this method mould never be 
competitive with convectional heat-protection schemes have evidently 
prevented experiments, which are necessarily expensive and difficult to 
run, from being made. However, there remain several areas in the field 
of hypersonic aerodynamics in which MHD techniques may prove feasi- 
ble. One is the heat-protection problem associated with superorbital 
re-entry (Section V1,C) and the attendant problem of radio propagation 
through the plasma sheath; the other involves use of MHD devices to 
supplant conventional control surfaces or jets on lifting configurations 
in  hypersonic flight. 

C. OUTSTANDING PROBLEMS 

Aside from the problems discussed in the various sections of this 
article, there remain several basic problems which retard the progress of 
an orderly investigation of the field of MHD heat transfer. It is not 
likely that solutions to these problems will be available without extensive 
experimental work. 

This conclusion is especially valid in the case of turbulent flow, which 
we have studiously avoided during this article. Except for the book by 
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Harris (82) the author knows of no detailed experiments on the fluid- 
dynamic structure of turbulent flow, with the exception of work in 
progress a t  Purdue (40) in which velocity profiles will be obtained in 
the channel flow of liquid mercury in the presence of a transverse field. 
The Purdue group also plans to obtain bulk heat-transfer rates in the 
pipe flow of mercury, also with a transverse field. The velocity profiles 
will be exceptionally valuable for the determination of the empirical 
constants in an MHD turbulent theory based on mixing length, for 
example. 

Another area which is important to all of gasdynamics is the deter- 
mination of transport properties of slightly ionized gases-in particular, 
air. It is really not necessary to iterate any further the need for these 
properties, since it is still a moot question as to the magnitude of ordinary 
heat transfer a t  velocities exceeding 8500 m/sec. 

Although it was mentioned that almost all the classical problems have 
been attacked, there still remain many heat-transfer problems which 
have not been fully investigated within the classical framework. If we 
combine these straightforward, well-defined problems with those of the 
next generation, problems which will include Hall effects and other high- 
field phenomena, the area of MHD heat transfer couId be said to have 
a rich future before it. 
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SYMBOLS 

The meter-kilogram-second (MKS) system of units is used throughout. The fol- 
lowing list contains the symbols used most frequently; others, which are used infre- 
quently, are defined when they occur. 

unit of length 
magnetic induction 
specific heat 
species concentration 
parameter, Eq. (41) 
skin-friction coefficient, &/pV2 
heat-transfer coefficient, 

specific heat a t  constant pressure 
unit of length 
diffusion coefficient 

Q/PCpV AT 

D 
e 
E 
E 

f, F 
9 
Gr 
h 
h. 
II 
j 

electric displacement 
unit of electric charge 
electric field intensity 
Eckert number, Eq. (33) 
arbitrary forces 
acceleration due to gravity 
Grashof number, Eq. (27) 
enthalpy 
stagnation enthalpy 
magnetic-field intensity 
current ( J ,  dimensionless) 
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jH 
k 

K 
I, 
Le 
m 
M 
n 
Nu 
P 
Pr 

; 
f ,  R 
11s 
He 
Re, 

S 

1 
T 
11, I) 

U 
v 
Vk 
W 

Hall current, Eq. (1) 
coefficient of thermal conduc- 
tivity or Boltzmann’s constant 
generator coefficient, Eq. (29) 
unit of length 
Lewis number, Eq. (38) 
mass 
Hartmann number, Eq. (30) 
number density 
Nusselt number, qL/k AT 
pressure 
Prandtl number, Eq. (32) 
heat 0ux 
arbitrary heat source 
radial coordinate 
Rayleigh number, Ha = (Pr)( Cr) 
Reynolds number, Eq. (26) 
magnetic Reynolds number, Eq. 
(35) 
magnetic interaction parameter, 
Es. (28) 
time 
temperature, OK 
velocity components (U, V ,  
dimensionless) 
internal energy 
velocity 
diffusion velocity-of k th  species 
work 

bij 

A difference 
e dielectric constant 
rl length d e h e d  in Eq. (81) 
B dimensionless temperature, Q. 

(25) or angular measure 

Kronecker delta (bij = 1, i = j ;  
i j  = 0, i # j >  

K parameter, Section III,C,2 
x parameter, Section III,C,2 
.\ Lykoudis number, Eq. (45) 
cc viscosity 
pI magnetic permeability 

€ dummy variable 
P density 
pe charge density 
0 electric conductivity 
T shear st.ress 
rii shear-stress tensor 
Q heat-0ux vector, Eq. (36) 
ip viscous dissipation 
w cyclotron frequency 
$1 vorticity 
Subscripts 
0 reference conditions and condi- 

tions without electromagnetic 
fields present 
free stream or adiabatic condi- 
tions 

collision frequency 

x 

x, y, z coordinates (X, Y, Z, dimen- h body 

Q t her ma1 a hsor ptivit y 8 shock 
bt parameter, Eq. (!)6) 1U wall 
a coeficiriit of thermal expansion Superscriyt.s 
8 
& boundary-layer thickness 
6+ boundary-layer-displacemrllt 

sionless) E edge of boundary layer 

parameter, Eq. (97) b dimensionless 
- mean vahie 

thickness 
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I. General Considerations 

A. FLOW PATTERNS OF TWO-PHASE FLOW 

1 .  Definition of Annular-Dispersed Flow 

Annular-dispersed flow is just one of the many flow patterns which 
may occur, when a liquid and a gas flow in a duct a t  the same time. 
This kind of flow is termed in the literature in different ways, all with 
approximately the same meaning. The commonest ones are: spray flow, 
fog flow, dispersed flow, etc. 

From a physical point of view annular-dispersed flow is identified by 
P551 
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the presence of a continuous gaseous phase, and a discontinuous liquid 
phase. The liquid phase distributes itself in an annulus around the solid 
boundary of the duct and as droplets in the gaseous core. Obviously 
such an arrangement can persist in dynamic conditions only. When drop- 
lets in the gas are practically absent, the flow pattern is almost purely 
annular; when the liquid film does not exist or is disrupted, the liquid 
deficient region is entered (to which the term “mist flow” is often 
associated). 

Pure annular flow and “mist” flow might be considered the physical 
limits of annular-dispersed flow, as represented in Fig. 1. 

A full description of this flow, as of any two-phase flow, would be 
quite complicated and impractical for many purposes. One would have 
to pretend to know the point distribution of the three components of 
t.he gas velocity, the point distribution of the components of the liquid 

4 b) 4 
FIG. 1. Annular-dispersed flow pattern. (a), pure annular; (b), annular-dispersed; 

(c), pure dispersed (mist). 

velocity in the annulus, the concentration of the liquid droplets in the 
core, their size spectrum, their velocities and so on. I n  comparisoii with 
single phase flow the difficulties in the instrumentation and interpreta- 
tion of data are greater orders of magnitude. But to gain even a knowledge 
of average quantities (time and space average gas velocity, average ‘liquid 
velocity, average void fraction, thickness of the liquid annulus) is not a 
simple task to perform. 

2. Independent Variables of Importance 

The primary variables upon which the physical situation depends are 
quite numerous. They are: 

(a) geometrical variables (the duct diameter for a tube, two diameters 
for an annulus, a rod diameter and a lattice pitch for an infinitely wide 
cluster). The use of a single linear dimension-the equivalent diamt,t 1 er- 
in the latter cases is highly controversial, and is mostly used as an 
empirical tool to simplify correlations of experimental data, when possible. 
In  some cases even the “roughness” of the solid boundary must be taken 
into account. 

(b)  physical properties of phases (viscosity, density, surface tension of 
the liquid in the presence of the gas, contact angle of the liquid with 
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the solid surface). When heat transfer is present, thermal properties are 
also important to determine the two phase flow behaviour. 

(c )  kinematic variables (linear velocities). 
(d)  external fields (the gravitational field, centrifugal fields eventually 

impressed etc.). This shows as a consequence that physical situations 
are diff erent-all other things being equal-for upward flow or downward 
flow or flow in an inclined tube. 

In addition, t o  study the phenomenon in fully developed conditions 
one must be far from any inlet and outlet disturbance. 

Steam-water and air-water mixtures are the most common examples 
of two-phase mixtures, and they are the most studied. In the former 
case, assuming both phases to be in thermodynamic equilibrium, their 
physical properties are all single-valued functions of a single variable : 
pressure (or temperature). Thus, at  a constant system pressure, neglecting 
small variations due to pressure drops, the number of independent varia- 
bles decreases substantially. 

3.  Review of Two-Phase Flow Patterns 

One of the first tasks to accomplish, in studying annular-dispersed flow, 
is t o  determine the range of variables, under which it can exist. Since 
gravity has an effect, the boundaries between Merent  flow patterns will 
depend on the inclination of the duct. In  any two-phase flow pattern 
chart this fact must be specified. Unfortunately, in the past, flow pattern 
charts were traced starting mostly from qualitative visual inspections 
(by eye or by photographic techniques), which are difficult to translate 
in quantitative terms. 

Words, used for a long time, such as bubbles, dispersions, slugs etc. 
reflect this situation. Martinelli et al. ( 1 )  were the first t o  introduce a 
quantitative, although arbitrary, definition of two-phase flow regimes. 
Depending on the value of the Reynolds number for each phase, they 
defined four types of flow : turbulent-turbulent, viscous-turbulent, turbu- 
lent-viscous and viscous-viscous, usually abbreviated as tt, ut, tv and vv. 
The Reynolds number was defined in the usual way as GD/p,  supposing 
that each phase flows alone in the duct. They did not distinguish between 
upward, downward, and inclined flow. These flow regimes did not coincide 
with known flow patterns; the annular-dispersed flow, for instance, as 
defined by many flow pattern charts, is placed across the viscous-(liquid)- 
turbulent and turbulent-turbulent region. 

More recently Baker (2)  drew a chart of flow patterns for horizontal 
flow. This chart was slightly modified by Isbin (3). A flow pattern chart 
was also presented by Krasjakova (4)  and by Alves (5) for horizontal 
tubes. Ambrose (6) made a literature survey of flow patterns in horizontal 

W I  



MARIO SILVESTRI 

tubes, from which the following list was laid down (starting from pure 
liquid and increasing the gas flowrate) : 

(a) pure liquid 
(b) bubble flow 
(c) plug flow (alternate plugs of gas and liquid) 
(d) stratified flow 
(e) wavy flow (gas above a wavy liquid surface) 
(f) slug flow (periodic frothy slugs pass through the pipe a t  a greater 

(gj annular flow (no droplet entrainment) 
(h) mist or spray flow (droplets entrained in a pipe with wetted wall) 
(f) pure gas 

This list--and all two-phase flow pattern lists-contains a subjective 
component. Annular-dispersed flow would correspond to items i(g) and 
(h), where “mist” has a different meaning from that previously used. 
The liquid deficient region is not mentioned. 

In vertical upward flow some of the flow patterns existing in horizontal 
flow do not occur. 

Galegar ( 7 )  proposed a flow-pattern plot for vertical flow a t  atmospheric 
pressure. Tliese plots, however, are not general; that is, they are different 
for different fluids. 

l\‘oslov (s), by photographic techniques, studied vertical upflow of air- 
water mixtures at  atmospheric pressures and divided flow patterns in 
the following sequence, starting from pure liquid and increasing the gas 
flow rate (at constant liquid flow rate) : 

velocity than the average liquid velocity) 

( a )  bubble flow 
(hi s h g  fO\\ 

(c)  slug to emulsified flow 
(d) emulsified flow 
( e )  aniiula~-einulsitied (with wavy film) 
(f) mist (with wetted walls) 

He gives the flow pattern boundaries as relationships between volume 
flow rate quality, superficial mass velocity, tube diameter, fluid densities. 
.~iiiiular-dispersed flow should correspond to items (d) to (f). 

One of ttic most recent literature surveys of flow patterns was made 
by Vohr (H), who summarizes the basic vertical flow patterns in the 
followirig sequence . 

(a) bubble flow 
(b) piston (or slug) flow 

[:358] 
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(c) semiannular flow 
(d) annular flow 
(e) spray-flow 

Annular-dispersed flow would correspond to items (c) to (e). 
For inclined tubes the flow patterns have not been systematically 

studied. Because of its importance, upward flow will be mostly discussed 
in this chapter except when otherwise stated. 

B. ANNULAR-DISPERSED FLOW PATTERN BOUNDARIES 

1. Transition from Slug Flow to Annular-Dispersed Plow 

As seen in the preceding paragraph, most of the annular-dispersed flow 
pattern boundaries are constructed from visual inspection of what hap- 
pens in a duct. This is certainly not a satisfying criterion. It would be 
much better if a quantitative description of the transition between one 
flow pattern and another could be based on the step variation of a physical 
quantity, whose measurement could be feasible. It is well known that 
in single phase flow one can distinguish laminar from turbulent flow 
through the sudden variation of the law governing frictional pressure 
drops. But other parameters can be selected: for instance, the variation 
of the velocity profile or the persistence of a colored wake in the stream. 

One of the most important boundaries is that separating annular- 
dispersed flow from slug and bubble flow. Griffith and Wallis (10) started 
from the consideration that, in vertical upward flow, annular flow is the 
physical limit of slug flow, when the length of a gas slug goes to infinity. 
Since the slug length is expressed in their mathematical development by 
a fraction, the above condition is satisfied when the denominator goes to 
zero, that is: 

m(&, + Qz + VaA) = Q, ( 1 )  

where Vt, is the slug velocity = da. 
Rearranging terms one has : 

which means that the sum of the superficial liquid velocity and a fraction 
of the superficial gas velocity is a constant (at constant diameter) for 
the slug-annular boundary. The authors admit that the boundary equa- 
tion is certainly more complicated and depends on other characteristics 
of the flowing phases. 

The general diagram they plot is shown in Fig. 2. Transforming the 
coordinates adopted by them, one has: 
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so that the boundary equatiou is: 

It is interesting to note from Fig. 2 that, above a certain over-all 
superficial mass velocity, there is a direct transition from bubble flow to 
dispersed flow, while the slug flow pattern in between appears only below 
a certain critical mass velocity. 

Similar considerations are made by Nicklin and Drtvidson (11). They 
admit the existence of a semiannular flow, a flow in which very long slugs 
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FIG. 2. Flow pattern map for a vertical pipe in fully developed flow following 
Gri6ith and Wallis. I (bubble); IJ (slug); 111 (annular and mist). 

are interrupted by short liquid bridges. This flow pattern in vertical 
upward flow would be intermediate between slug flow and aunular flow. 
By a direct measurement of some parameters, they arrive at the conclu- 
sion that for low &r the transition between slug and semiannular flow 
appears at a constant value of (&I + Q,)/A = 8*, while at  higher QI 
values higher (QI + &,)/A values are needed. 

Another completely different approach is suggested by some experi- 
ments carried out a t  Harwell. These experiments were performed by 
tracing with silica water in a water-steam system heated with condensing 
steam, to verify if there were a preferential deposition of solid matter in 
certain flow patterns. A difference in deposition, if any, would furnish 
the necessary evidence, In fact this happened and three regions of different 
13601 
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amounts of deposition were identified, corresponding in the opinion of the 
authors to bubble (and slug) flow, annular-dispersed flow and liquid- 
deficient flow. These conclusions, of course, are only valid for this particu- 
lar system (low pressure steam-water system) and under heated condi- 
tions, which certainly affect the boundary between annular-dispersed flow 
and the liquid deficient region, although probably to a much lesser degree 
the transition between bubble (or slug) and dispersed flow. 

The change in the behavior of pressure drops was used by Wallis (12) 
as a criterion to differentiate between flow patterns. At CISE (IS), (14) 
both this criterion and the interpretation of burnout curves were used to  
determine boundary lines. With the steam-water system a t  70 kg/cm2 
in vertical upward flow, careful measurements of pressure losses were 
carried out at constant mass velocity for different steam qualities in a 
tube. Irreversible pressure drops (or pressure losses) per unit length 
( A p f / L )  deduced from total pressure drops, correcting for the gravity 
term and for expansion losses (very small corrections indeed), divided 
by V*%, were plotted as a function of X .  The exponent, n, which is different 
for different G’s, is capable of flattening the central portion of the 
diagram, to  better emphasize the change in flow pattern. Two examples 
of these diagrams are shown in Fig. 3. In  Fig. 3a (low mass velocity) 
three flow patterns (bubble, slug, and annular-dispersed) can be distin- 
guished while in Fig. 3b (high mass velocity) only two flow patterns 
(bubble, and annular-dispersed) exist. This is in general agreement with 
the conclusions reached by Griffith and Wallis ( lo) ,  although the numeri- 
cal results are different. Moreover, inspection of critical heat flux curves 
against inlet (or outlet) quality shows a maximum for low flow rates, 
while the maximum does not exist with high flowrates. The value of G 
for which the maximum clearly disappears, for these experimental condi- 
tions, is between 200 and 250 gm/cm2 second. 

.At CISE laboratories a rough but useful rule was found to match 
experimental results quite well: above a mean linear velocity of 500-600 
cm/second slug flow does not exist for the steam-water mixture in a wide 
range of diameters. The mean mixture velocity is defined in the following 
way : 

0 = O,(1 - 5) + 0,s = GVoz(X + a)  (5 )  

since 

Thus the boundary equation between slug and annular-dispersed flow 

(7) 

would be : 
GV,t(X + a) = const 
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which can be written: 

Qv QZ + = const 

This form is similar to (2) apart from the dependence on the duct diam- 
eter. It also resembles the conclusions reached in (11), if semiannular 
flow is included in annular flow. 

Since in these experimental conditions bubble flow persisted from zero 
quality up to about 3-4 % quality (with fi = 1, the void fraction is 
0.5 at 3.7% quality), one can see, by introducing this limitation in (8), 
that slug flow is impossible above 200-250 gm/cm2 second. 

2. Transition from Annular-Dispersed to Slug Flow 

An explanation of the slug-annular transition was proposed a t  CISE 
(13) starting from a point of view opposite to that of Griffith and Wallis. 
While they consider annular-dispersed flow as a physical limit of slug 
flow (with very long slugs), a t  CISE slug flow was considered the physical 
limit of annular-dispersed flow. This flow is characterized by the presence 
of liquid droplets carried into the core. When the gas velocity is not 
high enough to sustain the droplets, they slip down and coalesce to form 
slugs. For a spherical liquid droplet in a stagnant gas, the settling velocity 
is given by (15) : 

ua = pp(p8 - " )  cm/second 
3PvC 

(9) 

where C,  the drag coefficient, is a function of the droplet Reynolds num- 
ber (NR& 

The size of droplets depends on the mechanism of formation. I n  fully- 
developed flow, the only source of droplets is the liquid (wavy) annulus 
flowing along the solid boundary. Here, only rough hypotheses are possi- 
ble. Hinse (16) suggested the use of a critical Weber number: 

UI' here being the absolute value of the velocity of the surface of the 
liquid film at  the instant of droplet formation and 1 - K = U,l/U,. 
Combining Eqs. (9), (lo), and (ll), and postulating a value for K ,  the 
settling ratio Ud/ U ,  can be determined. This is the ratio of the free falling 
velocity of the droplet relative to the gas stream, divided by the gas 
velocity. When this ratio is close to 1, the droplets would be at  rest, and 
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of course should coalesce with other droplets to form slugs. Rough assump- 
tions are included in this picture: negligible effect of the droplets’ trans- 
verse velocity, no interaction between droplets, negligible eff eel; of the 
pressure gradient etc. The agreement, however, with experiments is satis- 
factory. For instance, putting K = 0.5 (and U,/U, = 1) one has 
U,  = 625 cm/second for the steam-water system at 70 kg/cm2. This 
corresponds roughly to the empirical equation (7). In fact, rearranging 
terms, one has: 

G V d X  + a) = -~ 
400 __- 

A S  

Since p t / p ,  >> 1, even at low quality and high AS,  the denominator is 
higher but close to unity. 

3. General Remarks 

One must take into account that all indirect methods of detecting flow- 
pattern boundaries are inductive in nature and, for instance, the sentence 
that the change in the pressure loss law corresponds to a different visual 
picture still requires confirmation. 

A provisional conclusion which can be reached now, at least for upward 
vertical flow, is that a t  constant G (within a certain G range) and starting 
from pure liquid, the first flow pattern to be encountered is bubtde flow. 
Beyond it annular-dispersed flow can be reached either directly or by 
passing through slug flow if the flowrate is low enough. 

What happens when the quality is increased is even more doubtful. 
Annular dispersed flow might transform into pure annular flow, as a 
preliminary to pure gas flow; or a certain amouiit of dropletis might 
always remain in the gaseous core, giving to the flow the character of a 
“mist” flow pattern. Absolute values depend, of course, on the properties 
of the system. 

The situation is therefore still somewhat confused, but the time seems 
near when a systematic description of the flow patterns can be successfully 
achieved. 

C. PHYSICAL QUANTITIES OF INTEREST 
IN ANNULAR DISPERSED FLOW 

1. Void Fraction and Slip Ratio 

As pointed out elsewhere, in single phase flow the average velocity U 
is known, once the volumetric flowrate and the channel cross section are 
known. The average mass velocity is then G = pU. On the contrary, in 
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two-phase flow, knowledge of flowrates and geometry is not sufficient to  
determine the average linear and mass velocities since the mixture density 
is an unknown quantity. The known quantities are the apparent (or super- 
ficial) mass velocities 8*, and 8*l defined as the gas or liquid flowrate per 
unit area, supposing that each phase fills the entire cross section: 
8*, = r , / A ;  8*1 = rt/A. Also known are the corresponding superficial 
velocities. 

An additional key quantity of interest is the over-all gas volume 
fraction a (or “void fraction”) defined as the fraction of the duct cross 
section (or of the volume per unit length) filled by the gas phase. 
The interrelation between this and other quantities is the following: 

(a) liquid volume fraction (or “liquid holdup”) h = 1 - E ;  h + a = 1 
(b) density of the mixture: 6 = spg + (1  - 5 ) p t  

The true average mass ( a d  linear) velocities are: 

8, = G*,/a; 

8, = G * l / ( l  - a) ;  

0, = 8*,/aps 

02 = 6*1/(1 - E)pr 
(13) 

The value of E is not equal to that of the volume flowrate quality X,,  
because the average linear velocities Ou and 01 are different. They will 
only be equal in an idealized homogeneous model. By defining a quantity 
fl (over-all slip ratio) as the ratio ~ , / ~ z ,  one has: 

x 1 - 8 p 1  

01 G1+ 5 PQ 1-x E p g  
- - 6 f l - a p 1  

x, 1 - a  

In  the special case f i  = 1, X ,  = a; while in general: 

L s = p  - _ _ _ _ _ _ _ _  

(14)  
- 

1-x, E 

From the above formulas one can see that a or fl are dependent on each 
other. Neither of them can be easily determined through experiments and 
this is the chief reason for discrepancies in their values found in literature. 
I n  addition to  an average value, a point value a can be defined. I ts  
knowledge permits the phase distribution in a duct to  be known. 

Other formulas of interest, derived from (13) and (14) are: 

1 - a p t  -- 
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2. 1-oid Fraction and Slip Ratio in Annular-Dispersed Flow 

Annular dispersed flow is characterized by having two distinct regions : 
the former in which 1 - a is unity (the liquid annulus), the latter in 
which 1 - (Y varies from the wall to the axis. Evidently, 5 and fi can 
be supposed symmetrical with respect t o  the flow direction only in vertical 
flow. We will refer to this case when upward motion is discussed. fi and 2 
are functions of all the variables reported in Section I .  For the special 
case of steam-water at constant pressure and geometry, 8 and 5 will be 
functions of flowrates only (or G and X ) .  I n  addition, however, t8hey will 
he functions of the heat input when heat transfer is taking place. I n  fact, 
in annular-dispersed flow, the total cross-sectional area occupied by the 
liquid phase -41, is divided in two portions A f  and A,, respectively occupied 
by water in the liquid film, flowing a t  an average velocity of, arid water 
in the core, flowing at 8,. Thus: 

where 

YJ = +, /Ai ;  yC = A , / A i  
Sl = &/of; 6% = u,/u, 

Usually in  upward vertical motion s, is higher but close to  unity. At 
burnout yf should go to zero and yc to unity so that s' ---f s', -+ 1. In adia- 
batic flow, due to the often very high value of Sr, the value of ,g can be 
much higher than unity. 

3. Energy and illomenturn Balance in l'wo-Phase Plow 

One important point in two-phase flow is that the energy balance 
equation and the momentum balance equation do not give the same 
results for pressure losses. In single phase flow in  a constant diameter duct, 
for flow of noncompressible ffuids and fully developed flow (for the sake 
of simplicity), one has: 

(a) mechanical energy dissipated as lieat per unit-time per uiiit-length 
of duct and per ouit-flowrate (from the energy balaiw) : 
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(b) shear stress a t  the walls (from the momentum balance) : 

D APf D { - - - p g  - = _.._. -. - (2 ) 4 Az 4 

On the contrary, in two-phase flow, still for incompressible fluids one 
has (9, 17, 18) : 

where p* = poxv + pl ( l  - X,) is the flowrate density, that is the density 
of the mixture averaged on the flowrate quality; 

where p is the true density of the mixture. 
Since X, # E (for s # l ) ,  ru, # 014 Apf/Az. Thus the “head term’’ in 

the pressure drop equation has two distinct expressions, following the 
energy balance or the momentum balance. A p l A z  - p g  = Ap{/Az may 
be defined as the pressure gradient due to the momentum exchange with 
the wall of the conduit and is proportional to  shear stress a t  the wall 
rW. In single phase flow, for an incompressible fluid flowing in a conduit 
of uniform cross section, Apf and Ap/ coincide. The same holds for 
horizontal two-phase flow, if a mean value of rW over the whole surface 
area of the wall is considered. On the other hand, in a two-phase vertical 
flow the value of rw is not strictly related to that of Apj;  in fact we have: 

D 

where 

Therefore Apf  and rw do not refer to  the same quantity. The expression 
pressure loss,” which refers to the mechanical energy dissipated as heat, 

should be restricted to  indicate the value of Apf. 
Since in horizontal flow the pressure loss is known, being directly 

measured, a question may arise as to  which of the two quantities (Apr 
or A‘pr) in vertical flow has to be compared with the horizontal pressure 
drop. 

The quantity of interest from the energetic point of view is obviously 
Apf. However, if a comparison is made with the purpose of verifying 
the coincidence of the values in horizontal and vertical flow (that is, 
for example, checking an existing correlation of data obtained with hori- 
zontal flow), then neither Apt  nor Apf’ should, strictly speaking, be used. 

In  fact, they would generally be different in horizontal and vertical 
P671 
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flows because of the inherently different shear stress distribution to 
which the phase and velocity distribution are related, in vertical and 
horizontal conduits. The difference, illustrated in Fig. 4 with reference 
to annular flow (where the asymmetry inherent to horizontal flow is not 
apparent), makes a possible coincidence purely fortuitous. In some 

a> b> 

FIG. 4. Shear stress distribution in annular flow. (a) vertical upward flow; (b) hori- 
zontal flow. 

instances, however, such as in the case of a highly dispersed flow, the 
difference might not be important from a quantitative point of view, hut 
this is difficult to know a priori with any certainty. 

11. Fluid Mechanics 
A. TWO-PHASE PRESSURE DROP 

1. General Remarks 

The pressure drop has been the most investigated item in two-phase 
flow from both the experimental and theoretical viewpoint. However, a 
pressure drop correlation has not so far been established which can be 
considered reliable enough, even for a given flow pattern, for instance, 
the annular-dispersed regime. Several reasons are responsible for this 
fact: the incomplete understanding of the basic phenomena involved in 
two-phase flow, which hinders the right approach to the problem, the 
influence of many variables which are quite difficult to evaluate, such as, 
for instance, the entrance conditions, the different interpretation of the 
experimental data with regard to the contribution of the various terms 
to the total pressure drop. 

As in single-phase flow, the measured total pressure drop is g;iven by 
the sum of three different terms corresponding respectively to the fric- 
tional resistance experienced by the fluid in its motion, to  the gravity 
field and to  the velocity variation along the flow direction. I n  two-phase 
flow, however, due to  the different velocities of phases, the pressure drop 
equation is different when derived from a momentum balance or, instead, 
from an energy balance (see also Section I,C,3). The two equations, in 
[368J 
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the simple case of incompressible fluids, constant conduit cross section 
and adiabatic flow, are : 

Total pressure Head (or gravity) 
droD Resistance term term 

equation AP A P f  + f *B - - Energy 

Acceleration term 

Total pressure Head (or gravity) 
drop Resistance term term 

APf' + PB - - AP 
Momentum 

equation 

The indexes 1 and 2 refer to  sections 1 (upward) and 2 (downward) of 
the conduit. 

The resistance term is generally called frictional pressure drop or 
irreversibility term. (The second expression, or the equivalent one :pressure 
loss, should be reserved to Apj, that ~ to the resistance term in the 
energy equation.) A comparison among the various experimental results 
should always be made on the basis of the same pressure drop equation. 

It can be noted that in two-phase flow, even under the above assump- 
tions, the acceleration term is different from zero when the phase distribu- 
tion, that is the value of 5, varies along the flow direction. This fact, not 
always taken into account, contributes another source of uncertainty 
in comparison with the various experimental results. The contribu- 
tion of the acceleration term under adiabatic conditions, as it was 
emphasized by Dukler (19), can be a substantial fraction of the total 
pressure drop, especially in the case of low pressure systems, where the 
gas density varies considerably along the flow direction because of the 
relatively high variation of the line pressure. 

2. The Homogeneous Model Correlation 

The simplest approach for the prediction of the two-phase pressure 
drop is represented by the homogeneous model, in which the two phases 
are supposed to flow with identical velocity and with a uniform distri- 
bution in the test section. According to this visualization of two-phase 
flow the acceleration term is zero in both Eqs. (22) and (23) and the head 
terms are equal, so that, with the above assumptions, it is A p f  = A'p,. 
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The prediction of the pressure logs is made through the well known 
relationship valid in single-phase flow: 

However, the expression of a two-phase viscosity to  be put in the 
friction factor, is a quite arbitrary average of the viscosities of the two 
phases. The following expressions have been assumed alternatively : 

1 1  1 - = - x + - (1 - X) 
P I 4 7  Bl 

(%a) 

ir = P,X.U + Pl(1 - X , )  (25b) 

p z  Irl (254 

Rarely can the homogeneous model predict the pressure drop with an 
acceptable approximation. 

3. Lockhart-Martinelli and Martinella-Nelson Correlations 

The best known pressure drop correlation for isothermal two-phase 
flow is that proposed since 1919 by Lockhart and Martinelli (20). This 
correlation was based on experiments performed with air and various 
liquids (water, kerosene, etc.) at room temperature and a t  pressures 
varying between 16 and 52 psia. The pipe sizes ranged from capillaries 
to  1 inch I.D., and the superficial Reynolds numbers between 1 and 
124.0oO (liquid), 7 and 86.000 (gas). In all runs for which the pipe was not 
horizontal, “frictional” pressure drops were deduced from total pressure 
drops, by subtracting the head term according to the momentum equa- 
tion. The monientum contribution due to change in phase and velocity 
d ist r i hu t ions was neglected . 

-4s mentioned in Section I,h,3, Lockhart and AIartinelli distinguish four 
flow regimes depending on the Reynolds number of the two phases 
supposed flowing alone in the conduit. For any one of these regimes the 
correlation, giveti in the graphical form (Fig. 5 ) ,  provides a unique value 
of the paramcter 

versus the value of the parameter 

1 S and 6 haw two subscripts (tt, tv etc.) depending on the flow reginie~ defined in 
Section I,A,3. ( t  = tcirbulent; v = visroiis). 
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where (A’pf)~ and ( A p f ) ,  and the frictional pressure drop of the liquid and 
the gas phase, respectively, supposedly flowing alone in the conduit. The 
authors used the well-known formula: 

where 

f=- 0*046 when N R ~  2 2000 

f=-- l6 when N R e  5 1000 

(294 
Nlb0.2 

and 

(29b) N R ~  

The proposed correlation, in terms of 41, represents the experimental 
results used to determine the correlation itself within 30%. The values of 
the pressure drop suffer of course from a greater deviation. 

OM 010 1m 
PARAMETER x 10 100 

FIG. 5. Martinelli-Lockhart graphical correlations for two-phase friction pressure 
drops and liquid volume fraction. 

It can be observed that the criterion selected for the specification of 
the flow regimes is not realistic. Furthermore Lockhart and Martinelli 
did not take into account the role of the surface tension with regard to the 
energy dissipation, so that this property does not enter the correlation. 
Other physical properties of the fluids are introduced only through the 
calculated single-phase pressure losses. 

At least it should be pointed out that, considering the postulates taken 
as a basis for the correlation, it may be inferred that the correlation 
would be particularly applicable to the annular-dispersed regime. 

The Lockhart-Martinelli correlation [or, better, a correlation obtained 
by Martinelli et al. ( I )  with a parameter slightly different from X ]  was 
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extended to the flow of saturated steam-water inixtures in turbulent- 
turbulent flow by Martinelli and Nelson @ I ) .  In this case, however, the 
value of the saturation pressure had to be taken into account aa a further 
independent parameter. This shows that the influence of the physical 

1-1 I I I 
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Fro. 6. hiartinelli-Neleon correlation for two-phase frictional pressure drops w i t h  
quality steam (adiabatic flow). 

lo 

1 
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PREsaR p.,g,/g 
FIG. 7. Martinelli-Nelson correlation for two-phase frictional pressure drope (with 

linear quality variation). 

properties of phases is not adequately represented through single phase 
pressure losses. The ($t2, X,&) curve corresponding to atmospheric pressure 
was assumed to be coincident with the above mentioned correlation, while 
the curve corresponding to the critical pressure was derived theoretically 
taking into account that in this condition the physical properties of the 
13721 
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two phases approach a common value. The intermediate curves were 
determined on the basis of experiments performed in horizontal flow 
with pressures varying between 35 and 230 kg/cm2 under heat transfer 
condition. These data were corrected for the momentum contribution 
due to the quality change along the flow direction. 

The Martinelli-Nelson correlation for constant quality (or for local 
values in the case of a quality variation along the flow direction) is 
represented in Fig. 6, in which the ordinate represents the ratio between 
the two-phase friction pressure drop and the pressure loss of the liquid 
phase (APf)lo assumed to be flowing at  the total mass flowrate. 

In Fig. 7 the integrated Correlation is represented as a function of the 
outlet quality X ,  in the case of a linear quality variation along the flow 
direction. 

3. Other Results on Pressure Drops i n  Horizontal Conduits 

Alves (5) carried out experiments in a pipeline gas-liquid contactor, 
1 inch I.D., consisting of four horizontal passes connected between one 
another by three upflow return bends of 7-inch radius. The fluids were: 
air at  low pressure, water, and oil. 

The pressure drop in the horizontal passes agreed fairly well (+20-30%) 
with the Lockhart-Martinelli correlation. The pressure drop results for 
the return bonds were remarkably higher than those predicted. The 
pressure drops in the Tee mixer (water on the run side) were found to be 
almost equal for both the gas and the water side: they increased with 
increasing gas flowrate and reached values as high as those in a horizontal 
section having LID = 50, when N ( R ~ ) ~  = lo4. 

The pressure drop measurements performed by Baker (2) with gas-oil 
(hydrocarbons) mixtures in horizontal pipelines (4 to 10 inches) can be 
considered as fully developed flow experiments (very long lines, 2 t o  3 
miles; very high line pressure, 1000 psi). On the basis of these and other 
experiments carried out by some other authors in very different flow 
conditions, Baker suggested a new relationship between Martinelli’s 
parameters 4g and X in the case of annular dispersed flow (as indicated 
by the flow pattern region plot proposed by the author himself) that is: 

(4g)tt = (4.8 - 0.3125D)X0.343-0.021D(D in inches) (30) 

This correlation points out a dependence of the ratio ( A p f ) w / ( A p f ) $  on 
the pipe diameter. For other flow regimes a further dependence on the 
mass flowrate (besides that included in the expression of (bo) is also 
demonstrated. 

Chenowheth and Martin (22) carried out experiments with air-water 
mixtures in horizontal pipes (1.5 and 3 inches) at  two different average 
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pressures ( I8 and 100 psi). Good agreement was found with the Loekhart- 
Martinelli correlation for performance at low pressure. 

On the other hand, the pressure drops obtained at 100 psi, especially 
in the case of the largest diameter, were remarkably lower than those 
predicted by that correlation (up to 2.5 times). On the basis of their own 
results the authors developed a new empirical correlation for the frictional 
pressure drop in turbulent two-phase flow [(NR,,)~ = GD/pl > 20001, 
which gives the value of (Ap/)~p/(Ap/)b as a function of the liquid 

lo00 

(+a 
100 

10 

1 
0 Qmnl DDan OM1 om 0.1 , + l  

FIQ. 8. Chenoweth-Martin correlation for turbulent two-phase frictional preasure 
drops in horizontal ducts. 

volume flow rate quality (1 - X.) ,  having the ratio (Ap/),,/(Apf)b as a 
parameter (Fig. 8). The terms ( A P ~ ) ~  and (Ap,),,,/(Ap,)b include the 
fitting pressure drops (2K) : 

This correlation represents 92% of the data within 35%. The data of 
other investigators (including those used to develop the Lockhart- 
Martinelli correlation) correlate equally well. The results obtained with 
three typical 3-inch fittings do correlate as well. 

Isbin et al. (3) investigated the adiabatic pressure drop in horizontal 
pipe (0.484 and 1.062 inches I.D.) with saturated steam-water mix- 
tures from 25 to 1415 psi (total flowrate: 454-4350 lb/h; mass quality: 
0.03 + 0.98). Care was taken to avoid any entrance and exit effect. 

The frictional pressure drops were computed by subtracting from those 
measured the pressure drops due to the momentum variation (these 
being noticeable only at low pressure). The authors compared the experi- 
mental data with the Martinelli-Nelson correlation in terms of parameter 
(t$,), which minimizes the effect of pressure. The agreement is not very 
good and the experimental values of (t$,), show a dependence of the steam 
W41 
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flow rate. A new empirical correlation is then proposed (Fig. 9) between 
(&Jo2 and the quantity 1 - X / X ( N ) , , ,  where ( N R J ~ ~  is the Reynolds 
number based upon total flow as gas. For the highest values of the 
steam flow rate, the experimental data correlate fairly well with the 
homogeneous model (1/0 = l/y,X + 1/pt(1 - X ) ) .  The experimental 
curves of (&JO2 versus the mass quality exhibit a maximum in the high 
quality region ( X  > 0.5). 

In  1946 Armand (23) developed analytically a relationship between 
the parameter 6z2 and the liquid volume fraction (1 - a) in the case of 

FIG. 9. Two-phase frictional pressure drop correlation presented by Isbin et al. (3) 
for steam-water system in adiabatic horizontal flow. 

an annular regime and extended it, rather arbitrarily, to other flow 
regimes : 

K 
612 = 

(1 - 5). 

where the values of K and n were determined experimentally (air-water 
mixtures a t  room temperature and atmospheric pressure in a horizontal 
copper tube, 26 mm 1.D.-Mass quality: 0 + 95%) and depend on that 
of (1 - 8).  A correlation between 8 and the basic variable X ,  is also 
given. The proposed correlation represents fairly well the data obtained 
by other authors under different experimental conditions. 

The author of this article, together with Treshchev (24), on the basis 
of experiments performed with steam-water mixtures in horizontal flow 
(diameter: 57 mm I.D.; pressure: 10 + 90 atm; X = 0 + 90%) with and 
without heat transfer, proposed a simplified correlation (valid for 
X ,  > 0.90) which accounts for the influence of the static pressure: 

0.002511 + 0.005 . -_ ( p  in kg,Cm2) 
(1 - X,)'.75 

412 = 
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Mchlanus (25) carried out experiments a t  atmospheric pressure in 
horizontal pipes (1, 2, and 3 inches) with mixtures in annular-dispersed 
flow. The fluids were air, water, and glycerine solutions. The total pressure 
drop was corrected for the acceleration term (Ap , ) ,  according to the 
momentum equation and the experimental variations of the liquid volume 
fraction along the flow direction. This correction was found to depend 
substantially only on the gas Reynolds number; the Ap, fraction due to 
the liquid phase, however, depends on the liquid Reynolds number. The 
author found better agreement of his experimental results with the 
Cheuoweth-3Iartin correlation rather than with the Lockhart-Martirielli 
one. With the smallest diameter, however, even the first correlation 
predicts values of the frictional pressure drop (ap , )  lower than those 
measured. 

McSlanus observed a large increase iu pressure drop wheii the liquid 
viscosity is increased, the liquid Reynolds number being the same. At 
the same time the film waves (see Section II,B,3) are damped and the 
author suggests that the energy lost is expended in viscous shear stress 
rather than wave formation. 

The iiifluence of the type of entrance and of the liquid properties 
(viscosity and surface tension) was investigated by Dukler e f  al. (19, 26) 
in an horizontal apparatus (pipe diameter: 1 and 3 inches) a t  room tem- 
perature and pressure. The pressure gradient was found to be higher, 
all other things being equal, when the gas enters the Tee mixer side. In  
this case (see Section II,B,4b) the entrainment is lower, so that it is 
suggested by the authors that more energy is required to transport a 
given liquid flowrate in the film adhering to the wall rather than in the 
core in form of small droplets. A liquid viscosity variation from 1 to 17 
cp produced small but measurable pressure drop variations. The influence 
of this parameter seems to be quite complicated in nature because its 
influence on pressure drops goes through a minimum and depends on the 
value of the liquid flowrate. On the other hand, the surface tension influ- 
ence was found to be negligible. The acceleration (or expansion) pressure 
drop, according to the momentum equation, was shown to  be as high as 
50% of the total pressure drop and the authors suggested that many 
discrepancies among the various authors may be due to a different influ- 
ence of this term not always taken into account. 

4. Results or1 Pressure Drops in Vertical Conduits 

Govier et al. (27, 28, 69), investigated the flow of air-water mixtures 
in vertical pipes, the gas density and the pipe diameter being taken ah 
idditional variables. They related the different trend of the total pressure 
drop versus the ratio X,/1 - X .  a t  constant liquid flowrate to  the exist- 
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ence of different flow regimes. A graphical correlation is proposed for 
the pressure loss, computed according to the energy equation, in terms 
of a friction factor defined as: 

where O*r is the superficial linear velocity of the liquid phase. 
The values of jz were found to be nearly independent of the gas density 

and to increase with increasing pipe diameter. 
The prediction of the pressure gradient in annular vertical flow was 

approached by Anderson and Mantzouranis (30), by evaluating the fric- 
tion factor of the gas phase considered as flowing alone in contact with a 
liquid rough surface. They suggested that the ripples on the film surface 
have a marked effect on the value of the friction factor. Due to the diffi- 
culty in defining the film surface condition versus the basic flow variables 
the influence of the liquid phase is tentatively taken into account through 
the parameter Q* = ql/rDs v/pe/7,. The experimental data obtained by 
the authors themselves with air-water mixtures in a %-inch test section 
were correlated in terms of 7 i / p g o * 0 2  versus the gas Reynolds number 
with Q as a parameter. By comparison with other experimental data, i t  
was found that Q is unable to describe the influence of the geometry and 
liquid properties. 

Hewitt et al. (31) compared the experimental data obtained in a verti- 
cal channel (1%-inch I.D.) with air-water a t  room conditions with the 
Lockhart-Martinelli and the homogeneous flow correlation. I n  the first 
case the momentum head term was accounted for; in the second one both 
the liquid viscosity and the mean fluidity were used. Satisfactory agree- 
ment was found only with the first correlation. 

Hughmark and Pressburg (18) investigated the influence of the liquid 
properties in vertical flow. The test section was a 1-inch I.D. pipe a t  
atmospheric pressure and the fluids were air and six different liquids. 

They suggested that the pressure loss, defined according to the energy 
equation, is related to the difference between the linear mean velocity 
of the two phases and gave, in graphical form, a series of curves repre- 
senting ( A P ~ ) ~ P  - (Ap,)lo/Az versus (oo - OZ) having as a parameter the 
value of2 

However, the value of the liquid volume fraction, that is the value of 

0 Units to be used: 0 = [lb. mass/sq. ft .  sec]; p = [cp]; p = lb. m&ss/cu. f t ;  
y = [dynes/cm]; D = [ft]. 
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(0, - Ot), depends itself on physical properties and flowrates so that 
the influence of these variables is more complicated than that shown by 
(35). Iu particular the pressure loss will depend also on thr physical 
properties of the gas phase. 

A semi-theoretical approach was proposed by Baukoff (32) for the 
bubble flow regime visualizing a smooth phase distribution, the wall being 
wetted by the liquid and the gas concentration reaching a maximum 
at the axis, with a local slip ratio equal to unity. If a power law distribu- 
tion is assumed for both the velocity and the void fraction the ratio 
between the over-all gas volume fraction and the volume flowrate quality 
(K = a/X, )  will depend only on the value of the exponents. On this 
basis and defining 

a correlation is derived between the shear stress on the wall in two-phase 
flow and that in single (liquid)-phase flow in which mass and volume 
quality, gas to liquid density ratio and K are involved. The comparison 
with experimental results and other correlations for steam-water mixtures 
seems to indicate that the correlation is reasouably accurate if K is 
assumed to be a given function at the static pressure. Due to the pro- 
cedure followed neither the gas viscosity nor the surface tension are 
included. 

.4 similar approach was tried at CISE by Bertoletti et al. (19) for 
annulardispersed flow. A velocity distribution and a void fractiori of the 
following form were assumed : 

a 1 
a’ = - I e-  

n a m u  

(37a) 

where the subscript “max” refers to the maximum value (on the axis). 
The correlation derived for pressure drops was compared with experi- 

mental results, and the agreement was poor (not better than using far 
less complicated correlations). In any case, even if the agreement could 
be improved through a better knowledge of velocity and void fraction 
distribution, the main difficulties are not bypassed, since a correlation 
for velocity profiles and void void fractions would be necessary. It is 
not denionstrated that this would be an easier task than correlating 
directly an iiitegral parameter such as friction pressure losses. 
[ 378 ] 
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5. Results of Investigations Performed at CISE Laboratories 

The pressure drop investigation in two-phase adiabatic flow accom- 
plished a t  CISE (33, 34,55,36,37,38) was mainly devoted to the dispersed 
region (according to the visual observation as well as to the Baker plot). 
(See Section I,A,3 and reference (d).) The experiments were carried out 
in a pressurized system (up to 22 kg/cm2 abs) a t  room temperature with 
a thick wall transparent plastic test section mounted vertically. 

Most of the runs performed with argon-water mixtures a t  full pressure 
in a 25 mm I.D. circular conduit (G = 30 t 300 gm/cm2 second, 
X = 7 t 80%). The measured values of the pressure drop were not too 
far from those predicted by the Lockhart-Martinelli correlation and, a t  
the highest mass flowrate, by the homogeneous model 

(ii = P Q X M  + Pd1 - X M ) )  

which always gave lower figures. The trend of pressure drop against 
mass flowrate is, however, quite different: the dependence of the pressure 
loss on specific total mass flowrate can be represented to a first approxi- 
mation by the exponent 1.4, instead of 1.8 as given by both correlations. 
The dependence on quality was found to be represented with reasonable 
accuracy by the flowrate density; the dependence on p* can be expressed 
approximately by the exponent -0.75. With qualities higher than 0.5 
the two-phase pressure loss was always greater than those corresponding 
to the total flow of gas and at  low mass flowrates this happened even 
with lower qualities. 

The influence of the entrance conditions was investigated by varying 
the aperture of the annular slot of the Tee mixer (gas on the run side). 
The pressure drop decreased with decreasing aperture size, that is with 
approach to jet injection to which a higher initial liquid dispersion 
corresponds. 

Other experiments were carried out under different experimental 
conditions to investigate the influence of the physical and geometrical 
parameters. 

The liquid viscosity was varied between 0.67 and 1.12 cp allowing the 
operating temperature to vary between 16" and 37 "C. Within this range, 
no significant influence of this parameter was observed. The same can 
be said about the influence of the gas viscosity ,which was varied by 
using nitrogen in place of argon (1.8 

The influence of the gas density, investigated by lowering the line 
pressure do -6 kg/cm2 abs and operating at  constant volume flowrate, 
was found to depend strongly on both flowrate and quality. At the 
highest flowrates it was, roughly, Ap = prr)P, while a t  lower flowrates the 
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exponent is also lower. Furthermore, it was found that even the depend- 
ence on po, together with that on quality, can be represented by the 
flowrate density. 

The influence of the liquid density, on the other hand, was not 
investigated. 

An interesting result is that concerning the influence of the surface 
tension, which was investigated by using an alcohol-water solution 
(90 W.% of ethyl alcohol, 7 = -24 dyne/cm) in place of pure water. 
I7igure 10 shows that, while at low flowrate and quality the influence of 

P = 21.8 k$d 
room temp. 
gas: argon 

I -  

FIG.  10. Coinparison of frictional pressure drop with argon-water and argon/alcohol 
Yysteme in upflow (CISE'a results). 

this parameter is not significant, according to what was found by other 
authors (19)) with higher values of G and X the pressure drop decreases 
considerably as the surface tension is lowered, as if the interaction 
between phases played a role of increasing importance in the energy 
dissipation, when G and X are increased. 

Finally, operating with conduits of different size and shape (round 
conduit 15 mm I.D.; annuli: *%s mm and 1955 mm) it was found that in 
any case the dependence of the pressure drop on the equivalent diameter 
(defined as D = 4A/p) is represented with reasonable accuracy by the 
exponent - 1.2as in single-phase flow and according also to  the Martinelli- 
Lockhart correlation. 

Other experiments in vertical upflow were carried out in a hot loop with 
steam-water at 70 kg/cm* both in adiabatic and in heat transfer condi- 
[ 3801 
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tions 13, 39, 40, 41. 
results over a wide range of flowrates and qualities reasonably well: 

A fairly simple expression correlated experimental 

APf - 2f+ G2 
Az D p 

where 

(39) 
0.046 

f*  = o.2  (G in gm/cm2 second) 

and p is given by (25b). 
This correlation was found to apply with some loss in accuracy, even 

in the results for the argon-water system, previously mentioned. Also 
pressure losses in the presence of heat transfer, measured in the same loop, 
could be correlated provided that the proper correction was made for the 
acceleration term (computed according to the homogeneous model) , which 
is often predominant in the case of steam generation. 

B. PHASE AND VELOCITY DISTRIBUTION 

1 .  General Remarks 

The studies carried out on phase and velocity distribution in two-phase 
flow may be conveniently distinguished into two major items: 

(a) the investigation of the overall values of the variables averaged 
over the conduit cross section. Due to the relationships existing between 
them, only one variable has to be determined experimentally; 

(b) the investigation of the local values of thevariables. The local values 
of the specific mass flowrates are not known a priori so that, in this case, 
three independent measurements have to be made. Referring to the 
annular-dispersed regime, however, we can further distinguish between 
the region adjacent to the conduit wall, occupied by the liquid film, in 
which the number of unknowns is reduced, and the region in the core of 
the conduj t, occupied by the liquid-gas dispersion. 

2. Over-all Properties 

Apart from the density measurements performed with radiation, 
described elsewhere (Section I1,C) in this chapter, the quantity that 
generally has been directly measured is the liquid volume fraction (or 
“liquid holdup”) 1 - E .  The value of the liquid volume fraction being 
known, the mean density of the mixture and the mean velocity of both 
phases, hence the over-all slip ratio (8), can be easily evaluated using the 
relationships given in Section I,C,l. In the case of a purely annular 
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regime, without any appreciable amount of spray in the core, the mean 
film thickness, too, can be immediately derived from the liquid volume 
fraction. 

The most used method to measure the over- 
all volume fraction of the liquid phase is that of the “quick closing valve,” 
by which the amount of liquid contained over a length of the conduit is 
trapped and then weighed. Errors may arise from the following main 
sources : the nonsimultaneous closing of the valves and the noncoinplete 
recovery of the liquid to be weighed. 

An interesting method for the direct measurement of the mean dlensity 
in horizontal pipes is that used by Armand (23) who weighed a portion 
of the conduit under operation. 

a. Measurement Methods. 

0 02 0.4 x 0.6 0.8 1 

FIG. 11 .  Martinelli-Nelson correlation for void fraction vs. quality stearn a t  dif- 
ferent pressures. 

b. Results and Correlations. Lockhart and lliartinelli (20), on the basis 
of the already mentioned experiments performed with gas-liquid systems 
at  low pressure, proposed a correlation between the liquid volume fraction 
and the parameter X which is still extensively used. The correlation, as 
shown in Fig. 5, is given in graphical form with a single curve valid for 
any flow regime. For the same reasons, stated in connection with the 
pressure drop correlation, the holdup correlation should not be generalized 
to systems having too different properties. 

Following a procedure similar to that used for the pressure drop 
correlation, Martinelli and Nelson (21) derived a void fraction correlation 
for steam-water systems with the saturation pressure as a further 
parameter (Fig. 11). The curves given, however, are more arbitrar,y than 
in the other case due to the lack of experimental data. 

Many other authors (2, 5, 23, 42, 43, 44, 45) have carried out holdup 
13821 
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measurements under different experimental conditions. The results and 
the proposed correlations are rarely in mutual agreement. A comparison 
among a number of published data is made in (46). 

The correlation recently proposed by Hughmark and Pressburg (18) 
accounts for the influence of all the physical properties. A single holdup 
curve is given using the following parameter3: 

1 - X 0.9 P10.19 0 2 0 6  0 70 2.76 

(40) 

where G has a maximum value of 24.4 gm/cm2 second (50 Ib/ft2 second). 
According to this correlation the influence of the diameter of the conduit 
is not appreciable, while that of the gas viscosity is quite strong. 

Y . P a  . Pa 
x = (7) Go.4asp10.7z 

Argon-walcr system 
Vertical up-f ly 
p.Zl.8 k d c m  

1 

OO - 10 x 
FIG. 12. Ratio (1 - a) / ( l  - X, )  vs. mass quality. Gas snd total mass flowrate as 

parameters (CISE's results). 

The over-all liquid holdup was not directly measured at  CISE, but the 
values of this parameter were calculated from the data on the local values 
in the core and the mean film thickness and from the mean density values 
obtained with the &ray method. The figures obtained in the two ways 
were in reasonable agreement (see Table I1 in Section II,C,6) and 
therefore some remarks can be made about the over-all properties of 
pressurized gas-liquid mixtures in vertical dispersed flow. 

With pure water as the liquid phase and argon at  full pressure 
(22 kg/cm2), the values of 1 - a are always considerably higher than 
those of 1 - X,, but the ratio 1 - a/l - X, depends on both flowrate 

[3831 
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and quality (Fig. 12). Consequently the values of the over-all slip ratio 
and of the ratio between the true density and the flowrate density is 
substantially higher than unity. Apart from this dependence, these data 
agree not too badly with the Lockhart-Martinelli correlation, in spite of 
the high gas density. 

According to experimental results on the influence of the physical 
properties on the thickness of the liquid film (see Section 11, B, 3), liquid 
and gas viscosity, in contrast with the Hughmark-Pressburg correlation, 
should not appreciably influence the liquid holdup, at least withnn the 
narrow ranges investigated. The surface tension, instead, with sufficiently 
high values of the flowrate and quality, would play an important role: 
the lower the surface tension, the lower the liquid holdup. 

On thc other hand, Larson (47) during experiments with steam-water 
mixtures in adiabatic flow at 70 kg/cm2 (1000 psi), that is with a surface 
tension five times lower than that of cold water, found values of s rather 
high (between 1.4 and 4.3), although operating with mass flow rates and 
qualities similar t o  those used in CISE experiments. In  this case, hovvever, 
the values of the other physical properties, especially of the liquid 
viscosity, are too far from the ranges explored with gas-liquid systems. 

With regard to the operation with heat transfer, mention can be made 
of the experiments carried out by Egen et al. (48) at 140 kg/cm2 (2000 psi) 
within the dispersed regime: the values of 9 were found to be very close 
to unity. 

5. The h q u i d  Film 

From the experimental viewpoint, the region adjacent to the mall of 
the conduit, occupied by the liquid film, has been investigated mainly in 
terms of film thickness measurements. Some authors (49, 50) , however, 
attempted to nieasure directly the film flowrate, while Krasiakoya (4)  
investigated the velocity distribution. 

With regard to the characteristics of the film surface, such as amplitude 
and frequency of ripples and waves, experiments carried out a t  Harwell 
(51) provided quantitative data mostly for pure annular flow. L4nyway 
the study of the detailed configuration of the liquid film surface arid 
structure in dispersed flow is just beginning. 

In the following, only the experimental data on average film thickness 
and film flowrate will be reviewed. Theoretical approaches to velocity 
distribution will also be mentioned. 

a. Measurement Methods. The most commonly used methods to 
measure the liquid film thickness are based upon electrical conductivity, 
increased, if necessary, by the addition of small amounts of electrolytes, 
wh ie  the two-phase suspension flowing in the core acts as an insulator. 
13841 
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Provided that the wall of the conduit is made of an insulating material, 
the electrical resistance of the film can be measured either parallel or 
perpendicular to the flow direction. One can distinguish: 

(a) measurements performed with electrodes placed on the wall at  a 
large distance with respect t o  the film thickness (34). In this case the 
average film thicknesses can be computed by the measured values of the 
resistance R and the resistivity p through the simple relationship : 

1 
s(D - S )  = -! T R  

Due to the disturbed nature of the film-core interface, the electrical 
mean thickness does not coincide with the true geometrical mean thick- 
ness. For example, if along the circumference there is an interruption in 
the liquid film the electrical resistance would become infinite while the 
geometric mean thickness would remain finite. 

(b) The electrodes are placed a t  a short distance (51) from each other 
but on the wall. In this case the relationship between the electrical resist- 
ance and the mean film thickness has to be established by calibration. 
Furthermore, the reading varies continuously following the vicissitudes 
of the film surface. In principle it would be possible to investigate the 
amplitude and the frequency of the surface waves. 

(c) Measurements of the electrical resistance perpendicularly to  the 
flow direction by means of a tixed electrode on the wall and of a movable 
inside the duct (25).  This method provides the maximum and the mini- 
mum values of the film thickness and can be used to  investigate the 
frequency of the waves. 

For other methods which have been used to investigate the thickness 
of the liquid film one can see (49, 52, 53). 

The direct measurement of the film flowrate has been performed by 
measuring the liquid flowing through an annular slot in the test section, 
having a variable aperture (49), or collected in a film separator a t  the 
end of the conduit (31). 

b. Results and Correlations. The first of the above cited methods was 
adopted at  CISE (34) to measure the liquid film thickness. The data 
obtained with argon-water mixtures at  room temperature and full 
pressure in the round conduit 25 mm I.D. are shown in Fig. 13. Under 
these experimental conditions the film thickness ranges between 0.1 and 
2 mm. As would be expected, a variation of the same sign of the gas or 
liquid flowrate has an opposite effect; that is, an increase in the gas flow- 
rate reduces the film thickness while an increase in the liquid flowrate 
increases the film thickness. The reduction due to  a gas flowrate increase 
prevails as shown by the curves at  constant quality. 
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The influence of the physical properties was investigated in the same 
way as for the pressure drop. In this case, too, the influence of the gas and 
liquid viscosity, within the narrow ranges explored, was not appreciable, 
while the influence of the surface teiision becomes remarkable a t  inereas- 
ing quality and flowrate (Fig. 14). 1:ilm thickness and pressure drop 

I 
t- 

Argon-water system 
Vertical up-flow 
P - 21.8 kg/cmz 
r m  temperature 
ID =2.5cm 

G*s16 g cd set A: 18 !! 
21 II 

24 11 

27.5 II 

30 11 

34.5!8 

41 II 

47 I 1  

56 II 

62 11 

71.5 II 

81 !I 

FIG. 13. Film thickness vs. liquid mass velocity, with the gas mass velocity as a 
parameter (CISE's results). 

vary in the same direction as the surface tension. A t  least, when the gas 
density is varied, the film thickness undergoes such variations that it can 
be said, roughly, to be the inverse of the corresponding pressure: drop 
variations. 

All physical properties being the same, the pressure drop and film 
thickness vary in the same direction, as it was revealed by the runs 
[386] 
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s(water1 
s(alcoho1 

6 

- 
7 -  IOd.5 cm 

- p.21.8 kg/cm2 

-C.200 g/cm2sec kmp* 

An important parameter should be the inclination of the conduit 
especially when passing from vertical to horizontal pipes. This effect was 
not investigated at  CISE and a comparison with other author's data 
cannot be made because of the very different experimental conditions. 

Film thickness measurements were performed a t  Harwell by Gill and 
Hewitt ( S l ) ,  through the technique of the short distance electrodes, in an 
air-water system at  low pressure. The trend of s against gas and water 
flowrate is similar to that found a t  CISE, but the values are not com- 
parable due to the different conditions. The experiments were carried out 
with two different modes of water injection in the mixer: annular and 
multijet injection. In the first case, all other things being equal, the film 
thickness is generally substantially higher than in the second case; the 
pressure drop, according to the CISE results, shows the same behavior. 
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Furthermore, for a multijet injection, at high gas flowrates the film thick- 
ness tends to level out with increasing liquid rate whereas with the 
annular slot the thickness continues to increase markedly. 

During the same experiments, the film flowrate was also measured 
by means of the above mentioned technique. As with the thickness, the 
film flowrate increases at constant gas flowrate with increasing liquid 
flowrate, but, in the case of the annular injection, at high liquid rates it 
becomes relatively insensitive to further increases, as if the fully dis- 
persed flow were approached. 

Mcklanus (2.’) used the movable method to perform film thickness 
measurements in horizontal flow with air-liquid (water and glycerine 
solutions) mixtures. The circumferential profiles at various stations along 
the test section were investigated. As would be expected, the film is always 
somewhat thicker in the bottom. The profiles were found to vary along 
the flow direction and to depend on both flowrate and quality. In most 
runs the entrainment was negligible so that the over-all liquid holdup 
could be derived from the film profiles. On the basis of these data, the 
author proposed the following holdup correlation : 

where K and the various exponents havedifferent values for ( N R J ~  > 2100 
and (NRJL < 1800. 

The experimental investigation of the region occupied by the liquid film 
was performed by several other authors also with different techniques. 
Data and discussions are reported in (4, 49, 62, 65). 

The film region has been investigated theoretically with the aim of 
finding a correlatiori between the film thickness and the film flowrate. 
For this purpose, the velocity profile in the film can be determined if a 
relationship between the shear stress and the velocity at any point is 
given. In the case of a purely annular flow, the shear stress distribution 
can be obtained through a momentum balance provided that the total 
pressure drop is known: in dispersed flow a further variable is the mean 
density (or the density of the core region). In practice, the exact shear 
stress distribution has never been used because the analytical procedure 
would be too cumbersome. Apart from this question, one can obtain in 
general a correlation involving the three variables: film thickness, film 
flowrate and total pressure drop, the reliability of which depends mainly 
on the selected relationship between velocity and shear stress. Two of 
these variables being known, the third can be calculated. 

Dukler and Bergelin (52) assumed a velocity profile equal to that giver1 
by Nikuradze for single-phase flow and found good agreement with the 
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experimental data obtained with a falling film upon a vertical flat plate. 
Successively Dukler (54) developed a correlation on the basis of two 
different expressions of the eddy viscosity (depending on the adimensional 
wall distance y+). Hewitt (55) adapted this theory to upward cocurrent 
flow and found a satisfactory agreement with the experimental data cited 
above (31). Other correlations were developed by Calvert and Williams 
(56) and Anderson and Mantzouranis (50). 

A relationship between film thickness and the interfacial shear stress 
ri was developed by Silvestri (57). 

4 .  The Core Region 

The region in the core of the conduit has only been investigated in a 
partial way, because of the difficulty, from both the conceptual and the 
experimental point of view, in handling all the three basic variables: gas 
and liquid velocity and gas (or liquid) volume fraction. The local and the 
over-all values of the entrainment were more frequently measured due 
to the fact that the droplet capture efficiency is relatively insensitive to 
the extraction conditions. The gas extraction, instead, requires special 
precautions. 

The microscopic structure of the core (average droplet size, droplet 
size spectum, transverse liquid flow rate etc.) is very difficult to investi- 
gate and only very recently have some attempts been made to do this. 

a. Measurement Methods. The devices for the investigation of the core, 
apart from the radiation sources, can be divided into two main categories: 
extraction and impact pressure devices. The major problems related to 
the use of these devices are, respectively, (a) fulfilment of the isokinetic 
conditions (where the sampled gas and liquid flowrate are in effect those 
corresponding to the unperturbed flow, and (b) establishment of a 
relationship between the impact pressure and the basic variables involved. 

A question arises about the optimum size of an extraction probe: a 
small probe allows a more detailed investigation but the droplet size 
and/or the probe flooding set a lower limit. 

The phase and velocity distribution in the core was investigated a t  
CISE by means of extraction probes (-1.6 mm I.D.) used also as Pitot 
tubes (34, 36). 

Preliminary runs confirmed the expected different behavior of the two 
phases: in front of the probe, while the gas stream is very sensitive to the 
value of the back pressure given by the probe itself, the liquid droplets 
tend in any case to keep their own direction. 

The CISE method has two bases: 
(a) the criterion to  determine the isokinetic condition: this condition is 

established when the pressure a t  the probe inlet is equal to thestatic 
pressure in the conduit. The sampled flowrates are related to the basic 
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variables by the simple relationship: 

rU. = c u u p u ~ ~ , , ;  rl, = ( I  - a)uplul (43) 

where u is the sanipling area. 
(b) the impact pressure relationship. This was derived through a 

momentum balance in correspondence with the probe inlet taking into 
account the different behavior of the two phases: 

Ap,, = f/2azp,Uu + (1 - cu)ptUt2 (44) 

Since the value of a is usually not too far from unity, this relationship 
shows that while the gas momentum is half lost, as in single phase flow, 
the liquid momentum is almost entirely contributed to the probe. Due 
to the many simplifying assumptions made, this relationship isaffected 
by an inherent unknown degree of inaccuracy. 

In this way, having three independent equations to determine three 
unknowns, the problem of determining the phase and velocity distribution 
is in principle solved. 

Several authors (16, 19,84,26, 57) carried out sampling probe experi- 
ments without controlling the isokinetic conditions just to investigate 
the entrainment distribution or to  measure the total entrainment. 
Krasiakova (4) operated under isokinetic conditions, but measured only 
the liquid flow rate. In some cases the impact pressure was also taken 
(4 ,  16, 58); having two independent measurements, the velocity and 
phase distribution may be determined, if the value of the local slip ratio, 
or of an equivalent quantity, is assumed to  be known. 

The entrainment distribution has been investigated with different Sam- 
pling devices. An example is a movable knife parallel to the flow direction 
and placed at the end of the test section. A differentiating process is 
required in this case to  determine the local values of the flowrate (23,69). 

b. Results and Correlations. The experimental data obtained at CISE 
(34, 36) may be represented by the typical examples of Fig. 15a and b, 
where the measured quantities and those derived through the above 
mentioned equations are reported. The corresponding mean film thickness 
is also indicated. 

The local values of the slip ratio are slightly greater than unity through- 
orit the core, so that the much higher values of the over-all slip ratio 
previously indicated (Section II,B,2b) should be attributed t o  the higher 
concentration of liquid into the low velocity regions, close to the film 
surface and the film region itself. 

The local entrainment and therefore the liquid volunie fractioii (M), 
is always minimum in coincidence with the conduit axis (or near the axis 
(3901 
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when the volume fraction distribution is not symmetrical). The liquid 
volume fraction can be as low as less than 1% in the center but reaches 
much higher values in proximity to the film surface; the measurements 
near the mall, however, might be affected by the film wave interface. 

The gas velocity profiles are always less flattened than single phase 
flow, the gas Iteynolds number being equal: the ratio between the linear 
velocity in the center and the mean linear velocity, which accounts for 
the actual area occupied by the gaseous phase, is in the range between 
1.30 and 1.38 instead of between 1.15 and 1.18. 

The distribution of the local values of the gas and liquid flowrate was 
also investigated at  Ansaldo Co. (Italy) (60) by means of an isolrinetic 
probe. The experimental conditions were: round vertical conduit 42 mm 
I.D., steam-water mixtures a t  50 kg/cm2 in upward dispersed flow. The 
entrainment distribution was found to have the same trend revealed by 
the experiments performed at  CISE and to be substantially unperturbed 
passing from a distance of 25 to 50 diameters from the mixer. 

An entrainment distribution with a minimum in the center of the 
conduit was also found by Wallis and Griffith (59), who simulated the 
flow of an evaporating mixture with an air-water low pressure downflow 
system by injecting air through the porous wall of the test section. 

On the other hand, an entrainment distribution variable along the flow 
direction was found during experiments carried out a t  Harwell in a very 
long vertical conduit (19 feet length, 1% inch I.D.) (58). The entrain- 
ment profile in proximity to the mixer (porous wall injection of water) 
is similar to those just described, while near the end of the conduit the 
trend is nearly reversed. This result, however, was obtained in a low 
pressure system, with a substantial variation of the gas density along 
the conduit. 

An entrainment distribution nearly constant throughout the core was 
found by Anderson and Mantzouranis (16): the high values near the 
wall were attributed to a probe interference with the wavy film surface. 
The over-all entrainment was found to  increase along the flow direction, 
but in this case the relative variation of the density along the conduit was 
also remarkable. The entrainment increases with increasing gas and/or 
liquid flowrate, but the influence of the gas flowrate is greater. The experi- 
ments were carried out with a nonisokinetic probe ; the authors, however, 
assuming a gas velocity profile equal to that which would exist in single 
phase flow and on the basis of an impact pressure relationship similar 
to that used at  CISE, attempted to investigate the phase distribution. 

Wicks and Dukler (26) carried out entrainment measurements by 
means of a 0.27 inch I.D. probe placed in the center of horizontal conduits 
(1 and 3 inch I.D.). They found a remarkable influence on entrainment of 
W21 
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the entrance section; the entrance type that gives higher entrainments 
also gives lower pressure drops, at least a t  low liquid rates. The over-all 
entrainment was evaluated on the basis of the central measurement 
assuming a uniform distribution throughout the conduit cross-section: 
values from less than 5 to 100% of the total liquid flowrate were found. 
The authors developed an entrainment correlation assuming that the 
similarities in the mechanism for mass and momentum transfer which 
have been shown to exist in single-phase flow also apply in two-phase flow. 
The correlation gives, in the graphical form, the Martinelli parameter 
X against the entrainment parameter 

(45) 

where (Nw,) ,  is the critical Weber number, to which different values have 
to be assigned depending on the entrance conditions. 

Majiros and Dukler (19), using a 0.427 inch I.D. probe in long hori- 
zontal conduits (20 feet length, 1 and 3 inches I.D.), carried out the 
entrainment measurements by investigating five different zones of the 
conduit cross section. From their experimental data one can see, along 
a horizontal diameter, an inversion of the entrainment profile going along 
the conduit from a station a t  -170 diameters to the last station (-200 
diameters). This effect is not detectable along the vertical diameter. 
They operated with different liquids to investigate the influence of liquid 
viscosity and surface tension. The liquid viscosity was varied between 1 
and 17 cp: the effects of viscosity variation depend on flow rates and on 
the viscosity itself, the entrainment going through a maximum as the 
viscosity is increased. The experiments performed by varying the surface 
tension between 49 and 66 dyne/cm indicate that the entrainment 
increases with increasing surface tension. It may be noted that, although 
at  CISE the surface tension influence on entrainment was not directly 
investigated, an opposite conclusion can be derived from the experimental 
data obtained on the influence of surface tension on film thickness and 
pressure drop (36). The correlation proposed by Wicks and Dukler was 
found not to handle the liquid viscosity effects correctly. 

A theoretical investigation of the phase distribution was performed by 
Levy ( G I ) ,  who, visualizing a smooth variation of the phase and velocity 
distribution throughout the conduit cross section, extended the mixing 
length theory to  two-phase flow. As a result, the density profile has a 
minimum in correspondence with the axis of the conduit. 
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C. DEXSITY MEASUREMENT BY RADIATION 

1. Genera2 Remarks 

Absorption of penetrating electromagnetic radiation-y- or X-rays-or 
of prays has been frequently used for measuring the density of liquid- 
gas mixtures flowing in a channel. In  fact the attenuation of a radiation 
beam crossing the channel is essentially a function of the density of the 
fluid flowing inside, although some other factors-like the flow distribu- 
tion and the chemical composition of the mixture-have to be taken into 
account. 

7-Rays, being more penetrating, can be successfully employed (48, 62, 
63, (54, 65, 66, 67, 68) to traverse relatively thick channels or channels 
made of “opaque” materials, such as, for instance, stainless steel. On 
the other hand, the high penetrating power lowers the sensitivity in the 
case of low density mixtures. @-Rays, due to  their stronger attenuation, 
allow a higher sensitivity, but their use is limited by their relatively 
short range. To a certain extent range limitations can be avoided by 
reducing as much as possible the channel thickness in correspondence 
with the traversing @-ray beam (69, 70, 71, 72, 73). 

The use of X-ray techniques is less handy, because it generally requires 
more elaborate radiation sources instead of simple radioisotope capsules. 
Application of X-ray absorption technique was reported for gas-fluidized- 
solid systems (7‘4). 

2 .  Sensitivity 

electromagnetic radiation obeys an exponential law, say: 
It is well known that the absorption of a beam of monochromatic 

I = 1,exp (-1s) = I,exp (-p’m) (46) 

where I and I ,  are the intensities respectively of the incident andt of the 
emerging beam, p is the absorption coefficient (ernA1), s the thickness 
(cm) of the absorbing medium, p’ = p/p[cm2/g] and m = ps[g/cm2]. 

A collimated beam of beta particles obeys the same exponent,ial law 
over part of their range, due to the particular shape of the P-spectrum. 
The mass absorption coefficient depends on the maximum energy of the 
@-spectrum and on the electron density in the absorbing medium, i.e., 
on Z / A  if the absorber is a pure element. 

The sensitivity S of an attenuation method for density measurements 
may be defined (75) as 

-dI/I s = -  
dm/m (47) 
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that is, the relative variation of the counting rate referring to the relative 
variation of m. 

In  the case of exponential attenuation, taking into account equation 
(47),  sensitivity may be written as 

8 = p'm (48) 

This means that for a given absorbing medium (fixed m) sensitivity 
is proportional to the mass absorption coefficient and is therefore higher 
for 0-rays than for y-rays. 

Considering the absorption in the duct walls, the exponent of Eq. (46) 
may be specified as follows: 

- (2pw'mc + Pf'rnf) (49) 

where pw and pf are the absorption coefficients in the walls and in the 
flowing medium respectively, while mw and mf are the corresponding 
thickness (which are assumed to be the same for both the walls), expressed 
in mass per unit area. 

Varying the density of the flowing medium the second term of the 
exponent of Eq. (49) varies, while the first term is constant. It is therefore 
easy to see that sensitivity, as defined by Eq. (471, is independent of 
wall thickness. 

3. Absorption Data Reduction 

Traversing a channel with a well-collimated beam and assuming the 
two-phase mixture has a gas volume fraction LY along the beam path, the 
absorption coefficient of the mixture can be written as 

P = cup, + (1 - Cr)PZ (50) 

In  a channel, with a distance D between two parallel walls, filled 
subsequently with the gaseous component only and with the mixture of 
unknown density, attenuation is given respectively by the following 
equations : 

I ,  = I ,  exp (-- P,D) 

I = I ,  exp { - [cup, + (1 - ~ P z I D  1 
with the same meaning of the subscripts. From these equations one can 
derive 

(51) 

from which the mean density along the beam direction can be calculated 
P951 
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through measurements of I and I,. Measuring the corresponding counting 
rates through a detector, background counting has to be considered. 

The value of p obtained in this way is an average along the beam 
path, and generally it varies traversing the channel in different positions, 
since the flow is not uniform. Values of p averaged on the whole cross 
section can be obtained through a simple integration. 

This treatment is exact only in the case of channel walls perpendicular 
to the traversing beam. With round tubes the situation is slightly more 
complicated since the nonnegligible width of the beam affects the inten- 
sity of the emerging beam. Calculations show (76) that the mean chordal 
length of the traversing beam can often be satisfactorily substituted for 
the above mentioned distance D, except for vanishing values of the 
former. 

4. Calibration and Detectors Used 

Some attenuation methods must rely entirely on the calibration of the 
particular device used, since the simple exponential absorption low does 
not hold. This is mainly a consequence of the following factors: energetic 
composition of the radiation, geometry, and diffusion. Let us consider 
each of these factors separately. 

a. Energetic composition of the radiation. In  the case of electroma,gnetic 
radiation an absorption coefficient p can be defined, strictly speaking, 
only if the radiation is monochromatic. Otherwise, calibration is the only 
mean to obtain absorption curves. However, if the emitted energies are 
sufficiently close, a mean value of p can be calculated and used. 

Another method to overcome the difficulties connected with a complex 
energetic structure consists in selecting the pulse amplitudes through the 
use of a proportional detector. 

SimiIar considerations can be made for composed P-spectra, each spec- 
trum behaving-as for absorption-like a monochromatic y or .Y line. 
In the case of P-rays, however, parasitic absorption in the channel walls 
often helps in cutting off the low energy spectra. 

b. Geometry. The exponential absorption law is valid only when the 
collimation holes are small with respect to the distance of the radiation 
source from the detector. If the flow distribution of the two-phase mix- 
ture is not uniform inside the channel, a further requirement for the 
exponential law to be obeyed and for the average density to be measured 
is that the channel width (or diameter) has to be substantially smaller 
than the distance sourcedetector. 

This fact is connected with the diffusion effect, mentioned here below. 
c. Di$usion. Let us call u the area of the collimation hole near the 

detector and r the distance of the latter from a point source. The detector, 
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in addition to the direct radiation comprised in the solid angle u/4?rr2, 
receives a portion of scattered radiation coming from the absorption 
medium outside that solid angle. Diffusion accounts also for the fact 
that smaller attenuations are measured with the same absorber when 
placed farther from the collimation hole. When attenuation is measured 
in nonuniform two-phase mixtures, this effect has to be taken into account 
if required by geometrical conditions. 

Calibration of attenuation devices often requires the use, as absorbers 
of known density, of substances chemically different from the components 
of the two-phase mixture studied. In this case the results have to be 
normalized introducing a correction for the effect of electron density (75, 
77) ,  if use is made of P-rays. 

The detectors commonly applied in the attenuation measurements 
are : ionization chambers, GM counters, scintillation crystals and 
photomultipliers. 

The counting rate is one of the determining factors for the choice of 
the detector: the GM counter is limited to about 1000 counts per second, 
the scintillation counter to about 106 counts per second, while the ioniza- 
tion chamber has practically no limitations. 

5.  Radioactive Sources 

The main factors to be considered in the choice of a radioactive source 
for density measurements are the following : half-life, intensity, and radia - 
tion energy. 

Half life has to be sufficiently long in order to avoid calculated correc- 
tions or recalibrations. 

Intensity will be determined so as to have a radiation flux reaching 
the detector of sufficient energy, thus obtaining a satisfactory accuracy 
in a conveniently short time. Since, in practice, accuracy is determined 
by the signal given by the detector, the efficiency of the latter also plays 
a role in this matter. 

In  single pulse counting the probable error of a count is e = 0.675 4%. 
where n is the counting rate (sec-1) and t the duration of the run (sec). 
Fixing t and t, the source intensity I.(mC) can be easily determined in 
the case of exponential attenuation : 

1.55 X lo-’ X r 2  
vqu& I ,  = exp ( e w ) ,  (53) 

where v is the number of particles emitted per disintegration in the active 
substance, q is the detector efficiency, the terms of the sum E ~ S  refer to 
the various absorbers traversed by the beam, while the other symbols 
were defined above. 

P971 



MARIO SILVESTRI 

Radiation energy (of monochromatic y- or X-rays or simple-spectrum 
betas) unequivocally determines the values of p. As far  as sensitivity is 
concerned i t  is clear from Eq. (48.) that  radiation energy should be 
selected as low as possible, in order to obtain the maximum N’. This 
choice is not always the best with respect to  accuracy, for which the 
detection system has to be considered (75). While for ionization chambers 
sensitivity and accuracy make opposing demands on the choice of PI  

so that a compromise is needed, in the case of GM and scintillation 
counters a value of p‘ as high as possible is the best choice. For beta 

TABLE I 

OF TUW-PHASE MIXTURES 
RADIOACTIVE sOUECES USED FOB DENSITY MEASUUEMENT 

Type P 
of Energies in water 

Radioisotope0 rad. (MeV) Half-life (crn-’) Reference 

1.17-1.33 
0.66 
0.39 
0.32 
0.084 

0.30-0.61 
(several lines) 

(several lines) 
3.12 
2.26 

0.024-0.40 

5.25 y 
3 o Y  

118 d 
27.8 d 

127 d 
74.4 d 

126 d 

285 d 
2 7 Y  

0.064 76 
0.086 78 

0.117 81 
0.221 48,66, 63, 64,66,6Y 

66 

0.088 79 

- 

- 68 

5.6+ YO, 7.9 
8.6+ 69,71,7.9 

+ Daughter 

however p’ cannot exceed about i / m  (where rn is calculated including 
parasitic absorbers), because, as said above, the absorption curve is flat- 
tened by straggling at the end of the range (75). 

Table I shows a list of the radioisotopes more commonly used in 
attenuation techniques for density measurements of gas-liquid mixtures 
(76, 78). It has to be pointed out that the flow patterns investigated 
by means of y-rays in the cited literature do not always include the 
annulardispersed flow. y-Rays can be applied also in this regime provided 
the channel width or diameter is sufficiently large, so that in Ey. (48) 
the low value of p’ is compensated for by a larger value of m. 

h‘. Expvrirrrerilul Procedures 

As for the esperimental proeedures the attenuation methods can be 
divided into two main categories: “one-shot” methods and “traversing” 
methods (69). 
P981 
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In the “one-shot” methods the channel is crossed by a blade-shaped 
radiation beam, the width of which practically equals the internal diam- 
eter of the duct. The collimation hole before the detector is usually a 
window slightly wider than the test section channel, to facilitate align- 
ment of the source, test section, and detector assembly. 

Density measurements performed by this method (based on calibration 
with homogeneous media) can be in considerable error with respect to 
actual densities, due to  preferential phase distributions inside the channel. 
Cook (65) conducted a series of tests on Lucite mock-ups, finding that 
the error increased as the channel spacing was increased and as the dis- 
tance between the radioactive source and the channel was decreased. 
Errors of up to 93% were obtained, although this value represents an 
upper limit encountered in pure annular flow. 

Better results can be obtained with flow patterns in which the phase 
distribution is practically uniform. In  fully dispersed flow, with pD I 0.7 
(D is diameter of the duct), Kosterin et al. (80) calculated the gas 
volume fraction through an analytical relationship, which avoided the 
need for calibration. 

The “traversing” methods are generally more precise than “one-shot” 
methods when the effect of flow distribution is not negligible. As previ- 
ously mentioned, they consist in crossing the channel by means of a thin 
radiation beam along different chords, The single measurements so 
obtained yield linear mean values of the density. From these values, 
plotted against the coordinate in the direction perpendicular to  the beam, 
one can derive, through a simple integration, the mean cross-sectional 
values. 

Usually the experimental procedure consists in moving the source and 
the detector, rigidly connected one to the other, in the direction normal 
to the beam, so that the latter explores the whole duct diameter (or 
width). There are however some variants. Styrikovic et al. (80) measured 
the void fractions of steam-water mixtures a t  pressures up to 95 kg/cm2 
in a duct 238 mm I.D., using the y-ray technique illustrated in Fig. 16. 
As shown in this scheme, the source is uncollimated, and five different 
beams are collimated through holes placed before five different GlLI 
counters. The beams traverse the channel along a diameter and along 
two chords on each side, forming different angles with the diameter. 
This technique does not require the source to  be moved. If the pulses 
coming from the GM-counters are all conveyed to the same counting 
system, this method can be also included in the “one-shot” category. 

At CISE (73) a small movable /3-source, introduced inside the channel 
for density measurements of argon-water mixtures a t  room temperature 
and high pressure, was used. The setup is illustrated in Fig. 17. This is 
one of the very few examples in which measurements in actual annular- 
dispersed flow were performed with radiation. 
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Fro. 16. Experimental arrangement used by StyrikoviE et al. (cross section): 
S-uncollimated gamma source; I-thermal insulation; T-pressure tube 23.8 cm I.D., 
--shielded Geiger-Muller counters. 

1 

FIG. 17. Experimental arrangement used at CISE (cross section): &movable beta 
source in a Lucite capsule (see detail enlarged 5 times a side, dimensionsin millimeters); 
P-positioning device; T-Lucite duct 2.5 cm I.D.; H--collimation hole; GM-Geiger- 
Muller counter. 

The position of the source was varied along the channel diameter and 
the corresponding attenuation measured. The device had to be calibrated. 
In spite of the fact that a slight flow disturbance could not be avoided, 
which probably resulted in the formation of a thin liquid film on the 
&source itself, the results proved to be in satisfactory agreement with 
density data obtained through an extraction technique and reproduci- 
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bility was within the experimental errors (from 5 to 12% depending on 
the source position). A comparison between density measured with the 
p-source and obtained with other methods (34) is reported in Table 11. 

TABLE I1 
RESULTS FROM @-RAY ATTENUATION EXPERIMENTS IN ARGON-WATER MIXTURES 

FLOWING UPWARD IN A 2.5 CM I.D. DUCT AT A PRESSURE OF 

22 KG/CM2 AND ROOM TEMPERATURE".' 

o,+ GI+ A B C D P 
gm/ - 

gm/cm2 second gm/cms cma P' 
P 

24.4 
24.4 
24.4 
24.4 

25.7 
44.6 
77 
134 

0.307 
0.453 
0.587 
0.593 

0.167 
0.212 
0.317 
0.347 

0.118 
0.153 
0.206 
0.215 

0.087 
0.115 
0.159 
0.166 

0.141 
0.187 
0.256 
0.292 

0.78 
0.82 
0.80 
0.73 

31.9 
31.9 
31.9 

25.7 
44.6 
77 

0.282 
0.367 
0.505 

0.145 
0.191 
0.265 

0.105 
0.131 
0.174 

0.083 
0.100 
0.137 

0.130 
0.162 
0.222 

0.84 
0.84 
0.86 

54.1 
54.1 
54.2 
54.4 

25.7 
44.6 
77 
134 

0.200 
0.247 
0.253 
0.417 

0.109 
0.139 
0.150 
0.247 

0.083 
0.096 
0.110 
0.164 

0.070 
0.080 
0.089 
0.132 

0.097 
0.118 
0.133 
0.203 

1 .oo 
0.94 
0.87 
0.77 

72 
72 
72 
72.5 

25.7 
44.6 
77 
134 

0.139 
0.164 
0.183 
0.332 

0.089 
0.098 
0.126 
0.210 

0.068 
0.078 
0.090 
0.154 

0.064 
0.069 
0.080 
0.126 

0.078 
0.090 
0.109 
0.180 

1.04 
0.90 
0.94 
0.93 

a I n  the table plin is the linear mean density; p the cross-sectional mean density 
and p', the same quantity obtained by isokinetic extraction and film thickness 
measurements [see (S4)l. 

Distance of the source from the axis in different positions (A) T = 1.05 em; 
(B) T = 0.70 cm; (C) T = 0.34 cm; (D) T = 0. 

7. Other Methods Involving Radioactive Sources 

Compton scattering instead of traversing beam attenuation can also 
be used for density measurements. Initial tests were performed by Bayly 
(81) aimed a t  the density measurement of steam-water mixtures through 
the detection of scattered 7-radiation at an angle of 90". A source of CrS1 
was employed and collimated with an opening of 1 X 6 cm both on the 
side of the source and of the detector (a crystal), for density measure- 
ments of fog simulating media in the range 0.03 to 0.3 gm/cm3. A differ- 

w11 
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cnce of 11.7% in exit signal was found a t  0.03 gm/cm3 with respect to 
an empty duct. The above-mentioned author is developing the method 
aiming at  an accuracy of 0.001 in specific gravity. 

III. Heat Transfer 
A. GENERAL CONSIDERATIONS 

I. Critical Heat Flux 

The transfer of heat by an evaporative process is as a rule characterized 
by the rapid increase of wall temperature when the heat flux exceeds a 
certain critical value. This is also true in the case of annular dispersed 
flow. A well-established definition of the critical heat flux does not, how- 
ever, exist. In the case of boiling water the heat transfer crisis results 
in a discontinuity of the wall liquid temperature difference as a function 
of the heat flux, as established by Nukiyama. Thus, a t  an earlieir time, 
it was not considered very important to  discuss the way in which “burn- 
out” was detected or defined. 

On the other hand, data on the heat transfer crisis in the case of dis- 
persed flow was for a long time a by-product of boiling studies (which 
correspond mainly to bubble flow) in the range of higher qualities. It 
was assumed that no fundamental differences did exist between the two 
phenomena. 

Later on, however, several authors indicated that in a given range of 
mass velocities and qualities the heat transfer crisis was characterized 
by a gradual, even if steep, increase in the wall-liquid temperature differ- 
ence by increasing heat flux. This is illustrated by Figs. 18 and 19. Figure 
18 reported from Silvestri (82) shows the evolution of the wall liquid 
temperature difference with heat flux at the outlet of an heated tube. 

Figure 19 shows a temperature profile along a heated tube in the last 
section of which (section B-C) the crisis has been reached, reported from 
Schrock et al. (83). 

Another well-established fact is that the wall-liquid temperature dif- 
ference, which is quite constant with time below the critical heat flux, 
shows random oscillations in coincidence with the incipient crisis. These 
oscillations first increase in amplitude, as the heat flux increases, and then 
gradually die out, when the heat flux becomes much higher than critical. 
The magnitude and location of these oscillations are also reported in 
Fig. 18 for that particular case. 

Afterward it was recognized that in the case of dispersed flow no sharp 
transition existed between the slow crisis just described and the fast 
crisis (eventually resulting in burnout) observed a t  lower quality. In  fact, 
it would seem that when going to lower qualities the rise in average 
[a21 



TWO-PHASE ANNULAR-DISPERSED FLOW 

FIG. 18. Temperature difference vs. heat flux below and beyond CHF in annular- 
dispersed flow (CISE's results). 

n 2 
E 
\ 

Fraction of length 
I 

FIG. 19. Profiles of wall and fluid temperature, pressure and quality along the 
heated length of a vertical duct with steam-water system in upflow. 

temperature, after the crisis corresponding to a given increase in heat 
flux, becomes sharper, and at  the same time the amplitude of the oscilla- 
tions around the average becomes much higher, so that the wall tem- 
perature may reach a very high peak value. The mechanism of the crisis 
in the case of dispersed flow might, however, be very different from the 
classical burnout observed with boiling water. 

[4031 
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These considerations point out why most of the work in heat transfer 
with dispersed flow has been concentrated in the investigation of the crisis. 

Experiments have been made on cylindrical ducts with round, rectangu- 
lar or annular cross sections. For practical reasons the investigation con- 
cerned mainly steam-water mixtures. Upward flow has been more investi- 
gated than downward flow or horizontal flow. Electrical heating is most 
commonly used. Condensing steam is also used as an approximately 
constant temperature boundary condition. 

2. Qualitative Description of the Crisis and Dejinitions 

A number of definitions have been proposed for the critical heat flux. 
These. refer either to a particular character of the phenomenon or to a 
particular method of detection. 

Since the crisis observed in the case of dispersed flow has generally 
a progressive character, it is felt necessary to  give here an accurate 
description of the successive steps of the crisis. We shall then review the 
various definitions which have been proposed. 

There is hardly evidence that the crisis can occur with dispersed flow 
anywhere but in the immediate vicinity of the outlet of the heated sec- 
tion, at least in the case of a uniform heat flux distribution along the 
heated length (see also Section 111). Moreover various authors (83) (84) 
have found that, by increasing the heat flux progressively, the crisis first 
appears a t  the outlet and then propagates upstream. 

In this way along the corresponding zone of the heated section it was 
possible to  observe at  a given heat flux the successive stages or aspects 
of the crisis. 

It is equally possible to study the successive stages at a given point 
by progressively increasing the heat flux and recording the output of a 
thermocouple. 

When this is done in a typical case (C = 130 gm/cm2 sec; D = 0.5 cm; 
L = 80 cm; X, = 0.20) it is possible to  draw the curve of Q versus At9 
(Fig. 20). It can be seen that after a parabolic segment 0-b point b is 
reached where At9 suddenly decreases (segment k). This decrease has 
been found systematically a t  CISE and it seems that also Perroud (84) 
found the same. It has been recently ascertained that whereas the dis- 
continuity b-c was always encountered, point b could shift to  b' along 
the curve 0-b  to any position corresponding tovalues of 4 within anarrow 
margin. In some c88e8 this decrease could even happen in two or three 
steps the ultimate value of the discontinuity b-c or b'-c' remaining prac- 
tically unchanged. From c (or c') onwards At9 again regularly increases 
with 4 until soon enough a point d is reached where At9 begins to be 
unstable, showing random fluctuations around the average value. Simul- 
taneously from d downwards A0 incresses with 4 but at a much faster 
[4041 
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rate than along a-b of e-d and h is progressively reduced until its value 
comes to  be of the order of magnitude which corresponds to convective 
heat transfer for the steam flowing alone. 

Further, it must be mentioned that when point c has been reached, if 
C#I is decreased, instead of increased, A8 does not jump back to curve 
a-b but follows a curve c-0. It would seem, therefore, that in the whole 
range of rp up to very near the crisis there exist two modes of heat trans- 
fer: mode 0-b would be stable, when $ starts from zero, until near enough 
to the critical heat flux; there would be an abrupt change to mode c, 
which in its turn is stable down to 0 ;  moreover, any intermediate situation 

FIG. 20. “Hysterisis” effect in the heat transfer coefficient below CHF. 

between the two curves 0-b abd 0-c, below the critical heat flux, seems 
to be possible in principle. 

This summary description of the succession of events in a typical case 
shows that confusion may arise in characterizing the crisis by the critical 
heat flux. 

In the case of boiling (bubble flow) it is known that the curve implies 
the existence of a “burnout” heat flux: this heat flux would adequately 
characterize the crisis in the case of boiling, but it does not apply to 
dispersed flow. It is, a t  any rate, generally impossible to reach this heat 
flux without destroying the test element (at least in experiments con- 
ducted with electrical heating). 

For this reason the so-called DNB (departure from nucleate boiling) 
has been proposed. This point is inferred by a change of trend in the 
curve rp  versus A0 (86). 

14051 
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In our case this definition could be taken into account only if applied 
to curve a-c-d. But since it is by no means certain that boiling occurs 
with dispersed flow the expression “DSB” may not be adequate. More- 
over, this definition is not easy to translate into a method of detection. 

Another defiiiition, proposed by Griffith (H), takes into account the 
heat flus corresponding to the point where the heat transfer coefficient 
(+/A@ reaches its maximum value. This definition is adequate in our 
case but here, too, it is not easy to conceive a convenient method of 
detection. 

In many cases the definitions proposed for the critical heat flux were 
purely operational. They were mainly based on the detection of a local 
sharp rise of temperature. In many cases the detection was done by 
comparing the electrical resistance of the region of the heated section 
where the crisis occurs to  the resistance of another region where it does 
not. 

Other rough detection methods were based on the determination of the 
flux for which the temperature of the heated wall reached a prefixed 
value (much higher than the temperature of the coolant bulk) ; under this 
category can be mentioned the red-hot spot method used by the Russians 
(86) in many early experiments. 

All these methods may be used in the case of dispersed flow but they 
give values of the heat flux which lie above the value corresponding to  
the incipient crisis. This may be acceptable in the cases where the slope 
of d-e-f (Fig. 20) is very small (low qualities, low mass velocities), but 
it becomes very inadequate in the high and medium quality range, above 
all for high mass velocites where the slope of d-e-j is relatively high. 
In these cases the flow which may be detected does not have any connec- 
tion with the critical heat flux. 

\lethods of this kind consist generally in using the sensing element 
to trip the power supply and may be kept in any case as a safety device. 

The most straightforward method is still to  use a fast response thermo- 
couple in good thermal contact with the heated wall in the region where 
burnout is expected to  occur. Of course, this method, valuable in annular- 
dispersed flow, is inadequate in bubble flow or in subcooled boiling. 

The output of this thermocouple can be recorded. In the case where 
the heat flux increment is proportional to time, the recording would 
give an image of the curve C$ versus A0 directly. But this is not generally 
the case and even if it were, the direct interpretation of such a recording 
in terms of 9 versus A0 is not very easy. However, in the case of dispersed 
flow, whatever the rate of increase of 4, the stage of the crisis, corre- 
sponding to point d is always easy to distinguish directly: that is the onset 
of random fluctuations of the wall temperature. Here i t  should be noted 
[4w 



TWO-PHASE ANNULAR-DISPERSED FLOW 

that the study of these oscillations might be very difficult, since it would 
have to take into account the attenuation effect of the thermal capacity 
of the wall, and of the thermocouple itself, and the time delay introduced 
in the transmission of these fluctuations to  the thermocouple; but here 
we have none of these difficulties since we only need to tell if they are 
there or not. 

This stage of the crisis is always present, reproducible, and is easy to 
detect. Thus it is proposed to define the critical heat flux as the flux 
corresponding to the onset of fluctuations of the wall temperature. For 
sake of simplicity the term CHF (critical heat flux) will be used 
throughout . 

This definition is adequate in the whole range of qualities and mass 
velocities where the amplitude of the oscillations remain compatible with 
the safety of the test section. For very low qualities, however, as men- 
tioned before, one has to rely essentially on a device of the type previ- 
ously described (prefixed temperature detector). It is impossible at  the 
present stage to say if and where in this range the crisis of the type we 
have described goes to the type of crisis which is found with boiling 
water, characterized by a discontinuous increase of A8 versus 4, so-called 
burnout, corresponding to the onset of film boiling. 

B. CRITICAL HEAT FLUX CORRELATIONS 

1. Variables on Which the Critical Heat Flux Depends 

A systematic search for a correlation of CHF in annular-dispersed flow 
must take into account all the independent quantities involved. Such a 
search was not made for horizontal or inclined tubes, but only for 
vertical upward motion. The water-steam system was, of course, the most 
studied. 

The critical heat flux with subcooled water in upward motion is a 
function of the following variables (87) : 

L 
G) D )  ~1 Pl, P a )  PZ, P g j  K I ,  7, 08 - 8. 

When the fluid a t  the inlet is in the quality region, the term e8 - Bit 
disappears and the quality X takes its place. Moreover, if the water-steam 
mixture is supposed to  be in thermodynamic equilibrium, the terms, P Z ,  

P,, pt,  P,, Kt, y, X are functions of the pressure (or saturation temperature) 
only. If, in addition, the tube wall is always wetted, we have: 



MARIO SILVESTRI 

where X is intended at the point where the critical heat flux is reached. 
When this form is adopted, it is difficult and quite unnatural to introduce 
the inlet quality Xi 88 an independent variable. Of course Xi is bound to 
X, by an energy balance equation: 

4 loL 4 M  (3.2 

DCX (55) 
x = x i +  

X = Xi + 4 2 !k (for uniform heat flux) D G  

Introducing this expression for X, an implicit function of +or is usually 
obtained. If, however, we take into consideration instead of 4- the total 

power input W,,, = r D I O L  @(z) dz, to the heated tube for which the 
critical heat occurs at one point, there are no reasons to prefer X to Xi. 
In this case we can write: 

W, = fG. L G, Xi, P, D )  

To prefer one presentation to the other is a matter of personal prefer- 
ence. It must be kept in mind, however, that for any correlation the 
simpler the better. 

The following points must also be taken into account before discussing 
the proposed correlations for CHF: 

(a) The phenomena responsible for the crisis in subcooled boiling and 
in annulardispersed flow (a special case of quality crisis) may be sub- 
stantially different. For this reason, at Westinghouse, the notions of 
q-burnout and H-burnout are being introduced (88) : the first representing 
the crisis for excessive local heat flux, the second for “deficiency of water” 
(high mixture enthalpy). In consequence, it is very unlikely that the same 
relationship should hold for these two different flow patterns. Correlations 
valid from the whole quality range, from negative quality (subcooled 
water) to unity, proved to be quite unsuccessful. 

(b) The use of different definitions and different detection systems 
brought to experimental data which are not strictly comparable. This is 
mostly valid at high quality, where detection of the crisis is very difficult. 

(c) The distribution of phases at the inlet of heated elements is greatly 
influenced by the characteristics of the mixture generating plant. In 
particular, the geometry of inlet mixers or of feed circuits (for the case 
of separate generation of steam and water) has a fundamental influence 
on results. 

(d) The experimeiital procedure niuy put i n  evidence or obscurc some 
functional relationships: for instance, operating at constant total mass 
W81 
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velocity (and changing quality) or a t  constant mass velocity of one of the 
two phases (and changing the other). 

All these facts together have, as a consequence, a disagreement, of 
unknown extent between results obtained in different laboratories. 

2. Older Correlations 

From a chronological point of view, the first group of correlations had 
developed since 1943, on the basis mainly of results in subcooled boiling. 
The subcooling .henub, difference between the inlet temperature and the 
saturation temperature a t  the operating pressure, was the fundamental 
parameter. These correlations are not of direct interest here, even if 
they were extended to the quality region, see, for instance, (89). In what 
follows we will discuss correlations developed later and more related to 
annular-dispersed flow. For a wider bibliography see (90) and (91). 

Reynolds (92) was one of the first to study the field of X ,  > 0, using 
data collected a t  MIT. Two physical quantities are considered important 
by him: the liquid film thickness (calculated as if all the liquid would 
be concentrated on.the wall boundaries) and the average mixture velocity 
(supposing 8 = 1). The phenomenon is considered a purely local one. The 
correlation is of the following form: 

+or = G+'.6D-'-Sf(X, p )  (57) 

The range of the variables is the following: 

LID = 50 and 76 D = 4.6 cm 
G = 90 f 490 gm/cm2 sec 
p = 35 + 141 kg/cm2 

X ,  = 0.01 + 0.60 
= 190 P 880 W/cma 

The CHF is a decreasing function of pressure. 
For the first time an inverse relationship between q5er and G is presented. 

This is just the contrary of what happens in subcooled boiling. 
In 1958 Westinghouse presented (86) the analysis of hundreds of 

burnout data collected in different USA laboratories. The "prediction" 
equation is the following: 

(par = aHer-2.6 (I + g)' exp (-0.0012 g) (58) 

The range of variables is: 

G = 3 i 650 gm/cm2 sec 
+ = 40 -+ 720 W/cmz 

X ,  = from subcooled to unity 
geometry = circular or rectangular ducts 

pressure up to p = 140 kg/cma 
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The constants a, Go depend on geometry; for a plane geometry D is 
replaced by the width of the channel. Equation (58) put in evidence an 
L/D effect, while 4cr is an increasing function of G. Moreover for X + 1, 

does not go to zero. The dispersion of data correlated by this formula 
is & 35%, so that for design purposes a “design equation” is suggested in 
which the 

The same data collected by Westinghouse were worked on by many 
authors: 

(a) Longo ($3) presented a correlation identical with (58), but with 
different values for u and G.,. 

(b) Isbin et al. (94) started from a model of “quality burnout,” in which 
the crisis is attributed to the disappearance of the liquid film, for lack of 
transverse flow of water. The correlation is quite complex and requires 
the determination of six constants. This model introduces an inverse 
dependence of on G. 

(c) Bell (95) proposed an empirical correlation (for p = 140 kg/cm*): 

value is multiplied by 0.65. 

where a, b, c, d, e, are empirical constants (and H, is loo0 BTU/lb). 
Coefficients d and e are such that, for equal H,,, the dependence of +cr 

is inverse of C. Xo L / D  effect is present. The range or validity is the same 
as that of (58), except that X is always positive. 

(d) CISE (96) correlated the same data (plus a few points at lower 
pressure) with an expression of the type: 

+cr = aD-O-26G-ny (60) 

where y = 1 - X/X + a is a quantity proportional (for s = 1) to the 
average liquid concentration in the duct. a and n (n > 0) are constant at  
constant pressure. Also, this correlation is based on a model in which it is 
assumed that the water cross flow from the main stream to the heated 
walls has a predominant role in determining the crisis. 

(e) Jacobs and hlerril (N) presented a statistical correlation with 24 
empirical constants, which seems really too much. They verified that 
correlations based on independent system quantities (input quantities 
known a priori, for which an energy balance is not necessary) correlate 
experimental results better than correlations based on local values (like 
H,, X, etc.). 

(f) Also Macbeth (98) prefers the use of independent quantities, but, 
to improve the correlation, he uses one variable more than needed (X and 
Xi) so that his correlation is incompatible with the heat balance equation. 
This correlation has eight empirical constants, which are functions of 
pressure and geometry. 
14 101 
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The experimental basis of all of this group of correlations is reference 
(86). Only correlations presented under (b) and (d) try to start from an 
elementary physical description of the phenomenon. In  addition, Gold- 
man et al. (99) tried a physical interpretation of the crisis and they 
considered the diffusion of liquid droplets from the core to the heated wall 
through the vapor layer adjacent to the walls in critical conditions as a 
slow process. To correlate data, however, knowledge of the average axial 
slip and of the local slip (average value of slip in a cross section) is 
necessary. 

S. More Recent Correlations 

It was evident, a t  this point, that experimental data collected up to 
1958 were not enough and that further data were needed to better under- 
stand the influence of the different parameters. 

Perroud (84), using a number of experimental data collected at  50 and 
60 kg/cm2, confirms the inverse dependence of & on G and proposed for 
y (or alternatively for 1 - X / X )  a higher exponent than proposed for 
CISE (-2 in place of 1). 

A wide experimental program was carried by CISE between 1960 and 
1961 ( I S ,  39, 40, 41) on circular ducts and annuli mostly a t  70 kg/cm2. 
The correlation (60) proposed before was modified in the following way : 

(61) 
1 
K y = - G"+,," 

(% m > 0) 

where K and m are functions of pressure; in addition I< a is function of the 
L I D  ratio. The inverse dependence of cpcr on G is still confirmed on most 
of the quality range. The L I D  effect is quite important. The correlation, 
only valid for annular-dispersed flow, was deduced from experiments in 
the following range: 

p = 40 + 85 kg/cm* 
D = 0.3 f 1 cm 
L = 1 0 + 8 0 c m  
G = 100 + 400 gm/cm2 sec 
X = 0 + 0.8 

Quite recently, Westinghouse (88) proposed a new correlation, based 
mostly on experimental data presented in (85) and ( I S ) .  As previously 
mentioned, the possible existence of two critical heat fluxes of different 
nature is discussed. The correlation valid for the quality region is: 
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The range of validity is: 

geometries: circular tuberectangular channel-annular channel-rod bundle 
G: 
P: 55 i 190 kg/om* 
L / D  : 21 c 656 
inlet subcooling: 0 f 170 kcal/kg 
Xo,: 0 i 0.9 
+: 30 + 550 W/cm*, with uniform and nonuniform axial distribution 

Sine empirical constants are necessary in this case; 95% of data are 
correlated better than 25%. The dependence of &r on G is directiat low 
quality and inverse at higher quality. 

Mention must be made of a number of correlations used by Russia11 
workers. In these correlations, the physical conditions of the system are 
introduced through dimensionless groups, introduced by Kutateladze 
and StyrikoviE (100) to study the process of nucleate boiling. 

One of the most recent correlations, presented by IvdkeviE (101,102), 
has the following form, when the mixture enters with a finite quality into 
the heated section : 

27 c 550 g/cm* sec 

(63) aG(I-1 + XYodj2(_~,D)[1 - - XI .- fdP)&r = - - -  -- 

1 + b~ f t (P)L -I- - G(Y1 + xvoJ)fO(p,D) "( 3 
where a and b are constants and fl(p), ft(p,D), I&) are known functions 
of pressure and diameter. This correlation which is a particular form of a 
more general relationship, which holds, in the opinion of this author, in a 
very wide range from subcooled water to 0.9 quality, gives however for 
annular-dispersed flow a direct relationship between and G. Formula 
(63) also takes into account uneven power distributions, through the 
term &/4, where 6 is both axial and transversal average heat flux. The 
author claims correlating data from different sources better than +, 30%. 
The occurrence of the crisis is characterized both by its location (which 
does not always coincide with the outlet) and by the value of the critical 
heat flux. 

Another correlation for upward flow developed by Miropl'skij and 
Sicman (103) makes a distinction between pulsating flow (when thc 
heated section is preceded by a large free volume) and nonpulsating flow 
(when, through orifices or other means, the heated section is decoupled 
from the mixture generating system). The critical heat flux is different 
for these two cases only when: 

K w  = -( Gpi fi ) O*' < 2.104 
'YPl Po 
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The general formulation is the following, for the case X > 0: 
(a) nonpulsating flow: 

where a is a constant (different for different geometries) and n is an 
exponent, the values of which depend on that of K w ;  

(b) pulsating flow (only for Kw < 2.10-2): for higher KW values 
formula (65) holds: 

The validity of these correlations is the following: 

geometries : round tubes-annuli-rectangular channels. 
D > 0.4 cm 

D. - Di > 0.2 cm 
D > 0.13 cm 

L / D  > 100 
X < 0.9 for p = 20 kg/cm*; X < 0.6 for p = 100 kg/cm2; 
X < 0.4 for p = 180 kg/cme; X < 0.25 for p < 200 kg/cm2. 

The authors claim to correlate a number of results better than k 30%. 

C. PECULIARITIES OF CRITICAL HEAT FLUX 

1. Critical Heat Flux with Constant Power Distribution 

Once a particular definition of the CHF is accepted, it is better to 
study the influence of the different parameters of importance, and t o  rely 
on experiments in which the same criteria are used throughout. Thus, 
we shall refer mostly to experiments carried a t  CISE following the 
definition given a t  the end of Section III,A,2 (13, 39, 40, 41). 

In this paragraph only constant heat flux (along the channel length) 
will be considered. The phase distribution at  the inlet of the heated 
section plays an important role in determining the value of the CHF. Thus 
we shall distinguish between CHF in fully developed flow (when the 
heated section is preceded by a very long unheated section-or mixing 
length-of hundreds of diameters), in which the flow pattern peculiar of 
the specific flowrate and quality can freely develop, and CHF in tubes, in 
which special injection systems are used. 

Results will be presented in graphs where the CHF is plotted as a 
function of the inlet quality, for constant pressure, flow rate, heated 
length and diameter. A family of curves will be drawn having one of the 
above mentioned quantities as a parameter. 

14131 
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21a 

FIG. 21. CEIF BJ a function of quality, with msss velocity as a parameter. (a): Inlet 

Usually plots of the CHF have exit quality as abscissa. Some of these 
plots will also be presented here. As seen in Section III,B, it is equivalent 
to choose Xi or Xo from a logical point of view. From a practical point of 
view, however, we must make the following points; 

(a) X i  is an input independent variable; X ,  on the contrary must be 
deduced through a heat energy balance. This increases the overall errors. 

(b) Comparison between plots with Xi or X, as abscissa shows that 
X,-plots can be much more easily interpreted than Xo-plots. 

Results presented here refer to  steam-water mixtures at pressures 
around 70 kg/cm2, in upward flow. It is evident that, by increasing 
pressure, any peculiar feature smoothes down.' It is also true that in 

4 The behavior of supercritical mixturea is quite complicated, due to the rapid, if 
not sudden, variation of many properties across the so-called pseudocritical tempera- 
ture (temperature at which heat capacity reaches a maximum). See, for instance. 
(104) and ( 105). 

quality rn abscissa. 

W1 
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Fig. 21. (b): Outlet quality as abscissa. 

horizontal or downward flow, results, although probably not qualitatively 
different, will differ from a quantitative point of view. 

a. CHF in  Fully Developed Flow. Results for fully developed flow will 
be presented first. In this case starting from saturated steam (at the inlet) 
the critical heat flux goes up with decreasing quality. For low mass 
velocities it reaches a maximum (when the flow pattern at  the inlet is slug 
flow) and then goes down again. For high mass velocities no maxima 
occur, but there is a certain inflection in the curve. See Fig. 21a. From 
the comparison of plots reported in Fig. 21a and b it is seen how the 
interpretation of results is much more difficult when X ,  is in abscissa. 
With X i  as an independent variable there is only a single value of &,, 
while c $ ~ ~  is a multivalued function of X,. 

The main aspects are the followings: 
(a) in annular-dispersed flow, +cr has an inverse relationship with G, 

while the contrary is true at  lower qualities (that is for bubble or slug 
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flow). We will come to the controversial point of maxima later. This 
relationship: 

4cr G-"(n > 0)  

(where n is certainly a function of pressure) was not recognized at first 
in the Westinghouse correlation, but afterwards an examination of the 
same data by many authors showed that this was the case (see Section 
111,B). In addition, a number of Russian works (106, 107, 108) support 
this idea, as well as recent experiments carried at the G. E. Vallecitos 
Lsboratories (109, 110). 

FIG. 22. Critical power at constant mass velocity as a function of inlet quality 
(L/D as II parsmeter). 

(b) tlicre is a strong LID effect. In Fig. 22 a family of curves is reported 
for constaut G (and p) and different L / D  values. The total power 
K D L ~ , ,  = W ,  is reported on the ordinate. It can be seen that an enormous 
increase in length (at constant diameter) brings only a very moderated 
increase in W,,. This means that +or goes down tremendously with increas- 
ing length. Plotting Wcr in place of +or seems a better way of taking into 
account the I J / D  effect, to which W,, is much less sensitive than +ere 
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This phenomenon (“hystory effect”) could possibly be explained by 
visualizing the water flowrate as divided in two components: the former 
flowing along the wall as a water film, the latter as droplets in the bulk. 
The first components could be evaporated in any tube length, giving 
something like a constant base load power, the second would be partially 
evaporated as soon as it becomes deposited on the duct wall. 

(c) The pressure effect is not a strong one in this range. 
b. CHF in Developing Flow. If the LID effect is difficult to explain in 

physical terms, much more controversial is the question of maxima. At 
CISE (where experiments were always carried out with a very long mixing 
length) maxima were always found (for low mass velocities). Russian 
researchers found (107, 108) that by throttling the flow injection valve 
to  the heated element maxima disappear. In certain experiments they 
inserted in a dead end (in respect to the heated duct) a geometric volume 
which was filled a t  times with cold water or with nitrogen (or superheated 
steam). In this latter case, maxima occurred (accompanied by strong 
pressure oscillations) while, in the first case, maxima did not occur. The 
reason for this was attributed to the presence of an elastic (gas), or fairly 
rigid (water), medium hydrodynamically coupled with the heated duct. 

To clarify this point three experiments were carried out a t  CISE, 
(see Fig. 23) at  constant pressure, geometry and flowrate selecting a 
flowrate for which maxima occurred : 

(a) In the first experiment subcooled water or a steam-water mixture 
was injected into the mixing length (L ID = 600), and then freely passed 
to the heated length. A maximum is clearly seen. 

(b) In a second experiment, a very high 1ocalized:pressure drop (a 
number of orifices in series) was put between the mixing length and the 
heated length (flashing occurred in a certain quality range). No maximum 
occurred. 

(c) In a third run, a smaller pressure drop was located as before. The 
plot of looks intermediate between that of (a) and (b). 

Additional experiments were performed with orifices a t  the bottom 
of the mixing length and results were in agreement with those obtained 
without orificing. 

Thus it seems reasonable, for the time being, to conclude that in 
experiment (a) any flow pattern could fully develop, while in experiment 
(b) the injection in the test section of a high kinetic energy input pre- 
vented formation of slug flow. This energy is more or less dissipated in 
artificial turbulence, which alters the flow pattern even in the low quality 
region. In condition (c) the behavior was in between. This is all the more 
true, without bringing into the picture the elastic character of one of the 
media (steam), since at  high mass velocity the maxima disappear, 
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although the volume of the gas phase in the same quality range should 
be more or less the same. In addition, even without throttling, maxima 
disappear in conditions which are coincident, or at least very close, to 
those for which slug flow disappears (see Section 1,B). When subcooled 

- 0.4 -02 0 0.2 04 0.6 xi c 

FIG. 23. The influence of inlet conditions on the CHF. 

water is injected in a tube, one must take into account that the pressure 
drop increases (mainly due to the acceleration term), in comparison with 
ndiabatic flow a t  the same average quality. Thus no flow pattern, includ- 
ing slug flow-which is possible only in a quite narrow quality range-can 
fully develop and the CHF curve would resemble the one with orifices 
more than the one in fully developed flow. 
(4181 
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2. CHF with Uneven Power Distribution 

No systematic study has been made up to now of this aspect of the 
phenomenon, although a correlation (63) takes into account a form factor 
for the heat flux distribution and another correlation (62) is also con- 
sidered valid by the authors for uneven power distribution. 

The limited number of experimental results is sufficient to show that 
a more careful insight would be of great importance for understanding 
the crisis. Were the crisis a local phenomenon, it would take place a t  the 
point where local quality reaches the critical value. But this is far from 
being the case. 

Heat flux shapes frequently used are: hot patches in a uniform heat 
flux, intervals of constant heat flux and unheated lengths, linearly varying 

20 t 
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P =71 kq/cm' (1008 psi)  
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FIG. 24. Critical power for three different heat input distributions. 

heat flux (or linearly varying tube thickness, which gives an hyperbolic 
variation for s << Di),  cosine-shaped heat flux. 

The strong L I D  effect on the critical heat flux (which is to be compared 
with the weak L I D  effect on the total power) is evidence that the total 
heat flux is quite insensitive to the heat flux shape: in fact, a short tube 
can be considered a small portion of a longer tube with uneven power 
distribution. 

Even more striking are results obtained a t  CISE ( I l l ) ,  an example of 
which is reported in Fig. 24. Here the total critical power as a function 
of inlet quality is reported for three different cases: an electrically heated 
length of 80 cm at constant heat flux, the same geometrical length but 
with a central portion of 40 cm short-circuited (rectangular-shaped flux) 
and a heated length of 40 cm. Even though small differences may exist 
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between these three curves, there is no comparison with the very large 
differences, in the heat flux distribution. It is only close to the maximum 
(where the annular-dispersed flow pattern tends to  disappear) that there 
is an appreciable differentiation between the three curves. 

Similar results were obtained by other authors. At the General Electric 
Laboratories a t  San Jose (California, USA) experiments were carried 
out in an internally heated annulus (IIZ), with a high pressure steam- 
water mixture with a power distribution of the form: 

-54 < y < 54 *Y 4 = 9maE cos-; 139 

where y is the axial coordinate from the midpoint of the heated section, 
so that the ratio was 0.34. Total critical power, a t  constant 
heated length, could not be distinguished from data taken with constant 
heat flux. 

Experiments were carried out recently in USSR with linearly varying 
tube thickness (113) and far from the maximum (that is in a region of 
fully developed annulardispersed flow). The CHF (the crisis ttlways 
arising at  the outlet of the heated section for X i  > 0) was about twice 
(for increasing heat flux) or one-half (for decreasing heat flux) of the CHF 
with constant distribution. Since +max/+min = 4.9 and = 2.3 
for the tested element, this showed that total critical power was more or 
less insensitive to power distribution even reversing the tube itself. 

The uneven distribution of heat flux in the radial direction was also 
tested in USSR (114). The (radial) ratio was 1.8 and maximum 
CHF’s were about 1.6-1.8 times higher than CHF’s with uniform (radial) 
heating. The conclusion reached by the authors was that in these tests 
the heat flux 4, taken as an average over the entire circumference, had, 
a t  the moment when the crisis occurred, about the same value as in 
uniformly heated tubes. 

These experiments thus support the idea that the maximum power 
which can be extracted from a vertical tube in critical conditions is 
sensitive to the integral of the power distribution and not to local values. 
Much work is necessary, however, to better clarify the situation, mainly 
in connection with the criteria for the design of a steam generating tube. 
The usual design criteria (hot spot factors, hot channel factors, point a t  
which the crisis would occur and so on) would have to be deeply revised. 

3. CHF in More Complicated Geometries 

rectangular channels were investigated in a less systematic way. 
Critical flux in geometries more complicated than round tubes or 

A certain amount of work was done on annuli, externally, internally 
14201 



TWO-PHASE ANNULAR-DISPERSED FLOW 

or bilaterally heated. Results of experiments a t  70 kg/cm2 carried out a t  
CISE (IS, 40, 41, 82) showed that for annuli externally heated the same 
correlations holds as those valid for round tubes (for the same conditions 
and same G’s), without changing the value of the numerical constants, 
provided that for D the “heated diameter” Dh would be introduced. 
DI, is defined as: 

Dn = D, (1 - [a]’) 
For internally heated annuli, the trend of 4 c r  is more or less the same, 

but its absolute value is smaller than for externally heated annuli. It 
is to be noted, in connection with this, that measurements carried on in 
adiabatic flow, showed that the liquid film thickness of the internal wall 
of an annulus, is generally thinner than that on the external wall. 

With bilateral heating, an interesting conclusion drawn from experi- 
ments is that the two heated surfaces have a negligible influence on each 
other. In Fig. 25 this fact is clearly illustrated. Here plots of 4cr in the 
inner tube (for two G’s) as function of inlet quality are reported for 
different heat fluxes in the outer tube. The data just superimpose (at 
constant G ) .  This means however that the crisis (in a point of the heated 
surfaces) is reached for lower outlet qualities, when only one surface is 
heated, while, with both surfaces heated, the crisis is reached a t  higher 
outlet qualities. Thus any unheated surface acts as a “water sink,” 
increasing the water “holdup” for a given critical power Wcr. 

At Harwell (58, 115) similar results were obtained: in Fig. 26 results 
obtained a t  CISE and at  Harwell are compared for similar conditions. 
For other experiments carried out a t  San Jose Laboratory of General 
Electric see (109, 110). 

The results for rod bundles are more difficult to  interpret because it is 
more difficult to define and to assure the phase distribution at  the inlet. 
Results recently published by Green et al. (116) for upflow of water-steam 
mixtures in bundles of nine rods (0.413’ O.D. in a 0.468’ pitch) a t  141 
kg/cm2 (2000 psia), show that the CHF has the same order of magnitude 
as that in parallel channels of similar length. Other experiments (117) 
carried at General Electric at low pressure (-2 kg/cm2) in four rod 
bundles hardly enter the dispersed region. 

For the development of the Plutonium Recycle Test Reactor (PRTR) 
experiments were carried out at Hanford by General Electric (118) on an 
electrically heated mock-up of the fuel element assembly. The test section 
consisted of 19 rods, 0,564’ (1.43 cm) O.D., 7.3 feet (223 cm) long in a 
3.25’ (8.26 cm) I.D. process tube. Power (up to 2000 kW) was applied at 
70 kg/cm2 and different exit qualities were reached, some of them cor- 
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responding to annulardispersed conditions. However critical conditions 
were never reached, so as not to  destroy such an expensive mock-up. 

hlultirod (7 and 19) cluster behavior in steam-water upflow, with 
power, is also being studied a t  Columbia University (119) in the range of 

[ . I  
250 

200 

150 

100 

50 

0 

--I Annu la r Tube 
I ! 

lD-0.502~1~1 00-0.825cm L-SQOcm 

pu71 Bilatera Y" heating with external 
critical heat flux, - 

-0.2 0 a2 0.4 0.6 0.8 Xi 1 

FIG. 25. CHF in an annulus as a function of inlet quality with m a s  velocity as a 
parameter (Bilateral heating with external critical heat flux). 

70 kg/cmz. Preliminary results show that in annulardispersed flow the 
CHF is of the same order of magnitude as in cylindrical ducts; but too 
few experimental points are available t o  draw any quantitative con- 
clusion. In Sweden still another experimental group is working on vertical 
clusters with steam-water uptlow. Up to  now published data (180) cover 
[4223 
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the low pressure range (2.5 to 10 kg/cm2). Experiments carried out with 
a three rod cluster show that in that range, critical steam quality decreases 
with increasing heat flux and decreasing pressure. Moreover they observed 
that critical steam qualities for rod clusters are much lower than those 
previously obtained for round ducts and described in previous reports. 
This agrees in principle with results obtained in annuli: the process tube, 
usually not heated, acts as a water sink lowering the critical quality a t  
constant heat flux, in comparison with the round tube case. 

A general remark must be made about experiments on clusters: the 
fluid at  the inlet is usually liquid water below the saturation temperature. 
Thus a portion of the heated channel is in single flow for a time and then 

Oo 0.2 0.4 0.6 0.e x, ID 

FIG. 26. Comparison of CHF data obtained at Harwell and at CISE for internally 
heated annuli. 

in a multitude of two phase flow patterns before entering the annular- 
dispersed regime: the phase distribution at  its boundary is the one 
imposed by geometry and by the heat input. Very probably different 
results would be achieved by imposing a pre-determined phase distribu- 
tion through a mixer or similar device at  the inlet of the heated section. 

Other geometries were also studied mainly to simulate the behavior of a 
rod in a bundle : eccentric annuli, dumbbell-shaped cross section, maltese 
crosses etc. Nothing can be said here of these results, without going out 
of the scope of this chapter. 

D. HEAT TRANSFER COEFFICIENT IN ANNULAR-DISPERSED FLOW 

1. Heat Transfer Mechanism below the Crisis 

In recent times an ever-increasing interest was put on the study of 
the mechanism of heat transfer in annular-dispersed flow. Today the 

[4231 
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amount of experimental data on the water-steam system in upwarld flow 
is quite large, and a list of references can be found in (121). Most of these 
data were taken at  low pressure and a number of experimental correla- 
tions were developed. On the other hand, theoretical studies, aimed at  
describing possible heat transfer mechanisms, have not been particularly 
successful. 

The following points must be taken into account: 
(a) Only the measurement of local heat transfer coefficient is of scien- 

tific interest. Values averaged over a certain length, although in many 
cases of primary practical importance, are difficult to interpret, because 
the separate influence of flow pattern, heated length, quality variation, 
etc., cannot be easily separated. 

(b) Heat transfer coefficients in annulardispersed flow below the 
critical heat flux are usually very large. In high-pressure systeme peak 
values up to 50 W/cm2 "C are not uncommon. Since a t  high pressure (1) 
the ductwall must have a certain thickness (2) metals suitable for high 
temperature service, i.e., stainless steels have poor thermal conductivity, 
and (3) the temperature of the inner tube wall is deduced from that on 
the outer tube surface, the accuracy with which heat transfer coefxicients 
are measured is usually very poor. With the best equipment and careful 
calibration the accuracy attainable in such measurements does not exceed 
the order of magnitude of 0.01 "C/W/cm2, which means a 50% error on 
a value of 50 W-/cm2 "C. 

(c) From the description of the crisis, as reported in Section 1II1A,2, 
it appears that h, below the critical heat flux, presents an "hysteresis" 
effect. Although this effect requires more careful experimental confirma- 
tions, it would be logical to conclude that, if things are so, only an upper 
and lower limit could be given for h. Below the critical heat flux, subject 
to some limitations, any value seems possible in between depending on 
the complicated flow subpattern configurations. A t  the critical heat flux, 
On the other hand, the value of the heat transfer coefficient seems une- 
quivocally determined. A series of h measurements for a particular condi- 
tion is presented in Fig. 27. 

While the above picture is subject to confirmation, in what follows a 
number of correlations will be presented, which do not, of course, take 
into account these additional complications. 

In bubble flow, and partially also in slug flow, the heat transfer 
mechanism is not substantially different from that which takes place in 
subcooled boiling. 

The transition from nucleate boiling to evaporating mechanism is 
probably connected with hydrodynamic conditions prevailing in the 
annular dispersed regime, which is entered with increasing quality. This 
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transition could also be used as a tentative criterion to define the boundary 
between dispersed flow and other types of flow. Two resistances in series 
are met by heat going from a heated wall to a dispersed core: (a) heat 
must be transmitted through the liquid layer and (b) water must be 
evaporated from the liquid surface t o  the bulk with a mass transfer 
evaporative process. This picture is consistent with the hypothesis that 
no bubbles exist in the liquid film. Collier and Pulling (121) recently 
pointed out that Hau's (122) theory on the initiation of nucleate boiling 
may explain this phenomenon. 

FIG. 27. Example of the wall to coolant temperature difference below CHF, as a 
multivalued function of the heat flux. 

From an experimental point of view Dengler and Addoms (123) pro- 
posed for the temperature drop AOf across a liquid layer, for which the 
nucleation begins, the following criterion: 

AOf 2(0,)0.3 (68) 

where AOf is in "C and oa in cm/sec and is the average mixture 
velocity calculated as G/p,  where p = ap0 + (1 - 8 ) p ~  

This temperature drop was also checked by Davis and David (124) for 
horizontal flow. If the liquid thickness in equilibrium with o,, a t  that 
particular heat flux is sufficiently small, the temperature drop AOf' which 
allows such heat flux to pass only by a conductive mechanism through 
the liquid layer is smaller than AOf and bubble nucleation should not set 
in. 
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Putting : 

the condition : 
A@, = A@,' 

gives : 

where s = f(E, 4). 
Making the further hypothesis that s - l /d,  one has the e q u a t h :  

(72) 

independent of the heat flux, and depending only on oa. This equation 
determines the mixture velocity, at which nucleation is suppressed. 

This relationship is of the same type as that defining the boundary 
between slug flow and annular dispersed flow, although this boundary 
might not coincide with the one for which bubble nucleation is suppressed. 

2. Heui Transfer Correlations below the Crisis 

Subject to the aforementioned limitations, a list of correlations can 
be given. A first group is the equivalent, in the heat transfer field, of 
AIart,inelli correlations for pressure drops. Guerrieri and Talty (1 2?5) and 
Dengler and Addoms (123) summarized results obtained with steam- 
water and organic systems at low pressure, in the following way: 

h 
7El; = K(k)" (73) 

in which K and n are constants and he is the heat transfer coefficient 
calculated with the Dittus-Boelter correlation and the total flowrate 
flowing in the liquid phase (123) or the liquid flowrate flowing alone (125).  

The above correlation was recently checked by Collier (121) for low 
pressure experiments with steam-water mixtures in upward motion in 
annuli. Properties of the liquid phase are, however, calculated not at  
the bulk (saturation) temperature, but at the mean film temperature 
8f, so defined: 

$, = esat + 0.33(@, - (74) 

Schrock and Grossmann (83) present a correlation valid for both the 
nucleate boiling and the evaporating region. The boiling number : 

(75) 
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is assumed as a fundamental parameter for the first condition: 

K1, Kz and n being constants. Most of the data for water-steam upflow 
in tubular ducts are correlated within k 35 %. The experimental range is 
very wide: 3 to 35 kg/cm2 for pressure and 24 to 450 gm/cm2 second for 
mass velocity. Sani (126) used the same correlation for his results, 
obtained in steam-water downflow at  low pressure and low heat fluxes. 
However the “boiling number” suggested by him is different: 

A number of correlations, derived from the homogeneous model, were 
used by Groothuis and Hendal (127) and Davis and David (124). They 
are all of the form: 

in which K ,  nl, n2 are constants and in the Reynolds number the average 
mixture fluidity l /p  is used (see formula 25a). 

In the high pressure range ( p  > 40 kg/cm2) these correlations, com- 
pared with Perroud (84) and CISE (IS) data, show a worse disagreement 
than a t  low pressure. 

From a theoretical point of view, some attempts to calculate the heat 
transfer coefficient from a hydrodynamic description of the liquid film, 
as for instance those made by Anderson (168) and Hewitt (66) did not 
give satisfactory results. These theories usually neglect the resistance to 
heat transfer a t  the gas-liquid interface. On the other hand, a semi- 
empirical correlation developed a t  CISE (129), in which the predominant 
phenomenon was supposed to be the self-diffusion of steam molecules 
through the steam boundary layer adjacent to the liquid surface, gave 
reasonable agreement a t  low pressure, but failed at higher pressures. 

In  conclusion, it is probable that any theoretical model should take 
into account both resistances to transfer of heat: that through the liquid 
film, and that a t  the liquid-vapor interface. Additional complications 
would be the carry-over and deposition of liquid droplets, and the pres- 
ence of waves or roughness on the liquid film profile. The “hysteresis’’ 
of the heat transfer coefficient would provide a further challenge to any 
theoretician. 

Nivu = K N R ~ ~ ~ N ~ , ~ ’  (78) 

3. Heat Transfer above the Crisis 

Above the critical heat flux, the heat transfer capacity of a heated 
surface drops down considerably. It has been recognized, however, that 
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in annular-dispersed flow the temperature increase following a, small 
increase of the heat flux is not catastrophic as in pool boiling.. From 
this fact arose the suspicion that occurrence of the crisis was not due t o  
a process of partial film boiling, but to the inadequacy of the crossflow 
of water droplets to take away the heat input. This was pointed out 
elsewhere [see also (68)J. Breakdown of the liquid film would bring the 
fiow pattern to a dry wall or partially dry wall conditions. An interest- 
ing question arises, whether this new flow pattern, the so-called “liquid 
deficient regime,” of which we spoke only vaguely in Section I ,A, l ,  is 
enhanced by the heat flux, or can exist only in heat transfer conditions. 
Adiabatic experiments prove that the “liquid deficient regime’’ may exist 
even without heat transfer, but that moderate heat fluxes bring down 

FIG. 28. Heat transfer coefficient vs. steam quality, beyond CHF (General Electric 
data). 

the quality a t  which this happens. It is also evident that in vertical 
tubes there is a certain axial symmetry, while in horizontal tubes the 
liquid deficiency in the bottom of the cross section is reached down- 
stream with respect to the top. Thus, in the latter case, the geometrical 
line connecting the LLburnout points,” a t  constant heat flux on the wall, 
is not a circumference, lying in a plane perpendicular to the axis, but 
is more or less an inclined ellipse. 

The initiation of the liquid deficient region coincides, of course, with 
the occurrence of the crisis. Beyond this limit, experiments were not 
carried out in a systematic way. A number of heat transfer coefficients 
were measured by the Harwell group (121) a t  low pressure. Many data 
were collected a t  San Jose, a t  the General Electric Laboratories (IS’O), in 
the first development of the once-through boiler. Here experiments were 
carried out a t  pressures of 56, 70, and 98 kg/cm2 (800-1000-1400 psis), 
[4281 
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in an annular vertical duct internally heated. They observed that h 
went down from the critical value to a minimum (in the 50-60% quality 
region) and then rose again to  the dry saturated steam value. Tempera- 
ture oscillations of varying amplitude occurred in this region, so that a 
mean value for h had to be taken into account. Some data are shown 
in Fig. 28. 

Starting from the relationship : 

N N ~  = C N P ~ B N R ~ O . ~  (79) 

a correlation of experimental data was tried, neglecting the influence of 
water droplets, and introducing the gas flowrate GX and the hydraulic 
diameter CUD. In this way, however, the minimum of h was not explained 
and an empirical correction was brought about (79) by substituting 
(1 - X ) X  for X and (1 - a ) / a  t o  a. For a, which is related to X ,  an 
empirical correlation of Larson's data (47) was used : 

1 
a =  

The final form of the correlation is the following: 

where G is the total mass flowrate and the physical properties refer to  
dry saturated steam. In this way, the authors claim that most of their 
data can be correlated better than 20%. Since, however, all experimental 
data are comprised between 0.4 and 0.8 W/cmz "C (800-1600 BTU/ft2hoF) 
this result is certainly not surprising. Less acceptable seems the use of 
Larson's data, which were obtained in adiabatic flow, while beyond the 
crisis a is certainly different and the slip ratio should be very close to 
unity. Moreover, by introducing (80) into (81), one can see that h goes 
to infinity, for X --f 1, and this hardly seems a good approximation. 

Another experimental analysis of the transition across the crisis was 
carried by Parker and Grosh (131). Experimental conditions were quite 
different from those of General Electric: low pressure (-2 kg/cm2, 30 
psia), very low heat flux (1-7 W/cm2; 3-21.103 BTU/ft2h), very high 
quality (8!3-100%). The steam-water system was studied in upward flow 
in a copper tube, 1 inch I.D., 4 feet long. The scheme they propose in 
order to handle the data is the following: if all droplets impinging on 
the wall are evaporated, the heat flux absorbed by them is: 
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where C is the concentration of water droplets and K d  is a diffusioii 
coefficient (in velocity units). The temperaturc difference between the 
walls and the bulk of the fluids (assumed at, the saturation temperature) 
is : 

(83) 4 - 4aL. e w - e a = -  h 

where h is the heat transfer coefficient for saturated dry steam. 
By definition, however: 

4 = hmiec(& - e b )  (84) 

where hn,iet is the over-all heat transfer coefficient. In the end: 

so that A0 = (6, - e b )  should rise more or less linearly from a value 
very close to zero for “burnout” conditions, t o  the dry steam value. 
An interesting remark is made by the authors: if A0 reaches a value 
sufficiently high, the Leidenfrost phenomenon could arise (water droplets 
in spheroidal state, incapable of wetting the heated wall) and a sudden 
jump in temperature should precede the dry steam conditions, while the 
heat transfer coefficient should drop suddenly to this value. Some experi- 
mental runs seem to confirm this picture. 

Experiments at very high quality (94-98%), moderate pressures (15-45 
kgicm2; 200-600 psia), mild heat fluxes (3-6 W/cm2; 10-20 x loa 
BTU/ft*h) were performed by Rounthwaite and Clouston (232) in a 
long horizontal tube, 1.614 foot I.D., mild steel. Evidently they found 
that the upper portion of the tube perimeter enters the liquid deficient 
region before the bottom. Apparently the h value fell off by a factor of 
20-25 from -2.5 to 4 . 1  W/cm2 “C (so00 down to 200 BTU/ft2h”F). 

At CISE, a number of heat transfer coefficients beyond the crisis were 
measured in a nonsystematic way (82). In  a single case however a com- 
plete set of heat transfer coefficients were obtained under practically 
constant experimental conditions (pressure, flowrate, geometry, and 
quality). For this purpose a very short tube (LID = 20) was used, so 
that the quality change due to heat input was negligible. Results are 
reported in Fig. 18, where the magnitude of recorded temperature oscilla- 
tions are also indicated, while the heat transfer coefficients deduced from 
the same points are given in Fig. 29. The error which affects these heat 
transfer coefficients is generally low, owing to  the higher A0 measured, 
with respect to wet-wall conditions. As a general remark, i t  can be 
observed that over-all heat transfer coefficients are higher than predicted 
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for steam flowing alone, although coefficients found when increasing the 
heat flux above the critical value tend to the values corresponding to 
steam flowing alone (mass velocity GX) .  These experiments tend to con- 
firm the hypothesis that the evaporation on the wetted area and a gas 
transmission elsewhere determine an average value of the heat transfer 
coefficient. By increasing the heat flux the wetted area of the wall 
decreases, until the temperature difference between the bulk and the 
wall is such that, possibly through the Leidenfrost phenomenon as sug- 
gested by Parker and Grosh, no more droplets wet the heated surfaces, 
even with quality steam. If this picture is true, the Leidenfrost tem- 
perature (function of many independent variables: p ,  G, X ,  D,  etc.) will 

20 

h 

[*] 
I0 

0 
0 100 

FIG. 29. Plot of the heat transfer coefficient beyond CHF (CISE’s resuIts, conditions 
equal to those of Fig. 18). 

correspond for wet steam to a second critical heat flux. This second 
critical heat flux would be similar in nature to the burnout heat flux 
typical for subcooled and boiling water or low quality steam. The strong 
temperature oscillations observed during these experiments might be 
explained by the succession of wetting and nonwetting in the region where 
temperature is measured, although a not fully levelled power input could 
be partially responsible in a region of high dT/d4. 

These oscillations reach a maximum when A@ is about halfway up 
this intermediate region and should depend moreover on the thermal 
inertia of the heated element, the magnitude of the volume power density 
and so on. The picture is similar also with annuli externally or internally 
heated. 

4. Analysis of the Heat Transfer Coeficient beyond the Crisis 

In what follows a tentative analysis is made, to predict the order of 
magnitude of the average value of h in the liquid deficient region, fol- 
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lowing the assumptions presented above and in line with the approach 
made by Parker and Grosh (131). 

Suppose that the critical heat flux is reached, and h,, is the correapond- 
ing heat transfer coefficient. We have: A& = bcr/hc,. Then 4 is increased 
above the be, value and temperature recordings are taken for EL suffi- 
ciently long time (at the same pressure, flowrate, and quality). The 
amount of water cross flow is still equal to &/A. If the unit heat transfer 
area is taken into account, me ideally concentrate all the water crossflow 
on a fraction of this area, so that this area is just fully wet: this means 
that this area is in a critcal condition, with heat flux cp. The fractional 
area in wet condition will be &/+, recalling that nothing has changed 
from the hydraulic point of view. The dry fractional area is then 
(4 - +Cr) /+ .  If we suppose that A0 in the portion of the wet area is equal to 

= b/hc, while it is ABdry = b/hdry (where the subscript “dry” stands 
for dry saturated steam conditions) in the dry area, the value of AB, 
weighted by the two areas, will be: 

while the average heat transfer coefficient 6, is: 

For + = &, it is L = h,,, while for X -+ 1, bcr --+ 0 and +i -+ hdry. 

In  the intermediate region, 6 has intermediate values without excluding 
the possibility that h can go through a minimum in the upper quality 
region. In fact, neglecting the contribution of the water droplets to hdry, 

but taking into account the volume occupied by the liquid phase in the 
bulk (and putting S - 1, beyond the crisis) one has, for the velocity of 
hoth phases, r* = G ( V ,  + XI7,t) and the apparent gas mass flowrate is: 

Thus 

(89) 
K 

h d r y  = c $ (Np,)D0.4 

A t  coiistant geometry and pressure ]!dry is only a function of X .  
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Moreover, neglecting the term - '" - in the l / h  expression, one has: 
Hor 4 

11-(1 1 - ?)k8 
A maximum for l / h  is reached if: 

The derivative d',/dX is always negative and it may happen that the 
above condition is satisfied for X < 1. 

IV. Heat Transfer with Two-Phase, 
Two-Component Mixtures 

Heat transfer with two-phase, two-component systems in annular flow 
was widely studied in the past and is being studied also today. The 
amount of theoretical and experimental work on condensation of steam 
in presence of an inert gas is very large. Most of it is concerned with 
downflow. In  this condition the mass transfer process of HzO molecules 
diffusing from the gas core through the gas boundary layer to the film 
liquid surface cannot be neglected in respect to  the heat resistance of 
the liquid film itself. 

This resistance may be calculated, as originally suggested by Nusselt 
( I S ) ,  when the downflow is laminar; when it is mostly turbulent, better 
agreement with experiments is reached, if, for instance, more recent 
theories, like that of Duckler (54) are used. Heat transfer from the gaseous 
core to the liquid surface must take into account both heat convection 
and mass transfer. This is done by using the analogy suggested by 
Reynolds between convective heat transfer and momentum transfer also 
for the mass diffusion process. This method suggested by Colburn and 
Hougen in the 1930's (134, 135, I % ) ,  although somewhat laborious, 
allows a good evaluation of the over-all heat transfer coefficient in the 
condensation of a vapor from gas-vapor mixtures. 

Experimental data on the evaporation of a two-phase two-component 
mixture in annular-dispersed flow are, on the contrary, very scarce. 

Finzi et al. (137) evaluated the heat resistance from the liquid surface 
to the gaseous core in pure annular flow (both upward and downward in 
the water-steam-hydrogen system), by introducing a heat transfer coefi- 
cient calculated thus: 

(92) 
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All physical properties, except the specific heat, refer to the gaseous 
mixture (steam + hydrogen), while, for the specific heat, the following 
expression is taken : 

Cm is the true specific heat of the gaseous mixture; Ale, aim are the molec- 
lar weights of the vapor and of the gaseous mixture, Ar/A0 is the ratio 
of the vapor pressure to the temperature drop for the vapor between the 
liquid surface and the gaseous core. The exponent n in (95) has a value 
of 1.13. The agreement between results calculated with this method and 
with the Colburn method, in the case of condensation, is surprisingly 
good, but the reason is unknown. 

Experiments with large heat fluxes, up to  the crisis, in annular dis- 
persed upward flow were carried out by Perroud and De la Rarpe (158) 
a t  CESG and by Lombardi (139) at CISE. 

Perroud, with a method similar to  that adopted by Colburn was able 
to correlate heat transfer coefficients from the liquid surface to  the core. 
The presence of liquid droplets was neglected and the temperature drop 
in the liquid film on the wall was assumed to  be a fixed fraction of the 
total. The results, obtained with different gas-steam-water mixtures, were 
well correlated, when this fraction was fixed at 0.2. 

During experiments with hydrogen, pressures from 3 to  10 kg/cm2 and 
an inlet temperature of 17"C, the crisis was reached. Heat fluxes so meas- 
ured (24 experimental points) are proportional to the cube root of pres- 
sure, to exponent 0.6 of the inlet liquid flowrate and almost independent 
of the flowrate of the incondensable gas. 

Experiments were carried out at CISE with the water-steam-nitrogen 
system, a t  low pressure (2.5 to  5 kg/cm2). The inlet mixture temperature 
varied between 14" and 90°C. A comparison between the heat transfer 
coefficients and the CHF's obtained in these conditions, and those 
obtained with the steam-water system (for equal water and steam mass 
flowrates, equal geometry, equal inlet temperatures, equal heat input, and 
equal outlet pressure) shows: 

(a) that the presence of substantial amounts of nitrogen reduces the 
heat transfer coefficient by a factor of 2 to 3; 

(b) that the critical heat flux is not appreciably altered; 
(c) in consequence of this, the temperature difference between the 

heated wall and the bulk of the coolant at the CHF is higher by the same 
factor. 

It was also observed that the temperature drop between the bulk and 
the heated wall showed a substantial reduction before the crisis was 
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reached, as it was later observed with steam-water mixtures. This reduc- 
tion was more gentle with the presence of the noncondensable gas. 

V. Practical Application of Annular-Dispersed Flow 
The simultaneous flow of a gas and a liquid in a single duct, with 

and without heat transfer, is of a common occurrence in many industrial 
processes. The petroleum industry, for instance, is particularly concerned 
with the flow of two-phase mixtures in the reservoir, well bore, gathering 
lines, transmission lines, and processing plant equipment. Steam genera- 
tors are another very important example of industrial plants operating 
with a two-phase flow. The interest in this field has considerably increased 
in recent years in connection with the construction of steam generating 
nuclear reactors. In fact, one of the characteristics of the in-reactor 
steam generation is that, below the critical pressure of water, two-phase 
flow exists at least in a portion of the reactor core. 

Steam generating reactors are a wide class, whose development is still 
in its infancy, although considerable progress has been achieved in the 
past ten years. They can be defined as reactors which receive water a t  a 
particular enthalpy content from a condenser and eject saturated or 
superheated steam to the utilization plant. They can operate both on a 
direct or an indirect cycle, although the first design is more attractive, 
since a number of expensive components can be eleminated in principle. 

I n  such reactors any kind of moderator can be envisaged in a pressure 
tube design. In the boiling water reactors, which are by far the most 
developed model of this class, light water behaves both as a coolant 
and moderator, while in the U.S.S.R. superheating reactor (140, 141) 
graphite is used as a moderator and it seems that nothing prevents the 
use of heavy water. 

As said above, liquid water entering the core with a certain enthalpy 
is ejected as steam. Achieving this in a single pass and with full vaporiza- 
tion of the water flow means a once-through design: thus, in each tube 
all kinds of flow patterns are met, from single-phase flow of liquid water 
to single phase flow of dry steam. Such a design, although attractive, 
incorporates a number of formidable obstacles, not the least important 
among them being that a t  constant flowrate a minor power surge produces 
a tremendous temperature increase at  the superheated steam outlet. 
A two-pass or three-pass design seems to be more reliable, although 
complicated by the necessity of phase separation at a certain point of 
the cycle, and attention is here focused only on this arrangement. 

In the superheated steam region heat transfer obeys the laws governing 
gas cooling. Problems exist with that mode of cooling, apart from the 
special problems arising from the use of a corrosive agent such as steam 
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a t  high temperatures. In the steam generating region, on the other hand, 
many possibilities exist, and a certain choice is permitted, in relation to  
the flow patterns allowed in the channel. 

The simplest case is the use of saturated water to feed the heated 
channels. For the time being let us imagine that those channels are 
cylindrical and cooled from inside. In  natural circulation boiling water 
reactors, the flowrate is mostly determined by the geometry of the cir- 
cuit, while in forced circulation reactors the coolant flowrate can be 
imposed from the exterior. In the latter case, depending on the value of 
the flowrate, different steam qualities can be reached a t  the channel exit, 
which are usually much higher than those existing in boiling water reac- 
tors. To a certain extent, the predominant flow pattern existing along 
the channel may be selected as desired. 

Up to now flow pattern charts, which are discussed in Section I, are 
not of general use and specific experiments are needed for specific cases. 
As previously mentioned, according to what has been found at CISE (IS), 
a t  a pressure of 70 kg/cm* (-1000 psi) slug flow should not exist above 
a mean linear velocity of -500 cm/second of the steam-water mixture, 
and, following the lines indicated in Section I,B,l, i t  would be impossible 
above L W 2 5 0  gm/cmz. Above this mass velocity there is a smooth 
transition from bubble flow to dispersed flow. On the other hand, below 
this flowrate, slug flow can occur and maxima occur in the burnout heat 
flux, if special provisions are not taken a t  the channel inlet. Boiling 
water reactors usually operate in that region, but with a proper selec- 
tion of flowrate and outlet quality most of the steam generating region 
of the reactor could operate in an annulardispersed flow pattern. Thus 
the thermal and hydraulic properties of water-steam mixtures in these 
conditions are of considerable interest. Knowledge of the value of critical 
heat flux &er and of the peculiarities of the crisis phenomenon (see Sec- 
tion II1,C) is of primary importance. 

One point should be emphasized in connection with the design criteria 
for a channel operating in annular-dispersed flow. A statement like “the 
maximum allowable heat power, shall not overcome the critical heat 
power” has an absolute nature, but what happens if the actual power 
overcomes the burnout power? Suppose that a tube 0.5 cm I.D., 80 cm 
long, operates in upflow at a pressure of 70 kg/cmz and constant heat 
flux of 100 W/cm*. Outlet quality, just below the crisis, is 52.8% for 
G = 180 g/cm’ second and 33.3% for C = 360 g/cm* second. To match 
t.lie energy balance, inlet quality must be 27.6 and 21.5% respectively. 
h sudden power surge now brings the heat flux up to 150 W/cm2 (outlet 
quality 63 and 39.2%). The temperature distribution along the tube is 
reported in Fig. 30. 
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Now in both cases the crisis begins a t  two-thirds of the heated length, 
but the maximum temperature jump is different. The one at  higher flow- 
rate is about two-thirds of that at lower flowrate. Thus safety beyond the 
crisis is different. Moreover the temperature increase beyond burnout is 
in itself quite moderate for such a high power surge, and periodical high 
frequency fluctuations of the heat transfer coeEcient are of muchlmore 
concern that the temperature increase itself. 

In  the previous example, inlet quality was not zero. To enter a t  zero 
inlet quality would be an interesting engineering condition, because there 
is no need for any steam blower or, worse, for an injection system a t  
the bottom of the heated channel. With the higher flowrate no instability 

ae 
P I  

100 

0 

FIQ. 30. Temperature distribution in a tube which operates partially below and 
partially beyond CHF, for two different mass velocities. 

would occur, while with the lower one a small amount of instability does 
exist. Through moderately orificing the channel, it is not difficult to pre- 
vent this. 

Orificing can be useful in another respect. Proper orificing would allow 
flashing of water, pressurized a t  a pressure higher than that of the mix- 
ture, in order to preheat water a t  a temperature higher than the tempera- 
ture of the mixture. In this way any quality region which could present a 
slug flow is avoided for flowrates of most common use. It is interesting 
to note that, for a given flowrate, the average density of the coolant is 
not substantially different, in this case, from the one which would be 
obtained by entering at  zero quality, without orificing. 

For geometries which are more complicated than single tubes, like 
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annuli and clusters, experimental results are much less abundant. How- 
ever, since any unheated surface, as pointed out elsewhere, acts as a 
water sink, it is of interest to eliminate them as much as possihle from 
the heated channels to decrease the average coolant density. 

There is also the possibility of increasing outlet quality (the CHF 
being constant) with the use of centrifugal fields. Very few experiments 
are available (142).  However displacements of the outlet quality from 
40-60 to 100% (at constant CHF) were achieved in some experiments 
by means of twisted ribbons inserted in a heated tube in a low pressure 
loop. Although practical application could be very difficult, it shows a 
path of improvement to reach higher qualities and to reduce the holdup 
water for a reactor designed for maximum neutron economy. 
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APPENDIX 

In this chapter on “Fluid Mechanics and Heat Transfer of Two-Phase Annular- 
Jjispersed Flow,” reference to other two-phase flow patterns is only incidental. Since 
flow-pattern boundaries are not well defined, the boundary of the material collected, 
and the author’s comments in this chapter, are correspondingly imprecisely defined. 
This should not be considered a complete fault of the author, but  must be ascribed to 
the still vague nature of the problem. 

The text does not start from the very beginning of the research work in this field. 
In a book on “Advances in Heat Transfer” it was considered reasonable to summarize 
the situation existing in 1954-1958 and to  enter deeper into the recent advances. The 
chapter may be taken as up-to-date at about the middle of 1962. Although an effort 
was made to review all published literature, a number of papers escaped my attention. 
To prevent complete confusion of the reader, results of other papers examined sub- 
sequently could not be incorporated into the text. However, most of them are cited 
in the Supplementary List of References. 

NOMENCLATURE 

v1 D diameter or distance beteewn par- 
allel walls; also equiv. diameter U v, - v1 

A mass number, cross section area D,  particle diameter 
c or cg specific heat a t  constant pressure 9 acceleration due to gravity 
C numerical constant c: specific mass flowrate (or n i a ~  
CHF criticel heat flux velocity) 
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GM 

h 

H 
k 
K 
L 
m 
n 
N N ~  
Npr 
N Re 
N w ~  
P 
Q 
r 

R 
S 

S 
U 
V 
W 
X 

X* 
X M  

Y 

Yf 

B 

r 
Y 

A 
AS 

8 
h 

0 

stands for Geiger-Muller 
(counters) 
heat transfer coefficients; also 
liquid volume fraction (or liquid 
holdup) 
ent halpy 
thermal conductivity 
parameter 
length; also heated length 
exponent or numerical constant 
exponent 
Nusselt number 
Prandtl number 
Reynolds number 
Weber number 
pressure; also wetted perimeter 
volume flowrate 
distance from the axis of the 
conduit 
electrical resistance 
film thickness or thickness in 
general 
slip ratio (U,/Vl) 
linear velocity 
specific volume 
total power input 
mass flow rate quality or 
Martinelli parameter 
volume flow rate quality 
molar flow rate quality 
distance from the wall; alao 

l-x 
parameter equal to ~ 

X + a  
adimensional wall distance 

Ar/Ai 
AJAI  
coordinate along the length 
atomic number 
gas volume fraction (or void 
fraction) 
contact angle 
surface tension 
mass flowrate 
difference 
s - 1  
2Y/D 
temperature 
latent heat of vaporization (also 
Ha11 

P viscosity; also mass absorption 
coefficient (for radiation) 

P density; also electrical resistivity 

7 shear stress + heat flux; also Martinelli 

C area 

parameter 

Subscripts 

1,2 refer to sections 1 and 2 of a duct 
along its length 

C core 
CT refers to critical conditions 
e external 
E entrainment 
f 
9 gas (or steam) 
g l  

friction; also film and fluid 

refers to the difference of any 
quantity in the vapor and liquid 
phase 

inlet or internal; also interfacial 
h heated 
i 
I liquid 
m refers to mixture 
max maximum 
min minimum 
M molar 
0 outlet 
( )o refers to quantities calculated 

by attributing the total mass 
flow rate to a single phase (gas 
or liquid) 

P particle; also refers to impact 
pressure 

S solid or saturation 
sub refers to difference between 

saturation temperature and sub- 
cooled water temperature 

tt turbulent-turbulent 
tv turbulent-viscous 
TP two-phase (used only when 

necessary to distinguish from 
single-phase quantities) 

U volume 
W wall 

Superscripts 
- average value (used only when 

necessary to distinguish from 
local value) 
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refers to superficial quantities density and specific volume of 
(for instance specific flowrates, the mixture 
velocities etc.) of a single phase refers to frictional pressure 
with respect to the total flow drops according to momentum 
area; also refers to flowrate equation 
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